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Preface 

Motivation 

The objective of this book is to implement signal processing algorithms in Python. 
During COVID-19 pandemic, it was a challenge to conduct the signal processing 
laboratory session in online mode. It was difficult for the students to install propri-
etary software as it was costly and hence not affordable. This motivated us to turn 
our attention toward open-source software. There are many open-source software 
packages available to implement signal processing algorithms. The reasons for 
choosing Python are (1) it is a general-purpose programming language that can be 
used for various tasks beyond scientific computing. (2) Python has an active 
community of developers who create and maintain a wide range of libraries and 
frameworks. (3) Python has become the language of choice for many machine 
learning and deep learning applications with powerful libraries such as TensorFlow, 
PyTorch, and Keras. The main aim of signal processing is to extract information 
from the signal. After extracting useful information, further processing, like classi-
fication of information, has to be done effectively using machine learning and deep 
learning libraries in Python. 

In this book, Python is used as a tool to implement signal processing algorithms. 
Teaching Python is not the main aim of this book. Python is used as a vehicle to 
present concepts related to signal processing. In this book, the signals are generated, 
manipulated, transformed, and useful information is extracted using libraries avail-
able in Python. The Python programs used in this book are purposively made simple 
and illustrative. The libraries used in this book include (1) Numpy, (2) Scipy, 
(3) Matplotlib, etc. These libraries provide a wide range of tools and functions for 
performing operations like filtering, resampling, prediction, etc.

v



vi Preface

Target Audience 

This book is suited for undergraduate students, postgraduate students, research 
scholars, and faculties working in signal processing. The reader is assumed to be 
familiar with basic Python programming. 

Salient Features of the Book 

The salient features of the book are summarized below:

• PreLab questions are included in each chapter. The questions are framed to be 
concise, clear, and thought-provoking.

• Numerous examples with Python illustrations are provided in each chapter. 
Python codes that implement signal processing algorithms are explained in step 
by-step approach. Tasks are given at the end of Python examples. These tasks will 
help the reader to vary the parameters in the algorithm and realize its impact.

• Exercises are provided in each chapter. These exercises help the reader to develop 
a deeper understanding of the concepts discussed in the chapter.

• Objective questions are given in each chapter. It helps the reader to prepare for 
competitive examinations like GATE, IES, etc. 

Coimbatore, Tamil Nadu, India S. Esakkirajan 
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Jammu, Jammu and Kashmir, India Badri N. Subudhi



Organization of the Book 

The book comprises of 12 chapters. Chapter 1 deals with the generation and 
visualization of continuous-time signals which include periodic signals, 
non-stationary signals, pulse signals, and standard test signals. Chapter 2 focuses 
on sampling, quantization, and reconstruction of signals. Both the time domain and 
frequency domain view of sampling, the effect of undersampling, uniform and 
non-uniform quantization, and different types of reconstruction like zero-order 
hold, first-order hold, and sinc interpolation are discussed in this chapter. 
Chapter 3 is dedicated to the generation of discrete-time signals and mathematical 
operations that are performed on the discrete-time signals. In this chapter, standard 
discrete-time signals like unit sample, unit step, unit ramp, exponential, and sinu-
soidal signals are generated, and mathematical operations like folding, shifting, and 
scaling are performed on the generated signals. This chapter also discusses two 
important signal processing operations: convolution and correlation. Different forms 
of representation of discrete-time system, properties of discrete-time systems, and 
responses of discrete-time systems are explained with examples in Chap. 4. One of 
the important topics is signal processing which is analysis of signals and systems 
using transform. Chapter 5 is devoted to transform domain analysis of signals and 
systems. Different transforms discussed in this chapter include Z-transform, Fourier 
transform, Short-Time Fourier transform, and Wavelet transform. Chapter 6 deals 
with the design of a simple filter using pole-zero placement technique. Different 
filters discussed in this chapter include moving average filter, digital resonator, notch 
filter, comb filter, and all-pass filter. Chapter 7 covers the types of FIR filters and the 
design of FIR filters. Three design approaches covered in this chapter include 
window-based FIR filter design, frequency sampling-based FIR filter design, and 
optimal FIR filter design. Chapter 8 deals with the design of IIR filter, mapping from 
the analog domain to the digital domain. The types of IIR filters discussed in this 
chapter include Butterworth filter, Chebyshev filter, and Elliptic filter. The mapping 
techniques discussed in this chapter include the backward difference, impulse 
invariant, and matched Z-transform techniques. The impact of the finite word length 
effect in the FIR and IIR filters is discussed in Chap. 9. Concepts like limit cycle
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oscillation, impact of coefficient quantization, and the nature of coefficient error are 
discussed in this chapter. Chapter 10 is devoted to multi-rate signal processing. 
Concepts like multi-rate operators, noble identities, polyphase decomposition, filter 
bank, and transmultiplexer are covered with detailed examples in this chapter. 
Design of optimal and adaptive filters and their applications are discussed in 
Chap. 11. This chapter discusses Wiener filter, LMS algorithm and its variants, 
RLS algorithm and its applications with necessary examples. Chapter 12 is devoted 
to case study which discusses the application of signal processing algorithms in 
analyzing speech signal, ECG signal, and power line signal.

viii Organization of the Book
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Chapter 1 
Generation of Continuous-Time Signals 

Learning Objectives 
After completing this chapter, the reader should be able to

• Simulate and visualize periodic continuous-time signals.
• Simulate, visualize and interpret non-stationary signals.
• Simulate and visualize standard continuous-time test signals.
• Simulate and visualize continuous-time pulse signals. 

Roadmap of the Chapter 
This section discusses the flow of contents in this chapter. The objective of this 
chapter is to generate different types of continuous-time signals, pulse waveforms. 
The representation of different signals generated in this chapter is given in the form 
of a flow diagram, which is given below: 
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PreLab Questions 
1. Give a few examples of real-world signals, which are continuous in nature. 
2. Mention the built-in functions available in ‘numpy’ library in python to generate 

data points of specific length to define the independent variable like time. 
3. Explain the significance of a sinusoidal signal in signal processing. 
4. What do you understand by the term ‘phase’ of a signal? 
5. Give a few examples of multidimensional signals. 
6. Cite an example where the signal or a process can be modelled as a real 

exponential function. 
7. Mention a few significant features of complex exponential signals. 
8. Mention the salient features of the ‘sinc’ function in signal processing. Is it an 

even or odd function? 
9. Distinguish between stationary and non-stationary signal. Give examples of 

each category of signal. 
10. List a few significant properties of the Gaussian function (signal). 

1.1 Continuous-Time Signal 

A signal corresponds to a physical quantity that varies with time, space, etc. Signals 
are represented mathematically as a function of one or more independent variables. 
The continuous-time signals are defined for a continuum of values of the indepen-
dent variable. The continuous-time signal is generally represented as x(t). Speech 
signal as a function of time is an example of continuous-time signal. The signal can



ð

be either deterministic or random. Deterministic signals can be described by math-
ematical functions or expressions. In this chapter, the objective is to generate 
different types of continuous-time periodic signals, like sinusoidal signal, complex 
exponential signal, square wave, etc.; non-stationary signals, like chirp signal; 
standard test signals, like Dirac delta; unit step signal, etc. 
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1.1.1 Continuous-Time Periodic Signal 

A periodic signal is one which repeats itself in an identical manner. Examples of 
continuous-time periodic signals include sinusoidal signal, complex exponential 
signal, square wave and sawtooth wave. In this section, python codes are developed 
to generate a sinusoidal signal, three-phase sinusoidal signal, complex exponential 
signal, etc. Also, sinusoids are Eigen functions of linear system. Continuous-time 
sinusoids are described by an amplitude, frequency and phase. Continuous-time 
sinusoids with distinct frequencies are always distinct. 

Experiment 1.1 Generation of Sinusoidal Signal 
The aim of this experiment is to generate sinusoidal signal. Sinusoidal signals are 
periodic functions, which are based on the sine or cosine function. The expression 
for the sinusoidal signal is given by 

x tð Þ=A sin 2πft þ ϕð Þ 1:1Þ 

In the above equation, ‘A’ represents the amplitude of the signal, ‘f’ denotes the 
frequency of the signal and ‘ϕ’ indicates the phase of the signal. To generate 
sinusoidal signal, one should define three parameters: amplitude, frequency and 
phase. The independent-variable is ‘time (t)’. In amplitude modulation, the ampli-
tude of the carrier is changed in accordance with the message, while the frequency 
and phase are kept constant. In frequency modulation, the frequency of the carrier is 
changed in accordance with the signal, while the amplitude and phase are kept 
constant. In phase modulation, the phase of the carrier is changed in accordance with 
the signal, while the amplitude and frequency are kept constant. 

The steps involved in the generation of sinusoidal signal are summarized below: 

Step 1: Defining the independent variable 
The built-in function ‘np.linspace()’ is used to generate the independent 

variable, which is the time axis. 
Step 2: Defining the parameters of the sine wave 

In this step, the three parameters of sine wave, namely, amplitude, frequency 
and phase are defined. 

Step 3: Generation of sinusoidal signal 
In this step, the mathematical expression to generate a sine wave is given by
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Table 1.1 Built-in functions used in the program 

S. No. Built-in function used Purpose 

1 np.sin() To generate sinusoidal function 

2 np.linspace() To generate equally interval data points in an interval 

3 plt.subplot() To plot more than one figure in the same plot 

#Experiment 1: Generation of sinusoidal signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Defining the independent variable 
t=np.linspace(0,1,1000) 
#Step 2: Defining the parameters of sine wave 
A=5  #Amplitude of sine wave 
f=5  #Frequency of sine wave 
ph=0 #Phase of sine wave 
#Step 3: Expression of sine wave 
x=A*np.sin(2*np.pi*f*t+ph) 
#Step 4: Plotting the sine wave 
plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('A={}V,F={} Hz,$\phi={}^\circ$'.format(A,f,ph)) 

Fig. 1.1 Python code to generate sinusoidal signal 

x tð Þ=A sin 2πft þ ϕð Þ  

Step 4: Plotting the sinusoidal signal 
The built-in function plt.plot() is used to plot the generated signal. While 

plotting the waveform, it is important to mention that the label of x and y axes 
using plt.xlabel() and plt.ylabel() command. The command plt.title() is used to 
display the title of the plot. 

Built-In Libraries 
The built-in libraries used in the program are (1) Numpy and (2) Matplotlib. The 
‘numpy’ is a general purpose array-processing package. In this program, the numpy 
library is used to create array (np.linspace), and it is used to perform mathematical 
function (np.sin). Matplotlib is a data visualization library used to visualize the 
generated sinusoidal signal. The built-in functions used in the program is given in 
Table 1.1. 

The python code used to generate sinusoidal waveform is shown in Fig. 1.1, and 
the corresponding output is shown in Fig. 1.2. 

Inference 
From Fig. 1.1, the following inferences can be made with respect to python code:
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Fig. 1.2 Result of the python code shown in Fig. 1.1 

1. The libraries used in the program are (a) Numpy and (b) Matplotlib. 
2. The built-in function ‘np.linspace()’ is used to generate the independent variable, 

which is the time axis. In this program, 1000 data points are generated between 
‘0’ and ‘1’. 

From Fig. 1.2, it is possible to infer the following: 

1. The phase of the signal is ‘0’; this implies that the waveform starts from the 
origin. 

2. The amplitude of the sine wave is 5 V. The waveform oscillates between -5 
and +5. 

3. The frequency of the generated waveform is 5 Hz. The number of oscillations per 
second is 5. 

Tasks 
1. Write a python code to mark the peak of the sinusoidal signal. 
2. Write a python code to compute the number of zero crossing of the sine wave. 

Experiment 1.2 Sinusoidal Signal with Different Phase 
In this experiment, the objective is to generate sine wave of amplitude = 1  V  
frequency = 5 Hz and four different phase angles, namely, 0°,  90°, 180° and 270°. 
The python code, which does this task, is shown in Fig. 1.3, and the corresponding 
output is shown in Fig. 1.4. The built-in libraries used in the program are (1) Numpy 
and (2) Matplotlib.
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#Generation of sine wave of different phase angles 
import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(0,1,100) 
#Parameters of sine wave 
A=1  #Amplitude 
f=5 #Frequency  
phi=[0,90,180,270] #Phase 
#Generation of sine wave 
for i in range(len(phi)): 
    x=A*np.sin(2*np.pi*f*t+phi[i]*np.pi/180) 
    #Plotting the result 
    plt.subplot(2,2,i+1) 
    plt.plot(t,x),plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
    plt.title('$\Phi ={}^\circ $'.format(phi[i])) 
    plt.tight_layout() 

Fig. 1.3 Python code to generate sine wave with different phase angle 
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Fig. 1.4 Sine wave with different phase angle 

Inference 
From the python code shown in Fig. 1.3, the following inferences can be made. The 
phase angle is varied as 0°,  90°,  180° and 270°. The amplitude of the sine wave is 
fixed as 1 V and the frequency is fixed as 5 Hz.
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Fig. 1.5 Python code to 
generate three-phase 
sinusoidal signals 

#Generation of three phase sine wave 
import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(0,1,100) 
#Parameters of sine wave 
A=1  #Amplitude 
f=5 #Frequency  
#Three different phases of sine wave 
phi_1,phi_2,phi_3=0, 120, 240 
x1=A*np.sin(2*np.pi*f*t+phi_1*np.pi/180) 
x2=A*np.sin(2*np.pi*f*t+phi_2*np.pi/180) 
x3=A*np.sin(2*np.pi*f*t+phi_3*np.pi/180) 
#Plotting the result 
plt.plot(t,x1,'b',t,x2,'r',t,x3,'g') 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
plt.title('Three phase sinusoidal signal') 
plt.legend(['Phase-1','Phase-2','Phase-3'],loc=1) 

From Fig. 1.4, it is possible to infer that the starting point of the waveform is 
different for different phase angle. The phase parameter determines the time loca-
tions of the maxima and minima of the sinusoid. 

Tasks 
1. Write a python code to generate a sinusoidal signal whose phase is varying in a 

random manner. Assume the phase angle ‘Φ’ to follow uniform distribution in the 
range -1 to +1. 

2. Write a python code to generate a sinusoidal signal, whose frequency is varying 
in a random manner. Assume the frequency ‘f’ to follow uniform distribution in 
the range -1 to +1. 

Experiment 1.3 Generation of Three-Phase Sinusoidal Signal 
The expressions for three-phase sinusoidal signals are given by 

x1 tð Þ=A sin 2πftð Þ ð1:2Þ 
x2 t =A sin 2πft- 120 ° 1:3 

x3 t =A sin 2πft- 240 ° 1:4 

The amplitude and frequency of the three waveforms are equal. The phase shift 
between the signals is 120°. The python code, which generates the three-phase 
sinusoidal waveforms, is shown in Fig. 1.5, and the corresponding output is 
shown in Fig. 1.6.
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Fig. 1.6 Three-phase sinusoidal signals 

Inference 
From the python code to generate the three-phase sinusoidal signal, it is possible to 
observe that the amplitude of each signal is 1 V and frequency is 5 Hz. The phase 
shift between the signals is 120°. 

Task 
1. Change the value of amplitude A1, A2 and A3 of three-phase sinusoidal signal in 

the python code given in Fig. 1.5, and comment on the output waveform. 

1.1.2 Exponential Function 

Exponential function is of two types: (1) real exponential function and (2) complex 
exponential function. The real exponential function can be either an increasing 
function or it could be a decreasing function. The price of petrol is an example of 
exponentially increasing function. Radioactive decay is an example of exponentially 
decaying function. 

Complex exponential function is of interest in signal processing. Complex 
exponential function is the basis function of Fourier transform. It is possible to 
obtain sine wave and cosine wave from complex exponential function. It is an Eigen 
function for a linear time-invariant system. 

Experiment 1.4 Generation of Real Exponential Signal 
The general expression for the real exponential signal is given by



1.1 Continuous-Time Signal 9

Table 1.2 List of built-in functions used in the program 

S. No. Built-in function used Purpose 

1 np.exp() To generate exponential function 

2 np.linspace() To generate equally interval data points in an interval 

3 plt.subplot() To plot more than one figure in the same plot 

#Real exponential function 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Defining the time axis 
t=np.linspace(-1,1,1000) 
#Step 2: Defining the parameter 'alpha' 
a,b=2,-2 
#Step 3: Generation of function 
x1=np.exp(a*t) 
x2=np.exp(b*t) 
#Step 4: Plotting of the function 
plt.subplot(2,1,1),plt.plot(t,x1) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Exponentially growing function') 
plt.subplot(2,1,2),plt.plot(t,x2) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Exponentially decaying function') 
plt.tight_layout() 

Fig. 1.7 Python code to generate real exponential functions 

x tð Þ=Ceαt ð1:5Þ 

where ‘C’ and ‘α’ are real. If ‘α’ is greater than zero, it is exponentially growing 
function. If ‘α’ is less than zero, it is exponentially decreasing or decaying function. 
The built-in functions used in the program are given in Table 1.2. 

The python code, which generates exponentially growing and decaying function 
for α = 2 and α =-2, is shown in Fig. 1.7, and the corresponding output is shown in 
Fig. 1.8. 

Inference 
In exponentially growing function, the value of the function (amplitude of the 
function) increases with an increase in time. In contrast, in exponentially decaying 
function, the amplitude of the function decays with respect to time. 

Task 
1. Write a python code to generate two real exponential functions (one growing and 

another decaying) with different amplitudes, and add these two functions. Com-
ment on the observed result. 

Experiment 1.5 Forward Characteristics of PN Junction Diode 
The equation of current through the diode is given by
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Fig. 1.8 Exponentially growing and decaying functions 

ID = Is e 
VD 
ηVT - 1 ð1:6Þ 

In Eq. (1.6), Is represents the reverse saturation current; VD is the voltage drop 
across the diode and ID is the current through the diode; VT is the volt-equivalent of 
temperature, which is 26 mV at room temperature; and η is the ideality factor, which 
is material dependent. The python code, which simulates the V–I characteristics of 
PN junction diode by assuming η = 1, VT = 26mV, and Is = 1mA is shown in 
Fig. 1.9, and the corresponding output is shown in Fig. 1.10. 

Inference 
From the forward characteristics shown in Fig. 1.10, it is possible to observe that the 
diode current increases after crossing the threshold voltage, generally termed ‘knee 
voltage’. If one considers the current through the diode as a function, then the 
function is an exponentially growing function. 

Experiment 1.6 Radioactive Decay Function 
The equation of radioactive decay is given by N(t)= N0e

-λt . The python code, which 
implements this equation, is shown in Fig. 1.11, and the corresponding output is 
shown in Fig. 1.12.
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#Forward characteristics of PN junction diode 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Defining the voltage axis 
v=np.arange(0,1,0.001) 
#Step 2: Parameters 
vt=0.026  #Volt-equivalent of temp. 
i_s=1/1000 #Reverse saturation current 
n=1 #ideality factor 
#Step 3: Equation of current through diode 
i=i_s*(np.exp(v/(n*vt))-1) 
#Step 4: Plotting the characteristics 
plt.plot(v,i),plt.xlabel('Forward voltage') 
plt.ylabel('Forward current') 
plt.title('Forward characteristics of PN junction diode') 

Fig. 1.9 Python code to plot the forward characteristics of PN junction diode 
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Fig. 1.10 Forward characteristics of PN junction diode 

Inference 
From Fig. 1.12, it is possible to observe that the radioactive decay activity can be 
modelled by an exponentially decaying function. 

Experiment 1.7 Complex Exponential Function 
Generate two complex exponential signals x1(t) = ejΩt and x2(t) = e-jΩt . Here the 
frequency of the signal is fixed as f = 5 Hz. After signal generation, extract the 
magnitude and phase of the two signals, and comment on the observed output. 

The built-in functions used in the python program are given in Table 1.3.
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Fig. 1.11 Python code for 
radioactive decay function #Radioactive decay 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Defining the time axis 
t=np.linspace(0,80,10) 
#Step 2: Parameters 
A0=400  #Initial value 
T=24 
#Step 3: Equation of current through diode 
A=A0*np.exp(-t/T) 
#Step 4: Plotting the characteristics 
plt.plot(t,A),plt.xlabel('Time (Hours)') 
plt.ylabel('Counts per second') 
plt.title('Radio active decay') 
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Fig. 1.12 Result of python code shown in Fig. 1.11 

Table 1.3 Python built-in functions used in Experiment 1.7 

S. No. Built-in function used Purpose 

1 np.exp() To generate an exponential function 

2 np.abs() To obtain the magnitude value of a complex number 

3 np.angle() To obtain the phase value of the complex number 

4 np.linspace() To generate equally interval data points in an interval 

5 plt.subplot() To plot more than one figure in the same plot
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#Complex exponential signals 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of signals x1(t) and x2(t) 
t=np.linspace(-1,1,100) 
f=5 
x1=np.exp(1j*2*np.pi*f*t) 
x2=np.exp(-1j*2*np.pi*f*t) 
#Step 2: Plotting the signals, its magnitude, and phase 
plt.subplot(3,2,1),plt.plot(t,x1) 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
plt.title('$e^{j\Omega t}$'),plt.subplot(3,2,2),plt.plot(t,x2) 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
plt.title('$e^{-j\Omega t}$'),plt.subplot(3,2,3),plt.plot(t,np.abs(x1)) 
plt.xlabel('Time (t)'),plt.ylabel('Magnitude (V)') 
plt.title('|$e^{j\Omega t}$|'),plt.subplot(3,2,4),plt.plot(t,np.abs(x2)) 
plt.xlabel('Time (t)'),plt.ylabel('Magnitude (V)') 
plt.title('|$e^{-j\Omega t}$|'), plt.subplot(3,2,5),plt.plot(t,np.angle(x1)*360/(2*np.pi)) 
plt.xlabel('Time (t)'),plt.ylabel('$Phase(^\circ$)') 
plt.title('$\Phi(x_1(t))$'),plt.subplot(3,2,6),plt.plot(t,np.angle(x2)*360/(2*np.pi)) 
plt.xlabel('Time (t)'),plt.ylabel('$Phase(^\circ$)'),plt.title('$\Phi(x_2(t))$') 
plt.tight_layout() 

Fig. 1.13 Generation of complex exponential signals 
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#Generation of sinusoidal signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of rotating phasor 
t=np.linspace(0,1,100) 
f=5 
x1=np.exp(1j*2*np.pi*f*t) 
x2=np.exp(-1j*2*np.pi*f*t) 
#Step 2: Generation of sine and cosine wave 
x_cos=(x1+x2)/2 
x_sin=(x1-x2)/(2*1j) 
#Step 3: Plotting the result 
plt.subplot(2,1,1),plt.plot(t,x_cos),plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
plt.title('Cosine wave'),plt.subplot(2,1,2),plt.plot(t,x_sin,’r’) 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)'),plt.title('Sine wave') 
plt.tight_layout() 

Fig. 1.15 Generation of sinusoidal signals from complex exponential functions 

The python code, which performs the task mentioned above, is shown in 
Fig. 1.13, and the corresponding output is shown in Fig. 1.14. 

Inferences 
From Figs. 1.13 and 1.14, the following inferences can be made: 

1. Two complex exponential signals x1(t) = ej2πft x2(t) = e-j2πft with the frequency 
value f = 5 Hz are generated. The signals x1(t) and x2(t) look alike. 

2. The magnitude and phase responses of the two signals are plotted. The magnitude 

of the signal x1(t) = ejΩt is given by x1 tð Þj j= cos 2 Ωtð Þ þ  sin 2 Ωtð Þ= 1. 

Similarly, the magnitude of the signal x2(t) = e-jΩt is given by 

x2 tð Þj j= cos 2 Ωtð Þ þ  sin 2 Ωtð Þ= 1. Thus, the magnitudes of the two signals 

are alike. 

3. The phase of the signal x1(t) = ejΩt is expressed as ϕ x1 tð Þð Þ= tan - 1 sin Ωtð Þ  
cos Ωtð Þ  . 

Upon simplifying the expression, we get ϕ(x1(t)) = tan-1 (tan(Ωt)), which results 
in ϕ(x1(t)) = Ωt. The phase of the signal x2(t) = e-jΩt is expressed as 

ϕ x1 tð Þð Þ= tan - 1 - sin Ωtð Þ  
cos Ωtð Þ  . Upon simplifying the expression, we get ϕ-

(x1(t)) = tan-1 (- tan (Ωt)), which results in ϕ(x1(t)) = - Ωt. The phases of 
the two signals are different. This implies that the signal ej2πft and e-j2πft repre-
sents two phasors, rotating in the opposite direction. 

Experiment 1.8 Generation of ‘Sine’ and ‘Cosine’ Functions from ‘Complex 
Exponential Function’ 
This experiment aims to prove that sinusoidal signal can be generated through two 
phasors rotating in the opposite direction. Mathematically it is expressed as



cos Ωtð Þ= e
jΩtþe- jΩt 

2 and sin Ωtð Þ= e
jΩt - e- jΩt 

2j . The python code, which generates the 

cosine and sine wave using a rotating phasor, is shown in Fig. 1.15, and the 
corresponding output is shown in Fig. 1.16. 
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Fig. 1.16 Sine and cosine wave from complex exponential functions 

Inference 
From Fig. 1.16, it is possible to observe that there is a phase difference of 90° 
between the sine and cosine waveforms. 

Task 
1. Add the square of the sine and cosine wave obtained in Experiment 1.8, and plot 

the resultant waveform. Comment on the observed output. [Hint: 
sin2 (θ) + cos2 (θ) = 1] 

Experiment 1.9 Modulating Sinusoidal Signal with an Exponential Signal 
This experiment discusses the sinusoidal signal multiplied with a growing and 
decaying real exponential signal. The python code, which accomplishes this task, 
is shown in Fig. 1.17, and the corresponding output is shown in Fig. 1.18. 

Inference 
The following inferences can be made from Fig. 1.18 

1. The sinusoidal signal amplitude varies between -1 and +1. 
2. Upon multiplying the sinusoidal signal with growing exponential, the amplitude 

value increases; hence, the plot is shown in the range -5 to +5. 
3. Upon multiplying the sinusoidal signal with decaying exponential, the amplitude 

of the input sinusoidal signal decreases, which is shown between -0.5 and +0.5.
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#Multiplying sinusoidal signal with an exponential signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Defining the time axis 
t=np.linspace(0,1,1000) 
#Step 2: Defining the parameter  
a=2  #Parameter for exponentially growing function 
b=-2 #Parameter for exponentially decaying function 
#Step 3: Generation of function 
x1=np.sin(2*np.pi*5*t) 
x2=np.exp(a*t)*np.sin(2*np.pi*5*t) 
x3=np.exp(b*t)*np.sin(2*np.pi*5*t) 
#Step 4: Plotting of the function 
plt.subplot(3,1,1),plt.plot(t,x1) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Sinusoidal signal') 
plt.subplot(3,1,2),plt.plot(t,x2) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Exponentially increasing sinusoidal signal') 
plt.subplot(3,1,3),plt.plot(t,x3) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Exponentially decaying sinusoidal signal') 
plt.tight_layout() 

Fig. 1.17 Python code to modulate sinusoidal signal by exponential signal 

Fig. 1.18 Result of python code shown in Fig. 1.17
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1.2 Non-stationary Signal 

A stationary signal is one whose statistical characteristics do not change with respect 
to time. If the signal characteristics change with respect to time, then it is a non-
stationary signal. Example of non-stationary signal is a chirp signal whose frequency 
varies with respect to time. Most of the real-world signals, like the alarm sound from 
the clock or the sound of an ambulance, are non-stationary. In this section, few 
stationary and non-stationary signals are generated. 

Experiment 1.10 Generation of Stationary and Non-stationary Signal 
This experiment deals with the generation of stationary and non-stationary signal. 
The expression for stationary signal is given by 

x1 tð Þ= sin 2πftð Þ ð1:7Þ 

The above expression generates a sinusoidal signal of specific frequency. The 
expression for non-stationary signal is given by 

x2 tð Þ= sin 2πft2 ð1:8Þ 

The frequency of the signal changes with respect to time; hence, it is considered 
as non-stationary. The python code, which generates the two signals and the 
corresponding output, is shown in Fig. 1.19, and Fig. 1.20. 

#Stationary and non-stationary signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of signals 
t=np.linspace(0,1,1000) 
f=5 
x1=np.sin(2*np.pi*f*t) 
x2=np.sin(2*np.pi*f*t**2) 
#Step 2: Plotting of signals 
plt.subplot(2,1,1),plt.plot(t,x1),plt.xlabel('Time (t)'), 
plt.ylabel('Amplitude'),plt.title('Stationary signal') 
plt.subplot(2,1,2),plt.plot(t,x2,'r'),plt.xlabel('Time (t)'), 
plt.ylabel('Amplitude'),plt.title('Non-stationary signal') 
plt.tight_layout() 

Fig. 1.19 Python code to generate stationary and non-stationary signal
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Fig. 1.20 Result of python code shown in Fig. 1.19 

Inference 
By observing Fig. 1.20, it is possible to conclude that the frequency of the stationary 
signal does not change with respect to time. On the other hand, the frequency of the 
non-stationary signal increases with time increases. 

Experiment 1.11 Generation of Non-stationary Sinusoidal Signal 
The objective of this experiment is to append sinusoidal signals of different frequen-
cies. Signal-1 is generated with 5 Hz frequency appearing first, DC signal next and 
10 Hz frequency occurs last. Signal-2 is obtained by interchanging the first and last 
part of signal-1, which means high frequency occurs first and low frequency occurs 
next. The python code, which performs this task, is shown in Fig. 1.21, and the 
corresponding output is shown in Fig. 1.22. 

Inference 
The signals in Fig. 1.22 are considered as non-stationary, because the signal fre-
quency varies with respect to time. Signal-1 and Signal-2 contain the same frequency 
components at different instants. 

Experiment 1.12 Generation of Chirp Signal 
The objective of this experiment is to generate chirp signal. The chirp signal can be 
considered as a frequency swept sinusoidal signal. Four different methods of fre-
quency sweep are (1) linear, (2) quadratic, (3) logarithmic and (4) hyperbolic. In this 
experiment, the frequency sweep is from 10 Hz to 1 Hz, as considered. The python 
code, which generates the chirp signals, are shown in Fig. 1.23, and the 
corresponding output is shown in Fig. 1.24.
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import numpy as np 
import matplotlib.pyplot as plt 
t1=np.linspace(0,1,100) 
#Defining signal frequencies 
f1,f2,f3=0,5,10 
#Generation of signal-1 
x1=np.sin(2*np.pi*f2*t1) 
#Generation of signal-2 
x2=np.sin(2*np.pi*f1*t1) 
x3=np.sin(2*np.pi*f3*t1) 
x=np.concatenate([x1,x2,x3]) 
y=np.concatenate([x3,x2,x1]) 
#Plotting the result 
t=np.linspace(0,1,300) 
plt.subplot(2,1,1),plt.plot(t,x),plt.xlabel('Time(t)'),plt.ylabel('Amplitude (V)') 
plt.title('Signal-1'),plt.subplot(2,1,2),plt.plot(t,y) 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)'),plt.title('Signal-2') 
plt.tight_layout() 

Fig. 1.21 Generation of non-stationary signal 
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Fig. 1.22 Result of non-stationary signals 

Inference 
From Fig. 1.24, it is possible to observe that the frequency varies with respect to time 
in all four types of chirp signals; hence, they are considered non-stationary signals.
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#Generation of chirp signals 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.signal import chirp 
#Step 1: Generation of chirp signal 
t=np.linspace(0,10,10000) 
x1= chirp(t, f0=10, f1=1, t1=10, method='linear') 
x2= chirp(t, f0=10, f1=1, t1=10, method='quadratic') 
x3= chirp(t, f0=10, f1=1, t1=10, method='logarithmic') 
x4= chirp(t, f0=10, f1=1, t1=10, method='hyperbolic') 
#Step 2: Plotting the signals 
plt.subplot(2,2,1),plt.plot(t,x1),plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)'), 
plt.title('Linear chirp'),plt.subplot(2,2,2),plt.plot(t,x2),plt.xlabel('Time (t)'), 
plt.ylabel('Amplitude (V)'),plt.title('Quadratic chirp'),plt.subplot(2,2,3), 
plt.plot(t,x3),plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)'),  
plt.title('Logarithmic chirp'),plt.subplot(2,2,4),plt.plot(t,x4),plt.xlabel('Time (t)'), 
plt.ylabel('Amplitude (V)'),plt.title('Hyperbolic chirp') 
plt.tight_layout() 

Fig. 1.23 Generation of chirp signals 
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Fig. 1.24 Simulation result of chirp signals
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1.3 Non-sinusoidal Waveform 

The non-sinusoidal waveform generation considered in this section includes square 
waveform, triangular waveform, sawtooth waveform, sinc and Gaussian signals. 

1.3.1 Square Waveform 

A square waveform is a non-sinusoidal periodic waveform. A square wave repre-
sents a sudden variation from ‘ON’ to ‘OFF’ state and vice versa. Duty cycle is the 
percentage of time a square wave remains high versus low over one period. Square 
waves are useful in modelling digital signals. Sine wave contains single frequency, 
whereas square wave contains a very wide bandwidth of frequencies. 

Experiment 1.13 Generation of Square Waveform 
The objective is to generate square wave with different duty cycle. The duty option 
refers to which fraction of the whole duty cycle the signal will be in its ‘high’ state. 
The python code, which generates square wave of frequency 5 Hz, is shown in 
Fig. 1.25, and the corresponding output is shown in Fig. 1.26. 

Inference 
From Fig. 1.26, it is possible to interpret that the generated waveform is a square 
waveform of a fundamental frequency of 5 Hz. With increase in the duty, the ‘ON 
time’ of the generated square wave increases. The square waveform takes only 
binary value, which is either +1 or -1. The state change from +1 to -1 and -1 to  
+1 occurs immediately. 

#Square wave with a different duty cycle 
import numpy as np 
from scipy import signal 
import matplotlib.pyplot as plt 
t=np.linspace(0,1,100) 
f=5 
duty=[0.15,0.25,0.5,0.75] 
for i in range(len(duty)): 
    x=signal.square(2*np.pi*f*t,duty[i]) 
    plt.subplot(2,2,i+1) 
    plt.plot(t,x),plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
    plt.ylim(-2,2),plt.title('Square wave (duty={})'.format(duty[i])) 
    plt.tight_layout() 

Fig. 1.25 Generation of a square wave
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Fig. 1.26 Result of python code shown in Fig. 1.25 

1.3.2 Triangle and Sawtooth Waveform 

Triangle and sawtooth waveforms are useful for exploring non-linearity in the 
circuit. A triangle waveform has uniform rise and fall time, whereas in a sawtooth 
waveform, the rise and fall times are markedly different. 

Experiment 1.14 Generation of Sawtooth and Triangular Waveforms 
The python code, which generates the sawtooth waveform of frequency 5 Hz, is 
shown in Fig. 1.27, and the corresponding output is shown in Fig. 1.28. 

Inference 
When the width is 0.5, the sawtooth waveform turns out to be a triangular waveform. 
In square waveform, the state change from -1 to +1 and from +1 to -1 occurs 
instantaneously, whereas, in triangular waveform, the change of state from -1 to +1  
and from +1 to -1 occurs gradually. 

1.3.3 Sinc Function 

A sinc function is represented as



ð
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#Sawtooth wave with different width 
import numpy as np 
from scipy import signal 
import matplotlib.pyplot as plt 
t=np.linspace(0,1,1000) 
f=5 
width=[0.1,0.2,0.5,0.8] 
for i in range(len(width)): 
    x=signal.sawtooth(2*np.pi*f*t,width[i]) 
    plt.subplot(2,2,i+1) 
    plt.plot(t,x),plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)') 
    plt.ylim(-2,2),plt.title('Sawtooth wave (width={})'.format(width[i])) 
    plt.tight_layout() 

Fig. 1.27 Python code to generate sawtooth waveform 
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Fig. 1.28 Simulation result of sawtooth waveform 

x tð Þ= 
sin πt 
πt 

, -1< t<1 1:9Þ 

A sinc function is an even function with a unit area. It is a symmetric function 
with respect to the origin. Fourier transform of sinc function will result in rectangular 
function and vice versa. Thus, sinc function is the impulse response of the ideal 
lowpass filter.
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Fig. 1.29 Python code to 
generate sinc function #Generation of sinc function 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Defining the independent variable 
t=np.linspace(-10,10,1000) 
#Step 2: Generating sinc function 
x=np.sinc(t) 
#Step 3: Plotting the sinc function 
plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Sinc function') 
plt.tight_layout() 
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Fig. 1.30 Result of python code shown in Fig. 1.29 

Experiment 1.15 Generation of Sinc Function 

The expression for sinc function is given by sin c tð Þ= sin πtð Þ  
πt . In this experiment, the 

sinc function is generated using the built-in function (sinc()) available in numpy 
library. The python code, which generates the sinc function, is shown in Fig. 1.29, 
and the corresponding output is shown in Fig. 1.30. 

Inference 
From Fig. 1.30, the following observations can be made: 

1. Sinc function has a main lobe and side lobes. 
2. The sinc function is symmetric with respect to the origin. It is an even function. 
3. The sinc function attains the maximum value at the origin.
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Task 
1. Write a python code to prove that sinc function is an even function. 

1.3.4 Pulse Signal 

A rectangular pulse can be considered as a positive going edge, followed by negative 
going one. Convolution of two rectangular pulses results in a triangular pulse. 

Experiment 1.16 Generation of Rectangular and Triangular Pulse Signal 

The expression for rectangular pulse is given by x tð Þ= 
1, tj j< 1 

0, otherwise 
. It can be 

considered as a positive going edge followed by negative going one. Rectangular 
pulse represents a drastic variation from level 0 to 1 and from 1 to 0. The expression 

for the triangular pulse is x tð Þ= 1-
tj j  
T 
, for tj j< T 

0, otherwise 
. The triangular pulse rep-

resents a gradual variation from level 0 to 1 and from 1 to 0. 
The python code, which generates the rectangular and triangular pulse signal, is 

shown in Fig. 1.31, and the corresponding output is shown in Fig. 1.32. 

Inference 
Figure 1.32 shows that rectangular pulse exhibits a drastic change in amplitude from 
0 to 1 V, whereas triangular pulse exhibits a gradual variation in amplitude from 0 to 
1 V. In later section, it will be proved that the convolution of two rectangular pulses 
will result in a triangular pulse. 

#Generation of rectangular and triangular pulse signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of signals 
t=np.linspace(-2,2,100) 
rect_pulse=abs(t)<1  #Rectangular pulse 
tri_pulse=(1 - abs(t)) * (abs(t) < 1) #Triangular pulse 
#Step 2: Plotting of the pulse signals 
plt.subplot(2,1,1),plt.plot(t,rect_pulse) 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)'),plt.title('Rectangular pulse') 
plt.subplot(2,1,2),plt.plot(t,tri_pulse) 
plt.xlabel('Time (t)'),plt.ylabel('Amplitude (V)'),plt.title('Triangular pulse') 
plt.tight_layout() 

Fig. 1.31 Generation of rectangular and triangular pulse
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Fig. 1.32 Rectangular and triangular pulse signal 

Task 
1. Write a python code to illustrate the fact that convolution of two rectangular pulse 

signals results in a triangular pulse. 

1.3.5 Gaussian Function 

The Gaussian function is expressed as 

x tð Þ= 
1 

2π
p 

σ 
e-

t- μð Þ2 
2σ2 ð1:10Þ 

where ‘μ’ represents the mean and ‘σ’ represents the standard deviation. Fourier 
transform of a Gaussian function results in another Gaussian function. The product 
of two Gaussian functions is a Gaussian function. Gaussian window is an optimal 
window for time-frequency localization. Smoothening by Gaussian function is 
widely employed in image processing. 

Experiment 1.17 Generation of Gaussian Function 
The Gaussian function is widely used in signal processing, image processing and 
communication fields. The expression for Gaussian function with the mean value ‘μ’ 

and standard deviation ‘σ’ is given by x  tð  Þ= 1 
2π

p 
σ 
e-

t- μð  Þ2 
2σ2 . This experiment aims to



generate Gaussian function for different values of standard deviation, namely, 0.01, 
0.5, 1 and 10. The mean value is taken as zero. The python code, which generates the 
Gaussian function, is shown in Fig. 1.33, and the corresponding output is shown in 
Fig. 1.34. 
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#Generation of Gaussian function 
import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(-10,10,1000) 
mu=0   #Mean value 
sigma=[0.01,0.5,1,10] #Standard deviation 
for i in range(len(sigma)): 
    k=1/np.sqrt(2*np.pi*sigma[i]) 
    x=k*np.exp(-np.power(t-mu,2.)/2*np.power(sigma[i],2.)) 
    plt.subplot(2,2,i+1),plt.plot(t,x),plt.xlabel('Time'),    
    plt.ylabel('Amplitude'),plt.title('$\sigma={} $'.format(sigma[i])) 
    plt.tight_layout() 

Fig. 1.33 Gaussian function for different values of standard deviation 

Fig. 1.34 Gaussian function for different values of standard deviation 

Inference 
From Fig. 1.34, it is possible to observe the following facts:
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Fig. 1.35 Python code to 
generate sinusoidal note #Hearing sinusoidal signal 

import numpy as np 
import sounddevice as sd 
f=1000 #Signal frequency 
fs=8000 #Sampling rate 
t=np.linspace(0,1,fs) 
x=np.sin(2*np.pi*f*t) 
sd.play(x,fs) 

1. The Gaussian function is characterized by two parameters, which are mean and 
standard deviation. 

2. The mean value of the Gaussian function is zero; hence, the maximum value 
occurs at the origin. 

3. With an increase in the value of standard deviation, the narrower the Gaussian 
function. 

Task 
1. Write a python code to prove that the multiplication of two Gaussian functions 

results in a Gaussian function. 

Experiment 1.18 Hearing a Sinusoidal Signal 
Human ears can hear sound in the frequency range from 20 Hz to 20 kHz. In this 
experiment, sine wave of particular frequency is heard as a tone. The sampling 
frequency is chosen as 8000 Hz, and the signal frequency is chosen as 1000 Hz. The 
library functions used are (1) Numpy and (2) Sounddevice. The built-in function in 
sound device library (sd.play) is used to play the sound. The python code, which 
generates the sinusoidal tone, is shown in Fig. 1.35. The user can hear the audio 
using headphone. 

Inference 
From Fig. 1.35, the following inferences can be made: 

1. The signal frequency is 1000 Hz, and the sampling frequency is 8000 Hz. 
2. The library used to hear the audio is ‘sounddevice’ library. 
3. The built-in function (sd.play) is used to hear the audio. 

Task 
1. Human ear can hear an audio signal whose frequency is between 20 Hz and 

20 kHz. Generate 10 Hz sinusoidal waveform; try to hear the waveform. It should 
not be audible. Now increase the frequency of sine wave to 100 Hz; now it should 
be possible to hear the sinusoid as a single note. 

Experiment 1.19 Hearing Amplitude Modulated Sinusoidal Signal 
The impact of modulating the amplitude of the sinusoidal signal is observed in this 
experiment. In this experiment, the amplitude of the sinusoidal signal is modulated 
by both exponentially decaying and growing functions. The python code, which



performs this task is shown in Fig. 1.36. The built-in functions used in the program 
are summarized in Table 1.4. 

1.3 Non-sinusoidal Waveform 29

Fig. 1.36 Amplitude 
modulated sinusoidal signal #Hearing amplitude modulated sinusoidal signal 

import numpy as np 
import sounddevice as sd 
f=1000 #Signal frequency 
fs=8000 #Sampling rate 
a=-5  #Decaying factor 
b=5   #Growing factor 
t=np.linspace(0,1,fs) 
x1=np.exp(a*t)*np.sin(2*np.pi*f*t) 
x2=np.exp(b*t)*np.sin(2*np.pi*f*t) 
sd.play(x1,fs) 
sd.wait() 
sd.play(x2,fs) 

Table 1.4 Built-in functions used in Experiment 1.19 

S. No. Built-in function used Purpose 

1 np.exp() To generate an exponential function 

2 np.sin() To generate a sinusoidal function 

3 sd.play() To play the audio signal 

4 sd.wait() To pause the audio signal 

Inference 
The following inferences can be made from Fig. 1.36: 

1. The signal ‘x1’ refers to a sine wave modulated by an exponentially decaying 
function. 

2. The signal ‘x2’ refers to a sine wave modulated by an exponentially growing 
function. 

Experiment 1.20 Generation of Amplitude Modulated Signal 
In amplitude modulation, the amplitude of the carrier signal is varied in accordance 
with the message signal. The expression for amplitude modulated signal is given by 

x tð Þ= 1þ m sin 2πfmtð Þð Þ sin 2πf ctð Þ ð1:11Þ 

In the above expression, ‘m’ denotes the modulation index, fm represents the 
frequency of the modulating signal and fc denotes frequency of the carrier signal. 
The python code, which generates the amplitude modulated signal for different 
modulating indices, is shown in Fig. 1.37, and the corresponding output is shown 
in Fig. 1.38. 

Inference 
From Figs. 1.37 and 1.38, the following inferences can be drawn:
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#Amplitude modulation 
import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(0,1,1000) 
fm=10 #Frequency of modulating signal 
fc=100 #Frequency of carrier signal 
message=np.sin(2*np.pi*fm*t) 
carrier=np.sin(2*np.pi*fc*t) 
m=[0.25,0.5,1,1.5]  #modulation index 
for i in range(len(m)): 
    mod_sig=(1+m[i]*message)*carrier 
    plt.subplot(2,2,i+1),plt.plot(t,mod_sig) 
    plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.title('Modulated signal with m={}'.format(m[i])) 
    plt.tight_layout() 

Fig. 1.37 Python code to generate amplitude modulated signal 

Fig. 1.38 Amplitude modulated signal with different modulation indices 

1. The frequency of the message signal is 10 Hz; the frequency of the carrier signal 
is 100 Hz. The modulation index is varied as 0.25, 0.5, 1.0 and 1.5. 

2. It is possible to observe that the amplitude of the carrier is changed in accordance 
with the message signal.



5.
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3. Modulation index less than one corresponds to under modulated signal. Modu-
lation index greater than one corresponds to over modulated signal. Modulation 
index equal to one corresponds to perfect modulation. 

Exercises 
1. Generate the following sinusoidal signal x(t) = A sin (2πft + ϕ) with the 

amplitude A = 2 V, frequency f = 10 Hz and phase ϕ = 0. Let the length of 
the signal be 100 samples. Store this signal in your system in a particular folder 
along with the time stamp in an Excel sheet. From the Excel sheet, read the data 
and the time stamp and plot the signal. 

2. Write a python code to generate the sinusoidal signal of 1 V amplitude, 5 Hz 
frequency and phase ϕ = 0. Mark the positive peak of the waveform. That is the 
positive peak of the waveform should be marked with ‘x’ mark. 

3. Write a python code to compute the number of zero crossings of sine wave of 2 V 
amplitude, 5 Hz frequency and phase ϕ = 0. 

4. Write a python code to generate the seven nodes ‘sa’, ‘re’, ‘ga’ and ‘ma’. Use the 
sounddevice library to play the seven notes. 

Generate the Gaussian function, which is given by x tð Þ= 1 
2π

p 
σ 
e-

t- μð Þ2 
2σ2 for differ-

ent mean values μ = 0, 1, 2, 4 with the fixed standard deviation value σ = 1. Use 
subplot to plot the generated Gaussian functions. 

Objective Questions 
1. What will the signal’s length be if the following code is executed? 

A. 10 
B. 50 
C. 75 
D. 100 

2. What will be the magnitude of the variables ‘x’ and ‘y’ if the following code 
segment is executed? 

A. 1 and 0, respectively 
B. -1 and 1, respectively 
C. 0 and 1, respectively 
D. 1 and -1, respectively 

3. What will be the output plot if the following segment of code is executed?
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A. DC signal of magnitude 1 
B. DC signal of magnitude 5 
C. Sine wave of frequency 5 Hz 
D. Cosine wave of frequency 5 Hz 

4. What will be stored in the variable ‘z’ if executing the following code segment? 

A. Sine wave of 5 Hz frequency 
B. Cosine wave of 5 Hz frequency 
C. Square wave of 5 Hz frequency 
D. Sawtooth wave of 5 Hz frequency 

5. The phase difference between each signal in a three-phase sinusoidal signal is 

A. 45° 
B. 90° 
C. 120° 
D. 240° 

6. What will be stored in the variable ‘z’ if executing the following code segment? 

A. Phase angle of the signal ‘x’ 
B. Magnitude of the signal ‘x’ 
C. Frequency of the signal ‘x’ 
D. Number of zero crossings of the signal ‘x’ 

7. The audible frequency range for human beings is 

A. 10 Hz to 100 kHz 
B. 20 Hz to 20 kHz 
C. 1 to 1000 Hz 
D. 200 Hz to 2 MHz 

8. What will the signal’s length be if the following code segment is executed?
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A. 1000 
B. 2000 
C. 4000 
D. 8000 

9. Identify the statement that is WRONG with respect to sinc function 

A. Sinc function is an even function. 
B. Sinc function is an odd function. 
C. Fourier transform of sinc function will result in a rectangular function. 
D. Sinc function can be used for signal interpolation. 

10. The magnitude of the function x(t) = e-jΩt is 

A. 1 
B. 0 
C. -1 
D. Infinity 
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Chapter 2 
Sampling and Quantization of Signals 

Learning Objectives 
After reading this chapter, the reader is expected to

• Simulate and visualize standard discrete-time signals.
• Simulate and visualize arbitrary discrete-time signals.
• Perform different mathematical operations on discrete-time signals.
• Implement convolution and correlation operations and interpret the obtained 

results. 

Roadmap of the Chapter 
The contents discussed in this chapter are given as a flow diagram. The objective is 
to convert the continuous-time signal into a discrete-time signal. Two important 
processes in converting the continuous-time signal into a discrete-time signal are 
(1) sampling and (2) quantization. Also, reconstructing the original signal from the 
sampled signal is another important task in signal processing. This chapter explores 
these three processes in detail. 
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S. Esakkirajan et al., Digital Signal Processing, 

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6752-0_2&domain=pdf
https://doi.org/10.1007/978-981-99-6752-0_2#DOI


36 2 Sampling and Quantization of Signals

Continuous-Time Signal to Discrete-Time Signal 

Sampling of Signal 

Uniform  

quantization 

Non-uniform 

quantization 

Mid-tread 

quantizer 

Mid-rise 

quantizer 
A-law 

companding 

Quantization of Signal 

µ-law 

companding Ideal Interpolation 

Time-domain 

view of sampling  

Frequency-domain 

view of sampling  

Reconstruction of Signal 

Zero order Hold 

First order Hold 

PreLab Questions 
1. Mention the steps involved in converting the analogue signal into a digital 

signal. 
2. A real-valued signal is known to be bandlimited. The maximum frequency 

content in the signal is fmax. What is the guideline given by the sampling theorem 
with respect to the choice of sampling frequency such that from the samples, the 
signal can be reconstructed without aliasing? 

3. What is the impact of sampling a bandlimited signal with too low a sampling 
frequency? 

4. Is it possible to reconstruct a periodic square wave of fundamental frequency 
5 Hz from its samples? Explain your answer. 

5. Mention the reason for aliasing to occur while sampling the signals? 
6. What is the meaning of sampling the signal x(t)? What is the meaning of the 

terms (a) sampling rate and (b) sampling interval? 
7. A signal has a bandwidth of 5 kHz. What is the Nyquist rate of the signal? 
8. Why quantization is considered as a non-linear phenomenon? 
9. Why quantization is considered as irreversible phenomenon? 

10. What is signal reconstruction? Mention different types of signal reconstruction 
strategies. 

2.1 Sampling of Signal 

Sampling is basically taking a specific instant of the signal. In time domain, it is 
visualized as passing the signal through a switch. Sampling can be considered as 
multiplying the continuous-time signal x(t) with train of impulse c(t). The train of 
impulse will take a value of either one or zero; hence, the multiplication of the signal



ð

x(t) with a train of impulse can be regarded as passing the signal x(t) through a 
switch. The expression for a train of impulse is given by 
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#Generation of comb function 
import numpy as np 
import matplotlib.pyplot as plt 
Fs=100 
t = np.arange(0, 2, 1/Fs) 
c=np.zeros(len(t)) 
T = 0.1  
c[::int(Fs*T)]=1 
plt.stem(t,c),plt.xlabel('Time'),plt.ylabel('Ampliude'),plt.title('c(t)') 

Fig. 2.1 Python code to generate comb function 
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Fig. 2.2 Result of python code shown in Fig. 2.1 

c tð Þ= 
1 

n= -1 
δ t- nTð Þ 2:1Þ 

The function c(t) takes a value of one whenever t = nT; else, it takes a value of 
zero. 

Experiment 2.1 Generation of a Train of Impulse Function 
The python code, which generates the train of impulse function or comb function, is 
given in Fig. 2.1, and the corresponding output is shown in Fig. 2.2.



ð
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Inference 
1. From Fig. 2.1, it is possible to observe that the variable ‘T’ (Sampling interval) 

decides the distance between consecutive samples. 
2. From Fig. 2.2, it is possible to confirm that the comb function c(t) takes a value of 

either ‘1’ or ‘0’. Whenever c(t) = 1, the signal x(t) samples will be collected. 

Experiment 2.2 Frequency Domain View of Comb Function 
The time-domain expression for the comb function is given by 

c tð Þ= 
1 

n= -1 
δ t- nTð Þ 2:2Þ 

Upon taking the Fourier transform of the comb function, we get 

C Ωð Þ= 
2π 
T 

1 

k= -1 
δ Ω- kΩsð Þ 2:3Þ 

This experiment aims to prove that Fourier transform of a train of impulse will 
result in a train of impulse function. Here, two comb functions (train of impulse 
function), namely, c1(t) and c2(t) are generated. In the comb function c1(t), the 
spacing between consecutive impulses is 0.1 s, whereas in the comb function c2(t), 
the spacing between successive impulses is 0.05 s. Upon taking Fourier transform of 
these two comb functions, the corresponding magnitude spectra |C1( f )| and |C2( f )| 
are obtained. In the magnitude spectrum (|C1( f )|), the spacing between successive 
peaks is 1/0.1 = 10, whereas in the magnitude spectrum (|C2( f )|), the spacing 
between successive peaks is 1/0.05 = 20. The python code that performs this task 
is given in Fig. 2.3, and the corresponding output is shown in Fig. 2.4. 

Inferences From Fig. 2.4, the following inferences can be drawn: 

1. The spacing between two successive samples in the comb function c1(t) is 0.1 s. 
2. The spacing between two consecutive peaks in C1( f ) is 10 Hz. 
3. The spacing between two successive samples in the comb function c2(t) is 0.5 s. 
4. The spacing between two consecutive peaks in C2( f ) is 20 Hz. 
5. This experiment illustrates the fact that time and frequency are inversely related to 

each other. That is, compression in one domain is equivalent to expansion in other 
domain and vice versa. 

6. The Fourier transform of a train of impulse function results in a train of impulse 
function. 

Task 

Write a python code to generate a function expressed as x  m½ ]= 1 M x
M- 1 

k = 0 
ej

2π 
Mkm, - 10<m< 10 for M = 1 and M = 2, and comment on the observed 

result.
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#Fourier transform of train of impulse 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fft import fft,fftshift 
#Step 1: Generation of comb functions 
Fs=100 
t = np.arange(0, 2, 1/Fs) 
f = np.linspace(-Fs/2, Fs/2, len(t), endpoint=False) 
T1 = 0.1 
c1=np.zeros(len(t)) 
c1[::int(Fs*T1)]=1 
T2=0.05 
c2=np.zeros(len(t)) 
c2[::int(Fs*T2)]=1 
#Step 2: Fourier transform of comb function 
C1=fftshift(fft(c1)) 
C2=fftshift(fft(c2)) 
#Step 3: Plotting the result 
plt.subplot(2,2,1),plt.stem(t,c1),plt.xlabel('Time'),plt.ylabel('Ampliude'), 
plt.title('$c_1(t)$'),plt.subplot(2,2,2),plt.plot(f, np.abs(C1)/len(C1)) 
plt.xlabel('Frequency'),plt.ylabel('Magnitude'),plt.title('$|C_1(f)|$') 
plt.subplot(2,2,3),plt.stem(t,c2),plt.xlabel('Time'),plt.ylabel('Ampliude'), 
plt.title('$c_2(t)$'),plt.subplot(2,2,4),plt.plot(f, np.abs(C2)/len(C2)) 
plt.xlabel('Frequency'),plt.ylabel('Magnitude'),plt.title('$|C_2(f)|$') 
plt.tight_layout() 

Fig. 2.3 Python code to obtain the spectrum of comb function 

2.1.1 Violation of Sampling Theorem 

The sampling theorem gives the guideline regarding the choice of the sampling rate. 
According to the sampling theorem, a continuous-time signal with frequencies no 
higher than fmax (Hz) can be reconstructed exactly from its samples if the samples are 
taken at a rate greater than 2fmax. That is, fs ≥ 2fmax. Violation of the sampling 
theorem results in an aliasing, which can be visualized in both the time and 
frequency domains. 

Experiment 2.3 Illustration of Aliasing in Time Domain 
In this experiment, the aliasing is visualized in time domain. The analogue signal to 
be sampled is represented as x(t) = sin (2πft + ϕ). The frequency of the signal x(t)  is  
10 Hz, and the phase angle is zero. This signal is sampled at four different sampling 
frequencies 8, 15, 50 and 100 Hz. Obviously, the first two sampling frequencies 
( fs = 8 and 15 Hz) are less than the criteria specified by the sampling theorem. This 
will result in aliasing. The impact of aliasing is visualized in this experiment. The



python code that performs this task is shown in Fig. 2.5, and the corresponding 
output is shown in Fig. 2.6. 
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Fig. 2.4 Fourier transform of comb functions 

#Aliasig in time domain 
import numpy as np 
import matplotlib.pyplot as plt 
f=10   #Signal frequency 
fs=[8,15,50,100] #Sampling frequencies 
for i in range(len(fs)): 
    t=np.arange(0,1,1/fs[i]) 
    x=np.sin(2*np.pi*f*t) 
    plt.subplot(2,2,i+1) 
    plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.title('$F_s={} $ Hz'.format(fs[i])) 
    plt.tight_layout() 

Fig. 2.5 Python code which illustrates aliasing in time domain 

Inferences 
From Fig. 2.6, the following inferences can be made: 

1. The sampling frequency of 8 Hz is insufficient to capture all the information in the 
signal. The frequency of the sampled signal is given by f′ = f - fs. This implies f
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Fig. 2.6 Result of python code shown in Fig. 2.5 

′ = 10 - 8 = 2 Hz. This is the reason that the signal obtained using fs = 8 Hz  
resembles that of 2 Hz sinusoidal signal. 

2. If the sampling frequency is chosen as 15 Hz, then the Nyquist interval is between
-7.5 and 7.5 Hz. The signal frequency is not within the Nyquist interval; hence, 
the frequency of the sampled signal is f′ = f - fs. Upon substituting the value, we 
get f′ = 10 - 15 = -5 Hz. This is the reason that the signal obtained using 
fs = 15 Hz resembles that of a 5 Hz sinusoidal signal. 

3. For the choice of sampling frequency as 50 and 100 Hz, signal frequency lies well 
within the Nyquist interval. Hence, no aliasing exists in these cases. As a result, 
the 10 Hz signal appeared as 10 Hz for fs = 50 and 100 Hz. 

Experiment 2.4 Aliasing in the Time Domain 
Generate two sinusoidal signals with a frequency of 1 and 6 Hz. Use a sufficiently 
high sampling frequency to plot the generated signal. Now use the sampling 
frequency as 5 Hz to plot the 6 Hz frequency component sinusoidal signal, and 
comment on the observed output. Illustration of this experiment is shown in Fig. 2.7. 

The steps involved in the python code implementation of this experiment are as 
follows: 

Step 1: Generation of sine wave of 1 and 6 Hz sinusoidal signals. Let it be 
represented by the variables ‘x1’ and ‘x2’. ‘x1’ represents a 1 Hz sine wave, 
and ‘x2’ represents a 6 Hz sine wave. The sampling frequency chosen is 100 Hz 
( fs = 100 Hz), which is sufficient to represent these two signals without 
ambiguity.



Step 2: Now, the new sampling frequency chosen is 5 Hz. That is, f′ = 5 Hz. This 
sampling frequency is used to represent a 6 Hz sine wave, which is stored in the 
variable ‘x3’. It is well-known that 5 Hz is insufficient to represent a sine wave of 
6 Hz frequency. Because of aliasing, the new frequency will appear at 1 Hz. 

Step 3: From the samples taken using f′ = 5 Hz, it is not possible to distinguish 
between 1 and 6 Hz sine waves. This phenomenon is termed as ‘aliasing’. This 
occurs due to spectral folding. 
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Generate two sinusoidal signals 

with 1 Hz and 6 Hz frequency 

Use sufficient sampling 

frequency to plot the signal 

Use sampling frequency as 5 Hz to plot 

the 6 Hz frequency sinusoidal signal 

Fig. 2.7 Illustration of Experiment 2.4 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: To generate x1 and x2 
f1=1   #Signal frequency 
f2=6 
fs=100 
t=np.arange(0,1,1/fs) 
x1=np.sin(2*np.pi*f1*t) 
x2=np.sin(2*np.pi*f2*t) 
#Step 2: New sampling frequency is 5 Hz 
fs1=5 
t1=np.arange(0,1.1,1/fs1) 
x3=np.sin(2*np.pi*f1*t1) 
#Step 3: Plotting the result 
plt.plot(t,x1,'k--',t,x2,'k'),#plt.plot(t,x2,'k') 
plt.stem(t1,x3,'r'),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.legend(['1 Hz Sine wave','6 Hz Sine wave','Sampling with 5 Hz']), 
plt.title('Aliasing in Time Domain') 
plt.tight_layout() 

Fig. 2.8 Python code to illustrate aliasing in time domain 

The python code used to illustrate this concept is shown in Fig. 2.8, and the 
corresponding output is shown in Fig. 2.9. 

Inferences 
From Fig. 2.9, the following inferences can be made:
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Fig. 2.9 Result of python code shown in Fig. 2.8 

1. The solid line shows a sine wave of 6 Hz frequency. The dotted line represents a 
sine wave of 1 Hz frequency. Since the sampling frequency is 100 Hz, both 
waveforms appear as desired without ambiguity. 

2. The new sampling frequency is chosen as 5 Hz. This sampling frequency is used 
to represent a 6 Hz sine wave. This sampling frequency is insufficient to represent 
the 6 Hz. Represent a 6 Hz sine wave; the sampling frequency should be greater 
than 12 Hz. From the discrete samples, it is not possible to interpret whether the 
samples are taken from a 6 Hz sine wave or a 1 Hz sine wave. This ambiguity is 
termed as aliasing, which arises due to spectral folding. 

Experiment 2.5 Illustration of Aliasing in Frequency Domain 
The python code, which demonstrates the phenomenon of aliasing in the frequency 
domain, is shown in Fig. 2.10. This experiment generates the signal x-
(t) = sin (10πt) + sin (30πt) using two different sampling rates: fs = 50 Hz and 
fs = 25 Hz. 

Inferences 
The following inferences can be made from Fig. 2.11. 

1. The frequency components present in the signal x(t) are f1 = 5 Hz and f2 = 15 Hz. 
2. When the sampling rate is 50 Hz, the peak in the magnitude spectrum appears 

correctly at f1 = 5 Hz and f2 = 15 Hz. 
3. On the other hand, if the sampling rate is chosen as fs = 25 Hz, there is no change 

with respect to f1 = 5 Hz frequency component, whereas the frequency compo-
nent f2 = 15 Hz appears as f2 = 10 Hz. Observing a 15 Hz frequency component 
signal as a 10 Hz frequency component is termed as aliasing.



44 2 Sampling and Quantization of Signals

#Sampling theorem 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fft import fft,fftfreq 
#Step 1: Generate the two signals  
f1=5 
f2=15 
fs=[25,50] 
N=256 
for i in range(len(fs)): 
    T=1/fs[i] 
    t=np.linspace(0,N*T,N) 
    x=np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t) 
    X=fft(x) 
    f_axis=fftfreq(N,T)[0:N//2] 
    plt.subplot(2,1,i+1) 
    plt.plot(f_axis,2/N*np.abs(X[0:N//2])) 
    plt.xlabel('$\omega$-->'),plt.ylabel('|X($\omega$)|'), 
    plt.title(r'Spectrum corresponding  to $f_s = {} Hz$'.format(fs[i])) 
    plt.tight_layout() 

Fig. 2.10 Python code to illustrate the concept of aliasing in frequency domain 
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Fig. 2.11 Illustration of aliasing in the frequency domain 

Task 
1. Change the value of the sampling frequency ( fs) in the python code given in 

Fig. 2.10, and observe the changes in the output spectrum.
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Fig. 2.12 Hearing aliasing 
effect #Hearing aliasing 

import sounddevice as sd 
import numpy as np 
import matplotlib.pyplot as plt 
fs=1500 
dur=1 
T=1/fs 
t=np.linspace(0,1,dur*fs) 
x1=np.sin(2*np.pi*500*t) 
x2=np.sin(2*np.pi*1000*t) 
x=np.concatenate([x1,x2]) 
sd.play(x,fs) 

Experiment 2.6 Hearing Aliasing 
In this experiment, two sinusoidal tones of frequency f1 = 500 Hz and f2 = 1000 Hz 
are generated with sampling frequency fs = 1500 Hz. Let x1(t) and x2(t) represent the 
two tones. The maximum signal frequency is 1000 Hz. The minimum sampling rate 
required is fs= 2000 Hz. Unfortunately, fs is chosen as 1500 Hz. As a result, 1500 Hz 
will be heard as 500 Hz. The python code, which illustrates this concept, is given in 
Fig. 2.12. 

Inference 
As per the code shown in Fig. 2.12, two sinusoidal tones of frequencies 500 and 
1000 Hz are generated. These two tones are appended. Instead of hearing two notes, 
only one note corresponding to the frequency 500 Hz is heard. This is due to the 
violation of the sampling theorem. Due to improper sampling, tone of 1000 Hz is 
heard as a tone of 500 Hz. To overcome the impact of aliasing, the sampling 
frequency has to be chosen properly. 

Task 
1. Modify the sampling frequency as 8000 Hz and observe its impact. 

2.1.2 Quantization of Signal 

Quantization is mapping a large set of values to a smaller set of values. It can be 
broadly classified into (1) uniform and (2) non-uniform quantization. A uniform 
quantizer splits the mapped input signal into quantization steps of equal size. The 
uniform scalar quantization can be broadly classified into (1) mid-tread and (2) mid-
rise quantizer. 

If ‘N’ bits are used to represent the value of the signal x[n], then there are 2N 

distinct values that x[n] can assume. If the xmin and xmax are the minimum and



maximum values taken by the signal x[n], then the dynamic range of the signal is 
calculated by 
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Dynamic range= xmax - xmin ð2:4Þ 

2.1.2.1 Mid-Tread Quantizer 

The relationship between the input and output of a mid-tread uniform quantizer is 
given by 

y n½ ]=Q × 
x n½ ]
Q 

þ 1 
2

ð2:5Þ 

In the above equation, x[n] represents the input signal to be quantized and y[n] 
represents the quantized signal, ‘Q’ denotes the quantization step size and the 
symbol bc denotes flooring operation. The expression for quantization step size 
can be computed by 

Q= 
Dynamic range 

L
ð2:6Þ 

where ‘dynamic range’ represents the difference between the maximum and mini-
mum value of the signal and ‘L’ denotes the number of reconstruction levels. 

The expression for the number of reconstruction levels is given by 

L= 2b ð2:7Þ 

In the above expression, ‘b’ is the number of bits used to represent the signal. 

Experiment 2.7 Transfer Characteristics of Mid-Tread Quantizer 
The aim of this experiment is to plot the transfer characteristics of mid-tread 
quantizer for different bit-rate. The bit-rate (b) chosen is b = 1, 2, 4 and 8. The 
python code, which performs this task, is shown in Fig. 2.13, and the corresponding 
output is shown in Fig. 2.14. 

Inferences 
The following inferences can be drawn from Figs. 2.13 and 2.14, which are 
summarized below: 

1. From Fig. 2.13, it is possible to observe that the input signal is represented as the 
variable ‘x’ and the quantized signal Q(x) is represented as ‘y’. The input signal 
‘x’ varies from -20 to +20; hence, the dynamic range of ‘x’ is 40. 

2. Figure 2.13 shows that the number of bits used to represent the input signal is 
varied as 1, 2, 4 and 8. It is represented as the variable ‘b’ in the code.
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#Transfer characteristics of mid-tread quantizer 
import numpy as np 
import matplotlib.pyplot as plt 
x=np.linspace(-20,20) 
DR=np.max(x)-np.min(x)  #Dynamic range 
b=[1,2,4,8]  #Bits 
for i in range(len(b)): 
    L=2**b[i]  #Reconstruction level 
    q=DR/L 
    #Mid-tread quantizer 
    y=np.sign(x)*q*np.floor((abs(x)/q)+(1/2)) 
    plt.subplot(2,2,i+1),plt.plot(x,y),plt.xlabel('x'),plt.ylabel('Q(x)') 
    plt.title('Quantizer with b={}' .format(b[i])) 
    plt.tight_layout() 

Fig. 2.13 Python code for transfer characteristics of mid-tread quantizer 
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Fig. 2.14 Transfer characteristics of mid-tread quantizer

3. From Fig. 2.14, it is possible to observe that the transfer characteristics of a 
uniform quantizer is similar to that of a stair-step waveform at low bit rate. 

4. At high bit rate (b = 8), the relationship between the input signal (x) and the 
quantized signal (Q(x)) is a straight line. This implies that the output follows the 
input; hence, the error due to quantization will be zero. 

5. From Fig. 2.14, it is possible to observe that the number of reconstruction levels 
depends on the number of bits used to represent the signal.
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#Uniform Quantization 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generate the input signal 
t=np.linspace(0,1,100) 
x=signal.sawtooth(2*np.pi*5*t) 
#Step 2: Parameters of the quantizer 
DR=np.max(x)-np.min(x) #Dynamic range 
b=[1,2,4,8] #Number of bits 
for i in range(len(b)): 
    L=2**b[i] #Quantization level 
    q=DR/(L)    #Quantization step size 
#Step 3: To obtain the quantized signal 
    y=np.sign(x)*q*np.floor((abs(x)/q)+(1/2)) 
    plt.figure(i+1) 
    plt.plot(t,x,'b',t,y,'r'),plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.legend(['Input signal','Quantized Signal'],loc='upper right') 
    plt.title('Quantization with b={}'.format(b[i])) 
    plt.tight_layout() 

Fig. 2.15 Python code to perform uniform mid-tread quantization of the signal

6. The stair tread in a ladder is the horizontal walking surface of an individual step. 
From Fig. 2.14, it is possible to observe that mid-tread quantizer has a zero-
valued reconstruction level. 

Tasks 
1. Write a python code to plot the error signal. The error signal is the difference 

between the input and quantized signals. Comment on the observed output. 
2. Write a python code to illustrate the fact that quantization error follows a uniform 

distribution. 

Experiment 2.8 Quantization of Input Sawtooth Signal Using Mid-Tread 
Quantizer 
The objective of this python experiment is to perform uniform mid-tread quantiza-
tion of input sawtooth signal of 5 Hz frequency for different bit rate. The number of 
bits used to represent the input signal varies as 1, 2, 4 and 8. With an increase in the 
number of bits used to represent the signal, the quantized signal resembles the input 
signal. The python code to verify this experiment is shown in Fig. 2.15, and its 
simulation result is displayed in Fig. 2.16. 

Inferences 
The following are the inferences can be drawn from Fig. 2.16: 

1. The input signal to be quantized is a sawtooth signal whose fundamental fre-
quency is 5 Hz.
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Fig. 2.16 Result of uniform mid-tread quantization 

2. The input signal will be uniformly quantized by mid-tread quantizer for different 
bit rates. 

3. It is possible to observe that the quantized signal resembles the input signal with 
an increase in bit-rate. 

2.1.3 Mid-Rise Quantizer 

The relationship between the input and output of mid-rise uniform quantizer is given 
by 

y n½ ]=Q × 
x n½ ]
Q 

þ 1 
2

ð2:8Þ 

In the above equation, x[n] represents the input signal to be quantized and y[n] 
represents the quantized signal, ‘Q’ denotes the quantization step size and the 
symbol denotes flooring operation.bc 
Experiment 2.9 Transfer Characteristics of Mid-Rise Quantizer 
The aim of this experiment is to plot the transfer characteristics of mid-rise quantizer 
for different bit-rate. The bit-rate (b) chosen is b = 1, 2, 4 and 8. The python code,



20

x

20

which performs this task, is shown in Fig. 2.17, and the corresponding output is 
shown in Fig. 2.18. 
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Fig. 2.17 Python code for 
transfer characteristics of 
mid-rise quantizer 

#Transfer characteristics of mid-rise quantizer 
import numpy as np 
import matplotlib.pyplot as plt 
x=np.linspace(-20,20) 
DR=np.max(x)-np.min(x)  #Dynamic range 
b=[1,2,4,8]  #Bits 
for i in range(len(b)): 
    L=2**b[i]  #Reconstruction level 
    q=DR/L 
    #Mid-rise quantizer 
    y=np.sign(x)*q*(np.floor((abs(x)/q))+(1/2)) 
    plt.subplot(2,2,i+1) 
    plt.plot(x,y),plt.xlabel('x'),plt.ylabel('Q(x)') 
    plt.title('Quantizer with b={}' .format(b[i])) 
    plt.tight_layout() 
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Fig. 2.18 Transfer characteristics of mid-rise quantizer 

Inferences 
From Fig. 2.18, it is possible to observe that the reconstruction level rises to the next 
level at the origin; hence, it is termed as ‘mid-rise quantizer’. It is also possible to 
observe that with the bit rate increase, the output follows the input. In other words, 
the quantizer error is minimal with a bit rate increase.
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#Uniform mid-rise quantizer 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generate the input signal 
t=np.linspace(0,1,100) 
x=signal.sawtooth(2*np.pi*5*t) 
#Step 2: Parameters of the quantizer 
DR=np.max(x)-np.min(x) #Dynamic range 
b=[1,2,4,8] #Number of bits 
for i in range(len(b)): 
    L=2**b[i] #Quantization level 
    q=DR/(L)    #Quantization step size 
#Step 3: To obtain the quantized signal 
    y=np.sign(x)*q*(np.floor((abs(x)/q))+(1/2)) 
    plt.figure(i+1) 
    plt.plot(t,x,'b',t,y,'r'),plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.legend(['Input signal','Quantized Signal'],loc='upper right') 
    plt.title('Quantization with b={}'.format(b[i])) 
    plt.tight_layout() 

Fig. 2.19 Python code to perform uniform mid-rise quantization 

Task 
In the python code given in Fig. 2.17, replace ‘np.floor()’ by ‘np.ceil()’ function, and 
comment on the change in the transfer characteristics. 

Experiment 2.10 Quantization of Input Sawtooth Signal Using Mid-Rise 
Quantizer 
The objective of this experiment is to perform uniform mid-rise quantization of the 
input sawtooth signal for different bit rate. The python code, which performs this 
task, is shown in Fig. 2.19, and the corresponding output is shown in Fig. 2.20. 

Inference 
From Fig. 2.20, it is possible to interpret that with the increase in the number of bits 
used to represent the signal, the quantized signal resembles the input signal. In other 
words, the error due to quantization will be minimum with the increase in the number 
of bits used to represent the signal. 

Experiment 2.11 Quantization of Speech Signal 
The objective of this experiment is to analyse the performance of uniform mid-tread 
quantizer for the speech signal. The experiment consists of two steps. Reading the 
speech signal from a given location is the first step, and performing uniform 
midtread-quantization of the input speech signal for different bit rates is the second 
step. The python code, which does this task, is shown in Fig. 2.21, and the 
corresponding output is shown in Figs. 2.22 and 2.23.
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Fig. 2.20 Results of uniform mid-rise quantizer 

Inference 
The following inference can be made from this experiment: 

1. The input speech signal belongs to the uttered word ‘Hello’. 
2. The quantized signal resembles the original speech signal with the increase in the 

number of bits of the quantizer. 

Experiment 2.12 Uniform Mid-Tread Quantization of Image 
In this experiment, a greyscale image, whose intensity varies gradually from black to 
white, is generated first. This image is subjected to uniform quantization with bit 
rates 1, 2, 4 and 8. The python code, which performs this task, is shown in Fig. 2.24, 
and the corresponding output is shown in Fig. 2.25. 

Inferences 
The following inferences can be drawn from this experiment: 

1. The grey level of the input image varies gradually from black to white. 
2. The input image is quantized uniformly with a bit rate of b = 1, 2, 4 and 8. When 

b = 1, the number of grey levels used to represent the image is minimum. The 
quantized image is different from the input image. 

3. With the increase in the number of bits used to represent the pixel value, the 
quantized image resembles the input image.
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#Uniform quantization of speech signal 
from scipy.io import wavfile 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Reading of speech waveform 
samplerate, x = wavfile.read('C:\\Users\\Admin\\Desktop\\speech1.wav') 
duration = x.shape[0] / samplerate 
t = np.linspace(0, duration, x.shape[0]) 
plt.figure(1) 
plt.plot(t,x,'k',linewidth=2) 
plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Input speech signal') 
#Step 2: Performing uniform quantization of the signal 
DR=np.max(x)-np.min(x) #Dynamic range 
b=[1,2,4,8] #Number of bits 
for i in range(len(b)): 
    L=2**b[i] #Quantization level 
    q=DR/L    #Quantization step size 
#Step 3: To obtain the quantized signal 
    y=np.floor(x/q)*q-(q/2) 
    plt.figure(2) 
    plt.subplot(2,2,i+1) 
    plt.plot(t,y,'k',linewidth=2),plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.title('Quantized signal with b={}'.format(b[i])) 
    plt.tight_layout() 

Fig. 2.21 Performing uniform mid-tread quantization of the speech signal 
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Fig. 2.22 Input speech signal
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Fig. 2.23 Uniformly quantized speech signal for different bit-rate 

#Uniform mid-tread quantization of image 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of test image 
img=np.zeros([256,256]) 
img[:,0:256]=np.arange(0,256,1) 
plt.figure(1) 
plt.imshow(img,cmap='gray') 
plt.title('Input image') 
#Step 2: Parameters of uniform quantizer 
DR=np.max(img)-np.min(img) #Dynamic range 
b=[1,2,4,8] #Number of bits 
for i in range(len(b)): 
    L=2**b[i] #Quantization level 
    q=DR/(L)    #Quantization step size 
#Step 3: To obtain the quantized signal 
    y=np.sign(img)*q*np.floor((abs(img)/q)+(1/2)) 
    plt.figure(2) 
    plt.subplot(2,2,i+1) 
    plt.imshow(y,cmap='gray') 
    plt.title('b={} '.format(b[i])) 
plt.tight_layout() 

Fig. 2.24 Uniform mid-tread quantization of the image
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Fig. 2.25 Input and Output of uniform mid-tread quantizer 

Task 
1. Generate a 256 × 256 image in which half of the pixels are white (grey level 255) 

and half of the pixels are black (grey level 0). The columns 0 to 127 is white, 
whereas column 128 to 256 is black. Try to quantize this image for different bit 
rate and comment on the observed result. 

2.2 Non-uniform Quantization 

One way to construct non-uniform quantizer is to perform companding. 
Companding = Compression + Expanding 
The three steps involved in companding are (1) compression, (2) uniform quan-

tization and (3) expanding. In the first step, the input signal is applied to a logarith-
mic function, and the output of this function is given to a uniform quantizer. Finally, 
the inverse of the logarithmic function is applied to the output of the quantizer. There 
are two standards for non-uniform quantizer companding. They are (1) μ-law 
companding for North America and (2) A-law companding for Europe. 

The μ-law compression expression in terms of the input signal x(t) is expressed as 

x1 tð Þ= sgn xð  Þ ln 1þ μ xj  jð Þ  
ln 1þ μð  Þ ð2:9Þ
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generate the input signal 
t1=np.linspace(0,1,100) 
x=signal.sawtooth(2*np.pi*5*t1) 
#Step 2: Mu law Encoding (Non-uniform encoding) 
mu=255 # 8 bit Quantization 
y1=np.sign(x)*((np.log(1+(mu*abs(x))))/np.log(1+mu)) 
plt.figure(1) 
plt.plot(t1,x,'b',t1,y1,'g'),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.legend(['Input signal','Encoded'],loc='upper right') 
plt.title('Degree of Compression with mu={}'.format(mu)) 
#Step 3: Parameters of the quantizer 
DR=np.max(y1)-np.min(y1) #Dynamic range 
b=[1,2,4,8] #Number of bits 
for i in range(len(b)): 
    L=2**b[i] #Quantization level 
    q=DR/(L)    #Quantization step size 
#Step 3: To obtain the quantized signal 
    y2=np.sign(y1)*q*np.floor((abs(y1)/q)+(1/2)) 
    y=np.sign(y2)*(((1+mu)**(abs(y2))-1)/mu) 
    plt.figure(i+2) 
    plt.plot(t1,y2,'r',t1,y),plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.legend(['Quantized Before decoding','Non-Uniform Quantized'],loc='upper right') 
    plt.title('Quantization with b={} and mu={}'.format(b[i],mu)) 
    plt.tight_layout() 

Fig. 2.26 Python code for μ-law companding 

In the above expression, ‘μ’ is the compression parameter, which is 255 for the 
USA and Japan. During compression, the least significant bits of large amplitude 
values are discarded. 

Experiment 2.13 μ-Law Companding 
The python code which performs μ-law companding is shown in Fig. 2.26, and the 
corresponding output is shown in Figs. 2.27 and 2.28. 

Inference 
The input signal to be companded is a sawtooth signal. The fundamental frequency 
of a sawtooth signal is 5 Hz. Figure 2.27 illustrates the signal to be encoded using 
μ-law companding with μ = 255. Here the signal is basically compressed before 
passing it to the uniform quantizer. Figure 2.28 shows the uniform quantizer results 
for different bit-rate values. With increase in bit-rate, the quantized signal resembles 
the input signal.
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Fig. 2.27 Encoded signal using μ-law companding 

Fig. 2.28 Quantized signal 

Experiment 2.14 Error Due to Quantization 
Quantization is basically mapping a large set of values to a smaller set of values. It is 
a non-linear and irreversible process. Quantization leads to loss of information. The 
loss of information due to quantization can be considered as an error. The error 
signal is considered as the difference between the quantized signal (y[n]) and the 
input signal (x[n]). The objective of this experiment is to quantize the input



sinusoidal signal of 5 Hz frequency for different bit rate. Then, plot the error signal 
for different bit-rate. The python code, which performs this task, is shown in 
Fig. 2.29, and the corresponding output is shown in Fig. 2.30. 
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#Error due to quantization 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generate the input signal 
t=np.linspace(0,1,100) 
x=np.sin(2*np.pi*5*t) 
#Step 2: Parameters of the quantizer 
DR=np.max(x)-np.min(x) #Dynamic range 
b=[1,2,4,8] #Number of bits 
for i in range(len(b)): 
    L=2**b[i] #Quantization level 
    q=DR/(L)    #Quantization step size 
#Step 3: To obtain the quantized signal 
    y=np.sign(x)*q*(np.floor((abs(x)/q))+(1/2)) 
#Step 4: Obtain the error signal 
    e=y-x 
#Plot the error signal 

plt.subplot(2,2,i+1), plt.plot(e),plt.xlabel('Time'), plt.ylabel('Amplitude'),    
plt.title('Error signal for b={}'.format(b[i])) 

    plt.tight_layout() 

Fig. 2.29 Error due to quantization 

Inferences 
From Fig. 2.30, the following inferences can be made: 

1. The error signal is oscillatory in nature. The magnitude of the error signal varies 
between positive and negative values. 

2. The magnitude of the error signal decreases with increase in bit-rate of the 
quantizer. 

3. Error due to quantization is inevitable; hence, quantization is considered as 
irreversible phenomenon. 

Experiment 2.15 Probability Density Function of Quantization Error 
From the previous experiment, it is possible to confirm that error is inevitable in 
quantization process. The objective of this experiment is to prove that quantization 
error follows a uniform distribution. The steps followed in this experiment are 
displayed in Fig. 2.31. 

The python code which performs the task mentioned above is shown in Fig. 2.32, 
and the corresponding output is shown in Fig. 2.33. 

Inferences 
The following inferences can be drawn from Fig. 2.33:
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Fig. 2.30 Error signal for different bit-rate of the quantizer 

Fig. 2.31 Flow diagram of 
Experiment 2.13 Generate the 5 Hz sine wave. 

Quantize the sine wave with bit rate (b) = 4 

Obtain the error between input and 

quantized sine wave 

Plot the histogram of the error signal 

1. The quantization error follows uniform distribution in the range (-Δ/2, Δ/2), 
where ‘Δ’ is the quantization step size. 

2. In this example, the value of ‘Δ’ is 0.125; hence, Δ/2 value is 0.0625. 

2.3 Signal Reconstruction 

Signal reconstruction is an attempt to obtain the continuous-time signal from the 
samples. This is also termed as interpolation. Different types of interpolation 
schemes include (1) zero-order hold interpolation, (2) first-order hold or linear 
interpolation and (3) ideal interpolation.
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#PDF of quantized error signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generate the input signal 
t=np.linspace(0,1,1000) 
x=np.sin(2*np.pi*5*t) 
#Step 2: Parameters of the quantizer 
DR=np.max(x)-np.min(x) #Dynamic range 
b=4 
L=2**b #Quantization level 
q=DR/(L) #Quantization step size 
#Step 3: Quantize the input signal 
y=np.sign(x)*q*(np.floor((abs(x)/q))+(1/2)) 
#Step 3: Obtain the error signal 
e=y-x 
#Step 4: Plot the histogram of the error signal 
plt.hist(e,10),plt.xlabel('e'),plt.ylabel('$P_e(e)$') 
plt.title('PDF of error signal') 

Fig. 2.32 Python code for PDF of quantization error 
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Fig. 2.33 Histogram plot quantization error 

2.3.1 Zero-Order Hold Interpolation 

A zero-order hold (ZoH) system is a form of simple interpolation, where a line of 
zero-slope connects discrete samples. The zero-order hold maintains the signal level 
of the previous pulse until the next pulse arrives. The reconstructed signal will 
resemble a staircase curve. This is depicted in Fig. 2.34.
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Fig. 2.34 Zero-order hold 
interpolation 

Ts 2Ts 3Ts 4Ts 5Ts t 

x(t) 

Fig. 2.35 Impulse response 
of ZoH interpolation 
function 

t 

1 

h(t) 

0 T 

#Zero-order hold interpolation 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.interpolate import interp1d 
#Step 1: Generation of sine wave 
t=np.linspace(0,2*np.pi,10) 
x=np.sin(t) 
#Step 2: Performing zero-order hold interpolation 
f=interp1d (t,x,kind='previous') 
#Step 3: Plotting the results 
t1=np.linspace(0,2*np.pi,500) 
plt.plot(t1,f(t1),'k--'),plt.stem(t,x,'r'),plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Sine wave') 
plt.legend(['ZOH interpolation','Sine wave samples'],loc=1) 

Fig. 2.36 Python code of zero-order hold interpolation 

The impulse response of a zero-order hold is shown in Fig. 2.35. 
The transfer function of zero-order hold function is given by 

H sð Þ= 
1- e- Ts 

s
ð2:10Þ 

Experiment 2.16 Zero-Order Hold Interpolation 
The python example, which performs zero-order hold interpolation of the sinusoidal 
signal, is shown in Fig. 2.36, and the corresponding output is shown in Fig. 2.37.  In  
the scipy package, the built-in function ‘interp1d’ performs the zero-order hold 
interpolation.
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Fig. 2.37 Result of python code shown in Fig. 2.36 

(a) First-order hold interpolation                        (b) Impulse response 
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Fig. 2.38 First-order hold interpolation. (a) First-order hold interpolation. (b) Impulse response 

Inference 
From Fig. 2.37, it is possible to interpret that zero-order hold interpolation converts 
the input signal into a piece-wise constant signal. It is possible to observe disconti-
nuity in the zero-order hold interpolated signal. 

2.3.2 First-Order Hold Interpolation 

In first-order hold (FoH) interpolation, the signal samples are connected by a straight 
line. This idea is illustrated in Fig. 2.38a. 

The first-order hold performs linear interpolation between samples. The impulse 
response of first-order hold is shown in Fig. 2.38b. 

The transfer function of first-order hold is expressed as
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#First-order hold interpolation 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.interpolate import interp1d 
#Step 1: Generation of sine wave 
t=np.linspace(0,2*np.pi,10) 
x=np.sin(t) 
#Step 2: Performing zero-order hold interpolation 
f=interp1d(t,x,kind='linear') 
#Step 3: Plotting the results 
t1=np.linspace(0,2*np.pi,10) 
plt.plot(t1,f(t1),'k--'),plt.stem(t,x,'r'),plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Sine wave') 
plt.legend(['FOH interpolation','Sine wave samples'],loc=1) 
plt.tight_layout() 

Fig. 2.39 Python code to perform first-order hold interpolation 
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Fig. 2.40 Result of python code shown in Fig. 2.39 

H sð Þ= 
1- e- sT 

s 

2 

ð2:11Þ 

Experiment 2.17 First-Order Hold Interpolation 
The python code to illustrate first-order hold interpolation is shown in Fig. 2.39, and 
the corresponding output is shown in Fig. 2.40. 

From Fig. 2.40, it is possible to interpret that first-order hold interpolation 
attempts to connect the sample points through a straight line.
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Inferences 
The following inference can be drawn from Fig. 2.40: 

1. The zero-order hold yields a staircase approximation of the signal. 
2. The first-order hold yields a linear approximation of the signal. 
3. The first-order hold connects the samples with straight lines. 

2.3.3 Ideal or Sinc Interpolation 

The expression for continuous-time signal obtained using sinc interpolation is 
expressed as 

x tð Þ= 
1 

n= -1 
x n½ ] sin c t- nT s 

Ts 
ð2:12Þ 

The sinc function is a symmetric function which is square integrable. The decay 
of the sinc function is slow. The sinc function has infinite support; hence, it is termed 
as ideal interpolation. The sinc interpolation produces the smoothest possible inter-
polation of the samples. 

Experiment 2.18 Ideal or Sinc Interpolation of a Sinusoidal Signal 
The python code, which performs the ideal interpolation of the sine waveform, is 
shown in Fig. 2.41, and the corresponding output is shown in Fig. 2.42. 

Inference 
The sinc interpolation produces the smoothest possible interpolation of the samples. 

Experiment 2.19 Comparison of Zero-Order Hold and Sinc Interpolation 
The python code, which performs the zero-order hold and sinc interpolation of a 
given sinusoidal signal, is shown in Fig. 2.43, and the corresponding output is in 
Fig. 2.44. 

Inference 
By observing Fig. 2.44, it is possible to infer that sinc interpolation smooths the 
successive samples in the sine wave when compared to zero-order hold interpolation 
method. 

Exercises 
1. Write a python code to demonstrate the phenomenon of aliasing in the frequency 

domain for which the signal x(t) = sin (20πt) + sin (50πt) is generated using two 
different sampling rates: fs = 100 Hz and fs = 25 Hz. Plot the corresponding 
spectrum and comment on the observed result.
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#Ideal or sinc interpolation 
import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(0,2*np.pi,10) 
t1=np.linspace(0,2*np.pi,100) 
x=np.sin(t) 
def sinc_interp(x, s, u): 
    if len(x) != len(s): 
        raise ValueError('x and s must be the same length') 
    T = s[1] - s[0] 
    sincM = np.tile(u, (len(s), 1)) - np.tile(s[:, np.newaxis], (1, len(u))) 
    y = np.dot(x, np.sinc(sincM/T)) 
    return y 
y=sinc_interp(x,t,t1) 
plt.plot(t1,y,'r--'),plt.stem(t,x,'k'),plt.xlabel('Time'),  
plt.ylabel('Amplitude'),plt.title('Sinc interpolation') 
plt.legend(['Ideal interpolation','Sine wave samples'],loc=1) 
plt.tight_layout() 

Fig. 2.41 Python code to perform sinc interpolation 
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Fig. 2.42 Result of python code shown in Fig. 2.41

2. Generate a sinusoidal signal of 5 Hz frequency. Quantize this signal using 
uniform mid-rise quantizer with bit-rate, b = 1, 2 and 4. Use a subplot to plot 
the input signal and the quantized signal. 

3. Consider an analogue signal x(t) = cos (2πt) + cos (14πt) + cos (18πt), where ‘t’ 
is in seconds. If this signal is sampled at fs = 8Hz, then it will be aliased with the
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#Ideal and sinc interpolation 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.interpolate import interp1d 
t=np.linspace(0,2*np.pi,10) 
t1=np.linspace(0,2*np.pi,500) 
x=np.sin(t) 
#Zero-order hold interpolation 
f=interp1d(t,x,kind='previous') 
#Sinc interpolation 
def sinc_interp(x, s, u): 
    if len(x) != len(s): 
        raise ValueError('x and s must be the same length') 
    T = s[1] - s[0] 
    sincM = np.tile(u, (len(s), 1)) - np.tile(s[:, np.newaxis], (1, len(u))) 
    y = np.dot(x, np.sinc(sincM/T)) 
    return y 
y=sinc_interp(x,t,t1) 
plt.plot(t1,f(t1),'b:'),plt.plot(t1,y,'k--'),plt.stem(t,x,'r'),plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Comparison of interpolation methods') 
plt.legend(['ZOH interpolation','Sinc interpolation','Sine wave samples',],loc=1) 

Fig. 2.43 Comparison of zero-order hold and sinc interpolation 

0 

–1.00 

–0.75 

–0.50 

–0.25 

0.00 

0.25 

0.50 

0.75 

1.00 

1 2 3 4 5 6  

Time 

A
m

pl
itu

de
 

Comparison of interpolation methods 

ZOH interpolation 
Sinc interpolation 
Sine wave samples 

Fig. 2.44 Result of ZOH and sinc interpolation



2.3 Signal Reconstruction 67

signal, which is expressed as x′ (t) = 3 cos (2πt). Plot x(t) and  x′(t) on the same 
graph to verify the signals inter at the sampling instants. 

4. Write a python code to generate a sinusoidal signal of fundamental frequency 
1300 Hz and sampling frequency fs = 8 kHz. Hear this tone. Now downsample 
this signal by a factor of 2 and hear the tone. Comment on the heard tones. 

5. Write a python code to generate a sinusoidal signal of 10 Hz frequency. Quantize 
this signal using 4-bit uniform mid-tread quantizer. Use a subplot to plot the 
input, quantized and error signals. Comment on the observed output.

Objective Questions 
1. What will be the output if the following code is executed? 

A. 4.5 
B. 4.0 
C. 4.25 
D. 5.0 

2. What will be the output if the following code is executed? 

A. -4.0 
B. -5.0 
C. -4.25 
D. -5.25 

3. The following python code segment produces 

A. Zero-order hold interpolation 
B. Linear interpolation 
C. Polynomial interpolation 
D. Sinc interpolation 

4. Fourier transform of train of impulse function results in 

A. Train of step function 
B. Train of impulse 
C. Sinc function 
D. Triangular function



Assertion and reason are true.

Statement 1 and 2 are false.

ð Þ
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5. A sinusoidal signal of the form x(t) = sin(2πft), where ‘f = 5 Hz’ is sampled at the 
rate fs = 100 Hz to obtain the discrete-time sequence x[n]. The expression for the 
signal x[n] is  

x n½ ]= sin 
π 
2 
n 

x n½ ]= sin 
π 
4 
n 

x n½ ]= sin 
π 
5 
n 

x n½ ]= sin 
π 
10 

n 

6. Assertion: Quantization is an irreversible process. 
Reason: Quantization is many-to-one mapping: 

A. 
B. Assertion is wrong; reason is true. 
C. Assertion is true; reason is wrong. 
D. Assertion and reason are wrong. 

7. Statement 1: Quantization is a non-linear phenomenon 
Statement 2: Quantization is an irreversible phenomenon 

A. 
B. Statement 1 and 2 are true. 
C. Statement 1 is true; statement 2 is false. 
D. Statement 1 is false; statement 2 is true. 

8. The transfer function of zero-order hold is 

H sð Þ= 1 

H sð Þ= 
1 
s 

H sð Þ= 
1- e- sT 

s 

H s  = 1- e- sT 

9. An analogue voltage in the range 0–4 V is divided into 32 equal intervals. The 
quantization step size of this uniform quantizer is 

A. 0.0625 
B. 0.125 
C. 0.25 
D. 0.5



A.
2

B.
4

C.
8

D.
12

A. H sð Þ=
s

B. H sð Þ=
s

C. H sð Þ=
s

ð Þ
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10. If ‘Δ’ represents the quantization step size of a uniform quantizer, the expres-
sion for mean square quantization error is 

Δ2 

Δ2 

Δ2 

Δ2 

11. The quantization error follows 

A. Normal distribution 
B. Uniform distribution 
C. Chi-square distribution 
D. Exponential distribution 

12. The transfer function of first-order hold is 

1- e- sT 

1 

1- e- sT 2 

D. H s  = 1- e- sT 

13. The signal to be quantized takes the value in the range (-1,1). The dynamic 
range of the signal is 

A. 1 
B. -1 
C. 0 
D. 2 

14. If fs represents the sampling frequency, then the expression for Nyquist fre-
quency is 

A. fs 
B. fs/2 
C. fs/4 
D. fs/8
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15. The quantization step size of a two-bit quantizer which accepts the input signal, 
which varies from 0 to 2 V, is 

A. 0.125 
B. 0.25 
C. 0.5 
D. 0.75 
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Chapter 3 
Generation and Operation on Discrete-Time 
Sequence 

Learning Objectives 
After completing this chapter, the reader is expected to

• Generate standard discrete-time sequences like unit sample, unit step, unit ramp 
sequences, etc.

• Perform operations like folding, shifting and scaling on the discrete-time 
sequence.

• Perform linear convolution and circular convolution between discrete-time 
sequences.

• Perform autocorrelation and cross-correlation between discrete-time sequences. 

Road Map of the Chapter 
This chapter aims to generate different discrete-time signals or sequences and 
perform various mathematical operations on the discrete-time signal. The flow of 
the concept in this chapter is illustrated in the form of a block diagram, which is 
given below: 
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Discrete-Time Sequence 

Mathematical operation 
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Convolution Correlation 
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signals 

Standard   
DT signals 
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PreLab Questions 
1. What are the steps involved in converting the continuous-time signal into a 

discrete-time signal? 
2. Mention different forms of representations of discrete-time signals? 
3. Mention a few standard discrete-time sequences. 
4. Mention the significant features of the unit sample sequence (δ[n]). 
5. State the condition for the discrete-time signal to be periodic. 
6. Distinguish between energy and power signal. 
7. What are the various mathematical operations that can be performed on discrete-

time signals? 
8. When a discrete-time signal is said to be (a) an even signal (b) an odd signal? 

Give an example for each class of signal. Also, give an example of a signal 
which is neither even nor odd. 

9. Give an example of an energy and power signal. Also, give an example of a 
discrete-time signal which is neither energy nor power signal. 

10. Explain in your own word regarding the significance of convolution operation in 
signal processing. 

11. What is the relationship between convolution and correlation? Mention two 
applications of correlation.
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3.1 Generation of Discrete-Time Signals 

This section deals with the generation of different types of discrete-time signals like 
unit sample signal, unit step signal, unit ramp signal, real and complex exponential 
signals. The following section discusses about different mathematical operations that 
could be performed on discrete-time signals. 

Experiment 3.1 Generation of the Unit Sample Sequence 
The mathematical expression of the unit sample sequence (δ[n]) is given by 

δ n½ ]= 
1, if n= 0 

0, Otherwise
ð3:1Þ 

This experiment discusses the generation of unit sample sequence using ‘if’ and 
‘else’ conditions in python platform. The python code to generate unit sample 
sequence using ‘if’ and ‘else’ conditions is shown in Fig. 3.1, and the corresponding 
output is shown in Fig. 3.2. The built-in functions used in the program are given in 
Table 3.1. 

Inference 
It is possible to observe that unit sample sequence takes a value of ‘1’ at ‘n’ equal to 
zero and zero at other instances of ‘n’. 

Experiment 3.2 Generation of Unit Sample Sequence Using the Logical 
Operation 
This experiment deals with the logical operation used to generate unit sample 
sequence, and the python code for this experiment is shown in Fig. 3.3, and the 
corresponding output is shown in Fig. 3.4. 

Inference 
The statement (x = (n == 0)) given in Fig. 3.3 implies that the variable ‘x’ takes a 
value of ‘1’ if n = 0, and it takes a value of ‘0’ for all the other values of ‘n’. 

Fig. 3.1 Python code to 
generate unit sample 
sequence 

#Python code to generate unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11)  #Define the x-axis 
x=[1 if i==0 else 0 for i in n] #Unit sample sequence 
#Step 2: Plotting the sequence 
plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$') 
plt.xticks(n)
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Fig. 3.2 Unit sample sequence 

Table 3.1 Built-in functions used in unit sample signal generation 

S. No. Built-in function used Purpose 

1 np.arange() To generate evenly spaced values within a given interval 

2 plt.stem() To plot the discrete-time signal 

3 plt.xticks() To get or set the current tick locations and labels of the x-axis 

Fig. 3.3 Logical operation 
to generate unit sample 
sequence 

#Python code to generate unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11,1)  #Define the x-axis 
x=(n==0) #Unit sample sequence 
#Step 2: Plotting the sequence 
plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$'),plt.xticks(n) 

Experiment 3.3 Generation of Unit Sample Sequence Using the Built-In Func-
tion from the Scipy Library 
The built-in function in scipy library ‘unit_impulse’ can be used to generate unit 
sample sequence. The python code, which generates unit sample sequence using the 
built-in function from the scipy library, is shown in Fig. 3.5, and the corresponding 
output is shown in Fig. 3.6.
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Fig. 3.4 Output of python code shown in Fig. 3.3 

Fig. 3.5 Unit sample 
sequence generation using 
scipy library 

import matplotlib.pyplot as plt 
import numpy as np 
from scipy import signal 
n=np.arange(-5,6) 
x=signal.unit_impulse(len(n), 'mid') 
plt.stem(n, x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$'),plt.xticks(n) 

Inference 
From Figs. 3.5 and 3.6, it is possible to confirm that unit sample sequence can be 
generated using the scipy library with the built-in command of ‘signal.unit_impulse’. 

Experiment 3.4 Generation of Unit Step Sequence 
The mathematical expression of the unit step sequence is written as 

u n½ ]= 
1, if n≥ 0 

0, Otherwise
ð3:2Þ 

In this experiment, the unit step sequence is generated using two methods. In the 
first method, ‘if’ and ‘else’ conditions are used to generate unit step sequence. The 
second method uses logical operation to generate unit step signal. The python code, 
which generates unit step signal using two different methods, is shown in Fig. 3.7, 
and the corresponding output is shown in Fig. 3.8.
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Fig. 3.6 Result of python code shown in Fig. 3.5 

#Genertion of unit step signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11,1)  #Define the x-axis 
#Method 1 
x1=[1 if i>=0 else 0 for i in n] # if and else 
#Method 2 
x2=(n>=0) #Logical operation 
#Plotting the result 
plt.subplot(2,1,1), 
plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('u[n]'),plt.xticks(n) 
plt.subplot(2,1,2),plt.stem(n,x2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('u[n]'),plt.xticks(n) 
plt.tight_layout() 

Fig. 3.7 Python code to generate unit step signal 

Inference 
From Fig. 3.8, it is possible to interpret that both methods yield the same result, 
which is a unit step signal. The unit step signal exhibits a sudden change in state from 
logic 0 to logic 1 instantaneously. 

Experiment 3.5 Generation of the Unit Ramp Signal 
The mathematical expression of the unit ramp sequence (r[n]) is written as
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Fig. 3.8 Result of python code shown in Fig. 3.7 

r n½ ]= 
n, if n≥ 0 

0, Otherwise
ð3:3Þ 

The python code, which generates unit ramp signal using two methods, is 
discussed in this experiment. In method 1, ‘if’ and ‘else’ conditions generate unit 
ramp signals, whereas in method 2, logical operation is used to generate unit ramp 
signals. The python code, which generates unit ramp signal using the two methods, 
is shown in Fig. 3.9, and the corresponding output is shown in Fig. 3.10. 

Inference 
From Fig. 3.10, it is possible to observe that the ramp signal generated using ‘if’ and 
‘else’ condition and ‘logical operation’ are alike. Unlike step signal, the ramp signal 
gradually increases from low to high value. 

Task 
1. Write a python code to generate unit ramp signal from unit step signal. 

Experiment 3.6 
From unit sample signal generates unit step signal, and from unit step signal 
generates unit ramp signal. 

The relationship between unit sample (δ[n]) and unit step (u[n]) sequence is given 
by
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Fig. 3.9 Python code to 
generate unit ramp signal #Generation of unit ramp signal 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11,1)  #Define the x-axis 
#Two methods to generate unit ramp signal 
x1=[i if i>=0 else 0 for i in n] #Unit ramp sequence 
x2=n*(n>=0) #Logical operation 
#Plotting the result 
plt.subplot(2,1,1),plt.stem(n,x1),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('r[n]'),plt.xticks(n) 
plt.subplot(2,1,2),plt.stem(n,x2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('r[n]'),plt.xticks(n) 
plt.tight_layout() 

Fig. 3.10 Result of python code shown in Fig. 3.9 

u n½ ]= 
n 

k = -1 
δ k½ ] ð3:4Þ 

and
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Fig. 3.11 Flow chart 
depicting the problem 
statement of Experiment 3.6 

Generation of unit sample sequence (δ[n]) 

Derive unit step sequence (u[n]) from unit 

sample sequence (δ[n]) 

Derive unit ramp sequence (r[n]) from unit 

step sequence (u[n]) 

δ n½ ]= u n½ ]- u n- 1½ ] 3:5Þ 

The relationship between the unit ramp and unit step sequence is given by 

r n½ ]= nu n½ ] ð3:6Þ 

The flow chart, which depicts the objective of this experiment, is shown in 
Fig. 3.11. 

From the flow chart, the unit sample sequence is generated first. From unit sample 
sequence, unit step sequence is obtained by repeated addition. From unit step 
sequence, unit ramp sequence is derived. The python code, which performs the 
above-mentioned task, is shown in Fig. 3.12, and the corresponding output is shown 
in Fig. 3.13. 

Inferences 
From the python code shown in Fig. 3.12, it is possible to infer that unit step 
sequence is obtained by repeatedly adding the unit sample sequence. The unit 
ramp sequence is obtained by weighting the unit step signal by a factor of ‘n’. 
From this example, it is possible to infer that any arbitrary signal x[n] can be obtained 
from the unit sample sequence by scaling and shifting operations. 

Task 
1. Write a python code to generate a unit sample signal from the unit step signal. 

Experiment 3.7 Generation of Real Exponential Sequence 
The expression for a real exponential signal is given by 

x n½ ]= αn ð3:7Þ 

where α must be a real value. The aim of this experiment is to generate real 
exponential sequence for four different values of ‘α’, namely, α = 0.5, α =  
0.5, α = 1.0 and α = - 1.0. The python code, which performs this task, is shown in 
Fig. 3.14, and the corresponding output is shown in Fig. 3.15.
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#Generation of test sequences from unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of unit sample sequence 
n=np.arange(-10,11) 
x=[1 if i==0 else 0 for i in n]  #delta[n] 
#Step 2: Unit step sequence from unit sample sequence 
y=np.zeros_like(n) 
for k in range(len(x)): 
     y[k]=np.sum(x[:k+1]) 
#Step 3: Unit ramp sequence from unit step sequence 
z=n*y 
#Step 4: Plotting the result 
plt.subplot(3,1,1),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$'),plt.xticks(n),plt.yticks(x), 
plt.subplot(3,1,2),plt.stem(n,y),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('u[n]'),plt.xticks(n),plt.yticks(y), 
plt.subplot(3,1,3),plt.stem(n,z),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('r[n]'),plt.xticks(n), 
plt.tight_layout() 

Fig. 3.12 Python code to generate test signals from unit sample sequence 

Fig. 3.13 Result of python code shown in Fig. 3.12
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#Python code to generate real exponential sequences 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6,1)  #Define the x-axis 
alpha=[0.5, -0.5, 1.0, -1.0] 
for i in range(len(alpha)): 
    x=alpha[i]**n #Real exponential sequence 
    plt.subplot(2,2,i+1) 
    plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
    plt.title(r'$\alpha$={}'.format(alpha[i])) 
    plt.xticks(n) 
plt.tight_layout() 

Fig. 3.14 Python code to generate real exponential signal 
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Fig. 3.15 Result of python code shown in Fig. 3.14 

Inferences 
The following inference can be made from this experiment: 

1. If the value of α is 0 < α < 1, then the signal x[n] decreases in magnitude. This is 
evident by observing the first subplot for α = 0.5. 

2. If the value of α is -1 < α < 0, then the signal x[n] alternates in sign but 
decreases in magnitude. This is evident by viewing the second subplot in 
Fig. 3.15 for α = - 0.5. 

3. For α = 1.0, there is no oscillation and the amplitude is always one.
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#Python code to generate complex exponential sequences 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6,1)  #Define the x-axis 
omega_degree=[0, 90, 180, 270] 
omega_radians=np.deg2rad(omega_degree) 
for i in range(len(omega_radians)): 
    x=np.exp(1j*omega_radians[i]*n) #Complex exponential sequences 
    plt.subplot(2,2,i+1) 
    plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
    plt.title(r'$\omega={}^\circ$'.format(omega_degree[i])) 
    plt.xticks(n) 
plt.tight_layout() 

Fig. 3.16 Python code to generate complex exponential sequences 

4. For α = - 1.0, the signal x[n] toggles. This is the highest frequency in digital 
sequence. 

Task 
1. Obtain the real exponential sequence for α = 2 and comment on the nature of the 

signal. Here the term ‘nature’ refers to whether the signal is a bounded or not. 

Experiment 3.8 Generation of Complex Exponential Signal 
The general form of complex exponential signal is given by 

x n½ ]= ejωn ð3:8Þ 

where ‘ω’ represents the angular frequency in radians. The python code to generate 
complex exponential sequences for four different values of ‘ω’ such as ω= 
0, π 2 , π, 

3π 
2 is given in Fig. 3.16, and the corresponding output is shown in 

Fig. 3.17. 

Inferences 
The following inference can be drawn from this experiment: 

1. When ω = 0, the frequency is zero, the amplitude of the signal is constant and 
there is no variation in the signal. This is termed as DC signal. For a DC signal, 
the frequency is zero. 

2. With increase in the value of ‘ω’, the oscillation exhibited by the signal increases. 
At ω = π, the signal takes alternate values of +1 and -1. It is the highest 
frequency in the digital signal. 

Task 
1. Write a python code to prove the fact that digital frequency ‘ω’ is unique in the 

range 0 to 2π or from –π to π.
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Fig. 3.17 Complex exponential sequences for different values of ‘ω’ 

#Generation of signum function 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
x=np.sign(n) 
plt.stem(n,x) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.xticks(n) 
plt.yticks(x),plt.title('Signum function') 

Fig. 3.18 Python code to generate signum function 

Experiment 3.9 Generation of Signum Function 
Signum function is defined as a mathematical function that gives the sign of a real 
number. The signum function f : R → R is defined as 

sgn n½ ]= 

1, if n> 0 

0, if n= 0

- 1, if n< 0 

ð3:9Þ 

The python code to generate signum function is shown in Fig. 3.18, and the 
corresponding output is shown in Fig. 3.19.
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Fig. 3.19 Result of python code shown in Fig. 3.18 

Inference 
From Fig. 3.19, it is possible to observe that the signum function takes only three 
values, which are -1, 0 and 1; whenever n < 0, the signum function takes the value 
of -1. At n = 0, the signum function takes a value of ‘0’. For the positive values of 
‘n’, the signum function takes the value of +1. 

Task 
1. Is it possible to obtain signum function from unit step function? If yes, write a 

python code to generate discrete signum signal from unit step signal. 

3.2 Mathematical Operation on Discrete-Time Signals 

This section discusses various mathematical operations that are performed on 
discrete-time signals. The basic mathematical operations that could be performed 
on the discrete-time signals are given in Fig. 3.20. 

3.2.1 Amplitude Modification on DT Signal 

The different signal operations that come under amplitude modification are 
discussed in this section. 

(a) Amplitude scaling 
If x[n] is the input signal, the scaling of the signal x[n] by a factor of ‘A’ is 

represented as
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Mathematical operation on DT signal 

Amplitude modification Time modification 

Amplitude  

scaling 

Amplitude  

shifting 

Product of 

two signals 

Addition of 
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Time  

scaling 
Time  

shifting 

Time  

reversal 

Fig. 3.20 Different mathematical operations on DT signal 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the input signal 
n=np.arange(-10,11,1) 
x=(n==0) 
#Obtaining the output signals for different values of 'A' 
A=[2,0.5,1] #Three different values of factor 'A' 
y1=A[0]*x 
y2=A[1]*x 
y3=A[2]*x 
#Step 2: Plotting the result 
plt.subplot(2,2,1),plt.stem(n,x),plt.yticks([0,2]),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(2,2,2),plt.stem(n,y1) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$y_1[n]$'),plt.subplot(2,2,3),plt.stem(n,y2) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$y_2[n]$'),plt.subplot(2,2,4),plt.stem(n,y3),plt.yticks([0,2]), 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_3[n]$') 
plt.tight_layout() 

Fig. 3.21 Python code to perform amplitude scaling 

y n½ ]=Ax n½ ] ð3:10Þ 

If A > 1, the operation is called as amplification, A < 1 represents attenuation. 
If A = 1, the output follows the input, it is called as input follower or buffer. 

Experiment 3.10 Amplitude Scaling 
Generate unit sample signal and perform the amplitude scaling for three different 
values of A, namely: A = 2, A = 0.5 and A = 1. Plot the input and output signal and 
comment on the observed output. 

The python code, which performs the above-mentioned task, is shown in 
Fig. 3.21, and the corresponding output is shown in Fig. 3.22.
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Fig. 3.22 Result of python code shown in Fig. 3.21 

Inference 
The following inferences can be made from this experiment: 

1. From Fig. 3.22, it is possible to observe that y1[n] is the amplified version of x[n], 
and y2[n] is the attenuated version of x[n]. If the gain is unity, the output follows 
the input, which is evident from the output y3[n]. 

2. This example illustrates the scaling of the amplitude axis for different values of 
the factor ‘A’. 

Task 
1. Write a python code to illustrate the fact that amplitude scaling changes the 

energy of the signal. 

(b) Amplitude Shifting 
If x[n] is the input signal, the amplitude shifting of the signal x[n] by a factor 

of ‘C’ is represented as 

y n½ ]= x n½ ]±C ð3:11Þ 

Experiment 3.11 Amplitude Shifting (DC Offset) 
Let x[n] represent the discrete-time sinusoidal signal, and perform the DC offset of 
this signal x[n] to obtain the signals y1[n] = x[n]  +  C and y2[n] = x[n]- C. The value



of ‘C’ for this experiment is to be chosen as 5. Write a python code to perform this 
task and comment on the observed output. 
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#DC offset 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input sinusoidal sequence 
t=np.linspace(0,1,100) 
x=np.sin(2*np.pi*5*t) 
#Step 2: Perform DC offset 
offset=[5,-5] 
y1=x+offset[0] 
y2=x+offset[1] 
#Step 3: Ploting the input and output signals 
plt.subplot(3,1,1),plt.stem(t,x), 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(3,1,2),plt.stem(t,y1) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_1$[n]') 
plt.subplot(3,1,3),plt.stem(t,y2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_2$[n]') 
plt.tight_layout() 

Fig. 3.23 Python code which performs DC offset 

The python code, which performs the above-mentioned task, is shown in 
Fig. 3.23, and the corresponding output is shown in Fig. 3.24. 

Inference 
By observing Fig. 3.24, it is possible to infer that the reference for signal y1[n] is  
+5 V, whereas the reference for signal y2[n] is -5 V. This is termed as DC offset. 

Task 
1. Does amplitude shifting affect the energy of the signal? Write a python code to 

answer this question. 

(c) Product of Two Signals 
The product of two signals x1[n] and x2[n] is represented by 

y n½ ]= x1 n½ ]× x2 n½ ] ð3:12Þ 

The amplitude of the resultant signal y[n] gets modified. For example, 
consider 

x1 n½ ]= sin 2πf 1nð Þ ð3:13Þ 
x2 n½ ]= cos 2πf 2nð Þ ð3:14Þ 

Substituting Eqs. (3.13) and (3.14) in Eq. (3.12), we get
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Fig. 3.24 Result of python code shown in Fig. 3.23 

y n½ ]= sin 2πf 1nð Þ× cos 2πf 2nð Þ ð3:15Þ 

Using the formula 

sinA cosB= 
1 
2 

sin Aþ Bð Þ þ  sin A-Bð Þf ð3:16Þ 

Equation (3.15) can be written as 

y n½ ]= 
1 
2 

sin 2π f 1 þ f 2ð Þnþ sin 2π f 1 - f 2ð ÞnÞf ð3:17Þ 

The amplitude of the output signal is different from the input signal x[n]. 

Experiment 3.12 Product of Two Signals 
Obtain the product of the two signals given by x1[n] = sin (2πf1n) and 
x2[n] = sin (2πf2n). In this example, consider f1 = f2 = 5Hz. Using the relation 
(3.17), the expression for the output signal is given by 
y n½ ]= 1 2 sin 2π f 1 þ f 2ð Þnþ sin 2π f 1 - f 2ð ÞnÞf . In this case, f1 = f2 = 5Hz; 
hence, the expression for the output signal is given by y n½ ]= 1 2 sin 2π 10ð ÞnÞf . 
The frequency of the resultant signal should be 10 Hz, whereas its amplitude is 
reduced by half. The python code, which performs this task, is shown in Fig. 3.25, 
and the corresponding output is shown in Fig. 3.26. 

Inference 
The following inferences can be drawn from this experiment:
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#Product of two signals 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input signals 
t=np.arange(0,100,1) 
Fs=100 
x=np.sin(2*np.pi*(5/Fs)*t) 
y=np.cos(2*np.pi*(5/Fs)*t) 
#Step 2: Product of the two signals 
z=np.multiply(x,y) 
#Step 3: Plotting the result 
plt.subplot(3,1,1),plt.stem(t,x),plt.xlabel('n-->'),plt.ylabel('Ampltitude'),plt.title('$x_1[n]$') 
plt.subplot(3,1,2),plt.stem(t,y),plt.xlabel('n-->'),plt.ylabel('Ampltitude'),plt.title('$x_2[n]$'), 
plt.subplot(3,1,3),plt.stem(t,z),plt.yticks([-1,1]),plt.xlabel('n-->'),plt.ylabel('Ampltitude'), 
plt.title('$y[n]$') 
plt.tight_layout() 

Fig. 3.25 Python code to obtain the product of the two signals 
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Fig. 3.26 Result of python code shown in Fig. 3.25 

1. From Fig. 3.25, two signals of the same frequency are generated and multiplied. 
2. From Fig. 3.26, it is possible to observe that x1[n] is a sine wave and x2[n] is a  

cosine wave. The resultant signal y[n] is a sinusoidal signal with a frequency of 
10 Hz, whereas the amplitude of the output waveform is reduced by a factor 
of half. 

(d) Signal Addition
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#Addition of two signals 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input signals 
n=np.arange(-10,11,1) 
x=(n>=0) 
y=(n>=0) 
#Step 2: Addition of the two signals 
z=np.add(x.astype('float32'),y.astype('float32')) 
#Step 3: Plotting the result 
plt.subplot(3,1,1),plt.stem(n,x),plt.xticks(n) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_1[n]$'),plt.subplot(3,1,2),plt.stem(n,y),plt.xticks(n) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_2[n]$'),plt.subplot(3,1,3),plt.stem(n,z),plt.xticks(n) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y[n]$') 
plt.tight_layout() 

Fig. 3.27 Python code to perform addition of two signals 

The signal addition results in a change in the amplitude of the signal. Two 
signals x1[n] and x2[n] are added together to obtain the resultant output signal y 
[n], which is given by 

y n½ ]= x1 n½ ] þ x2 n½ ] ð3:18Þ 

Experiment 3.13 Signal Addition 
In this example, let x1[n] = u[n] and x2[n] = u[n]. The signal y[n] is the addition of 
two unit step signals. The python code which performs this task is shown in 
Fig. 3.27, and the corresponding output is shown in Fig. 3.28. 

Inferences 
The following inferences are drawn from these Figs. 3.27 and 3.28: 

1. By observing Fig. 3.27, it is possible to observe that the result of logical operation 
is converted to float using the command ‘.astype(‘float32’)’. 

2. By observing Fig. 3.28, the inputs x1[n] and x2[n] are unit step signal, whose 
amplitude takes value from 0 to 1, whereas the amplitude of the output signal y[n] 
has variation from 0 to 2. 

3. This experiment illustrates the fact that the amplitude of the signal can be changed 
by signal addition operation.
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Fig. 3.28 Result of python code shown in Fig. 3.27 

Task 
1. Write a python code to illustrate the fact that ‘signal addition is a commutative 

operation’. 

3.2.1.1 Time Scaling Operation 

Time scaling operations can be classified into two types, namely, (1) downsampling 
and (2) upsampling. 

(a) Downsampling 
The downsampling of the signal x[n] by a factor of ‘M’ is represented as 

y n½ ]= x Mn½ ] ð3:19Þ 

where ‘M’ is an integer. Here ‘M- 1’ samples will be discarded between two 
consecutive samples. Downsampling by a factor of ‘2’ is represented as 

y n½ ]= x 2n½ ] ð3:20Þ 

Experiment 3.14 Downsampling 
This experiment discusses the downsampling operation on the input signal. The 
python code to perform downsampling by a factor of ‘2’ is shown in Fig. 3.29, and 
the corresponding output is shown in Fig. 3.30.
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#Downsampling by a factor of M 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the input signal 
n=np.arange(-10,11,1) 
x=n 
M=2   #Downsampling factor 
m=np.arange(n[0]/2,(n[-1]/2)+1,1) 
#Step 2: Performing downsampling operation 
y=x[::M] 
#Step 3: Plotting the input and downsampled signal 
plt.subplot(2,1,1),plt.stem(n,x),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.xticks(n) 
plt.subplot(2,1,2),plt.stem(m,y),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('y[n]'),plt.xticks(n) 
plt.tight_layout() 

Fig. 3.29 Python code to perform downsampling operation 
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Fig. 3.30 Result of downsampling operation 

Inferences 
The following inferences can be drawn from this experiment: 

1. By observing Fig. 3.30, the number of samples in the input signal x[n] i  
21, whereas the number of samples in the output signal y[n] is 11. 

2. Downsampling leads to a reduction in the number of samples.
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Task 
1. Write a python code to prove the fact that downsampling is an irreversible 

operation. That is, it is not possible to obtain the original signal from the 
downsampled signal because downsampling results in loss of signal samples. 

(b) Upsampling 
The upsampling of the signal x[n] by a factor of ‘L’ is represented by 

y n½ ]= x 
n 
L

ð3:21Þ 

The upsampling operation is basically inserting ‘L - 1’ zeros between two 
consecutive samples. For L = 2, the above expression can be written as 

y n½ ]= x 
n 
2 

Experiment 3.15 Upsampling 
This experiment deals with the upsampling process of discrete-time signal. The 
python code, which performs the upsampling operation by a factor of 2, is shown 
in Fig. 3.31, and the corresponding output is shown in Fig. 3.32. 

Inference 
The following observations can be made from this experiment: 

By observing Fig. 3.32, it is possible to observe that in the case of upsampling by 
a factor of 2, one zero is inserted between successive samples. Generally, when 
upsampling by a factor of ‘L’, ‘L - 1’ zeros will be inserted between successive 
samples. Also, it shows that the number of samples in the output increases to almost 
L times than the number of samples in the input signal. 

Task 
1. Write a python code to illustrate the fact that ‘Upsampling is a reversible 

operation’. It is possible to obtain the original signal from the upsampled signal. 

3.2.1.2 Time Shifting Operation 

The time shifting operation can be broadly classified into two types: (1) delay 
operation and (2) advance operation. 

(a) Delay operation 
The delaying of the input signal by a factor of ‘k’ units is expressed as
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#Upsampling by a factor of 2 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the input signal 
L=2    #Upsampling factor 
n=np.arange(-5,6,1) 
N=len(n) 
m=np.arange(-N+1,N+1,1) 
x=np.ones(N) 
#Step 2: Upsampling the input signal 
y=np.zeros(L*N) 
y[::2]=x 
#Step 3: Plotting the input and output signal 
plt.subplot(2,1,1),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]'), 
plt.xticks(m),plt.subplot(2,1,2),plt.stem(m,y),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('y[n]'),plt.xticks(m) 
plt.tight_layout() 

Fig. 3.31 Python code performs upsampling by a factor of 2 
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Fig. 3.32 Result of upsampling by a factor of 2 

y n½ ]= x n- k½ ] ð3:22Þ 

where 'k' must be a positive integer. 
(b) Advance operation 

The advance of the input signal x[n] by a factor of ‘k’ units is expressed as



3.2 Mathematical Operation on Discrete-Time Signals 95

Fig. 3.33 Delay and 
advance of unit step 
sequence 

#Delay and advance operation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11) 
x1=(n>=0) #u[n] 
k=5 
x2=(n>=k) #Delay of u[n] 
x3=(n>=-k)#Advance of u[n] 
plt.subplot(3,1,1),plt.stem(n,x1),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('u[n]') 
plt.subplot(3,1,2),plt.stem(n,x2),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('u[n-5]') 
plt.subplot(3,1,3),plt.stem(n,x3),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('u[n+5]') 
plt.tight_layout() 

y n½ ]= x nþ k½ ] ð3:23Þ 

where ‘k’ must be a positive integer. 

Experiment 3.16 Time Shifting Operation 
This experiment performs both delay and advance operations by a factor of 'k' units 
on the unit step signal. First, the unit step signal is generated; then, it is delayed by a 
factor of 5 units. The unit step signal is advanced by the factor of 5 units. The python 
code, which performs this task, is shown in Fig. 3.33, and the corresponding output 
is shown in Fig. 3.34. 

Inference 
This experiment illustrates the concept of shifting operation on the signal. Delay of 
the signal u[n] by a factor of ‘5’ units results in u[n - 5], whereas advance of the 
signal u[n] by a factor of 5 units results in u[n + 5]. It is to be observed that shifting 
operation on the signal will not alter the energy of the signal. 

Task 
1. Write a python code to illustrate the fact that the signal energy is unaltered due to 

signal shifting. 

3.2.1.3 Time Reversal Operation 

The time reversal of the signal x[n] is denoted as x[-n]. This refers to flipping the 
signal x[n] from left to right and right to left. It can be considered as a signal 
reflection about the origin. A discrete-time signal can be reversed in time by



changing the sign of the independent variable for all instances. Two different ways to 
perform time reversal operation in python are given below. 
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Fig. 3.34 Delay and advance of unit step sequence 

Experiment 3.17 Time Reversal Without Built-In Function 
This experiment deals with the time reversal operation using python without built-in 
function. In this method, the signal x[n] is  flipped from left to right using the 
command" x[::-1]", the python code which performs the task of time reversal is 
shown in Fig. 3.35, and the corresponding output is shown in Fig. 3.36. 

Inference 
Figure 3.36 clearly indicates that the left side of the input signal is moved into the 
right side of the output signal and the right side of the input signal is moved into the 
left side of the output signal. 

Experiment 3.18 Time Reversal Using Built-In Function 
This experiment tries to obtain the time reversal using a python built-in function. In 
this method, the built-in function ‘np.fliplr()’ is used to perform a time reversal 
operation. The python code, which performs this task, is shown in Fig. 3.37, and the 
corresponding output is shown in Fig. 3.38. 

Inference 
This experiment confirms that the time reversal can be done using ‘np.fliplr’ built-in 
function. 

Task 
1. Write a python code to illustrate that flipping operation does not alter the signal’s 

energy.



3.3 Convolution 97

#Time reversal operation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11,1) 
x=(n) 
y=x[::-1] 
plt.subplot(2,1,1),plt.stem(n,x) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(2,1,2),plt.stem(n,y) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 3.35 Method-1 to perform time reversal operation 

0 

10 

–10 –2–4–6–8 0–3–5–7–9 –1 102 4 6 83 5 7 91 
n--> 

x[n] 

A
m

p
lit

u
d
e
 

–10 

–10 –2–4–6–8 0–3–5–7–9 –1 102 4  6 83 5 7 91 
n--> 

y[n] 

0 

10 

A
m

p
lit

u
d
e
 

–10 

Fig. 3.36 Result of python code shown in Fig. 3.35 

3.3 Convolution 

Convolution is an important operation in digital signal processing, because many 
DSP algorithms use convolution operations in one form or other. The most common 
application of convolution operation is filtering. It can be used for signal enhance-
ment. The relationship between the input and output of a linear time-invariant system 
shown in Fig. 3.39. 

The relationship between the input and output of the system is given by
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#Time reversal operation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11,1) 
x=(n) 
y=np.fliplr([x])[0] 
plt.subplot(2,1,1),plt.stem(n,x) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(2,1,2),plt.stem(n,y) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 3.37 Method-2 to perform time reversal operation 
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Fig. 3.38 Result of python code shown in Fig. 3.37 

y n½ ]= x n½ ] * h n½ ] ð3:24Þ 

In the above expression, ‘*’ denotes the convolution operation. The above 
expression can be written as 

y n½ ]= 
1 

k = -1 
x k½ ]h n- k½ ] ð3:25Þ 

Convolution obeys commutative property; hence, the above equation can be 
expressed as
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h[n] x[n] y[n] 

Fig. 3.39 Representation of the LTI system 

y n½ ]= 
1 

k = -1 
h k½ ]x n- k½ ] ð3:26Þ 

Experiment 3.19 Convolution of Given Signal with Unit Sample Signal 
This experiment illustrates the fact that the convolution of any signal (x[n]) with unit 
sample signal (δ[n]) will result in the same signal x[n]. This is expressed as 

x n½ ] * δ n½ ]= x n½ ] ð3:27Þ 

The python code, which illustrates the above concept, is shown in Fig. 3.40, and 
the corresponding output is shown in Fig. 3.41. 

Inferences 
The following inferences can be drawn from this experiment: 

1. From Fig. 3.41, the input signal (x[n]) generated is a triangular signal. 
2. The impulse response (h[n]) is unit sample signal (δ[n]). 
3. The signal x[n] is convolved with unit sample signal to obtain the output signal y 

[n]. It can be observed that the output signal y[n] resembles the input signal x[n]. 

Experiment 3.20 Convolution of the Signal x[n] with Shifted Unit Sample Signal 
This experiment illustrates the fact that the signal x[n] can be shifted by convolving it 
with δ[n ± k]. Convolving the signal x[n] with δ[n - k] results in delaying the signal 
x[n] by a factor of ‘k’. Convolving the signal x[n] with δ[n + k] results in advancing 
the signal x[n] by a factor of ‘k’. This is expressed as 

x n½ ] * δ n± k½ ]= x n± k½ ] ð3:28Þ 

The python code, which performs this task, is shown in Fig. 3.42, and the 
corresponding output is shown in Fig. 3.43. 

Inferences 
The task performed by the python program is summarized in Fig. 3.44. 

1. The input signal x[n] is applied to two systems with impulse responses 
h1[n] = δ[n - k] and  h2[n] = δ[n + k] to obtain the output signals y1[n] and 
y2[n] respectively. 

2. By comparing the input signal x[n] with the output signal y1[n], it is possible to 
observe that the output signal y1[n] is a shifted version (delayed version) of the 
input signal x[n].



100 3 Generation and Operation on Discrete-Time Sequence

#Convolution with unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
N=len(n) 
n1=np.arange(-N+1,N) 
#Step 1: Generation of triangular signal 
x=5-np.abs(n) 
#Step 2: Generation of unit sample signal 
h=(n==0) 
#Step 3: Perform the convolution 
y=np.convolve(x,h,mode='full') 
#Step 4: Displaying the result 
plt.subplot(3,1,1),plt.stem(n,x),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(3,1,2),plt.stem(n,h), 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
plt.subplot(3,1,3),plt.stem(n1,y),plt.xticks(n1),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 3.40 Convolution of the signal x[n] with unit sample signal δ[n] 
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Fig. 3.41 Result of python code shown in Fig. 3.40

3. By comparing the input signal x[n] with the output signal y2[n], it is possible to 
observe that the output signal y2[n] is a shifted version (advanced version) of the 
input signal x[n]. 

4. This experiment illustrates the fact that signal shifting can be accomplished using 
convolution operation. 
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#Convolution with shifted unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
N=len(n) 
n1=np.arange(-N+1,N) 
#Step 1: Generation of triangular signal 
x=5-np.abs(n) 
#Step 2: Generation of shifted unit sample signals 
k=5 
h1=(n==k) 
h2=(n==-k) 
#Step 3: Perform the convolution 
y1=np.convolve(x,h1,mode='full') 
y2=np.convolve(x,h2,mode='full') 
#Step 4: Displaying the result 
plt.subplot(3,2,1),plt.stem(n,x),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(3,2,2),plt.stem(n,x),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(3,2,3),plt.stem(n,h1),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_1[n]$') 
plt.subplot(3,2,4),plt.stem(n,h2),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_2[n]$') 
plt.subplot(3,2,5),plt.stem(n1,y1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$y_1[n]$'),plt.subplot(3,2,6),plt.stem(n1,y2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('$y_2[n]$') 
plt.tight_layout() 

Fig. 3.42 Python code to perform convolution of signal x[n] with shifted unit sample signal 

Task 
1. Repeat the above experiment with a rectangular pulse signal instead of a 

triangular one. 

Experiment 3.21 Commutative Property of Convolution 
The motive of this experiment is to prove the commutative property of convolution. 
The commutative property of convolution is expressed as 

x n½ ] * h n½ ]= h n½ ] * x n½ ] ð3:29Þ 

The python code to illustrate the commutative property of convolution is given in 
Fig. 3.45, and the corresponding output is shown in Fig. 3.46. 

Inferences 
The following inferences can be drawn from Fig. 3.46:
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Fig. 3.43 Result of python code shown in Fig. 3.42 

Fig. 3.44 Task performed 
by the python example 

x[n] 

y1[n] 

y2[n] 

h1[n]=δ[n – k] 

h2[n]=δ[n + k] 

1. The input signal x[n] is a pulse signal. Similarly, the signal h[n] is a pulse signal. 
The signals x[n] and h[n] are the same. 

2. The signal y1[n] is obtained by convolving x[n] with h[n], whereas the signal y2[n] 
is obtained by convolving h[n] with x[n]. From Fig. 3.46, the signals y1[n] and 
y2[n] are the same. 

3. This experiment illustrates that convolution is commutative. Also, the convolu-
tion of two pulse signals results in a triangular signal. 

Task 
1. In the above experiment, let L1 and L2 be the length of the signals x[n] and h 

[n]. Then, the length of the convolved signal is L1 + L2 - 1. Write a python code 
to illustrate that linear convolution results in stretching the length of the signal. 

Experiment 3.22 Associative Property of Convolution 
The associative property of convolution is expressed as 

x n½ ] * h1 n½ ]ð Þ * h2 n½ ]= x n½ ] * h1 n½ ] * h2 n½ ]ð Þ 3:30Þ 

To illustrate this property, the input signal x[n] chosen is x[n] = ejπn , which 
toggles between +1 and -1. The impulse response h1[n] = δ[n - k] and the impulse
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#Commutative property of convolution 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
N=len(n) 
n1=np.arange(-N+1,N) 
#Step 1: Generating x[n] 
x=np.array([0,0,0,0,1,1,1,0,0,0,0]) 
#Step 2: Generating h[n] 
h=x 
#Step 3: Obtaining the outputs 
y1=np.convolve(x,h,mode='full') 
y2=np.convolve(h,x,mode='full') 
#Sep 4: Plotting the results 
plt.subplot(2,2,1),plt.stem(n,x),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(2,2,2),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('h[n]'),plt.subplot(2,2,3),plt.stem(n1,y1) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_1[n]$= x[n]*h[n]') 
plt.subplot(2,2,4),plt.stem(n1,y2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_2[n]$=h[n]*x[n]') 
plt.tight_layout() 

Fig. 3.45 Python code to illustrate the commutative property of convolution 
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Fig. 3.46 Result of python code shown in Fig. 3.45



response h2[n] = δ[n + k]. The python code, which illustrates the associative 
property of the convolution operation, is given in Fig. 3.47, and the corresponding 
outputs are shown in Figs. 3.48 and 3.49, respectively.
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#Associative property of convolution 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
#Step 1: Generation of triangular signal 
x=np.exp(1j*np.pi*n) 
#Step 2: Generation of shifted unit sample signals 
k=5 
h1=(n==k) 
h2=(n==-k) 
#Step 3: Perform the convolution 
u1=np.convolve(x,h1,mode='full') 
y1=np.convolve(u1,h2,mode='full') 
v1=np.convolve(h1,h2,mode='full') 
y2=np.convolve(x,v1,mode='full') 
N=len(y1) 
n1=np.arange(-N/2,N/2) 
#Step 4: Displaying the result 
plt.figure(1),plt.subplot(3,1,1),plt.stem(n,x),plt.xticks(n),plt.xlabel('n'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(3,1,2),plt.stem(n,h1),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_1$[n]'),plt.subplot(3,1,3), 
plt.stem(n,h2),plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_2$[n]') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,1,1),plt.stem(n1,y1), 
plt.title('$y_1[n]$=(x[n]*$h_1$[n])*$h_2$[n]'), plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.subplot(2,1,2),plt.stem(n1,y1) 
plt.title('$y_2[n]$=x[n]*($h_1$[n])*$h_2$[n])'),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
plt.tight_layout() 

Fig. 3.47 Python code to illustrate associative property of convolution 

Inferences 
The following are the inferences from this experiment: 

1. The input signal x[n] = (-1)n , -5 ≤ n ≤ 5. The impulse response h1[n] = δ[n -
5] and h2[n] = δ[n + 5], which is shown in Fig. 3.48. 

2. The output y1[n] = (x[n]*h1[n])*h2[n], whereas the output y2[n] = x[n]*(h1[n] 
*h2[n]). From Fig. 3.49, it is possible to observe that the output y1[n] = y2[n], 
which shows that associative property of convolution is verified. 

Experiment 3.23 Distributive Property of Convolution 
The distributive property of convolution is expressed as
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Fig. 3.48 Input signal and impulse response 
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x½n] * ðh1½n] þ  h2½n]Þ= x½n] * h1½n] þ  x½n] * h2½n] 3:31Þ 

For illustration, the signal x[n] is chosen as x[n] = δ[n +  1]  +  2δ[n]  +  δ[n - 1], 
h1[n] = δ[n +  1]  +  δ[n]  +  δ[n - 1] and h2[n] = - δ[n +  1] - δ[n - 1] such that 
h1[n]  +  h2[n] results in unit sample signal. The python code, which illustrates the 
distributive of convolution, is shown in Fig. 3.50, and the corresponding outputs are 
shown in Figs. 3.51 and 3.52, respectively.
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Inferences 
1. From Fig. 3.51, it is possible to observe that the input signal and the impulse 

responses are all finite-duration signals. The input signal is expressed as x 
[n] = δ[n + 1] +  2δ[n] +  δ[n - 1]. The impulse responses are given by 
h1[n] = δ[n + 1] +  δ[n] +  δ[n - 1] and h2[n] = - δ[n + 1] - δ[n - 1]. 

2. The sum of the impulse responses results in a unit sample signal, which is 
expressed as h1[n] +  h2[n] = δ[n]. Also, convolution of any input signal x[n] 
with unit sample signal results in the same signal, which is expressed as x 
[n] * δ[n] = x[n]. Because of this property, the output signal y1[n] is same as 
the input signal x[n]. 

3. By observing the output signals y1[n] and y2[n], it is possible to infer 
y1[n] = y2[n], which implies that the distributive property of convolution is 
illustrated through this experiment. 

Experiment 3.24 Convolution of a Square Wave with Lowpass Filter 
Coefficient 
In this experiment, a square wave of fundamental frequency 5 Hz is generated. It is 
then passed through moving average filter with M = 5, 7, 9, and 11. The block 
diagram of the experiment performed is shown in Fig. 3.53. 

The impulse response of lowpass filter (moving average filter) is given by 

h n½ ]= 
1 
M 

M- 1 

k = 0 

δ n- k½ ] ð3:32Þ 

In this experiment, the value of ‘M’ is chosen as 5, 7, 9 and 11. 
The expression for the output signal is given by 

y n½ ]= x n½ ] * h n½ ]

The python code which accomplishes this task is shown in Fig. 3.54, and the 
corresponding output is shown in Figs. 3.55 and 3.56. 

Inferences 
The following inferences can be drawn from Figs. 3.55 and 3.56: 

1. The input to the system is a square wave of a fundamental frequency 5 Hz. 
2. The system is passed through lowpass filter to obtain a triangular waveform. 
3. By observing the input and output waveform, it is possible to observe that the 

system converts drastic change (square waveform) to a gradual change (sawtooth 
waveform). The system basically performs lowpass filtering of the input signal. 

4. The extent of smoothing is governed by the value of ‘M’. Increasing the value of 
‘M’ increases the extent of smoothing the input signal.
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Fig. 3.51 Plot of input signal and the impulse responses 

y1[n]=(x[n]*h1[n])*h2[n] 
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Fig. 3.52 Plot of the output signals 

Fig. 3.53 Block diagram of 
problem statement

Square wave 
Low pass filter 

Input signal Output signal 

? 

Task 
1. In the above experiment, replace the square wave input with sine wave with a 

spike signal. That is a sine wave with an abrupt change in amplitude in a few time 
instants. Now pass this sine wave through the moving average filter and comment 
on the observed signal.
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#Low pass filtering of square wave 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of input signal 
t=np.linspace(0,1,100) 
x=signal.square(2*np.pi*5*t) 
#Step 2: Generation of low pass filter coefficient 
M=[5,7,9,11] 
fig1=plt.figure(1) 
plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Input signal') 
for i in range(len(M)): 
    h=1/M[i]*np.ones(M[i]) 
#Step 3: Obtaining the output signal 
    y=np.convolve(x,h,mode='full') 
    fig2=plt.figure(2) 
#Step 4: Plotting the results 

plt.subplot(2,2,i+1),plt.plot(t,y[0:len(t)]),    plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Output signal for M={}'.format(M[i])) 

    plt.tight_layout() 

Fig. 3.54 Python code to perform lowpass filtering of square wave 
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Fig. 3.55 Input square waveform 

Experiment 3.25 Convolution of a Square Wave with Highpass Filter 
Coefficient 
In this experiment, the square wave is passed through highpass filter whose impulse 
response is h[n] = {1/2, -1/2}. The highpass filter is basically a change detector. 
When a square wave is fed to highpass filter, the resultant waveform is a spike



waveform. The python code, which performs this task, is shown in Fig. 3.57, and the 
corresponding output is shown in Fig. 3.58. 
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Fig. 3.56 Lowpass filtered square waveform 

Inferences 
The following inferences can be made from this experiment: 

1. From Fig. 3.57, it is possible to infer that the input signal is a square wave, the 
impulse response of highpass filter is h[n] = {1/2, -1/2}. 

2. From Fig. 3.58, it is possible to observe that the output waveform is a spike 
waveform. It is due to the fact that differentiation of a constant is zero. In a square 
wave, major portion is constant in magnitude; hence, differentiation of a constant 
is zero. Highpass filter is a change detector; hence, it gives spike waveform as the 
output for the input square waveform. 

Task 
1. Generate sine wave of 5 Hz frequency. Add white noise, which follows normal 

distribution to this sine wave. Now pass this noisy sine wave through highpass 
filter. Plot the clean sine wave, noisy sine wave and highpass filtered signal. Write 
a python code to answer the query ‘Does highpass filter tend to amplify the 
noise?’
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#Square wave through high pass filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of input signal 
t=np.linspace(0,1,100) 
x=signal.square(2*np.pi*5*t) 
#Step 2: Generation of high pass filter coefficient 
h=np.array([0.5,-0.5]) 
#Step 3: To obtain the output signal 
y=np.convolve(x,h,mode='full') 
#Step 4: Plotting the input and output signal 
plt.subplot(3,1,1),plt.plot(t,x),plt.xlabel('time'),plt.ylabel('Amplitude') 
plt.title('Input signal'),plt.subplot(3,1,2),plt.stem(h),plt.xlabel('n-->'),  
plt.ylabel('Amplitude'),plt.title('h[n]'),plt.subplot(3,1,3), 
plt.plot(t,y[0:len(t)]),plt.xlabel('time'),plt.ylabel('Amplitude'),plt.title('Output signal') 
plt.tight_layout() 

Fig. 3.57 Python code to perform highpass filtering of square wave 
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Fig. 3.58 Spike waveform obtained by differentiating input square wave 

3.4 Correlation 

Correlation is a tool to find the relative similarity between two signals. Correlation 
has two variants, namely: autocorrelation and cross-correlation. Autocorrelation 
involves the correlation of a signal with itself. Cross-correlation is performed 
when two different signals are correlated with one another. 

The expression for autocorrelation of the sequence x[n] is given by



ð

ð

ð

ð
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rxxðlÞ= x½l] * x½- l] 3:33Þ 

Equation (3.33) gives the relationship between correlation and convolution. 
Convolving the folded version of the sequence x[n] with the signal x[n] results in 
autocorrelation. Equation (3.33) can be expressed as 

rxxðlÞ= 
1 

n= -1 
x½n]x½n þ l] 3:34Þ 

Some of the properties of the autocorrelation function are summarized below: 

1. Autocorrelation function is an even function. It is expressed as rxx(-l ) = rxx(l ). 
2. Autocorrelation attains its maximum value at zero lag. It is expressed as rxx(0) ≥ | 

rxx(k)| for all ‘k’. 

The cross-correlation between two signals x[n] and y[n] is expressed as 

rxyðlÞ= x½l] * y½- l] 3:35Þ 

The above equation can be expressed as 

rxyðlÞ= 
1 

k = -1 
x½k]y½l þ k] 3:36Þ 

Experiment 3.26 Autocorrelation and Cross-correlation of Sine 
and Cosine Waves 
In this experiment, two signals, namely, sine wave and cosine wave of frequency 
5 Hz, are generated. Then, the autocorrelation between the sinewave and cosine 
wave and the cross-correlation between sine and cosine wave is computed. The 
results of autocorrelated and cross-correlated signals are plotted. The python code, 
which performs the above-mentioned task, is shown in Fig. 3.59, and the 
corresponding output is shown in Fig. 3.60. 

Inferences 
The following observation can be made from this experiment: 

1. The autocorrelation between the sine waves is represented by rxx(l ). The auto-
correlation result is observed to be even symmetric. The maximum value is 
obtained at zero lag. 

2. The autocorrelation between the cosine waves is represented by ryy(l ). The 
autocorrelation is an even symmetric function with the maximum value obtained 
at zero lag. 

3. The cross correlation between sine and cosine waves is not even symmetric. Also, 
it is possible to observe that rxy(l ) is not equal to ryx(l ).
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#Autcorrelation and cross-correlation 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of sine and cosine wave 
t=np.linspace(0,1,100) 
f=5 
x=np.sin(2*np.pi*f*t) 
y=np.cos(2*np.pi*f*t) 
N=len(x) 
#Step 2: Perform autocorreation and cross-correlation 
rxx=np.correlate(x,x,mode='full') 
ryy=np.correlate(y,y,mode='full') 
rxy=np.correlate(x,y,mode='full') 
ryx=np.correlate(y,x,mode='full') 
lag = np.arange(-N+1,N) 
#Step 3: Plot the results 
plt.subplot(2,2,1),plt.plot(lag,rxx),plt.xlabel('Lag'),plt.ylabel('Autocorrelation') 
plt.title('$r_{xx}(l)$'),plt.subplot(2,2,2),plt.plot(lag,ryy) 
plt.xlabel('Lag'),plt.ylabel('Autocorrelation'),plt.title('$r_{yy}(l)$') 
plt.subplot(2,2,3),plt.plot(lag,rxy),plt.xlabel('Lag'),plt.ylabel('Cross correlation') 
plt.title('$r_{xy}(l)$'),plt.subplot(2,2,4),plt.plot(lag,ryx),plt.xlabel('Lag'),  
plt.ylabel('Cross correlation'),plt.title('$r_{yx}(l)$') 
plt.tight_layout()   

Fig. 3.59 Autocorrelation and cross-correlation between signals 

4. The autocorrelation and cross-correlation are used to find the relative similarity 
between the two signals. 

Tasks 
1. Write a python code to illustrate the fact that maximum value of autocorrelation 

occurs at zero lag. 
2. Write a python code to illustrate the fact that correlation can be performed in 

terms of convolution. That is convolution of a signal with its folded version 
results in autocorrelation. 

Experiment 3.27 Autocorrelation of Sine Wave to Itself and Noisy Signal 
In this experiment, sine wave of 5 Hz is generated. It is stored as the variable ‘x’. The 
sine wave is then corrupted by random noise, which follows normal distribution to 
obtain the signal ‘y’. The autocorrelation of clean sine wave is obtained as rxx(l ), and 
the cross-correlation between the clean and noisy sine wave is obtained as rxy(l ). The 
python code, which performs this task, is shown in Fig. 3.61, and the corresponding 
output is shown in Fig. 3.62.
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Fig. 3.60 Autocorrelation and cross-correlation results 

Inferences 
1. In Fig. 3.62, x(t) represents clean sine wave of 5 Hz frequency, and y(t) represents 

noisy sine wave. The noisy sine wave is obtained by adding random noise to the 
clean sine wave. 

2. In Fig. 3.62, rxx(l ) represents the autocorrelation of a clean sine wave. The 
autocorrelation function exhibits even symmetry, with the maximum value 
occurring at zero lag. 

3. In Fig. 3.62, rxy(l ) represents the cross-correlation between clean and noisy sine 
waves. The cross-correlation is not exhibiting even symmetry relation. Compar-
ing rxx(l ) and rxy(l ), the maximum value is obtained in autocorrelation function. 
Thus, the autocorrelation reveals the relative similarity between the signals. 

Experiment 3.28 Delay Estimation Using Autocorrelation 
In this experiment, unit step sequence (signal ×1) is generated, it is then shifted by a 
factor of ‘5’ units to the right to obtain the signal ×2. The autocorrelation of the 
signal ×1 to itself and the correlation between the signals ×1 and ×2 are used to 
estimate the delay. The python code, which performs this function, is shown in 
Fig. 3.63, and the corresponding output is shown in Fig. 3.64. 

Inference 
Upon displaying the result, the answer in the variable ‘td’ is ‘5’, which is a measure 
of delay between the two signals x1[n] and x2[n]. Thus, autocorrelation can be used 
to measure or estimate the delay between the two signals.



3.4 Correlation 115

#Autocorrelation and cross-correlation 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of sine and cosine wave 
t=np.linspace(0,1,100) 
f=5 
x=np.sin(2*np.pi*f*t) 
#Step 2: Generation of noisy signal 
w=2.5*np.random.randn(len(t)) 
y=x+w 
N=len(x) 
#Step 2: Perform autocorreation and cross-correlation 
rxx=np.correlate(x,x,mode='full') 
rxy=np.correlate(x,y,mode='full') 
lag = np.arange(-N+1,N) 
#Step 3: Plot the results 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Sine wave (x(t))'),plt.subplot(2,2,2),plt.plot(t,y) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Noisy sine wave(y(t))') 
plt.subplot(2,2,3),plt.plot(lag,rxx),plt.xlabel('Lag'),plt.ylabel('Autocorrelation') 
plt.title('$r_{xx}(l)$'),plt.subplot(2,2,4),plt.plot(lag,rxy) 
plt.xlabel('Lag'),plt.ylabel('Cross correlation'),plt.title('$r_{xy}(l)$') 
plt.tight_layout()         

Fig. 3.61 Python code to perform autocorrelation of clean and noisy sine wave 

Exercises 
1. Generate the following sequences (a) x1[n] = δ[n + 1] +  δ[n - 1] 

(b) x1[n] = δ[n + 1] - δ[n - 1] (c) x3[n] = δ[n] + 2δ[n - 1] + δ[n - 2] and 
(d) x4[n] = δ[n]- δ[n- 1] + δ[n- 2], and plot it using a subplot, which consists 
of two rows and two columns. The time index should vary from -5 to +5. 

2. Write a python code to generate the finite length discrete-time signals 
(a) x1[n] = u[n] - u[n - 5], (b) x2[n] = δ[n], (c) x3[n] = u[n + 5] - u[n - 5] 

and (d) x4 n½ ]= 
n, 0≤ n≤ 5 

0, otherwise 
in the interval -10 ≤ n ≤ 10. Use subplot to plot 

the generated signals. 
3. Generate a complex exponential signal x n½ ]= ej

π 
4n, - 10≤ n≤ 10. Perform the 

following: (a) Extract the real and imaginary part of this signal. (b) Reconstruct 
the signal x[n] from the real and imaginary parts using the relation x[n] = Re {x 
[n]} + j Im {x[n]}. 

4. Generate a complex exponential signal of the form x n½ ]= ej
π 
8n, - 10≤ n≤ 10. 

Obtain the signal y[n], which is expressed as y[n] = x[n] × x*[n], and comment 
on the nature of the signal y[n]. 

5. Write a python code to generate the following sequences:



116 3 Generation and Operation on Discrete-Time Sequence

0 

1 

0.750.500.250.00 1.00 

Lag 

–1 

Sine wave(x(t)) 

Time 

A
m

p
lit

u
d

e
 

0 

5 

0.750.500.250.00 1.00 

–5 

Noisy sine wave(y(t)) 

Time 

A
m

p
lit

u
d

e
 

0 

50 

C
ro

s
s
 c

o
rr

e
la

ti
o

n
 

500–50–100 100 

rxy(I) 

Lag 

–25 

25 

0 

A
u

to
c
o

rr
e

la
ti
o

n
 

500–50–100 100 

rxx(I) 

Fig. 3.62 Autocorrelation and cross-correlation of clean and noisy sine wave 

#Delay estimation using correlation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-20,21) 
#Step 1: Generation of unit step signal 
x1=(n>=0) 
#Step 2: Delay signal by a factor of 5 units 
x2=(n>=5) 
N=len(x1) 
lag=np.arange(-N+1,N) 
#Step 3: Perform autocorrelation of signal x1 
rxx=np.correlate(x1,x1,mode='full') 
#Step 4: Perform the cross-correlation between x1 and x2 
ryx=np.correlate(x2,x1,mode='full') 
#Step 4: Estimate the delay 
td=np.argmax(ryx)-np.argmax(rxx) 
#Step 5: Plot the signal and its delayed version 
print('Time delay={}'.format(td)) 
plt.subplot(2,1,1),plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$x_1[n]$') 
plt.subplot(2,1,2),plt.stem(n,x2),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$x_2[n]$') 
plt.tight_layout() 

Fig. 3.63 Python code to perform delay estimation
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Fig. 3.64 Signal and its delayed version

(a) x1[n] = δ[n] +  δ[n - 1] + δ[n - 2] + δ[n - 3] + δ[n - 4] + δ[n - 5] + δ[n -
6] + δ[n - 7] 

(b) x2[n] = δ[n]- δ[n- 1] + δ[n- 2]- δ[n- 3] + δ[n- 4]- δ[n- 5] + δ[n-
6] - δ[n - 7] 

(c) x3[n] = δ[n] +  δ[n- 1]- δ[n- 2]- δ[n- 3] + δ[n- 4] + δ[n- 5]- δ[n-
6] - δ[n - 7] 

(d) x4[n] = δ[n] +  δ[n- 1] + δ[n- 2] + δ[n- 3]- δ[n- 4]- δ[n- 5]- δ[n-
6] - δ[n - 7] 

Compute the energy of these sequences and comment on the obtained 
result. 

6. Sketch the following signals in the range -5 ≤ n ≤ 5 (a) x1[n] = 2n δ[n - 2] 
(b) x2[n] = n[δ[n + 2] +  δ[n - 2]]. 

Generate the signal x n½ ]= 
5- nj j, nj j≤ 5 

0, otherwise 
in the range -10 ≤ n ≤ 10. Extract 

the even and odd part of the signal. Try to reconstruct the signal from the even 
and odd part and comment on the observed output. 

8. Write a python code to demonstrate the following facts: 

(a) Product to two even signals is an even signal. 
(b) Product of two odd signals is an even signal. 
(c) Product of an even and odd signal is odd signal. 

9. Read a speech signal and perform the autocorrelation of the speech signal, and 
observe whether the autocorrelation function is an even function. 

10. Read a ‘male’ and ‘female’ voice. Perform the following
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(a) Autocorrelation of the male voice (x) 
(b) Autocorrelation of the female voice ( y) 
(c) Cross-correlation between male and female voice 
(d) Cross-correlation between female and male voice 

Comment on the observed output. 

Objective Questions 
1. The python code segment shown below generates 

A. Unit sample signal 
B. Unit step signal 
C. Unit ramp signal 
D. Real exponential signal 

2. The value of the signal ‘x’ shown in the following python code is high at n =? 

A. -1 
B. -2 
C. 0 
D. 2 

3. If the variable ‘x’ contains the signal of interest, then the variable ‘y’ in the 
following python code returns 

A. Maximum value of the signal 
B. Minimum value of the signal 
C. Energy of the signal 
D. Power of the signal 

4. The signal generated in the variable ‘x’ after executing the following segment of 
code is 

A. x[n] = δ[n] +  δ[n – 1] – δ[n + 1]  
B. x[n] = δ[n + 1] +  δ[n] +  δ[n – 1] 
C. x[n] = δ[n + 1] +  δ[n] – δ[n – 1] 
D. x[n] = δ[n +  1]  +  2δ[n]  +  δ[n – 1]
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5. The signal generated in the variable ‘x’ after executing the following segment of 
code is 

A. Unit sample sequence 
B. Unit step sequence 
C. Unit ramp sequence 
D. Real exponential sequence 

6. What would be the energy of the signal ‘x’ which is stored in variable ‘E’ if the 
following code segment is executed? 

A. 1J 
B. 2J 
C. 3J 
D. 4J 

7. What operation is performed on the input signal ‘x’ if the following segment of 
code is executed? 

A. Convolution of signal ‘x’ with itself 
B. Correlation of the signal ‘x’ with itself 
C. Power spectral estimation of the signal ‘x’ 
D. Energy density estimation of signal ‘x’ 

8. A square wave is fed to a lowpass filter, the resulting signal is 

A. Sine wave 
B. Cosine wave 
C. Triangular wave 
D. Inverted square wave 

9. The energy of the signal is unaltered by the following mathematical operation 

A. Downsampling of the signal by a factor of ‘M’ 
B. Upsampling the signal by a factor of ‘L’ 
C. Amplitude scaling 
D. Folding of the signal
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10. The energy of the signal is unaltered by the following mathematical operation: 

A. Downsampling of the signal by a factor of ‘M’ 
B. Upsampling the signal by a factor of ‘L’ 
C. Delaying or advancing the signal by a factor of ‘k’ 
D. Amplitude scaling of the signal 

11. Upsampling by a factor of ‘L’ inserts 

A. ‘L’ zeros between successive samples 
B. ‘L – 1’ zeros between successive samples 
C. ‘L + 1’ zeros between successive samples 
D. ‘L + 2’ zeros between successive samples 

12. If a discrete-time signal x[n] obeys the relation x[-n] = x[n], then the signal is 

A. Odd signal 
B. Even signal 
C. Either even or odd signal 
D. Neither even nor odd signal 

13. Sum of elements of finite duration discrete-time odd signal is 

A. Infinite 
B. One 
C. Zero 
D. Always negative 

14. The python code shown below generates the following signal in the variable ‘x’ 

A. u[n] 
B. u[-n] 
C. u[n + 5]  
D. u[n – 5] 

15. The product of two odd signal results in 

A. Odd signal 
B. Even signal 
C. Either even or odd signal depending on the length of the signals 
D. Neither even nor odd signal 

16. Identify the statement which is FALSE 

A. Autocorrelation is finding the relative similarity of the signal to itself. 
B. Autocorrelation is an even function.
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C. Autocorrelation attains its maximum value at zero lag. 
D. Auto correlation is an odd function. 

17. What will be the fundamental period of the signal ‘x’ if the following python 
code is executed? 

A. 1 
B. 2 
C. 3 
D. 4 

18. Assertion: Highpass filter act as change detector 
Reason: Highpass filter has the ability to detect the change in the input signal 

A. 
B. Assertion is true, reason is false. 
C. Assertion is false, reason may be true. 
D. Both assertion and reason are false. 

19. What will be the length of the signal ‘y’ if the following code segment is 
executed? 

A. 11 
B. 21 
C. 31 
D. 41 

20. What will be the impulse response (h[n]) if the following code segment is 
executed? 

A. h[n] = δ[n] 
B. h[n] = δ[n - 1] 
C. h[n] = u[n] 
D. h[n] = u[n - 1]
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21. Identify the statement that is WRONG with respect to ‘folding’ or ‘time 
reversal’ operation 

A. Folding operation does not alter the energy of the signal. 
B. Folding increases the length of the signal. 
C. If the folded version of the signal is equal to the signal itself, then the signal 

is even signal. 
D. If the folded version of the signal is equal to the signal itself, then the signal 

is odd signal. 

22. If x[n] is a unit step signal, then the following signal (y[n]) generated from x[n] is  

A. Unit sample signal 
B. Unit step signal 
C. Unit ramp signal 
D. Real exponential signal 

23. The fundamental frequency of the signal generated by executing the following 
code is 

A. ω = π/2 rad/sample 
B. ω = π rad/sample 
C. ω = π/4 rad/sample 
D. ω = π/8 rad/sample 
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Chapter 4 
Discrete-Time Systems 

Learning Objectives 
After reading this chapter, the reader is expected to

• Obtain the impulse response and step response of the discrete-time system.
• Plot the magnitude and phase response of the discrete-time system.
• Plot the pole-zero plot of the discrete-time system.
• Verifying the linearity, time-invariance, causal and stable properties of the 

discrete-time system. 

Roadmap of the Chapter 
This chapter begins with different types of representations of discrete-time system, 
including difference equation, block diagram and state-space. Properties of a 
discrete-time system which includes linearity, time-invariance, causal and stable 
are verified with python illustration. In this chapter, discrete-time system responses, 
including impulse response, step response and frequency response, are plotted, and 
the obtained results are interpreted. 
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Discrete-Time System 

Representation 

of DT System 

Properties of 

DT System 

Response of 

DT System 

Difference equation 

Block diagram 

Transfer function 

State-space 

Pole-zero plot 

Impulse response 

Linear/Non-linear 

Time-invariant/Time variant 

Causal/Non-causal 

Stable/Unstable 

Invertible/Non-invertible 

Impulse response 

Step response 

Frequency response 

PreLab Questions 
1. List different forms of representation of discrete-time system. 
2. When a discrete-time system is said to be a relaxed system? 
3. When a discrete-time system is said to be linear? Give a few examples of linear 

system. 
4. Is it always true that the cascade of two non-linear systems will result in a non-

linear system? Justify your answer. 
5. Why real-time (real-world) systems are considered as causal systems? 
6. ‘All memoryless systems are causal, whereas all the causal systems are not 

memoryless’. Justify this statement. 
7. Is it always true that a cascade of two time-variant systems will result in a time-

variant system? Justify your answer. 
8. When a discrete-time system is said to be invertible? Give an example of the 

invertible and non-invertible systems. 
9. Is it possible to test the causality and stability of a linear time-invariant discrete-

time system from its impulse response? If so, how? 
10. Distinguish between static and dynamic discrete-time systems. Cite an example 

for static and dynamic discrete-time systems. 
11. When is a discrete-time system said to be non-recursive, and when is it said to be 

recursive? Give examples for each class of the discrete-time system. 
12. The pole-zero plot of a discrete-time system exhibits a zero at z = 1; what can 

you infer about this system? 
13. When is a discrete-time system invertible? Give an example of a discrete-time 

system, which is invertible, and an example of a non-invertible discrete-time 
system. 

14. Mention two advantages of state-space representation of the discrete-time 
system.
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15. What do you understand by the statement ‘Discrete-time system is characterised 
by its impulse response (h[n])’? 

4.1 Discrete-Time System 

Discrete-time (DT) system accepts a discrete-time signal as input and generates a 
discrete-time signal as the output. The input to the discrete-time system is termed as 
‘excitation’ and the output of the system is termed as ‘response’. The block diagram 
of DT system is shown in Fig. 4.1. 

4.2 Representation of DT Systems 

Different forms of representation of DT systems include (1) block diagram, (2) dif-
ference equation, (3) transfer function, (4) pole-zero plot, (5) state-space, etc. Python 
illustration with respect to different forms of representation of discrete-time system 
and python examples to obtain different DT system responses, including impulse, 
step, magnitude and phase responses, are discussed in this chapter. 

4.2.1 Difference Equation Representation of Discrete-Time 
Linear Time-Invariant System 

The relationship between the input and output of a discrete-time linear time-invariant 
(LTI) system is expressed in terms of linear constant coefficient difference equation 
(LCCDE) as 

N- 1 

k = 0 

aky n- k½ ]= 
M- 1 

k = 0 

bkx n- k½ ] 4:1Þ 

where {ak} and {bk} are the output and input coefficients respectively. The above 
equation represents the fact that weighted sum of input is equal to the weighted sum 
of output. Equation (4.1) can be expanded as 

Fig. 4.1 Block diagram of 
discrete-time system DT System Input Output 

x[n] y[n] 
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a0y n½ ] þ  a1y n- 1½ ] þ⋯ þ aNy n-N½ ]= b0x n½ ] þ  b1x n- 1½ ] þ  ⋯ 
þ bMx n-M½ ] 4:2Þ 

If a0 = 1, the above expression can be written as 

y n½ ] þ  a1y n- 1½ ] þ⋯þ aNy n-N½ ]= b0x n½ ] þ  b1x n- 1½ ] þ⋯ 
þ bMx n-M½ ] 4:3Þ 

Equation (4.3) can be expressed as 

y n½ ]= b0x n½ ] þ  b1x n- 1½ ] þ⋯þ bMx n-M½ ]
- a1y n- 1½ ] þ⋯þ aNy n-N½ ]f g ð4:4Þ 

If the current output is not a function of the previous output of the system, the 
system is said to be a non-recursive system. The input-output relationship of a 
non-recursive system is given by 

y n½ ]= b0x n½ ] þ  b1x n- 1½ ] þ  ⋯þ bMx n-M½ ] 4:5Þ 

An example of non-recursive system is a finite impulse response (FIR) filter. In 
the case of infinite impulse response (IIR) filter, the current output is a function of the 
current input, previous input and previous output. 

Experiment 4.1 Solution of Difference Equation with Zero Initial Condition 
This experiment discusses solving the difference equation with zero initial condi-
tions. The relationship between the input and output of the discrete-time system is 
given by 

y n½ ]= 
1 
2 
y n- 1½ ] þ  x n½ ] ð4:6Þ 

Let us consider the input to the system as a unit step signal; hence, the above 
equation can be written as 

y n½ ]= 
1 
2 
y n- 1½ ] þ  u n½ ] ð4:7Þ 

Substituting n = 0 in the expression (4.7), we get 

y 0½ ]= 
1 
2 
y - 1½ ] þ  u 0½ ]

If the initial condition is zero, y[-1] = 0 and u[0] = 1; hence, the above equation 
can be written as
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y 0½ ]= 1 

Substituting n = 1 in Eq. (4.7), we get 

y 1½ ]= 
1 
2 
y 0½ ] þ u 1½ ]

Substituting the value of y[0] as 1 and u[1] = 1 in the above equation, we get 

y 1½ ]= 
1 
2 
× 1þ 1= 

3 
2 

Substituting n = 2 in Eq. (4.7), we get 

y 2½ ]= 
1 
2 
× 
3 
2
þ 1 

Simplifying the above equation, we get 

y 2½ ]= 
5 
4 

The output of the system is given by 

y n½ ]= 1, 
3 
2 
, 
5 
4 
,⋯ 

The python code, which obtains the output of the system, is given in Fig. 4.2, and 
the corresponding output is shown in Fig. 4.3. 

import numpy as np 
from scipy import signal 
import matplotlib.pyplot as plt 
n=np.arange(0,4) 
x=np.ones(len(n)) #Input  
#Defining the system 
num=[1] 
den=[1,-1/2] 
#Obtaining the output 
y=signal.lfilter(num,den,x) 
#Displaying the result 
plt.stem(y),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 4.2 Python code to obtain the output of discrete-time system
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Fig. 4.3 Simulation result 

Inference 
The output of the system obtained using python example is in agreement with the 
theoretical result. 

Task 
1. Write a python code to obtain the impulse response of a discrete-time system, 

whose input and output are related as y[n] = x[n] + 2y[n- 1]. Also, try to answer 
the question “whether the impulse response is absolutely summable or not”. 

Experiment 4.2 Solution of Difference Equation with Initial Condition 
This experiment deals with solving the difference equation with the initial condition. 
The relationship between the input and output of a discrete-time system is given by 

y n½ ]= 
1 
2 
y n- 1½ ] þ  x  n½ ] ð4:8Þ 

If x  n½ ]= 1 
4 

n 
u n½ ] and y[-1] = 1. 

Substituting x n½ ]= 1 
4 

n 
u n½ ] in Eq. (4.8), we get 

y n½ ]= 
1 
2 
y n- 1½ ] þ  1 

4 

n 

u n½ ] ð4:9Þ 

Substituting n = 0 in Eq. (4.9), we get 

y 0½ ]= 
1 
2 
y - 1½ ] þ  1 

4 

0 

u 0½ ]

Substituting y[-1] = 1 and 1 0 u 0½ ]= 1 in the above equation, we get
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(a) Python Code                               (b) Result 

[1.5      1.       0.5625   0.296875] 

import numpy as np 
from scipy import signal 
n=np.arange(0,4) 
x=(1/4)**n 
num=[1] 
den=[1,-1/2] 
y1=signal.lfiltic(num,den,y=[1.]) 
y=signal.lfilter(num,den,x,zi=y1) 
print(y[0]) 

Fig. 4.4 Python code to obtain the solution of difference equation. (a) Python Code (b) Result 

y 0½ ]= 
1 
2 
× 1þ 1= 

3 
2 

Substituting n = 1 in Eq. (4.9), we get 

y 1½ ]= 
1 
2 
y 0½ ] þ  1 

4 

1 

u 1½ ]

Substituting y[0] = 3/2 and u[1] = 1 in the above equation, we get 

y 1½ ]= 
1 
2 
× 
3 
2
þ 1 
4 
= 1 

Substituting n = 2 in Eq. (4.9), we get 

y 2½ ]= 
1 
2 
y 1½ ] þ  1 

4 

2 

u 2½ ]

Substituting y[1] = 1 in the above expression, we get 

y 2½ ]= 
1 
2 
× 1 þ 1 

16 
= 

9 
16 

= 0:5625: 

The python code, which obtains the solution of the difference equation with a 
non-zero initial condition, is given in Fig. 4.4a, and the corresponding output is 
shown in Fig. 4.4b. 

Inference 
The built-in function ‘lfiltic’ and ‘lfilter’ is used to obtain the solution of difference 
equation. The experimental result is in agreement with the theoretical result.
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4.2.2 State-Space Model of a Discrete-Time System 

The state-space model describes the system’s dynamics through two equations, 
namely: ‘state equation’ and ‘output equation’. The state equation describes how 
the input influences the state, and the output equation describes how the state and the 
input directly influence the output. It is to be noted that the state-space representa-
tions of a particular system’s dynamics are not unique. The two equations are given 
below 

x k þ 1½ ]=Ax k½ ] þ  Bu k½ ] ð4:10Þ 
y k½ ]=Cx k½ ] þ  Du k½ ] ð4:11Þ 

where u[k] 2 ℜm is the input, y[k] 2 ℜp is the output and x[k] 2 ℜn is the state 
vector. 'A' is the system matrix, 'B' and 'C' are the input and output matrices, and 'D' is  
the feed forward matrix. 

4.2.2.1 State-Space to Transfer Function 

Taking Z-transform on both sides of Eq. (4.10), we get 

zXðzÞ- zx0 =AXðzÞ þ BUðzÞ 

Assuming an zero initial condition (x0), the above equation can be expressed as 

zX zð Þ=AX zð Þ þ  BU zð Þ  

The above equation can be expressed as 

zI-Að ÞX zð Þ=BU zð Þ  

The expression for X(z) is given by 

X zð Þ=B zI -Að Þ- 1 U zð Þ ð4:12Þ 

Taking Z-transform on both sides of the Eq. (4.11), we get 

Y zð  Þ=CX zð Þ þ  DU zð Þ ð4:13Þ 

Substituting the expression for X(z) from Eq. (4.12) in Eq. (4.13), we get
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Y zð Þ=CB zI -Að Þ- 1 U zð Þ þ  DU zð Þ  

The expression for the transfer function is given by 

H zð Þ= 
Y zð Þ  
U zð Þ  =C zI -Að Þ- 1 Bþ D ð4:14Þ 

Thus, the transfer function of the system is represented in terms of state-space 
model. 

Experiment 4.3 State-Space to Transfer Function 
The state-space representation of discrete-time system is given by 

x k  þ 1½ ]=Ax k½ ] þ  Bu k½ ]

and 

y k½ ]=Cx k½ ] þ  Du k½ ], 

where A=
- 1 2  

1 0  
, B= 

1 

0 
, C = [-1 2] and D = [1]. Obtain the transfer 

function of the system using python. 
The relationship between the transfer function and state-space representation is 

given by 

H zð Þ=C zI -Að Þ- 1 Bþ D 

Step 1: To determine (zI - A)-1 

zI -A= 
z 0 

0 z
-

- 1 2  

1 0  

Upon simplifying the above equation, we get 

zI -A= 
z þ 1 - 2

- 1 z 

zI-Að Þ- 1 = 

z 
z2 þ z- 2 

2 
z2 þ z- 2 

1 
z2 þ z- 2 

z þ 1 
z2 þ z- 2 

Step 2: To determine H(z) 
The expression for the transfer function H(z) is given by
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Fig. 4.5 Python code to 
obtain the transfer function 
from state-space model 

#State-space to transfer function 
from scipy import signal 
import numpy as np 
#Step 1: Defining the state-space model 
A=[[-1,2],[1,0]] 
B=[[1], [0]]  
C = [[-1, 2]]  
D = 1 
#Step 2: Obtaining the transfer function 
[num,den]=signal.ss2tf(A,B,C,D) 
print('numerator=',num) 
print('denominaor=',den) 

Fig. 4.6 Transfer function 
of the discrete-time system numerator= [[1 0 0]] 

denominaor= [ 1.  1. -2.] 

H zð Þ=C zI -Að Þ- 1 Bþ D 

H zð Þ= - 1 2½ ]
z 

z2 þ z- 2 
2 

z2 þ z- 2 
1 

z2 þ z- 2 
zþ 1 

z2 þ z- 2 

1 

0 
þ 1½ ]

Simplifying the above expression, we get 

H zð Þ= - zþ 2 
z2 þ z- 2 

2z 
z2 þ z- 2 

1 

0 
þ 1½ ]

Upon simplifying the above equation, the transfer function of the system is 
given by 

H zð Þ= - zþ 2 
z2 þ z- 2

þ 1 

The transfer function of the system is given by 

H zð  Þ= 
z2 

z2 þ z- 2 

The built-in function ‘ss2tf’ available in scipy library can be used to obtain the 
transfer function of the system from the state-space representation. The python 
code, which performs this task, is shown in Fig. 4.5, and the corresponding output 
is shown in Fig. 4.6.



A= , B= , C= - 1 2 and D = [1].

z þzþ1
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Fig. 4.7 State-space model 
from the transfer function #Transfer function to state-space 

import numpy as np 
from scipy import signal 
#Step 1: Defining the transfer function 
num=[1, 0, 0] 
den=[1,1,-2] 
#Step 2: Obtaining the state-space model 
A,B,C,D=signal.tf2ss(num,den) 
print("A=",A,"\n","B=",B,"\n","C=",C,"\n","D=",D) 

Fig. 4.8 Result of python 
code shown in Fig. 4.7 A= [[-1.  2.] 

 [ 1.  0.]]  
 B= [[1.] 
 [0.]]  
 C= [[-1.  2.]]  
 D= [[1.]] 

Upon executing the code shown in Fig. 4.5, the transfer function of the system 
obtained is given in Fig. 4.6. 

Inference 
The transfer function obtained using the built-in function ‘ss2tf’ is in agreement with 
the theoretical result. 

Experiment 4.4 Transfer Function to State-Space 
The objective of this experiment is to obtain the state-space representation of the 

discrete-time system, whose transfer function is given by H zð Þ= z2 

z2þz- 2. As per the 
previous experiment, the value of the state-space model parameters should be 

A=
- 1 2  

1 0  
, B= 

1 

0 
, C= - 1 2½ ] and D = [1]. The built-in function 

‘tf2ss’ in scipy library can be used to obtain the state-space representation of 
discrete-time system from the transfer function. The python code, which performs 
this task, is shown in Fig. 4.7, and the corresponding output is shown in Fig. 4.8. 

Inference 
From Fig. 4.8, it is possible to observe that the state-space model parameters are

- 1 2 1 

1 0 0
½ ]

Task 
1. What will be the value of the state-space parameter ‘c’ if the numerator and the 

denominator polynomial of the transfer function are same? For example, 

H  zð  Þ= z
2þzþ1 
2 .
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4.2.3 Impulse Response and Step Response of Discrete-Time 
System 

Impulse response is the reaction of the discrete-time system to unit sample input 
signal, whereas step response is the reaction of the system to unit step input signal. 
The discrete-time system is completely characterised by its impulse response. The 
meaning is, if one knows the impulse response of the system, it is possible to infer 
whether the system is causal and stable from it. 

Figure 4.9 depicts the input-output relationship of a discrete-time system in which 
x[n] represents the input signal, h[n] represents the impulse response and y[n] 
represents the output of the system. If the system is a LTI system, then the output 
of the system is expressed as 

y n½ ]= x n½ ]*h n½ ] ð4:15Þ 

In the above expression, ‘*’ indicates the convolution operation. If the input to the 
system is unit sample signal, then the output of the system is given by 

y n½ ]= δ n½ ]*h n½ ] ð4:16Þ 

Convolution of any signal with unit sample signal results in the same signal; 
hence, the above equation can be expressed as 

y n½ ]= h n½ ] ð4:17Þ 

Thus, the impulse response of the system is the reaction of an LTI system to unit 
sample input signal. 

The reaction of LTI system to unit step input signal is termed as step response of 
the system. It is denoted as s[n]. The relationship between step response (s[n]) and 
impulse response (h[n]) is given by 

s n½ ]= 
n 

k = -1 
h k½ ] ð4:18Þ 

Experiment 4.5 Impulse and Step Responses of the System 
This experiment deals with the computation of impulse and step responses from 
the LCCDE. An LTI discrete-time system is defined by the difference equation 
y[n] = x[n] +  y[n - 1]. Plot the impulse response and step response of the 
system. 

Fig. 4.9 Input-output of a 
discrete-time system

x[n] h[n] y[n] 
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#Impulse and step response of LTI DT system 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of unit sample and unit step signal 
x1=np.zeros(100) 
x1[0]=1 
x2=np.ones(100) 
#Step 2: Define the system 
num=[1] 
den=[1,-1] 
#Step 3: Obtaining the impulse and step response 
h=signal.lfilter(num,den,x1) 
s=signal.lfilter(num,den,x2) 
#Plotting the result 
plt.subplot(2,1,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('Impulse response (h[n])') 
plt.subplot(2,1,2),plt.stem(s),plt.xlabel('n-->'),plt.ylabel('s[n]') 
plt.title('Step response (s[n])') 
plt.tight_layout() 

Fig. 4.10 Python code to obtain the impulse and step response of the system 

Impulse response is the response of the system to unit sample input signal, and 
step response is the response of the system to unit step input signal. The python code, 
which computes the impulse and step response of the system, is shown in Fig. 4.10, 
and the corresponding output is shown in Fig. 4.11. 

Inferences 
The following inferences can be made from this experiment: 

1. From Fig. 4.11, it is possible to observe that the impulse response of the system is 
unit step signal. This implies h[n] = u[n]. The impulse response of the system is 
not absolutely summable; hence, this system is not stable system. 

2. The step response of the system is a ramp signal. This implies s[n] = nu[n]. 

Task 
1. In the above experiment if h[n] = δ[n], what will be the step response of the 

system? 

Experiment 4.6 Computation of Impulse and Step Responses of the System 
from the Difference Equation 
This experiment also discusses the computation of the impulse and step response 
from the difference equation. Let us consider the discrete-time LTI system, whose 
difference equation is given by y[n] - 0.5y[n - 1] = x[n]  +  x[n - 1]. The python 
code, which obtains the impulse and step responses of the given discrete-time 
system, is given in Fig. 4.12, and the corresponding output is shown in Fig. 4.13.
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Fig. 4.11 Impulse response and step response of the given system 

Inferences 
The following inferences can be drawn from this experiment: 

1. The impulse response decays to zero. The impulse response is absolutely sum-
mable; hence, the given system is a stable system. 

2. The step response settles to a finite value after a short span. 

Task 
1. In the above experiment, from the impulse response, will it be possible to 

comment on the stability of the system? Write a python code to find whether 
the impulse response is absolutely summable or not? 

Experiment 4.7 Computation of Step Response from the Impulse Response 
This experiment discusses the computation of step response from the impulse 
response. The impulse response of the system is unit step signal. The step response 
is obtained by repeatedly adding the impulse response. The python command ‘np. 
cumsum’ can be used to obtain the step response of the system from impulse 
response of the system. The relationship between input and output of a linear 
time-invariant system is given by 

y n½ ]= x n½ ]*h n½ ] ð4:19Þ 

It is given that the impulse response is unit step signal; hence, h[n] = u[n]. Also, 
unit step response of the system implies that the input to the system is unit step 
signal; hence, x[n] = u[n]. The output of the system is given by
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#Impulse and step responses of LTI DT system 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of unit sample and unit step signal 
x1=np.zeros(100) 
x1[0]=1 
x2=np.ones(100) 
#Step 2: Define the system 
num=[1,1] 
den=[1,-0.5] 
#Step 3: Obtaining the impulse and step response 
h=signal.lfilter(num,den,x1) 
s=signal.lfilter(num,den,x2) 
#Plotting the result 
plt.subplot(2,1,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('Impulse response (h[n])') 
plt.subplot(2,1,2),plt.stem(s),plt.xlabel('n-->'),plt.ylabel('s[n]') 
plt.title('Step response (s[n])') 
plt.tight_layout() 

Fig. 4.12 Python code to obtain the impulse and step response of the system 
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Fig. 4.13 Result of python code shown in Fig. 4.12 

y n½ ]= u n½ ]*u n½ ] ð4:20Þ 

The above equation can be simplified as



138 4 Discrete-Time Systems

#Step response from the impulse response 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Impulse response of the system 
h=np.ones(10) 
#Step 2: Step response of the system 
s=np.cumsum(h,axis=0) 
#Step 3: Plotting the result 
plt.subplot(2,1,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('Impulse response (h[n])') 
plt.subplot(2,1,2),plt.stem(s),plt.xlabel('n-->'),plt.ylabel('s[n]') 
plt.title('Step response (s[n])') 
plt.tight_layout() 

Fig. 4.14 Step response from impulse response 

y n½ ]= nþ 1ð Þu n½ ]

The python code, which obtains the step response from the impulse response, is 
given in Fig. 4.14, and the corresponding output is shown in Fig. 4.15. 

Inferences 
The following inferences can be made from this experiment: 

1. The impulse response of the system is unit step signal. 
2. The step response of the system is (n + 1)u[n], which is similar to that of a ramp 

signal. 
3. The step response obtained using ‘np.cumsum’ command is in agreement with the 

theoretical result. 

Experiment 4.8 Impulse Response from Step Response 
This experiment tries to obtain the impulse response from the step response. If s[n] 
represents the step response of discrete-time system, then the impulse response of the 
system is given by 

h n½ ]= s n½ ]- s n- 1½ ] ð4:21Þ 

In this experiment, the step response of the discrete-time system is chosen as unit 
step signal. This implies s[n] = u[n]. Upon taking the impulse response as per 
Eq. (4.21), one should obtain 

h n½ ]= u n½ ]- u n- 1½ ] ð4:22Þ 

The above equation can be simplified as
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Fig. 4.15 Impulse response and step response of the system 

h n½ ]= δ n½ ] ð4:23Þ 

The impulse response of the system is obtained as unit sample signal. The python 
code, which obtains the impulse response from the step response, is shown in 
Fig. 4.16, and the corresponding output is shown in Fig. 4.17. 

Inferences 
From this experiment the following inferences can be drawn: 

1. From Fig. 4.17, the step response of the system is unit step sequence. 
2. From the step response, the impulse response is derived which is unit sample 

signal, which is in agreement with the theoretical result. 

4.2.4 Pole-Zero Plot of Discrete-Time System 

The pole-zero plot of a discrete-time system is plotted in the Z-plane. The position on 
the complex plane is represented by rejω . The transfer function of the discrete-time 
system is given by 

H zð  Þ= 
B zð Þ  
A zð Þ ð4:24Þ 

The zeros are value of ‘z’ for which B(z) = 0. In other words, zeros are the 
complex frequencies that make the overall gain of the transfer function is zero. The



100

100

poles are the values of ‘z’ for which A(z) = 0. The poles are the complex frequencies 
that make the overall gain of the transfer function is infinite. The poles and zeros in 
the Z-plane are indicated by the symbol ‘x’ and ‘o’, respectively. 
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#Impulse response from step response 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Step response of the system 
s=np.ones(100) 
s1=np.zeros(len(s)+1) 
s1[1:]=s 
h=s-s1[0:len(s)] #s[n]-s[n-1] 
plt.subplot(2,1,1),plt.stem(s),plt.xlabel('n-->'),plt.ylabel('s[n]'), 
plt.title('Step response (s[n])') 
plt.subplot(2,1,2),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]'), 
plt.title('Impulse response (h[n])') 
plt.tight_layout() 

Fig. 4.16 Impulse response from the step response 
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Fig. 4.17 Result of python code shown in Fig. 4.16 

Experiment 4.9 Plotting the Zeros of Non-recursive System 
The objective of this experiment is to plot the zeros of the non-recursive system. 
Consider two discrete-time system with the transfer function H1(z) = 1 - z-1 and 
H2(z) = 1  +  z-1 . The built-in function ‘tf2zpk’ in scipy library is utilized to plot the Z-
plane of the two systems. The python code does this task is shown in Fig. 4.18, and 
the corresponding output is shown in Fig. 4.19.
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#Pole-zero plot 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#To plot the unit circle 
theta=np.linspace(0,2*np.pi,100) 
#Defining system-1 
num1, den1=[1,-1],[1] 
z1,p1,k1=signal.tf2zpk(num1,den1) 
#Defining system-2 
num2,den2=[1,1],[1] 
z2,p2,k2=signal.tf2zpk(num2,den2) 
#To plot unit circle 
plt.subplot(1,2,1),plt.plot(np.real(z1),np.imag(z1),'ko') 
plt.plot(np.real(p1),np.imag(p1),'rx'),plt.plot(np.cos(theta),np.sin(theta)) 
plt.title('Z-plane of system-1'),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$') 
plt.subplot(1,2,2), plt.plot(np.real(z2),np.imag(z2),'ko'), 
plt.plot(np.real(p2),np.imag(p2),'rx'),plt.plot(np.cos(theta),np.sin(theta)),  
plt.title('Z-plane of system-2'),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$') 
plt.tight_layout() 

Fig. 4.18 Python code to plot the Z-plane of the given system 

Inferences 
The following inferences can be made for discrete-time systems 1 and 2: 

1. System-1 has zero at z = 1. This implies that the zero occurs at ω = 0. This zero 
will block all low frequency components; hence, the system will act like a high 
pass filter. 

2. System-2 has zero at z = -1. This implies that the zero occurs at ω = π. The 
system-2 will block all high frequency components. Thus, the system-2 will act 
like a low pass filter. 

Task 
1. From the pole-zero plot, will it be possible to find whether systems-1 and -2 are 

minimum phase system or not? 

Experiment 4.10 Plot the Magnitude and Phase Responses of Non-recursive 
System 
The objective of this experiment is to plot the magnitude and phase responses of the 
given non-recursive systems. Consider two discrete-time system with the transfer 
function H1(z) = 1 - z-1 and H2(z) = 1  +  z-1 . The built-in function ‘freqz’ in scipy 
library can be used to obtain the magnitude and phase response of the system. The 
python code, which does this task, is shown in Fig. 4.20, and the corresponding 
output is shown in Fig. 4.21.
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Fig. 4.19 Result of python code shown in Fig. 4.18 

Inferences 
The following inferences are made from this experiment: 

1. From the magnitude responses of system-1 and system-2, it is possible to infer 
that system-1 acts like a high pass filter and system-2 acts like low pass filter. 

2. From the phase responses of the two systems, it is possible to infer that both the 
systems exhibit linear phase characteristics in the pass band. This means that the 
phase angle varies linearly with respect to frequency. The linear phase response 
implies that the system will not exhibit phase distortion. The linear phase 
characteristics is an important attribute of finite impulse response filter. 

Task 
1. In the above experiment, what is the purpose of the command ‘np.unwrap’? What 

will happen if this command is not included in the program? 

4.3 Responses of Discrete-Time System 

Response of discrete-time system refer to how the discrete-time system react to 
different types of test signals. The response of discrete-time system to unit sample 
input signal is referred to impulse response of the system. The response of discrete-
time system unit step input signal is referred as step response of the system. The 
response of discrete-time system to complex exponential signal is referred as 
frequency response of the system. The frequency response of the system comprises 
of magnitude response and phase response.
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#Magnitude and phase response of discrete-time systems 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#To plot the unit circle 
theta=np.linspace(0,2*np.pi,100) 
#Defining system-1 
num1,den1=[1,-1],[1] 
#Defining system-2 
num2,den2=[1,1],[1] 
#Magnitude and phase response of systems 
w1,H1=signal.freqz(num1,den1) 
w2,H2=signal.freqz(num2,den2) 
#Plotting the magnitude and phase response of the systems 
plt.subplot(2,2,1),plt.plot(w1,20*np.log10(np.abs(H1))) 
plt.xlabel('$\omega$'),plt.ylabel('Magnitude'),plt.title('Magnitude response-System1') 
plt.subplot(2,2,2),plt.plot(w2,20*np.log10(np.abs(H2))) 
plt.xlabel('$\omega$'),plt.ylabel('Magnitude'),plt.title('Magnitude response-System2') 
plt.subplot(2,2,3),plt.plot(w1,np.unwrap(np.angle(H1))) 
plt.xlabel('$\omega$'),plt.ylabel('Phase'),plt.title('Phase response-System1') 
plt.subplot(2,2,4),plt.plot(w2,np.unwrap(np.angle(H2))) 
plt.xlabel('$\omega$'),plt.ylabel('Phase'),plt.title('Phase response-System2') 
plt.tight_layout() 

Fig. 4.20 Python code to plot the magnitude and phase response of the system 
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Fig. 4.21 Result of python code shown in Fig. 4.20
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Experiment 4.11 Responses of Discrete-Time System 
This experiment deals the computation of impulse response, pole-zero plot and 
frequency response of the discrete-time system which is given by h[n] = an u 
[n]. Let us choose the value of a is 1. The python code, which obtains the impulse 
response, pole-zero plot, magnitude and phase response of the discrete-time system, 
is shown in Fig. 4.22, and the corresponding output is shown in Fig. 4.23. 

Inferences 
The following inferences can be drawn from this experiment: 

1. The impulse response of the signal is obtained as h[n] = u[n]. It is possible to 
observe that the impulse response of the system takes a value of ‘1’. The impulse 
response is not absolutely summable. Hence, the system is not stable. 

2. The pole-zero plot indicates a pole at z = 1. This means that the pole is placed at 
ω = 0. For the discrete-time system to be stable, the pole should lie inside the unit 
circle. Here the pole lies on the unit circle. Hence, the system is not BIBO stable. 
The order of the system is one. 

3. The magnitude response indicates that the gain of the system at low frequency is 
high and it decreases with increase in frequency. 

4. The phase angle varies linearly with respect to frequency. 

#Responses of discrete-time system 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
h=np.zeros(100) 
h[0]=1 
#Defining system 1 
num,den=[1],[1,-1] 
#Obtaining the impulse responses of the system 
h1=signal.lfilter(num,den,h) 
#Obtaining the pole-zero plot of the system 
z,p,k=signal.tf2zpk(num,den) 
#To obtain the frequency responses of the three systems 
w,H=signal.freqz(num,den) 
theta=np.linspace(0,2*np.pi,100) 
plt.subplot(2,2,1),plt.stem(h1),plt.xlabel('n-->'),plt.ylabel('h[n]'), 
plt.title('Impulse response (h[n])') 
plt.subplot(2,2,2),plt.plot(w,20*np.log10(np.abs(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('|H(j$\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z),'ko'), 
plt.plot(np.real(p),np.imag(p),'rx'),plt.plot(np.cos(theta),np.sin(theta)) 
plt.title('Z-plane'),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$') 
plt.subplot(2,2,4),plt.plot(w,np.angle(H)) 
plt.xlabel('$\omega$-->'),plt.ylabel('$\u2220$H(j$\omega$)'),plt.title('Phase response') 
plt.tight_layout() 

Fig. 4.22 Python code to obtain the responses of the discrete-time system
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Fig. 4.23 Result of python code shown in Fig. 4.22 

Task 
1. From the impulse response and the pole-zero plot, will it be possible to comment 

on the stability of the system? 

4.4 Different Representations and Response of Unit Delay 
Discrete-Time System 

Consider a discrete-time system, which introduces unit delay between the input and 
output signal. The different representations of unit delay system are discussed first. 

(a) Block diagram representation 
The block diagram, which represents unit delay system, is given in Fig. 4.24. 

(b) Transfer function representation 
The transfer function representation of unit delay system is given by 

H zð Þ= z- 1 ð4:25Þ

(c) Impulse response of unit delay system 
The impulse response of discrete-time system is obtained by taking inverse Z-

transform of the transfer function. It is given by
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z-1 x[n] y[n] 

Fig. 4.24 Block diagram representation of unit delay system 

h n½ ]= Z - 1 H zð Þf g ð4:26Þ 

Substituting the expression of H(z) from Eq. (4.25) in Eq. (4.26), we get 

h n½ ]= Z - 1 z- 1 

Upon taking inverse Z-transform, the expression for impulse response is 
obtained as 

h n½ ]= δ n- 1½ ] ð4:27Þ

(d) Step response of the system 
The step response of the system is the response of the system to unit step input 

signal. For a linear time-invariant system, the relationship between the input and 
output signal is given by 

y n½ ]= x n½ ] * h n½ ] ð4:28Þ 

In the above equation, ‘*’ represents the convolution. To obtain the step 
response of the system, x[n] = u[n] and h[n] = δ[n - 1], which is obtained from 
the previous result. 

s n½ ]= u n½ ] * δ n- 1½ ]

The above equation can be simplified by using the property of delta function 
as 

s n½ ]= u n- 1½ ]

Experiment 4.12 Unit Delay DT System Analysis 
The objective of this experiment is to realize unit delay system using python. The 
program consists of two sections. First section obtains the response of the unit delay 
system like, impulse response, step response, magnitude and phase response. The 
next section deals with exciting the unit delay system with a sinusoidal input signal 
and obtaining the output signal. The output signal should be a delayed (one unit



delay) version of the input signal. The python code, which accomplishes this task, is 
shown in Fig. 4.25, and the corresponding outputs are shown in Figs. 4.26 and 4.27, 
respectively. 
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#Unit delay system 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step1: Defining the system 
num,den=[0,1],[1] 
#Part1: Obtaining the responses of discrete-time system 
#Impulse response of the system 
h1=np.zeros(10) 
h1[0]=1 
h=signal.lfilter(num,den,h1) 
#Step response of the system 
s1=np.ones(10) 
s=signal.lfilter(num,den,s1) 
#Magnitude and phase response of the system 
w,H=signal.freqz(num,den) 
#Plotting different responses of the system 
plt.figure(1),plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]'), 
plt.title('Unit delay system (h[n])'),plt.subplot(2,2,2),plt.plot(w,np.abs(H)) 
plt.xlabel('$\omega$-->'),plt.ylabel('|H(j$\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,3),plt.stem(s),plt.xlabel('n-->'),plt.ylabel('s[n]'), 
plt.title('Step response'),plt.subplot(2,2,4),plt.plot(w,np.angle(H)) 
plt.xlabel('$\omega$-->'),plt.ylabel('$\u2220$H(j$\omega$)'),plt.title('Phase response') 
plt.tight_layout() 
#Part2: Input and output of the system 
t=np.linspace(0,1,100) 
x=np.sin(2*np.pi*5*t) 
y=signal.lfilter(num,den,x) 
plt.figure(2),plt.plot(t,x,t,y),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.legend(['Input','Output'],loc=1),plt.title('Input and output of Unit delay system') 
plt.tight_layout() 

Fig. 4.25 Python code to obtain the response of unit delay system 

Inferences 
From this experiment following inferences can be made: 

1. From Fig. 4.25, it is possible to observe that the python code consists of two 
sections. Section 1 obtains the responses of the unit delay system, which include 
(a) impulse response, (b) step response, (c) magnitude response and (d) phase 
response. 

2. The section of python code simulates sinusoidal signal of 5 Hz frequency as the 
input signal, and it is fed to the unit delay system to obtain the output signal. The 
input is represented by the variable ‘x’, and the variable represents the output ‘y’.
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Fig. 4.27 Input and output of unit delay system

3. From Fig. 4.26, the impulse response of the filter is obtained as h[n] = δ[n - 1], 
which is in agreement with the theoretical result. The step response of the system 
is given by s[n] = u[n- 1], which is in agreement with the theoretical result. The 
magnitude response of the unit delay system is unity, which implies that the 
system will not affect the magnitude of the input signal. The phase response 
varies linearly with respect to frequency.
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4. Figure 4.27 depicts the input and output signal. The input signal is a sinusoidal 
signal of 5 Hz frequency. From this figure, it is possible to observe that the output 
signal is a delayed version of the input signal. The delay between the input and 
output signal is one unit, which justifies the term the system is a unit delay 
system.

Task 
1. From the impulse response, will it be possible to comment on the stability of the 

system? If so, state whether the system is stable or unstable. 

4.5 Properties of Discrete-Time System 

The properties of discrete-time system discussed in this section include (1) linearity 
property, (2) time shift property, (3) causality and (4) stability. 

4.5.1 Linearity Property 

A discrete-time system is linear if it obeys superposition principle. According to the 
superposition principle, the system should obey both the homogeneity and additivity 
properties. According to the homogeneity property, scaling of the input should result 
in scaling of the output. Both these properties are expressed in Table 4.1. 

For a discrete-time system to be linear, the system should be a relaxed system, and 
it should obey superposition principle. For a relaxed system, zero input should result 
in zero output. 

Experiment 4.13 Testing the Linearity Property of Discrete-Time System 
This experiment tries to check whether the given discrete-time system is a linear or 
nonlinear. The relationship between the input and output of the system is given by y 
[n] = nx[n]. For the system to be linear, the response of the system to the weighted 
sum of input is equal to the sum of the weighted responses. The python code, which 
examines whether the given system is linear or not, is given in Fig. 4.28, and the 
corresponding output is shown in Fig. 4.29. 

Inferences 
The following inferences can be made from this experiment: 

From Fig. 4.29, it is possible to observe that the response of the system to the 
weighted sum of input is equal to the sum of the weighted responses. The system 
obeys superposition principle; hence, it is a linear system. 

Task 
1. The relationship between the input and output of the system is given by y[n] = nx 

[n] + 5. An offset being added. Will it affect the linearity of the system? Write a 
python code to illustrate that modified system is a non-linear system.
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Table 4.1 Superposition principle 

S. No Property Representation Meaning 

Linear 

system 

x[n] y[n] Linear 

system 

αx[n] αy[n] 
1 Homogeneity 

property
Scaling of the 
input x[n] by a  
factor ‘α’ results in 
scaling of the out-
put y[n] by the 
same factor ‘α’ 

Linear 

system 

x1[n] y1[n] 

Linear 

system 

x2[n] y2[n] 

Linear 

system 

x1[n]+ x2[n] y1[n]+ y2[n] 

2 Additivity 
property

Response of the 
system to sum of 
inputs is equal to 
sum of individual 
responses 

#Test for linearity property 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11,1) 
#Step1: Defining the two inputs 
x1=(n==1) 
x2=(n==2) 
#Step2: Defining the scaling factors 
alpha,beta=2,4 
y1=n*x1 
y2=n*x2 
#Step3: Response due to weighted sum of input 
y_1=n*(alpha*x1+beta*x2) 
#Step3:Sum of weighted response 
y_2=alpha*y1+beta*y2 
#Step4:Plotting the results 
plt.subplot(2,1,1),plt.stem(n,y_1),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Response due to weighted sum of inputs') 
plt.subplot(2,1,2),plt.stem(n,y_2),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Sum of weighted responses') 
plt.tight_layout() 

Fig. 4.28 Python code to test the linearity of the given discrete-time system
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Fig. 4.29 Result of python code shown in Fig. 4.28 

4.5.2 Time-Invariant and Time-Variant System 

A DT system is said to be time-invariant or shift-invariant if its input-output 
characteristics do not change with time. This implies time shift of the input causes 
a corresponding shift in the output. This implies that the system response is inde-
pendent of time. 

Property Representation Meaning 

Time-

invariant 

system 

x[n] y[n] Time-

invariant 

system 

x[n-k] y[n-k] 
Time 
shift 
property 

Shift in the input signal x[n] 
by a factor of ‘k’ should 
result in shift in the output 
signal y[n] by the same fac-
tor ‘k’ 

Experiment 4.14 Testing the Time-Invariant Property of Discrete-Time System 
The aim of this experiment is to check the given DT system function is time varying 
or time invarying system by python code. The relationship between the input and 
output of the discrete-time system is given by y[n] = nex[n] . A discrete-time system is 
time-invariant, if a time shift in the input signal should result in a time shift in the 
output signal. The python code, which tests the time-invariance property of the given 
discrete-time system, is given in Fig. 4.30, and the corresponding output is shown in 
Fig. 4.31. 

Inference 
From Fig. 4.31, the output due to time shift in the input is not equal to the time shift 
in the output; hence, the system is time-variant.
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#Test for time-invariance property 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11,1) 
#Step1: Defining the input 
x=(n==0) 
k=5  #Shift parameter 
#Step2: Time shift in the input 
x1=(n==k) 
y1=n*np.exp(x1) 
#Step 3: Time shift in the output 
y2=(n-k)*np.exp(x1) 
#Step4:Plotting the results 
plt.subplot(2,1,1),plt.stem(n,y1),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Output due to time shift in the input') 
plt.subplot(2,1,2),plt.stem(n,y2),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Time shift in the output') 
plt.tight_layout() 

Fig. 4.30 Python code to test the time-invariance property 
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Fig. 4.31 Result of python code shown in Fig. 4.30 

Task 
1. The relationship between the input and output of the system is given by 

y[n] = x[-n]. Examine whether the system is time-variant or not.
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4.5.3 Causal and Non-causal System 

A discrete-time system is causal if it is non-anticipatory. The output of the system 
should not be dependent on the future value of the input. A DT-LTI system is causal 
if the impulse response of the system is zero for n < 0. 

Experiment 4.15 Check the DT System Is Causal or Non-causal 
This experiment uses python to discuss whether the given DT system is causal or 
not. Let us consider four discrete-time systems with the impulse responses: 
h1[n] = δ[n + 1] +  δ[n] +  δ[n - 1], h2[n] = δ[n] +  δ[n - 1] + δ[n - 2], h3[n] = u 
[n] - u[n - 1] and h4[n] = δ[n + 2]  +  δ[n + 1] +  δ[n] for -10 ≤ n ≤ 10. The python 
code, which plots the impulse responses of the above-mentioned discrete-time 
systems, is shown in Fig. 4.32, and the corresponding output is shown in Fig. 4.33. 

Inferences 
For the discrete-time system to be causal, the impulse response should be equal to 
zero for n < 0. 

1. The impulse response of system-1 is non-zero for n < 0; hence, discrete-time 
system-1 is a non-causal system. 

2. The impulse response of system-2 is zero for n < 0; hence, discrete-time system-2 
is a causal system.

#Impulse response of DT systems 
import numpy as np 
import matplotlib.pyplot as plt 
N = 10 
n= np.arange(-N, N + 1,1, dtype = float) 
#Defining the impulse response of the four systems 
h1=np.zeros(2*N+1,dtype='float') 
h2=np.zeros(2*N+1,dtype='float') 
h3=np.zeros(2*N+1,dtype='float') 
h4=np.zeros(2*N+1,dtype='float') 
h1=[1 if (i==-1) | (i==0)|(i==1) else 0 for i in n]  
h2=[1 if (i==0) | (i==1)|(i==2) else 0 for i in n]  
h3=[1 if (i==0)  else 0 for i in n]  
h4=[1 if (i==-2) | (i==-1)|(i==0) else 0 for i in n]  
#Plotting the impulse response 
plt.subplot(2,2,1),plt.stem(n,h1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$h_1[n]$'),plt.subplot(2,2,2),plt.stem(n,h2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('$h_2[n]$'),plt.subplot(2,2,3),plt.stem(n,h3), 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_3[n]$'),plt.subplot(2,2,4), 
plt.stem(n,h4),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_4[n]$') 
plt.tight_layout() 

Fig. 4.32 Python code to plot the impulse response of the system
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Fig. 4.33 Impulse responses of the discrete-time systems 

3. The impulse response of system-3 is zero for n < 0; hence, discrete-time system-3 
is a causal system. 

4. The impulse response of system-4 is non-zero for n < 0; hence, discrete-time 
system-4 is a non-causal system. 

5. From the impulse response, it is possible to infer whether the discrete-time system 
is causal or not.

Task 
1. The relationship between the input and output of the system is expressed as y 

[n] = x[-n]. Examine whether the system is causal or not? 

4.5.4 Stability of Discrete-Time System 

A discrete-time system is stable if the following criterion are met. 

(a) BIBO stability criterion: A discrete-time system is stable if bounded input 
results in bounded output. 

(b) Stability criterion with respect to impulse response: A discrete-time system is 
stable if the impulse response of the system is absolutely summable. 

(c) Stability with respect to position of pole: A discrete-time system is stable if the 
pole of the discrete-time system lies within the unit circle.
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It is to be noted that all the above-mentioned criteria are not independent criteria. 
It means that one criterion implies the other. 

Experiment 4.16 BIBO Stability Criterion 
The aim of this experiment is to obtain the given DT system is stable or not. The 
relationship between the input and output of a linear time-invariant discrete-time 
system is given by y[n] = x[n] +  y[n - 1]. The relationship between the input and 
output of the system is given by 

y n½ ]= x n½ ] þ y n- 1½ ]

Taking Z-transform on both sides of the above equation, we get 

Y zð Þ=X zð Þ þ z- 1 Y zð Þ  

The transfer function of the system is obtained as 

H zð Þ= 
Y zð Þ  
X zð Þ  = 

1 
1- z- 1 

The python code, which applies the unit step input signal to the above-mentioned 
system, is given in Fig. 4.34, and the corresponding output is shown in Fig. 4.35. 

Inference 
The following inferences can be made from this experiment: 

Figure 4.36 shows that the input signal (x[n]) is a unit step signal, a bounded input 
signal. By observing the output signal (y[n]) is not a bounded signal. The output 
signal is a ramp signal, which is not bounded. This shows that bounded input signal 
to the system does not result in bounded output signal. Hence, the system is not 
BIBO stable. 

Experiment 4.17 Stability Criterion Based on the Impulse Response 
This experiment discusses the stability of the DT system to be checked from the 
impulse response of it. Let us consider two discrete-time LTI systems with impulse 
responses h1 n½ ]= 1 

2 
n 
u n½ ] and h2[n] = (2)n u[n]. 

For the system to be stable, the impulse response should be absolutely summable. 
The impulse response of system-1 is absolutely summable; hence, it is stable. On the 
other hand, the impulse response of the system-2 is not absolutely summable; hence, 
it is unstable. The python code, which plots the impulse response and obtains the 
absolute sum of the impulse response of the above-mentioned discrete-time LTI 
systems, is given in Fig. 4.36, and the corresponding output is shown in Figs. 4.37 
and 4.38.
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#BIBO stability criterion 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step1: Defining the system 
num,den=[1],[1,-1] 
#Step 2: Generation of unit step input signal 
N=50 
n=np.arange(N) 
x=np.ones(N) 
#Step 3: Obtain the output of the system 
y=signal.lfilter(num,den,x) 
#Step 4: Plot the input and output of the system 
plt.subplot(2,1,1),plt.stem(n,x),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(2,1,2), 
plt.stem(n,y),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 4.34 Python code to check the BIBO criterion of discrete-time LTI system 
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Fig. 4.35 Input-output of the discrete-time LTI system 

Inferences 
The following inferences can be made from this experiment: 

1. From Fig. 4.37, the impulse response of system-1 is absolutely summable, 
whereas the impulse response of system-2 is not absolutely summable. Hence, 
system-1 is a stable system, whereas system-2 is not a stable system.
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#Stability based on impulse response 
import numpy as np 
import matplotlib.pyplot as plt 
N=50 
n=np.arange(N) 
#Step 1: Defining the impulse response of the two systems 
h1=0.5**n 
h2=2.0**n 
#Step 2: Obtaining the absolute sum of the impulse response 
print('The absolute sum of impulse response of system 1 is:',np.sum(abs(h1))) 
print('The absolute sum of impulse response of system 2 is:',np.sum(abs(h2))) 
#Step 3: Plotting the impulse response of the two systems 
plt.subplot(1,2,1),plt.stem(n,h1) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_1[n]$') 
plt.subplot(1,2,2),plt.stem(n,h2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_2[n]$') 
plt.tight_layout() 

Fig. 4.36 Python code to test the stability of discrete-time system based on the impulse response 

The absolute sum of impulse response of system 1 is: 1.9999999999999982 

The absolute sum of impulse response of system 2 is: 1125899906842623.0 

Fig. 4.37 The absolute sum of impulse response of the two systems 

2. From Fig. 4.38, the impulse response of system-1 (h1[n]) is converging, whereas 
the impulse response of system-2 (h2[n]) is diverging. Therefore, system-1 is 
stable, and system-2 is unstable. 

Experiment 4.18 Stability Based on the Location of Poles of the Discrete-Time 
System 
This experiment discusses the verification of the stability of the DT system based on 
the location of the poles of the DT system. Let us consider the transfer function of 
two discrete-time LTI systems given by H1 zð  Þ= 2 

1- 0:2z- 1ð Þ  1- 0:4z- 1ð Þ  and 

H2 zð  Þ= 1 
1- 2z- 1ð Þ  1- 4z- 1ð Þ. For the discrete-time system to be stable, the poles should 

lie within the unit circle. The poles of system-1 defined the transfer function H1(z) 
lies within the unit circle; hence, the system is stable, whereas the poles of the 
system-2 defined by the transfer function H2(z) lies outside the unit circle; hence, the 
system is unstable. The python code to obtain the pole-zero plot of the above-
mentioned discrete-time systems is given in Fig. 4.39, and the corresponding output 
is shown in Fig. 4.40.



158 4 Discrete-Time Systems

0.8 

0.6 

0.4 

0.2 

1.0 

20 400 

0.0 

n--> 

A
m

p
lit

u
d
e
 

h1[n] 

4 

3 

2 

1 

5 

20 400 

0 

n--> 

A
m

p
lit

u
d
e
 

h2[n] 
1e14 

Fig. 4.38 Plot of impulse responses of the discrete-time systems 

Inference 
From Fig. 4.40, the poles of discrete-time system-1 lies within the unit circle; hence, 
the system is stable. The poles of discrete-time system-2 lies outside the unit circle; 
hence, the system is unstable. 

Task 
1. Comment on the stability of a discrete-time system, whose current output 

depends on current and past input signal values. Write a python code to validate 
your answer. 

4.5.5 Invertibility of Discrete-Time System 

A discrete-time system is invertible if distinct input results in distinct output. 

Experiment 4.19 Examining the Invertibility of Discrete-Time System 
This experiment tries to examine the invertibility of two discrete-time systems, 
whose input-output relationship is given by (1) system 1: y[n]= x[2n] and (2) system 
2: y[n] = x[n/2]. The python code, which examines the invertibility of discrete-time 
system, is shown in Fig. 4.41, and the corresponding output is shown in Figs. 4.42 
and 4.43.
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#Pole-zero plot of discrete-time systems 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Defining system 1 
num1,den1=[2],[1,-0.6,0.032] 
#Defining system 2 
num2,den2=[1],[1,-6,8] 
#Obtaining the pole-zero plot of the system 
z1,p1,k1=signal.tf2zpk(num1,den1) 
z2,p2,k2=signal.tf2zpk(num2,den2) 
theta=np.linspace(0,2*np.pi,100) 
re=0; 
for i in range(len(p1)): 
    if (p1[i].real>1) or (p1[i].imag>1):re=re+1; 
    else:re=0; 
if re==0:print('System is Stable') 
else:print('System is Unstable') 
re1=0; 
for i in range(len(p2)): 
    if (p2[i].real>1) or (p2[i].imag>1):re1=re1+1; 
    else:re1=0; 
if re1==0:print('System is Stable') 
else:print('System is Unstable')   
#Plotting the pole-zero plot 
plt.subplot(2,1,1),plt.plot(np.real(z1),np.imag(z1),'ko'),plt.plot(np.real(p1), 
np.imag(p1),'rx'),plt.plot(np.cos(theta),np.sin(theta)),plt.title('Z-plane of system-1') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.subplot(2,1,2), 
plt.plot(np.real(z2),np.imag(z2),'ko'),plt.plot(np.real(p2),np.imag(p2),'rx') 
plt.plot(np.cos(theta),np.sin(theta)),plt.title('Z-plane of system-2'), 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$') 
plt.tight_layout() 

Fig. 4.39 Python code to obtain the pole-zero plot of the given discrete-time systems 

Inferences 
The following are the inferences: 

1. Two discrete-time systems considered in this example are the following: (1) Sys-
tem-1, downsampling by a factor of 2, and (2) system-2, upsampling by a factor 
of 2. 

2. The input signals considered to excite the discrete-time signals are denoted as 
x1[n] and x2[n]. x1[n] is a DC signal, whereas x2[n] is the highest frequency digital 
signal. The output signals of system-1 for the inputs x1[n] and x2[n] are denoted as 
s11[n] and s22[n], respectively.
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Fig. 4.40 Result and pole-zero plot of the discrete-time systems 

#Invertibility of DT system 
import numpy as np 
import matplotlib.pyplot as plt 
N=10 
n=np.arange(N) 
x1=np.ones(N) 
x2=np.exp(1j*np.pi*n) 
#System 1 output 
s11=x1[::2] 
s12=x2[::2] 
#System 2 output 
s21=np.zeros(2*len(x1)) 
s21[::2]=x1 
s22=np.zeros(2*len(x2)) 
s22[::2]=x2 
plt.figure(1),plt.subplot(2,2,1),plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_1[n]$'),plt.subplot(2,2,2),plt.stem(s11),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('$s_{11}[n]$'),plt.subplot(2,2,3),plt.stem(n,x2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$x_2[n]$'),plt.subplot(2,2,4), 
plt.stem(s12),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$s_{12}[n]$') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_1[n]$'),plt.subplot(2,2,2),plt.stem(s21),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('$s_{21}[n]$'),plt.subplot(2,2,3),plt.stem(n,x2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$x_2[n]$'),plt.subplot(2,2,4), 
plt.stem(s22),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$s_{22}[n]$') 
plt.tight_layout() 

Fig. 4.41 Python code to examine the invertibility of the given discrete-time systems

3. The output of discrete-time system-2 for the input signals x1[n] and x2[n]  i  
denoted as s21[n] and s22[n], respectively.
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Fig. 4.42 Input-output signals of discrete-time system-I

4. Figure 4.42 shows the input and output signals corresponding to system-1 
(downsample by a factor of 2). From Fig. 4.42, it is possible to observe that the 
input signals x1[n] and x2[n] are different but the output s11[n] and s12[n] are the 
same. This shows that the system produces same output for distinct inputs; hence, 
the system-1 is a non-invertible system. 

5. Figure 4.43 shows the input and output signals corresponding to system-2 
(upsample by a factor of 2). From Fig. 4.43, it is possible to observe that the 
system produces different output for distinct inputs. Hence, the system-2 is an 
invertible system. 

Task 
1. Write a python code to prove that cascade connection of accumulator and 

backward difference system results in an invertible system. System-1 is an 
accumulator, whose input-output relation is given by y[n] = x[n] +  y[n - 1]; 
system-2 is a backward system, whose difference equation is given by y[n] = x 
[n] - x[n - 1]. 

Exercises 
1. Write a python code to plot the impulse response of the discrete-time system 

whose input-output relationship is given by y n½ ]= x n½ ] þ 1 
2 y n- 1½ ]. From the 

impulse response plot, will it be possible to comment on the stability of the 
system? 

2. Write a python code to obtain the state-space representation of the discrete-time 

system whose transfer function is given by H  zð  Þ= z2 
2 .
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Fig. 4.43 Input-output signals of discrete-time system-II

3. The state-space representation of discrete-time system is given by x[k + 1]  = Ax 

[k] +  Bu[k] and y[k] = Cx[k] +  Du[k], where A= 
0 1

-
1 
6

-
5 
6 

, B= 
0 

1 
, 

C= 1 0½ ] and D = [0]. Write a python code to obtain the transfer function of 
the system. 

4. The impulse response of a discrete-time system h[n] = (α)n ,- 10 ≤ n ≤ 10. Plot 
the impulse response for α= 1 4 , 

3 
4 , 1, 2. Use subplot to plot the impulse 

responses and comment on the observed result. 
5. The relationship between the input and output of a discrete-time system is given 

by y n½ ]= x n 2 . The system is a linear, time-variant system. Write a python code 
to validate the property. 

6. Plot the pole-zero plot of the discrete-time systems whose transfer functions are 

given by H1 zð Þ= 1þ 1 
2 z

- 1, H2 zð Þ= 1 
1- 3 

4z
- 1 and H3 zð Þ= 1þ

1 
2z

- 1 

1- 3 
4z

- 1. Comment on 

the observed output. 
7. Write a python code to obtain the magnitude and phase response of discrete-time 

system whose input-output relationship is given by 
y n½ ]= 1 3 x n½ ] þ  x n- 1½ ] þ  x n- 2½ ]f g. Examine whether the system exhibits lin-
ear phase characteristics from the phase response. 

8. The impulse response of a discrete-time system is given by h[n] = δ[n] - δ[n -
1]. Use subplot to plot the impulse and step responses of the system. Comment 
on the observed result.



1. ]

Both assertion and reason are true.
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9. Two discrete-time systems with impulse responses h1[n] = u[n] and 
h2[n] = δ[n] - δ[n - 1] are connected in cascade. Write a python code to plot 
the magnitude and phase responses of the cascaded system and comment on the 
observed result. 

10. Two discrete-time systems with transfer functions H1(z) = X(z2 ) and 

H2 zð Þ= 1 2 X z  
1 
2 þ X - z 

1 
2 are connected in cascade. A sine wave of 

5 Hz frequency is fed to the cascaded system. What will be the output of the 
system? Write a python code to plot the input and output signals and comment 
on the observed result.

Objective Questions 

If ‘h[n]’ represents the impulse response of the system, then y n½ ]= 
n 

k = -1 
h k½  

represents 

A. Magnitude response of the system 
B. Phase response of the system 
C. Shifted impulse response of the system 
D. Step response of the system 

2. If the variable ‘h’ represents the impulse response of the system, then the 
variable ‘y’ in the following code results in 

A. Magnitude response of the system 
B. Phase response of the system 
C. Shifted impulse response of the system 
D. Step response of the system 

3. A discrete-time system is linear if it obeys 

A. Superposition theorem 
B. Thevenin’s theorem 
C. Tellegen’s theorem 
D. Norton’s theorem 

4. Assertion: Causal systems are non-anticipatory system. 
Reason: In causal system, the current output will not depend on the future 

value of the input. 

A.
B. Assertion is true; reason is false. 
C. Assertion is false; reason may be true. 
D. Both assertion and reason are false.
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5. Identify the system which is NOT a relaxed system: 

A. y[n] = nx[n] 
B. y[n] = x[-n] 
C. y[n] = Ax[n] 
D. y[n] = Ax[n] +  B 

6. The relationship between the input and output of a discrete-time is given by y 
[n] = αx2 [n] +  βx[n] +  γ. For the system to be linear 

A. α = 0 
B. β = 0 
C. γ = 0 
D. α = 0 and γ = 0 

7. The impulse response of discrete-time linear, time-invariant system is given by 
h n½ ]= 1- 1 

2 
n 
u n½ ]. The system is 

A. Causal and stable system 
B. Non-causal and stable system 
C. Causal and unstable system 
D. Non-causal and unstable system 

8. A linear time-invariant discrete-time system is given by y[n] = Ax2 [n] +  Bx[n -
1] + Cy[n - 1]. For the system to be static system. 

A. A = 0 
B. B = 0 
C. C = 0 
D. B = C = 0 

9. The transfer function (H(z)) of the system derived from the state-space model is 
expressed as 

A. C(zI - A)-1 B + D 
B. D(zI - A)-1 B + C 
C. D(zI - B)-1 A + C 
D. C(zI - B)-1 A + D 

10. The transfer function of a discrete-time system is represented as H(z) = 1- z-1 . 
The system has zero at 

A. ω = 0 
B. ω = π/4 
C. ω = π/2 
D. ω = π
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11. The transfer function of a discrete-time system is given by H zð Þ= z- 1 
z- 1 

2ð Þ  zþ3 
4ð  . 

The poles of the system are at 

A. - 1 
2 , þ 3 

4 

B. 1 
2 , -

3 
4 

C. 1 
2 , 

3 
4 

D. - 1 
2 , -

3 
4 

12. The transfer function of a discrete-time system is represented as H(z) = z-1 . The 
impulse response of the system is given by 

A. h[n] = δ[n] 
B. h[n] = δ[n - 1] 
C. h[n] = δ[n - 2] 
D. h[n] = δ[n - 3] 

13. Among the transfer function of the discrete-time systems, identify the system 
which is NOT BIBO stable system: 

A. H zð Þ= 1 
1- 1z- 1 

B. H zð Þ= 1 
1- 1z- 1 

C. H zð Þ= 1 
1- 3z- 1 

D. H zð Þ= 1 
1- z- 1 

14. Among the input-output relationship of a given discrete-time systems, identify 
the system which is NOT a relaxed system: 

A. y[n] = nx[n] 
B. y[n] = x[-n] 
C. y[n] = ex[n] 

D. y[n] = x2 [n] 
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Chapter 5 
Transforms 

Learning Objectives 
After completing this chapter, the reader is expected to

• Compute the forward and inverse Z-transform.
• Analyse discrete-time system using Z-transform and discrete-time Fourier 

transform.
• Compute the spectrum of continuous-time and discrete-time signals.
• Plot and infer the spectrogram of stationary and non-stationary signals.
• Plot and interpret the scalogram of non-stationary signal. 

Roadmap of the Chapter 
Different transforms discussed in this chapter are given below as a flow diagram. 
Transforms are widely used for signal as well as system study. To analyse discrete-
time system, Z-transform is widely used. DTFT can be considered as an evaluation 
of Z-transform on a unit circle. DTFT is used to obtain the frequency response of the 
system. 
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Transform domain analysis of 
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discrete-time systems 

Representation of 

signals 

Frequency domain 

representation 
Time-Frequency 

representation 
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Signals can be analysed entirely in the frequency domain. Example of transform, 
which gives frequency domain representation, includes Fourier transform and dis-
crete cosine transform. Short-time Fourier transform gives a joint time-frequency 
representation of the signal. STFT is an effective tool to analyse the non-stationary 
signal. Example of timescale representation includes continuous and discrete wave-
let transform, which are effective in providing multi-resolution (MRA) analysis of 
the signals. 

PreLab Questions 
1. What do you understand by the term ‘spectrum’? 
2. What do you mean by unilateral and bilateral Z-transform? 
3. What is the region of convergence (ROC) in the context of Z-transform? 
4. Mention the essential condition for the function to be called as basis function? 

What is the basis of Fourier transform? 
5. When applying Fourier analysis to a signal, under which circumstances should 

Fourier series analysis be employed, and under which circumstances Fourier 
transform be employed? 

6. What is the relationship between discrete-time Fourier transform (DTFT) and Z-
transform? 

7. What do you mean by a double-sided spectrum of a signal? 
8. What is the need of transform in signal analysis? 
9. If the DFT of the signal x[n] has to be real, what property should the signal x[n] 

satisfy? 
10. Compare Fourier transform and short-time Fourier transform. 
11. Mention the significant features of discrete cosine transform? 
12. Mention one significant advantage of wavelet transform over short-time Fourier 

transform.
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5.1 Introduction to Transform 

Transform is a tool to analyse signals and systems. Signals are converted from time 
or spatial domain to frequency domain using transform. Frequency domain is used to 
describe the signal in terms of frequency components. Each frequency has its own 
amplitude and phase. From the spectrum, it is possible to interpret the frequencies 
present in the signal. Thus, the time domain and the frequency domain representation 
of the signal are equivalent. It is possible to transform the signal from time domain to 
frequency domain and vice versa without any loss of information. Mathematically, 
transform takes the inner product of the signal with the basis function. The inner 
product is one way of quantifying the similarity or the dissimilarity of two signals. 

5.2 Z-Transform 

The Z-transform is a powerful tool to analyse linear, time-invariant discrete-time 
systems. The Z-transform for discrete-time signals is the counterpart of the Laplace 
transform for continuous-time signals. It simplifies the solution of discrete-time 
problems by converting LTI difference equations to algebraic equations and convo-
lution to multiplication. The Z-transform of a discrete-time signal x[n] is defined as 

X zð Þ= 
1 

n= -1 
x n½ ]z- n ð5:1Þ 

The above expression is often termed as two-sided Z-transform. Here, z is a 
complex variable. The Z-transform of right-sided sequence is expressed as 

X zð Þ= 
1 

n= 0 

x n½ ]z- n ð5:2Þ 

The Z-transform of left-sided sequence is expressed as 

X zð  Þ=
- 1 

n= -1 
x n½ ]z- n ð5:3Þ 

Region of Convergence The region of convergence of the Z-transform is the value 
of z for which X(z)  is  finite. The region of convergence allows the unique inversion 
of the Z-transform. The ROC depends on the signal x[n] being transformed. The 
ROC helps to characterize the system as causal or stable.
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5.2.1 Z-Transform of Standard Test Sequences 

The Z-transform of the standard test sequences is tabulated in Table 5.1. 

Experiment 5.1 Z-Transform of the Unit Sample and Unit Step Sequences 
Using sympy Package 
This experiment computes the Z-transform of the test sequences like unit sample and 
unit step sequences. The python code, which computes the Z-transform of test 
sequences, is shown in Fig. 5.1. 

Inferences 
The following inferences can be made from this experiment: 

1. In this experiment sympy library package is utilized to compute the Z-transform of 
the test sequences. 

2. The python command sym.summation is used for the summation computation, 
and sym.KroneckerDelta command is used to define the unit impulse sequence. 

3. After executing the python code given in Fig. 5.1, the user has to enter ‘1’ for the 
computation of Z-transform of unit sample sequence and ‘2’ for the computation 
of Z-transform of unit step sequence. 

4. The simulation result of this experiment is shown in Fig. 5.2. From this figure, it 
is evident that the simulation result is on par with the theoretical result. 

Task 
1. Write a python code to obtain the Z-transform of x[n] = nu[n]. 

Experiment 5.2 Z-Transform of Unit Sample and Unit Step Sequences Using 
lcapy Package 
This experiment discusses the lcapy package, which can be used to compute the Z-
transform of unit sample and unit step sequences. The python code is shown in 
Fig. 5.3. 

Inferences 
Upon executing the code shown in Fig. 5.3, the result obtained is 1 and 1/(1 - 1/z), 
which is in agreement with the theoretical result. The python command delta defines 
the unit impulse sequence, 'us' gives the unit step sequence and 'ZT' obtains the Z-
transform. 

Experiment 5.3 Z-Transform of x[n] = ejn u[n] and x[n] = cos(n) 
This experiment deals with the computation of Z-transform of the given input 
sequences x[n] = ejn u[n] and x[n] = cos(n). The python code, which computes the 
Z-transform of x[n] = ejn u[n] and x[n] = cos(n), is shown in Fig. 5.4a, and the 
corresponding output is shown in Fig. 5.4b. 

Inferences 
1. From Fig. 5.4a, it is possible to observe that the package lcapy is used to define 

the exponential function. lcapy is a Python package for linear circuit analysis.



]

z- 1ð Þ 1- zð Þ

z- 1ð Þ 1- zð Þ

z- 1ð Þ3 1- z- 1ð Þ3

z- 1ð Þ4 1- z- 1ð Þ4

z- 1ð Þ5 or
Þ

1- z- 1ð Þ5

Þ
1- z- 1ð Þ6

z- bð Þ 1- bzð Þ
z- að Þ 1- azð Þ

- 0þ - 0þ

- 0þ - 0þ

- 0þ - 0þ

z2 - 2az cosω0þa2 or
Þ

1- 2az- 1 cosω0þa2z- 2

5.2 Z-Transform 171

Table 5.1 Z-Transform of the standard test sequences 

Sequence Transform ROC 

δ[n 1 8z 
δ[n - m] z-m 8z except 0 if m > 0 or infinity if 

m < 0 
u[n] z 

z- 1 or 
1 

1- z- 1 |z| > 1

-u[-n - 1] z 
z- 1 or 

1 
1- z- 1 |z| < 1 

nu[n] z 
2 or z- 1

- 1 2 
|z| > 1 

(n + 1)u[n] z2 
2 or 1

- 1 2 
|z| > 1 

n2 u[n] z zþ1ð Þ  or 
z- 1 1þz- 1ð Þ |z| > 1 

n3 u[n] z z2þ4zþ1ð Þ  
or 

z- 1 1þ4z- 1þz- 2ð Þ |z| > 1 

n4 u[n] z z3þ11z2þ11zþ1ð Þ  z- 1 1þ11z- 1þ11z- 2þz- 3ð |z| > 1 

n5 u[n] z z4þ26z3þ66z2þ26zþ1ð Þ  
z- 1ð Þ6 or 

z- 1 1þ26z- 1þ66z- 2þ26z- 3þz- 4ð  
|z| > 1 

(-1)n u[n] z 
zþ1 or 

1 
1þz- 1 |z| > 1

-(-1)n u[-n -
1] 

z 
zþ1 or 

1 
1þz- 1 |z| < 1 

an u[n] z 
z- a or 

1 
1- az- 1 |z| > a 

a|n| 1- a2 

1- az- 1ð Þ  1- azð Þ a< zj j< 1 a 

an - 1 u[n - 1] 1 
z- a or 

z- 1 

1- az- 1ð Þ |z| > a 

(-a)n u[n] z 
zþa or 

1 
1þaz- 1 |z| > a

-an u[-n - 1] z 
z- a or 

1 
1- az- 1 |z| < a

-a(n - 1) u[-n] 1 
z- a or 

z- 1 

1- az- 1 
|z| < a 

an [u[n] - u[n -
N]] 

1- aNz-N 

1- az- 1 
|z| > 0

-nbn u[-n - 1] zb 
2 or bz- 1

- 1 2 
|z| < b 

nan u[n] za 
2 or az- 1

- 1 2 
|z| > a 

cos(ω0n)u[n] z2 - z cosω0 
z2 2z cosω 1 or 

1- z- 1 cosω0 
1 2z- 1 cosω z- 2 

|z| > 1 

sin(ω0n)u[n] z sinω0 
z2 2z cosω 1 or

z- 1 sinω0 
1 2z- 1 cosω z- 2 

|z| > 1 

[an sin ω0n]u[n] az sinω0 
z2 2az cosω a2 or

az- 1 sinω0 
1 2az- 1 cosω a2z- 2 

|z| > |a| 

[an cos ω0n]u[n] z z- a cosω0ð Þ 1- az- 1 cosω0ð |z| > |a| 

2. Upon executing the commands shown in Fig. 5.4a, the result obtained is shown in 
Fig. 5.4b. The result of python code is in agreement with the theoretical result.
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#Z-transform of unit sample and step sequences 
import sympy as sym 
n = sym.symbols('n', integer=True) 
z = sym.symbols('z', complex=True) 
S=int(input("Enter : (1= Unit Impulse, 2=Unit Step) : ")); 
if (S==1): 
    X = sym.summation(sym.KroneckerDelta(n, 0) * z**(-n), (n, -sym.oo, sym.oo)); 
    print('X(z) = ', X) 
elif(S==2): 
    X = sym.summation(1*z**-n,(n,0,sym.oo)); 
    print('X(z) = ', X) 
else: 
    print('Please enter the correct number')   

Fig. 5.1 Python code for Z-transform of unit sample sequence 

Enter : (1= Unit Impulse, 2=Unit Step) : 1 
X(z) =  1 
Enter : (1= Unit Impulse, 2=Unit Step) : 2 
X(z) =  Piecewise((1/(1 - 1/z), 1/Abs(z) < 1), (Sum(z**(-n), (n , 0, oo)), True)) 
Enter : (1= Unit Impulse, 2=Unit Step) : 3 
Please enter the correct number 

Fig. 5.2 Simulation result of the python code given in Fig. 5.1 

Fig. 5.3 Python code for Z-
transform of unit sample and 
step sequences 

#Z-transform of unit sample and unit step signal 
from lcapy import n,delta,us 
x =delta(n) 
Xz=x.ZT() 
print(Xz) 
x1 = us(n) 
Yz=x1.ZT() 
print(Yz) 

Experiment 5.4 Z-Transform of x n½ ]= 1 
2 

n 
u n½ ]

This experiment discusses the python code to obtain the Z-transform of x n½ ]= 
1 
2 

n 
u n½ ] and the corresponding output, which is shown in Fig. 5.5. 

Inferences 
1. Figure 5.5 shows that the us variable is called from the lcapy package as a unit 

step sequence and multiplied by (1/2)n to get x[n]. 
2. The Z-transform of x[n] is obtained using ‘ZT’ python command, and the result is 

displayed in Fig. 5.5. This result confirms the theoretical result.
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(a) Pyhton code                               (b) Simulation result 

z/(z - exp(j)) 
z*(z - cos(1))/(z**2 - 2*z*cos(1) + 1) 

import lcapy 
from lcapy import n 
x=lcapy.exp(1j*n) 
y=lcapy.cos(n) 
Xz=x.ZT() 
print(Xz) 
Yz=y.ZT() 
print(Yz) 

Fig. 5.4 Python code to Experiment 5.3. (a) Pyhton code. (b) Simulation result 

2*z/(2*z - 1) 

from lcapy import n,us 
x = (1/2)**n*us(n) 
Xz=x.ZT() 
print(Xz) 

Fig. 5.5 Python code and its simulation result 

Task 
1. Write a python code to obtain the Z-transform of x n½ ]= 3 

4 
n 
u n½ ]. 

5.3 Inverse Z-Transform 

This section discusses some of the experiments related to the inverse Z-transform. 

Experiment 5.5 Inverse Z-Transform of X(z) = z-1 

The python code computes the inverse Z-transform of X(z) = z-1 , and the 
corresponding output is shown in Fig. 5.6. 

Inferences 
1. From Fig. 5.6a, it is possible to infer that ‘IZT’ python command is used to obtain 

the inverse Z-transform. 
2. After executing the python code given in Fig. 5.6a, the result obtained is shown in 

Fig. 5.6b. This result is in agreement with the theoretical result. 

Task 
1. Write a python code to obtain the inverse Z-transform of X(z) = z-4 . 

Experiment 5.6 Inverse Z-Transform of X(z) = 1/1 - z-1 

The python code, which computes the inverse Z-transform of X(z) = 1/1 - z-1 and 
the corresponding output, is shown in Fig. 5.7. From Fig. 5.7b, it is possible to



observe that the result obtained using python code is in agreement with the theoret-
ical result. 
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(a) Python Code                                     (b) Simulation result 

Piecewise((UnitImpulse(n - 1), n >= 0)) 

#Inverse z-transform of z^(-1) 
from lcapy import z 
X=z**(-1) 
x=X.IZT() 
print(x) 

Fig. 5.6 Python code to obtain the inverse z-transform of X(z) = z-1 and its result. (a) Python code. 
(b) Simulation result 

(a) Python Code                                     (b) Simulation result 

Piecewise((1, n >= 0)) 

#Inverse Z-transform  
import sympy  
import lcapy 
from lcapy import z 
X=1/(1-z**(-1)) 
x=X.IZT() 
print(x) 

Fig. 5.7 Python code to obtain the inverse Z-transform of X(z) = 1/1 - z-1 and its result. (a) 
Python code (b) Simulation result 

Inferences 
The inverse Z-transform of X(z) = 1/1- z-1 will be u[n], and the simulation result of 
the python code given in Fig. 5.7a is shown in Fig. 5.7b. This result is in agreement 
with the theoretical result. 

Task 
1. Write a python code to compute the inverse Z-transform of X(z) = 1/1 - z-2 . 

5.4 Family of Fourier Series and Transforms 

Based on the nature of the signal, the Fourier family can be classified into Fourier 
series or Fourier transform. Fourier series is an effective tool to analyse the periodic 
signal. If the signal is aperiodic, Fourier transform can be used to analyse the signal. 
Fourier transform can be viewed as the Fourier series when the period ‘T’ tends to 
infinity. The Fourier transform is a generalization of the Fourier series representation 
of functions. The Fourier series is limited to periodic functions, while Fourier



ð

S. No. Fourier family

transform can be used for periodic and aperiodic functions. The family of Fourier 
series and transform is given in Table 5.2. 

5.4 Family of Fourier Series and Transforms 175

Table 5.2 Family of Fourier series and transforms 

Nature of the signal 

Continuous/ 
discrete 

Periodic/ 
aperiodic 

1 Continuous Periodic Fourier series 

2 Continuous Aperiodic Continuous-time Fourier transform (CTFT) 

3 Discrete Periodic Discrete-time Fourier series 

4 Discrete Aperiodic Discrete-time Fourier transform (DTFT) 

Fig. 5.8 Spectrum of 
continuous-time signal CTFT 

murtcepSlangiS 

x(t) X(Ω) 

5.4.1 Continuous-Time Fourier Transform (CTFT) 

The continuous-time Fourier transform (CTFT) of the signal x(t) is represented as 

X Ωð Þ= 

1

-1 
x tð Þe- jΩt dt ð5:4Þ 

It can be interpreted as taking the inner product of the signal x(t) with the basis 
function e-jΩt . This is represented as 

XðΩÞ= hxðtÞ, e- jΩti 5:5Þ 

Equations (5.4) and (5.5) are termed as ‘analysis equation’. The result of 
continuous-time Fourier transform is termed as ‘spectrum’, which is illustrated in 
Fig. 5.8. The equations reveal that how an arbitrary signal x(t) can be expanded as a 
sum of elementary harmonic functions. The elementary harmonic functions are 
termed as the basis function. The Fourier transform uses complex exponentials of 
various frequencies as its basis function. 

CTFT is a complex function of ‘Ω’ in the range - 1 < Ω < 1. CTFT exists if 
the signal x(t) satisfies Dirichlet conditions, which are given below: 

1. The signal x(t) has a finite number of discontinuities and a finite number of 
maxima and minima in any finite interval. 

2. The signal x(t) must be absolutely integrable, which is represented as



-1
x tð Þj jdt<1.
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Fig. 5.9 Forward and 
inverse CTFT 

1 

Inverse CTFT refers to obtaining the signal from the spectrum, which is also 
called as ‘synthesis equation’. The inverse CTFT is given by 

x tð Þ= 
1 
2π 

1

-1 
X Ωð ÞejΩt dΩ ð5:6Þ 

From Eq. (5.6), it is possible to interpret that Fourier synthesis formula recon-
structs a signal using a set of scaled complex exponentials. 

Analysis refers to the decomposition of the signal into its constituent components 
specifying the weights of the basis functions in the expansion. Synthesis refers to the 
reconstruction of the signal from the basis functions chosen to represent the signal. 
The analysis and synthesis function of CTFT of the signal x(t) is illustrated in 
Fig. 5.9. 

(a) Forward Fourier Transform 
The continuous-time Fourier transform of unit impulse signal is given by 

δ Ωð Þ= 

1

-1 
δ tð Þe- jΩt dt ð5:7Þ 

Upon simplifying the above equation, we get

δ Ωð  Þ= 1 ð5:8Þ
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From Eq. (5.8), it is possible to interpret that unit impulse contains a compo-
nent at every frequency. Another way to interpret the result is to make up δ(t); 
one needs infinite number of equal frequency components. 

(b) Inverse Fourier transform of δ(Ω)
The inverse CTFT of δ(Ω) is given by 

x tð Þ= 
1 
2π 

1

-1 
X Ωð ÞejΩt dΩ ð5:9Þ 

Substituting X(Ω) = δ(Ω) in the above expression, we get 

F- 1 δ Ωð Þf g= 
1 
2π 

1

-1 
δ Ωð ÞejΩt dΩ ð5:10Þ 

Using the sampling property of the impulse signal, the above expression can 
be simplified as 

F- 1 δ Ωð Þf g= 
1 
2π

ð5:11Þ 

From the above expression, it is possible to interpret that Fourier transform of 
a constant signal is 

1 $ 2πδ Ωð Þ  

Thus, Fourier transform of a DC signal results in an impulse signal in the 
frequency domain. 

Experiment 5.7 Computation of Forward CTFT of the Impulse Signal 
and Inverse CTFT of the Resultant Forward CTFT 
This experiment discusses the computation of forward CTFT of the impulse signal 
and inverse CTFT of the resultant forward CTFT. The python code that obtains the 
unit impulse signal spectrum is shown in Fig. 5.10, and the corresponding output is 
in Fig. 5.11. 

Inferences 
From Fig. 5.11, it is possible to observe that Fourier transform of an impulse 
function is a constant function in the frequency domain. The impulse function is a 
compact function in time domain, whereas its spectrum exists in all frequencies. 
Thus compression in time domain is equivalent to expansion in frequency domain 
and vice versa.
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import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(-5,6,100) 
w=np.linspace(-50,60,1000) 
x=(t==0) 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('t-->'),plt.ylabel('$\u03B4[t]$'),plt.title('Input Signal') 
y1=np.zeros(len(w)) 
for i in range(len(t)): 
    y=x[i]*np.exp(-1j*w*t[i]) 
    y1=y1+y 
y2=np.zeros(len(t)) 
for i in range(len(w)): 
    y3=y1[i]*np.exp(1j*w[i]*t) 
    y2=y2+y3 
plt.subplot(2,2,2),plt.plot(w,np.abs(y1),linewidth=3),plt.title('Magnitude response') 
plt.xlabel('$Ω$-->'),plt.ylabel('|\u03B4(${Ω}$|') 
plt.subplot(2,2,3),plt.plot(w,np.angle(y1),linewidth=3),plt.title('Phase response') 
plt.xlabel('$Ω$-->'),plt.ylabel('$\phi({Ω})$')  
plt.subplot(2,2,4),plt.plot(t,y2/np.max(y2)),plt.xlabel('t-->'),plt.ylabel('$\u03B4[t]$'), 
plt.title('Reconstructed Signal') 
plt.tight_layout() 

Fig. 5.10 Python code to obtain the spectrum of unit impulse signal 
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Fig. 5.11 Result of python code shown in Fig. 5.10
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Task 
1. Modify the above code to obtain the Fourier transform of x(t) = δ(t - 5) and 

comment on the observed result. 

5.4.2 Fourier Transform of Standard Test Signals 

This section focuses on obtaining the spectrum of standard test signals using CTFT. 
The standard test signals include sinusoidal signal, Gaussian function and pulse 
signal. 

Experiment 5.8 CTFT of the Complex Exponential Signal (ejΩ0t and e- jΩ0t) 
In this experiment, the objective is to obtain the spectrum of the signal ejΩ0t and 
e- jΩ0t. Both the spectrum should be given an impulse corresponding to the fre-
quency ‘Ω0’. The python code which obtains the spectrum of the signals ejΩ0t and 
e- jΩ0t is shown in Fig. 5.12 and the corresponding output is shown in Fig. 5.13. To  
show the change in the spectrum between the signals ejΩ0t and e- jΩ0t, double-sided 
spectrum is drawn instead of single-sided spectrum. 

import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(-50,50,1000) 
w=np.linspace(-5,5,100) 
yy=np.exp(1j*(np.pi/4)*t) 
xx=np.exp(-1j*(np.pi/4)*t) 
plt.subplot(2,2,1),plt.plot(t,yy,linewidth=2),plt.xlabel('t-->'),plt.ylabel('x$_1$(t)') 
plt.title('e$^{jΩot}$') 
plt.subplot(2,2,2),plt.plot(t,xx,linewidth=2),plt.xlabel('t-->'),plt.ylabel('x$_2$(t)') 
plt.title('e$^{-jΩot}$') 
y1=np.zeros(len(w)) 
y2=np.zeros(len(w)) 
for i in range(len(t)): 
    y=yy[i]*np.exp(-1j*w*t[i]) 
    y1=y1+y 
    z=xx[i]*np.exp(-1j*w*t[i]) 
    y2=y2+z 
plt.subplot(2,2,3),plt.plot(w,np.abs(y1)/len(t),linewidth=2) 
plt.xlabel('$Ω$-->'),plt.ylabel('|X$_1$(${Ω}$|'),plt.title('Double sided Spectrum') 
plt.subplot(2,2,4),plt.plot(w,np.abs(y2),linewidth=2) 
plt.xlabel('$Ω$-->'),plt.ylabel('|X$_2$(${Ω}$)|'),plt.title('Double sided Spectrum')  
plt.tight_layout() 

Fig. 5.12 Python code to obtain the spectrum of complex exponential signal
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Fig. 5.13 Spectrum of the complex exponential signals 

Inferences 
From Fig. 5.13, it is possible to observe that both the signals ejΩ0t and e- jΩ0t produce 
single impulse atΩ = Ω0 and atΩ = -Ω0. In this case, the value of the frequency is 
10 Hz; hence, it is possible to observe impulse at π=4Hz and at - π=4Hz, respectively, 
for the signal ejΩ0t and e- jΩ0t. 

Task 
1. Obtain the CTFT of the signal x tð Þ= ejΩ0t þ e- jΩ0t and comment on the observed 

result. 

Experiment 5.9 Fourier Transform of x(t) = cos(Ωt) 
According to Euler’s formula, the cos(Ωt) can be expressed as 

cos Ωtð Þ= 
ejΩt þ e- jΩt 

2
ð5:12Þ 

Hence, the signal x(t) is expressed as 

cos Ωtð  Þ= 
1 
2 

ejΩt þ e- jΩt ð5:13Þ 

Taking Fourier transform on both sides, we get



ð
ð

g ð

g ð
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#Spectrum of Cosine wave 
import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(-50,50,1000) 
w=np.linspace(-5,5,1000) 
yy=np.cos((np.pi/4)*t) 
plt.subplot(2,1,1),plt.plot(t,yy,linewidth=1.5),plt.xlabel('t-->'),plt.ylabel('x$_1$(t)') 
plt.title('cos(Ω$_o$t)') 
y1=np.zeros(len(w)) 
for i in range(len(t)): 
    y=yy[i]*np.exp(-1j*w*t[i]) 
    y1=y1+y 
plt.subplot(2,1,2),plt.plot(w,np.abs(y1)/len(t),linewidth=1.5) 
plt.xlabel('$Ω$-->'),plt.ylabel('|X$_1$(${Ω}$)|'),plt.title('Double sided Spectrum')  
plt.tight_layout() 

Fig. 5.14 Python code to obtain the spectrum of cosine wave 

FT cos Ωtð Þf g= 
1 
2 

FT ejΩt þ FT e- jΩt ð5:14Þ 

From the previous example, 

FT ejΩt = 2πδ Ω-Ω0ð Þ 5:15Þ 
FT e- jΩt = 2πδ Ωþ Ω0ð Þ 5:16Þ 

Substituting Eqs. (5.15) and (5.16) in Eq. (5.14), we get 

FT cos Ωtð Þf g= 
1 
2 

2πδ Ω-Ω0ð Þ þ  2πδ Ωþ Ω0ð Þf 5:17Þ 

Simplifying the above expression, we get 

FT cos Ωtð Þf g= π δ  Ω-Ω0ð Þ þ  δ Ωþ Ω0ð Þf 5:18Þ 

Thus, the spectrum of the cosine signal has two impulses placed symmetrically at 
the frequency of the cosine and its negative. 

The python code, which obtains the spectrum of cosine wave, is shown in 
Fig. 5.14, and the corresponding output is shown in Fig. 5.15. 

Inferences 
From Fig. 5.15, it is possible to observe that the Fourier transform of the cosine 
signal has two impulses placed symmetrically at the frequency of the cosine and its 
negative which is in agreement with the theoretical result.
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Fig. 5.15 Result of python code shown in Fig. 5.14 

Fig. 5.16 Representation of 
the signal x(t) 

t -τ τ0 

1 x(t) 

Task 
1. Write a python code to illustrate the fact that the magnitude spectrum of sine wave 

and cosine wave of same amplitude, frequency and phase are alike. 

1, tj j< τð Þ
0, otherwise 

The given signal is a rectangular pulse. It is shown in Fig. 5.16. 
The expression for the CTFT of the signal x(t) is given by 

X Ωð  Þ= 

1

-1 
x tð Þe- jΩt dt ð5:19Þ 

In this case, the signal exists from –τ to τ; hence, the limit of integration is 
modified as
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X Ωð Þ= 

τ

- τ 

x tð Þe- jΩt dt ð5:20Þ 

In the limit –τ to τ, the value taken by the signal x(t) is one; hence, the above 
equation can be expressed as 

X Ωð Þ= 

τ

- τ 

1× e- jΩt dt ð5:21Þ 

Upon performing the integration, we get 

X Ωð Þ= 
e- jΩt

- jΩ 

τ

- τ 

ð5:22Þ 

Substituting the upper and lower limits in the above expression, we get 

X Ωð Þ= 
e- jΩτ - ejΩτ

- jΩ ð5:23Þ 

The above equation can be written as 

X Ωð Þ= 
ejΩτ - e- jΩτ 

jΩ 

The above equation can be simplified as 

X Ωð Þ= 2 
sin Ωτð Þ  

Ω 

Multiplying and dividing the above equation by ‘τ’, we get 

X Ωð Þ= 2τ 
sin Ωτð Þ  
Ωτ = 2τ sin c Ωτð Þ ð5:24Þ 

From the above expression, it is possible to conclude that Fourier transform of a 
rectangular function will result in a sinc function. 

The objective is to write a python code to generate two rectangular functions with 
different width. Pass these two rectangular functions through Fourier transform to 
obtain their spectra. The python code, which generates two rectangular functions of 
different width and their corresponding spectra, is shown in Fig. 5.17, and the 
corresponding output is obtained in Fig. 5.18.
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import numpy as np 
import matplotlib.pyplot as plt 
t=np.linspace(-50,50,1000) 
w=np.linspace(-5,5,100) 
yy=(abs(t)<15) 
xx=(abs(t)<2) 
plt.subplot(2,2,1),plt.plot(t,yy,linewidth=1.5),plt.xlabel('t-->'),plt.ylabel('x$_1$(t)') 
plt.title('Rectangular Function-1') 
plt.subplot(2,2,2),plt.plot(t,xx,linewidth=1.5),plt.xlabel('t-->'),plt.ylabel('x$_2$(t)') 
plt.title('Rectangular Function-2') 
y1=np.zeros(len(w)) 
y2=np.zeros(len(w)) 
for i in range(len(t)): 
    y=yy[i]*np.exp(-1j*w*t[i]) 
    y1=y1+y 
    z=xx[i]*np.exp(-1j*w*t[i]) 
    y2=y2+z 
plt.subplot(2,2,3),plt.plot(w,np.abs(y1)/len(t),linewidth=1.5) 
plt.xlabel('$Ω$-->'),plt.ylabel('|X$_1$(${Ω}$)|'),plt.title('Spectrum-1') 
plt.subplot(2,2,4),plt.plot(w,np.abs(y2),linewidth=1.5) 
plt.xlabel('$Ω$-->'),plt.ylabel('|X$_2$(${Ω}$)|'),plt.title('Spectrum-2')  
plt.tight_layout() 

Fig. 5.17 Python code to obtain the spectrum of rectangular function 
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Inferences 
The following inferences can be obtained by observing Fig. 5.18: 

1. Two rectangular functions, rectangular function-1 and rectangular function-2, are 
generated. 

2. The width of rectangular function-1 is larger than the width of rectangular 
function-2. 

3. The spectrum of the rectangular function is observed to be a sinc function. 
4. The main lobe width of spectrum-1 is narrower when compared to the main lobe 

width of spectrum-2. 
5. This example illustrates the fact that compression in the time domain leads to 

expansion in the frequency domain and vice versa. 

Task 
1. Instead of rectangular pulse, obtain the magnitude spectrum of triangular pulse 

signal and comment on the observed result. Triangular pulse can be obtained by 
convolving two rectangular pulse signals. 

1, Ωj j<Ω0ð Þ
0, otherwise 

The expression for inverse continuous-time Fourier transform is given by 

x tð Þ= 
1 
2π 

1

-1 
X Ωð ÞejΩt dΩ ð5:25Þ 

The spectrum exists from -Ω0 to Ω0; hence, the limit of integration has to be 
changed. This is represented as 

x tð Þ= 
1 
2π 

Ω0

-Ω0 

X Ωð ÞejΩt dΩ ð5:26Þ 

In the interval from -Ω0 to Ω0, the value of the spectrum is unity. This is 
expressed as 

x tð Þ= 
1 
2π 

Ω0

-Ω0 

1× ejΩt dΩ ð5:27Þ 

Upon performing the integration, we get
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x tð Þ= 
1 
2π 

ejΩt 

jt 

Ω0

-Ω0 

ð5:28Þ 

Substituting the upper and lower limits, we get 

x tð Þ= 
1 
2π 

ejΩ0t - e- jΩ0t 

jt
ð5:29Þ 

The above equation can be written as 

x tð Þ= 
1 
πt 

ejΩ0t - e- jΩ0t 

2j
ð5:30Þ 

The above equation can be expressed as 

x tð Þ= 
sin Ω0tð Þ  

πt
ð5:31Þ 

Thus, inverse Fourier transform of a rectangular function results in a sinc 
function. Comparing this example with the previous example, it is possible to 
write that rectangular function and sinc function are dual functions in Fourier 
domain. 

The aim of this experiment is to prove that rectangular and sinc functions are dual 
functions in the Fourier domain. In the previous experiment, it is possible to prove 
that Fourier transform of rectangular function results in sinc function. In this 
experiment, the objective is to prove that Fourier transform of sinc function will 
result in a rectangular function. Execute the python code given in Fig. 5.19 and enter 
the number ‘1’. The simulation result of this python code is shown in Fig. 5.20. 

Inferences 
From Fig. 5.20, it is possible to observe that Fourier transform of sinc function 
results in a rectangular function. Also, it is possible to infer that compression in one 
domain (time) corresponds to expansion in another domain (frequency) and vice 
versa. 

Task 
1. What is the reason for ringing effect observed in the magnitude spectrum of sinc 

signal? Is there any way to minimize the ringing effect? 

Experiment 5.12 CTFT of a Gaussian Function 
The objective of this experiment is to prove that Fourier transform of a Gaussian 
function results in a Gaussian function. The expression for Gaussian function with 
mean μ and standard deviation σ is given by
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#Fourier transform of Sinc and Gaussian functions 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of sinc function 
t=np.linspace(-5,5,1000) 
w=np.linspace(-60,60,1000) 
S=int(input("Enter : (1 = Sinc, 2 = Gaussian) : ")); 
if (S==1): 
    x1=np.sinc(t); 
    x2=np.sinc(2*t) 
    y1=np.zeros(len(w)) 
    y2=y1; 
    for i in range(len(t)): 
        yx1=x1[i]*np.exp(-1j*w*t[i]); 
        yx2=x2[i]*np.exp(-1j*w*t[i]); 
        y1=y1+yx1;#Step 2: Spectrum of sinc function 
        y2=y2+yx2;#Step 2: Spectrum of sinc function 
elif(S==2): 
    mu,sigma1,sigma2=0,0.1,0.5; #Mean and sigma values 
    x1=np.exp(-np.power(t - mu, 2.) / (2 * np.power(sigma1, 2.))); 
    x2=np.exp(-np.power(t - mu, 2.) / (2 * np.power(sigma2, 2.))); 
    y1=np.zeros(len(w)) 
    y2=y1; 
    for i in range(len(t)): 
        yx1=x1[i]*np.exp(-1j*w*t[i]); 
        yx2=x2[i]*np.exp(-1j*w*t[i]); 
        y1=y1+yx1;#Step 2: Spectrum of Gaussian function 
        y2=y2+yx2;#Step 2: Spectrum of Gaussian function 
else: 
    print('Please enter the correct number')  
    x1,x2,y1,y2=np.zeros(len(t)),np.zeros(len(t)),np.zeros(len(w)),np.zeros(len(w)); 
#Step 3: Plotting the results 
plt.subplot(2,2,1),plt.plot(t,x1),plt.xlabel('t-->'),plt.ylabel('x$_1$(t)'),plt.title('Signal-1'), 
plt.subplot(2,2,2),plt.plot(t,x2),plt.xlabel('t-->'),plt.ylabel('x$_2$(t)'), plt.title('Signal-2') 
plt.subplot(2,2,3),plt.plot(w,np.abs(y1)),plt.xlabel('$Ω$-->'),plt.ylabel('|X$_1$(${Ω}$)|'), 
plt.title('Spectrum of x$_1$(t)'),plt.subplot(2,2,4),plt.plot(w,np.abs(y2)), plt.xlabel('$Ω$-->'), 
plt.ylabel('|X$_2$(${Ω}$)|'),plt.title('Spectrum of x$_2$(t)') 
plt.tight_layout() 

Fig. 5.19 Python code to obtain the spectrum of sinc and Gaussian function 

x tð Þ= 
1 

σ 2π
p e-

t- μð Þ2 
2σ2 ð5:32Þ 

If the mean of the Gaussian function is zero, the above expression is given by 

x tð  Þ= 
1 

σ 2π
p e-

t2 

2σ2 ð5:33Þ 

Differentiating both sides with respect to t, we get
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Fig. 5.20 Result of python code shown in Fig. 5.19 

dx tð Þ  
dt 

= 
1 

σ 2π
p e-

t2 

2σ2 ×
- 2t 
2σ2

ð5:34Þ 

The above equation can be simplified as 

dx tð Þ  
dt 

= 
1 

σ 2π
p e-

t2 

2σ2 ×
- t 
σ2

ð5:35Þ 

Substituting Eq. (5.32) in Eq. (5.35), we get 

dx tð Þ  
dt 

= x tð Þ× - t 
σ2

ð5:36Þ 

The above equation can be rearranged as 

dx  tð Þ  
dt 

= -
1 
σ2 

tx tð Þ ð5:37Þ 

Taking Fourier transform on both sides, we get
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FT 
dx tð Þ  
dt 

= -
1 
σ2 

FT tx tð Þf g ð5:38Þ 

Using the following fact 

FT 
dx tð Þ  
dt 

= jΩX Ωð Þ ð5:39Þ 

FT tx tð Þf g= j 
dX Ωð Þ  
dΩ ð5:40Þ 

Substituting Eqs. (5.39) and (5.40) in Eq. (5.38), we get 

jΩX Ωð Þ= -
1 
σ2 

× j 
dX Ωð Þ  
dΩ ð5:41Þ 

Simplifying the above expression, we get 

ΩX Ωð Þ= -
1 
σ2 

× 
dX Ωð Þ  
dΩ ð5:42Þ 

Upon rearranging the terms, we get 

dX Ωð Þ  
dΩ 

X Ωð Þ  = - σ2Ω ð5:43Þ 

Taking integral on both sides, we get 

dX Ωð Þ  
dΩ 

X Ωð Þ  = - σ2 ΩdΩ ð5:44Þ 

Upon integration, we get 

ln X Ωð Þ½ ]- ln X 0ð Þ½ ]= - σ2
Ω2 

2
ð5:45Þ 

Since the mean value of the Gaussian signal is assumed to be zero, the above 
equation can be written as 

ln X Ωð  Þ½ ]= - σ2
Ω2 

2
ð5:46Þ 

Taking exponential on both sides, we get
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Fig. 5.21 Spectra of Gaussian functions 

X Ωð Þ= e-
σ2Ω2 
2 ð5:47Þ 

From the above expression, it is possible to interpret that Fourier transform of a 
Gaussian function results in a Gaussian function. 

In this experiment, two Gaussian signals are generated with zero mean and 
standard deviation as σ1 = 0.01 and σ2 = 0.1, respectively. After generating the 
two Gaussian signals, their spectra are obtained by taking the Fourier transform. The 
python code, which does this task, is shown in Fig. 5.19. After executing this code, 
enter the number ‘2’. The simulation result is shown in Fig. 5.21. 

Inference 
1. From Fig. 5.21, it is possible to observe that two Gaussian functions with zero 

mean and standard deviation σ1 = 0.01 and σ2 = 0.1 are generated. 
2. Gaussian function-1 (x1) has a narrow spread, whereas Gaussian function-2 (x2) 

has a wider spread. 
3. Upon obtaining the spectra, it is possible to infer the fact that if the signal spread 

is narrow in time domain (Gaussian function-1), the corresponding spectrum has 
wide spread (spectrum of Gaussian function-1). 

4. On the other hand, if the Gaussian function has wide spread in time domain 
(Gaussian function-2), its spectrum is narrower (spectrum of Gaussian function-
2). 

5. This illustrates the fact that ‘Compression in one domain leads to expansion in 
another domain and vice-versa’.
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Task 
1. In the above experiment, Signal-1 and Signal-2 are Gaussian functions. Now 

multiply Signal-1 and Signal-2 to obtain Signal-3. Obtain the spectrum of Signal-
3 and comment on the observed result. 

5.4.3 Discrete-Time Fourier Transform (DTFT) 

Discrete-time Fourier transform is a transformation that maps the discrete-time 
signal into a complex valued function, which is given by 

X ejω = 
1 

n= -1 
x n½ ]e- jωn ð5:48Þ 

DTFT is a way to represent the frequency content of discrete-time signal. 
The magnitude and phase form of DTFT representation is given by 

X ejω = X ejω ejΦ ejωð Þ ð5:49Þ 

In the above expression, |X(ejω )| represents the magnitude of DTFT, and Φ(ejω ) 
represents the phase of DTFT. The magnitude spectrum determines the relative 
presence of a sinusoid in the signal x[n], whereas the phase spectrum determines 
how the sinusoids line up relative to one another to form the signal x[n]. The 
condition for the existence of DTFT is that the signal x[n] should be absolutely 
summable. The signal x[n] is absolutely summable if it obeys the following 
condition: 

1 

n= -1 
x n½ ]j j<1 5:50Þ 

The expression inverse discrete-time Fourier transform (IDTFT) expression is 
given by 

x n½ ]= 
1 
2π 

π

- π 

X ejω ejωn dω ð5:51Þ 

1, nj  j<N½ ]
0, otherwise 

The signal x[n] represents a rectangular pulse. The DTFT of x[n] is given by



192 5 Transforms

# Python code for DTFT of rectangular pulse signal 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
w=np.arange(-3*np.pi,3*np.pi,0.1) 
x=(n>=0) 
y=(n<=3) 
z=x*y 
plt.subplot(3,1,1),plt.stem(n,z),plt.xlabel('n-->'),plt.ylabel('x[n]') 
y1=np.zeros(len(w)) 
for i in range(len(n)): 
   y=z[i]*np.exp(-1j*w*n[i]) 
   y1=y1+y 
print(y1) 
plt.subplot(3,1,2),plt.plot(w,np.abs(y1),linewidth=3),plt.title('Magnitude response') 
plt.xlabel('$\omega$-->'),plt.ylabel('|X(${j\omega)}$|') 
plt.subplot(3,1,3),plt.plot(w,np.angle(y1),linewidth=3),plt.title('Phase response') 

Fig. 5.22 Python code for Experiment 5.13 

X ejω = 
N 

n= -N 

1× e- jωn 

Using the summation formula 
N 

n= -N 
an = 

aNþ1 - a-N 

a- 1 
, aj j< 1 

2N þ 1, a= 1 
, the above 

equation can be written as 

X ejω = 
e- jω Nþ1ð Þ - ejωN 

e- jω - 1 
, e- jω < 1 

The above equation can be simplified as 

X ejω = 
e- jωNe- jω - ejωN 

e- jω - 1 

The above equation can be written as 

X ejω = 
sin N þ 1 

2 ω 

sin ω 2 
if e- jω < 1 

This shows that Fourier transform of a rectangular pulse signal will result in a sinc 
function. 

Python code for the DTFT of rectangular pulse is given in Fig. 5.22, and its 
corresponding output is shown in Fig. 5.23.
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n--> 
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Phase response 
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Fig. 5.23 Simulation result of python code given in Fig. 5.22 

Fig. 5.24 Discrete-time 
LTI system 

x[n] y[n] 

X(e jω) Y(e jω) 

DT-LTI 

System 

H(e jω) 

h[n] 

Inferences 
From Fig. 5.23, it is possible to infer that the magnitude response of a rectangular 
function is a sinc function, which is in agreement with the theoretical result. 

Task 
1. In the above experiment, x[n] is a rectangular pulse signal. What will be the 

impact of increasing the width of the signal x[n] in the magnitude and phase 
responses? 

5.4.4 Analysis of Discrete-Time LTI System Using DTFT 

The block diagram of discrete-time LTI system with the input signal x[n], impulse 
response h[n] and the output signal y[n] is shown in Fig. 5.24. 

The relationship between the input and output of the system if it is LTI is given by 

y n½ ]= x n½ ] * h n½ ] ð5:52Þ 

Upon taking DTFT on both sides of the above equation, we get
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Y ejω =X ejω H ejω ð5:53Þ 

Equation (5.53) is obtained using the fact that convolution in time domain is 
equivalent to multiplication in the Fourier domain. 

The frequency response of the system from Eq. (5.53) can be expressed as 

H ejω = 
Y ejωð Þ  
X ejωð Þ ð5:54Þ 

The frequency response of the system is a combination of magnitude and phase 
responses. This is expressed as 

H ejω = H ejω ejϕ e
jωð Þ ð5:55Þ 

The frequency response defines how a complex exponential is changed in 
amplitude and phase by a system. 

Experiment 5.14 Computation of the Magnitude and Phase Responses 
of Discrete-Time System Using DTFT 
This experiment discusses the computation of magnitude and phase responses of DT 
system using DTFT. Let us consider two discrete-time systems and its impulse 
responses given by h1 n½ ]= 1 

2 , 
1 
2 and h2 n½ ]= 1 

2 , -
1 
2 . The python code, which 

obtains the magnitude and phase responses of the two systems, is shown in Fig. 5.25, 
and the corresponding output is shown in Fig. 5.26. 

Inferences 
From Fig. 5.26, the following inferences can be made: 

1. The magnitude response of system-1 shows that the system behaves like a 
lowpass filter. 

2. The magnitude response of system-2 shows that the system behaves like a 
highpass filter. 

3. The phase responses of both these systems reveal that both systems exhibit linear 
phase characteristics. 

4. The response of the two systems is in agreement with the theoretical result. 

Task 
1. From the magnitude response, it is possible to observe that the roll-off rate is not 

sharp? What has to be done to improve the roll-off rate?
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Impulse response of the two systems 
h1=[0.5,0.5] 
h2=[0.5,-0.5] 
#Step 2: Obtaining the frequency response 
w1, H1 = signal.freqz(h1,1) 
w2, H2 = signal.freqz(h2,1) 
angle_1 = np.unwrap(np.angle(H1)) 
angle_2 = np.unwrap(np.angle(H2)) 
#Step3 : Plotting the responses 
plt.subplot(2,3,1),plt.stem(h1),plt.xlabel('n-->'),plt.ylabel('h$_1$[n]') 
plt.title('Impulse response'),plt.subplot(2,3,2),plt.plot(w1, 10 * np.log10(abs(H1))) 
plt.xlabel('$\omega$-->'),plt.ylabel('|X(${j\omega}$)|'),plt.title('Magnitude response') 
plt.subplot(2,3,3),plt.plot(w1,(angle_1)),plt.xlabel('$\omega$--
>'),plt.ylabel('$\phi({j\omega})$') 
plt.title('Phase response'),plt.subplot(2,3,4),plt.stem(h2),plt.xlabel('n-->'),  
plt.ylabel('h$_2$[n]'),plt.title('Impulse response'),plt.subplot(2,3,5), 
plt.plot(w1, 10 * np.log10(abs(H2))),plt.xlabel('$\omega$-->'), 
plt.ylabel('|X(${j\omega}$)|'),plt.title('Magnitude response') 
plt.subplot(2,3,6),plt.plot(w1,(angle_2)),plt.xlabel('$\omega$-->'), 
plt.ylabel('$\phi({j\omega})$'),plt.title('Phase response') 
plt.tight_layout() 

Fig. 5.25 Python code to obtain the magnitude and phase response of the systems 
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Fig. 5.26 Responses of the two systems
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5.4.5 Discrete Fourier Transform 

Discrete Fourier transform (DFT) represents a signal in terms of sinusoids. For a 
discrete-time signal of length N, the basis functions are sinusoids of length N. 
Discrete Fourier transform is used when the signal is discrete-time and periodic 
only. In practice, it calculates the frequency domain representation of aperiodic 
signals in a given time interval, by assuming their periodic extension. The discrete 
Fourier transform (DFT) of the signal x[n] of length N is given by 

X k½ ]= 
N- 1 

n= 0 

x n½ ]e- j2π N kn , k= 0, 1, 2, . . . ,N- 1 ð5:56Þ 

The above expression can be written in the form of 

X k½ ]= 
N- 1 

n= 0 

x n½ ]Wkn 
N ð5:57Þ 

where 

WN = e- j2π N ð5:58Þ 

The signal is reconstructed by using the inverse discrete Fourier transform, which 
is defined as 

x n½ ]= 
1 
N 

N - 1 

k = 0 

X k½ ]ej2π N kn ð5:59Þ 

The forward transform is generally known as ‘analysis’, and the inverse transform 
is called as ‘synthesis’. 

Experiment 5.15 Plotting the Twiddle Factor for N = 8 
The aim of this experiment is to plot the twiddle factor of DFT with the length N = 8. 
The python code, which plots the twiddle factor or phase factor for N = 8, is shown 
in Fig. 5.27, and the corresponding output is shown in Fig. 5.28. 

Inference 
From Fig. 5.28, it is possible to observe that for the choice of N = 8, the unit circle is 
divided into eight equal portions. 

(a) DFT matrix 
The DFT matrix of order N is given by
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Fig. 5.27 Python code to 
plot the twiddle factor for 
N = 8 

import numpy as np 
import matplotlib.pyplot as plt 
n=8 
for k in range(0,n): 
    z=np.exp(2*np.pi*1j*k/n) 
    plt.plot([0,np.real(z)],[0,np.imag(z)]) 
    x=np.linspace(0,2*np.pi,100) 
    plt.plot(np.cos(x),np.sin(x),color='gray') 
    plt.axis('square') 

Fig. 5.28 Result of python 
code shown in Fig. 5.27 
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N 

ð5:60Þ 

Substituting N = 2, the DFT matrix of order 2 is given by 

W2 = 
1 1  

1 - 1
ð5:61Þ 

Substituting N = 4, the DFT matrix of order 4 is given by
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Fig. 5.29 Python code to 
obtain 4 point DFT matrix import numpy as np 

np.set_printoptions(precision=2, suppress=True) 
N=4; 
n=np.arange(0,N,1) 
k1=np.outer(n, n) 
D=np.exp(-1j*2*np.pi*k1/N) 
print('{} point DFT Matrix'.format(N)) 
print(D) 

Fig. 5.30 4 point DFT 
matrix 4 point DFT Matrix 

[[ 1.+0.j  1.+0.j  1.+0.j  1.+0.j] 

 [ 1.+0.j  0.-1.j -1.-0.j -0.+1.j] 

 [ 1.+0.j -1.-0.j  1.+0.j -1.-0.j] 

 [ 1.+0.j -0.+1.j -1.-0.j  0.-1.j]] 

W4 = 

1  1 1 1  

1 - j - 1 j 

1 - 1 1 - 1 

1 j - 1 - j 

ð5:62Þ 

Experiment 5.16 Computation of 4 Point DFT Matrix 
This experiment deals with the computation of 4 point DFT matrix using python. 
The python code of 4 point DFT matrix generation is given in Fig. 5.29, and its 
corresponding simulation output is shown in Fig. 5.30. 

The built-in function dft available in scipy.linalg can be used to obtain the DFT 
matrix. The python code to obtain the DFT matrix of order N = 4 is shown in 
Fig. 5.31a, and the corresponding output is shown in Fig. 5.31b. 

Inferences 
The python code to compute the 4 point DFT matrix is shown in Fig. 5.29. From this 
figure, it is possible to observe that the DFT computation formula is implemented in 
python. Also, it is possible to see that ‘np.outer’ python command is used to generate 
outer product of two vectors (1 for time index (n) and other for frequency index (k)). 
From this Fig. 5.31, it is possible to observe that dft python command called from the 
linalg library package to compute the DFT matrix. In both these methods, the 
simulation result is in agreement with the theoretical result.
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(a) Python code                                    (b) Simulation result 

[[ 1.+0.j  1.+0.j  1.+0.j  1.+0.j] 

 [ 1.+0.j  0.-1.j -1.-0.j -0.+1.j] 

 [ 1.+0.j -1.-0.j  1.+0.j -1.-0.j] 

 [ 1.+0.j -0.+1.j -1.-0.j  0.-1.j]] 

from scipy.linalg import dft 
import numpy as np 
np.set_printoptions(precision=2, suppress=True) 
N=4 
W= dft(N) 
print(W) 

Fig. 5.31 Python code to obtain the DFT matrix and its result. (a) Python code. (b) Simulation 
result 

(a) Python code                                          (b) Simulation result 

Rank of the matrix is 4 

from scipy.linalg import dft 
from numpy.linalg import matrix_rank 
import numpy as np 
np.set_printoptions(precision=2, suppress=True) 
N=4 
W= dft(N) 
rank=matrix_rank(W) 
print("Rank of the matrix is {}".format(rank)) 

Fig. 5.32 Python code to compute the rank of the matrix and its result. (a) Python code. (b) 
Simulation result 

Experiment 5.17 Computation of the Rank of DFT Matrix of Order 4 
The python code to obtain the rank of 4 × 4 DFT matrix is shown in Fig. 5.32a, and 
the corresponding output is shown in Fig. 5.32b. 

Inference 
From Fig. 5.32b, it is possible to observe that the rank of 4 × 4 DFT matrix is 
4. Similarly, it is possible to prove that the rank of N × N DFT matrix is N. Full rank 
of the matrix indicates that all rows and columns are linearly independent. 

Task 
1. Investigate the nature of DFT matrix. Find whether the DFT matrix is unitary 

or not. 

Experiment 5.18 Computattion of DFT of a Sequence Using DFT Matrix 
This experiment deals with the computation of DFT of a input sequence using DFT 
matrix. Let us consider the input sequence x[n] = {1, 1, 1, 1}. The python code to 
obtain 4 point DFT of the sequence x[n] is given in Fig. 5.33, and the corresponding 
output obtained is {4, 0, 0, 0}.
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Fig. 5.33 Python code to 
obtain DFT of a sequence 
using DFT matrix 

from scipy.linalg import dft 
import numpy as np 
np.set_printoptions(precision=2, suppress=True) 
N=4 
x=np.ones(N) 
W= dft(N) 
X=W@x # matrix multiplication 
print(np.abs(X)) 

Fig. 5.34 Python code to 
compute inverse DFT using 
DFT matrix 

from scipy.linalg import dft 
import numpy as np 
np.set_printoptions(precision=2, suppress=True) 
N=4 
X=[4,0,0,0] 
W= dft(N) 
x=(W@X)/N 
print(np.abs(x)) 

Inference 
The signal x[n] is a DC signal, which is given by x[n] = {1, 1, 1, 1}. The DFT of the 
sequence x[n] is obtained as X[k] = {4, 0, 0, 0}. The maximum energy of the 
sequence x[n] is packed into one transform coefficient. This is through energy 
compaction property of DFT. In Fig. 5.33, the symbol (‘@’) denotes matrix multi-
plication in python. 

Experiment 5.19 Computation of Inverse DFT Through DFT Matrix 
Let us consider the DFT coefficients X[k]= {4, 0, 0, 0}. The python code to compute 
the inverse DFT of X[k]= {4, 0, 0, 0} is given in Fig. 5.34. After executing this code, 
we get the result of {1, 1, 1, 1}, which is in agreement with the theoretical result. 

Inference 
The inverse DFT of X[k] = {4, 0, 0, 0} is x[n] = {1, 1, 1, 1}. The experimental result 
is in agreement with the fact that DFT is invertible. This is to inform that the inverse 
DFT computation is done by the forward DFT matrix, which can be seen in 
Fig. 5.34. 

5.4.6 Properties of DFT 

Discrete Fourier transform is applied to discrete-time signal x[n] that are zero for 
n < 0  and  n ≥ N. However, the discrete-time signal x[n] must be considered a 
periodic signal. Therefore, some of the DFT properties are based on modulo N or



mod N operation. The modulo operation yields a division’s remainder or signed 
remainder after dividing one number by another. For example, (5 mod 2), the result 
will be ‘1’ (i.e. remainder value getting 5 divided by 2). 
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#Linearity property of DFT 
import numpy as np 
import matplotlib.pyplot as plt 
x1=[1,1,1,1,1,1,1,1] 
x2=[1,-1,1,-1,1,-1,1,-1] 
a,b=5,10 
x3=np.add(np.multiply(a,x1),np.multiply(b,x2)) 
N=len(x2) 
n=np.arange(0,N,1) 
k=np.arange(0,N,1) 
k1=np.outer(n, k) 
D=np.exp(-1j*2*np.pi*k1/N)#DFT matrix 
X1=np.dot(D,x1) 
X2=np.dot(D,x2) 
X3=np.dot(D,x3) 
X4=a*X1+b*X2 
plt.subplot(2,2,1),plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('x$_1$[n]') 
plt.title('x$_1$[n]'), plt.subplot(2,2,2),plt.stem(n,x2),plt.xlabel('n-->'), 
plt.ylabel('x$_2$[n]'),plt.title('x$_2$[n]') 
plt.subplot(2,2,3), plt.stem(k,X1),plt.xlabel('k-->'),plt.ylabel('X$_1$[k]') 
plt.title('X$_1$[k]'),plt.subplot(2,2,4),plt.stem(k,X2),plt.xlabel('k-->'), 
plt.ylabel('X$_2$[k]'),plt.title('X$_2$[k]'),plt.tight_layout() 
plt.figure(2),plt.subplot(3,1,1),plt.stem(n,x3),plt.xlabel('n-->'), 
plt.ylabel('x$_3$[n]'),plt.title('x$_3$[n]=a*x$_1$[n]+b*x$_2$[n]') 
plt.subplot(3,1,2),plt.stem(k,X3),plt.xlabel('k-->'),plt.ylabel('X$_3$[k]') 
plt.title('X$_3$[k]'),plt.subplot(3,1,3),plt.stem(k,X4),plt.xlabel('k-->'), 
plt.ylabel('X$_4$[k]'),plt.title('X$_4$[k]=a*X$_1$[k]+b*X$_2$[k]') 
plt.tight_layout() 

Fig. 5.35 Python code for linearity property 

Experiment 5.20 Verification of the Linearity Property of DFT 
The DFT of a linear combination of two sequences is the linear combination of the 
DFT of the individual sequences. The DFT property is given by 

DFT αx1 n½ ] þ  βx2 n½ ]f g= αX1 k½ ] þ  βX2 k½ ] ð5:63Þ 

The python code, which verifies the linearity property of DFT, is shown in 
Fig. 5.35, and the corresponding output is shown in Fig. 5.36. 

Inferences 
The following inferences can be made from this experiment:
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Fig. 5.36 Verification of the linearity property of DFT 

1. From Fig. 5.35, the input signals chosen to prove the linearity property of DFT 
are x1[n]= {1, 1, 1, 1, 1, 1, 1}, which is a DC signal, and x2[n] = {1,-1, 1,-1,-
1, 1, -1} which is an AC signal. The scaling factors chosen in this example are 
a = 5, b = 10. 

2. From Fig. 5.36, it is possible to observe the following facts: 

(a) DFT of the DC signal x1[n] is represented as X1[k], which exhibits peak at 
k = 0. DFT of the signal x2[n] shows the peak at k = 4. 

(b) The DFT of ax1[n] +  bx2[n] is equal to aX1[k] +  bX2[k]. This implies that DFT 
obeys homogeneity and additivity properties; hence, it is a linear transform. 

Experiment 5.21 Verification of Circular Shift Property of DFT 
The circular shift property of DFT is expressed as 

x n-mð ÞmodN½ ] $DFT e- j2π N km X k½ ] ð5:64Þ 

The python code to illustrate the circular shift property of DFT is shown in 
Fig. 5.37, and the corresponding output is shown in Fig. 5.38. 

Inferences 
After executing the python code given in Fig. 5.37, the result of input signal x[n] is  
{4, 3, 2, 1}, and the circularly shifted sequence with k = 2 is obtained as {2, 1, 4, 3}. 
The DFT of the input sequence x[n] and its circularly shifted version is shown in 
Fig. 5.38. From this figure, it is possible to confirm that the magnitude spectrum of 
both sequences is the same, whereas the phase spectrum is different. This indicates 
that ‘time shift in the time domain corresponds to phase shift in the frequency 
domain’. 

Experiment 5.22 Verification of the Parseval’s Relationship of DFT 
According to Parseval’s relation, energy in time domain is equivalent to energy in 
frequency domain.
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# Python code for circular shift property 
import numpy as np 
import matplotlib.pyplot as plt 
x=[4,3,2,1] 
z=[] 
k=2# Circular shifting factor 
for i in range(len(x)): 
    m=np.mod((i-k),len(x)) 
    y=x[m] 
    z=np.append(z,y) 
N=len(x) 
n=np.arange(0,N,1) 
k=np.arange(0,N,1) 
k1=np.outer(n, k) 
D=np.exp(-1j*2*np.pi*k1/N)#DFT matrix 
X1=np.dot(D,x) # DFT computation of x[n] 
X2=np.dot(D,z) # DFT computation of x[n-k] 
plt.figure(1),plt.subplot(3,1,1),plt.stem(n,x),plt.xlabel('n-->') 
plt.ylabel('x[n]'),plt.title('Input sequence') 
plt.subplot(3,1,2),plt.stem(k,np.abs(X1)),plt.xlabel('k-->') 
plt.ylabel('|X[k]|'),plt.title('Magnitude Response') 
plt.subplot(3,1,3),plt.stem(k,(np.angle(X1))),plt.xlabel('k-->') 
plt.ylabel('$\phi$[k]'),plt.title('Phase Response'),plt.tight_layout() 
plt.figure(2),plt.subplot(3,1,1),plt.stem(n,z),plt.xlabel('n-->') 
plt.ylabel('z[n]'),plt.title('Circularly shifted Sequence') 
plt.subplot(3,1,2),plt.stem(k,np.abs(X2)),plt.xlabel('k-->') 
plt.ylabel('|Z[k]|'),plt.title('Magnitude Response') 
plt.subplot(3,1,3),plt.stem(k,(np.angle(X2))),plt.xlabel('k-->') 
plt.ylabel('$\phi$[k]'),plt.title('Phase Response'),plt.tight_layout() 

Fig. 5.37 Python code to illustrate circular shifting property of DFT 
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Fig. 5.38 Simulation result of Python code given in Fig. 5.37
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Fig. 5.39 Python code for 
Parseval’s relation # Python code for Parseval's relation 

import numpy as np 
np.set_printoptions(precision=2, suppress=True) 
x=[1,2,3,4]; 
N=len(x); 
n=np.arange(0,N,1); 
k=np.arange(0,N,1); 
k1=np.outer(n, k) 
D=np.exp(-1j*2*np.pi*k1/N)# DFT matrix 
print('Input Sequence x[n]: ', x) 
y=np.sum((np.abs(x)**2)) 
print('\u03A3|x[n]|^2: ', y) 
Y1=np.dot(D,x) # DFT Computation 
print('DFT output X[k]: ', Y1) 
Y=np.sum((np.abs(Y1)**2))/N 
print('\u03A3|X[k]|^2: ', Y) 

Fig. 5.40 Result of 
Parseval’s relation property Input Sequence x[n]:  [1, 2, 3, 4] 

Σ|x[n]|^2:  30 
DFT output X[k]:  [10.+0.j -2.+2.j -2.-0.j -2.-2.j] 
Σ|X[k]|^2:  30.0 

N- 1 

n= 0 

x n½ ]j j2 = 
1 
N 

N- 1 

k = 0 

X k½ ]j j2 ð5:65Þ 

The python code to verify the Parseval’s relation of DFT is given in Fig. 5.39, and 
its simulation output is shown in Fig. 5.40. 

Inference 
From Fig. 5.40, it is possible to confirm that the energy in time domain and the 
energy in the frequency domain are the same. Hence, converting the time domain 
signal into the frequency domain using DFT always preserves energy. Therefore, the 
perfect reconstruction of the original signal from the frequency components is 
possible for the DFT. 

5.4.7 Limitations of Fourier Transform 

The basis function of Fourier transform is a complex exponential, which oscillates 
for all the time. This means that Fourier transform describes frequency components 
in the signal averaged over all the time. It is difficult for the Fourier transform to 
represent signals that are localized in time. Hence, Fourier transform is not an



effective tool to analyse non-stationary signals. To overcome this drawback, time 
localization in Fourier transform can be achieved by windowing the signal over 
which the signal is nearly stationary, which leads to the development of short-time 
Fourier transform (STFT). 
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10 Hz frequency 

Sinusodial  signal of     
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Magnitude spectrum-1 Magnitude spectrum-2 

Fourier transform 

Fig. 5.41 Block diagram of problem statement 

Experiment 5.23 Limitation of Fourier Transform 
The objective of this experiment is to prove that Fourier transform cannot estimate 
fractional frequencies. Fourier transform of signal with fractional frequencies results 
in the spreading of the spectrum to other frequencies, which are not present in the 
signal. This fact is verified in this experiment. In this experiment, two sinusoidal 
signals of frequency 10 and 10.5 Hz are generated, and the magnitude spectrum of 
the generated signals is obtained by taking the Fourier transform of the generated 
signals. This is shown in Fig. 5.41. 

The python code, which performs this task, is shown in Fig. 5.42, and the 
corresponding output is shown in Fig. 5.43. 

Inference 
From Fig. 5.43, the following inference can be drawn: 

1. Fourier transform of 10 Hz sinusoidal signal has a peak exactly at 10 Hz. 
2. Fourier transform of 10.5 Hz frequency component sinusoidal signal does not 

show peak at 10.5 Hz. Instead, it resulted in spreading of the spectrum to other 
frequencies. To avoid the spreading of the spectrum to other frequencies, the 
value of N has to be increased. 

Task 
1. Increase the value of N in the python code shown in Fig. 5.42 from 100 to 256 and 

512 and comment on the observed output.
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#Fourier transform of fractional frequency component 
import numpy as np 
import matplotlib.pyplot as plt  
from scipy.fft import fft,fftfreq  
# Step 1: Signal generation 
fs=100 
T=1/fs 
f1=10  #10 Hz frequency component 
f2=10.5 #10.5 Hz frequency component 
N=100 
t=np.linspace(0,N*T,N)  
x1=np.sin(2*np.pi*f1*t)  
x2=np.sin(2*np.pi*f2*t)  
#Step 2: Spectrum of the signals 
faxis=fftfreq(N,T)[0:N//2] 
X1=fft(x1)  
X2=fft(x2)  
#Step 3: Ploting the result 
plt.subplot(2,1,1),plt.stem(faxis,2/N*np.abs(X1)[0:N//2])  
plt.xlabel('Frequency (Hz)'),plt.ylabel('Magnitude'), 
plt.title('Spectrum of 10 Hz sine wave') 
plt.subplot(2,1,2),plt.stem(faxis,2/N*np.abs(X2)[0:N//2]) 
plt.xlabel('Frequency (Hz)'),plt.ylabel('Magnitude'), 
plt.title('Spectrum of 10.5 Hz sine wave')  
plt.tight_layout() 

Fig. 5.42 Fourier transform of fractional frequency component signal 

5.5 Discrete Cosine Transform (DCT) 

Discrete cosine transform was developed by Ahmed, Rao and Natarajan in the year 
1974. DCT is a unitary transform, and it is not a discrete version of the cosine 
functions. The DCT has better energy compaction than DFT; hence, it is widely used 
in signal compression. DCT is employed in JPEG compression standard. DCT is 
based on the DFT with imposed even symmetry through reflection; hence, DCT is a 
real-valued transform. 

The formula to compute forward discrete cosine transform is given by 

X k½ ]= α kð Þ  
N- 1 

n= 0 

x n½ ] cos 2nþ 1ð Þπk 
2N

ð5:66Þ 

where
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Fig. 5.43 Result of python code shown in Fig. 5.42 

α kð Þ= 

1 
N 
, for k = 0 

2 
N 
, Otherwise 

ð5:67Þ 

The formula to compute inverse discrete cosine transform is given by 

x n½ ]= α kð Þ  
N- 1 

k = 0 

X k½ ] cos 2nþ 1ð Þπk 
2N

ð5:68Þ 

where 

α kð Þ= 

1 
N 
, for k= 0 

2 
N 
, Otherwise 

ð5:69Þ 

Experiment 5.24 Computation of Forward and Inverse Discrete Cosine Trans-
form of a Given Signal 
This experiment deals with the computation of the forward and inverse DCT of a 
given input signal. The python code to compute the forward and inverse DCT of 
signal is given in Fig. 5.44, and its simulation result is shown in Fig. 5.45. From this 
figure, it is possible to infer that the DCT output is always real value, and there is no 
phase component in it.
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# DCT and IDCT python implementation 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import fft 
np.set_printoptions(precision=2, suppress=True) 
n=np.arange(0,40,1) 
k=np.arange(0,40,1) 
x=np.sin(2*np.pi*(5/100)*(n))+np.sin(2*np.pi*(15/100)*(n)); 
plt.figure(1),plt.subplot(3,1,1),plt.stem(n,x),plt.xlabel('n--
>'),plt.ylabel('x[n]'),plt.title('Input Signal') 
y1=np.zeros(len(k)) 
alpha=np.zeros(len(k)); 
for i in range(len(n)): 
    if k[i]==0: 
        alpha[i]=np.sqrt(1/len(n)); 
    else: 
        alpha[i]=np.sqrt(2/len(n)); 
    y=alpha[i]*x[i]*np.cos(((2*i)+1)*np.pi*k/(2*len(n))) 
    y1=y1+y 
plt.subplot(3,1,2),plt.stem(k,y1),plt.xlabel('k-->'),plt.ylabel('X[k]'),plt.title('DCT output') 
y2=np.zeros(len(n)) 
for i in range(len(k)): 
    if k[i]==0: 
        alpha[i]=np.sqrt(1/len(n)); 
    else: 
        alpha[i]=np.sqrt(2/len(n)); 
    x1=alpha[i]*y1[i]*np.cos(((2*i)+1)*np.pi*k/(2*len(n))) 
    y2=y2+x1 
y2=(1/2)*y2 
plt.subplot(3,1,3),plt.stem(n,y2),plt.xlabel('n-->'),plt.ylabel('y[n]'),plt.title('IDCT output') 
plt.tight_layout() 
y3=fft.dct(x);# Built in command for DCT 
z=fft.idct(y3);#Built in Command for IDCT 
plt.figure(2),plt.subplot(3,1,1),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('x[n]'), 
plt.title('Input Signal'),plt.subplot(3,1,2),plt.stem(k,y1),plt.xlabel('k-->'),plt.ylabel('X[k]'), 
plt.title('DCT output Using in-built'),plt.subplot(3,1,3),plt.stem(n,y2),plt.xlabel('n-->'), 
plt.ylabel('y[n]'),plt.title('IDCT output using in-built') 

Fig. 5.44 Python code for forward and inverse DCT 

Inferences 
The following inferences can be made from this experiment: 

1. The input is real valued mulitiple sinusoidal signal, and the DCT output of the 
input signal shows that most of the DCT coefficients are zero, which indicates 
that the signal is highly correlated, and then the few DCT coefficients are used to 
represent the signal.
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Reconstructed signal Reconstructed signal 

Fig. 5.46 Problem statement 

2. Inverse DCT is used to reconstruct the original signal from the DCT coefficients. 
From Fig. 5.45, it is possible to observe that the reconstructed signal is exactly the 
same as the original signal. 

3. The same result is verified with the built-in commands ( fft.dct and fft.idct). 

Task 
1. Investigate whether DCT matrix entries are all real. 

Experiment 5.25 Comparison Between Discrete Fourier Transform 
and Discrete Cosine Transform 
The objective of this experiment is to compare the performance of discrete Fourier 
transform (DFT) with discrete cosine transform (DCT). This is done by taking DFT 
and DCT of the sawtooth signal. After taking both DFT and DCT, the last ten 
coefficients are nullified. Then, inverse DFT and inverse DCT of the modified 
coefficients are taken to obtain the reconstructed signal. This is depicted in Fig. 5.46.
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#Comparison of Fourier and DCT 
from scipy.fftpack import dct, idct 
from scipy.fftpack import fft, ifft 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of sawtooth signal 
t=np.linspace(0,1,100) 
x=signal.sawtooth(2*np.pi*5*t) 
#Step 2: Modifying DFT coefficients 
X1=fft(x) 
X1[89:99]=0 
y1=ifft(X1) 
#Step 3: Modifying DCT coefficients 
X=dct(x) 
X[89:99]=0 
y2=idct(X) 
#Step 4: Plotting the results 
plt.subplot(3,1,1),plt.stem(x),plt.xlabel('n-->'),plt.ylabel('x[n]') 
plt.title('Input Sawtooth signal') 
plt.subplot(3,1,2),plt.stem(y1),plt.xlabel('n-->'),plt.ylabel('y$_1$[n]') 
plt.title('Reconstructed signal using DFT') 
plt.subplot(3,1,3),plt.stem(y2),plt.xlabel('n-->'),plt.ylabel('y$_2$[n]') 
plt.title('Reconstructed signal using DCT') 
plt.tight_layout() 

Fig. 5.47 Python code to compare DCT with Fourier transform 

The python code, which performs this task, is shown in Fig. 5.47, and the 
corresponding output is shown in Fig. 5.48. 

Inferences 
From Fig. 5.48, it is possible to interpret that the reconstructed signal obtained using 
DCT is better than DFT. DCT has better energy compaction than the DFT. This 
means that DCT can pack signal energy into a few coefficients. 

5.6 Short-Time Fourier Transform 

The short-time Fourier transform of the signal x(t) is given by
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Fig. 5.49 Block diagram of 
the problem statement 

Stationary signal 

x1(t) 

Non-stationary 

signal x2(t) 

STFT 

STFT 

X1(τ, Ω) 

X2(τ, Ω) 

X τ,Ωð Þ= 

1

-1 
x tð Þw* t- τð Þe- jΩt dt ð5:70Þ 

where ‘w(t)’ is the window function and ‘τ’ is the centre of the window. Equation 
(5.70) can be interpreted as ‘STFT provides two-dimensional representation of the 
one-dimensional signal x(t)’. Narrow window provides good time resolution but 
poor frequency resolution, whereas wider window provides good frequency resolu-
tion but poor time resolution. According to the Heisenberg uncertainty principle, it is 
difficult to obtain both good time and frequency resolutions at the same resolution. 

Experiment 5.26 STFT of Stationary and Non-stationary Signal 
In this experiment, STFT of stationary and non-stationary signals are obtained, and 
their results are interpreted. The stationary signal x1(t) is generated using the formula 
x1(t) = sin (2πft); the non-stationary signal x2(t) is generated using the formula 
x2(t) = sin (2πft2 ). The built-in function available in scipy library stft is used to 
obtain time-frequency representation of the two signals. The block diagram of the 
problem statement is given in Fig. 5.49.
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#STFT of stationary and non-stationary signals 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of a stationary signal 
fs=100 
T,N,f=1/fs, 100, 5 
t=np.linspace(0,N*T,N)  
x1=np.sin(2*np.pi*f*t)#Step 2: Generation of non-stationary signal 
x2=np.sin(2*np.pi*f*t**2)#Step 3: Obtaining the STFT of signals 
f1,t1,z1=signal.stft(x1,fs,'hamming',64)  
f2,t2,z2=signal.stft(x2,fs,'hamming',64)  
#Step 4: Plotting the results 
plt.subplot(2,2,1),plt.plot(t,x1),plt.xlabel('t-->'),plt.ylabel('x$_1$(t)'), 
plt.title('Signal-1'),plt.subplot(2,2,2),plt.plot(t,x2) 
plt.xlabel('t-->'),plt.ylabel('x$_2$(t)'),plt.title('Signal-2') 
plt.subplot(2,2,3),plt.pcolormesh(t1,f1,np.abs(z1),shading='gouraud') 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'),plt.title('STFT of Signal-1')  
plt.subplot(2,2,4),plt.pcolormesh(t2,f2,np.abs(z2),shading='gouraud') 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'),plt.title('STFT of Signal-2')  
plt.tight_layout() 

Fig. 5.50 Python code to obtain time-frequency representation of stationary and non-stationary 
signals 

The python code to implement the task is done in four steps. First step deals with 
the generation of stationary signals, and second step deals with the generation of 
non-stationary signals. Obtaining the STFT of the two signals is done in the third 
step. Finally, the results are plotted in the fourth step. The python code, which 
performs the abovementioned task, is given in Fig. 5.50, and the corresponding 
output is shown in Fig. 5.51. 

Inferences 
From Fig. 5.51, the following inferences can be drawn: 

1. Signal-1 and Signal-2 are stationary and non-stationary signals, respectively. For 
Signal-1, the frequency does not change with respect to time; hence, it is 
stationary, for Signal-2, the frequency increases with an increase in time; 
hence, it is non-stationary. 

2. STFT provides time-frequency representation of the signal. STFT of Signal-1 is a 
horizontal line indicating that Signal-1 has one frequency component at all times. 
The STFT of Signal-2 shows the gradual variation of frequency with respect to 
time. With respect to time, the frequency changes, which is depicted in the 
spectrogram plot. 

Experiment 5.27 Impact of Choice of Window Length 
In this experiment, the built-in function available in ‘matplot’ library plt.specgram is 
used to analyse the impact of the choice of width of the window in STFT. The



objective of this experiment is to verify the fact that a shorter window gives a good 
time resolution and a wider window gives a good frequency resolution. To demon-
strate this fact, a non-stationary signal is generated. This signal has 5, 0 and 10 Hz 
frequency components. In 0 Hz or DC, a discontinuity is introduced. The disconti-
nuity is the increase in the amplitude of the signal from 1 to 2 V. This non-stationary 
signal is analysed using a spectrogram of different window widths, namely, 16, 32 
and 128. The problem statement is depicted in Fig. 5.52. 
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Fig. 5.51 Result of python code shown in Fig. 5.50 
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Fig. 5.52 Problem statement 

The python code, which performs this task, is shown in Fig. 5.53, and the 
corresponding output is shown in Fig. 5.54.
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#Effect of window length of STFT 
import numpy as np 
import matplotlib.pyplot as plt 
#Step1: Signal generation 
fs=100 
T,N=1/fs, 100; 
#Frequency components of the signal 
f1,f2,f3=5, 0, 10; 
t1=np.linspace(0,N*T,N) 
t=np.linspace(0,N*T,3*N)  
x1=np.sin(2*np.pi*f1*t1)  
x2=np.sin(2*np.pi*f2*t1)  
x3=np.sin(2*np.pi*f3*t1)  
x=np.concatenate([x1,x2,x3]) 
x[150:160]=2  #Discontinuity 
#Step 2: Plotting the signal and its spectrogram 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.title('Signal') 
plt.subplot(2,2,2),plt.specgram(x, Fs=fs, NFFT=16, noverlap=1,window =None) 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'), 
plt.title('Window length=16') 
plt.subplot(2,2,3),plt.specgram(x, Fs=fs, NFFT=32, noverlap=1,window =None) 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'), 
plt.title('Window length=32') 
plt.subplot(2,2,4),plt.specgram(x, Fs=fs, NFFT=128, noverlap=1,window =None) 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'), 
plt.title('Window length=128') 
plt.tight_layout() 

Fig. 5.53 Python code to analyse the impact of window width in STFT 

Inferences 
From Fig. 5.54, the following inferences can be drawn: 

1. The signal is a non-stationary signal with three frequency components 5 Hz, 0 Hz 
(DC component) and 10 Hz, respectively. There is a discontinuity in the signal in 
the DC component. The discontinuity refers to an abrupt change in amplitude 
from 1 to 2 V. 

2. The STFT of the signal is obtained for different window widths, namely, 16, 32 
and 128. 

3. The spectrogram corresponding to window width 16 gives good time informa-
tion. The occurrence of discontinuity at a particular instant is clearly visible in the 
spectrogram with a window width of 16. But the frequency resolution is poor. 
The two frequency components present in the signal, namely, 5 and 10 Hz, are not 
visible in the spectrogram with a window width of 16. That is, a shorter window 
gives good time resolution but poor frequency resolution.
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Fig. 5.54 Result of python code shown in Fig. 5.53 

4. When the window width is 32, the frequency components present in the signal, 
namely, 5 and 10 Hz, are partially visible. When the window width is 32, the 
average time and frequency resolution are obtained. 

5. When the window width is 128, the frequency resolution is good. From this 
spectrogram, it is possible to identify 5 and 10 Hz frequency components. But it is 
not possible to locate the discontinuity present in the signal. This means that time 
resolution is poor. 

6. In a nut shell, shorter window gives good time resolution but poor frequency 
resolution, whereas a wider window gives good frequency resolution but poor 
time resolution. 

Task 
1. Repeat this experiment by choosing different types of window functions like 

Bartlett and Kaiser for specified value of ‘β’. 

Experiment 5.28 Choice of Window Function in Resolving Two Close Fre-
quency Components 
The objective of this experiment is to analyse the choice of window function in 
resolving two close frequency components of the input signal. The input signal is the 
addition of two sinusoidal signals of frequencies 5 and 8 Hz. The spectrogram of this 
signal is obtained for different choices of window functions like rectangular win-
dow, Blackman window and Kaiser window. The impact of window choices in 
frequency resolution is analysed in this experiment. The python code, which per-
forms this task, is shown in Fig. 5.55, and the corresponding output is shown in 
Fig. 5.56.
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#Choice of window function 
import numpy as np 
import matplotlib.pyplot as plt 
#Step1: Signal generation 
fs,f1,f2=100, 5, 8; 
t=np.linspace(0,1,100) 
x1=np.sin(2*np.pi*f1*t) 
x2=np.sin(2*np.pi*f2*t) 
x=x1+x2 
#Step 2: Generation of window functions 
NFFT=64 
win1 =np.ones((NFFT)) #Rectangular window 
win2=np.blackman(NFFT) #Blackman window 
beta=1 
win3 = np.kaiser(NFFT,beta) 
#Step 3: Plotting the results 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.title('Signal'),plt.subplot(2,2,2), 
plt.specgram(x, Fs=fs, NFFT=64, noverlap=1,window = win1) 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'),plt.title('Rectangular 
window') 
plt.subplot(2,2,3),plt.specgram(x, Fs=fs, NFFT=64, noverlap=1,window = win2) 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'),plt.title('Blackman window') 
plt.subplot(2,2,4),plt.specgram(x, Fs=fs, NFFT=64, noverlap=1,window = win3) 
plt.xlabel('Time (t-->)'),plt.ylabel('Frequency ($\omega$-->)'),plt.title('Kaiser window') 
plt.tight_layout() 

Fig. 5.55 Window function and frequency resolution 

Inferences 
The following inference can be made from this experiment: 

1. From the python code, it is possible to observe that the signal consists of two 
frequency components, 5 and 8 Hz, that are added to obtain the input signal 
whose time-frequency representation for different windows is obtained. 

2. Rectangular window is able to resolve two closely spaced frequency components. 
3. Blackman window has a wider main lobe; hence, it could not resolve the 

frequency components present in the signal. 
4. Kaiser window successfully resolves the frequency components present in the 

signal for the choice of β = 1. 
5. If the main lobe width of the window is small, then good frequency resolution 

could be obtained. Side lobes affect the extent to which adjacent frequency 
components leak into the adjacent frequency bins. 

Experiment 5.29 Comparison of FT with STFT 
This experiment aims to compare Fourier transform with short-time Fourier trans-
form in analysing non-stationary signal. The non-stationary signal considered in this 
example has three frequency components, namely, 5, 0 and 15 Hz. In non-stationary



Signal-1, 5 Hz signals appear first, followed by the DC and 15 Hz frequency 
components. In non-stationary Signal-2, 15 Hz frequency components appear first 
followed by DC and 5 Hz frequency components. For these two signals, Fourier 
transform and short-time Fourier transform are taken. This objective is illustrated in 
Fig. 5.57. 
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Fig. 5.56 Choice of window and its impact in frequency resolution 

Non-stationary signal-1 Non-stationary signal-2 
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Fig. 5.57 Comparison of FT and STFT 

The python code, which implements this task, is given in Fig. 5.58 and the 
corresponding output is shown in Fig. 5.59. 

Inference 
From Fig. 5.59, the following inferences can be drawn: 

1. Signal-1 and Signal-2 are non-stationary signals, because the frequency of these 
two signals changes with respect to time. 

2. The frequency components present in Signal-1 and Signal-2 are 5, 0 and 10 Hz. In 
Signal-1, the 5 Hz frequency component appears first, followed by the 0 Hz 
frequency component and the 15 Hz frequency component. In Signal-2, 15 Hz
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#Comparison of FT and STFT 
import numpy as np 
import matplotlib.pyplot as plt  
from scipy.fft import fft,fftfreq  
from scipy import signal  
#Step1: Signal generation  
fs=100 
T=1/fs 
N,f1,f2,f3=100,5,0,15 
t1=np.linspace(0,N*T,N)  
t=np.linspace(0,N*T,3*N)  
x1=np.sin(2*np.pi*f1*t1)  
x2=np.sin(2*np.pi*f2*t1) 
x3=np.sin(2*np.pi*f3*t1) 
x=np.concatenate([x1,x2,x3])  
y=np.concatenate([x3,x2,x1])  
plt.subplot(3,2,1),plt.plot(t,x),plt.xlabel('t-->'),plt.ylabel('x$_1$(t)'),plt.title('Signal-1')  
plt.subplot(3,2,2),plt.plot(t,y),plt.xlabel('t-->'),plt.ylabel('x$_2$(t)'),plt.title('Signal-2')  
#Step 2: Obtain the spectrum 
faxis=fftfreq(3*N,T)[0:3*N//2] 
X=fft(x)  
Y=fft(y) 
#Step 3: Plotting the result 
plt.subplot(3,2,3),plt.plot(faxis,2/N*np.abs(X)[0:3*N//2])  
plt.xlabel('Frequency ($\omega$-->)'),plt.ylabel('|X$_1$($\omega$)|'),plt.title('Spectrum-1') 
plt.subplot(3,2,4),plt.plot(faxis,2/N*np.abs(Y)[0:3*N//2]) 
plt.xlabel('Frequency ($\omega$-->)'),plt.ylabel('|X$_2$($\omega$)|'),plt.title('Spectrum-2')  
#Step 4: STFT of the signals 
f1,t1,z1=signal.stft(x,fs,'hamming',1024) 
f2,t2,z2=signal.stft(y,fs,'hamming',1024)  
plt.subplot(3,2,5),plt.pcolormesh(t1, f1, np.abs(z1),shading='gouraud') 
#plt.pcolormesh(t1,f1,np.abs(z1),shading='flat') 
plt.xlabel('Time (t-->)'),plt.ylabel('Freq($\omega$-->)'),plt.title('STFT of Signal-1')  
plt.subplot(3,2,6),plt.pcolormesh(t2,f2,np.abs(z2),shading='gouraud')  
plt.xlabel('Time (t-->)'),plt.ylabel('Freq ($\omega$-->)'),plt.title('STFT of Signal-2') 
plt.tight_layout () 

Fig. 5.58 Python code to compare FT with STFT

frequency component appears first, then followed by 0 Hz and finally by 5 Hz 
frequency component. 

3. From Fig. 5.59, it is possible to interpret that spectrum-1 and spectrum-2 are 
alike. That is magnitude spectrum of Fourier transform cannot distinguish Signal-
1 and Signal-2. The reason is Fourier transform is an effective tool for the 
frequency representation of the stationary signal, but it does not provide time 
information. 

4. STFT of Signal-1 shows time-frequency representation of the signal. STFT of 
Signal-1 indicates that 5 Hz frequency component appears first, followed by 
15 Hz frequency component. In STFT of Signal-2, it is possible to observe that
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Fig. 5.59 Result of comparison of FT with STFT

15 Hz frequency component appears first, followed by 5 Hz frequency 
component. 

5. It is possible to interpret that STFT is effective in analysing non-stationary 
signals. 

5.6.1 Shortcoming of STFT 

The width of the window cannot be changed once it is fixed. This implies that STFT 
provides fixed resolution. For the multi-resolution representation of the signal, 
wavelet transform is employed. 

5.7 Continuous Wavelet Transform (CWT) 

Wavelets are oscillatory functions of finite duration. Wavelet transform provides 
timescale relationship of the signal. The continuous wavelet transform of the signal 
f(t) is expressed as
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Wf a, bð Þ= 
1 
a

p 
1

-1 
f tð Þψ* t- b 

a 
dt ð5:71Þ 

In the above equation, f(t) represents signal of interest, ψ(t) denotes ‘mother 
wavelet’, b is the shifting parameter and a is the scaling parameter. The above 
equation can be written as 

Wf a, bð Þ= f tð Þ,ψa,b tð Þ ð5:72Þ 

The above equation indicates that wavelet transform is basically taking inner 
product of the function f(t) with the ‘daughter wavelet’ ψa, b(t). The daughter 
wavelets are derived from the mother wavelet ψ(t) using the relation 

ψa,b tð Þ= 
1 
a

p ψ t- b 
a

ð5:73Þ 

5.7.1 Continuous Wavelets Family 

A variety of continuous wavelets filter are currently in use. They are (1) Haar, 
(2) Mexican Hat, (3) Morlet, (4) Complex Morlet, (5) Gaussian, (6) Shannon and 
(7) Daubechies. The wavelet family and its mathematical expression are given in 
Table 5.3. 

Experiment 5.30 Detection of Discontinuity in the Signal Using CWT 
The objective of this experiment is to detect the discontinuity present in the signal 
using continuous wavelet transform (CWT). The built-in function cwt available in 
the library pywt is utilized in this experiment. The three steps followed in this 
experiment are the following: Step 1: generating signal with discontinuity; Step 2: 
obtaining timescale relationship using CWT, in which the wavelet chosen for this 
study is Gaussian wavelet; and Step 3: plotting the signal and the corresponding 
scalogram. The python code which performs this task is shown in Fig. 5.60, and the 
corresponding output is shown in Fig. 5.61. 

Inferences 
From Fig. 5.61, the following inferences can be drawn: 

1. The input signal is a smooth sinusoidal signal with a sharp discontinuity at a 
particular location. 

2. Upon observing the CWT result, it is possible to interpret that discontinuity 
occurs at 90th sample of the sinusoidal signal, which has 200 samples of data. 

3. Thus, CWT is capable of detecting the discontinuity present in the signal.



wavelet Mathematical expression

ψ tð Þ=
≤ <

2

- 1
1
2
≤ t< 1

0, otherwise

3 π 2
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Table 5.3 List of wavelet family 

Name of 
Python command 
pywt.Wavelet 
(‘wavelet_name’) 

Haar 1, 0 t 
1 ‘haar’ 

Mexican Hat ψ tð Þ= 2p 
4p 1- t2ð Þ exp - t2 ‘mexh’ 

Morlet ψ tð Þ= exp - t2 cos 5tð Þ ‘morl’ 

Complex 
Morlet 

ψ tð Þ= 2 
πB

p exp - t2 

B exp j2πCtð Þ  
Where B is Bandwidth and C is centre frequency 

‘cmor’ 

Gaussian 
wavelet 

ψ(t) = C exp (-t2 ) 
where C is an order-dependent normalization 
constant 

‘gaus’ 

Shannon 
wavelet 

ψ tð Þ= B
p sin πBtð Þ  

πBt exp j2πCtð Þ  
Where B is Bandwidth and C is centre frequency 

‘shan’ 

Task 
1. Repeat the experiment for different choices of mother wavelet and comment on 

the observed result. 

5.7.2 Drawback of CWT 

CWT is a redundant representation because of continuous values taken by scaling 
and shifting parameters. Overcoming the problem of redundant representation, a 
discrete wavelet transform was proposed. 

5.8 Discrete Wavelet Transform 

The discrete wavelet transform decomposes the signal into approximation and detail. 
The process is further iterated by decomposing the approximation with the assump-
tion that much of the signal energy is in approximation. This idea is illustrated in 
Fig. 5.62. 

In Fig. 5.62, L1 corresponds to first-level decomposition, where the signal is 
decomposed into approximation and detail. In the second-level of decomposition 
(L2), the approximation obtained in L1 is further decomposed into approximation and 
detail. In the third-level of decomposition (L3), the approximation of level L2 is
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#Discontinuity detection using CWT 
import pywt 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Signal generation 
#t=np.linspace(0,1,200) 
t=np.arange(0,200,1); 
x=np.sin(2*np.pi*5*t/len(t)) 
x[90]=10 
#Step 2: CWT of the signal 
scale=np.arange(1,5) 
coef,freqs=pywt.cwt(x,scale,'gaus1') 
plt.subplot(2,1,1),plt.plot(t,x),plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.title('Signal with discontinuity') 
#Step 3: Plotting the reslt 
plt.subplot(2,1,2), 
plt.imshow(abs(coef),extent=[0,200,30,1],interpolation='bilinear',cmap='winter', 
           aspect='auto',vmax=abs(coef).max(),vmin=-abs(coef).max()) 
plt.gca().invert_yaxis() 
plt.xticks(np.arange(0,201,20)) 
plt.xlabel('Time (t-->)'),plt.ylabel('Freq Scale ($\omega$-->)'), 
plt.title('CWT of the signal') 
plt.tight_layout() 
plt.show() 

Fig. 5.60 Discontinuity detection using CWT 
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Fig. 5.61 CWT of signal with discontinuity



decomposed further into approximation and detail. This is done assuming that most 
of the signal energy is in approximation.
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Fig. 5.62 Wavelet decomposition 
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Fig. 5.63 Pictorial representation of problem statement 

Experiment 5.31 Detection of Discontinuity in Signal Using DWT 
The objective of this experiment is to compare the first-level approximation and 
detail of DWT coefficient of a signal with the coefficient of the signal with discon-
tinuity. Here discontinuity refers to sudden changes in the amplitude of the signal. 
The problem statement is depicted in Fig. 5.63. 

From Fig. 5.63, it is possible to observe that two signals are considered in this 
experiment, Signal-1 is a square wave, whereas Signal-2 is a square wave with 
discontinuity. L1 in the figure represents the first-level of decomposition. Upon first-
level of decomposition, the signal is split into approximation and detail. Upon taking 
an inverse discrete wavelet transform, it is possible to reconstruct the signal. The



python code that performs this task mentioned above is shown in Fig. 5.64, and the 
corresponding output is in Fig. 5.65. 

224 5 Transforms

#DWT of a signal with discontinuity 
import pywt 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Signal generation 
f=5 
n=np.arange(0,100,1) 
x1=signal.square(2*np.pi*f*n/len(n)) #Square wave 
x2=signal.square(2*np.pi*f*n/len(n)) #Square wave with discontinuity 
x2[50]=5 
#Step 2: DWT of the signal 
cA,cD=pywt.dwt(x1,'db1') 
cA1,cD1=pywt.dwt(x2,'db1') 
#Step 3: Inverse DWT 
y1=pywt.idwt(cA,cD,'db1') 
y2=pywt.idwt(cA1,cD1,'db1') 
#Step 4: Plotting the result 
plt.subplot(3,2,1),plt.stem(n,x1), 
plt.xlabel('n-->'),plt.ylabel('x$_1$[n]'),plt.title('Signal-1') 
plt.subplot(3,2,2),plt.stem(n,x2), 
plt.xlabel('n-->'),plt.ylabel('x$_2$[n]'),plt.title('Signal-2') 
WC=np.concatenate([cA,cD]) 
WC1=np.concatenate([cA1,cD1]) 
plt.subplot(3,2,3),plt.stem(n,WC),plt.title('First level Decomposition') 
plt.subplot(3,2,4),plt.stem(n,WC1),plt.title('First level Decomposition') 
plt.subplot(3,2,5),plt.stem(n,y1), 
plt.xlabel('n-->'),plt.ylabel('y$_1$[n]'),plt.title('Reconstructed signal-1') 
plt.subplot(3,2,6),plt.stem(n,y2), 
plt.xlabel('n-->'),plt.ylabel('y$_2$[n]'),plt.title('Reconstructed signal-2') 
plt.tight_layout() 

Fig. 5.64 Python code to compute the DWT CWT of signal with discontinuity 

Inferences 
From Fig. 5.65, the following inferences are drawn: 

1. Signal-1 is a square wave with 5 Hz fundamental frequency; Signal-2 is a square 
wave with discontinuity. 

2. The first-level decomposition of the signal gives approximation and detail coef-
ficients. For Signal-1, the approximation coefficient is similar to the signal, 
whereas the detail coefficient is almost zero. For Signal-2, the discontinuity is 
captured in detail coefficient. 

3. Upon taking inverse DWT, the reconstructed signals are obtained, which resem-
bles the input signal. Thus, DWT is a reversible transform.
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Fig. 5.65 Result of python code shown in Fig. 5.64 

4. In this experiment, it is possible to observe that discontinuity is captured in the 
detail coefficient. 

Task 
1. Repeat this experiment for different choices of mother wavelet and comment on 

the observed result. 

Experiment 5.32 Denoising of Signal Using DWT and Thresholding Approach 
The objective of this experiment is to donoise the signal using discrete wavelet 
transform and inverse discrete wavelet transform. The input signal (sawtooth signal) 
is corrupted by white noise, which follows normal distribution of zero mean and 
variance of 0.125. The wavelet decomposition of the noisy signal is performed using 
the built-in function ‘wavedec’ available in ‘pywavelet’ library. The wavelet chosen 
for decomposition is db2, and the level of decomposition chosen is 3. After wavelet 
decomposition, the detail coefficients are thresholded using the built-in function 
‘pywt.threshold’. The choice of threshold is soft ‘thresholding’. After thresholding, 
the modified wavelet coefficients are reconstructed using the built-in function 
wavedec to obtain the reconstructed (filtered) signal. The python code, which 
performs this task, is shown in Fig. 5.66, and the corresponding output is shown 
in Fig. 5.67. 

Inferences 
The following inferences can be made from this experiment: 

1. The input signal (clean signal) is a sawtooth signal of 5 Hz fundamental 
frequency.
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#Denoising of signals using DWT 
import pywt 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Signal generation 
f=5 
t=np.arange(0,50,1) 
x1=signal.sawtooth(2*np.pi*f*t/len(t)) 
#Step 2: Adding noise to the clean signal 
n=np.random.normal(0,0.125,len(x1)) 
x=x1+n 
wavelet = 'db2' 
level =3 
# Step 3: Perform wavelet decomposition 
coeffs = pywt.wavedec(x, wavelet, level=level) 
# Step 4: Define threshold for filtering 
threshold = 0.75 * np.max(coeffs[-1]) 
# Step 5: Perform wavelet thresholding 
coeffs_filtered = [pywt.threshold(c, threshold, mode='soft') for c in coeffs] 
# Step 6: Reconstruct filtered signal 
y= pywt.waverec(coeffs_filtered, wavelet) 
#Step 7: Plotting the result 
plt.subplot(3,1,1),plt.plot(t,x1),plt.xlabel('n-->'),plt.ylabel('x[n]') 
plt.title('Clean signal') 
plt.subplot(3,1,2),plt.plot(t,x),plt.xlabel('n-->'),plt.ylabel('z[n]') 
plt.title('Noisy signal') 
plt.subplot(3,1,3),plt.plot(t,y),plt.xlabel('n-->'),plt.ylabel('y[n]') 
plt.title('Filtered signal') 
plt.tight_layout() 

Fig. 5.66 Python code to perform denoising of the signal

2. The noisy signal is obtained by adding white noise, which follows normal 
distribution to the input signal. 

3. The noisy signal is decomposed using db2 wavelet. The level of decomposition is 
three. 

4. After wavelet decomposition, the detail coefficients are thresholded using soft 
thresholding to minimize the impact of noise. It is generally believed that much of 
the signal energy will be in low-frequency regions and noise will reside in high-
frequency regions. 

5. The inverse wavelet transform of the modified wavelet coefficients is performed 
to obtain the filtered signal. 

6. From Fig. 5.67, it is possible to interpret that the impact of noise is less in filtered 
signal when compared to noisy signal. 
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Tasks 
1. The experiment can be repeated by the following: (a) Choose different wavelet 

family other than ‘db2’. (b) The level of decomposition can be changed. 
(c) Instead of soft thresholding, hard thresholding can be tried. 

Exercises 
1. Write a python code to obtain the Z-transform of the following sequences: 

(a) x1[n] = δ[n - 5] (b) x2[n] = u[n] - u[n - 1] (c) x3[n] = nu[n] 
(d) x4[n] = sin (ω0n). 

2. Write a python code to compute the inverse Z-transform of (a) X1(z) = z-2 

(b) X2 zð Þ= 1
- 1 2

. 

3. 
ð Þ  

Write a python code to compute the magnitude and phase responses of the 
system, whose transfer function is given by H zð Þ= 1 

1- z- 1. 
4. Let the signal x[n] represent 100 samples of 5 Hz sine wave. Now increase the 

length of the signal by padding 50 sample values of zeros to x[n]. Zero padding 
is done at the end of 100 samples of x[n]. Let the zero padded signal be denoted 
as y[n]. Write a python code to plot the spectrum of the signal x[n] and y 
[n]. Comment on the observed result. 

5. Obtain the DFT of the sequences x1[n] = {1, 1, 1, 1} and x2[n] = {1,-1, 1,-1}. 
Plot their magnitude responses and comment on the observed result. 

6. Generate a square wave of 5 Hz fundamental frequency. Write a python code to 
plot the spectrum of the square wave and comment on the observed result. 

7. Let x[n] represent 100 samples of 5 Hz sine wave. Let y[n] represent 100 samples 
of 5 Hz cosine wave. Take Fourier transform of x[n] and y[n] to obtain X[k] and 
Y[k]. Extract the magnitude and phase components of X[k]  and  Y[k]. Now 
interchange the phase of X[k] with Y[k]. After phase interchange, take inverse
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Fourier transform to obtain x′[n] and y′[n]. Use subplot to plot the signals x[n], y 
[n], x′[n] and y′[n] and comment on the observed result. 

8. Generate a linear chirp signal whose frequency varies from 10 to 1 Hz in 10 s. 
Plot the spectrum and spectrogram of this chirp signal and comment on the 
observed result. 

9. Write a python code to verify the fact that a shorter window gives good time 
resolution and a wider window gives good frequency resolution in short-time 
Fourier transform. 

10. Generate sinusoidal signal with momentary interruption. Apply CWT to identify 
the momentary interruption present in the signal. 

Objective Questions 
1. The region of convergence of unit sample signal (δ[n]) is 

A. Entire Z-plane except z = 0 
B. Entire Z-plane except z = infinity 
C. Entire Z-plane 
D. Entire Z-plane except z = 0 and  z = infinity 

2. Convolution in time domain is equivalent to 

A. Addition in Z-domain 
B. Subtraction in Z-domain 
C. Multiplication in Z-domain 
D. Division in Z-domain 

3. For a discrete-time system to be stable 

A. Pole should lie inside the unit circle. 
B. Pole should lie outside the unit circle. 
C. Pole should lie on the unit circle. 
D. Pole can lie anywhere in the z-plane. 

4. Z-transform of x[n] = nu[n] is  

A. X zð Þ= z 
z- 1 

B. X zð Þ= z 
z- 1ð Þ2 

2 
X zð Þ= z 

z- 1

D. X zð Þ= z 
z- 1ð Þ3 

5. Let X(z) be the Z-transform of the signal x[n]. If X zð Þ= z 
z- 1, then limn 

x n½ ] is 

A. 0 
B. 1 
C. -1 
D. Infinite



A.
1 1

B.
1 - 1

C.
0 1

D.
0 - 1
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6. Let x n½ ]= 2 
5 

n 
u n½ ]- 5 

2 
n 
u - n- 1½ ]. Let X(z) be the Z-transform of the given 

signal x[n]; then, the region of convergence of its Z-transform is 

A. 2 
5 < zj j<1 

B. 5 
2 < zj j<1 

C. 2 
5 < zj j< 5 2 

D. -1< zj j< 5 2 

7. The transfer function of an LTI system is 

A. Linear function of ‘z’ 
B. Rational function of ‘z’ 
C. Logarithmic function of ‘z’ 
D. Exponential function of ‘z’ 

8. The basis function of Fourier transform is 

A. Triangular function 
B. Rectangular function 
C. Complex exponential function 
D. Prolate spheroidal function 

9. Fourier transform of a Gaussian function will result in 

A. Triangular function 
B. Rectangular function 
C. Sinc function 
D. Gaussian function 

10. Fourier transform of a rectangular function will result in 

A. Triangular function 
B. Rectangular function 
C. Sinc function 
D. Gaussian function 

11. The 2 × 2 DFT matrix is given by 

1 1  

1 1  

1 0  

1  0
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Chapter 6 
Filter Design Using Pole-Zero Placement 
Method 

Learning Objectives 
After reading this chapter, the reader is expected to

• Design, implement and analyse first-order infinite impulse response filter.
• Design, implement and analyse the moving average filter.
• Design and analyse digital resonator.
• Design and analyse notch filter and comb filter.
• Design and analyse all-pass filter. 

Roadmap of the Chapter 
Digital filters can be considered as a linear time-invariant system that accepts input 
and gives modified input as the output. Based on the input-output relation, discrete-
time systems can be classified as autoregressive system (AR), moving average 
system (MA) and autoregressive moving average (ARMA) system. If the current 
output is a function of the current input and past outputs, then the system is 
autoregressive. If the current output of the system is a function of current input 
and past inputs, the system is a moving average system. If the current output is a 
function of both past input and past output, the system is autoregressive moving 
average system. An example of autoregressive system is the IIR filter and notch 
filter. Digital resonator and M-point moving average systems are examples of MA 
system. All-pass filter is an example of an ARMA system. This is depicted below. 
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Digital Filter as LTI system 

Autoregressive System    

(AR system) 

Moving Average System   

(MA system) 

Autoregressive Moving 

Average System (ARMA) 

Notch filter 

Digital 

M-point Moving 

Average Filter 

All pass filter 
First-order IIR 

filter 

The filters discussed in this chapter include the IIR filter, moving average filter, 
digital resonator, notch filter, comb filter and all-pass filter. 

PreLab Questions 
1. If h[n] represents the impulse response of a lowpass filter, what would be the 

behaviour of the filter whose impulse response is (-1)n h[n]? 
2. When a discrete-time system is said to be a minimum phase system? 
3. What do you understand by the term ‘poles’ and ‘zeros’ of a system? 
4. How is the stability of the discrete-time system related to (a) location of poles of 

the system and (b) impulse response of the system? 
5. What is the basic principle involved in the design of digital filter using pole-zero 

placement method? 
6. What do you understand by the term ‘delay equalizer’ or ‘phase equalizer’? 
7. Mention two applications of notch filter. 
8. A square wave is fed as input to M-point moving average filter. What would be 

the output of M-point moving average filter? 
9. The relationship between the input and output of a digital filter is given by y 

[n] = αx[n] +  βx[n - 1] + γx[n - 2]. Is this a finite impulse response filter (FIR) 
or infinite impulse response filter (IIR)? Justify your choice. 

10. What is a pole-zero plot? What information one gets by interpreting the pole-
zero plot? 

6.1 First-Order IIR Filter 

This section begins with the design of a first-order IIR filter. The transfer function of 
a first-order IIR filter is given by 

H zð  Þ= 
1 

1- p1z- 1 ð6:1Þ 

If the pole lies on the unit circle (p1 = 1), the transfer function of the filter is given 
by
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H zð Þ= 
1 

1- z- 1 ð6:2Þ 

Step 1: Magnitude response of the filter 
From the magnitude response of the filter, it is possible to observe the filter 

behaviour at low and high frequencies. The frequency response of the system is 
obtained by substituting z = ejω in Eq. (6.2), we get 

H ejω = 
1 

1- e- jω ð6:3Þ 

The above equation can be expressed as 

H ejω = 
1 

1- cos ωð Þ þ  j sin ωð Þ ð6:4Þ 

The magnitude response is obtained as 

H ejω = 
1 

1- cos ωð Þð Þ2 þ sin 2 ωð Þ  
ð6:5Þ 

Upon simplifying the above equation 

H ejω = 
1 

2- 2 cos  ωð Þ ð6:6Þ 

When ω = 0, the magnitude response tends to infinity, and when ω = π, the 
magnitude response is given by H ejωð Þj j= 1 2. The filter passes low-frequency 
components and attenuates high-frequency components. The filter behaves like a 
lowpass filter. 

Step 2: Impulse response of the filter 
The impulse response of the filter is obtained by taking inverse Z-transform of 

the transfer function. The impulse response of the filter is given by 

h n½ ]= Z - 1 H zð Þf g ð6:7Þ 

Upon substituting Eq. (6.2) in Eq. (6.7), we get 

h n½ ]= Z - 1 1 
1- z- 1 = u n½ ] ð6:8Þ 

The impulse response of the filter is the unit step function. The unit step 
function is not absolutely summable; hence, the filter is not stable.
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Table 6.1 Built-in function in the design of first-order IIR filter 

Built-in 
function 

freqz signal. 
scipy 

To obtain the frequency response of the filter, which is a combination 
of magnitude and phase responses 

tf2zpk signal. 
scipy 

To obtain the poles, zeros and gain of the filter 

Experiment 6.1 Characteristics of First-Order IIR Filter 
The experiment is about obtaining the characteristics of the filter like (a) impulse 
response, (b) pole-zero plot and (c) magnitude and phase responses of the filter. The 
built-in functions used to obtain the responses of the filter are given in Table 6.1 

The python code which obtains the characteristics of the first-order IIR filter is 
given in Fig. 6.1, and the corresponding output is shown in Fig. 6.2. 

The python code consists of five steps which are given as S1 to S5. Step 1 (S1) 
generation of an impulse to obtain the impulse response of the filter. Step 2 (S2) 
defines the system in terms of the transfer function of the system. Step 3 (S3) deals 
with obtaining the impulse response of the filter for which the input to the filter is 
unit sample signal. Step 4 (S4) deals with obtaining the frequency response of the 
filter, and Step 5 (S5) deals with plotting the characteristics of the filter. The result 
obtained upon execution of the code shown in Fig. 6.1 is given in Fig. 6.2. 

Inferences 
From Fig. 6.2, the following inferences can be obtained: 

1. The impulse response of the filter is obtained as a unit step function, which is in 
agreement with the theoretical result. 

2. From the pole-zero plot, it is possible to observe that the pole lies on the unit 
circle. 

3. From the frequency response, it is possible to observe that the filter behaves like a 
lowpass filter. 

4. For a discrete-time system to be stable, the impulse response should be absolutely 
summable. From Fig. 6.2, the impulse response is a unit step function that is not 
absolutely summable; hence, the given filter is not stable. 

5. For discrete-time system to be stable, the poles should lie within the unit circle. 
From the pole-zero plot, it is possible to observe that the pole lies on the unit 
circle; hence, the filter is BIBO stable. 

Task 
1. Repeat this experiment for H zð Þ= 1 

1þz- 1, and comment on the observed result. 
Will the pole-position change the nature of the system? 

Experiment 6.2 Input-Output of First-Order IIR Filter 
In order to understand the behaviour of the filter, two types of inputs are fed to the 
filter. Input 1 is a DC signal, whereas input 2 is a high-frequency signal. The python



code which deals with the response of the filter for these two different types of inputs 
is shown in Fig. 6.3, and the corresponding output is shown in Fig. 6.4. 
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#Characteristics of first-order IIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#S1: Generation of impulse input 
x=np.zeros(100) 
x[0]=1 
#S2: Define the system 
num,den=[1],[1,-1] 
#S3: To obtain the impulse response 
h=signal.lfilter(num,den,x) 
#S4: Characteristics of the first order IIR filter 
fs=100 
w,H=signal.freqz(num,den) 
z,p,k=signal.tf2zpk(num,den) 
#S5: Plotting the result 
plt.figure(1),plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]'), 
plt.title('Impulse Response') 
plt.subplot(2,2,2),plt.plot((w/np.pi)*fs/2,20*np.log10(np.abs(H))), 
plt.xlabel('$\omega$-->'),plt.ylabel('|H($j\omega$)|'), 
plt.title('Magnitude Response'),plt.subplot(2,2,3),plt.xlabel('$\sigma$'), 
plt.ylabel('$j\omega$'),plt.title('Pole Zero Plot') 
plt.plot(np.real(z),np.imag(z),'ko'),plt.plot(np.real(p),np.imag(p),'rx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)) 
plt.subplot(2,2,4),plt.plot(w,np.angle(H)),plt.xlabel('$\omega$-->'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase Response') 
plt.tight_layout() 

Fig. 6.1 Python code to obtain the characteristics of first order IIR filter 

Inferences 
From Fig. 6.4, the following inferences can be drawn: 

1. y1[n] is the output signal corresponding to the input signal x1[n]. Here x1[n] is a  
DC signal. The signal x1[n] is generated from the expression x1[n] = ejωn by 
substituting ω = 0. From the output signal y1[n], it is possible to interpret that the 
filter amplifies x1[n], which is a DC signal. 

2. y2[n] is the output signal corresponding to the input signal x2[n]. Here x2[n]  is  an  
AC signal. The signal x2[n] is generated from the expression x2[n] = ejωn by 
substituting ω = π. From the output signal y2[n], it is possible to interpret that the 
filter blocks x2[n], which is a high-frequency signal.
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Fig. 6.2 Characteristics of first-order IIR filter 

#Input-Output of first-order IIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Signal generation  
n=np.arange(-5,6)  
omega1=0  
omega2=np.pi  
x1=np.exp(1j*omega1*n)  
x2=np.exp(1j*omega2*n) 
#S2: Define the system 
num,den=[1],[1,-1] 
#S3: To obtain the output 
y1=signal.lfilter(num,den,x1) 
y2=signal.lfilter(num,den,x2) 
#S4: Plotting the input and output of the filter 
plt.subplot(2,2,1),plt.stem(n,x1),plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_1[n]$'),plt.subplot(2,2,2),plt.stem(n,y1),plt.xticks(n),  
plt.xlabel('n-->'),plt.ylabel('Amplitude'), plt.title('$y_1[n]$')  
plt.subplot(2,2,3),plt.stem(n,x2),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('$x_2[n]$'),plt.subplot(2,2,4),plt.stem(n,y2),plt.xticks(n), 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_2[n]$')  
plt.tight_layout() 

Fig. 6.3 Python code to obtain the output of the filter
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Fig. 6.4 Input and output of first-order IIR filter 

3. When the poles are at position p = 1, the filter amplifies the DC signal and blocks 
the high-frequency signal. The filter behaves like a lowpass filter.

Experiment 6.3 Impact of Pole Position on the Magnitude and Impulse 
Responses of First-Order IIR Filter 
The objective of this experiment is to analyse the impact of pole position on the 
impulse and magnitude response of first-order IIR filter whose transfer functions are 
given by H1 zð Þ= 1 

1- 0:25z- 1 and H2 zð Þ= 1 
1þ0:25z- 1. The python code which obtains 

the impulse response and the magnitude response of the two filters is given in 
Fig. 6.5, and the corresponding output is shown in Fig. 6.6. 

Inferences 
From Fig. 6.6, the following inferences can be drawn: 

1. The pole of System-1 whose transfer function is given by H1 zð Þ= 1 
1- 0:25z- 1 lies 

on the positive half of the Z-plane. 
2. The impulse response of System-1 is observed to be an exponentially decreasing 

function. 
3. From the magnitude response of System-1, it is possible to observe that System-1 

behaves like a lowpass filter. 
4. The pole of System-2 whose transfer function is given by H2 zð Þ= 1 

1þ0:25z- 1 lies 
on the negative half of Z-plane. 

5. From the magnitude response of System-2, it is possible to infer that the System-2 
behaves like a highpass filter.
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#Impact of pole position on the behaviour of the system 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Defining systems 
num,den1,den2=[1],[1,-0.25],[1,0.25] 
#Obtaining the magnitude response 
w1,H1=signal.freqz(num,den1) 
z1,p1,k1=signal.tf2zpk(num,den1) 
w2,H2=signal.freqz(num,den2) 
z2,p2,k2=signal.tf2zpk(num,den2) 
#To generate imupluse input 
x=np.zeros(15) 
x[0]=1 
h1=signal.lfilter(num,den1,x) 
h2=signal.lfilter(num,den2,x) 
plt.subplot(2,3,1),plt.plot(np.real(z1),np.imag(z1),'ko'),plt.xlabel('$\sigma$'), 
plt.ylabel('$j\omega$'),plt.title('Pole Zero Plot') 
plt.plot(np.real(p1),np.imag(p1),'rx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)) 
plt.subplot(2,3,2),plt.stem(h1),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_1[n]$') 
plt.subplot(2,3,3),plt.plot(w1,20*np.log10(np.abs(H1))) 
plt.xlabel('$\omega$-->'),plt.ylabel('|$H_1(j\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,3,4),plt.plot(np.real(z2),np.imag(z2),'ko') 
plt.plot(np.real(p2),np.imag(p2),'rx'),plt.xlabel('$\sigma$'), 
plt.ylabel('$j\omega$'),plt.title('Pole Zero Plot') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)) 
plt.subplot(2,3,5),plt.stem(h2),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_2[n]$') 
plt.subplot(2,3,6),plt.plot(w2,20*np.log10(np.abs(H2))) 
plt.xlabel('$\omega$-->'),plt.ylabel('|$H_2(j\omega$)|'),plt.title('Magnitude response') 
plt.tight_layout() 

Fig. 6.5 Python code to analyse the impact of pole position on the behaviour of the filter 

6. The impulse response of System-1 is given by h1[n] = (0.25)n u[n], whereas the 
impulse response of System-2 is given by h2[n] = (-1)n h1[n]. If h1[n] acts as a 
lowpass filter, then h2[n] behaves like a highpass filter. 

7. This experiment concludes that the pole position changes the behaviour of the 
filter from lowpass to highpass filter. 

Task 
1. Repeat the above experiment for the system whose transfer function is given by 

H  zð  Þ= 1 
1- 2z- 1, and comment on the observed result.



ð

g

6.2 Moving Average filter 239

A
m

pl
itu

de
A

m
pl

itu
de

 

Pole Zero Plot 

Pole Zero Plot Magnitude response 

Magnitude response 

s 

s 

jw
jw �

�

1 

–1 

0 

1 

–1 

0 

1–1 0 

1–1 0 

0.5 

1.0 

0.0 

0.5 

1.0 

0.0 

n--> 

n--> 
|H

1(
jw

)�
|H

2(
jw

)�

w --> 

w --> 

100 

100 

h2[n] 

h1[n] 

2 

–2 

0 

2 

–2 

0 

20 

20 

Fig. 6.6 Result of python code shown in Fig. 6.5 

6.2 Moving Average filter 

The relationship between the input and output of M-point moving average filter is 
given by 

y n½ ]= 
1 
M 

M- 1 

k = 0 

x n- k½ ] 6:9Þ 

For a three-point moving average filter, M = 3, substituting M = 3 in Eq. (6.9), 
we get the input-output relationship as 

y n½ ]= 
1 
3 

x n½ ] þ  x n- 1½ ] þ x n- 2½ ]f ð6:10Þ 

From Eq. (6.10), it is possible to interpret that equal weightage is given to x[n], x 
[n- 1] and x[n- 2]. This type of system is termed as ‘moving average system’. This 
system performs the weighted average of three input samples x[n], x[n - 1] and x 
[n - 2]; hence, it is termed as ‘moving average filter’. 

Experiment 6.4 Characteristics of Moving Average Filter 
This experiment tries to obtain the characteristics of a moving average filter using 
python. The python code, which obtains the characteristics of three-point moving 
average filter, is shown in Fig. 6.7, and the corresponding output is shown in 
Fig. 6.8.
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#Characteristics of Moving average filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#S1: Generation of impulse input 
x=np.zeros(100) 
x[0]=1 
#S2: Define the three-point Moving average system 
num,den=[1/3,1/3,1/3],[1] 
#S3: To obtain the impulse response 
h=signal.lfilter(num,den,x) 
#S4: Characteristics of the first-order IIR filter 
fs=100 
w,H=signal.freqz(num,den) 
z,p,k=signal.tf2zpk(num,den) 
#S5: Plotting the result 
plt.figure(1),plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('h[n]'),plt.subplot(2,2,2),plt.plot((w/np.pi)*fs/2,20*np.log10(np.abs(H))), 
plt.xlabel('$\omega$-->'),plt.ylabel('|H($j\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,3),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole Zero Plot') 
plt.plot(np.real(z),np.imag(z),'ko'),plt.plot(np.real(p),np.imag(p),'rx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.subplot(2,2,4),plt.plot(w,np.angle(H)), 
plt.xlabel('$\omega$-->'),plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response') 
plt.tight_layout() 

Fig. 6.7 Python code to obtain the characteristics of three-point moving average filter 
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Fig. 6.8 Characteristics of three-point moving average filter
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Fig. 6.9 Problem statement illustration 

Inferences 
From Fig. 6.8, the following inferences can be drawn: 

1. The impulse response of a moving average filter is finite. If the impulse response 
of the system is absolutely summable, then the discrete-time system is a stable 
system. Thus, three-point moving average system is inherently stable. 

2. Moving average filter is an all-zero filter. 
3. From the magnitude response, it is possible to observe that three-point moving 

average filter act as a lowpass filter. 
4. From the phase response, it is possible to conclude that a moving average filter 

exhibits linear phase characteristics in the pass band. 

Task 
1. Repeat the above experiment for a five-point moving average filter and six-point 

moving average filter, and comment on the observed output. What change do you 
observe in the pole-zero plot for M = 5 and M = 6? 

Experiment 6.5 Impact of the Order of Moving Average Filter 
The objective of this experiment is to observe the impact of the order of the moving 
average filter with respect to the extent of filtering. This objective is shown in 
Fig. 6.9. From Fig. 6.9, it is possible to interpret that the input signal to the three 
moving average filters of orders 51, 71 and 91 is a square wave. The reason for 
choosing square wave as input is that it exhibits sharp transition between ‘ON’ and 
‘OFF’ state. The python code, which implements the task shown in Fig. 6.9, is given 
in Fig. 6.10, and the corresponding output is shown in Fig. 6.11. 

Inferences 
The following inferences can be drawn from Fig. 6.11: 

1. The input signal to the moving average filter is a square wave. The input signal 
exhibits sudden transitions between states ‘0’ and ‘1’. 

2. The input signal is passed through 3 moving average filters of order 51, 71 and 
91.
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#Impact of the order of Moving average filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generating the input square waveform 
t=np.linspace(0,1,1000) 
x=signal.square(2*np.pi*5*t) 
#Step 2: Defining the MA filters 
num1=1/51*np.ones(51) 
num2=1/71*np.ones(71) 
num3=1/91*np.ones(91) 
den=[1] 
#Step 3: Obtaining the outputs 
y1=signal.lfilter(num1,den,x) 
y2=signal.lfilter(num2,den,x) 
y3=signal.lfilter(num3,den,x) 
#Step 4: Plotting the results 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Input signal'),plt.subplot(2,2,2),plt.plot(t,y1) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Filtered signal (M=51)') 
plt.subplot(2,2,3),plt.plot(t,y2),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Filtered signal (M=71)'),plt.subplot(2,2,4),plt.plot(t,y3) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Filtered signal (M=91)') 
plt.tight_layout() 

Fig. 6.10 Python code to obtain the results of moving average filter 

3. The square wave is transformed into a triangular wave for the moving average 
filter of order 91. The square wave, when passed through an integrator (lowpass 
filter), results in a triangular wave. The triangular wave exhibits gradual variation 
between the states ‘0’ and ‘1’. 

4. The extent of smoothing increases with an increase in the order of the moving 
average filter. 

6.3 M-Point Exponentially Weighted Moving Average 
Filter (EWMA) 

The relationship between the input and output of M-point exponentially weighted 
moving average filter is given by
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Fig. 6.11 Results of moving average filter 

y n½ ]=C 
M- 1 

k = 0 

αk x n- k½ ] ð6:11Þ 

In the above expression, ‘C’ is the normalization constant, and ‘α’ is the expo-
nential weighting factor, where 0 < α < 1. 

To Find the Expression for Normalization Constant (C) One way to obtain the 
value of ‘C’ is that it should preserve the DC gain. If the input is a constant signal (x 
[n] = K ), if the filter preserves the DC component of the signal, then the output is 
also expected to be ‘K’. Substituting x[n] = K and y[n] = K in Eq. (6.11), we get 

K =C 
M- 1 

k = 0 

αk K ð6:12Þ 

The above equation can be written as 

K =CK 
M- 1 

k = 0 

αk ð6:13Þ 

From the above expression, the expression for the constant ‘C’ can be written as
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C 
M- 1 

k = 0 

αk = 1 ð6:14Þ 

The expression for the constant ‘C’ is written as 

C= 
1 

M- 1 

k = 0 
αk 

ð6:15Þ 

Using summation formula 

M- 1 

k = 0 

αk = 
1- αM 

1- α
ð6:16Þ 

Substituting Eq. (6.16) in Eq. (6.15), we have 

C= 
1- α 
1- αM

ð6:17Þ 

The expression for M-point exponentially weighted moving average filter is given 
by 

y n½ ]= 
1- α 
1- αM 

M- 1 

k = 0 

αk x n- k½ ] ð6:18Þ 

If ‘α’ value is closer to 1, then M-point exponentially weighted moving average 
filter will behave like an M-point moving average filter. 

Experiment 6.6 Comparing the Impulse Response of MA and EWMA Filter 
The objective of this experiment is to compare the impulse responses of the moving 
average filter with the exponentially weighted moving average filter for M = 3 and 
5. The python code, which plots the impulse response of the moving average filter 
and exponentially weighted average filter, is shown in Fig. 6.12, and the 
corresponding output is shown in Fig. 6.13. 

Inferences 
From Fig. 6.13, it is possible to interpret the following: 

1. The MA filter gives equal weightage to all the input sample values. 
2. The EWMA filter gives more weightage to the current input sample and less 

weightage to the past input samples.
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#Impulse response of MA and EWMA 
import numpy as np 
import matplotlib.pyplot as plt 
M1, M2=3,5 
alpha=0.5 
h1=1/M1*np.ones(M1) #MA filter for M=3 
h2=1/M2*np.ones(M2) #MA filter for M=5 
C1=(alpha-1)/(alpha**M1-1) 
C2=(alpha-1)/(alpha**M2-1)  
h3=C1*np.array([1,alpha,alpha**2]) #EWMA filter for M=3 
h4=C2*np.array([1,alpha,alpha**2,alpha**3,alpha**4])#EWMA filter for M=5 
plt.subplot(2,2,1),plt.stem(h1),plt.xlabel('n-->'),plt.ylabel('$h_1[n]$'), 
plt.title('$h_1[n]$ of MA filter for M = 3') 
plt.subplot(2,2,2),plt.stem(h3),plt.xlabel('n-->'),plt.ylabel('$h_3[n]$'), 
plt.title('$h_3[n]$ of EWMA filter for M = 3') 
plt.subplot(2,2,3),plt.stem(h2),plt.xlabel('n-->'),plt.ylabel('$h_2[n]$'), 
plt.title('$h_2[n]$ of MA filter for M = 5') 
plt.subplot(2,2,4),plt.stem(h4),plt.xlabel('n-->'),plt.ylabel('$h_4[n]$'), 
plt.title('$h_4[n]$ of EWMA filter for M = 5'),plt.tight_layout() 

Fig. 6.12 Python code which obtains the impulse response of MA and EWMA filter 
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Fig. 6.13 Impulse response of MA and EWMA filter
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6.4 Digital Resonator 

A resonator is designed to have its strongest response to match certain input signal. 
Resonators find application in communication receivers, AM/FM demodulators, etc. 
A digital resonator is a two-pole bandpass filter with a pair of complex-conjugate 
poles near the unit circle to create a resonant peak at the desired frequency. The 
digital resonator has a large magnitude response in the vicinity of the pole location. If 
one pole is located at p1 = rejω , then the other pole will be at p2 = re-jω , where 
0 < r < 1. The expression for the transfer function of the system is given by 

H zð Þ= 
1 

1- p1z- 1ð Þ  1- p2z- 1ð Þ ð6:19Þ 

Substituting p1 = rejω and p2 = re-jω in the above expression, we get 

H zð Þ= 
1 

1- rejωz- 1ð Þ  1- re- jωz- 1ð Þ  

Simplifying the above expression, we get 

H zð Þ= 
1 

1- re- jωz- 1 - rejωz- 1 þ r2z- 2 

The above equation can be expressed as 

H zð Þ= 
1 

1- rz- 1 e- jω þ ejω½ ] þ r2z- 2 

Simplifying the above equation, we get 

H zð Þ= 
1 

1- 2rz- 1 cos ωð Þ þ  r2z- 2 ð6:20Þ 

Experiment 6.7 Digital Resonator 
This experiment analyses the concept of digital resonator using python. The python 
illustration of digital resonator with two complex conjugate poles occurring at 
r = 0.98 is shown in Fig. 6.14, and the corresponding output is shown in Fig. 6.15. 

Inferences 
The following inferences can be made from this experiment: 

1. From the input and output signals, it is possible to observe from Fig. 6.15 that the 
input is a unit sample signal. The system is excited with an impulse signal. The 
output of the system produces an oscillation.
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#Digital resonator 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Defining the system 
r,fs=0.98,100    #Sampling frequency 
fn,fc=fs/2, 5     #Cutoff frequency 
w=2*np.pi*(fc/fn) 
b=[1] 
a=[1,-2*r*np.cos(w),r**2] 
#Generating the input and obtaining the response 
x=np.zeros(25)  #Input to the resonator 
x[0]=1 
y=signal.lfilter(b,a,x) #Output of resonator 
plt.subplot(3,2,1),plt.stem(x),plt.xlabel('n-->'),plt.ylabel('x[n]'),plt.title('Input signal') 
plt.subplot(3,2,2),plt.stem(y),plt.xlabel('n-->'),plt.ylabel('y[n]'),plt.title('Output signal') 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(3,2,3),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('y1[n]'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(3,2,5),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx',ms=7.5) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(3,2,4),plt.plot(w, 10 * np.log10(abs(h))),plt.xlabel('$\omega$ [rad/sample]'), 
plt.ylabel('$|H(e^{j\omega})|$ in [dB]'),plt.title('Magnitude response'),plt.subplot(3,2,6), 
plt.plot(w,np.unwrap(np.angle(h))),plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Degree') 
plt.title('Phase response'),plt.tight_layout() 

Fig. 6.14 Python code to implement digital resonator

2. From the magnitude response, it is possible to observe that the system behaves 
like a narrow bandpass filter. 

3. From the pole-zero plot, it is possible to observe that two complex conjugate 
poles occur very closer to the unit circle. 

4. From the phase response, it is possible to observe that the system exhibits 
non-linear phase characteristics. 
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Fig. 6.15 Result of python code shown in Fig. 6.14 

Task 
1. Repeat the above experiment for r = 1 and comment on the observed result. 

6.5 Notch Filter 

Notch filter has two complex conjugate zeros placed on the unit circle to create a null 
at a desired frequency. A notch filter has the ability to reject one particular frequency. 
A pair of complex conjugate zeros on the unit circle produces a null in the frequency 
response, which results in the rejection of one particular frequency. Let the conjugate 
zeros be represented as z1 = rejω and z2 = re-jω . If the zeros occur on the unit circle, 
then r = 1. The transfer function of such a system is given by 

H zð Þ= 1- z1z
- 1 1- z2z

- 1 ð6:21Þ 

Substituting z1 = ejω and z2 = e-jω in the above expression, we get 

H zð  Þ= 1- ejω z- 1 1- e- jω z- 1 

The above equation can be written as
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Notch filter with 5 Hz 
cut-off frequency 

  Input signal  

Addition of 2 Hz and 5 Hz 
sine waves 

Output signal  

Sine wave of 2 Hz 
frequency 

Fig. 6.16 Problem illustration 

H zð Þ= 1- e- jω z- 1 - ejω z- 1 þ z- 2 

The transfer function of the system is expressed as 

H zð Þ= 1- z- 1 e- jω þ ejω þ z- 2 

The above equation can be expressed as 

H zð Þ= 1- 2z- 1 cos ωð Þ þ  z- 2 ð6:22Þ 

Experiment 6.8 Notch Filter 
This experiment discusses the design of a notch filter to eliminate one particular 
frequency component. The input signal to the notch filter is the addition of two sine 
waves of frequency components, 2 and 5 Hz. The notch filter cut-off frequency is 
5 Hz. It is expected that the notch filter will eliminate 5 Hz frequency component so 
that the filtered signal will have only 2 Hz frequency component. This is illustrated in 
Fig. 6.16. 

The python code which performs the above-mentioned task is shown in Fig. 6.17, 
and the corresponding output is shown in Fig. 6.18. 

Inferences 
From Fig. 6.18, the following inferences can be drawn 

1. The input signal to the notch filter is an addition of 2 and 5 Hz sine waves. 
2. The output of the notch filter clearly shows that it is a 2 Hz sine wave. This means 

that the notch filter has filtered 5 Hz sinusoidal component only. 
3. The impulse response shows that the filter designed has a finite impulse response. 
4. From the magnitude response, it is possible to observe that the notch occurs at 

5 Hz. 
5. From the pole-zero plot, it is possible to observe two conjugate zeros. 
6. From the phase response, it is possible to observe that the phase response varies 

linearly with respect to frequency. Therefore, the designed filter exhibits linear 
phase characteristics. 

Experiment 6.9 Design of Notch Filter Using Built-In Function 
The built-in function ‘iirnotch’ available in ‘scipy’ library can be used to design a 
notch filter. The python code to design a notch filter for cut-off frequency of 50 Hz



and a sampling frequency of fs = 1000 Hz is shown in Fig. 6.19, and the 
corresponding characteristics are shown in Fig. 6.20. 
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#Notch filter     
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generating the input signal 
f1,f2=2,5 # 1Hz and 5Hzfrequency component 
n=np.arange(0,100) 
x1=np.sin(2*np.pi*f1*n/100) 
x2=np.sin(2*np.pi*f2*n/100) 
x=x1+x2  #Input signal has 1 Hz and 5 Hz component 
#Step 2: Design of notch filter 
r,fs,fc=0.99,100,5 # Sampling, Cutoff frequencies 
w=2*np.pi*(fc/fs) 
b=[1,-2*np.cos(w),1] 
a=[1] 
#Step 3: Obtaining the output 
y=signal.lfilter(b,a,x) #Output of resonator 
plt.subplot(3,2,1),plt.stem(x),plt.xlabel('n-->'),plt.ylabel('x[n]'),plt.title('Input signal'), 
plt.subplot(3,2,2),plt.stem(y),plt.xlabel('n-->'),plt.ylabel('y[n]'),plt.title('Output signal') 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(3,2,3),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('y1[n]'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(3,2,5),plt.plot(circle.real, circle.imag, 'k--'),plt.plot(z.real, z.imag, 'ro', ms=7.5), 
plt.plot(p.real, p.imag, 'rx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(3,2,4),plt.plot(0.5*fs*w/np.pi, 10 * np.log10(abs(h))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('$|H(j\omega)|$ in [dB]') 
plt.title('Magnitude response'),plt.subplot(3,2,6),  
plt.plot(0.5*fs*w/np.pi,np.unwrap(np.angle(h))),plt.xlabel('$\omega$ [rad/sample]'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 6.17 Python code which performs notch filtering of the input signal 

Inferences 
From Fig. 6.20, it is possible to observe the following facts: 

1. The impulse response is of infinite duration. The impulse response is not 
symmetric.
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Fig. 6.18 Result of the python code shown in Fig. 6.17 

2. The pole-zero plot shows two complex conjugate poles and zeros on the unit 
circle. The presence of poles on the unit circle indicates that the stability of the 
filter is not guaranteed. 

3. The magnitude response shows that the 50 Hz notch frequency is the cut-off 
frequency. 

4. The phase response indicates that it is non-linear. Since the impulse response is 
not symmetric, the phase response is not linear. 

6.6 All-Pass Filter 

The transfer function of first-order all-pass filter is given by 

H zð Þ= 
z- 1 - a 
1- az- 1 , where aj j< 1 ð6:23Þ 

The frequency response of the system is obtained by substituting z = ejω in the 
above equation, we get 

H ejω = 
e- jω - a 
1- ae- jω ð6:24Þ
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#Characteristics of notch filter 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy import signal 
#Step 1: Design of notch filter 
fs, fc, QF = 1000, 50, 10 # Sampling, Cut-off frequency and Quality factor 
w0=fc/(fs/2) 
b, a = signal.iirnotch(w0, QF) 
#Step 2: Plotting the characteristics 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 100) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'gx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, H = signal.freqz(b,a) 
plt.subplot(2,2,3),plt.plot(w/np.pi*fs/2, 10*np.log(abs(H))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('$|H(j\omega)|$ in [dB]') 
plt.title('Magnitude response'),plt.subplot(2,2,4),plt.plot(w/np.pi*fs/2,np.unwrap(np.angle(H))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('$\u2220H(j\omega)$') 
plt.title('Phase response'),plt.tight_layout() 

Fig. 6.19 Python code to design notch filter using built-in function 

Using Euler’s formula e-jω = cos (ω) - j sin (ω), the above expression can be 
written as 

H ejω = 
cos ωð Þ- j sin ωð Þ- a 

1- a cos ωð Þ- j sin ωð Þ½ ] ð6:25Þ 

Now the expression for squared magnitude response is given by 

H ejω 
2 
= 

cos ωð Þ- að Þ2 þ sin 2 ωð Þ  
1- a cos ωð Þð Þ2 þ a2 sin 2 ωð Þ  

The above equation can be simplified as 

H ejω 
2 
= 

cos 2 ωð Þ þ  a2 - 2a cos ωð Þ þ  sin 2 ωð Þ  
1 þ a2 cos 2 ωð Þ- 2a cos ωð Þ þ a2 sin 2 ωð Þ  

Using the fact that sin2 (ω) + cos2 (ω) = 1, the above equation can be simplified as
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Fig. 6.20 Characteristics of a notch filter 

H ejω 
2 
= 

1þ a2 - 2a cos ωð Þ  
1þ a2 cos 2 ωð Þ þ  sin 2 ωð Þ - 2a cos ωð Þ  

Upon simplifying the above expression, we get 

H ejω 
2 
= 

1þ a2 - 2a cos ωð Þ  
1þ a2 - 2a cos ωð Þ  = 1 ð6:26Þ 

Thus, the magnitude response of the all-pass filter is unity. This means all-pass 
filters pass all frequency components of the input signal. 

Experiment 6.10 All-Pass Filter 
This experiment discusses the python implementation of all-pass filter. The python 
implementation of first-order all-pass filter with the value of ‘a = 0.5’ is shown in 
Fig. 6.21, and the corresponding output is shown in Fig. 6.22. 

Inferences 
From Fig. 6.22, the following inferences can be drawn: 

1. The input to the all-pass filter is a sine wave of 5 Hz frequency. 
2. The output of the all-pass filter is almost the same as the input signal. Thus, all-

pass filter passes all the frequency components of the input signal. 
3. The impulse response is not finite. It slowly reaches the value of zero. Hence, it is 

an IIR filter.
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#First order all-pass filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generating the input signal 
f=5 # frequency  
n=np.arange(0,50) 
x=np.sin(2*np.pi*f*n/50) 
#Step 2: Design of all-pass filter 
a1=0.5 
b,a=[-a1,1],[1,-a1] 
#Step 3: Obtaining the output 
y=signal.lfilter(b,a,x) #Output of resonator 
plt.subplot(3,2,1),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('x[n]'),plt.title('Input signal') 
plt.subplot(3,2,2),plt.stem(n,y),plt.xlabel('n-->'),plt.ylabel('y[n]'),plt.title('Output signal') 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(3,2,3),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]'),plt.title('Impulse 
response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(3,2,4),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'gx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(3,2,5),plt.plot(w,np.abs(h)) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('$|H(j\omega)|$') 
plt.title('Magnitude response'),plt.subplot(3,2,6), 
plt.plot(w,np.unwrap(np.angle(h))),plt.xlabel('$\omega$ [rad/sample]'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 6.21 First-order all-pass filter 

4. The magnitude response indicates that the filter gain is one for all frequency 
components. 

5. From the pole-zero plot, a pole lies at 0.5, whereas a zero lies at 2. The given 
system is not a minimum phase system. 

6. The phase response of the system is non-linear. The phase is not varying linearly 
with respect to frequency. 

Task 
1. Repeat the above experiment for a = 0.25 and a = 0.75, and comment on the 

observed results.
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Fig. 6.22 Result of first-order all-pass filter 

Fig. 6.23 Block diagram 
representation of comb filter 

z-L 

x[n] y[n] 

6.7 Comb Filter 

A comb filter is a notch filter with a number of equally spaced nulls. The block 
diagram representing the comb filter is shown in Fig. 6.23. 

The relationship between the input and output of the comb filter is expressed as 

y n½ ]= x n½ ] þ  x n- L½ ] ð6:27Þ 

Taking Z-transform on both sides of the above equation, we get 

Y zð Þ=X zð Þ þ z-L X zð Þ ð6:28Þ 

The above equation can be expressed as 

Y zð  Þ=X zð Þ  1þ z- L 

The transfer function can be expressed as
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H zð Þ= 
Y zð Þ  
X zð Þ  = 1þ z- L ð6:29Þ 

The frequency response of the system is obtained by substituting z = ejω in the 
above expression, we get 

H ejω = 1þ e- jωL ð6:30Þ 

6.7.1 Location of Poles and Zeros of Comb Filter 

From the expression of the transfer function given in Eq. (6.30), it is possible to 
interpret; there is a pole of multiplicity ‘L’ at the origin. The location of zeros is 
obtained by equating the numerator of the transfer function to zero, which results in 

z-L = - 1 

The above equation can be expressed as 

e- jωL = ej 2kþ1ð Þπ 

From the above expression 

ωk = 
2k þ 1ð Þπ 

L
ð6:31Þ 

The zeros of the FIR filter are uniformly spaced 2π L radians apart around the unit 
circle starting at ω= π L. For odd ‘L’, there is a zero at ω = π. 

Experiment 6.11 Comb Filter 
The objective of this experiment is to plot the pole-zero pattern of Comb filter for 
even and odd values of L. The odd value is chosen as L = 5, and the even value is 
chosen as L = 6. The python code which plots the pole-zero plot of comb filters is 
shown in Fig. 6.24, and the corresponding output is shown in Fig. 6.25. 

Inferences 
From the pole-zero plot, which is shown in Fig. 6.25, the following inferences can 
be made: 

1. The zeros are uniformly spaced 2π L radians apart around the unit circle. 
2. For odd values of ‘L’, there is a zero at ω = π. 
3. The poles lie at the origin, which implies that the filters are inherently stable.
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#Pole-zero plot of comb filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
h1=[1,0,0,0,0,1] # Comb filter for N=5 (Odd) 
h2=[1,0,0,0,0,0,1] #Comb filter for N=6 (Even) 
z1, p1, k1 = signal.tf2zpk(h1,1) #Pole-zero  for N=5 
z2, p2, k2 = signal.tf2zpk(h2,1) #Pole-zero for N=6 
#Plotting the pole-zero plot 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,1),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z1.real, z1.imag, 'ro', ms=7.5) 
plt.plot(p1.real, p1.imag, 'gx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'), 
plt.title('Pole-zero plot for L = 5'),plt.grid() 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z2.real, z2.imag, 'ro', ms=7.5) 
plt.plot(p2.real, p2.imag, 'gx', ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'), 
plt.title('Pole-zero plot for L = 6'),plt.grid(),plt.tight_layout() 

Fig. 6.24 Pole-zero plot of comb filter 
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Fig. 6.25 Pole-zero plot of comb filters for odd and even values of ‘L’
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Fig. 6.26 Block diagram representation of problem statement 
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Fig. 6.27 Block diagram of problem statement 

Exercises 
1. Generate sinusoidal signal of 5 Hz frequency. Add random noise which follows 

uniform distribution to the clean sinusoidal signal. Pass the noisy signal to the 
moving average filter and comment on the observed result. The block diagram of 
the problem statement is shown in Fig. 6.26. 

2. Generate three tones of frequencies 500, 1000 and 1500 Hz. Append the three 
tones together as one signal. Now pass this signal to a notch filter, which will 
block the frequency component of a specific frequency (say 1000 Hz). Hear the 
input and output signals and comment on your observation. 

3. Design a notch filter to minimize 50 Hz powerline interference in ECG signal. 
Read an ECG signal which is stored in ‘mat’ file format. Add 50 Hz powerline 
interference to the clean ECG signal to generate noisy signal. Pass the noisy 
signal to the notch filter to minimize the powerline interference. Plot the clean, 
noisy and filtered signals and comment on the observed result. The problem 
statement is depicted in the form of a block diagram and is shown in Fig. 6.27. 

4. Generate 10 Hz square waveform. Design a comb filter to eliminate 10 Hz 
frequency component in this signal and its odd harmonics. 

5. Generate sine wave of frequencies 5 and 10 Hz. Add these two waveforms. Now 
pass this signal through a notch filter, which should eliminate the 5 Hz frequency 
component, so that the output signal contains a 10 Hz frequency component.



6.7 Comb Filter 259

Objective Questions 
1. The filter which is used to reject one particular frequency is 

A. Lowpass filter 
B. Highpass filter 
C. All-pass filter 
D. Notch filter 

2. The filter which can be used as a delay equalizer is 

A. Lowpass filter 
B. Highpass filter 
C. All-pass filter 
D. Notch filter 

3. Cascading of lowpass and highpass filter will result in 

A. Lowpass filter 
B. Highpass filter 
C. Band pass filter 
D. All-pass filter 

4. The filter which is used to minimize the impact of power line interference is 

A. Lowpass filter 
B. Highpass filter 
C. All-pass filter 
D. Notch filter 

5. The impulse response of three-point moving average filter is given by 

A. h n½ ]= 1 3 - δ n½ ]- δ n- 1½ ]- δ n- 2½f g  
B. h n½ ]= 1 3 - δ n½ ]- δ n- 1½ ] þ  δ n- 2½f g  
C. h n½ ]= 1 3 δ n½ ]- δ n- 1½ ] þ  δ n- 2½f g  
D. h n½ ]= 1 3 δ n½ ] þ  δ n- 1½ ] þ  δ n- 2½f g  

6. The filter which has the ability to remove fundamental frequency and its 
harmonics is 

A. Notch filter 
B. Comb filter 
C. Lowpass filter 
D. Highpass filter 

7. The impulse response of a digital filter is given by h[n] = δ[n] +  δ[n - 8]. The 
filter behaves like a 

A. All-pass filter 
B. Highpass filter



Both statements are wrong.

Both assertion and reason are wrong.

Statement 1 is correct, and Statement 2 is wrong.

Statement 1 is correct, and Statement 2 is wrong.
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C. Comb filter 
D. Notch filter 

8. Statement 1: Stable filters are always causal 
Statement 2: Causal filters are always stable: 

A. 
B. Both statements are true. 
C. Statement 1 is true, and Statement 2 is wrong. 
D. Statement 1 is wrong, and Statement 2 is true. 

9. Assertion: Moving average filter attenuates quick change in the signal. 
Reason: Moving average filter is a lowpass filter. 

A. 
B. Assertion is true, reason is wrong. 
C. Assertion is wrong, reason may be true. 
D. Both assertion and reason are true. 

10. The frequency response of lowpass filter is given by H ejωð Þ= 1þe- jωþe- j2ωþe- j3ω 

4 . 
Using frequency shift, the lowpass filter can be converted to a highpass filter. 
The impulse response of the highpass filter is 

A. h[n] = 0.25{δ[n] +  δ[n - 1] + δ[n - 2] + δ[n - 3]} 
B. h[n] = 0.25{δ[n] +  δ[n - 1] - δ[n - 2] - δ[n - 3]} 
C. h[n] = 0.25{-δ[n] - δ[n - 1] - δ[n - 2] - δ[n - 3]} 
D. h[n] = 0.25{δ[n] - δ[n - 1] + δ[n - 2] - δ[n - 3]} 

11. Statement 1: Digital resonator generates sinusoidal signal of specific frequency. 
Statement 2: Digital resonator has complex conjugate pole located on the unit 

circle. 

A. 
B. Statement 1 is wrong, and Statement 2 is correct. 
C. Both Statements 1 and 2 are correct. 
D. Both Statements 1 and 2 are wrong. 

12. In the design of a simple digital filter using pole-zero placement: 
Statement 1: To suppress a frequency component, locate a zero at this 

frequency on the unit circle. 
Statement 2: To amplify a frequency, locate a pole at this frequency inside the 

unit circle. 

A. 
B. Statement 1 is wrong, and Statement 2 is correct. 
C. Both Statements 1 and 2 are wrong. 
D. Both Statements 1 and 2 are correct. 

13. The transfer function of a linear time-invariant system is expressed as 

H  zð  Þ= B  zð  Þ  
A  zð  Þ.



Statement 1 is correct, and Statement 2 is wrong.
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Statement 1: Zeros are roots of the polynomial B(z). 
Statement 2: Poles are roots of the polynomial A(z). 

A. 
B. Statement 1 is wrong, and Statement 2 is correct. 
C. Both Statements 1 and 2 are wrong. 
D. Both Statements 1 and 2 are correct. 
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Chapter 7 
FIR Filter Design 

Learning Objectives 
After completing this chapter, the reader is expected to

• Analyse the characteristics of Type-I, Type-II, Type-III and Type-IV FIR filters.
• Design and analyse window-based finite impulse response filter.
• Design and analyse frequency sampling based finite impulse response filter.
• Design and analyse optimal finite impulse response filter. 

Roadmap of the Chapter 
This chapter discusses the type of FIR filters and its characteristic. Also, it gives 
detail about the designs of the FIR filter. The roadmap of this chapter is given in the 
form of flowchart below. 

FIR filter 

Types of FIR filter Design of FIR filter 

Type – I FIR filter 

Type – II FIR filter 

Type – III FIR filter 

Type – IV FIR filter 

Window-based FIR 

filter design 

Frequency sampling based 

FIR filter design 

Optimal FIR filter design 
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PreLab Questions 
1. What is the difference equation relating the input and output of a finite impulse 

response filter? What are the inferences that could be made from the difference 
equation? 

2. On what basis are FIR filters classified as Type-I, Type-II, Type-III and Type-IV 
FIR filters? 

3. When is a FIR filter coefficient said to exhibit (a) even symmetry and (b) odd 
symmetry? 

4. What is the condition for the digital filter to exhibit linear phase characteristics? 
5. What is the advantage of ‘linear phase’ characteristics of digital filter? 
6. What is the relationship between the group delay and the phase response of the 

FIR filter? 
7. What is the relationship between the order (M ) and the number of coefficients 

(N ) of FIR filters? 
8. Why FIR filter is considered as an ‘inherently stable’ filter? 
9. List four advantages of FIR filter. 

10. Mention different methods of design of FIR filter. 

7.1 FIR Filter 

FIR stands for finite impulse response. The coefficients of FIR filter are either 
symmetric or anti-symmetric. Due to the symmetric nature of FIR filter coefficients, 
it exhibits linear phase characteristics. Because of linear phase characteristics, the 
FIR filter has no phase distortion. Also, FIR filter exhibits constant group delay. In 
FIR filter, the current output is a function of the current and previous inputs. This 
implies that FIR filters are non-recursive filters; hence, they are inherently stable. 
FIR filter is an all-zero filter, and the zeros occur in conjugate reciprocal pair. 

7.2 Classification of FIR Filter 

Based on nature of symmetry and the number of coefficients, FIR filter can be 
classified as Type-I, Type-II, Type-III and Type-IV. The classification is given in 
Table 7.1. 

Table 7.1 Classification of FIR filter 

S. No. Nature of symmetry Number of coefficients Type of FIR filter 

1 Even symmetry Odd Type-I 

2 Even symmetry Even Type-II 

3 Odd symmetry Odd Type-III 

4 Odd symmetry Even Type-IV
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#Type-I FIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1 : Type-I FIR filter 
b,a=[1,2,3,2,1],[1] 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--'),plt.plot(z.real, z.imag, 'ro', ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(2,2,3),plt.plot(w, np.abs(h)),plt.xlabel('$\omega$-->'), 
plt.ylabel('|H(j$\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(h))), plt.xlabel('$\omega$-->'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 7.1 Python code to obtain the characteristics of Type-I FIR filter 

Experiment 7.1 Characteristics of Type-I FIR Filter 
The objective of this experiment is to plot the characteristics of Type-I FIR filter. 
Here, the impulse response of Type-I FIR filter is chosen as h[n] = {1, 2, 3, 2, 1}. 
The filter coefficients satisfy even symmetry, and the number of coefficients is odd; 
hence, it belongs to Type-I FIR filter. The python code, which obtains the impulse 
response, magnitude response, phase response and pole-zero plot, is shown in 
Fig. 7.1, and the corresponding output is shown in Fig. 7.2. The built-in functions 
used in the program are given in Table 7.2. 

Inferences 
From Fig. 7.2, the following inferences can be drawn: 

1. From the impulse response, it is possible to observe that the impulse response is 
of finite duration, and the filter coefficients exhibit even symmetry. 

2. From the pole-zero plot, the filter is an all-zero filter. The zeros occur in 
conjugate pair. 

3. From the magnitude response, it is possible to observe that the filter behaves like a 
lowpass filter. 

4. From the phase response, it is possible to observe that the filter exhibits a linear 
phase characteristic in the passband.
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Fig. 7.2 Characteristics of Type-I FIR filter 

Table 7.2 Built-in functions used in the program 

Built-in 
function 

1 signal. 
lfilter 

Scipy To obtain the output of LTI system 

2 signal. 
tf2zpk 

Scipy To obtain the zeros, poles and gain of the LTI system 

3 signal. 
freqz 

Scipy To obtain the frequency response of the LTI system. Frequency 
response is a combination of magnitude and phase responses 

4 abs Numpy To obtain the magnitude response of the system 

5 angle Numpy To obtain the phase response of the system 

Task 
1. Write a python code to illustrate that Type-I FIR filter is versatile; (i.e.) it can be 

used as a lowpass, highpass, bandpass and band reject filter. 

Experiment 7.2 Characteristics of Type-II FIR Filter 
Type-II FIR filter exhibits even symmetry with an even number of coefficients. The 
Type-II FIR filter coefficients considered in this experiment is h[n] = {1, 2, 2, 1}. 
The python code to obtain the impulse response, pole-zero plot, magnitude and 
phase responses is shown in Fig. 7.3, and the corresponding output is shown in 
Fig. 7.4. 

Inferences 
From Fig. 7.4, the following inferences can be made:
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#Type-II FIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1 : Type-I FIR filter 
b,a=[1,2,2,1],[1] 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--'),plt.plot(z.real, z.imag, 'ro', ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(2,2,3),plt.plot(w, np.abs(h)),plt.xlabel('$\omega$--
>'),plt.ylabel('|H(j$\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(h))), plt.xlabel('$\omega$-->'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 7.3 Python code to obtain the characteristics of Type-II FIR filter 
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Fig. 7.4 Characteristics of Type-II FIR filter
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#Type-III FIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1 : Type-I FIR filter 
b,a=[1,2,0,-2,-1],[1] 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--'),plt.plot(z.real, z.imag, 'ro', ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(2,2,3),plt.plot(w, np.abs(h)),plt.xlabel('$\omega$-->'), 
plt.ylabel('|H(j$\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(h))), plt.xlabel('$\omega$-->'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 7.5 Python code to obtain the characteristics of Type-III FIR filter 

1. From the impulse response, it is possible to observe that the impulse response is 
of finite duration, and it exhibits even symmetry. 

2. From the pole-zero plot, it is possible to observe that Type-II FIR filter is an 
all-zero filter. The magnitude which is zero at ω = π indicates that Type-II FIR 
filter cannot be used as a highpass filter. 

3. From the magnitude response, it is possible to conclude that the filter behaves like 
a lowpass filter. 

4. From the phase response, it is possible to confirm that the Type-II FIR filter 
exhibits linear phase characteristics in the passband. 

Task 
1. Generate x[n] = ejπn , 0  < n ≤ 100. Pass this signal through Type-II FIR filter 

whose impulse response is h[n] = {1, 2, 2, 1}. Use subplot to plot the input and 
output signals and comment on the observed result. 

Experiment 7.3 Characteristics of Type-III FIR Filter 
This experiment discusses the analysis of the characteristics of Type-III FIR filter 
using python. The python code, which obtains the characteristics of Type-III FIR 
filter, is shown in Fig. 7.5, and the corresponding output is shown in Fig. 7.6. The



impulse response chosen for Type-III FIR filter characteristics is {1, 2, 0, -2, -1}, 
and it satisfies both odd symmetry and the number of coefficients is odd. 
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Fig. 7.6 Characteristics of Type-III FIR filter 

Inferences 
From Fig. 7.6, the following inferences can be drawn: 

1. The impulse response shows odd symmetry with an odd number of coefficients. 
The duration of the impulse response is finite. 

2. From the pole-zero plot, it is possible to observe that the magnitude value is zero 
at ω = 0 and ω = π. This implies that Type-III FIR filter cannot be used as a 
lowpass and a highpass filters. 

3. From the magnitude response, it is possible to observe that the filter can act as a 
bandpass filter only. 

4. From the phase response, it is possible to infer that the filter exhibits linear phase 
characteristics in the passband. 

Task 
1. Write a python code to illustrate the fact that cascading of lowpass and highpass 

filters will result in a bandpass filter. 

Experiment 7.4 Characteristics of Type-IV FIR Filter 
This experiment tries to analyse the characteristics of Type-IV FIR filter using 
python. The python code, which obtains the characteristics of Type-IV FIR filter, 
is shown in Fig. 7.7, and the corresponding output is shown in Fig. 7.8. The impulse 
response chosen for this illustration is h[n] = {1, 2, -2, -1}. The impulse response 
exhibits odd symmetry with an even number of filter coefficients.
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#Type-IV FIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1 : Type-I FIR filter 
b,a=[1,2,-2,-1],[1] 
#Impulse response of the system 
h_1=np.zeros(25) 
h_1[0]=1 
h=signal.lfilter(b,a,h_1) 
plt.subplot(2,2,1),plt.stem(h),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('Impulse response') 
# Pole-zero plot 
z, p, k = signal.tf2zpk(b, a) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--'),plt.plot(z.real, z.imag, 'ro', ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot'),plt.grid() 
#Magnitude and phase response 
w, h = signal.freqz(b,a) 
plt.subplot(2,2,3),plt.plot(w, np.abs(h)),plt.xlabel('$\omega$-->'), 
plt.ylabel('|H(j$\omega$)|'),plt.title('Magnitude response') 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(h))), plt.xlabel('$\omega$-->'), 
plt.ylabel('$\u2220H(j\omega)$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 7.7 Python code to obtain the characteristics of Type-IV FIR filter 
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Fig. 7.8 Characteristics of Type-IV FIR filter
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Inferences 
From Fig. 7.8, the following inferences can be made: 

1. The impulse response plot reveals that Type-IV FIR filter impulse response is 
anti-symmetric with an even number of coefficients. 

2. From the pole-zero plot, it is possible to confirm that Type-IV FIR filter has a zero 
at ω = 0; hence, it cannot be used as a lowpass filter. 

3. The magnitude response resembles that of a bandpass filter. 
4. The phase response plot reveals that Type-IV FIR filter exhibits linear phase 

characteristics in the passband. 

Experiment 7.5 Comparison of Type-I, Type-II, Type-III and Type-IV FIR 
Filters with Respect to Their Location of Zeros 
This experiment compares all four types of FIR filters with respect to their location 
of zeros using python. The python code used to plot the pole-zero plot of Type-I, 
Type-II, Type-III and Type-IV FIR filters is shown in Fig. 7.9, and the 
corresponding output is shown in Fig. 7.10. In this program, the impulse responses 
of four FIR filters are defined first. Then, the pole, zero and gain of each type of FIR 
filter are obtained using the built-in function ‘tf2zpk’ available in ‘scipy’ package. 
Then, the extracted poles and zeros are plotted. The automatic location of zeros in 
Type-I, Type-II, Type-III and Type-IV FIR filters is given in Table 7.3. 

Inferences 
From Fig. 7.10, the following inferences can be drawn: 

1. For Type-I FIR filter, there is no zero at ω = 0 and ω = π. It can be used as a 
versatile filter. 

2. Type-II FIR filter has a zero at ω = π. It cannot be used as a highpass filter. 
3. Type-III FIR filter has zero at ω = 0 and ω = π. It cannot be used as both lowpass 

and highpass filters. 
4. Type-IV FIR filter has zero at ω = 0. It cannot be used as lowpass filter. 
5. In general, zeros of FIR filter occur in conjugate, reciprocal pairs. 

Task 
1. Write a python code to illustrate the fact that all four types of FIR filters are 

inherently stable filters. Hint: For a discrete-time system to be stable, the impulse 
response should be absolutely summable. 

7.3 Design of FIR Filter 

The design of FIR filter starts with specification. The specification can be either in 
time domain or frequency domain. In time domain, the desired impulse response is 
given as specification. In frequency domain, the specification involves magnitude 
and phase response. Three prominent methods to design FIR filters are (1) window-
based method, (2) frequency sampling method and (3) optimal method.
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#Pole-zero plot of different types of FIR filter 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy import signal 
#Defining four types of FIR filter 
h1,h2,h3,h4=[1,2,5,2,1],[1,2,2,1],[1,2,0,-2,-1],[1,2,-2,-1] 
#Poles and zeros of the filter 
z1, p1, k1 = signal.tf2zpk(h1,1) 
z2, p2, k2 = signal.tf2zpk(h2,1) 
z3, p3, k3 = signal.tf2zpk(h3,1) 
z4, p4, k4 = signal.tf2zpk(h4,1) 
#Ploting the pole-zero plot 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,1),plt.plot(circle.real, circle.imag, 'k--'),plt.plot(z1.real, z1.imag, 'ro', ms=7.5) 
plt.plot(p1.real, p1.imag, 'rx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot(Type-I)'),plt.grid() 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z2.real, z2.imag, 'ro', ms=7.5),plt.plot(p2.real, p2.imag, 'gx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot(Type-II)'),plt.grid() 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,3),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z3.real, z3.imag, 'ro', ms=7.5),plt.plot(p3.real, p3.imag, 'gx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot(Type-III)'),plt.grid() 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,4),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z4.real, z4.imag, 'ro', ms=7.5),plt.plot(p4.real, p4.imag, 'gx',ms=7.5) 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot(Type-IV)'),plt.grid() 
plt.tight_layout() 

Fig. 7.9 Python code to obtain the pole-zero plots of different types of FIR filter 

7.3.1 Steps in Window-Based FIR Filter Design 

The steps followed in FIR filter design using Windows are summarized below: 

1. The filter design starts with the specification of the filter in terms of desired 
frequency response. 

2. The desired impulse response (hd[n]) is obtained from the desired frequency 
response using inverse discrete-time Fourier transform. 

3. Multiply the desired impulse response with the selected window function. 
4. Delay the windowed impulse response by a factor of ‘τ’ to get the causal FIR filter 

coefficients. 
5. The process is complete if the frequency response is satisfied as per the specifi-

cation. If the frequency specifications are not satisfied, increase the filter order 
and repeat the steps.
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Fig. 7.10 Pole-zero plot of FIR filters 

Table 7.3 Automatic location of zeros in different types of FIR filter 

Type of 
FIR filter 

Automatic zero 
location 

Type-I – Type-I FIR filter is a versatile filter; it can be used to design 
lowpass, highpass, bandpass and band reject filters 

Type-II Zero at ω = π Type-II FIR filter cannot be used as a highpass filter 

Type-III Zero at ω = 0 
and ω = π 

Type-III FIR filter cannot be used as lowpass and highpass 
filters 

Type-IV Zero at ω = 0 Type-IV FIR filter cannot be used as lowpass filter 

7.3.2 Window-Based FIR Lowpass Filter 

The expression for the impulse response of the ideal lowpass filter is given by 

hd n½ ]= 
ωc 

π 
sin c 

ωc 

π 
n ð7:1Þ 

From Eq. (7.1), it is possible to observe that the filter is neither causal nor finite in 
duration. To make it finite duration, the desired impulse response is multiplied with 
the window function. The mathematical expression for the impulse response multi-
plied with a rectangular window of length ‘N’ is given by
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#Impulse response of ideal filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N, omega = 50,1.0 
n = np.arange(-N/2,N/2) 
rect_win=np.ones(N) 
hd = omega/np.pi * np.sinc(n*omega/np.pi) 
h=hd*rect_win 
plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 

Fig. 7.11 Python code to obtain the impulse response of the ideal filter 
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Fig. 7.12 Impulse response of an ideal filter 

h n½ ]= hd n½ ]× rectN n½ ] ð7:2Þ 

Experiment 7.6 Window-Based Design of Ideal Lowpass Filter 
This experiment discusses the ideal lowpass FIR filter design using windowing 
method. The python code, which obtains the impulse response of an ideal filter, is 
shown in Fig. 7.11, and the corresponding output is shown in Fig. 7.12. 

Inferences 
The following inferences can be drawn from Fig. 7.12: 

1. The impulse response of the ideal filter is non-causal. 
2. If the impulse response is non-causal, the filter is not physically realizable.
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#Comparison of ideal and practical filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N, omega = 32, 1.0 
n = np.arange(0,N) 
rect_win=np.ones(N) 
hd = omega/np.pi * np.sinc(n*omega/np.pi) 
hd1 = omega/np.pi * np.sinc((n-(N-1)/2)*omega/np.pi) 
h1=hd1*rect_win 
h=hd*rect_win 
w,H=signal.freqz(h) 
w1,H1=signal.freqz(h1) 
plt.subplot(2,3,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
plt.title('h[n]:IF'),plt.subplot(2,3,2),plt.plot(w,20*np.log10(np.abs(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$|H(e^{j\omega})|$') 
plt.title('Magnitude response:IF'),plt.subplot(2,3,3),plt.plot(w,np.unwrap(np.angle(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$\phi(e^{j\omega})$'),plt.title('Phase response:IF') 
plt.subplot(2,3,4),plt.stem(n,h1),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
plt.title('h[n]:PF'),plt.subplot(2,3,5),plt.plot(w1,20*np.log10(np.abs(H1))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$|H(e^{j\omega})|$'),plt.title('Magnitude response:PF') 
plt.subplot(2,3,6),plt.plot(w1,np.unwrap(np.angle(H1))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$\phi(e^{j\omega})$'),plt.title('Phase response:PF') 
plt.tight_layout() 

Fig. 7.13 Comparison of ideal and practical filter 

3. Practically realizable filters have passband and stopband ripples and a non-zero 
transition band. 

4. For practical filter, a delay is necessary to capture most of the signal energy in 
causal time. 

5. Delay in time-domain is accomplished by multiplying the spectrum with a 
complex exponential. The magnitude response is multiplied by e-jωτ , which 
results in the time shift of the impulse response. This is discussed in the subse-
quent section. 

Task 
1. In the above experiment, increase the number of coefficients of the filter to 

100, observe the filter’s impulse response and comment on the observed result. 

Experiment 7.7 Comparison of Ideal and Practical Lowpass Filter 
The impulse response of an ideal filter is non-causal; hence, it is not physically 
realizable. To design a practical filter, the impulse response of the ideal filter has to 
be delayed to make it causal. Delay in the time-domain is accomplished by multi-
plying the spectrum with a complex exponential. The magnitude response is multi-
plied by e-jωτ , which results in the time shift of the impulse response. 

This python illustration compares the ideal FIR filter with the practical FIR filter. 
The python code, which performs the comparison, is shown in Fig. 7.13, and the 
corresponding output is shown in Fig. 7.14.
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Fig. 7.14 Characteristics of Ideal and practical filters 

In Fig. 7.14, IF and PF denote ideal and practical filters, respectively. 

Inferences 
The following inferences can be made from this experiment: 

1. By comparing the impulse response of the ideal and practical filters, it is possible 
to observe that the practical filter exhibits a symmetric impulse response. In 
contrast, the impulse response of the ideal filter is not symmetric. 

2. From the magnitude responses, it is possible to observe that the ideal filter 
exhibits ripples, whereas, in the practical filter, the ripples in the magnitude 
response are less. 

3. Practical filter exhibits linear phase characteristics, whereas the ideal filter phase 
response is not linear. 

4. From this experiment, it is possible to conclude that the impulse response should 
be symmetric for the phase response to be linear. 

7.3.3 Window-Based FIR Highpass Filter 

The desired impulse response of window-based highpass FIR filter is given by
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#FIR high pass filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Desired impulse response hd[n] 
N,omega = 50,np.pi/4 
n = np.arange(0,N) 
rect_win=np.ones(N) 
hd =np.sinc(n-(N-1)/2)-(omega/np.pi * np.sinc((n-(N-1)/2)*omega/np.pi)) 
h=hd*rect_win #Step 2: Windowed impulse response h[n] 
w,H=signal.freqz(h) #Step 3: Frequency response of ideal filter 
#Step 4:Impulse response of the filter 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
z, p, k = signal.tf2zpk(h,1) #Step 5: Pole-zero plot of the filter 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
#Step 6: Magnitude response of the filter 
plt.subplot(2,2,3),plt.plot(w,20*np.log10(np.abs(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$|H(e^{j^\omega})|$'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$\phi(e^{j^\omega})$'),plt.title('Phase response') 
plt.tight_layout() 

Fig. 7.15 Python code to obtain the characteristics of highpass filter 

hd n½ ]= sin c n- τð Þ- ωc 

π 
sin c 

ωc 

π 
n- τð Þ ð7:3Þ 

From Eq. (7.3), it is possible to know that the desired impulse response is a sinc 
function that is not of finite duration. The desired impulse response must be 
multiplied by the window function w[n] to make the finite impulse response. This 
is expressed as 

h n½ ]= hd n½ ]×w n½ ] ð7:4Þ 

Experiment 7.8 Window-Based FIR Highpass Filter 
This experiment discusses about the study of characteristics of FIR highpass filter 
design using the windowing method. The python code, which obtains the charac-
teristics of a highpass filter, is given in Fig. 7.15, and the corresponding output is 
shown in Fig. 7.16. 

Inferences 
The following inferences can be made from this experiment:
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Fig. 7.16 Characteristics of highpass filter 

1. Figure 7.16 shows that the code was written to simulate the desired impulse 
response, which is given in Eq. (7.3). The desired impulse response is multiplied 
by the window to get the actual response. The window chosen in this illustration 
is a rectangular window. 

2. The ‘scipy’ library is used here to obtain the frequency response and the pole-zero 
plot of the filter. The built-in function ‘tf2zpk’ is utilized to obtain the pole-zero 
plot, whereas the built-in function ‘freqz’ is used here to obtain the frequency 
response of the filter. 

3. From the magnitude response shown in Fig. 7.16, it is possible to observe that the 
filter is a highpass filter that exhibits linear phase characteristics in the passband. 

4. From the pole-zero plot, it is possible to observe that the zeros of FIR filter occur 
in conjugate reciprocal pair. 

Task 
1. In the python code given in Fig. 7.15, try to use windows like Hamming, 

Hanning, Bartlett and Blackman window, and observe the changes in magnitude 
and phase response. 

7.3.4 Window-Based FIR Bandpass Filter 

The expression for the desired impulse response of the bandpass filter is given by



7.3 Design of FIR Filter 279

#Characteristics of bandpass filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Desired impulse response hd[n] 
N,omega_1,omega_2 = 16,np.pi/4,np.pi/2 
n = np.arange(0,N) 
rect_win=np.ones(N) 
hd =(omega_2/np.pi * np.sinc((n-(N-1)/2)*omega_2/np.pi))-(omega_1/np.pi * np.sinc((n-(N-
1)/2)*omega_1/np.pi)) 
h=hd*rect_win #Step 2: Windowed impulse response h[n] 
w,H=signal.freqz(h) #Step 3: Frequency response of ideal filter 
#Step 4:Impulse response of the filter 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
z, p, k = signal.tf2zpk(h,1) #Step 5: Pole-zero plot of the filter 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
#Step 6: Magnitude response of the filter 
plt.subplot(2,2,3),plt.plot(w,20*np.log10(np.abs(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$|H(e^{j^\omega})|$'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(H))) 
plt.xlabel('$\omega$-->'),plt.ylabel('$\phi(e^{j^\omega})$') 
plt.title('Phase response'),plt.tight_layout() 

Fig. 7.17 Python code to obtain the characteristics of the bandpass filter 

hd½n]= 
ωc2 

π 
sin cðωc2 

π 
ðn- τÞÞ- ωc1 

π 
sin cðωc1 

π 
ðn- τÞÞ ð7:5Þ 

Here ‘ωc1’ and ‘ωc2’ are pass band frequencies and ωc2 > ωc1. The desired 
impulse response must be multiplied by the window function w[n] to get a finite 
impulse response. This is expressed as 

h n½ ]= hd n½ ]×w n½ ] ð7:6Þ 

Experiment 7.9 Window-Based FIR Bandpass Filter 
This experiment discusses the FIR bandpass filter design using a windowing 
approach. The python code, which obtains the characteristics of bandpass filter 
with the cut-off frequencies ωc1 = π 4 radians/sample and ωc2 = π 2 radians/sample, is 
shown in Fig. 7.17, and the corresponding output is shown in Fig. 7.18. 

Inferences 
From Fig. 7.18, the following observations can be made:
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Fig. 7.18 Characteristics of the bandpass filter 

1. The lower cut-off frequency chosen is ωc1 = π 4 which is equal to 0.785 radians/ 
sample, and the upper cut-off frequency chosen is ωc2 = π 2 which is equal to 
1.57 radians/sample. The magnitude response shows the passband between 0.785 
and 1.57, and the gain drops beyond the cut-off frequency. 

2. From the impulse response plot, it is possible to observe that the impulse response 
is symmetric in nature. 

3. From the phase response, it is possible to observe that the filter exhibits linear 
phase characteristics in the passband. The linear phase is due to the symmetric 
nature of the impulse response. 

4. The pole-zero plot shows that the filter is an all-zero filter with the zeros occurring 
in a conjugate reciprocal manner. 

Task 
1. In the above program, try to use windows like Hamming, Hanning, Bartlett and 

Blackman, and observe the change in magnitude and phase response. 

7.3.5 Window-Based FIR Band Reject Filter 

The expression for the desired impulse response of the band reject/stop filter is given 
by
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#Characteristics of band-reject filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Desired impulse response hd[n] 
N,omega_1,omega_2 = 21,np.pi/4,np.pi/2 
n = np.arange(0,N) 
rect_win=np.ones(N) 
hd =(omega_1/np.pi * np.sinc((n-(N-1)/2)*omega_1/np.pi))+np.sinc(n-(N-1)/2)-(omega_2/np.pi * 
np.sinc((n-(N-1)/2)*omega_2/np.pi)) 
h=hd*rect_win#Step 2: Windowed impulse response h[n] 
w,H=signal.freqz(h) #Step 3: Frequency response of ideal filter 
#Step 4:Impulse response of the filter 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
z, p, k = signal.tf2zpk(h,1)#Step 5: Pole-zero plot of the filter 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
#Step 6: Magnitude response of the filter 
plt.subplot(2,2,3),plt.plot(w,20*np.log10(np.abs(H))),plt.xlabel('$\omega$-->'), 
plt.ylabel('$|H(e^{j^\omega})|$'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot(w,np.unwrap(np.angle(H))),plt.xlabel('$\omega$-->'), 
plt.ylabel('$\phi(e^{j^\omega})$'),plt.title('Phase response'),plt.tight_layout() 

Fig. 7.19 Python code to obtain the characteristics of band reject filter 

hd n½ ]= sin c n- τð Þ þ  ωc1 

π 
sin c 

ωc1 

π 
n- τð Þ -

ωc2 

π 
sin c 

ωc2 

π 
n- τð Þ  ð7:7Þ 

Here ‘ωc1’ and ‘ωc2’ are stop band frequencies and ωc2 > ωc1. To make the 
impulse response finite, the desired impulse response must be multiplied by the 
window function w[n]. This is expressed as 

h n½ ]= hd n½ ]×w n½ ] ð7:8Þ 

Experiment 7.10 Window-Based FIR Band Reject Filter 
This experiment deals with the FIR band reject filter design using windowing 
method. The python code, which obtains the characteristics of band reject filter, is 
shown in Fig. 7.19, and the corresponding output is shown in Fig. 7.20. The cut-off 
frequencies chosen are ωc1 = π 4 radians/sample and ωc2 = π 2 radians/sample. 

Inferences 
The following inferences can be drawn from this experiment: 

1. The lower cut-off frequency chosen is ωc1 = π 4, which is equal to 0.785 radians/ 
sample, and the upper cut-off frequency chosen is ωc2 = π 2, which is equal to
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Fig. 7.20 Characteristics of band reject filter 

1.57 radians/sample. The magnitude response shows that the frequency between 
0.785 and 1.57 is attenuated. 

2. From the impulse response plot, it is possible to observe that the impulse response 
is symmetric in nature. 

3. From the phase response, it is possible to observe that the filter exhibits linear 
phase characteristics in the passband. The linear phase is due to symmetric nature 
of the impulse response. 

4. The pole-zero plot shows that the filter is an all-zero filter with the zeros occurring 
in conjugate reciprocal manner. 

Task 
1. In the above program, try to use windows like Hamming, Hanning, Bartlett and 

Blackman, and observe the change in magnitude and phase responses. 

7.3.6 Design of FIR Filter Using Built-In Function 

The built-in function ‘firwin’ available in ‘scipy’ library is used here to generate FIR 
filter coefficients using window-based method. The input to the built-in function is 
the number of coefficients of the filter, cut-off frequency and window type.
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#Characteristics of Low pass filter using firwin command 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N,fs,LPF_cutoff=20,100,5 
n=np.arange(N) 
w_LPF=LPF_cutoff/(fs/2) 
h=signal.firwin(N,w_LPF,window='hamming') 
w,H=signal.freqz(h) 
z, p, k = signal.tf2zpk(h,1) 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
plt.subplot(2,2,3),plt.plot((fs * 0.5 / np.pi) * w,20*np.log10(np.abs(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$|H(jf)|$ in dB'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot((fs * 0.5 / np.pi) * w,np.unwrap(np.angle(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$\phi(jf)$') 
plt.title('Phase response'),plt.tight layout() 

Fig. 7.21 Built-in function ‘firwin’ to obtain the characteristics of lowpass filter 

Experiment 7.11 Design of FIR Lowpass Filter Using a Built-In Function 
This experiment intends to obtain the FIR filter coefficients using the built-in 
function ‘firwin’. After obtaining the coefficients, the characteristics of FIR filter, 
like impulse response, magnitude response, phase response and pole-zero plot, are 
plotted. The python code, which performs this task, is shown in Fig. 7.21, and the 
corresponding output is shown in Fig. 7.22. 

Inferences 
From Fig. 7.21, the following observations can be obtained: 

1. The built-in function ‘firwin’ available in ‘scipy’ library is used here to obtain the 
filter coefficients. 

2. The specifications of the lowpass filter are (a) number of coefficients = 20, cut-off 
frequency = 5 Hz, sampling frequency = 100 Hz and window chosen is 
‘Hamming’ window. 

From Fig. 7.22, the following observations can be made: 

1. The impulse response consists of 20 coefficients. From the impulse response, it is 
possible to observe that the coefficients are symmetric. 

2. From the pole-zero plot, it is possible to observe that the zeros occur in conjugate 
reciprocal pair.
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Fig. 7.22 Characteristics of lowpass filter 

3. From the magnitude response, it is possible to observe that the gain drops after the 
cut-off frequency of 5 Hz. 

4. From the phase response, it is possible to confirm that linear phase characteristic 
is obtained in the passband. 

Experiment 7.12 Design of FIR Highpass Filter Using the Built-In Function 
This experiment aims to obtain the highpass filter coefficients with a slight change in 
the code which generates the lowpass filter. The keyword ‘pass-zero = false’ helps 
one to obtain the highpass filter. The python code, which performs this task, is 
shown in Fig. 7.23, and the corresponding output is shown in Fig. 7.24. 

Inferences 
The following inferences can be made from this experiment: 

1. From Fig. 7.23, it is possible to observe that the keyword ‘pass_zero = False’ 
allows one to obtain the coefficients of the highpass filter. 

2. The characteristic of highpass filter is shown in Fig. 7.24. From this figure, it is 
possible to observe that beyond the cut-off frequency of 5 Hz, the gain reaches a 
value of 0 dB, and the phase response is linear curve. 

Experiment 7.13 Design of FIR Bandpass Filter Using the Built-In Function 
The objective of this experiment is to design a bandpass filter, which will pass signal 
in the frequency range 10–20 Hz. The sampling frequency chosen is 100 Hz. The 
order of the filter is 50, and the window chosen is ‘Hamming window’.
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#Characteristics of high pass filter using "firwin" command 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N,fs,HPF_cutoff=21,100,5 
n=np.arange(N) 
w_HPF=HPF_cutoff/(fs/2) 
h=signal.firwin(N,w_HPF,window='hamming',pass_zero=False) 
w,H=signal.freqz(h) 
z, p, k = signal.tf2zpk(h,1) 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
plt.subplot(2,2,3),plt.plot((fs * 0.5 / np.pi) * w,20*np.log10(np.abs(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$|H(jf)|$ in dB'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot((fs * 0.5 / np.pi) * w,np.unwrap(np.angle(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$\phi(jf)$') 
plt.title('Phase response'),plt.tight_layout() 

Fig. 7.23 Python code to obtain the characteristics of highpass filter 
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Fig. 7.24 Characteristics of highpass filter
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#Characteristics of bandpass filter using "firwin" command 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N,fs,lf,uf=20,100,10,20  #Specifications 
n=np.arange(0,N) 
w_LCF=lf/(fs/2) 
w_UCF=uf/(fs/2) 
h=signal.firwin(N,[w_LCF,w_UCF],window='hamming',pass_zero=False) 
w,H=signal.freqz(h) 
z, p, k = signal.tf2zpk(h,1) 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
plt.subplot(2,2,3),plt.plot((fs * 0.5 / np.pi) * w,20*np.log10(np.abs(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$|H(jf)|$ in dB'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot((fs * 0.5 / np.pi) * w,np.unwrap(np.angle(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$\phi(jf)$') 
plt.title('Phase response'),plt.tight_layout() 

Fig. 7.25 Python code to obtain the characteristics of bandpass filter 

The python code which generates the filter coefficient corresponding to the 
desired bandpass filter is shown in Fig. 7.25, and the corresponding filter character-
istics are shown in Fig. 7.26. 

Inferences 
The following inferences can be drawn from this experiment: 

1. From Fig. 7.26, it is possible to observe from the magnitude response that the 
filter passes a band of frequencies from 10 to 20 Hz. 

2. From the impulse response, it is possible to observe that the impulse response of 
the filter is finite and symmetric. 

3. The filter also exhibits linear phase characteristics in the passband. This is due to 
the symmetric nature of the impulse response. 

4. From the pole-zero plot, it is possible to observe that the zeros occur in conjugate 
reciprocal pair. 

Experiment 7.14 Design of FIR Band Reject Filter Using the Built-In Function 
This experiment discusses the design of FIR band reject filter using built-in function. 
The band reject filter is obtained from bandpass filter design using the key term 
‘pass_zero = True’. The python code which obtains the coefficient of the band reject 
filter is shown in Fig. 7.27, and the corresponding output is shown in Fig. 7.28.
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Fig. 7.26 Characteristics of bandpass filter 

#Characteristics of band reject filter using "firwin" command 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N,fs,lf,uf=25,100,10,30 
n=np.arange(0,N) 
w_LCF=lf/(fs/2) 
w_UCF=uf/(fs/2) 
h=signal.firwin(N,[w_LCF,w_UCF],window='hamming',pass_zero=True) 
w,H=signal.freqz(h) 
z, p, k = signal.tf2zpk(h,1) 
plt.subplot(2,2,1),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,2,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(z.real, z.imag, 'ro', ms=7.5),plt.plot(p.real, p.imag, 'rx') 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot') 
plt.subplot(2,2,3),plt.plot((fs * 0.5 / np.pi) * w,20*np.log10(np.abs(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$|H(jf)|$ in dB'),plt.title('Magnitude response') 
#Step 7: Phase response of the filter 
plt.subplot(2,2,4),plt.plot((fs * 0.5 / np.pi) * w,np.unwrap(np.angle(H))) 
plt.xlabel('Frequency (f) (Hz)'),plt.ylabel('$\phi(jf)$') 
plt.title('Phase response'),plt.tight_layout() 

Fig. 7.27 Python code to generate the band reject filter coefficients and its characteristics
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Fig. 7.28 Characteristics of band reject filter 

Inferences 
The following observations can be made from this experiment: 

1. Figure 7.27 shows that the keyword ‘pass-zero = True’ is used here to convert the 
bandpass filter to a band reject filter. 

2. From the magnitude response shown in Fig. 7.28, it is possible to confirm that this 
filter blocks the frequency band from 10 to 30 Hz. 

7.3.7 Window Functions 

In this section, the window function is visualized in both time domain and frequency 
domain. Different types of window functions include rectangular, triangular, Ham-
ming, Hanning, Kaiser, etc. The main lobe width of the window function controls the 
transition bandwidth, whereas the height of the side lobe controls the passband and 
stopband ripples. A rectangular window has the narrowest main lobe; hence, it gives 
sharpest transition. Compared to rectangular window, the Hamming and Hanning 
windows are smoother. By tapering the window smoothly to zero, the sidelobes can 
be reduced in amplitude, which will reduce the ripple, but the trade-off is a larger 
main lobe. A linear phase response can be achieved if the window function is 
symmetric. Some windows allow controlled trade-offs between sidelobe amplitude 
and main lobe width. One such window is the Kaiser window.
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#Window functions in time and frequency domain 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fft import fft,fftshift 
N = 51  #Length of the window 
n =np.arange(-(N-1)/2, (N-1)/2) 
#Defining different window functions 
w_Rect = n-n+1; #Rectangular 
w_Bart = 1 - 2* abs(n)/(N-1) #Bartlett 
w_Han = 0.5 + 0.5 * np.cos(2*np.pi*n/(N-1)); #Hanning 
w_Hamm = 0.54 + 0.46 * np.cos(2*np.pi*n/(N-1)); #Hamming 
#Spectrum of window 
W_Rect=fftshift(fft(w_Rect,1024)/len(w_Rect)) 
W_Bart =fftshift(fft(w_Bart,1024)/len(w_Bart)) 
W_Han=fftshift(fft(w_Han,1024)/len(w_Bart)) 
W_Hamm=fftshift(fft(w_Hamm,1024)/len(w_Bart)) 
plt.figure(1),plt.subplot(2,2,1),plt.stem(n,w_Rect),plt.xlabel('n-->'),plt.ylabel('w[n]'), 
plt.title('Rectangular window'),plt.subplot(2,2,3),plt.stem(n,w_Bart),plt.xlabel('n-->') 
plt.ylabel('w[n]'),plt.title('Bartlett window') 
freq = np.linspace(-0.5, 0.5, len(W_Rect)) 
plt.subplot(2,2,2), plt.plot(freq, 20 * np.log10(W_Rect)),plt.axis([-0.5, 0.5, -120, 0]), 
plt.xlabel('Normalized frequency'),plt.ylabel('Magnitude [dB]'), 
plt.title('Spectrum of rectangular window'), 
plt.subplot(2,2,4), plt.plot(freq, 20 * np.log10(W_Bart)),plt.xlabel('Normalized frequency'), 
plt.ylabel('Magnitude [dB]'),plt.title('Spectrum of Bartlett window') 
plt.axis([-0.5, 0.5, -120, 0]),plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(n,w_Han),plt.xlabel('n-->'),plt.ylabel('w[n]'), 
plt.title('Hanning window'),plt.subplot(2,2,3),plt.stem(n,w_Hamm),plt.xlabel('n-->') 
plt.ylabel('w[n]'),plt.title('Hamming window'),plt.subplot(2,2,2),  
plt.plot(freq, 20 * np.log10(W_Han)),plt.xlabel('Normalized frequency'),  
plt.ylabel('Magnitude [dB]'),plt.title('Spectrum of Hanning window'),plt.axis([-0.5, 0.5, -120, 0]), 
plt.subplot(2,2,4), plt.plot(freq, 20 * np.log10(W_Hamm)),plt.xlabel('Normalized frequency'), 
plt.ylabel('Magnitude [dB]'),plt.title('Spectrum of Hamming window') 
plt.axis([-0.5, 0.5, -120, 0]),plt.tight_layout() 

Fig. 7.29 Python code to plot the window functions in time and frequency domain 

Experiment 7.15 Plotting Windows in the Time and Frequency Domain 
The python code which plots the window function in the time and frequency domain 
is shown in Fig. 7.29, and the corresponding output is shown in Figs. 7.30 and 7.31. 
Different window functions considered in this example include (1) rectangular, 
(2) triangular or Bartlett, (3) Hanning and (4) Hamming window. 

Inference 
From Figs. 7.30 and 7.31, the following inferences can be made: 

1. Four different types of windows chosen are (a) rectangular, (b) triangular, 
(c) Hamming and (d) Hanning. 

2. Fourier transform of different types of window functions results in the sinc 
functions.
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Fig. 7.31 Window functions in time and frequency domain 

3. The spectrum of different windows differs with respect to main lobe width and 
side lobe height.
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7.4 Frequency Sampling-Based FIR Filter Design 

The steps followed in frequency sampling method of FIR filter design are summa-
rized below: 

1. The design step starts with a prescribed magnitude response. 
2. The prescribed magnitude response is sampled at enough points. 
3. Take the inverse Fourier transform of the samples obtained in step (2). This will 

result in the filter’s impulse response. 

Experiment 7.16 Frequency Sampling-Based FIR Filter Design 
The built-in function ‘firwin2’ available in ‘scipy’ library is used here to generate 
FIR filter coefficients. The following python code helps one to obtain the coefficients 
of Type-I, Type-II, Type-III and Type-IV FIR filters. It is known that Type-I and 
Type-II FIR filter exhibits even symmetry with odd and even number of coefficients, 
respectively. Type-III, and Type-IV FIR filter exhibits odd symmetry with odd and 
even number of coefficients, respectively. The python code, which obtains the 
response of four types of FIR filter, is shown in Fig. 7.32, and the corresponding 
output is shown in Fig. 7.33. 

Inferences 
From Fig. 7.32, the following observations can be made: 

1. The built-in function ‘firwin2’ is used here to generate the FIR filter coefficients. 
In the program, the variables ‘f1 to  f4’ represent the desired normalized frequency 
in the range 0 to 1. The variables ‘m1 to  m4’ represent the desired magnitude 
response. ‘1’ represents passband, and ‘0’ represents the stopband. In the pro-
gram, ‘N1 to  N4’ represents the number of coefficients of the filter. For Type-I 
and Type-III, the number of coefficients has to be odd. For Type-II and Type-IV, 
the number of coefficients has to be even. 

2. The keyword ‘asymmetric = false’ implies even symmetry, and ‘asymmet-
ric = true’ represents odd symmetry. Type-I and Type-II FIR filters exhibit 
even symmetry, whereas Type-III and Type-IV FIR filters exhibit odd symmetry. 

From Fig. 7.33, the following interpretations can be made: 

1. Type-I and Type-II FIR filters act as lowpass filter; Type-III FIR filter act as 
bandpass filter. Type-IV FIR filter act as a highpass filter. 

2. All four types of FIR filters exhibit linear phase characteristics in the passband. 
3. It is to be noted that Type-II FIR filter cannot be used as a highpass filter. Type-III 

FIR filter cannot be used as a lowpass and highpass filters. Type-IV FIR filter 
cannot be used as a lowpass filter.
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#Characteristics of FIR filter using frequency sampling method 
import numpy as np 
from scipy import signal 
import matplotlib.pyplot as plt 
#Type-I FIR filter 
f1 = [0,0.5,0.5,1]; #desired frequencies(w/pi) 
m1 = [1,1,0,0];     #desired magnitude at f 
N1 = 51            #samples 
h1 = signal.firwin2(N1, f1, m1,antisymmetric=False) 
w1, H1 = signal.freqz(h1) 
plt.figure(1),plt.subplot(2,2,1),plt.plot(w1,(10 * np.log10(abs(H1)))), 
plt.ylabel('$|H(e^{j^\omega})|$ in dB'),plt.xlabel('$\omega/\pi$'), 
plt.title('Type-I FIR filter'),plt.subplot(2,2,2),plt.plot(w1,np.unwrap(np.angle(H1))) 
plt.ylabel('$\phi(e^{j^\omega})$'),plt.xlabel('$\omega/\pi$'),plt.title('Type-I FIR filter') 
#Type-II FIR filter 
f2 = [0,0.6,0.6,1]; #desired frequencies(w/pi) 
m2 = [1,1,0,0];     #desired magnitude at f 
N2 = 50            #samples 
h2 = signal.firwin2(N2, f2, m2,antisymmetric=False) 
w2, H2 = signal.freqz(h2) 
plt.subplot(2,2,3),plt.plot(w2,(10 * np.log10(abs(H2)))), 
plt.ylabel('$|H(e^{j^\omega})|$ in dB'),plt.xlabel('$\omega/\pi$'), 
plt.title('Type-II FIR filter'),plt.subplot(2,2,4),plt.plot(w2,np.unwrap(np.angle(H2))) 
plt.ylabel('$\phi(e^{j^\omega})$'),plt.xlabel('$\omega/\pi$'),plt.title('Type-II FIR 
filter'),plt.tight_layout() 
#Type-III FIR filter 
f3 = [0,0.2,0.4,0.6,0.8,1]; #desired frequencies(w/pi) 
m3 = [0,0,1,0,0,0];     #desired magnitude at f 
N3= 101            #samples 
h3 = signal.firwin2(N3, f3, m3,antisymmetric=True) 
w3, H3 = signal.freqz(h3); 
plt.figure(2),plt.subplot(2,2,1),plt.plot(w3,(10 * np.log10(abs(H3)))), 
plt.ylabel('$|H(e^{j^\omega})|$ in dB'),plt.xlabel('$\omega/\pi$'), 
plt.title('Type-III FIR filter'),plt.subplot(2,2,2),plt.plot(w3,np.unwrap(np.angle(H3))) 
plt.ylabel('$\phi(e^{j^\omega})$'),plt.xlabel('$\omega/\pi$'),plt.title('Type-III FIR filter') 
#Type-IV FIR filter 
f4 = [0,0.6,0.6,1]; #desired frequencies(w/pi) 
m4 = [0,0,1,1];     #desired magnitude at f 
N4 = 150            #samples 
h4 = signal.firwin2(N4, f4, m4,antisymmetric=True) 
w4, H4 = signal.freqz(h4); 
plt.subplot(2,2,3),plt.plot(w4,(10 * np.log10(abs(H4)))),plt.ylabel('$|H(e^{j^\omega})|$ in dB'), 
plt.xlabel('$\omega/\pi$'),plt.title('Type-IV FIR filter'),plt.subplot(2,2,4), 
plt.plot(w4,np.unwrap(np.angle(H4))),plt.ylabel('$\phi(e^{j^\omega})$'), 
plt.xlabel('$\omega/\pi$'),plt.title('Type-IV FIR filter'), plt.tight_layout() 

Fig. 7.32 Python code to obtain the characteristics of four types of FIR filter using frequency 
sampling method
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Fig. 7.33 Magnitude and phase responses of four types of FIR filter 

7.5 Design of Optimal FIR filter 

The optimal equiripple FIR filter design is due to Parks and McClellan. The optimal 
method provides an FIR filter coefficient representing the best approximation to the 
desired frequency response in a Chebyshev sense. The term optimal can be defined 
in various ways. The Parks-McClellan package uses the Remez exchange algorithm 
to optimize the filter design by selecting the impulse response, which minimizes the 
peak ripple in the passband and stopband. The filter designed by this approach is 
termed as ‘equiripple’ filter. It is also termed as ‘minimax filter’ because the 
maximum ripple deviation is minimized in the optimization procedure. 

Experiment 7.17 Design of Optimal FIR Filter 
The built-in functions available in ‘scipy’ library like, ‘remez’ and ‘firls’ can be used 
to obtain the coefficients of optimal filter using Remez exchange algorithm and the 
least square approach, respectively. 

The aim of this experiment is to design the lowpass, highpass, bandpass and band 
reject filters using the built-in function ‘remez’ available in ‘scipy’ library. The 
python code, which generates the filter coefficients and plots the magnitude 
responses of these four filters, is shown in Fig. 7.34, and the corresponding output 
is shown in Fig. 7.35. 

Inferences 
From Fig. 7.34, the following observations can be made: 

1. The sampling frequency of the four filters is kept at 1000 Hz, the number of taps 
of the filter of all four filters is kept as 125 and the transition width of the four 
filters is kept as 25 Hz. 

2. The lowpass filter cut-off frequency is kept at 100 Hz. This means that the filter 
should pass all frequencies till 100 Hz and block frequency components greater 
than 100 Hz. 

3. The cut-off frequency of a highpass filter is fixed as 200 Hz. 
4. For the bandpass and band reject filters, the lower and upper cut-off frequencies 

are fixed as 100 Hz and 200 Hz, respectively.
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#Filter design using built-in function remez 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
fs,N,trans_width=1000,125,25 #Low pass filter design 
fc_lp=100 #LPF cut off frequency 
h_lp= signal.remez(N, [0, fc_lp, fc_lp + trans_width, 0.5*fs], [1, 0], Hz=fs) 
w1, H_lp = signal.freqz(h_lp,1) 
plt.subplot(2,2,1),plt.plot(0.5*fs*w1/np.pi, 20*np.log10(np.abs(H_lp))) 
plt.xlabel('Frequency (Hz)'),plt.ylabel('Gain (dB)'),plt.title('Magnitude response of LPF') 
#High pass filter design 
fc_hp = 200.0    # High pass filter cut off frequency 
h_hp = signal.remez(N, [0, fc_hp - trans_width, fc_hp, 0.5*fs],[0, 1], Hz=fs) 
w2, H_hp = signal.freqz(h_hp, [1]) 
plt.subplot(2,2,2),plt.plot(0.5*fs*w2/np.pi, 20*np.log10(np.abs(H_hp))) 
plt.xlabel('Frequency (Hz)'),plt.ylabel('Gain (dB)'),plt.title('Magnitude response of HPF') 
#Band pass filter 
band = [100, 200]  # Desired pass band, Hz 
edges = [0, band[0] - trans_width, band[0], band[1], band[1] + trans_width, 0.5*fs] 
h_bpf = signal.remez(N, edges, [0, 1, 0], Hz=fs) 
w3, H_bpf = signal.freqz(h_bpf,1) 
plt.subplot(2,2,3),plt.plot(0.5*fs*w3/np.pi, 20*np.log10(np.abs(H_bpf))) 
plt.xlabel('Frequency (Hz)'),plt.ylabel('Gain (dB)'),plt.title('Magnitude response of BPF') 
#Band reject filter 
h_brf = signal.remez(N, edges, [1, 0, 1], Hz=fs) 
w4, H_brf = signal.freqz(h_brf,1) 
plt.subplot(2,2,4),plt.plot(0.5*fs*w4/np.pi, 20*np.log10(np.abs(H_brf))) 
plt.xlabel('Frequency (Hz)'),plt.ylabel('Gain (dB)') 
plt.title('Magnitude response of BRF'),plt.tight_layout() 

Fig. 7.34 Python code to obtain the filter coefficients using the built-in function ‘remez’ 

From Fig. 7.35, it is possible to observe that the magnitude responses of the four 
filters are as per the specification. 

7.6 Applications of FIR Filter 

The coefficients of FIR filters are either symmetric or anti-symmetric. FIR filter 
exhibits linear phase characteristics, because of which, there is no phase distortion. 
The group delay of FIR filter is constant. Since the poles of FIR filter occur at the 
origin, FIR filters are inherently stable. Because of these characteristics, FIR filters 
are used in many areas of signal processing like multirate signal processing, adaptive 
signal processing, etc. In multirate signal processing, FIR filters are preferred to 
design perfect reconstruction filter bank. In adaptive signal processing, FIR filters 
are preferred in system identification, adaptive notch filter, inverse system model-
ling, echo cancellation and variety of such applications. In this section, two simple



applications are discussed. One is signal separation, and the other is signal 
denoising. 
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Fig. 7.35 Magnitude responses of the filters 

Window-based FIR low pass 

filter with cut-off frequency 
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Input signal 
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Output signal 
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Fig. 7.36 Block diagram of problem statement 

Experiment 7.18 Separation of Signals Using FIR Filter 
The signal x(t) is an addition of two signals x1(t) and x2(t). The frequencies of the two 
signals x1(t) and x2(t) are 5 Hz and 15 Hz, respectively. The signal x(t) is now passed 
through a lowpass filter whose cut-off frequency is 8 Hz, the order of the filter is 
20 and the window chosen is Hanning. 

The problem statement is depicted in the form of block diagram, which is shown 
in Fig. 7.36. 

The python code, which performs lowpass filtering of the input sine wave with 
5 and 15 Hz frequency components, is shown in Fig. 7.37, and the corresponding 
output is in Fig. 7.38. 

Inferences 
From Fig. 7.37, the following observations can be made:
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#Low pass filtering of sine wave 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fftpack import fft,fftfreq 
#Step 1: Defining the parameters of sine wave 
f1,f2,ph=5,15,0  #Frequency of signal 1 and 2 and phase 
#Step 2: Defining the sampling frequency and number of points in FFT 
fs, N=100, 256  #Sampling frequency 
T=1/fs  #Sampling period 
#Step 3: Generation of sine wave 
t=np.linspace(0,N*T,N) 
x1=np.sin(2*np.pi*f1*t+ph) 
x2=np.sin(2*np.pi*f2*t+ph) 
x=x1+x2 
#Step 4: Design of LPF 
f_cut=8  # Cut-off frequency 
Nyquist_freq, numtaps=fs/2, 21 
f_cutoff=f_cut/Nyquist_freq 
h=signal.firwin(numtaps, f_cutoff,window='hann') 
y=signal.lfilter(h,1,x) #Step 5: Filtering of the signal 
f_axis=fftfreq(N,T)[0:N//2] #Step 5: Obtaining the spectrum of input and output signal 
X=fft(x) 
Y=fft(y) 
#Step 6: Plotting the results 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Input Signal'), 
plt.subplot(2,2,2),plt.plot(t,y),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Filtered Signal'),plt.subplot(2,2,3),plt.plot(f_axis,2/N*np.abs(X[0:N//2])) 
plt.xlabel('Frequency'),plt.ylabel('Magnitude'),plt.title('Spectrum of input Signal') 
plt.subplot(2,2,4),plt.plot(f_axis,2/N*np.abs(Y[0:N//2])) 
plt.xlabel('Frequency'),plt.ylabel('Magnitude'),plt.title('Spectrum of filtered Signal') 
plt.tight_layout() 

Fig. 7.37 Python code to perform lowpass filtering of the input signal 

1. The input signal is the sum of two sine wave frequencies, 5 and 15 Hz. 
2. Window-based FIR filter is designed with a cut-off frequency of 8 Hz, the number 

of taps is 21 and the window chosen is Hanning. The sampling frequency chosen 
is 100 Hz. 

3. ‘The built-in function ‘firwin’, which is available in ‘scipy’ package, is used to 
design the filter. 

From Fig. 7.38, the following observations can be made: 

1. The input signal is a mixture of 5 and 15 Hz sine wave. 
2. The output signal is a lowpass filtered signal which retains a 5 Hz sine wave. 
3. The spectrum of the input signal shows peaks corresponding to 5 and 15 Hz 

frequency components.
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Fig. 7.38 Lowpass filtering using window-based FIR filter 

4. The spectrum of the output signal shows peak at 5 Hz, which implies that the filter 
allows 5 Hz frequency component of the input signal, and it blocks the 15 Hz 
frequency component of the input signal. 

Experiment 7.19 Denoising of the Signal Using FIR Filter 
The signal x(t) is a 5 Hz sine wave. This signal x(t) is corrupted by white noise, 
which follows uniform distribution in the range [0, 1]. The noisy signal is then 
passed through FIR lowpass filter. The FIR filter coefficients are generated using the 
windowing technique. Plot results of the clean, noisy and filtered signals. 

The python code which performs the above-mentioned task is shown in Fig. 7.39, 
and the corresponding output is shown in Fig. 7.40. 

Inferences 
The following observations can be made from this experiment: 

1. From Fig. 7.39, it is possible to observe that the built-in function ‘random. 
uniform’ available in numpy library is used here to generate uniformly distributed 
random noise in the interval 0 to 1. 

2. The random noise is added to pure sine wave to create noisy sine wave. The noisy 
sine wave is then filtered using FIR filter, obtained using the built-in function 
‘firwin’ available in scipy library. 

3. From Fig. 7.40, it is possible to observe that the clean sine wave has a frequency 
of 5 Hz. It is then corrupted by random noise to create noisy sine wave. From the 
filtered signal, it is possible to observe that the impact of noise is minimized.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of clean signal 
t=np.linspace(0,1,100) 
x=np.sin(2*np.pi*5*t) 
n=np.random.uniform(0,1,100) #Step 2: Uniform random noise 
x1=x+n #Step 3: Noisy sine wave  
h=signal.firwin(21,.2,pass_zero=True)#FIR filter coefficients 
y=signal.filtfilt(h,1,x1) #Step 4: Filtered signal 
#Step 5: Plotting the result 
plt.subplot(3,1,1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Clean signal'),plt.subplot(3,1,2),plt.plot(t,x1) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Noisy signal') 
plt.subplot(3,1,3),plt.plot(t,y),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Filtered signal'),plt.tight_layout() 

Fig. 7.39 Python code which performs filtering of noisy signal 
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Fig. 7.40 Filtering of signal corrupted by uniform random noise 

Exercises 
1. Design a linear phase lowpass filter that satisfies the following magnitude 

response H ejωð  Þ= 
1, ωj  j< 

π 
4 

0, otherwise 
. For N = 5 and N = 7. Assume the window 

to be rectangular window. Plot the magnitude response of the filter.
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Table 7.4 Comparison of different window functions 

S.I No. Name of the window Time domain expression - N - 1ð Þ  ≤ n≤ N- 1ð  

1 Rectangular window w[n] = 1 
2 Bartlett window or Triangular 

window 
w n  = 1- 2 nj j  

N- 1 

3 Hamming window w n  = 0:54 0:46 cos 2πn 
N - 1 

4 Hanning window w n  = 0:5 0:5 cos 2πn 
N- 1 

5 Blackman window w n  = 0:42 0:5 cos 2πn 
N- 1 0:08 cos 4πn 

N - 1 

2. Design a length 7 linear phase highpass filter using windowing method with the 
cut-off frequency ωc = π 3 radians/sample. Assume the window to be Bartlett 
window. Plot the magnitude and phase response of the filter. 

3. Design a length 5 linear phase bandpass filter with lower cut-off frequency 
ωc1 = 0.25π radians/sample and upper cut-off frequency ωc2 = 0.75π radians/ 
sample. Assume the window to be rectangular window. Plot the magnitude and 
phase response of the filter. 

4. Design a length 7 linear phase band reject filter with lower cut-off frequency 
ωc1 = 0.15π radians/sample and upper cut-off frequency ωc2 = 0.45π radians/ 
sample. Assume the window to be Hamming window. Plot the magnitude and 
phase response of the filter. 

5. The signal x(t) is an addition of two signals x1(t) and x2(t). The frequencies of the 
two signals x1(t) and  x2(t) are 5 Hz and 10 Hz, respectively. The signal x(t) is  
now passed through a highpass filter whose cut-off frequency is 8 Hz, the order 
of the filter is 10 and the window chosen is Hamming window. Plot the input 
signal and the filtered signal and comment on the observed result. 

6. The time domain expression for different window functions is given in the 
following Table 7.4. 

Write a python code to plot the above window functions and comment on the 
observed result. Assume the value of N as 31. 

7. Write a python code to design a length 9 linear phase highpass filter using 
windowing method with the cut-off frequency ωc = 4 radians/sample. Assume 
the window to be Bartlett window. Plot the pole-zero plot of the filter, and 
observe that the zeros of the filter occur in conjugate pair. 

8. The impulse response of 5-tap linear phase lowpass filter is given by 
h1[n] = {0.159, 0.225, 0.25, 0.225, 0.159}. Derive another filter from this 
lowpass filter, whose impulse response is given by h2[n]. The relationship 
between the impulse responses is given by h2[n] = (-1)n h1[n]. Plot the magni-
tude responses of the two filters and comment on the observed result. 

9. Design a lowpass FIR filter using a frequency sampling technique having cut-off 
frequency of π/2 radians/sample. The length of the filter is 21. Plot the magni-
tude response of the filter. 

10. Design a digital FIR lowpass filter with the following specifications: 
(a) Passband cut-off frequency: fp = 1 kHz. (b) Stopband cut-off frequency:



Both assertion and reason are true.
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fs = 4 kHz. (c) Passband ripple: Rp = 0.25 dB. (d) Stopband attenuation: 
Rs = 0.25 dB. (e) Sampling frequency: fs = 20 kHz. Use subplot to plot the 
magnitude response, phase response, impulse response and pole-zero plot of the 
filter. 

Objective Questions 
1. Assertion: FIR filter exhibits linear phase characteristics. 

Reason: The coefficients of FIR filter are either symmetric or anti-symmetric: 

A. 
B. Assertion is true; reason is false. 
C. Assertion is false; reason may be true. 
D. Both assertion and reason are false. 

2. If ‘N’ represents the number of coefficients of the FIR filter, then the group delay 
of the filter is expressed as 

A. τg = N 2 
B. τg = N 2 - 1 
C. τg = N- 1 

2 
D. τg = N 

3. Identify the statement that is FALSE with respect to FIR filter 

A. FIR filter is all-zero filter. 
B. FIR filter is all-pole filter. 
C. FIR filter is inherently stable filter. 
D. Group delay of FIR filter is constant. 

4. The filter which exhibits even symmetry with odd number of coefficient is 

A. Type-I FIR filter 
B. Type-II FIR filter 
C. Type-III FIR filter 
D. Type-IV FIR filter 

5. The built-in function available in scipy library to design window-based FIR filter 
is 

A. signal.firwin() 
B. signal.firwin2() 
C. signal.remez() 
D. signal.firls() 

6. The built-in function available in scipy library to design frequency sampling-
based FIR filter is 

A. signal.firwin(), 
B. signal.firwin2() 
C. signal.remez() 
D. signal.firls()
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7. The following python command h = signal.firwin(5,0.5) generates 

A. Five coefficients of lowpass filter 
B. Four coefficients of lowpass filter 
C. Five coefficients of highpass filter 
D. Four coefficients of highpass filter 

8. The type of FIR filter that has zero at ω = 0 and at ω = π is 

A. Type-I FIR filter 
B. Type-II FIR filter 
C. Type-III FIR filter 
D. Type-IV FIR filter 

9. Type-II FIR filter cannot be used as 

A. Lowpass filter 
B. Highpass filter 
C. Band pass filter 
D. Band reject filter 

10. The frequency response of a linear phase filter is given by H(ejω ) = e-j4ω R(ω), 
where R(ω) represents the magnitude response. The group delay of the filter is 

A. 1 
B. 2 
C. 3 
D. 4 

11. If a zero occurs at z0 of a real-valued linear phase filter than the other zeros are at 

A. z 
1 
0 
only 

B. z*0 only 
C. z 

1 
0 
and at 1 z only 

D. z 
1 
0 
, z*0 and at 

1 
z . 

12. Let h[n] represent the impulse response of lowpass filter and then the impulse 
response (-1)n h[n] represent 

A. Lowpass filter 
B. Highpass filter 
C. Band pass filter 
D. Band reject filter 

13. Match the following 

nsfer function of the filter Type of FIR filter 

H1(z) = 1 +  2z-1 + z-2 (i) Type-I FIR filter 

H2(z) = 1 - z-1 (ii) Type-II FIR filter 

(continued) 

Tra 

(P) 

(Q)
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Transfer function of the filter Type of FIR filter 

(R) H3(z) = 1 +  z-1 (iii) Type-III FIR filter 

(S) H4(z) = 1 - z-2 (iv) Type-IV FIR filter 

A. P-(i), Q-(ii), R-(iii), S-(iv) 
B. P-(i), Q-(iv), R-(ii), S-(iii) 
C. P-(iv), Q-(iii), R-(ii), S-(i) 
D. P-(iii), Q-(iv), R-(ii), S-(i) 

14. Upon executing the following python code, what will be the impulse response 
(h) of the filter? 

A. h = {1,2,0,2,1} 
B. h = {1,2,0,-2,-1} 
C. h = {1,2,0,1,2} 
D. h = {1,2,0,-1,-2} 

15. The impulse response of a filter is obtained using the following python code. 
The filter is 

A. Type-I FIR filter 
B. Type-II FIR filter 
C. Type-III FIR filter 
D. Type-IV FIR filter 
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Chapter 8 
Infinite Impulse Response Filter 

Learning Objectives 
After reading this chapter, the reader is expected to:

• Design and analyse Butterworth filter.
• Design and analyse Chebyshev and inverse Chebyshev filters.
• Design and analyse elliptic filter.
• Implement different mapping techniques to convert analogue filter into an equiv-

alent digital filter. 

Roadmap of the Chapter 
This chapter starts with the types of infinite impulse response (IIR) filter and 
discusses the different mapping methods for converting analogue filters into digital 
filters. Finally, the design of IIR filters is discussed in this chapter. Roadmap of this 
chapter is illustrated below. 

IIR Filter 

Types IIR Filter Design of IIR Filter Mapping Techniques 

Butterworth Filter 

Chebyshev Filter 

Inverse Chebyshev Filter 

Elliptic Filter 

Backward Difference 

Impulse Invariant 

Bilinear Transformation 

Matched Z transform 

Analog filter 

Digital filter 
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PreLab Questions 
1. What is a recursive filter? 
2. Examine whether IIR filter is recursive or not. Justify your answer. 
3. What is a ripple in the filter’s frequency response? 
4. List the different types of IIR filters based on the ripples. 
5. Why the Butterworth filter is termed as ‘maximally flat frequency response’ 

filter? 
6. Mention the techniques to convert the analogue filter transfer function into an 

equivalent digital filter transfer function. 
7. Which criterion is important in mapping an analogue filter into an equivalent 

digital filter? 
8. List the steps involved in obtaining the digital filter transfer function from the 

analogue filter transfer function using the impulse invariant technique. 
9. What are the drawbacks of impulse invariant technique? 

10. How does the bilinear transformation technique avoid aliasing while performing 
the mapping process? 

11. What is frequency warping with respect to bilinear transformation technique? 
Suggest a solution to overcome the frequency warping problem in bilinear 
transformation technique. 

12. Tabulate the difference between Butterworth filter, Chebyshev filter, inverse 
Chebyshev and elliptic filter with respect to (a) ripples in passband and 
stopband, (b) transition width and (c) order of the filter required to meet the 
filter specification. 

13. Elaborate on the steps involved in the design of a digital IIR filter. 

8.1 IIR Filter 

In IIR filter, the current output is a function of the current and previous inputs and 
past outputs. The relationship between the input and output of an IIR filter is given 
by 

y½n]= b0x½n] þ  b1x½n- 1] þ  ⋯þ bMx½n-M]- a1y½n- 1] þ  a2y½n- 2]
þ ⋯þ aNy½n-N] 8:1Þ 

From Eq. (8.1), it is possible to observe that the current output is a function of 
current and previous inputs and past outputs. Thus, IIR filters are ‘recursive filters’. 
In a recursive filter, the current output depends on both the input and previously 
calculated outputs. The word ‘recursive’ literally means ‘running back’ and refers to 
previously calculated output values that go back into calculating the current output 
along with input values. 

Upon taking Z-transform of the input-output relation given in Eq. (8.1), the 
transfer function expression for IIR filter is given by
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H zð Þ= 
M 
k = 0bkz

- k 

1þ N 
k= 1akz

- k
ð8:2Þ 

The impulse response of the IIR filter can be obtained upon taking inverse Z-
transform of the transfer function. As the name suggests, the impulse response is not 
of finite duration. The impulse response is not guaranteed to be either symmetric or 
anti-symmetric; hence, it is not possible to obtain linear phase characteristics in the 
IIR filter. The group delay is not constant in IIR filter. If the pole of the IIR filter lies 
outside the unit circle, the filter is unstable. This implies that stability is not 
guaranteed in IIR filter. The main advantage of IIR filter is that it is possible to 
meet the filter specification with the minimum number of coefficients. 

Experiment 8.1 Computation of Impulse Response h[n] of the Recursive Filter 
The filter’s impulse response h[n] can be obtained from the input and output relation. 
Let us consider the linear constant coefficient difference equation 

y n½ ] þ  1 
2 
y n- 1½ ]= x n½ ] ð8:3Þ 

where y[n] denotes the output and x[n] represents the input of the equation. From 
Eq. (8.3), it is possible to observe that the current output (y[n]) is a function of 
current input (x[n]) and past output (y[n- 1]). The impulse response of this filter can 
be computed by replacing y[n] as  h[n] and x[n] as  δ[n]. Hence, Eq. (8.3) can be 
rewritten as 

h n½ ] þ  1 
2 
h n- 1½ ]= δ n½ ]

The above equation can be rewritten as 

h n½ ]= δ n½ ]- 1 
2 
h n- 1½ ]

Assume that the system is initially at rest (i.e. y[n] = 0 for n < 0) and substituting 
n = 0, 1, 2, 3, . . ., in the above equation, we get 

h 0½ ]= δ 0½ ]= 
1 
2 
h 0- 1½ ]= 1- 0= 1 

h 1½ ]= δ 1½ ]- 1 
2 
h 1- 1½ ]= 0-

1 
2 
h 0½ ]= -

1 
2 
× 1= -

1 
2 

h 2½ ]= δ 2½ ]- 1 
2 
h 2- 1½ ]= 0-

1 
2 
h 1½ ]= -

1 
2 
× -

1 
2 
= 

1 
4
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(a) Python code                                             (b) Simulation result 

Impulse response 

n--> 
40–2–4 6 1082 

h[
n]

 

1.0 

0.2 

–0.2 

0.8 

0.6 

0.4 

–0.4 

0.0 

Fig. 8.1 Python code and its result of impulse response computation. (a) Python code. (b) 
Simulation result 

h 3½ ]= δ 3½ ]- 1 
2 
h 3- 1½ ]= 0-

1 
2 
h 2½ ]= -

1 
2 
× 
1 
4 
= -

1 
8 

h n½ ]= -
1 
2 

n 

u n½ ]

The python code to obtain the impulse response from the input and output 
coefficients mentioned in the difference equation is shown in Fig. 8.1a, and the 
corresponding output is shown in Fig. 8.1b. 

Inference 
1. From Fig. 8.1a, it is possible to observe that the ‘scipy’ library is used for the 

filtering, and ‘signal.lfilter’ is used for the computation of impulse response from 
the input and output coefficients of the filter equation. 

2. From Fig. 8.1b, it is possible to infer that the simulation result is in agreement 
with the theoretical result. 

Task 
1. Write a python code to obtain the impulse response of the filter whose difference 

equation is given by y n½ ]- 1 
2 y n- 1½ ]= x n½ ] and comment on the observed output. 

8.2 Mapping Techniques in the Design of IIR Filter 

Two common approaches in the design of IIR filters are: 

Approach 1: Design an analogue IIR filter to meet the given design requirement and 
convert the analogue filter into an equivalent digital filter using mapping tech-
niques like backward difference method, impulse invariant technique (IIT), 
bilinear transformation technique (BLT), matched Z-transform technique and 
so on.



Approach 2: IIR filter is designed using an algorithmic design procedure by solving 
a set of linear and non-linear equations using a computer or dedicated hardware. 
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This section focuses on the first approach in which analogue filters are converted 
into an equivalent digital filter using mapping techniques. While performing the 
mapping techniques, care must be taken to map stable analogue filter into a stable 
digital filter. 

8.2.1 Backward Difference Method 

The relationship between ‘s’ domain and ‘z’ domain using the backward difference 
method is given by 

s= 
1- z- 1 

T
ð8:4Þ 

and 

z= 
1 

1- sT
ð8:5Þ 

This section displays the mapping of analogue filter into equivalent digital filter 
using backward difference method. 

Experiment 8.2 Mapping of S-Plane to Z-Plane Using Backward Difference 
Method 
The main objective of this experiment is to prove that stable analogue filter will be 
mapped to a stable digital filter using backward difference method. The python code, 
which performs the mapping from S-plane to Z-plane, is given in Fig. 8.2. 

Inference 
1. From Fig. 8.3a, it is possible to infer that points in the left half of S-plane 

(i.e. σ ≤ 0) are mapped into inside and on the unit circle in Z-plane. 
2. This confirms that the stable analogue filter can be mapped into a stable digital 

filter using the backward difference mapping technique. 
3. On the other hand, from Fig. 8.3b, it is evident that the points on the right side of 

the S-plane (i.e. σ > 0) are mapped into outside the unit circle of the Z-plane. 

Experiment 8.3 Conversion of Analogue Filter to Digital Filter Using Backward 
Difference Method 
This experiment discusses the conversion of analogue filter to digital filter using 
backward difference approach. Let us consider the transfer function of the analogue 
filter is H  sð  Þ= 1 

s2þ3sþ2ð Þ. Assume a sampling period is 0.1 s. The relationship 

between ‘S-domain’ and ‘Z-domain’ in the backward difference method is given by
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#Mapping between S to Z plane 
import numpy as np 
import matplotlib.pyplot as plt 
omega1=np.linspace(-15, 15, 20) 
omega2 = np.array([1 in range(len(omega1))]) 
omega2=omega1 
sigma1=np.linspace(-10, 0, 20) 
sigma2 = np.array([1 in range(len(sigma1))]) 
sigma2 = sigma1 
#np.linspace(-10, 0, 100) 
S=[[0 for i in range(len(sigma2))] for j in range(len(omega2))] 
Z=S 
T=0.1 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k'), 
for j in range(len(sigma2)): 
    for i in range(len(omega2)): 
        S[i][j]=complex(sigma1[i],omega1[j]) 
        Z[i][j]=1/(1-(S[i][j]*(T))) 
        plt.subplot(2,1,1),plt.plot(sigma1[i],omega1[j],'bx') 
        plt.title('s-plane'), plt.xlabel('$\sigma$'),plt.ylabel('$j\u03A9})$') 
        plt.subplot(2,1,2),plt.plot(np.real(Z[i][j]),np.imag(Z[i][j]),'rx') 
        plt.title('z-plane'), plt.xlabel('$\sigma$'),plt.ylabel('$j\omega})$') 
        plt.tight_layout() 

Fig. 8.2 Python code for mapping S to Z plane using backward difference method. (a) σ ≤ 0. (b) 
σ > 0 
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Fig. 8.3 Result of python code given in Fig. 8.2
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(a) Python program                                                      (b) Simulation result 

         1 
------------- 
s^2 + 3 s + 2 

0.007576 z^2 - 2.22e-16 z + 2.22e-16 
------------------------------------ 
       z^2 - 1.742 z + 0.7576 
dt = 0.1 

import control as ss 
s1 = ss.tf(1, [1,3,2]) 
print(s1) 
yd = s1.sample(0.1, method='backward_diff') 
print(yd) 

Fig. 8.4 Python code and simulation result for backward difference mapping method. (a) Python 
program. (b) Simulation result 

s= 
1- z- 1 

T 

Substituting the value of T = 0.1 in the above expression, we get 

s= 
1- z- 1 

0:1 

The above expression can be simplified as 

s= 10- 10z- 1 

Substituting the above relation in the transfer function of the analogue filter, we 
get 

H zð Þ= 
1 

10- 10z- 1ð Þ2 þ 3 10- 10z- 1ð Þ þ  2 

Simplifying the above expression, we get 

H zð Þ= 
0:007576z2 

z2 - 1:742zþ 0:7576 

The frequency responses of both the analogue and digital filters are computed 
using python code, shown in Fig. 8.4a, and its corresponding simulation result is 
shown in Fig. 8.4b. Before execution of the python code, the ‘python-control’ 
package must be installed using the pip command, which is given by ‘pip install 
control’. The new python commands used in this python program are (1) xx.tf and 
(2) yy.sample. The result of the python code given in Fig. 8.4a is shown in Fig. 8.4b. 

Inference 
The following inferences can be made from this experiment:
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1. From the simulation result shown in Fig. 8.4b, it is evident that the denominator 
polynomial function is exactly matched with the theoretical result. 

2. The denominator polynomial corresponds to the poles of the system. Thus, 
analogue filter is mapped into an equivalent digital filter, which is in agreement 
with the theoretical result. 

Experiment 8.4 Mapping Stable Analogue Filter to a Stable Digital Filter Using 
Backward Difference Method 
This experiment deals with mapping a stable analogue filter to a stable digital filter 
using the backward difference method. The transfer function of a stable second-order 
filter considered in this example is given by 

H sð Þ= 
4 

s2 þ 2:82sþ 4 

This filter is converted into an equivalent digital filter H(z) using backward 
difference method. The python code to verify the conversion of a second-order 
stable analogue filter into a stable digital filter is given in Fig. 8.5, and the simulation 
result is depicted in Fig. 8.6. This python code will work for the second-order filter 
only. The simulation result of this experiment is shown in Fig. 8.6. 

Inference 
From Fig. 8.6b, it is possible to observe that the poles of H(s) lie left half of the S-
plane, confirming that the analogue filter is stable. Similarly, from this figure, it is 
possible to know that the poles of H(z) lie inside the unit circle. Hence, the backward 
difference mapping method preserves the stability criterion during mapping. 

8.2.2 Impulse Invariant Technique 

In impulse invariant technique, the digital filter is designed by sampling the impulse 
response of the analogue filter. The pole at s = sp is mapped to a pole at z= espT in 
the digital filter. Impulse invariant technique performs many-to-one mapping; hence, 
it suffers from an aliasing problem. Thus, impulse invariant technique is useful if the 
analogue filter is band-limited. The step followed in impulse invariant technique is 
given in Fig. 8.7. 

The impulse response of the analogue filter is represented by h(t). It is sampled to 
get h[nT]. Upon taking Z-transform of the sampled impulse response, the transfer 
function of the digital filter is obtained, which is represented as H(z). 

Experiment 8.5 Mapping of S-Plane to Z-Plane Using Impulse Invariant 
Technique 
This experiment deals with mapping the S-plane to Z-plane using impulse invariant 
technique. 

Case 1: Mapping the points on the jΩ axis of the S-plane
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import numpy as np 
import control as ss 
from scipy import signal 
import matplotlib.pyplot as plt 
num=[4] 
den=[1,2*np.sqrt(2),4] 
T=0.1 
fsam=1/T 
s1=ss.tf(num,den) 
print('H(s) =', s1) 
a1=1 
b1=-(2+den[1]*T)/(1+(den[1]*T)+den[2]*(T**2)) 
c1=1/(1+(den[1]*T)+den[2]*(T**2)) 
num1=[num[0]*c1*(T**2),0,0] 
den1=[a1,b1,c1] 
yd = s1.sample(T, method='backward_diff') 
print('Using Built in function: H(z) =',yd) 
s2=ss.tf(num1,den1,T) 
print('H(z) =', s2) 
ps,zs=ss.pzmap(s1) 
# Pole-zero plot 
plt.subplot(2,1,1),plt.plot(ps.real, ps.imag, 'kx', ms=10),plt.xlabel('$\sigma$'), 
plt.ylabel('$j\Omega$'),plt.title('Pole-zero plot of H(s)'),plt.grid() 
z, p, k = signal.tf2zpk(num1,den1) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k--') 
plt.plot(p.real, p.imag, 'rx', ms=7.5),plt.xlabel('$\sigma$'), 
plt.ylabel('$j\omega$'),plt.title('Pole-zero plot of H(z)'),plt.grid() 
plt.tight_layout(),plt.show() 

Fig. 8.5 Python code for mapping analogue filter to digital filter 

The python code for mapping the points on the jΩ axis onto unit circle is given in 
Fig. 8.8, and its corresponding output is shown in Fig. 8.9. Figure 8.9 confirms that 
the points on the jΩ axis in the S-plane are mapped onto a unit circle in the Z-plane. 

Case 2: Mapping the left half of the S-plane 
The python code for mapping the points in left half of S-plane are mapped into 

inside the unit circle is given in Fig. 8.10, and its corresponding output is shown in 
Fig. 8.11. Figure 8.11 confirms that the points in the left half of S-plane are mapped 
into within the unit circle of the Z-plane. 

Case 3: Mapping right half of S-plane 
The points in the right half of S-plane are mapped into outside the unit circle in the 

Z-plane. The python code for mapping the points in right half of S-plane are mapped 
into outside the unit circle is given in Fig. 8.12, and its corresponding output is



shown in Fig. 8.13. From Fig. 8.13, it is possible to infer that the points in the right 
half of the S-plane are mapped outside the unit circle in the Z-plane. 
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(a) Transfer function  (b) Pole zero plot 
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Fig. 8.6 Simulation result. (a) Transfer function. (b) Pole-zero plot 

Impulse response  
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Sampled impulse 
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Transfer function of 
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Sampling Z-transform 

Fig. 8.7 Steps in impulse invariant technique 

#Mapping between S to Z plane using IIT 
import numpy as np 
import matplotlib.pyplot as plt 
omega1=np.linspace(-15, 15, 50) 
sigma1=np.zeros(len(omega1)) 
S=sigma1+1j*omega1 
T=1 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k'), 
plt.subplot(2,1,1),plt.plot(sigma1,omega1,'bx') 
plt.title('S-plane'),plt.xlabel('$\sigma$'),plt.ylabel('$j\Omega$') 
z=np.exp(S*T) 
plt.subplot(2,1,2),plt.plot(np.real(z),np.imag(z),'rx') 
plt.title('Z-plane'),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega})$') 
plt.tight_layout() 

Fig. 8.8 Python code for mapping points on the jΩ axis onto the unit circle 

Thus, a stable analogue filter can be mapped to an equivalent stable digital filter 
using the impulse invariant technique.
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Fig. 8.9 Result of the python code given in Fig. 8.8 

import numpy as np 
import matplotlib.pyplot as plt 
omega1=np.linspace(-15, 15, 30) 
omega2 = np.array([1 in range(len(omega1))]) 
omega2=omega1 
sigma1=np.linspace(-10, -0.1, 30) 
sigma2 = np.array([1 in range(len(sigma1))]) 
sigma2 = sigma1 
S=[[0 for i in range(len(sigma2))] for j in range(len(omega2))] 
Z=S 
T=0.9 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k'), 
for j in range(len(sigma2)): 
    for i in range(len(omega2)): 
        S[i][j]=complex(sigma1[i],omega1[j]) 
        Z[i][j]=np.exp(S[i][j]*(T)) 
        plt.subplot(2,1,1),plt.plot(sigma1[i],omega1[j],'bx') 
        plt.title('S-plane'), plt.xlabel('$\sigma$'),plt.ylabel('$j\Omega$') 
        plt.subplot(2,1,2),plt.plot(np.real(Z[i][j]),np.imag(Z[i][j]),'rx') 
        plt.title('Z-plane'), plt.xlabel('$\sigma$'),plt.ylabel('$j\omega})$') 

plt.tight layout() 

Fig. 8.10 Python code of mapping left half of S-plane
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Fig. 8.11 Result of python code given in Fig. 8.10 

import numpy as np 
import matplotlib.pyplot as plt 
omega1=np.linspace(-2, 2, 30) 
omega2 = np.array([1 in range(len(omega1))]) 
omega2=omega1 
sigma1=np.linspace(0.1, 2, 30) 
sigma2 = np.array([1 in range(len(sigma1))]) 
sigma2 = sigma1 
S=[[0 for i in range(len(sigma2))] for j in range(len(omega2))] 
Z=S 
T=1 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k'), 
for j in range(len(sigma2)): 
    for i in range(len(omega2)): 
        S[i][j]=complex(sigma1[i],omega1[j]) 
        Z[i][j]=np.exp(S[i][j]*(T)) 
        plt.subplot(2,1,1),plt.plot(sigma1[i],omega1[j],'bx') 
        plt.title('S-plane'),plt.xlabel('$\sigma$'),plt.ylabel('$j\Omega$') 
        plt.subplot(2,1,2),plt.plot(np.real(Z[i][j]),np.imag(Z[i][j]),'rx') 
        plt.title('Z-plane'),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega})$') 
        plt.tight_layout() 

Fig. 8.12 Python code of mapping right half of S-plane
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Fig. 8.13 Result of python code given in Fig. 8.12 

Experiment 8.6 Many-to-One Mapping in the Impulse Invariant Mapping 
Technique 
This experiment tries to prove that many to one mapping will have happened in the 
impulse invariant mapping technique. The python code to verify the many-to-one 
mapping for the impulse invariant technique is given in Fig. 8.14, and its 
corresponding output is shown in Fig. 8.15. In Fig. 8.15, the symbol ‘◊’ represents 
points that are mapped between the analogue frequency range from - π 

T to 
π 
T and the 

digital frequency, whereas the symbol ‘x’ represents the points that are mapped 
between analogue frequency in the range - 3π 

T to 
3π 
T the digital frequency. 

Inferences 
The following inferences can be made from this experiment: 

1. Overlapping of the symbols in Fig. 8.15 implies that impulse invariant technique 
is basically a many-to-one mapping. 

2. Many-to-one mapping leads to an ‘aliasing problem’ in impulse invariant 
technique. 

3. Hence, impulse invariant technique is suitable for the design of lowpass and 
bandpass filters. 

4. It is not advisable to use it in highpass and bandstop filters design. 

Experiment 8.7 Conversion of Analogue Filter into a Digital Filter Using IIT 
This experiment discusses the conversion of an analogue filter to a digital filter using 
impulse invariant technique. Let us consider the transfer function of the analogue 

filter H  sð  Þ= 0:5 sþ3ð  Þ  
sþ1ð  Þ  sþ4ð  Þ  to be converted into the transfer function of the digital filter 

H(z) using the impulse invariant technique. Assume the sampling frequency to be 
20 Hz.



ð
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import numpy as np 
import matplotlib.pyplot as plt 
T=0.5 
omega1=np.linspace(-np.pi/T, np.pi/T, 15) 
omega2 = np.array([1 in range(len(omega1))]) 
omega2=omega1 
omega11=np.linspace(-3*(np.pi/T), 3*(np.pi/T), 15) 
omega21 = np.array([1 in range(len(omega11))]) 
omega21=omega11 
sigma1=np.linspace(0, 0, 15) 
sigma2 = np.array([1 in range(len(sigma1))]) 
sigma2 = sigma1 
S=[[0 for i in range(len(sigma2))] for j in range(len(omega2))] 
S1=[[0 for i in range(len(sigma2))] for j in range(len(omega21))] 
Z,Z1=S,S1 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k'), 
for j in range(len(sigma2)): 
    for i in range(len(omega2)): 
        S[i][j]=complex(sigma1[i],omega1[j]) 
        Z[i][j]=np.exp(S[i][j]*(T)) 
        S1[i][j]=complex(sigma1[i],omega11[j]) 
        Z1[i][j]=np.exp(S1[i][j]*(T)) 
        plt.subplot(2,1,1),plt.plot(sigma1[i],omega1[j],'bx'),plt.title('S-plane') 
        plt.xlabel('$\sigma$'),plt.ylabel('$j\Omega$') 
        plt.subplot(2,1,2),plt.plot(np.real(Z[i][j]),np.imag(Z[i][j]),'rd',markersize=12) 
        plt.subplot(2,1,2),plt.plot(np.real(Z1[i][j]),np.imag(Z1[i][j]),'kx',markersize=6) 
        plt.title('Z-plane'),plt.xlabel('$\sigma$'),plt.ylabel('$j\omega})$') 
        plt.tight_layout() 

Fig. 8.14 Python code for many-to-one mapping of impulse invariance technique 

Step 1: By using partial fraction expansion, the given analogue transfer function 
H(s) can be written as 

H sð Þ= 
A 

sþ 1ð Þ þ B 
s þ 4ð Þ  

From the above expression, it is possible to write as 

A sþ 4ð Þ þ  B s  þ 1ð Þ= 0:5 sþ 3ð Þ 8:6Þ 

Substituting s = -4 in the above equation, we get B - 3ð Þ= - 0:5,B= 1=6. 
Substituting s = -1 in Eq. (8.6), we get 3A= 1,A= 1=3. 
Substituting the values of ‘A’ and ‘B’ in the expression of H(s), we get
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Fig. 8.15 Result of python code given in Fig. 8.14 

H sð Þ= 
1=3 
s þ 1ð Þ þ 1=6 

sþ 4ð Þ  

Step 2: Transfer function H(z) 
The digital transfer function H(z) using impulse invariant technique is given by 

H zð Þ= 
N 

i= 1 

Ai 

1- esiT z- 1 

In this case, N = 2, the expression for H(z) is given by 

H zð Þ= 
2 

i= 1 

Ai 

1- esiT z- 1 = 
A1 

1- es1Tz- 1 þ
A2 

1- es2Tz- 1 

Substituting A1 = 1/3, A2 = 1/6, s1 = - 1, s2 = - 4 and T = 1/20 = 0.05 in the 
above expression, we get 

H zð  Þ= 
1=3 

1- e- 0:05z- 1ð Þ þ 1=6 
1- e- 0:2z- 1ð Þ  

Python code to verify the theoretical result with the simulation result is given in 
Fig. 8.16, and its corresponding output is shown in Fig. 8.17. From Fig. 8.16, the 
following new tool imported for the simulation, they are (1) sympy, (2) control and 
(3) scipy. In addition, the following new python commands are used for this 
simulation are (1) symbols—used to define the symbol (z^(-1) and ‘+’),



(2) residue—used to obtain the residues and poles. The result of transfer function in 
S domain and Z domain is displayed in Fig. 8.17. 
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Fig. 8.16 Python code for 
analogue filter to digital 
filter conversion using 
impulse invariance method 

import control as ss 
import numpy as np 
from sympy import symbols 
from scipy import signal 
z=symbols('z^-1') 
z1=symbols(' + ') 
s1 = ss.tf([0.5,1.5], [1,5,4]) 
print('H(s) ='),print(s1) 
T=1/20 
y=['+'] 
yy=signal.residue([0.5,1.5],[1,5,4]) 
A=[0 for i in range(len(yy[0]))] 
S=[0 for i in range(len(yy[1]))] 
A[0]=yy[0][0] 
S[0]=yy[1][0] 
y1=np.append((A[0]/(1-np.exp(S[0]*T)*z)),y) 
for i in range(len(yy[0])-1): 
    A[i+1]=yy[0][i+1] 
    S[i+1]=yy[1][i+1] 
    y1=np.append(y1,(A[i+1]/(1-np.exp(S[i+1]*T)*z)))  
print('H(z) = '),print(y1) 

H(s) = 

 0.5 s + 1.5 
------------- 
s^2 + 5 s + 4 

H(z) =  
[0.333333333333333/(1 - 0.951229424500714*z^-1) '+' 
 0.166666666666667/(1 - 0.818730753077982*z^-1)] 

Fig. 8.17 Simulation result of python code given in Fig. 8.16 

Note: This python code converts the analogue filter into the digital filter, 
which has distinct poles. 

Inference 
From Fig. 8.17, it is possible to observe that the simulation result is on par with the 
theoretical result.
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import control as ss 
import numpy as np 
import matplotlib.pyplot as plt 
from sympy import symbols 
from scipy import signal 
z=symbols('z^-1') 
num,den=[1,2],[1,6,5] 
s1 = ss.tf(num, den) 
print('H(s) =',s1) 
T=1/20 
zs,ps,ks=signal.tf2zpk(num,den) 
r,p,k=signal.residue(num,den) 
theta = np.linspace(0, np.pi*2, 500) 
zz=np.zeros(len(theta)) 
plt.subplot(2,1,1),plt.plot(zz, theta, 'k--'),plt.plot(ps.real,ps.imag, 'bx',ms=10) 
plt.plot(zs.real,zs.imag, 'go',ms=10),plt.xlabel('$\sigma$'),  
plt.ylabel('$j\Omega$'),plt.title('Pole-zero plot H(s)') 
y1=np.append((r[0]/(1-np.exp(p[0]*T)*z)),(r[1]/(1-np.exp(p[1]*T)*z))) 
print('H(z) = ',y1) 
z=np.exp(p*T) 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k--'), 
plt.plot(z.real,z.imag, 'rx',ms=10), 
plt.xlabel('$\sigma$'),plt.ylabel('$j\omega$'),plt.title('Pole-zero plot H(z)') 

Fig. 8.18 Python code to map poles in S-domain to Z-domain using IIT 

Experiment 8.8 Conversion of a Stable Analogue Filter to a Stable Digital Filter 
Using the Impulse Invariance Technique (IIT) 
This experiment is to verify the stability of the analogue filter to digital filter during 
conversion using impulse invariant technique. The python code to verify the stability 
of the analogue filter to digital conversion using IIT is given in Fig. 8.18. Here, we 
have considered the second-order stable analogue filter with two poles at-5 and-1 
and a zero at -2. This stable analogue filter is converted into a digital filter using the 
impulse invariance method. The simulation result of the python code, which is given 
in Fig. 8.18, is shown in Fig. 8.19. 

Inference 
1. From Fig. 8.19, it is possible to observe that the poles of the analogue filter lay left 

half of S-plane; it is evident that the analogue filter is stable. 
2. Similarly, the pole-zero plot of H(z) is shown in Fig. 8.19. From the figure, it is 

possible to observe that all poles are lying inside the unit circle. 
3. This implies that the digital filter is also stable. Therefore, the stability is retained 

while mapping the analogue filter into the digital filter using the impulse invari-
ance method.
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Fig. 8.19 Pole-zero plot 

8.2.3 Bilinear Transformation Technique (BLT) 

In bilinear transformation technique, the mapping from S-plane to Z-plane is done 
using the relation 

s= 
2 
T 

1- z- 1 

1 þ z- 1 ð8:7Þ 

Unlike impulse invariant technique (IIT), there is no aliasing problem in bilinear 
transformation technique. The relationship between the analogue frequency (Ω) and 
digital frequency (ω) in BLT is given in Eq. (8.5) 

Ω= 
2 
T 
tan 

ω 
2

ð8:8Þ 

The above equation can also be expressed as 

ω= 2 tan - 1 ΩT 
2

ð8:9Þ 

From Eqs. (8.8) and (8.9), it is possible to infer that there exists a non-linear 
relationship between analogue and digital frequency in bilinear transformation 
technique, which is termed as warping.
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import numpy as np 
import matplotlib.pyplot as plt 
T=[1,0.5,0.25,0.1] 
omega=np.linspace(-15,15,20) 
for i in range(len(T)): 
    domega=2*np.arctan(omega*(T[i]/2)) 
    plt.plot(omega,domega,'-*'),plt.title('BLT Mapping') 
    plt.xlabel('$\Omega$ rad/sec'),plt.ylabel('$\omega$ rad/sample') 
plt.legend(['$T={}$ Sec'.format(T[0]),'$T={}$ Sec'.format(T[1]),'$T={}$ 
Sec'.format(T[2]),'$T={}$ Sec'.format(T[3])],loc=0) 
plt.tight_layout() 

Fig. 8.20 Python code to display the relationship between analogue and digital frequency
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Fig. 8.21 Relationship between analogue and digital frequencies 

Experiment 8.9 Display the Relationship Between Analogue Frequency 
and Digital Frequency Using Bilinear Transformation (BLT) Technique 
This experiment displays the relationship between analogue frequency and digital 
frequency using BLT. The python code given in Fig. 8.20 gives the relationship 
between analogue and digital frequency using BLT. The simulation result of the 
python code given in Fig. 8.20 is shown in Fig. 8.21. The sampling intervals are 
considered as [1, 0.5, 0.25, 0.1]. The relationship between analogue and digital 
frequency for different sampling intervals is shown in Fig. 8.21. 

Inferences 
1. From this figure, it is possible to observe that with the value of T > 0.1, the 

mapping between analogue and digital frequency is linear at the low-frequency 
range and non-linear at the high-frequency range.
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import numpy as np 
import matplotlib.pyplot as plt 
omega1=np.linspace(-15, 15, 20) 
omega2 = np.array([1 in range(len(omega1))]) 
omega2=omega1 
#sigma1=np.linspace(0, 0, 20)# for sigma=0 
#sigma1=np.linspace(-15, -0.5, 20)# for sigma < 0 
sigma1=np.linspace(0.5, 5, 20)# for sigma > 0 
sigma2 = np.array([1 in range(len(sigma1))]) 
sigma2 = sigma1 
S=[[0 for i in range(len(sigma2))] for j in range(len(omega2))] 
Z=S 
T=0.9 
theta = np.linspace(0, np.pi*2, 500) 
circle = np.exp(1j*theta) 
plt.subplot(2,1,2),plt.plot(circle.real, circle.imag, 'k'), 
for j in range(len(sigma2)): 
    for i in range(len(omega2)): 
        S[i][j]=complex(sigma1[i],omega1[j]) 
        Z[i][j]=(1+(S[i][j]*(T/2)))/(1-(S[i][j]*(T/2))) 
        plt.subplot(2,1,1),plt.plot(sigma1[i],omega1[j],'bx') 
        plt.title('S-plane'), plt.xlabel('$\sigma$'),plt.ylabel('$j\Omega$') 
        plt.subplot(2,1,2), plt.plot(np.real(Z[i][j]),np.imag(Z[i][j]),'rx') 
        plt.title('Z-plane'), plt.xlabel('$\sigma$'),plt.ylabel('$j\omega})$') 
        plt.tight_layout() 

Fig. 8.22 Python code for frequency mapping using BLT 

2. This non-linear relationship is termed as ‘warping’. 
3. In order to overcome this warping effect, prewarping is necessary for bilinear 

transformation technique. 
4. When T = 0.1, the mapping is almost linear for both low- and high-frequency 

ranges. 

Experiment 8.10 Illustration of BLT Preserves Stability Criterion 
The objective of this experiment is to prove that stable analogue filter will be mapped 
to a stable digital filter using BLT. The stability conditions are verified with the 
python code. The python code maps S-plane into an equivalent Z-plane using BLT. 
The S-plane is represented as s = σ + jΩ, whereas the Z-plane is represented as 
z = rejω . Three different cases considered in this example are σ = 0, σ < 0 and σ > 0. 
The python code to verify the stability preservation of BLT is given in Fig. 8.22. 
Varying the values of σ = 0, σ < 0 and σ > 0 in the python code, the mapping results 
are shown in Fig. 8.23.
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Fig. 8.23 Simulation result of python code given in Fig. 8.22. (a) σ = 0. (b) σ < 0. (c) σ > 0 

Inferences 
1. When σ = 0 indicate jΩ in the S-plane. From Fig. 8.23a, it is possible to observe 

that the entire jΩ axis is mapped to points on the unit circle in the Z-plane. 
2. When σ < 0 represent the left half of S-plane. All the points in the LHS of S-plane 

are mapped into within the unit circle of the Z-plane. 
3. When σ > 0 are the points in the RHS of the S-plane. These points are mapped 

into the outside of the unit circle in the Z-plane. 
4. An analogue filter is stable if the poles lie in the left half of S-plane. A digital filter 

is stable if the poles lie within the unit circle. The BLT ensures that the stable 
analogue filter will be mapped as a stable digital filter. 

8.2.4 Matched Z-Transform Technique 

In matched Z-transform technique, the poles and zeros of the analogue filter are 
mapped to Z-plane using the relation z = esT . The matched Z-transform gives the 
same pole location as impulse invariant technique but a different zero location.
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Experiment 8.11 Conversion of Analogue Filter to Equivalent Digital Filter 
Using Matched Z-Transform Method 
This experiment discusses the conversion of an analogue filter into its equivalent 
digital filter using matched Z transform. Let us consider a second-order analogue 

filter transfer function is H sð Þ= sþ3ð Þ  
sþ1ð Þ  sþ4ð Þ  to be converted into digital filter using 

matched Z-transform. Assume T = 0.1 s. The matched Z transform (MZT) method 
directly maps the poles and zeros of an analogue filter into the poles and zeros of the 
digital filter. The transfer function of the analogue filter is given as 

H sð Þ= 
M 
k = 1 s- zkð Þ  
N 
k = 1 s- pkð Þ ð8:10Þ 

The transfer function of the equivalent digital filter is computed by replacing the 
term (s - zk) with  1- ezkT z- 1ð Þ. The transfer function of the equivalent digital filter 
can be written as 

H zð Þ= 
M 
k = 1 1- ezkT z- 1ð Þ  
N 
k = 1 1- epkT z- 1ð Þ ð8:11Þ 

where T is the sampling period. The transfer function of the analogue filter consid-
ered in this example is given by 

H sð Þ= 
sþ 3ð Þ  

s þ 1ð Þ  s þ 4ð Þ  

From the above equation, the zeros and poles are computed as z1 = -3, and 
p1 = -1, p2 = -4, respectively. 

Substituting the values of zeros, poles and T = 0.1 in Eq. (8.11), we get 

H zð Þ= 
1- e- 0:3z- 1ð Þ  

1- e- 0:1z- 1ð Þ  1- e- 0:4z- 1ð Þ  

Simplifying the above equation, we get 

H zð Þ= 
1- 0:7408z- 1ð Þ  

1- 0:9048z- 1ð Þ  1- 0:6703z- 1ð Þ  

Further simplifying the above equation, we get 

H  zð  Þ= 
z  z- 0:7408ð Þ  

z2 - 1:5751zþ 0:6065ð Þ
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import numpy as np 
from scipy import signal 
import control as ss 
T=0.1 
z=[-3] 
p =[-1, -4]  # analog poles 
b_s=signal.convolve([1],[1,-z[0]]) 
a_s=signal.convolve([1,-p[0]],[1,-p[1]]) 
Hs=ss.tf(b_s,a_s) 
print('Transfer function H(s) =',Hs) 
b_z=signal.convolve([1,0], [1, -(np.exp(z[0]*T))]) 
a_z = signal.convolve([1, -(np.exp(p[0]*T))], [1, -(np.exp(p[1]*T))]) 
Hz=ss.tf(b_z,a_z,T) 
print('Transfer function H(z) =',Hz) 

Fig. 8.24 Python code for Experiment 8.11 

Fig. 8.25 Result of the 
python code is given in 
Fig. 8.24 

Transfer function H(s) =  
    s + 3 
------------- 
s^2 + 5 s + 4 

Transfer function H(z) =  
    z^2 - 0.7408 z 
---------------------- 
z^2 - 1.575 z + 0.6065 

dt = 0.1 

Python code to verify this experiment is given in Fig. 8.24, and the corresponding 
simulation result is shown in Fig. 8.25. 

Inferences 
1. Figure 8.24 shows that the signal.convole command is used here to compute the 

product of two zeros or two poles term. 
2. This python code indicates that direct mapping has existed between analogue 

filter poles to digital filter poles and analogue filter zeros to digital filter zeros. 
3. From Fig. 8.25, it is possible to observe that the transfer function of the digital 

filter is on par with the theoretical result.
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8.3 Analog Frequency Transformation 

A normalized lowpass filter can be transformed into a desired lowpass, highpass, 
bandpass or bandstop filter by frequency transformation technique. Table 8.1 sum-
marizes different analogue frequency transformations. 

Experiment 8.12 Analogue Frequency Transformation 
The objective of this experiment is to convert a normalized first-order lowpass 
Butterworth filter into an equivalent bandpass and band reject filter with the lower 
and upper cut-off frequencies of 3 and 5 rad/s, respectively, using the frequency 
transformation method. A normalized first-order lowpass Butterworth filter transfer 
function is given by H sð Þ= 1 

sþ1ð Þ. Convert this filter into an equivalent (1) bandpass 
filter and (2) band reject filter with the lower and upper cut-off frequencies of 3 and 
5 rad/s, respectively, using the frequency transformation method. 

Step 1: Converting the prototype filter into its equivalent bandpass filter 
The prototype filter can be converted into its equivalent band pass filter by using 

the frequency transformation s→ s2þΩuΩl 
s Ωu -Ωlð Þ. In this experiment, the value of Ωu = 5 

rad/s and Ωl = 3 rad/s. Hence, the s can be computed as 

s→ 
s2 þ 15 
s 2ð Þ  = 

s2 þ 15 
2s 

Now replacing s in the normalized lowpass filter transfer function by s→ s
2þ15 
2s , 

we get 

H1 sð Þ= 
1 

s2þ15 
2s þ 1 

Simplifying the above expression, we get 

H1 sð Þ= 
2s 

s2 þ 2sþ 15 

Step 2: Obtaining the transfer function of the band reject filter 

Table 8.1 Analogue fre-
quency transformation 

S. No. Type of transformations Transformation 

1 Lowpass to lowpass s→ s 
Ωc 

2 Lowpass to highpass s→ Ωc 
s 

3 Lowpass to bandpass s→ s2þΩuΩl 
sð  

4 Lowpass to bandstop s→ s Ωu -Ωlð  
s2þ
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import numpy as np 
import matplotlib.pyplot as plt 
import control as ss 
num,den=[1],[1,1] 
num1,den1=[2, 0],[1,2,15] 
num2,den2=[1,0,15],[1,2,15] 
s = ss.tf(num, den) 
print(s) 
s1 = ss.tf(num1, den1) 
print(s1) 
s2 = ss.tf(num2, den2) 
print(s2) 
omega1=np.linspace(0, 15, 100) 
mag, phase, omega1=ss.freqresp(s, omega1) 
mag1, phase1, omega1=ss.freqresp(s1, omega1) 
mag2, phase2, omega1=ss.freqresp(s2, omega1) 
plt.subplot(2,1,1),plt.plot(omega1,mag,'-.',omega1,mag1,'--',omega1,mag2,'-') 
plt.title('Magnitude response'),plt.legend(['Prototype','BPF','BRF'],loc=0) 
plt.xlabel('$\Omega$ in rad/sec'),plt.ylabel('|$H(j\Omega)$|') 
plt.subplot(2,1,2),plt.plot(omega1,phase,'-.',omega1,phase1,'--',omega1,phase2,'-') 
plt.title('Phase response'),plt.legend(['Prototype','BPF','BRF'],loc=0) 
plt.xlabel('$\Omega$ in rad/sec'),plt.ylabel('∠$H(j\Omega)$)') 
plt.tight_layout() 

Fig. 8.26 Python code to obtain the magnitude and phase response 

The given prototype filter can be converted into a band reject filter using the 

frequency transformation s→ s Ωu -Ωlð Þ  
s2þΩuΩl 

. In this problem, the value of Ωu = 5 rad/s 
and Ωl = 3 rad/s. Hence, the equivalent s is calculated as 

s→ 
s Ωu -Ωlð Þ  
s2 þ ΩuΩl 

= 
2s 

s2 þ 15 

Now replacing s in the normalized lowpass filter transfer function by s→ 2s 
s2þ15, 

we get 

H2 sð Þ= 
1 

2s 
s2þ15 þ 1 

Simplifying the above expression, we get 

H2 sð Þ= 
s2 þ 15 

s2 þ 2sþ 15 

The following python code helps us to understand that the prototype filter H(s)  is  
converted into bandpass filter H1(s) and band reject filter H2(s). The python code is 
given in Fig. 8.26, and the corresponding simulation result is shown in Fig. 8.27.
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Fig. 8.27 Simulation result of the python code given in Fig. 8.26. (a) Transfer function. (b) 
Frequency response 

Inferences 
1. The transfer function of prototype normalized lowpass filter, desired bandpass 

filter and band reject filter are shown in Fig. 8.27a, which is in agreement with the 
theoretical result. 

2. From the magnitude response shown in Fig. 8.27b, it is possible to observe that 
the filter response is in agreement with the desired result. 

3. From the phase response, it is possible to observe that the phase response is 
non-linear. 

8.4 Butterworth Filter 

The squared magnitude response of Nth order Butterworth lowpass filter is given by 

HN e
jΩ 2 

= 
1 

1 þ Ω 
Ωc 

2N ð8:12Þ 

where Ωc is cut-off frequency and N denotes the order of the filter. Butterworth filter 
exhibits maximally flat response in both passband and stopband. Therefore, these 
filters are called maximally flat filters or flat-to-flat filters. The salient features of 
lowpass Butterworth filter are: 

1. The magnitude response is a monotonically decreasing function of frequency. 
2. The maximum gain occurs at Ω = 0.
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import numpy as np 
import matplotlib.pyplot as plt 
omega=np.linspace(0, 5, 100) 
omegac=np.array([2]) 
N=[1,2,3,4,5] 
for i in range(len(N)): 
    H=1/(1+(omega/omegac)**(2*N[i])) 
    plt.plot(omega,np.abs(H)),plt.title('Squared Magnitude Response') 
    plt.xlabel('$\Omega$ in rad/sec'), 
    plt.ylabel('|$H(j\Omega)|^2$') 
plt.legend(['N = 1','N =2','N = 3','N = 4','N = 5']) 
plt.tight_layout() 

Fig. 8.28 Python code for squared magnitude response of Butterworth lowpass filter 

3. The first (2N - 1) derivatives of an Nth order lowpass Butterworth filter are zero 
at Ω = 0. Hence, Butterworth filters are termed as maximally flat magnitude 
filters. 

4. The high-frequency roll off of a Nth order Butterworth filter is 20N dB/decade. 

Experiment 8.13 Magnitude Response of Butterworth Filter for Different 
Filter Order 
The objective of this experiment is to obtain the squared magnitude response of the 
Butterworth lowpass filter for different orders. The python code to generate a 
squared magnitude response of different orders of Butterworth lowpass filter is 
given in Fig. 8.28, and the corresponding result is shown in Fig. 8.29. 

Inferences 
1. The squared magnitude response of Butterworth lowpass filter with different 

orders is shown in Fig. 8.29. Here, the cut-off frequency is chosen as 2 rad/s, 
and the orders are varied from 1 to 5. 

2. From Fig. 8.29, it is possible to observe that the transition width decreases when 
the order of the filter (N) increases. Also, there is no ripple in the passband and 
stopband. 

3. The squared magnitude response is a monotonically decreasing function of 
frequency. 

Experiment 8.14 Computing the Order of Butterworth Filter 
The objective of this experiment is to compute the order of Butterworth filter for the 
given filter specifications. The given specifications are as follows: (1) The passband 
gain at 2 rad/s is 0 dB. (2) The stopband attenuation at 5 rad/s is 30 dB. (3) Passband 
cut-off frequency Ωp = 2 rad/s. (4) Stopband cut-off frequency is Ωs = 5 rad/s. 

The order of Butterworth filter can be computed using the following formula
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Fig. 8.29 Squared magnitude response of Butterworth lowpass filter 

N = 
log 10-

Ap 
10 - 1 

10-As 
10 - 1 

2 log Ωp 

Ωs 

ð8:13Þ 

The symbol d.e denotes ceiling operator. Substituting the values given in the 
specifications in the above equation, we get 

N = 
log 10- - 3 

10 - 1 

10- 30 
10 - 1 

2 log 2 5 

The order of the filter is calculated as 

N = 
log 0:001ð Þ  

2 × - 0:3979ð Þ  =
- 3

- 0:7958 
= 3:77d e= 4 

The python code to compute the order of the Butterworth filter is given in 
Fig. 8.30. 

Inference 
After executing the python code is given in Fig. 8.30. The result is Order of the filter 
(N) = 4.0. It is in agreement with the theoretical result.
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Fig. 8.30 Python code for 
Butterworth filter order 
calculation 

import numpy as np 
Ap, As=-3, -30 
omega_p,omega_s=2, 5 
num1=10**(-Ap/10)-1 
num2=10**(-As/10)-1 
num=np.log(num1/num2) 
den=2*np.log(omega_p/omega_s) 
N=np.ceil(num/den) 
print('Order of the filter (N) =') 

Fig. 8.31 Python code to 
generate transfer function of 
Butterworth filter 

import control as ss 
import numpy as np 
from scipy import signal 
N=np.array([1,2,3,4,5,6,7,8],dtype=int) 
for i in range(len(N)): 
    b,a=signal.butter(N[i],1,'low', analog=True) 
    s1=ss.tf(b,a) 
    print('H(s) for N ={} '.format(N[i])) 
    print(s1) 

Task 
1. Change the value of Ap and As in the python code, given in Fig. 8.30, execute the 

program and observe the result of the order of the filter. 

Experiment 8.15 Transfer Function of Normalized Butterworth Filter 
of Different Orders 
The objective of this experiment is to obtain the transfer function of normalized 
Butterworth lowpass filter with different orders of the filter. The python code to 
obtain the transfer function of Butterworth filter is given in Fig. 8.31. The simulation 
result is given in Fig. 8.32. 

Inference 
1. Using the python code given in Fig. 8.31, Nth order normalized Butterworth 

lowpass filter transfer function can be obtained. 
2. The simulation result of the python code given in Fig. 8.31 is shown in Fig. 8.32, 

and the maximum value of the order N is chosen as 8. 
3. From Fig. 8.32, it possible to see that the transfer function of the normalized 

Butterworth lowpass filter from first order to eighth order. 

Experiment 8.16 Design of Butterworth Filter for a Given Specifications 
The aim of this experiment is to design a Butterworth filter using bilinear transfor-
mation technique (BLT) that has a passband gain of 0 to -3 dB cut-off frequency of 
2 kHz, and attenuation of at least 20 dB for frequencies greater than 5 kHz. Assume 
the sampling frequency to be 20 kHz and sampling period T = 1  s.
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H(s) for N =1  
  1 
----- 
s + 1 
H(s) for N =2  
        1 
----------------- 
s^2 + 1.414 s + 1 
H(s) for N =3  
          1 
--------------------- 
s^3 + 2 s^2 + 2 s + 1 
H(s) for N =4  
                    1 
----------------------------------------- 
s^4 + 2.613 s^3 + 3.414 s^2 + 2.613 s + 1 
H(s) for N =5  
                          1 
----------------------------------------------------- 
s^5 + 3.236 s^4 + 5.236 s^3 + 5.236 s^2 + 3.236 s + 1 
H(s) for N =6  
                                1 
----------------------------------------------------------------- 
s^6 + 3.864 s^5 + 7.464 s^4 + 9.142 s^3 + 7.464 s^2 + 3.864 s + 1 
H(s) for N =7  
                                     1 
--------------------------------------------------------------------------- 
s^7 + 4.494 s^6 + 10.1 s^5 + 14.59 s^4 + 14.59 s^3 + 10.1 s^2 + 4.494 s + 1 
H(s) for N =8  
                                            1 
----------------------------------------------------------------------------------------- 
s^8 + 5.126 s^7 + 13.14 s^6 + 21.85 s^5 + 25.69 s^4 + 21.85 s^3 + 13.14 s^2 + 5.126 s + 1 

Fig. 8.32 Simulation result of the python code given in Fig. 8.31 

The specifications given in this experiment as follows: 

1. Sampling frequency fsamp = 20 kHz 
2. Pass band gain Ap = -3 dB  
3. Stop band attenuation As = -20 dB 
4. Pass band frequency fp = 2 kHz 
5. Stop band frequency fs = 5 kHz 

Converting the pass band and stop band frequencies from Hz to radians per 
sample, it is necessary to compute the ωp and ωs from the frequency fp and fs, 
which are given below
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ωp = 2π 
f p 

f samp 

Substituting the values of fp and fsamp in the above expression, we get 

ωp = 2π 
2 
20 

= 0:2π 

Now the expression for ωs is given by 

ωs = 2π 
f s 

f samp 

Substituting the values of fs and fsamp in the above expression, we get 

ωs = 2π 
5 
20 

= 0:5π 

Step 1: Prewarping 
The prewarping process must be done for the bilinear transformation technique to 

preserve one-to-one mapping in the frequency transformation from digital to 
analogue. 

The corresponding analogue frequencies Ωp and Ωs are obtained using 
prewarping technique which is given by 

Ωp = 
2 
T 
tan 

ωp 

2 

Substituting the value of ωp = 0.2π and T = 1 in the above expression, we get 

Ωp = 2 tan 
0:2π 
2 

= 0:650 

Similarly, the value of Ωs is computed as 

Ωs = 2 tan 
0:5π 
2 

= 2 

Step 2: To determine the order of the filter 
The expression for the order of Butterworth filter is given by
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N = 
log 10-

Ap 
10 - 1 

10-As 
10 - 1 

2 log Ωp 

Ωs 

Substituting the value of Ap = -3 dB, As = -20 dB, Ωp = 0.650 and Ωs = 2 in  
the above expression, we get 

N = 
log 10 

3 
10ð Þ - 1 

10 
20 
10ð Þ - 1 

2 log 0:650 2 

Simplifying the above expression, we get 

N = 2:0463d e≈ 3 

The order of the filter is calculated as 3. 
Step 3: To determine the cut-off frequency 
The expression for cut-off frequency is given by 

Ωc = 
Ωp 

10-
Ap 
10 - 1 

1 
2N 

Substituting Ap = -3 dB, Ωp = 0.650 and N = 3 in the above expression, we get 

Ωc = 0:650 10 
3 
10 - 1

- 1 
6 

Simplifying the above expression, the value of Ωc is computed as 

Ωc = 0:650 

Step 4: Transfer function of normalized lowpass filter 
The transfer function of normalized lowpass filter for N = 3 is given using the 

Butterworth polynomial as 

Hlp sð Þ= 
1 

B sð Þ  

The Butterworth polynomial B(s) for N = 3  is  (s + 1)(s2 + s + 1). Substituting this 
in the above expression, we get
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Hlp sð Þ= 
1 

s þ 1ð Þ  s2 þ sþ 1ð Þ  

Step 5: Converting normalized lowpass filter to the desired lowpass filter using 
frequency transformation 

H sð Þ=Hlp sð Þ  
s= s Ωc 

H sð Þ= 
1 

sþ 1ð Þ  s2 þ s þ 1ð Þ  s= s Ωc 

Substituting the value of Ωc = 0.650 (from Step 3), the above expression is given 
by 

H sð Þ= 
1 

s 
0:650 þ 1 s 

0:650 
2 þ s 

0:650 þ 1 

Simplifying the above expression, we get 

H sð Þ= 
0:2751 

s3 þ 1:301s2 þ 0:8459sþ 0:2751 

Step 6: Converting the analogue filter into an equivalent digital filter 
The digital equivalent of the analogue filter using BLT Technique is given by 

H zð Þ=H sð Þjs= 2 T 
z- 1 
zþ1 

Substituting the expression for H(s) from Step 5, we get 

H zð Þ= 
0:2751 

s3 þ 1:301s2 þ 0:8459sþ 0:2751 s= 2 T 
z- 1 
zþ1 

Substituting T = 1 s, the above expression can be written as 

H zð Þ= 
0:2751 

2 z- 1 
zþ1 

3 
þ 1:301 2 z- 1 

zþ1 

2 
þ 0:8459 2 z- 1 

zþ1 þ 0:2751 

Simplifying the above expression, we get 

H  zð  Þ= 
0:0181z3 þ 0:0544z2 þ 0:0544z þ 0:0181 

z3 - 1:759z2 þ 1:182z- 0:2778
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import numpy as np 
#import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=20000 # Sampling frequency 
fp=2000 # Pass band frequency 
fs=5000 # Stop abnd frequency 
Ap, As, Td=3,20, 1 
wp=2*np.pi*(fp/fsam) # pass band freq in radian per sample 
ws=2*np.pi*(fs/fsam) # Stop band freq in radian per sample 
# prewarping process 
omega_p=(2/Td)*np.tan(wp/2) 
omega_s=(2/Td)*np.tan(ws/2) 
#Computation of order and normalized cut-off frequency 
N, omega_c=signal.buttord(omega_p,omega_s,Ap,As,analog=True)   
print('Order of the Filter N =', N) 
print('Cut-off frequency= {:.4f} rad/s '. format(omega_c)) 
# Computation of H(s) 
b, a=signal.butter(N,omega_c,'low', analog=True) 
s1 = ss.tf(b, a) 
print('Transfer function H(s)=',s1)  
bz, az=signal.bilinear(b, a, Td)    
z1 = ss.tf(bz,az,Td)    
print('Transfer function H(z)=',z1) 

Fig. 8.33 Python code to verify the result of Experiment 8.16 

Inference 
1. The theoretical result is verified with the python code, which is shown in 

Fig. 8.33. The built-in function signal.buttord helps to obtain the order and 
cut-off frequency of the analogue filter. 

2. The numerator and denominator coefficients of the analogue filter are computed 
using signal.butter built-in function. 

3. The analogue filter coefficients are converted into digital filter coefficients using 
bilinear transformation, the built-in function used for bilinear transformation is 
signal.bilinear. 

4. After executing the python code, which is given in Fig. 8.33, the simulation result 
is shown in Fig. 8.34. From this figure, it is possible to observe that the simulation 
result is on par with the theoretical result. 

Task 
1. Reduce the gap between passband and stopband cut-off frequencies and observe 

the order of the filter.



8.4 Butterworth Filter 337

Order of the Filter N = 3 

Cut-off frequency= 0.6504 rad/s  

Transfer function H(s)=  

              0.2751 

----------------------------------- 

s^3 + 1.301 s^2 + 0.8459 s + 0.2751 

Transfer function H(z)=  

0.01813 z^3 + 0.0544 z^2 + 0.0544 z + 0.01813 

--------------------------------------------- 

     z^3 - 1.759 z^2 + 1.182 z - 0.2778 

Fig. 8.34 Simulation result of the python code is given in Fig. 8.33 

Experiment 8.17 Design of Butterworth Filter for Given Specifications 
The objective of this experiment is to obtain the Butterworth lowpass filter coeffi-
cients, transfer function and frequency response for the following filter specifica-
tions: (1) order of the filter (N ) = 2, sampling frequency (Fs) = 8 kHz and (2) cut-off 
frequency ( fc) = 2 kHz. Use BLT method for transformation. The python code for 
this experiment is given in Fig. 8.35, and its corresponding output is shown in 
Figs. 8.36 and 8.37. Figure 8.37 gives the magnitude and phase responses of the 
Butterworth filter. 

Inference 
1. From the magnitude response, it is possible to observe that the filter behaves like a 

lowpass filter. 
2. The gain drops beyond 2000 Hz, which is in agreement with the filter 

specification. 
3. It is also possible to observe that the phase response is not linear. 

Experiment 8.18 Frequency Transformation 
The objective of this experiment is to convert the normalized Butterworth analogue 
filter into desired Butterworth analogue filter using frequency transformation. Using 
frequency transformation technique, the normalized lowpass filter is converted into 
desired lowpass, highpass, bandpass and band reject filter. The filter considered for 
frequency transformation is a second-order normalized lowpass filter. This filter is 
converted to a desired lowpass and highpass filter for a cut-off frequency of 2 rad/s. 
For the bandpass and band reject filter, the lower and upper cut-off frequency is 
considered as 3 and 5 rad/s, respectively. The python code for this experiment is 
given in Fig. 8.38. The corresponding result is shown in Figs. 8.39 and 8.40.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=8000 # Sampling frequency in Hz 
fc=2000 # cut off frequency in Hz 
N, T = 2, 1/fsam 
wc1=2*np.pi*fc # Cut off frequency in rad/sec 
print('Cut-off frequency (in rad/sec)=', wc1) 
wc = (2/T)*np.tan(wc1*T/2) # Prewarp the analog frequency 
# Design analog Butterworth filter using signal.butter function 
b, a = signal.butter(N, wc, 'low', analog='True') 
s1 = ss.tf(b,a)    
print('Transfer function H(s)=',s1) 
# Perform bilinear Transformation 
bz, az = signal.bilinear(b, a, fs=fsam) 
# Print numerator and denomerator coefficients of the filter 
print('Numerator Coefficients:', bz),print('Denominator Coefficients:', az) 
z1 = ss.tf(bz,az,T)    
print('Transfer function H(z)=',z1) 
# Compute frequency response of the filter using signal.freqz function 
wz, hz = signal.freqz(bz, az, 512) 
fig = plt.figure(figsize=(10, 8)) 
Mag = 20*np.log10(abs(hz)) # Calculate Magnitude in dB 
Freq = wz*fsam/(2*np.pi) # Calculate frequency in Hz 
# Plot Magnitude response 
sub1 = plt.subplot(2, 1, 1),sub1.plot(Freq, Mag, 'r', linewidth=2),sub1.axis([1, fsam/2, -60, 5]) 
sub1.set_title('Magnitude Response', fontsize=15), 
sub1.set_xlabel('Frequency [Hz]', fontsize=15),sub1.set_ylabel('Magnitude [dB]', fontsize=15) 
sub1.grid() 
# Plot phase angle 
sub2 = plt.subplot(2, 1, 2) 
Phase = np.unwrap(np.angle(hz))*180/np.pi # Calculate phase angle in degree from hz 
sub2.plot(Freq, Phase, 'g', linewidth=2),sub2.set_ylabel('Phase (degree)', fontsize=15) 
sub2.set_xlabel(r'Frequency (Hz)', fontsize=15),sub2.set_title(r'Phase response', fontsize=15) 
sub2.grid(),plt.subplots_adjust(hspace=0.5),fig.tight_layout(),plt.show() 

Fig. 8.35 Python code for Experiment 8.17 

From Fig. 8.39, it is possible to observe that the transfer function of normalized 
Butterworth lowpass filter is on par with the theoretical transfer function, which is 
given by 

H sð  Þ= 
1 

s2 þ 1:414sþ 1 

Here, we have considered the order of the filter is (N = 2), the cut-off frequency of 
lowpass and highpass filter is chosen as 2. The highest degree of the denominator 
polynomial function of lowpass and highpass filters is 2, whereas the highest degree 
of the denominator polynomial function of bandpass and band reject filters is 4. The
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Cut-off frequency (in rad/sec)= 12566.370614359172 
Transfer function H(s)=  
          2.56e+08 
---------------------------- 
s^2 + 2.263e+04 s + 2.56e+08 
Numerator Coefficients: [0.29289322 0.58578644 0.29289322] 
Denominator Coefficients: [ 1.00000000e+00 -2.04583550e-16  1.71572875e-01] 
Transfer function H(z)=  
0.2929 z^2 + 0.5858 z + 0.2929 
------------------------------ 
  z^2 - 2.046e-16 z + 0.1716 
dt = 0.000125 

Fig. 8.36 Simulation result of python code is given in Fig. 8.35 

Fig. 8.37 Magnitude and phase responses



bandpass and band reject filter contains rising and falling transition widths, each 
transition width takes second-order roll-off rate; hence, the order of the filter is 4.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
N, omega_c, wn = 2, 2, [3,5] # Order, cutoff freq. of (LPF and HPF),(BPF and BSF),  
omega1=np.linspace(0, 10, 100) 
b, a = signal.butter(N, 1, 'low', analog=True) 
b1, a1 = signal.butter(N, omega_c, 'low', analog=True) 
b2, a2 = signal.butter(N, omega_c, 'high', analog=True) 
b3, a3 = signal.butter(N, wn, 'bandpass', analog=True) 
b4, a4 = signal.butter(N, wn, 'bandstop', analog=True) 
s1 = ss.tf(b, a) 
print('Normalized Butterworth filter H(s)=', s1) 
mag, phase, omega1=ss.freqresp(s1, omega1) 
plt.figure(1),plt.plot(omega1,np.abs(mag)),plt.xlabel('$\Omega$-->'), 
plt.ylabel('$|H(j\Omega)|$'),plt.title('Magnitude response of Normalized LPF') 
s2 = ss.tf(b1, a1) 
print('Desired Butterworth LPF H1(s)=', s2) 
mag1, phase1, omega1=ss.freqresp(s2, omega1) 
plt.figure(2),plt.subplot(2,2,1),plt.plot(omega1,np.abs(mag1)) 
plt.xlabel('$\Omega$-->'),plt.ylabel('$|H_1(j\Omega)|$'),plt.title('Desired LPF') 
s3 = ss.tf(b2, a2) 
print('Desired Butterworth HPF H2(s)=', s3) 
mag2, phase2, omega1=ss.freqresp(s3, omega1) 
plt.subplot(2,2,2),plt.plot(omega1,np.abs(mag2)),plt.xlabel('$\Omega$-->'), 
plt.ylabel('$|H_2(j\Omega)|$'),plt.title('Desired HPF') 
s4 = ss.tf(b3, a3) 
print('Desired Butterworth BPF H3(s)=', s4) 
mag3, phase3, omega1=ss.freqresp(s4, omega1) 
plt.subplot(2,2,3),plt.plot(omega1,np.abs(mag3)),plt.xlabel('$\Omega$-->'), 
plt.ylabel('$|H_3(j\Omega)|$'),plt.title('Desired BPF') 
s5 = ss.tf(b4, a4) 
print('Desired Butterworth BSF H4(s)=', s5) 
mag4, phase4, omega1=ss.freqresp(s5, omega1) 
plt.subplot(2,2,4),plt.plot(omega1,np.abs(mag4)),plt.xlabel('$\Omega$-->'), 
plt.ylabel('$|H_4(j\Omega)|$'),plt.title('Desired BSF') 
plt.tight layout() 

Fig. 8.38 Python code to convert normalized Butterworth filter to desired filters 

Inferences 
1. The magnitude responses of the normalized lowpass and desired lowpass, 

highpass, bandpass and bandstop filters are shown in Fig. 8.40. 
2. From Fig. 8.40a, it is clearly understood that the cut-off frequency is 2 Hz. 
3. From Fig. 8.40b, the cut-off frequency of lowpass and highpass filters is 2 Hz, 

while bandpass and band reject filters are 3 and 5 Hz.
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Normalized Butterworth filter H(s)=  
        1 
----------------- 
s^2 + 1.414 s + 1 

Desired Butterworth LPF H1(s)=  
        4 
----------------- 
s^2 + 2.828 s + 4 

Desired Butterworth HPF H2(s)=  
       s^2 
----------------- 
s^2 + 2.828 s + 4 

Desired Butterworth BPF H3(s)=  
                 4 s^2 
---------------------------------------- 
s^4 + 2.828 s^3 + 34 s^2 + 42.43 s + 225 

Desired Butterworth BSF H4(s)=  
           s^4 + 30 s^2 + 225 
---------------------------------------- 
s^4 + 2.828 s^3 + 34 s^2 + 42.43 s + 225 

Fig. 8.39 Transfer functions of normalized and desired Butterworth filters 
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Fig. 8.40 Magnitude responses of normalized and desired Butterworth filters. (a) Normalized 
lowpass filter. (b) Desired filters 

4. The conclusion that can be made from this experiment is that the desired filter can 
be obtained from the normalized lowpass filter using analogue frequency 
transformation.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=8000 # Sampling frequency in Hz 
fc1,fc2=[1500,2500],[1000,3000] # cut off frequency in Hz 
T = 1/fsam 
wcp1=2*np.pi*fc1[0] # Pass band Cut off frequency in rad/sec 
wcp2=2*np.pi*fc1[1] # Pass band Cut off frequency in rad/sec 
wcs1=2*np.pi*fc2[0] # Stop band Cut off frequency in rad/sec 
wcs2=2*np.pi*fc2[1] # Stop band Cut off frequency in rad/sec 
pwcp1 = (2/T)*np.tan(wcp1*T/2) # Prewarp the analog frequency 
pwcp2 = (2/T)*np.tan(wcp2*T/2) # Prewarp the analog frequency 
pwcs1 = (2/T)*np.tan(wcs1*T/2) # Prewarp the analog frequency 
pwcs2 = (2/T)*np.tan(wcs2*T/2) # Prewarp the analog frequency 
N,wn=signal.buttord([pwcp1,pwcp2],[pwcs1,pwcs2],1,30,True) 
print('Order of the filter (N) = ',N) 
# Design analog Butterworth filter using signal.butter function 
b, a = signal.butter(N, wn, 'bandpass', analog='True') 
s1 = ss.tf(b,a)    
print('Transfer function H(s)=',s1) 
# Perform bilinear Transformation 
bz, az = signal.bilinear(b, a, fs=fsam) 
z1 = ss.tf(bz,az,T)    
print('Transfer function H(z)=',z1) 
# Compute frequency response of the filter using signal.freqz function 
wz, hz = signal.freqz(bz, az, 512) 
fig = plt.figure(figsize=(10, 8)) 
Mag = 10*np.log10(abs(hz)) # Calculate Magnitude in dB 
Freq = wz*fsam/(2*np.pi) # Calculate frequency in Hz 
# Plot Magnitude response 
sub1 = plt.subplot(2, 1, 1) 
sub1.plot(Freq, Mag, 'r', linewidth=2),sub1.axis([1, fsam/2, -60, 5]) 
sub1.set_title('Magnitude Response', fontsize=15), 
sub1.set_xlabel('Frequency [Hz]', fontsize=15),sub1.set_ylabel('Magnitude [dB]', fontsize=15) 
sub1.grid() 
# Plot phase angle 
sub2 = plt.subplot(2, 1, 2) 
Phase = np.unwrap(np.angle(hz))*180/np.pi # Calculate phase angle in degree from hz 
sub2.plot(Freq, Phase, 'g', linewidth=2),sub2.set_ylabel('Phase (degree)', fontsize=15) 
sub2.set_xlabel(r'Frequency (Hz)', fontsize=15),sub2.set_title(r'Phase response', fontsize=15) 
sub2.grid(),plt.subplots_adjust(hspace=0.5),fig.tight_layout(),plt.show() 

Fig. 8.41 Python code for Butterworth bandpass filter design 

Experiment 8.19 Design of Butterworth Bandpass Filter 
The objective of this experiment is to write a python code to design a Butterworth 
digital bandpass filter for the following specifications: (1) Passband frequencies are 
1500 Hz and 2500 Hz. (2) Stopband frequencies are 1000 Hz and 3000 Hz. 
(3) Sampling frequency (Fs) = 8 kHz. (4) Passband ripple is 1 dB and stopband 
attenuation is 30 dB. Use BLT method for transformation.
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Order of the filter (N) =  5 
Transfer function H(s)=  

       8.041e+20 s^5 
------------------------------------------------------------------------------------------------------------------- 
s^10 + 4.91e+04 s^9 + 2.485e+09 s^8 + 6.857e+13 s^7 + 1.753e+18 s^6 + 2.947e+22 
s^5 + 4.487e+26 s^4 + 4.494e+30 s^3 + 4.17e+34 s^2 + 2.109e+38 s + 1.1e+42 

Transfer function H(z)=  
      0.005376 z^10 - 0.02688 z^8 - 7.894e-18 z^7 + 0.05376 z^6 - 3.552e-17 z^5 - 
0.05376 z^4 - 7.894e-18 z^3 + 0.02688 z^2 - 0.005376 
------------------------------------------------------------------------------------------------------------------- 
z^10 + 5.999e-16 z^9 + 2.156 z^8 + 3.663e-15 z^7 + 2.281 z^6 + 1.516e-15 z^5 + 1.297 
z^4 + 1.516e-15 z^3 + 0.3952 z^2 + 2.684e-16 z + 0.05031 
dt = 0.000125 

Fig. 8.42 Simulation result of python code is given in Fig. 8.41 

Fig. 8.43 Magnitude and phase responses
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Table 8.2 Built-in functions used in the program 

S. 
No. 

Built-in 
function 

1 tan Numpy To obtain the tan value 

2 buttord Scipy To obtain the order and cut-off frequency of the Butterworth filter 

3 butter Scipy To obtain the coefficients of Butterworth filter 

4 bilinear Scipy To convert analogue transfer function into an equivalent digital 
transfer function using the bilinear transformation mapping 

5 freqz Scipy To obtain the frequency response of the digital filter 

The python code for this experiment is given in Fig. 8.41, and its corresponding 
output is shown in Figs. 8.42 and 8.43. Figure 8.43 gives the magnitude and phase 
response of the Butterworth digital bandpass filter. The libraries used in this program 
are (1) numpy, (2) matplotlib, (3) scipy and (4) control. The built-in functions used in 
this program are summarized in Table 8.2. 

Inference 
From the magnitude response shown in Fig. 8.43, it is possible to observe that the 
passband of the digital filter is 1500–2500 Hz. This is in agreement with the 
specification of the filter. The phase response of the filter is non-linear. 

Task 
1. Change the passband cut-off frequencies of the bandpass filter and see the 

changes in the magnitude and phase responses. 

8.5 Chebyshev Filter 

The squared magnitude response of Chebyshev filter is given by 

H ejΩ 
2 
= 

1 
1þ ε2T2 

N Ωð Þ ð8:14Þ 

The parameter ε sets the ripple amplitude. Chebyshev filters can be classified into 
two types, namely, Type I Chebyshev filters and Type II Chebyshev filters. Type I 
Chebyshev filter exhibits ripple in passband, whereas Type II Chebyshev filter 
exhibits ripple in stopband. Chebyshev polynomial TN(x) for different order is 
given in Table 8.3. 

Experiment 8.20 Plotting Chebyshev Polynomial for Different Order 
This experiment tries to plot the Chebyshev polynomial functions of different order 
using python. The python code is used here to plot the Chebyshev polynomial 
functions of different order and the corresponding output is shown in Figs. 8.44



and 8.45, respectively. From Fig. 8.45, it is possible to infer that the Chebyshev 
polynomial function is created based on the recursive formula, which is given by 
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Table 8.3 Chebyshev poly-
nomial function 

Order (N ) Polynomial function 

0 T0(x) = 1 
1 T1(x) = x 
2 T2(x) = 2x2 - 1 

3 T3(x) = 4x3 - 3x 

4 T4(x) = 8x4 - 8x2 + 1  

5 T5(x) = 16x5 - 20x3 + 5x 

6 T6(x) = 32x6 - 48x4 + 18x2 - 1 

7 T7(x) = 64x7 - 112x5 + 56x3 - 7x 

8 T8(x) = 128x8 - 256x6 + 160x4 - 32x2 + 1  

import numpy as np 
import matplotlib.pyplot as plt 
x=np.linspace(-1,1,50) 
T0=np.ones(len(x)) # zeroth degree polynomial 
T1=x # First degree polynomial 
T2=2*x*T1-T0 # Second degree polynomial 
T3=2*x*T2-T1 # Third degree polynomial 
T4=2*x*T3-T2 # Fourth degree polynomial 
T5=2*x*T4-T3 # Fifth degree polynomial 
plt.subplot(3,2,1),plt.plot(x,T0,'k--',linewidth=3.5), plt.xlabel('x'), plt.ylabel('T_0(x)'), 
plt.grid(),plt.subplot(3,2,2),plt.plot(x,T1,'k--',linewidth=3.5), plt.xlabel('x'), 
plt.ylabel('T_1(x)'),plt.grid(),plt.subplot(3,2,3),plt.plot(x,T2,'k--',linewidth=3.5), plt.xlabel('x'), 
plt.ylabel('T_2(x)'),plt.grid(),plt.subplot(3,2,4),plt.plot(x,T3,'k--',linewidth=3.5), 
plt.xlabel('x'),plt.ylabel('T_3(x)'),plt.grid(), plt.subplot(3,2,5),plt.plot(x,T4,'k--',linewidth=3.5), 
plt.xlabel('x'),plt.ylabel('T_4(x)'),plt.grid(),plt.subplot(3,2,6),plt.plot(x,T5,'k--',linewidth=3.5), 
plt.xlabel('x'),plt.ylabel('T_5(x)'),plt.grid(),plt.tight_layout() 

Fig. 8.44 Python code to plot the Chebyshev polynomial 

TN xð Þ= 2xTN- 1 xð Þ- TN- 2 xð Þ ð8:15Þ 

Inference 
Figure 8.45 shows that whenever N = 1, 3, 5, etc., the graph passes through the 
origin. For N = 0, 2, 4, etc., the graph does not pass through the origin. 

Task 
1. Write a python code to plot the Chebyshev polynomial function of order 8. Men-

tion the number of zero crossings that exist in it.
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Fig. 8.45 Chebyshev polynomials of different order 

Experiment 8.21 Design of Type I Chebyshev Filter 
This experiment discusses the design of a Type I Chebyshev filter using bilinear 
transformation technique (BLT) that has a passband of 0 to -2 dB cut-off frequency 
of 3 kHz and attenuation of at least 20 dB for frequencies greater than 5 kHz. 
Assume the sampling frequency to be 15 kHz. Assume T = 1 s.  

Given data 

1. Sampling frequency fsamp = 15 kHz. 
2. Gain in pass band Ap = -2 dB. 
3. Stop band attenuation As = -20 dB. 
4. Pass band cut off frequency fp = 3 kHz. 
5. Stop band cut off frequency fs = 5 kHz. 

Step 1: Prewarping 
First, it is necessary to compute the ωp and ωs from the frequency fp and fs, which 

are given below 

ωp = 2π 
f p 

f samp 

Substituting the values of fp and fsamp in the above expression, we get



p p
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ωp = 2π 
3 
15 

= 0:4π 

Now the expression for ωs is given by 

ωs = 2π 
f s 

f samp 

Substituting the values of fs and fsamp in the above expression, we get 

ωs = 2π 
5 
15 

= 0:667π 

The corresponding analogue frequencies Ωp and Ωs are obtained using 
prewarping by using BLT relation as 

Ωp = 
2 
T 
tan 

ωp 

2 

Substituting the value of ωp = 0.4π and T = 1 in the above expression, we get 

Ωp = 
2 
1 
tan 

0:4π 
2 

= 1:4531 

Similarly, the value of Ωs is computed as 

Ωs = 
2 
1 
tan 

0:667π 
2 

= 3:4633 

Step 2: To determine the passband ripple factor (ε) 
The passband ripple factor is calculated as 

ε= 10 
Ap 
10ð Þ- 1 

ε= 10 
2 
10ð Þ- 1= 10 0:2ð Þ - 1 

ε= 1:5849- 1= 0:5849= 0:7648 

Step 3: To determine the order of the filter 
The expression for the order of Chebyshev filter is given by



348 8 Infinite Impulse Response Filter

N ≥
cosh - 1 1 

ε2 10- As 
10 - 1 

cosh - 1 Ωs 
Ωp 

Substituting the value of ε = 0.7648, As = -20 dB, Ωp = 1.4531 and 
Ωs = 3.4633, in the above expression, we get 

N ≥
cosh - 1 1 

0:7648ð Þ2 10- - 20 
10 - 1 

cosh - 1 3:4633 
1:4531 

The above expression is simplified as 

N ≥
cosh - 1 1 

0:7648ð Þ2 10
2 - 1 

cosh - 1 2:3834ð Þ  

The above expression is further simplified as 

N ≥
cosh - 1 1 

0:7648ð Þ2 100- 1ð Þ  
1:5144 

The further simplification of the above expression, we get 

N ≥
cosh - 1 99 

0:5849 

1:5144 

The above expression is simplified as 

N ≥
cosh - 1 169:2597

p 

1:5144 

The simplified version of the above equation, we get 

N ≥ 3:2574 
1:5144 

= 2:1510= 3 

From the above result, the order of the filter is computed as three (N = 3). 
Step 4: Computation of the left half of the S plane poles 
From the order of filter 3, 6 poles will be there in this filter. Only 3 poles will be 

calculated for further process. That is, those poles must be lying left half of S-plane.
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The computation of the poles are given by 

sk = σk þ jΩk = - sin 
2k- 1ð Þπ 
2N 

sinh 
1 
N 
sinh - 1 1 

ε 

þj cos 
2k- 1ð Þπ 
2N 

cosh 
1 
N 
sinh - 1 1 

ε 

ð8:16Þ 

In the above equation substituting k = 1, 2, 3, we may get 3 numbers of poles. 
For k = 1, the above equation can be written as 

s1 = σ1 þ jΩ1 = - sin 
2:1- 1ð Þπ 
2× 3 

sinh 
1 
3 
sinh - 1 1 

0:7648 

þj cos 
2:1- 1ð Þπ 
2× 3 

cosh 
1 
3 
sinh - 1 1 

0:7648 

The above equation can be simplified as 

s1 = - sin 
2:1- 1ð Þπ 
2× 3 

sinh 
1 
3 

1:0831ð Þ  þ j cos 2:1- 1ð Þπ 
2× 3 

cosh 
1 
3 

1:0831ð  

The above equation further simplified as 

s1 = - sin 
π 

2× 3 
sinh 0:3610ð Þ þ  j cos 

π 
2× 3 

cosh 0:3610ð Þ  

Simplifying the above equation, we get 

s1 = - sin 
π 
6 

0:3689ð Þ þ  j cos 
π 
6 

1:0659ð Þ  

We know that sin π 6 = 0:5 and cos π 2 = 0:8660, substituting this results in the 
above equation, we get 

s1 = - 0:5ð Þ  0:3689ð Þ þ j 0:8660ð Þ  1:0659ð Þ  
s1 = - 0:1845þ j0:9231 

Substituting k = 2, in Eq. (8.16), we get 

s2 = σ2 þ jΩ2 = - sin 
2:2- 1ð Þπ 
2× 3 

sinh 
1 
3 
sinh - 1 1 

0:7648 

þj cos 
2:2- 1ð Þπ 
2× 3 

cosh 
1 
3 
sinh - 1 1 

0:7648 

The above equation can be simplified as
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s2 = - sin 
4- 1ð Þπ 
2× 3 

sinh 
1 
3 

1:0831ð Þ  þ j cos 4- 1ð Þπ 
2 × 3 

cosh 
1 
3 

1:0831ð  

The above equation further simplified as 

s2 = - sin 
3π 
6 

sinh 0:3610ð Þ þ  j cos 
3π 
6 

cosh 0:3610ð Þ  

Simplifying the above equation, we get 

s2 = - sin 
π 
2 

0:3689ð Þ þ  j cos 
π 
2 

1:0659ð Þ  

We know that sin π 2 = 1 and cos π 2 = 0, substituting this results in the above 
equation, we get 

s2 = - 0:3689 

Substituting k = 3, in Eq. (8.16), we get 

s3 = σ3 þ jΩ3 = - sin 
2:3- 1ð Þπ 
2× 3 

sinh 
1 
3 
sinh - 1 1 

0:7648 

þj cos 
2:3- 1ð Þπ 
2× 3 

cosh 
1 
3 
sinh - 1 1 

0:7648 

The above equation can be simplified as 

s3 = - sin 
6- 1ð Þπ 
2× 3 

sinh 
1 
3 

1:0831ð Þ  þ j cos 6- 1ð Þπ 
2 × 3 

cosh 
1 
3 

1:0831ð  

The above equation further simplified as 

s3 = - sin 
5π 
6 

sinh 0:3610ð Þ þ  j cos 
5π 
6 

cosh 0:3610ð Þ  

Simplifying the above equation, we get 

s3 = - sin 
5π 
6 

0:3689ð Þ þ  j cos 
5π 
6 

1:0659ð Þ  

The simplification of the above result, we get
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s3 = - 0:1845- j0:9231 

The results of this step are s1 = - 0.1845 + j0.9231, s2 = - 0.3689 and s3 =  
0.1845 - j0.9231. 

Step 5: Calculate the normalized frequency transfer function (i.e. Ωp = 1) 
The normalized frequency transfer function is obtained by 

H sð  Þ=K
- 1ð ÞN s1 × s2 ×⋯ × sN 

s- s1ð Þ  s- s2ð Þ⋯ s- sNð Þ  

where 

K = 
1 

1þ ε2p for N is Even 

1 for N is odd 

In this example, the order of the filter is 3; it shows that odd, hence the gain K = 1. 
The transfer function is formed as 

H sð Þ=K
- 1ð Þ3 × s1 × s2 × s3 

s- s1ð Þ  s- s2ð Þ  s- s3ð Þ  

Substituting the values of s1 = - 0.1845 + j0.9231, s2 = - 0.3689 and s3 =  
0.1845 - j0.9231 in the above equation, we get 

H sð Þ=K
- 1ð Þ× - 0:1845þ j0:9231ð Þ× - 0:3689ð Þ× - 0:1845- j0:9231ð  

s- - 0:1845þ j0:9231ð Þð Þ  s- - 0:3689ð Þð Þ  s- - 0:1845- j0:9231ðð  

The above equation can be simplified as 

H sð Þ= 
0:3269 

sþ 0:1845- j0:9231Þð Þ  sþ 0:3689Þð Þ  sþ 0:1845 þ j0:9231Þð  

The above equation can be further simplified as 

H sð Þ= 
0:3269 

s3 þ 0:7378s2 þ 1:0222s þ 0:3269ð  

Step 6: Calculate the transfer function of the desired frequency 
The desired passband cut-off frequency of the filter is Ωp = 1.4531. The transfer 

function is given by
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Ha 
s 

1:4531 
= 

0:3269 
s 

1:4531 
3 þ 0:7378 s 

1:4531 
2 þ 1:0222 s 

1:4531 þ 0:3269 

The above result can be further simplified as 

Ha 
s 

1:4531 
= 

1:003 
s3 þ 1:072s2 þ 2:158sþ 1:003ð  

Step 7: Converting the analogue filter into an equivalent digital filter 
The digital equivalent of the analogue filter using bilinear transformation tech-

nique is given by 

H zð Þ=Ha sð Þj
s= 2 T 

1- z- 1 

1þz- 1 

Substituting the expression for H(s) from Step 5, we get 

H zð Þ= 
1:003 

s3 þ 1:072s2 þ 2:158sþ 1:003ð s= 21- z- 1 

1þz- 1 

The above expression can be written as 

H zð Þ= 
1:003 

2 1- z- 1 

1þz- 1 

3 
þ 1:072 2 1- z- 1 

1þz- 1 

2 
þ 2:158 2 1- z- 1 

1þz- 1 þ 1:003 

Simplifying the above expression, we get 

H zð Þ= 
0:05696z3 þ 0:1709z2 þ 0:1709z þ 0:05696 

z3 - 1:191z2 þ 1:045z- 0:399 

The python code for this experiment is given in Fig. 8.45. The built-in function 
signal.cheb1ord is used here to compute the order and cut-off frequency of the filter. 
The built-in function signal.cheby1 is used here to obtain the numerator and denom-
inator coefficients of filter, ss.tf is used for the computation of transfer function and 
signal.bilinear helps to convert analogue filter coefficients into digital filter coeffi-
cients using BLT approach. 

Inferences 
1. After executing the python code given in Fig. 8.46, the simulation results are 

shown in Figs. 8.47 and 8.48. 
2. The order of the filter is calculated as (N = 3); the cut-off frequency is obtained as 

1.4531 rad/s, which is equivalent to passband cut-off frequency, and the analogue
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=15000 # Sampling frequency 
fp=3000 # Passband frequency 
fs=5000 # Stopband frequency 
Ap, As, Td=2,20, 1 
wp=2*np.pi*(fp/fsam) # passband freq in radian per sample 
ws=2*np.pi*(fs/fsam) # Stopband freq in radian per sample 
# prewarping process 
omega_p=(2/Td)*np.tan(wp/2) 
omega_s=(2/Td)*np.tan(ws/2) 
N, omega_c=signal.cheb1ord(omega_p,omega_s,Ap,As,analog=True)  
print('Order of the Filter N =', N) 
print('Cut-off frequency= {:.4f} rad/s'. format(omega_c)) 
# Computation of H(s) 
b_s, a_s=signal.cheby1(N,Ap,omega_c,'low', analog=True) 
s1 = ss.tf(b_s, a_s) 
print('Transfer function H(s)=',s1)  
bz, az=signal.bilinear(b_s, a_s, Td)    
z1 = ss.tf(bz,az,Td)    
print('Transfer function H(z)=',z1) 
ws, hs = signal.freqz(bz, az) # Calculate Magnitude from hz in dB 
Mag = 20*np.log10(abs(hs)) # Calculate phase angle in degree from hz 
Phase = np.unwrap(np.arctan2(np.imag(hs), np.real(hs)))*(180/np.pi)      
# Calculate frequency in Hz from wz 
Freq = ws*fsam/(2*np.pi)     
# Plot filter magnitude and phase responses using subplot. 
fig = plt.figure(figsize=(10, 6))# Plot Magnitude response 
sub1 = plt.subplot(2, 1, 1) 
sub1.plot(Freq, Mag, 'r', linewidth=2) 
sub1.axis([1, fsam/2, -100, 5]) 
sub1.set_title('Magnitude Response', fontsize=15) 
sub1.set_xlabel('Frequency [Hz]', fontsize=15) 
sub1.set_ylabel('Magnitude [dB]', fontsize=15) 
sub1.grid() 
# Plot phase angle 
sub2 = plt.subplot(2, 1, 2) 
sub2.plot(Freq, Phase, 'g', linewidth=2),sub2.set_ylabel('Phase (degree)', fontsize=15) 
sub2.set_xlabel(r'Frequency (Hz)', fontsize=15) 
sub2.set_title(r'Phase response', fontsize=15) 
sub2.grid(),plt.subplots_adjust(hspace=0.5),fig.tight_layout(),plt.show() 

Fig. 8.46 Python code to get transfer function of Chebyshev lowpass filter
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Order of the Filter N = 3 
Cut-off frequency= 1.4531 rad/s 
Transfer function H(s)=  
              1.003 
--------------------------------- 
s^3 + 1.072 s^2 + 2.158 s + 1.003 
Transfer function H(z)=  
0.05696 z^3 + 0.1709 z^2 + 0.1709 z + 0.05696 
--------------------------------------------- 
      z^3 - 1.191 z^2 + 1.045 z - 0.399 
dt = 1 

Fig. 8.47 Simulation result 

Fig. 8.48 Magnitude and phase response 

and digital filters transfer functions are the same as the theoretical result, which is 
shown in Fig. 8.47. 

3. The frequency response of the Chebyshev Type I filter is shown in Fig. 8.48. This 
figure clearly shows that the passband frequency is up to 3 kHz. 

Experiment 8.22 Design of Chebyshev Type I Digital Highpass Filter 
This experiment deals with the design of a Chebyshev Type I digital highpass filter 
for the following specifications: (1) Passband frequency is 2500 Hz. (2) Stopband 
frequency is 1500 Hz. (2) Sampling frequency (Fs) = 8 kHz. (4) Passband ripple is



3 dB and stop attenuation is 40 dB. Use BLT method for transformation. The python 
code for this experiment is given in Fig. 8.49, and its corresponding output is shown 
in Figs. 8.50 and 8.51. Figure 8.50 gives the magnitude and phase responses of the 
Chebyshev Type I digital highpass filter. 
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=8000 # Sampling frequency in Hz 
fc1=1500 # Stop band cut-off frequency in Hz 
fc2=2500#  Pass band cut-off frequency in Hz 
Ap,As,T =3,40, 1/fsam 
wc1=2*np.pi*fc1 # Stopband Cut off frequency in rad/sec 
wc2=2*np.pi*fc2 # Passband Cut off frequency in rad/sec 
#print('Cut-off frequency (in rad/sec)=', wc1) 
pwc1 = (2/T)*np.tan(wc1*T/2) # Prewarp the analog frequency 
pwc2 = (2/T)*np.tan(wc2*T/2) # Prewarp the analog frequency 
# Design analog Butterworth filter using signal.butter function 
N, Wn = signal.cheb1ord(pwc2, pwc1, Ap, As,analog=True) 
print('Order of the filter (N) = ',N) 
b, a = signal.cheby1(N, Ap, Wn, 'high',analog=True) 
s1 = ss.tf(b,a) 
print('Transfer function H(s)=',s1) 
# Perform bilinear transformation 
bz, az = signal.bilinear(b, a, fs=fsam) 
# Print numerator and denominator coefficients of the filter 
print('Numerator Coefficients:', bz) 
print('Denominator Coefficients:', az) 
z1 = ss.tf(bz,az,T) 
print('Transfer function H(z)=',z1) 
# Compute frequency response of the filter using signal.freqz function 
wz, hz = signal.freqz(bz, az, 512) 
fig = plt.figure(figsize=(10, 8)) 
Mag = 20*np.log10(abs(hz)) # Calculate Magnitude in dB 
Freq = wz*fsam/(2*np.pi) # Calculate frequency in Hz 
# Plot Magnitude response 
sub1 = plt.subplot(2, 1, 1) 
sub1.plot(Freq, Mag, 'r', linewidth=2),sub1.axis([1, fsam/2, -60, 5]) 
sub1.set_title('Magnitude Response', fontsize=15),sub1.set_xlabel('Frequency [Hz]', fontsize=15) 
sub1.set_ylabel('Magnitude [dB]', fontsize=15),sub1.grid() 
# Plot phase angle 
sub2 = plt.subplot(2, 1, 2) 
# Calculate phase angle in degree from hz 
Phase = np.unwrap(np.angle(hz))*180/np.pi 
sub2.plot(Freq, Phase, 'g', linewidth=2),sub2.set_ylabel('Phase (degree)', fontsize=15) 
sub2.set_xlabel(r'Frequency (Hz)', fontsize=15),sub2.set_title(r'Phase response', fontsize=15) 
sub2.grid(),plt.subplots_adjust(hspace=0.5),fig.tight_layout(),plt.show() 

Fig. 8.49 Python code for Butterworth bandpass filter design 

Inference 
From this experiment, the following inferences can be made:
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Order of the filter (N) =  4 
Transfer function H(s)=  

             0.7079 s^4 
------------------------------------------------------------- 
s^4 + 5.476e+04 s^3 + 3.788e+09 s^2 + 4.512e+13 s + 1.858e+18 
Numerator Coefficients: [ 0.01208527 -0.04834108  0.07251162 -0.04834108  
0.01208527] 
Denominator Coefficients: [1.         2.12648692 2.50060541 1.60804914 0.50706501] 
Transfer function H(z)=  
0.01209 z^4 - 0.04834 z^3 + 0.07251 z^2 - 0.04834 z + 0.01209 
------------------------------------------------------------- 
       z^4 + 2.126 z^3 + 2.501 z^2 + 1.608 z + 0.5071 
dt = 0.000125 

Fig. 8.50 Simulation result of python code is given in Fig. 8.49 
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Fig. 8.51 Magnitude and phase responses 

1. From the magnitude response, it is possible to observe that passband gain is high 
after the frequency of 2000 Hz, and there is a ripple in the passband. 

2. From the phase response, it is possible to confirm that the curve is not linear; 
hence, it cannot provide the linear phase in the output.
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Tasks 
1. Write a python code to obtain the magnitude and phase response of Chebyshev 

Type I bandpass filter with the passband frequencies of 1500–3000 Hz. Choose 
the order of the filter that is 3. 

2. Write a python code to obtain the magnitude and phase response of Chebyshev 
Type I band reject filter with the stopband frequencies of 1500–3000 Hz. Choose 
the order of the filter that is 3.

�--> 

1 2  3–1–2–3 0

�--> 

1 2  3–1–2–3 0

�--> 

1 2  3–1–2–3 0 

|H
(j�

)| 
1
-|H

1
(j�

)|
|H

1
(j�

)| 1 

0 

1 

0 

1.05 

1.00 
0.95 

Fig. 8.52 First step procedure 
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�--> 
1 2–1–2–3 0 

Fig. 8.53 Second step procedure
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
N, rs, omega_c=3, 30, [5] 
omega1=np.linspace(0, 10, 100) 
b_s, a_s=signal.cheby2(N,rs,omega_c,'low', analog=True) 
s1 = ss.tf(b_s, a_s) 
print('H(s) = ', s1) 
z1=np.roots(b_s) 
print('Zeros : ', z1) 
mag, phase, omega1=ss.freqresp(s1, omega1) 
plt.figure,plt.plot(omega1,np.abs(mag)) 
plt.xlabel('$\Omega$-->'),plt.ylabel('$|H(j\Omega)|$') 
plt.title('Magnitude response of Chebyshev Type II LPF') 
plt.tight_layout() 

Fig. 8.54 Python code for Chebyshev Type II LPF 

8.6 Chebyshev Type II IIR Filter 

The Chebyshev Type II IIR filter has an equiripple in stopband and monotonic 
response in passband, which is inverse of Chebyshev Type I IIR filter; hence, it is 
also called as ‘inverse Chebyshev filter’. Two-step procedures can obtain the 
frequency response of this filter. In the first step, subtract the frequency response 
of Chebyshev Type I filter (H(ω)) from 1, which is illustrated in Fig. 8.52. In the 
second step, convert the ω by 1 ω. This result will give the frequency response of 
Chebyshev Type II IIR filter, which is shown in Fig. 8.53. 

From Fig. 8.53, it is possible to observe that the frequency response has mono-
tonic in the passband and an equiripple in the stop band. 

Using the two step procedures, the mathematical expression for the frequency 
response of the Chebyshev Type II filter can be written as 

H Ωð Þ= 1-
1 

1þ ε2T2 
N 

1=Ωð Þ ð8:17Þ 

Simplifying the above expression, we get 

H Ωð  Þ= ε2 T2 
N 

1=ΩÞ 
1þ ε2T2 

N 
1=Ωð Þ ð8:18Þ 

From the above expression, it is possible to understand that the Chebyshev Type 
II filter has zeros as the numerator, and all the zeros lie on the imaginary axis.
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(a) Transfer function and zeros                            (b) Magnitude response 

H(s) =   
       0.4746 s^2 + 15.82 
--------------------------------- 
s^3 + 4.883 s^2 + 11.81 s + 15.82 

Zeros :  [-0.+5.77350269j  0.-5.77350269j] 

Magnitude response of Chebyshev Type II LPF

�--> 
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6 8 

Fig. 8.55 Simulation result of the python code is given in Fig. 8.54. (a) Transfer function and 
zeros. (b) Magnitude response 

Experiment 8.23 Design of Chebyshev Type II Lowpass Filter 
This experiment discusses the design of Chebyshev Type II lowpass filter using 
python with a stopband frequency of 5 Hz. Assume the order of the filter is 3, and 
stopband attenuation is 30 dB. 

The python code to design a Chebyshev Type II lowpass filter is shown in 
Fig. 8.54, and its corresponding simulation result is shown in Fig. 8.55. From 
Fig. 8.54, it is possible to infer that the signal.cheby2 built-in command can be 
used to obtain the numerator and denominator coefficients. After executing the 
python code in Fig. 8.54, the transfer function of Chebyshev Type II lowpass filter 
is shown in Fig. 8.55a. This figure confirms that the Chebyshev Type II filter has 
zeros, which occur on the imaginary axis. The magnitude response of the Chebyshev 
Type II lowpass filter is shown in Fig. 8.55b. This figure confirms the monotonic 
response in the passband and equiripple in the stopband. 

Inference 
From Fig. 8.55b, it is possible to confirm that the ripple exists in the stopband and 
monotonic response in the passband. 

Task 
1. Write a python code to plot the magnitude response of Chebyshev Type II 

highpass filter with the lower cut-off frequency of 5 Hz. Assume the order of 
the filter is 3 and stopband attenuation is 30 dB. 

Experiment 8.24 Design of Chebyshev Type II Digital Bandstop Filter 
This experiment deals with the design of a Chebyshev Type II digital bandstop filter 
for the following specifications: (1) Stopband frequencies are from 1500 to 2500 Hz 
with an attenuation of 40 dB. (2) Passband frequencies are below 1000 Hz and above 
3000 Hz with the passband ripple of 3 dB. Sampling frequency (Fs) = 8 kHz. Use 
BLT method for transformation. The python code for this experiment is given in 
Fig. 8.56, and its corresponding output is shown in Figs. 8.57 and 8.58. Figure 8.58 
gives the magnitude and phase responses of the Chebyshev Type II digital bandstop 
filter.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=8000 # Sampling frequency in Hz 
fc1,fc2=[1500,2500],[1000,3000] # cut off frequency in Hz 
Ap, As, T = 2, 40, 1/fsam 
wcp1=2*np.pi*fc1[0] # Pass band Cut off frequency in rad/sec 
wcp2=2*np.pi*fc1[1] # Pass band Cut off frequency in rad/sec 
wcs1=2*np.pi*fc2[0] # Stop band Cut off frequency in rad/sec 
wcs2=2*np.pi*fc2[1] # Stop band Cut off frequency in rad/sec 
pwcs1 = (2/T)*np.tan(wcp1*T/2) # Prewarp the analog frequency 
pwcs2 = (2/T)*np.tan(wcp2*T/2) # Prewarp the analog frequency 
pwcp1 = (2/T)*np.tan(wcs1*T/2) # Prewarp the analog frequency 
pwcp2 = (2/T)*np.tan(wcs2*T/2) # Prewarp the analog frequency 
N,wn=signal.cheb2ord([pwcp1,pwcp2],[pwcs1,pwcs2],Ap,As,analog=True) 
print('Order of the filter (N) = ',N) 
# Design analog Chebyshev Type 2 filter using signal.cheby2 function 
b, a = signal.cheby2(N, As, wn, 'bandstop', analog='True') 
s1 = ss.tf(b,a)    
print('Transfer function H(s)=',s1) 
# Perform bilinear transformation 
bz, az = signal.bilinear(b, a, fs=fsam) 
z1 = ss.tf(bz,az,T)    
print('Transfer function H(z)=',z1) 
# Compute frequency response of the filter using signal.freqz function 
wz, hz = signal.freqz(bz, az, 512) 
fig = plt.figure(figsize=(10, 8)) 
Mag = 10*np.log10(abs(hz)) # Calculate Magnitude in dB 
Freq = wz*fsam/(2*np.pi) # Calculate frequency in Hz 
# Plot Magnitude response 
sub1 = plt.subplot(2, 1, 1) 
sub1.plot(Freq, Mag, 'r', linewidth=2),sub1.axis([1, fsam/2, -60, 5]) 
sub1.set_title('Magnitude Response', fontsize=15), 
sub1.set_xlabel('Frequency [Hz]', fontsize=15),sub1.set_ylabel('Magnitude [dB]', fontsize=15) 
sub1.grid() 
# Plot phase angle 
sub2 = plt.subplot(2, 1, 2) 
Phase = np.unwrap(np.angle(hz))*180/np.pi # Calculate phase angle in degree from hz 
sub2.plot(Freq, Phase, 'g', linewidth=2),sub2.set_ylabel('Phase (degree)', fontsize=15) 
sub2.set_xlabel(r'Frequency (Hz)', fontsize=15),sub2.set_title(r'Phase response', fontsize=15) 
sub2.grid(),plt.subplots_adjust(hspace=0.5),fig.tight_layout(),plt.show() 

Fig. 8.56 Python code for Chebyshev Type II bandstop filter design 

Inferences 
1. From Fig. 8.58, the magnitude response shows no ripple in the passbands and a 

ripple in the stop band. 
2. From the phase response, it is possible to confirm that IIR filters do not have 

linear phase characteristics; hence, the phase response is not linear.
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Order of the filter (N) =  4 
Transfer function H(s)=  

                s^8 + 1.249e+09 s^6 + 5.145e+17 s^4 + 8.183e+25 s^2 + 4.295e+33 
------------------------------------------------------------------------------------------------------------------- 
s^8 + 6.844e+04 s^7 + 3.59e+09 s^6 + 1.094e+14 s^5 + 2.338e+18 s^4 + 2.802e+22 s^3 + 
2.353e+26 s^2 + 1.148e+30 s + 4.295e+33 

Transfer function H(z)=  
0.1535 z^8 - 5.028e-11 z^7 + 0.4981 z^6 - 1.309e-10 z^5 + 0.7012 z^4 - 1.309e-10 z^3 + 
0.4981 z^2 - 5.028e-11 z + 0.1535 
------------------------------------------------------------------------------------------------------------------- 
   z^8 - 1.944e-10 z^7 + 0.3006 z^6 - 9.283e-11 z^5 + 0.5759 z^4 - 6.545e-11 z^3 + 0.0987 
z^2 - 9.75e-12 z + 0.02925 
dt = 0.000125 

Fig. 8.57 Simulation result of python code is given in Fig. 8.56 

Fig. 8.58 Magnitude and phase responses
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Task 
1. Write a python code to design a Chebyshev Type II digital bandpass filter for the 

following specifications: (a) Passband frequencies are from 1500 to 2500 Hz with 
an attenuation of 3 dB. (b) Stopband frequencies are below 1000 Hz and above 
3000 Hz with the passband ripple of 40 dB. Sampling frequency (Fs) = 8 kHz. 
Use BLT method for transformation. 

8.7 Elliptic Filter 

The elliptic filter has an equiripple in both the passband and stopband. It is also 
called as ‘Cauer filter’. The elliptic filter gives minimal error between the desired and 
ideal filter response for a given set of error tolerances. The elliptical filter maximizes 
the rate of transition between the frequency response passband and stopband, at the 
expense of equiripple in both bands. Also, it increases ringing in the step response. 

The square magnitude response of ‘nth’ order elliptic filter is given by 

H jΩð Þj j2 = 
1 

1þ ε2R2 
n ξ, Ω=Ωc 

ð8:19Þ 

In the above expression, Rn is the nth order elliptic rational function, ‘ε’ is the 
ripple factor and ‘ξ’ is the selectivity factor. The ripple factor specifies the passband 
ripple, and a combination of the ripple factor and the selectivity factor specifies the 
stopband ripple. As the ripple in the stopband approaches zero, the filter tends to 
become Chebyshev Type I filter. As the ripple in the passband approaches zero, the 
filter tends to become Chebyshev Type II filter. If both passband and stopband 
ripples approach zero, then the filter tends to become a Butterworth filter. Elliptic 
filter meets a standard magnitude specification with lower filter order than other filter 
approximations. 

Experiment 8.25 Design of an Elliptic Lowpass Filter 
This experiment tries to design an elliptic lowpass filter with a passband frequency of 
5 Hz. Assume the order of the filter is 3, passband ripple is 2 dB and stopband 
attenuation is 30 dB. The python code to design an elliptic lowpass filter is shown in 
Fig. 8.59, and its corresponding simulation result is shown in Fig. 8.60. From 
Fig. 8.59, it is possible to infer that the signal.ellip built-in command is used here 
to obtain the numerator and denominator coefficients. After executing the python 
code given in Fig. 8.59, the transfer function of elliptic lowpass filter is shown in 
Fig. 8.60a. This figure confirms that the elliptic filter has zeros, and those zeros occur 
on the imaginary axis. The magnitude response of the elliptic lowpass filter is shown 
in Fig. 8.60b. From this figure, it is possible to observe the equiripples in both the 
passband and stopband.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
N, rp,rs, omega_c=3, 2, 20, [5] 
omega1=np.linspace(0, 10, 100) 
b_s, a_s=signal.ellip(N,rp,rs,omega_c,'low', analog=True) 
s1 = ss.tf(b_s, a_s) 
print('H(s) = ', s1) 
z1=np.roots(b_s) 
print('Zeros : ', z1) 
mag, phase, omega1=ss.freqresp(s1, omega1) 
plt.figure,plt.plot(omega1,np.abs(mag)) 
plt.xlabel('$\u03A9$-->'),plt.ylabel('$|H({j\u03A9})|$') 
plt.title('Magnitude response of Elliptic LPF') 
plt.tight_layout() 

Fig. 8.59 Python code for elliptic LPF 
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(a) Transfer function and zeros                            (b) Magnitude response 

H(s) =   
       1.394 s^2 + 60.14 
-------------------------------- 
s^3 + 3.63 s^2 + 26.75 s + 60.14 

Zeros :  [-0.+6.5683962j  0.-6.5683962j] 

Fig. 8.60 Simulation result of the python code is given in Fig. 8.59. (a) Transfer function and 
zeros. (b) Magnitude response 

Inference 
From the simulation result of this experiment, it is possible to observe that ripples 
present in both the passband and stopband, and also it infers that the width of the 
transition band is reduced. 

Task 
1. Write a python code to design an elliptic highpass filter with a lower cut-off 

frequency of 5 Hz. Assume the order of the filter is 3, passband ripple is 2 dB and 
stopband attenuation is 30 dB.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import control as ss 
# Specifications of Filter 
fsam=8000 # Sampling frequency in Hz 
fc1,fc2=[1500,2500],[1000,3000] # cut off frequency in Hz 
Ap, As, T = 2, 40, 1/fsam 
wcp1=2*np.pi*fc1[0] # Pass band Cut off frequency in rad/sec 
wcp2=2*np.pi*fc1[1] # Pass band Cut off frequency in rad/sec 
wcs1=2*np.pi*fc2[0] # Stop band Cut off frequency in rad/sec 
wcs2=2*np.pi*fc2[1] # Stop band Cut off frequency in rad/sec 
pwcs1 = (2/T)*np.tan(wcp1*T/2) # Prewarp the analog frequency 
pwcs2 = (2/T)*np.tan(wcp2*T/2) # Prewarp the analog frequency 
pwcp1 = (2/T)*np.tan(wcs1*T/2) # Prewarp the analog frequency 
pwcp2 = (2/T)*np.tan(wcs2*T/2) # Prewarp the analog frequency 
N,wn=signal.ellipord([pwcp1,pwcp2],[pwcs1,pwcs2],Ap,As,analog=True) 
print('Order of the filter (N) = ',N) 
# Design analog Elliptic filter using signal.ellip function 
b, a = signal.ellip(N, Ap, As, wn, 'bandstop', analog='True') 
s1 = ss.tf(b,a)    
print('Transfer function H(s)=',s1) 
# Perform bilinear transformation 
bz, az = signal.bilinear(b, a, fs=fsam) 
z1 = ss.tf(bz,az,T)    
print('Transfer function H(z)=',z1) 
# Compute frequency response of the filter using signal.freqz function 
wz, hz = signal.freqz(bz, az, 512) 
fig = plt.figure(figsize=(10, 8)) 
Mag = 10*np.log10(abs(hz)) # Calculate Magnitude in dB 
Freq = wz*fsam/(2*np.pi) # Calculate frequency in Hz 
# Plot Magnitude response 
sub1 = plt.subplot(2, 1, 1) 
sub1.plot(Freq, Mag, 'r', linewidth=2),sub1.axis([1, fsam/2, -60, 5]) 
sub1.set_title('Magnitude Response', fontsize=15), 
sub1.set_xlabel('Frequency [Hz]', fontsize=15),sub1.set_ylabel('Magnitude [dB]', fontsize=15) 
sub1.grid() 
# Plot phase angle 
sub2 = plt.subplot(2, 1, 2) 
Phase = np.unwrap(np.angle(hz))*180/np.pi # Calculate phase angle in degree from hz 
sub2.plot(Freq, Phase, 'g', linewidth=2),sub2.set_ylabel('Phase (degree)', fontsize=15) 
sub2.set_xlabel(r'Frequency (Hz)', fontsize=15),sub2.set_title(r'Phase response', fontsize=15) 
sub2.grid(),plt.subplots_adjust(hspace=0.5),fig.tight_layout(),plt.show() 

Fig. 8.61 Python code for elliptic bandstop filter design 

Experiment 8.26 Design of Elliptic Digital Bandstop Filter 
The objective of this experiment is to design an elliptic digital bandstop filter for the 
following specifications: (1) Stopband frequencies are from 1500 to 2500 Hz with an 
attenuation of 40 dB. (2) Passband frequencies are below 1000 Hz and above 
3000 Hz with the passband ripple of 3 dB. Sampling frequency (Fs) = 8 kHz. Use 
BLT method for transformation. The python code for this experiment is given in 
Fig. 8.61, and its corresponding output is shown in Figs. 8.62 and 8.63. Figure 8.63



shows the magnitude and phase response of the elliptic (Cauer) digital bandstop 
filter. 
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Order of the filter (N) =  3 
Transfer function H(s)=  

         s^6 + 9.409e+08 s^4 + 2.409e+17 s^2 + 1.678e+25 
--------------------------------------------------------------------------------------------- 
s^6 + 9.278e+04 s^5 + 2.858e+09 s^4 + 1.391e+14 s^3 + 7.317e+17 s^2 + 6.081e+21 s + 1.678e+25 

Transfer function H(z)=  
0.1338 z^6 - 3.28e-11 z^5 + 0.3241 z^4 - 5.86e-11 z^3 + 0.3241 z^2 - 3.28e-11 z + 0.1338 
---------------------------------------------------------------------------------------- 
  z^6 - 1.122e-10 z^5 - 0.5182 z^4 - 1.985e-11 z^3 + 0.7377 z^2 + 7.843e-12 z - 0.3037 
dt = 0.000125 

Fig. 8.62 Simulation result of python code is given in Fig. 8.61 

Fig. 8.63 Magnitude and phase responses 

Inference 
From this experiment, the following observations can be made:
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#Magnitude response of analog IIR filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Specification of the filter 
N=10 #Order of the filter 
wn=100 #Cut-off frequency 
rp=5   #Pass band ripple 
rs=40  #Stop band ripple 
#Step 2: Magnitude response of Butterworth filter 
b1,a1=signal.butter(N,wn,'low',analog='true') 
w1,H1=signal.freqs(b1,a1) 
#Magnitude response of Type-1 Chebyshev filter 
b2,a2=signal.cheby1(N,rp,wn,'low',analog='true') 
w2,H2=signal.freqs(b2,a2) 
#Magnitude response of Type-II Chebyshev filter 
b3,a3=signal.cheby2(N,rs,wn,'low',analog='true') 
w3,H3=signal.freqs(b3,a3) 
#Magnitude response of Elliptic filter 
b4,a4=signal.ellip(N,rp,rs,wn,'low',analog='true') 
w4,H4=signal.freqs(b4,a4) 
#Step 3: Plotting the magnitude responses 
plt.subplot(2,2,1),plt.semilogx(w1,20*np.log10(abs(H1)),'k-') 
plt.xlabel('Frequency'),plt.ylabel('Magnitude[dB]'),plt.title('Butterworth filter') 
plt.subplot(2,2,2),plt.semilogx(w2,20*np.log10(abs(H2)),'k-') 
plt.xlabel('Frequency'),plt.ylabel('Magnitude[dB]'),plt.title('Chebyshev (type 1) filter') 
plt.subplot(2,2,3),plt.semilogx(w3,20*np.log10(abs(H3)),'k-') 
plt.xlabel('Frequency'),plt.ylabel('Magnitude[dB]'),plt.title('Chebyshev (type 2) filter') 
plt.subplot(2,2,4),plt.semilogx(w4,20*np.log10(abs(H4)),'k-') 
plt.xlabel('Frequency'),plt.ylabel('Magnitude[dB]'),plt.title('Elliptic filter') 
plt.tight_layout() 

Fig. 8.64 Python code to obtain the magnitude response of four analogue IIR filters 

1. The magnitude response is having ripples in the passband as well as stopband. 
2. The phase response is nonlinear; hence, IIR filters do not have linear phase 

characteristics. 

Experiment 8.27 Comparing the Magnitude Response of Butterworth, 
Chebyshev (Type I), Chebyshev (Type II) and Elliptic Filters 
The objective of this experiment is to compare the magnitude response of analogue 
IIR filters, namely, Butterworth, Chebyshev (Type I), Chebyshev (Type II) and 
elliptic filters for the following lowpass filter specifications: (1) order of the fil-
ter = 10, (2) cut-off frequency = 100 Hz, (3) passband ripple = 5 dB and 
(4) stopband ripple = 40 dB. The python code, which obtains the magnitude 
response of the four filters, is shown in Fig. 8.64, and the corresponding output is 
shown in Fig. 8.65. 

The built-in functions used in the program are summarized in Table 8.4.
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Fig. 8.65 Result of python code shown in Fig. 8.64 

Table 8.4 Built-in function used 

S. 
No. 

Built-in 
function 

1 butter Scipy To obtain the coefficients of analogue/digital Butterworth 
filter 

2 cheby1 Scipy To obtain the coefficients of analogue/digital Type I 
Chebyshev filter 

3 cheby2 Scipy To obtain the coefficients of analogue/digital Type II 
Chebyshev filter 

4 ellip Scipy To obtain the coefficients of analogue/digital elliptic filter 

Inferences 
From Fig. 8.65, the following inferences can be made: 

1. Butterworth filter exhibits maximally flat frequency response without ripples in 
passband and stopband. 

2. Type I Chebyshev filter exhibits ripples in only passband. 
3. Type II Chebyshev filter exhibits ripples in stopband. 
4. Elliptic filter exhibits ripples in both passband and stopband. 
5. The roll-off rate of elliptic filter is better than Butterworth and Chebyshev filters. 

Experiment 8.28 Comparing the Order of Butterworth, Chebyshev (Type I and 
Type II) and Elliptic Filters for the Same Filter Specification 
The objective of this experiment is to compute the order of Butterworth, Type I 
Chebyshev, Type II Chebyshev and elliptic filter for the following specifications 
using bilinear transformation technique (BLT).-3 dB cut-off frequency at 5 Hz, and 
an attenuation of 40 dB at 10 Hz, use bilinear transformation technique. Assume the
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#Order of different IIR filters 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Filter specification 
fsample=1000 
f_pass, f_stop, g_pass, g_stop, Td =5, 10, 3, 40, 1 
wp=f_pass/(fsample/2) 
ws=f_stop/(fsample/2) 
#Step 2: Pre-warping 
omega_pass=(2/Td)*np.tan(wp/2) 
omega_stop=(2/Td)*np.tan(ws/2) 
#Step 3: Computing the order of different filters 
N1,w1=signal.buttord(omega_pass,omega_stop,g_pass,g_stop) 
N2,w2=signal.cheb1ord(omega_pass,omega_stop,g_pass,g_stop) 
N3,w3=signal.cheb2ord(omega_pass,omega_stop,g_pass,g_stop) 
N4,w4=signal.ellipord(omega_pass,omega_stop,g_pass,g_stop) 
#Step 4: Plotting the order of different filters 
filter_name=['Butterworth','Cheby1','Cheby2','Elliptic'] 
order1=[N1,N2,N3,N4] 
plt.bar(filter_name,order1),plt.title('Order of different filters') 
for i, v in enumerate(order1): 
    plt.text(i, v+0.1, str(v),color = 'blue', fontweight = 'bold') 
plt.show() 

Fig. 8.66 Comparing the order of different IIR filters 
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Fig. 8.67 Comparison of the order of IIR filters



sampling frequency to be 1000 Hz. The python code, which computes the order of 
different IIR filter, is shown in Fig. 8.66, and the corresponding output is shown in 
Fig. 8.67.
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# Low pass Butterworth  filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Signal generation 
t1=np.linspace(0,1,100) 
f1, f2, f3=5, 0, 10  
x1=np.sin(2*np.pi*f1*t1) 
x2=np.sin(2*np.pi*f2*t1) 
x3=np.sin(2*np.pi*f3*t1) 
x=np.concatenate([x1,x2,x3]) 
t=np.linspace(0,1,len(x)) 
plt.figure(1),plt.subplot(2,3,1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Input signal') 
#Step 2: Design of filter 
N=[2,5,10,20,25] #Order of the filter 
fsamp=100 #Sampling frequency 
f_cut=8 #Cut-off frequency 
fn=fsamp/2 
wc=f_cut/fn 
for i in range(len(N)): 
    b, a = signal.butter(N[i],wc,'low') 
#Step 3: Obtaining the output 
    plt.figure(1), plt.subplot(2,3,i+2) 
    y=signal.lfilter(b,a,x) 
    plt.plot(t,y),plt.xlabel('Time'),plt.ylabel('Amplitude') 
    plt.title('Filtered signal (N={})'.format(N[i])) 
    plt.tight_layout() 

Fig. 8.68 Lowpass Butterworth filter to filter sinusoidal signal 

Inferences 
From Fig. 8.67, it is possible to observe the following facts: 

1. The order of Butterworth filter to meet the given filter specification is 7. 
2. The order of Chebyshev filter to meet the given filter specification is 5. 
3. The order of elliptic filter to meet the given filter specification is 3. 
4. The order of Butterworth filter is higher than the order of Chebyshev and elliptic 

filters. 
5. Elliptic filter meets the given filter specification with a minimum order.
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Fig. 8.69 Butterworth lowpass filter output 

Experiment 8.29 Filtering of Sinusoidal Signal Using Butterworth Filter of a 
Different Order 
This experiment aims to filter a sinusoidal signal consisting of three frequencies: 5, 0 
and 10 Hz. This signal is to be filtered by a Butterworth lowpass filter of different 
orders, namely, 2, 5, 10, 20 and 25. The cut-off and sampling frequencies chosen are 
8 and 100 Hz, respectively. The python code, which implements the above-
mentioned task is shown in Fig. 8.68, and the corresponding outputs are shown in 
Fig. 8.69. 

Inferences 
The following inferences can be made from Fig. 8.69: 

1. The sinusoidal input signal contains three frequencies, namely, 5, 0 and 10 Hz. 
2. The input signal is passed through lowpass Butterworth filter of order 2, 5, 10, 20 

and 25. 
3. The filter retains 5 Hz frequency, and it blocks 10 Hz frequency component. 
4. The extent of filtering increases with an increase in the order of the filter. The 

10 Hz frequency component is blocked effectively when the filter order is 
20 and 25. 

5. The group delay increases with an increase in the order of the filter. The delay can 
be observed in the filtered signal with orders 20 and 25. 

Task 
1. Use the highpass filter with cut-off frequency of 10 Hz to repeat Experiment 8.29. 

Compare the result with the result of Experiment 8.29.



8.7 Elliptic Filter 371

#Comparing the performances of IIR filters 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Signal generation 
t1=np.linspace(0,1,100) 
f1,f2,f3=5,0,10 
x1=np.sin(2*np.pi*f1*t1) 
x2=np.sin(2*np.pi*f2*t1) 
x3=np.sin(2*np.pi*f3*t1) 
x=np.concatenate([x1,x2,x3]) 
t=np.linspace(0,1,300) 
plt.figure(1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Input signal') 
#Step 2: Design of filter 
N=5 #Order of the filter 
fsamp=100 #Sampling frequency 
f_cut=8 #Cut-off frequency 
fn=fsamp/2 
wc=f_cut/fn 
b1, a1 = signal.butter(N,wc,'low') 
b2, a2 = signal.cheby1(N,3,wc,'low') 
b3, a3 = signal.cheby2(N,40,wc,'low') 
b4, a4 = signal.ellip(N,3,40,wc,'low') 
#Step 3: Obtaining the output of the filter 
y1=signal.lfilter(b1,a1,x) 
y2=signal.lfilter(b2,a2,x) 
y3=signal.lfilter(b3,a3,x) 
y4=signal.lfilter(b4,a4,x) 
#Step 4: Plotting the output signals 
plt.figure(2) 
plt.subplot(2,2,1),plt.plot(t,y1),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Butterworth filter output') 
plt.subplot(2,2,2),plt.plot(t,y2),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Chebyshev (Type 1) filter output') 
plt.subplot(2,2,3),plt.plot(t,y3),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Chebyshev (Type2) filter output') 
plt.subplot(2,2,4),plt.plot(t,y4),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Elliptic filter output') 
plt.tight_layout() 

Fig. 8.70 Python code to compare the performances of IIR filters 

Experiment 8.30 Filtering of Sinusoidal Signal with Different IIR Filters 
of the Same Order 
This experiment aims to filter a sinusoidal signal consisting of three frequencies: 5, 0 
and 10 Hz. This signal is to be filtered by a Butterworth, Chebyshev (Type I), 
Chebyshev (Type II) and elliptic lowpass filters. The order of the filter is fixed as



5. The cut-off frequency and the sampling frequency chosen are 8 and 100 Hz, 
respectively. 
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Fig. 8.72 Filtered signal using different IIR filters 

The python code, which implements the above-mentioned task, is shown in 
Fig. 8.70, and the corresponding outputs are shown in Figs. 8.71 and 8.72.
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Inferences 
From Fig. 8.71, it is possible to observe that the input signal has three frequency 
components, namely 5, 0 and 10 Hz. This 

1. Input signal is passed through lowpass Butterworth, Chebyshev (Type I and Type 
II) and elliptic filters. 

2. Butterworth filter performs smoothing action without ripples. But the extent of 
filtering is poor. Significant high-frequency components appear along with low 
frequency components. 

3. In Chebyshev and elliptic filters, the high-frequency components are filtered 
effectively; however, the filtering action is not smooth. Ripples appear in the 
filtered output signal. 

Exercises 
1. The transfer function of analogue filter is given by H sð Þ= 10 

sþ10. Write a python 
code to obtain the transfer function of the equivalent digital filter using 
(a) impulse invariant technique and (b) bilinear transformation technique. 
Assume the sampling period to be 1 s. 

2. A normalized first-order lowpass Butterworth filter transfer function is given by 
H sð Þ= 1 

sþ1ð Þ. Write a python code to convert this filter into desired highpass 

filter with a cut-off frequency of 5 rad/s. Using subplot, plot the magnitude 
response of normalized filter and the desired highpass filter. 

3. Write a python code to obtain the order and cut-off frequency of analogue 
Butterworth filter that has -3 dB cut-off frequency of 20 rad/s and 10 dB of 
attenuation at 40 rad/s. Plot the magnitude response of the filter. 

4. Design an analogue bandpass filter that has the following characteristics: 

(a) -3 dB upper and lower cut-off frequency of 100 Hz and 10 kHz 
(b) Stopband attenuation of 30 dB at 50 Hz and 25 kHz 
(c) Monotonic frequency response 

Plot the magnitude response of the above-mentioned filter. 
5. Write a python code to design a digital lowpass Butterworth filter for the 

following specification using impulse invariant technique (a) -3 dB cut-off 
frequency at 250 Hz and (b) magnitude of frequency response down at least 
10 dB at 500 Hz. Assume the sample to be 1000 samples/s. Plot the magnitude 
response of the filter. 

6. Write a python code to design a digital filter using the bilinear transformation 
technique for the following specification: (a) maximally flat frequency response 
with-3 dB cut-off at 10 rad/s, (b) 30 dB of attenuation at all frequencies greater 
than 20 rad/s and (c) assuming the sampling frequency to be 1000 samples/s. 
Plot the magnitude response of the filter. 

7. Write a python code to design a Type I Chebyshev filter using bilinear trans-
formation technique (BLT) that has a passband of 0 to -3 dB cut-off frequency 
at 5 kHz and attenuation of at least 30 dB for frequencies greater than 10 kHz.
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Assume the sampling frequency to be 20 kHz. Assume T = 1 s. Plot the 
magnitude response of the filter. 

8. Write a python code to design a Chebyshev Type II digital bandstop filter for the 
following specifications: (a) Stopband frequencies are from 1000 to 2000 Hz 
with an attenuation of 40 dB. (b) Passband frequencies are below 800 Hz and 
above 2500 Hz with the passband ripple of 3 dB. Sampling frequency 
(Fs) = 8 kHz. Use BLT method for transformation. Plot its frequency response. 

9. Write a python code to design an elliptic lowpass filter with the passband 
frequency of 10 Hz. Assume the order of the filter is 2, passband ripple 3 dB 
and stopband attenuation is 40 dB. 

10. Obtain the order of Butterworth filter, Type I Chebyshev filter, Type II 
Chebyshev filter and elliptic filter that has -3 dB bandwidth of 10 Hz and an 
attenuation of 30 dB at 20 Hz using bilinear transformation technique. Assume 
the sampling frequency to be 1500 Hz. 

Objective Questions 
1. The filter has maximally flat response at both passband and stopband is called as 

A. Elliptic filter 
B. Butterworth filter 
C. Chebyshev filter 
D. Inverse Chebyshev filter 

2. The filter has monotonic response at passband and ripple at stopband 

A. Elliptic filter 
B. Butterworth filter 
C. Chebyshev filter 
D. Inverse Chebyshev filter 

3. The filter has ripple at passband and monotonic response at stopband 

A. Elliptic filter 
B. Butterworth filter 
C. Chebyshev filter 
D. Inverse Chebyshev filter 

4. The filter has ripple at both passband and stopband 

A. Elliptic filter 
B. Butterworth filter 
C. Chebyshev filter 
D. Inverse Chebyshev filter 

5. Mapping between S-plane to Z-plane using approximation derivative method is 

A. s= 1- z- 1 

B. s= 1þz- 1



T 1- z-

T 1þz-

2 1- z-

2 1þz-
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C. s= T 
1- z- 1 

D. s= T 
1þz- 1 

6. Identify the wrong statement 

A. Impulse invariant method exists one to one mapping between Ω and ω. 
B. Impulse invariant method does not exist one to one mapping between Ω and 

ω. 
C. Impulse invariant method retains the stability while converting analogue 

filter into digital filter. 
D. Impulse invariant method is appropriate for the design of lowpass and 

bandpass filters only. 

7. Mapping between S-plane to Z-plane using bilinear transformation method is 

A. s= 2 1þz- 1 

1 

B. s= 2 1- z- 1 

1 

C. s= T 1þz- 1 

1 

D. s= T 1- z- 1 

1 

8. Identify the correct statement 

A. The order (N ) of the Chebyshev polynomial function TN(x) is even; the 
graph will pass through origin. 

B. The order (N ) of the Chebyshev polynomial function TN(x) is even, and the 
amplitude of the TN(x) is equal to zero at x equal to zero. 

C. The order (N ) of the Chebyshev polynomial function TN(x) is odd, and the 
amplitude of the TN(x) is equal to non-zero at x equal to zero. 

D. The order (N ) of the Chebyshev polynomial function TN(x) is even; the 
graph will not pass through origin. 

9. The poles of Chebyshev Type I analogue filter are located on an S-plane in the 
form of 

A. Circle 
B. Parabola 
C. Ellipse 
D. Hyperbola 

10. The Chebyshev type II analogue filter has 

A. Zeros as the numerator and all the zeros lie on the real axis only. 
B. Zeros as the numerator and all the zeros lie on the imaginary axis only. 
C. Zeros as the numerator and all the zeros lie on both real and imaginary axes. 
D. None of the above.
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Chapter 9 
Quantization Effect of Digital Filter 
Coefficients 

Learning Objectives 
After completing this chapter, the reader is expected to

• Understand and implement approximation of numbers through flooring, ceiling 
and rounding operations.

• Analyse the impact of quantizing the finite impulse response filter coefficients.
• Analyse the impact of quantizing the infinite impulse response filter coefficients.
• Demonstrate limit cycle oscillation due to quantization of IIR filter coefficients. 

Roadmap of the Chapter 
The roadmap of this chapter is shown below. This chapter discusses the effect of 
fixed-point representations of digital systems and the effect of quantization using 
rounding, two’s complement and magnitude truncation approaches. Also, it dis-
cusses the impact of the finite word length effect of FIR and IIR filters. 

Finite word length effect 

Fixed point Representation Floating point Representation 

Quantization Errors 

Overflow 

Limit Cycle Oscillations 

Coefficient Quantization Effect 
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PreLab Questions 
1. What is the finite word length effect in DSP? 
2. List out the difference between fixed-point and floating-point number 

representations. 
3. What is the significance of sign-magnitude representation? 
4. What are quantization and quantization errors? 
5. What is rounding, and how does it the quantization process? 
6. What do you mean by two’s complement truncation in quantization, and what is 

the range of quantization error? 
7. What is magnitude truncation, and can it suppress the limit cycle oscillation? 
8. What is overflow? And mention the types of overflow. 
9. What do you mean by limit cycle oscillation, and how it exists in signal 

processing? 
10. What do you mean by coefficient quantization, and how it affects the stability of 

the result? 

9.1 Number Representation 

Numeric representation and type of arithmetic profoundly influence the performance 
of DSP system. The two forms of representation of numbers are fixed-point repre-
sentation and floating-point representation. Fixed-point arithmetic represents num-
bers in a fixed range with a finite number of bits of precision. Numbers outside the 
specified range will either saturate or wrap around. In general, fixed-point represen-
tation is preferred for high speed and lower cost. Floating-point arithmetic represents 
every number in two parts (a) a mantissa and (b) an exponent. Floating-point 
representation has a higher dynamic range, and there is no need for scaling, which 
makes it attractive for complex algorithms. 

The implementation of digital filters involves the use of finite precision arith-
metic. This leads to quantizing the filter coefficients and the results of the arithmetic 
operations. Such quantization operations are non-linear and cause a filter response 
substantially different from the response of the underlying infinite precision model. 

9.2 Fixed-Point Quantization 

Quantization is the process of approximating a quantity X into a quantity Q(X). It is 
approximately equal to X, but it has some distortion errors. Quantization exists when 
it represents the real numbers by nearest integers and is to reduce the word length of 
a binary representation of X by reducing the number of bits after the binary point. 
The relationship between X and Q(X) is called as ‘quantization characteristics’. 
Quantization commonly comes across in digital signal processing in the form of
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1. Rounding 
2. Two’s complement truncation 
3. Magnitude truncation 

9.2.1 Fixed-Point Quantization by Rounding 

If X is an original value to be quantized using the rounding method, and the 
quantized output is denoted as Qr(X). If the quantized value has N bits to the right 
of the binary point, then the quantization step size is Δ = 2-N . In general, rounding 
selects the quantized integer nearest to the original value. But the error between the 
quantized and original value is not more than ± Δ 2. Hence, the rounding error is 
denoted as εr = Qr(X) - X. Then, the rounding error is ranging from - Δ 

2 ≤ εr ≤ Δ 
2. 

The error resulting from quantization can be modelled as a random variable uni-
formly distributed over the appropriate error range. Hence, the round off error can be 
considered error-free calculations that have been corrupted by additive white noise. 
The mean value of the rounding error is zero and variance of the rounding error is 
σ2 εr =

Δ2 
negativethinmathspace=negativethinmathspace12. 

Experiment 9.1 Perform the Fixed-Point Quantization Using the Rounding 
Method 
This experiment deals with quantizing value using a rounding approach. The first 
and foremost method of quantization is rounding, which is mathematically written as 

Xr =Δ × round x=Δð Þ ð9:1Þ 

where x denotes the value to be quantized, Δ represents the step size and is computed 
as Δ = 2-N , N denotes the number of bits and Xr represents the quantized output 
using rounding. The python code for computing quantization using the rounding 
approach is given in Fig. 9.1, and its corresponding simulation result is shown in 
Fig. 9.2. 

# This program performs quantization using rounding 
import numpy as np 
h=float(input('Enter the value to be Quantized: ')); 
B=int(input('Enter the Number of Bits (N): ')); 
Q = 1/(2**(B)) 
Qhr=Q*np.round(h/Q)#Rounding 
print('The input unquantized value : ',h) 
print('The Quantized result using Rounding: ', Qhr) 

Fig. 9.1 Python code for quantization using rounding
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Fig. 9.2 Simulation result 
of python code given in 
Fig. 9.1 

Enter the value to be Quantized: 0.126 
Enter the Number of Bits (N): 2 
The input unquantiz ed value :  0.126 
The Quantized result using Rounding:  0.25 

Inference 
1. From Fig. 9.2, it is possible to infer that the value to be quantized is ‘0.126’ and 

the number of bits that can be used to represent the value is ‘2’. 
2. The two bits can represent the maximum of 4 levels (0–0.25, 0.25–0.5, 0.5–0.75 

and 0.75–1.0). 
3. Therefore, the input ‘0.126’ is quantized, and the result is 0.25 (0.126 is greater 

than 0.125). 

Task 
1. Enter the value to be quantized is 5.15, and 8 bits are used for the quantization. 

Observe the quantized result. 

9.2.2 Fixed-Point Quantization Using Two’s Complement 
Truncation 

The two’s complement truncation always gives the quantized value less than or 
equal to the original value. Hence, the truncation error is denoted as εt = Qt(X) - X. 
Then, the truncation error is ranging from -Δ ≤ εt ≤ 0. The error resulting from 
quantization can be modelled as a random variable uniformly distributed over the 
appropriate error range. Hence, the two’s complement truncation error can be 
considered error-free calculations corrupted by additive white noise. The mean 
value of the two’s complement truncation error can be obtained as μεt = - Δ 

2. The 
variance of the two’s complement truncation error is calculated as σ2 εt = Δ2 =12. 

Experiment 9.2 Perform Fixed-Point Quantization Using Two’s Complement 
This experiment deals with quantizing the value using two’s complement truncation 
approach. The quantization using two’s complement truncation method is denoted as 

Xt =Δ × x=Δð Þb c ð9:2Þ 

where bc denotes flooring operation. Xt represents the quantized result using trun-
cation method. The python code, which computes the fixed-point quantization of a 
number using two’s complement truncation method, is shown in Fig. 9.3, and its 
simulation result is depicted in Fig. 9.4.
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# This program performs quantization using 2’s complement truncation 
import numpy as np 
h=float(input('Enter the value to be Quantized: ')); 
B=int(input('Enter the Number of Bits (N): ')); 
Q = 1/(2**(B)) 
Qht=Q*np.floor(h/Q)#2's Complement truncation 
print('The input unquantized value : ',h) 
#print('The Quantized result using Rounding: ', Qhr) 
print('The Quantized result using 2s Complement truncation: ', Qht) 

Fig. 9.3 Python code for quantization using two’s complement truncation 

Enter the value to be Quantized: 0.126 
Enter the Number of Bits (N): 2 
The input unquantiz ed value :  0.126 
The Quantized result using 2s Complement truncation:  0.0 

Fig. 9.4 Simulation result of python code given in Fig. 9.3 

Inference 
From Fig. 9.4, it is possible to infer that the value to be quantized is 0.126, and the 
resultant value is 0 for N = 2. 

Task 
1. Choose the proper value of N and execute the python code given in Fig. 9.3 to get 

0.126 as the output. 

9.2.3 Fixed-Point Quantization Using Magnitude Truncation 

Magnitude truncation gives the quantized value less than the original value for 
X > 0, and the quantized result is greater than original for X < 0. Hence, the 
magnitude truncation error is denoted as εmt = Qmt(X) - X. 

Then, the magnitude truncation error is ranging from -Δ ≤ εmt ≤ 0 for X > 0 and 
0 ≤ εmt ≤ Δ for X < 0. The mean value of the magnitude truncation error is obtained 
as 0, and variance of the magnitude truncation error is calculated as σ2 εmt 

= Δ2 =3. The 
specific advantage of magnitude truncation lies in its inherent capability of limit 
cycle suppression.
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# This program performs quantization using Magnitude truncation 
import numpy as np 
h=float(input('Enter the value to be Quantized: ')); 
B=int(input('Enter the Number of Bits (N): ')); 
Q = 1/(2**(B)) 
# Magnitude Truncation 
if h > 0: 
    Qhmt=Q*np.floor(h/Q) 
else: 
    Qhmt=Q*np.ceil(h/Q)     
print('The input unquantized value : ',h) 
print('The Quantized result using Magnitude truncation: ', Qhmt) 

Fig. 9.5 Python code for quantization using magnitude truncation 

Enter the value to be Quantized: 0.126 
Enter the Number of Bits (N): 2 
The input unquantiz ed value :  0.126 
The Quantized result using M agnitude truncation:  0.0 

Fig. 9.6 Simulation result of python code given in Fig. 9.5 

Experiment 9.3 Perform Fixed-Point Quantization Using Magnitude 
Truncation 
The quantization using magnitude truncation is represented as 

Xmt = 
Δ × x=Δð Þb c, for x≥ 0 

Δ × x=Δð Þd e, for x< 0
ð9:3Þ 

where de denotes ceiling operation. Xmt represents the quantized result using mag-
nitude truncation. The python code of this experiment is shown in Fig. 9.5, and the 
simulation result is displayed in Fig. 9.6. 

Inference 
The following inferences can be made from this experiment: 

1. Figure 9.6 shows that the value to be quantized is 0.126, and the number of bits is 
chosen as 2. The result of quantization using the magnitude truncation is 0. This 
simulation result is on par with the theoretical result. 

2. The selection of the number of bits is essential for quantization. 
3. The quantization method is crucial for the hardware implementation of the digital 

systems.
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Task 
1. Execute the python code given in Fig. 9.5, and enter the value to be quantized as 

‘0.126’ and obtain the minimum value of ‘N’, which will give the quantized result 
that is the same as the input value. 

9.3 Coefficient Quantization 

The filter coefficients can be obtained using filter design approaches based on the 
given set of filter specifications. These filter coefficients are represented as a system 
function of the filter H(z), and they can be used in signal processing applications. 
These filter coefficients may be integer or non-integer numbers. If the filter coeffi-
cient is an integer, then the finite precision format is enough to represent it in digital 
computation. Otherwise, the coefficient is non-integer, then infinite precision format 
is necessary to represent it for the accurate result of the applications. However, in 
real-time scenario the hardware setup in the application may not be able to store the 
value of filter coefficients as it is due to the limited register size or finite precision 
processor. The representation of the filter coefficients from infinite precision to finite 
number precision may give coefficients quantization. This coefficient quantization 
can change the location of the filter poles and zeros. As a result, after implementing a 
filter, it may observe that the frequency response of the filter is quite different from 
that of the original design. The coefficients obtained by design methods are real or 
complex. These coefficients are often stored in a finite length register for real-world 
digital signal processing. The coefficients are often rounded to accommodate it in the 
finite length register. This causes a rounding error, which will influence the filter 
characteristics. The frequency response of the quantized filter coefficients will differ 
from the desired frequency response. Sensitivity of the filter response to coefficient 
quantization is dependent on the type of filter structures. Detail about this will be 
discussed later in this chapter. 

Experiment 9.4 Effect of Quantization Using the Rounding Approach of FIR 
Filters 
This experiment deals with the effect of coefficient quantization of FIR filters. Here, 
the method to quantize the filter coefficients is considered as rounding method. The 
FIR filter coefficients are computed by using the built in python command ‘a = 
signal.firwin(n, cutoff = 0.25, window = "hamming")’. Here ‘n’ denotes the number 
of the filter coefficients, ‘cutoff = 0.25’ represents cut-off frequency of the filter is 
0.25π rad/sample and the ‘window = "hamming"’ indicates the window function 
used for the FIR filter design. The python code for this experiment is shown in 
Fig. 9.7. In this figure, ‘B = 2’ denotes the number of bits used to quantize each filter 
coefficient. While increasing the value of B = 3, 4, 5, 6, . . ., the quantized filter’s 
impulse and frequency response will approach the original filter’s impulse and



frequency response. The simulation result of the python code given in Fig. 9.7 is 
displayed in Fig. 9.8. 
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from scipy import signal 
import numpy as np 
import matplotlib.pyplot as plt 
n = 31 
n1=np.arange(0,n); 
a = signal.firwin(n, cutoff = 0.25, window = "hamming") 
B = 16;# Number of Bits 
Q = 1/(2**(B)) 
Qhr=Q*np.round(a/Q)#Rounding 
#Obtaining the Frequency response 
w,H=signal.freqz(a) 
wq,Hq=signal.freqz(Qhr) 
#Obtaining the pole-zero plot 
z,p,k=signal.tf2zpk(a,1) 
zq,pq,kq=signal.tf2zpk(Qhr,1) 
#Plotting the responses 
plt.figure(1),plt.subplot(2,2,1),plt.stem(a),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('h[n]'),plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('|H($\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z),'ro'),plt.plot(np.real(p),np.imag(p),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi(e^{jw})$') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(Qhr),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('$h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('$|H_q(\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(zq),np.imag(zq),'ro') 
plt.plot(np.real(pq),np.imag(pq),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi_q(e^{jw})$') 
plt.tight_layout() 

Fig. 9.7 Python code to analyse coefficient quantization effect of FIR filter 

Inferences 
From Fig. 9.8, the following observations can be made: 

1. Figure 9.8a displays the impulse response of the original FIR filter components 
and its magnitude, phase and pole-zero plot. 

2. Figure 9.8b shows the number of bits selected as 2 for quantizing FIR filter 
coefficients and its impulse response, magnitude, phase and pole-zero plot. From 
this figure, it is possible to infer that the impulse response of the quantized FIR 
filter looks like a rectangular pulse, which is completely deviated from the 
original impulse response (i.e.) sinc function. Magnitude and phase responses
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Fig. 9.8 Simulation result of the python code is shown in Fig. 9.7. (a) Original (unquantized). (b) 
Quantized with N = 2 bits. (c) Quantized with N = 4 bits. (d) Quantized with N = 16 bits 

differ completely from the original magnitude and phase responses. In the pole-
zero plot, some zeros occur at the origin, whereas in the original pole-zero plot, 
there is no zero at the origin; it indicates that after the filter coefficients, a lot of 
coefficients become zero due to less number of bits allocated for the 
representation. 

3. From Fig. 9.8c, d, when the number of bits (N ) is chosen as 4 and 16, the impulse 
response of the quantized FIR filter approaches the original impulse response, and 
the magnitude and phase response approaches the original one. 

4. From these figures, it is possible to confirm that allocating the number of bits to 
represent the filter coefficients plays a significant role in DSP computations. 

Experiment 9.5 Verify the Effect of Quantization Using the Two’s Complement 
Truncation Approach of FIR Filters 
This experiment discusses the effect of quantization using two’s complement trun-
cation method of FIR filter coefficients. The python code to perform the two’s 
complement truncation-based quantization of FIR filter coefficients is shown in 
Fig. 9.9. In this experiment, we have chosen the order of the FIR filter as 31, the 
window function is considered ‘Hamming’, and the cut-off frequency is 0.25π 
rad/samples. The finite number of bits required to represent each filter coefficient



is selected as 2, 4 and 16. The simulation result of the python code given in Fig. 9.9 
is shown in Fig. 9.10. 
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# This program verifies the effect of coefficient quantization of FIR filters 
 # Twos complement truncation   
from scipy import signal 
import numpy as np 
import matplotlib.pyplot as plt 
n = 31 
n1=np.arange(0,n); 
a = signal.firwin(n, cutoff = 0.25, window = "hamming") 
B = 16;# Number of Bits 
Q = 1/(2**(B)) 
Qhr=Q*np.floor(a/Q)# Twos complement truncation 
#Obtaining the Frequency response 
w,H=signal.freqz(a) 
wq,Hq=signal.freqz(Qhr) 
#Obtaining the pole-zero plot 
z,p,k=signal.tf2zpk(a,1) 
zq,pq,kq=signal.tf2zpk(Qhr,1) 
#Plotting the responses 
plt.figure(1),plt.subplot(2,2,1),plt.stem(a),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('h[n]'),plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('|H($\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z),'ro'),plt.plot(np.real(p),np.imag(p),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot') 
plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi(e^{jw})$') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(Qhr),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('$h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('$|H_q(\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(zq),np.imag(zq),'ro'),plt.plot(np.real(pq),np.imag(pq),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi_q(e^{jw})$') 
plt.tight_layout() 

Fig. 9.9 Python code for two’s complement truncation 

Inferences 
The following observations can be drawn from Fig. 9.10: 

1. When the number of bits N = 2, the impulse response of the FIR filter is 
completely deviated from the original impulse response of the FIR filter. Simi-
larly, the magnitude and phase responses differ from the original one. From the 
pole-zero plot, the locations of the zeros of quantized filter are dislocated from the 
original positions.



9.3 Coefficient Quantization 387

Fig. 9.10 Simulation result of the python code given in Fig. 9.9. (a) Original filter. (b) Quantized 
filter with N = 2 bits. (c) Quantized filter with N = 4 bits. (d) Quantized filter with N = 16 bits 

2. When the number of bits is chosen as 4, the impulse response is still not the same 
as the original one. From this, 4 bits for each filter coefficient are insufficient for 
the finite precision. 

3. When the number of bits is considered as 16. The impulse, magnitude and phase 
responses are exactly the same as the original one. This is also evident from the 
pole-zero plot. 

4. From this experiment, we must understand that allocating the number of bits to 
represent the filter coefficients is very important for the FIR filter design. Even 
though the FIR filter is stable after the quantization, the filter response is not as 
expected. 

Experiment 9.6 Verify the Effect of Quantization Using the Magnitude Trun-
cation Approach of FIR Filters 
This experiment explores the effect of quantization using magnitude truncation of 
FIR filter coefficients. The magnitude truncation is another type of quantization 
approach that can represent the infinite precision to the finite precision of filter 
coefficients. The python code to perform the magnitude truncation of the FIR filter 
coefficients is shown in Fig. 9.11. In this experiment, we have chosen the order of 
FIR filter is 31, the window function is considered ‘Hamming’ and the cut-off 
frequency is 0.25π rad/samples. The finite number of bits required to represent



each filter coefficient is chosen as 2, 4 and 16. The simulation result of the python 
code given in Fig. 9.11 is shown in Fig. 9.12. 
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# This program verifies the effect of coefficient quantization of FIR filters 
# Magnitude truncation   
from scipy import signal 
import numpy as np 
import matplotlib.pyplot as plt 
n = 31 
n1=np.arange(0,n); 
a = signal.firwin(n, cutoff = 0.25, window = "hamming") 
B = 16;# Number of Bits 
Q = 1/(2**(B)) 
Qhmt=np.zeros(len(a)) 
# Magnitude Truncation 
for i in range(len(a)): 
    if a[i] > 0: 
        Qhmt[i]=Q*np.floor(a[i]/Q)  
    else: 
        Qhmt[i]=Q*np.ceil(a[i]/Q)  
#Obtaining the Frequency response 
w,H=signal.freqz(a) 
wq,Hq=signal.freqz(Qhmt) 
#Obtaining the pole-zero plot 
z,p,k=signal.tf2zpk(a,1) 
zq,pq,kq=signal.tf2zpk(Qhmt,1) 
#Plotting the responses 
plt.figure(1),plt.subplot(2,2,1),plt.stem(a),plt.xlabel('n-->'),plt.ylabel('h[n]'),plt.title('h[n]') 
plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('|H($\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z), 'ro'),plt.plot(np.real(p),np.imag(p), 'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot') 
plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi(e^{jw})$') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(Qhmt),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('$h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('$|H_q(\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(zq),np.imag(zq), 'ro') 
plt.plot(np.real(pq),np.imag(pq), 'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi_q(e^{jw})$') 
plt.tight_layout() 

Fig. 9.11 Python code for magnitude truncation 

Inferences 
From Fig. 9.12, the following inferences can be made: 

1. When the number of bits is chosen as N = 2, the impulse response of the 
quantized filter has only one non-zero element, and all other elements are zero.
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Fig. 9.12 Simulation result of the python code given in Fig. 9.11. (a) Original filter. (b) Quantized 
filter with N = 2 bits. (c) Quantized filter with N = 4 bits. (d) Quantized filter with N = 16 bits 

From the pole-zero plot, it is possible to infer that all the zeros of the FIR filters 
are placed at the origin, and it confirms that improper allocation of bits will lead to 
error frequency response. 

2. While choosing the value N is 4, the impulse response of the quantized filter looks 
like a triangular function; it is not a Gaussian function. Also, it shows that all the 
zeros of the FIR filters are squeezed into only four locations. 

3. If N = 16, the impulse, magnitude, and phase responses of the quantized filter are 
very close to the responses of the original filter. Also, the pole-zero plot is similar 
to the original one. 

Experiment 9.7 Verify the Effect of Quantization Using the Rounding 
Approach of Butterworth IIR Filter 
This experiment discusses the quantization of Butterworth filter coefficients com-
puted using the bilinear transformation technique (BLT) that has a passband gain of 
0  to -3 dB, cut-off frequency of 2 kHz and an attenuation of at least 20 dB for 
frequencies greater than 5 kHz. Assume the sampling frequency to be 20 kHz. 
Butterworth filter coefficients are quantized using the rounding approach. The 
python code to verify the concept of this experiment is shown in Fig. 9.13. Here 
the number of bits to be allocated to represent each coefficient of the IIR Butterworth 
filter is chosen as 4, 8, 12 and 16. The simulation results of the python code given in 
Fig. 9.13 are shown in Fig. 9.14.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
# Specifications of Filter 
fsam, fp, fs, Ap, As, Td=20000, 2000, 5000, 3, 20, 1 # Sampling frequency 
wp=2*np.pi*(fp/fsam) # pass band freq in radian per sample 
ws=2*np.pi*(fs/fsam) # Stop band freq in radian per sample 
# prewarping process 
omega_p=(2/Td)*np.tan(wp/2) 
omega_s=(2/Td)*np.tan(ws/2) 
#Computation of order and normalized cut-off frequency 
N, omega_c=signal.buttord(omega_p,omega_s,Ap,As,analog=True)               
print('Order of the Filter N =', N),print('Cut-off frequency= {:.4f} rad/s '. format(omega_c)) 
# Computation of H(s) 
b, a=signal.butter(N,omega_c,'low', analog=True) 
bz, az=signal.bilinear(b, a, Td) 
n=15 
n1=np.arange(0,n); 
x=(n1==0) 
y=signal.lfilter(bz,az,x) 
W,H = signal.freqz(bz,az) 
#Obtaining the pole-zero plot 
z,p,k=signal.tf2zpk(bz,az) 
B = 2;# Number of Bits 
Q = 1/(2**(B)) 
Qbr=Q*np.round(bz/Q)#Rounding 
Qar=Q*np.round(az/Q)#Rounding 
yr=signal.lfilter(Qbr,Qar,x) 
Wq,Hq = signal.freqz(Qbr,Qar) 
zq,pq,kq=signal.tf2zpk(Qbr,Qar) 
#Plotting the responses 
plt.figure(1),plt.subplot(2,2,1),plt.stem(n1,y),plt.xlabel('n-->'),plt.ylabel('h[n]'),plt.title('h[n]') 
plt.subplot(2,2,2),plt.plot((W/np.pi),20*np.log10(np.abs(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('|H($\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z),'ro'),plt.plot(np.real(p),np.imag(p),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot') 
plt.subplot(2,2,4),plt.plot((W/np.pi),np.unwrap(np.angle(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi(e^{jw})$') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(n1,yr),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('$h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((Wq/np.pi),20*np.log10(np.abs(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('$|H_q(\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(zq),np.imag(zq),'ro'),plt.plot(np.real(pq),np.imag(pq),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((Wq/np.pi),np.unwrap(np.angle(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi_q(e^{jw})$') 
plt.tight_layout() 

Fig. 9.13 IIR filter coefficients quantization using rounding



9.3 Coefficient Quantization 391

Fig. 9.14 Simulation results of Experiment 9.7. (a) Infinite precision. (b) Finite precision (N = 2 
bits). (c) Finite precision (N = 4 bits). (d) Finite precision (N = 8 bits). (e) Finite precision (N = 12 
bits). (f) Finite precision (N = 16 bits) 

Inferences 
The following inferences can be made from Fig. 9.14: 

1. When the number of bits allocated to represent each coefficient of the IIR filter is 
2, the impulse response of the quantized filter becomes zero, and the pole-zero 
plot, magnitude and phase responses confirm it. 

2. The number of bits chosen as 4, 8 and 12, the impulse responses of the quantized 
filter are not the same as the impulse response of the original filter, which reflects 
in the pole-zero plot, magnitude and phase responses.
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3. When the number of bits selected is 16, the impulse response of the quantized 
filter is exactly the same as the impulse response of the original filter. Also, the 
pole-zero plot, magnitude and phase responses are on par with the original result. 

Task 
Repeat the Experiment 9.7 with the filter quantization using two’s complement 
truncation approach. 

Experiment 9.8 Chebyshev Type I IIR Filter Coefficients Quantization Effect 
Let us consider a Chebyshev Type I IIR filter designed using the bilinear transfor-
mation technique (BLT) that has a passband gain of 0 to-3 dB, cut-off frequency of 
2 kHz and an attenuation of at least 20 dB for frequencies greater than 5 kHz. 
Assume the sampling frequency to be 20 kHz. This experiment deals with the 
quantization effect of IIR filter coefficients. The order and coefficients of Chebyshev 
Type I filter are computed based on the given specifications. These filter coefficients 
are quantized by either two’s complement or magnitude truncation method. The 
performance of the infinite precision and finite precision is displayed. The python 
code to quantize the IIR filter coefficients is given in Fig. 9.15, and the simulation 
result is shown in Fig. 9.16. 

When executing the python code given in Fig. 9.15, first enter the type of 
quantization ‘1’ for two’s complement truncation and ‘2’ for magnitude truncation. 
The simulation result is shown in Fig. 9.16. 

Inference 
From Fig. 9.16, it is possible to observe the quantization effect of IIR filter. The 
impulse and magnitude responses are zero for the low-bit representation of filter 
coefficients. When the high-bit representation of filter coefficients, the result of 
impulse and magnitude responses approaches the original responses. 

Task 
1. Repeat Experiment 9.8 with the filter quantization using two’s complement 

truncation approach. 
2. Repeat Experiment 9.8 with the filter quantization using the rounding approach. 

9.4 Limit Cycle Oscillations 

A digital filter is a non-linear system affected by the quantization of the arithmetic 
operations. This non-linearity of the digital filter may give stable output under 
infinite precision arithmetic for specific input. Also, it may give unstable output 
under finite precision arithmetic for specific input signals. This type of instability 
usually results in an oscillatory periodic output called ‘limit cycle oscillation’. These 
limit cycle oscillations do not have FIR filters because they do not have a feedback 
path. But it will exist in IIR filters because it has a feedback path. The limit cycle 
oscillation is broadly classified into (1) granular and (2) overflow.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
# Specifications of Filter 
fsam, fp, fs, Ap, As, Td=20000, 2000, 5000, 3, 30, 0.9 # Sampling frequency 
wp=2*np.pi*(fp/fsam) # pass band freq in radian per sample 
ws=2*np.pi*(fs/fsam) # Stop band freq in radian per sample 
# prewarping process 
omega_p=(2/Td)*np.tan(wp/2) 
omega_s=(2/Td)*np.tan(ws/2) 
#Computation of order and normalized cut-off frequency 
N, omega_c=signal.cheb1ord(omega_p,omega_s,Ap,As,analog=True)  
print('Order of the Filter N =', N),print('Cut-off frequency= {:.4f} rad/s '. format(omega_c)) 
# Computation of H(s) 
b, a=signal.cheby1(N, Ap, omega_c,'low', analog=True) 
bz, az=signal.bilinear(b, a, Td) 
n=15 
n1=np.arange(0,n); 
x=(n1==0) 
y=signal.lfilter(bz,az,x) 
W,H = signal.freqz(bz,az) 
#Obtaining the pole-zero plot 
z,p,k=signal.tf2zpk(bz,az) 
B = 8;# Number of Bits 
Q = 1/(2**(B)) 
QT=int(input('Enter the type of Qunatization:1-2s Complement truncation; 2-Magnitude truncation: ')) 
import sys 
if (QT == 1): 
    Qbr=Q*np.floor(bz/Q)# Twos complement truncation 
    Qar=Q*np.floor(az/Q)# Twos complement truncation 
elif (QT == 2): 
    Qbr=np.zeros(len(bz)) # Magnitude Truncation 
    Qar=np.zeros(len(az)) # Magnitude Truncation 
    for i in range(len(bz)): 
        if bz[i] > 0: 
            Qbr[i]=Q*np.floor(bz[i]/Q)  
        else: Qbr[i]=Q*np.ceil(bz[i]/Q) 
    for j in range(len(az)): 
        if az[j] > 0: 
            Qar[j]=Q*np.floor(az[j]/Q)  
        else: Qar[j]=Q*np.ceil(az[j]/Q) 
else: 
    print('"Please select the proper quantization method"'); 
    sys.exit() 

yr=signal.lfilter(Qbr,Qar,x) 
Wq,Hq = signal.freqz(Qbr,Qar) 
zq,pq,kq=signal.tf2zpk(Qbr,Qar) 
#Plotting the responses 
plt.figure(1),plt.subplot(2,2,1),plt.stem(n1,y),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('h[n]') 
plt.subplot(2,2,2),plt.plot((W/np.pi),20*np.log10(np.abs(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('|H($\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z),'ro') 
plt.plot(np.real(p),np.imag(p),'kx') 
theta=np.linspace(0,2*np.pi,100) 

Fig. 9.15 Python code for IIR filter coefficients quantization
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plt.plot(np.cos(theta),np.sin(theta)) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot') 
plt.subplot(2,2,4),plt.plot((W/np.pi),np.unwrap(np.angle(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi(e^{jw})$') 
plt.tight_layout() 
plt.figure(2) 
plt.subplot(2,2,1),plt.stem(n1,yr),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('$h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((Wq/np.pi),20*np.log10(np.abs(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('$|H_q(\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(zq),np.imag(zq),'ro') 
plt.plot(np.real(pq),np.imag(pq),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((Wq/np.pi),np.unwrap(np.angle(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi_q(e^{jw})$') 
plt.tight_layout() 

Fig. 9.15 (continued) 

Experiment 9.9 Limit Cycle Oscillation in IIR Filter 
This experiment tries to verify that the limit cycle oscillation can be occurred in IIR 
filter due to coefficient quantization. 

Let us consider a second-order recursive system which is given by 

y n½ ]- 7 
8 
y n- 1½ ] þ  5 

8 
y n- 2½ ]= δ n½ ]

The input and output coefficients of the recursive system are quantized using the 
rounding fixed-point 3-bit quantization approach. The quantized result of the recur-
sive system is written as 

yq n½ ]=Qr δ n½ ] þ  7 
8 
y n- 1½ ]- 5 

8 
y n- 2½ ]

The python code for this above equation is given in Fig. 9.17. From this figure, it 
is possible to confirm that the number of bits used in the quantization is 3, and the 
rounding quantization approach is implemented. After executing the python code 
given in Fig. 9.17, the obtained result is shown in Fig. 9.18. From this figure, it is 
possible to infer that the output is oscillated and confirms that the limit cycle 
oscillation exists in this filter. 

Inferences 
From this experiment, the following inferences can be made: 

1. The finite arithmetic operation in the digital implementation of a recursive system 
may introduce limit cycle oscillations in the final output. This causes due to the 
feedback that exists in the recursive system.
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Fig. 9.16 Simulation results. (a) Original filter. (b) Quantized with two’s complement. (c) Mag-
nitude truncation
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import numpy as np 
import matplotlib.pyplot as plt 
B = 3;# Number of Bits 
Q = 1/(2**(B)) 
N=100 
x=np.zeros(N) 
y1=np.zeros(N) 
y=np.zeros(N) 
n=np.arange(0,len(x)) 
x[0]=1#5/8 
y1[-1], y[-1]=0,0 
y1[-2], y[-2]=0,0 
for i in range(len(x)): 
    Y=x[i]+((7/8)*y1[i-1])-(5/8)*y1[i-2] 
    y[i]=x[i]+((7/8)*y[i-1])-(5/8)*y[i-2] 
    y1[i]=(Q*np.round(Y/Q)) 
    out=y1 
plt.subplot(311),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('x[n]'),plt.title('Input') 
plt.subplot(312),plt.stem(n,y),plt.xlabel('n-->'),plt.ylabel('y[n]'),plt.title('Infinite precision Output') 
plt.subplot(313),plt.stem(n,y1),plt.xlabel('n-->'),plt.ylabel('y1[n]'),plt.title('Finite arithmetic Output')   
plt.tight_layout() 

Fig. 9.17 Python code for limit cycle oscillation 
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Fig. 9.18 Simulation result 

2. After some time, the infinite precision arithmetic operation settles its output as 
zero, whereas the finite precision result does not become zero. 

3. Since the feedback path does not exist in the non-recursive system, the limit cycle 
oscillation does not occur.
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Task 
1. Execute the python code given in Fig. 9.17, and determine the minimum value 

that will eliminate the limit cycle oscillation in Experiment 9.9 (i.e. change the 
value of B (4, 5, 6, . . .)). 

9.5 Cascade Form of a Higher Order Filters 

The sensitivity reduction to coefficient quantization can be reduced by splitting high-
order filters into lower-order filters. This cascade form can split the higher-order 
filters into multiple lower-order filters. 

Experiment 9.10 Verify the Cascade Structure of FIR Filter May Reduce 
the Quantization Effect of FIR Filter 
This experiment explains the concept of the reduction of the quantization effect of 
FIR filter using cascade structure implementation. The higher-order FIR filter is 
decomposed into multiple second-order FIR filters, and those filter’s coefficients are 
quantized with finite precision. The result of the multiple second-order filters are 
combined to get a final output. The final output is always similar to the infinite 
precision result of the higher-order FIR filter. The python code to verify this 
experiment is given in Fig. 9.19, and the corresponding simulation result is displayed 
in Fig. 9.20. From Fig. 9.19, the ‘signal.tf2sos’ python command is used here to 
decompose the higher-order filter into multiple second-order filters. 

The command ‘signal.sos2tf’ is used here to convert the multiple second-order 
filters into higher-order ones. 

Inferences 
The following inferences can be made from Fig. 9.20: 

1. The frequency response of the infinite precision FIR filter coefficients and finite 
precision (N = 8 bits) FIR filter coefficients are not the same. 

2. However, the frequency response of the cascade realization filter with finite 
precision looks similar to the original one. 

3. From this experiment, it is possible to confirm that the effect of quantization of 
the FIR filter can be reduced with the help of cascade realization. In the cascade 
realization, the higher-order filter is decomposed into multiple second-order 
filters, and these lower-order filters are quantized with finite precision. Finally, 
all these quantized filter coefficients are combined to get a higher-order filter. 

4. Note that the number of bits (N = 8) used to represent the higher-order filter is the 
same as for the lower-order filters. 

5. This realization will help when the hardware is limited in the length of the 
registers. For example, the hardware is an 8-bit register length, and to represent 
the filter coefficients, it needs more than 8 bits. Then, the cascade realization will 
help to represent all the filter coefficients with 8-bit precision.
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from scipy import signal 
import numpy as np 
import matplotlib.pyplot as plt 
n = 15 
n1=np.arange(0,n); 
a = signal.firwin(n, cutoff = 0.25, window = "hamming") 
A = signal.tf2sos(a,1)#Decomposing higher order filter to second order filters 
A1=A 
B = 8;# Number of Bits 
Q = 1/(2**(B)) 
Qhr=Q*np.round(a/Q)#Rounding 
w,H=signal.freqz(a) #Obtaining the Frequency response 
wq,Hq=signal.freqz(Qhr) #Obtaining the Frequency response 
z,p,k=signal.tf2zpk(a,1) #Obtaining the pole-zero plot 
zq,pq,kq=signal.tf2zpk(Qhr,1) #Obtaining the pole-zero plot 
for i in range(len(A)): 
    A1[i][0:3]=Q*np.round(A[i][0:3]/Q) 
cA=signal.sos2tf(A1) 
cwq,cHq=signal.freqz(cA[0][0:n]) #Obtaining the Frequency response 
czq,cpq,ckq=signal.tf2zpk(cA[0][0:n],1) #Obtaining the pole-zero plot 
plt.figure(1),plt.subplot(2,2,1),plt.stem(a),plt.xlabel('n-->'),plt.ylabel('h[n]') 
plt.title('h[n]'),plt.subplot(2,2,2),plt.plot((w/np.pi),20*np.log10(np.abs(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'),plt.title('|H($\omega$)|') 
plt.subplot(2,2,3),plt.plot(np.real(z),np.imag(z),'ro'),plt.plot(np.real(p),np.imag(p),'kx') 
theta=np.linspace(0,2*np.pi,100) 
plt.plot(np.cos(theta),np.sin(theta)),plt.xlabel('Real part'),plt.ylabel('Imaginary part'), 
plt.title('Pole-zero plot'),plt.subplot(2,2,4),plt.plot((w/np.pi),np.unwrap(np.angle(H))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi(e^{jw})$') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,2,1),plt.stem(Qhr),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('$h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((wq/np.pi),20*np.log10(np.abs(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'), 
plt.title('$|H_q(\omega$)|'),plt.subplot(2,2,3),plt.plot(np.real(zq),np.imag(zq),'ro') 
plt.plot(np.real(pq),np.imag(pq),'kx'),plt.plot(np.cos(theta),np.sin(theta)) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot') 
plt.subplot(2,2,4),plt.plot((wq/np.pi),np.unwrap(np.angle(Hq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title('$\Phi_q(e^{jw})$') 
plt.tight_layout() 
plt.figure(3),plt.subplot(2,2,1),plt.stem(cA[0][0:n]),plt.xlabel('n-->'),plt.ylabel('$h_q[n]$') 
plt.title('Cascade $h_q[n]$ with N = {} bits'.format(B)) 
plt.subplot(2,2,2),plt.plot((cwq/np.pi),20*np.log10(np.abs(cHq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Magnitude'), 
plt.title(' Cascade $|H_q(\omega$)|'),plt.subplot(2,2,3),plt.plot(np.real(czq),np.imag(czq),'ro') 
plt.plot(np.real(cpq),np.imag(cpq),'kx'),plt.plot(np.cos(theta),np.sin(theta)) 
plt.xlabel('Real part'),plt.ylabel('Imaginary part'),plt.title('Pole-zero plot') 
plt.subplot(2,2,4),plt.plot((cwq/np.pi),np.unwrap(np.angle(cHq))) 
plt.xlabel(r'$\omega$(x$\pi$rad/sample)'),plt.ylabel('Phase'),plt.title(' Cascade $\Phi_q(e^{jw})$') 
plt.tight_layout() 

Fig. 9.19 Python code for cascade realization of FIR filter 

Exercises 
1. Write a python code to convert decimal numbers to binary with fixed-point 

representation.
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2. Write a python code to convert binary representation to decimal representation. 
3. Write a python code to verify how the saturation overflow stabilizes the arith-

metic operation in digital implementation. 
4. Write a python code to plot the quantization characteristics curve of the rounding 

approach. 
5. Write a python code to plot the quantization characteristics curve of two’s 

complement truncation approach. 
6. Write a python code to plot the quantization characteristics curve of the truncation 

approach. 
7. Write a python code to verify that the limit cycle oscillation does not occur in FIR 

filter coefficients quantization. 
8. Write a python code to verify the magnitude truncation can inherently suppress 

the limit cycle oscillation. 

Objective Type Questions 
1. Input to the python command is a floating-point number 1.45, and the output is 

2. Identify the suitable python command. 

A. numpy.round 
B. numpy.floor 
C. numpy.ceil 
D. numpy.array 

2. Identify the suitable python command whose input is a floating-point number of 
1.45 and the output is 1. 

A. numpy.floor 
B. numpy.ceil 
C. numpy.float 
D. numpy.array 

3. The input to the python command ‘np.ceil’ is 0.9, and the output is 

A. 1.0 
B. 0.5 
C. 0.0 
D. 0.9 

4. The python command used to find the order of the Butterworth filter is 

A. signal.buttord 
B. signal.chebord 
C. signal.butter 
D. signal.bilinear 

5. The python command used to obtain the coefficients of Butterworth filter is 

A. signal.butter 
B. signal.buttord
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C. signal.butter1 
D. signal.buttord1 

6. The formula to quantize the input value ‘x’ and step size ‘Δ’ by rounding 
approach is 

A. Δ × round x 

B. Δ × ceil x 

C. Δ × floor x 

D. x × round Δ x 

7. The formula to quantize the input value ‘x’ and step size ‘Δ’ by two’s compli-
ment truncation approach is 

A. Δ × round x 

B. Δ × ceil x 

C. Δ × floor x 

D. x × round Δ x 

8. The formula to quantize the input value ‘x’ is greater than ‘0’ and step size ‘Δ’ 
by magnitude truncation approach is 

A. Δ × floor x 

B. Δ × ceil x 

C. Δ × round x 

D. x × round Δ x 

9. Limit cycle oscillation does not occur in 

A. Recursive system 
B. IIR filter 
C. Stable filter 
D. FIR filter 

10. The effect of quantization in a higher-order FIR filter is reduced by using 

A. Parallel realization 
B. Cascade realization 
C. Direct form I realization 
D. Lattice realization 
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Chapter 10 
Multirate Signal Processing 

Learning Objectives 
After completing this chapter, the reader is expected to

• To perform sampling rate conversion using multirate operators.
• Time-domain and frequency-domain view of multirate operators.
• Demonstrate Type I and Type II polyphase decomposition.
• Signal decomposition using perfect reconstruction filter bank.
• Implementation of crosstalk free two-channel transmultiplexer. 

Roadmap of the Chapter 
The roadmap of this chapter is given below. From this figure, it is possible to observe 
that this chapter begins with multirate operators. Downsampling and upsampling 
operations are discussed in detail. Polyphase decomposition involving 
downsampling operation is termed as Type I, and polyphase decomposition involv-
ing upsampling operation is termed as Type II polyphase decomposition. Subband 
decomposition enables signals to be divided into different frequency regions. 
Subband decomposition is done through a filter bank. In this chapter, two-channel, 
three-channel and tree-structured filter banks are discussed. Finally, this chapter 
concludes with the design of two-channel crosstalk free transmultiplexer. 
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Multirate Signal Processing 

Multirate  

Operators 

Polyphase  

Decomposition 
Signal 

decomposition 

Transmultiplexer 

Downsampling 

Upsampling 

Type-I 

Type-II 

Filter bank 

2 Channel      

Filter bank 

M Channel     

Filter bank 

PreLab Questions 
1. Mention the need to change the sampling rate of the signal. 
2. What is a sampling rate converter? 
3. Mention two basic operations in sampling rate conversion or multirate signal 

processing. 
4. What is the need for a filter before the downsampling operation? What is the 

name of the filter? 
5. What is the name given to the filter after upsampling operation? What is the 

purpose of this filter? 
6. Write the time-domain and frequency-domain expression for downsampling by 

a factor of ‘M’. 
7. Write the time-domain and frequency-domain expression for upsampling by a 

factor of ‘L’. 
8. Mention the three significant properties of the downsampling operation. 
9. Why upsampling operation is considered as a linear time-variant operation? 

10. What is the condition for interchanging of upsampling by a factor of ‘L’ and 
downsampling by a factor of ‘M’ operation? 

11. Why is downsampling by a factor of ‘M’ followed by upsampling by a factor of 
‘M’ considered an idempotent operation? 

12. What is the objective of polyphase decomposition? Mention the types of 
polyphase decomposition. 

13. What is a filter bank? Mention two applications of the filter bank. 
14. Mention the threat involved in perfect reconstruction in a two-channel filter 

bank? Mention the ways to overcome this threat. 
15. What is a transmultiplexer? Mention its application.
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10.1 Multirate Operators 

Multirate operators are used to change the sampling rate of the signal digitally by 
either by removing (deletion) of samples or inserting zeros between successive 
samples. Two basic multirate operators are (1) downsampling operator and 
(2) upsampling operator. The downsampling operation is used to decrease the 
sampling rate of the signal, whereas upsampling operator is used to increase the 
sampling rate of the signal. 

10.1.1 Downsampling Operation 

Downsampling operation reduces the sampling rate by a factor of ‘M’. The 
downsampling operation by a factor of ‘M’ is shown in Fig. 10.1. 

The time-domain expression for downsampling by a factor of ‘M’ is given by 

y n½ ]= x nM½ ] ð10:1Þ 

From Eq. (10.1), it is possible to interpret that the output signal consists of every 
Mth element of the input signal. The transform domain expression for downsampling 
by a factor of ‘M’ is given by 

Y zð Þ= 
1 
M 

M- 1 

k = 0 

X z  
1 
MWk 

M ð10:2Þ 

Downsampling produces expansion in the frequency-domain giving rise to 
‘aliasing’. Aliasing will occur in the output signal if the input signal x[n] is not 
bandlimited, which will lead to loss of information. In order to overcome the aliasing 
problem, a filter is employed before downsampling operation, which is termed as 
‘anti-aliasing filter’. The combination of downsampler with anti-aliasing filter is 
termed as ‘decimator’. This concept is illustrated in Fig. 10.2. To maintain the 
bandwidth of the input signal, the cut-off frequency of the filter (anti-aliasing) 
H(z) is chosen as (π/M ) always, which is basically a low pass filter. 

Fig. 10.1 Downsampling 
operation M 

x[n] y[n] 

Fig. 10.2 Decimation by a 
factor of ‘M’ M H(z) 

x[n] y[n] 

Fs Fs Fs/M
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#Illustration of downsampling operation 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input signal x[n] 
n=np.linspace(-10,10,21) 
x=np.exp(1j*np.pi*n) 
#Step 2: Downsampling the input signal 
M=2 
y=x[::M] 
#Step 3: Plotting the results 
n1=np.linspace(min(n)/M,max(n)/M,len(y)) 
plt.subplot(2,1,1),plt.stem(n,x),plt.xticks(range(-10,11)) 
plt.xlabel('n-->'),plt.ylabel('x[n]'),plt.title('Input Signal (x[n])') 
plt.subplot(2,1,2),plt.stem(n1,y),plt.xticks(range(-10,11)) 
plt.xlabel('n-->'),plt.ylabel('y[n]'), 
plt.title('Downsampled Signal (y[n]) by (M={})'.format(M)) 
plt.tight_layout() 

Fig. 10.3 Python code which performs downsampling operation 

0  2 4 6 83 5 7 91 
n--> 

–10 –2–4–6–8 –3–5–7–9 –1 

0.0 

1.0 

0.5 

Downsampled Signal (y[n]) by (M=2) 

y
[n

] 

0  2 4 6 83 5 7 91 
n--> 

–10 –2–4–6–8 –3–5–7–9 –1 

–1 

1 

0 

Input Signal (x[n]) 

x
[n

] 

Fig. 10.4 Result of python code shown in Fig. 10.3 

Experiment 10.1 Downsampling Operation in Time Domain 
The objective of this experiment is to illustrate downsampling operation in time 
domain. The signal to be downsampled is expressed as x[n] = ejπn , - 10 ≤ n ≤ 10. 
The signal is to be downsampled by a factor of 2 to obtain the output signal y[n]. The 
python code, which performs this task, is shown in Fig. 10.3, and the corresponding 
result is shown in Fig. 10.4.
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2 
X[k] Y[k] 

Fig. 10.5 Pictorial representation of problem statement 

Inferences 
From Fig. 10.3, it is possible to infer the following: 

1. The input signal is x[n] = ejπn in the range -10 to 10. The input signal toggles 
between +1 and -1. This is the highest frequency in the digital signal. 

2. The input signal is downsampled by a factor of 2 to obtain the output signal y[n]. 

From Fig. 10.4, the following fact can be inferred: 

1. The input signal is the highest frequency in digital signal. The signal toggles 
between -1 and 1 and vice versa. 

2. The signal x[n] is downsampled by a factor of 2 to obtain the output signal y[n], 
which is a DC signal. 

3. Downsampling operation has the ability to convert the highest frequency digital 
signal to a DC signal. 

4. The number of samples in the input signal is 21, whereas the number of samples 
in the output signal is 11. Thus, the downsampling operation reduces the number 
of samples in the input signal by a factor of ‘M’. In this case, the value of ‘M’ is 2. 

Task 
1. Change the value of the M = 4 in the python code given in Fig. 10.3, and observe 

the result and comment on it. 

Experiment 10.2 Spectrum of Downsampled Signal 
The objective of this experiment is to obtain the spectrum of the downsampled 
signal, and compare it with respect to the spectrum of the input signal. To accom-
plish this task, a sine wave of 5 Hz signal is generated. This signal is represented as x 
[n], and its corresponding spectrum is X[k]. The signal x[n] is downsampled by a 
factor of 2 to obtain the output signal y[n], and its corresponding spectrum is Y 
[k]. The objective is to compare these two spectrums. The problem statement is 
illustrated in Fig. 10.5. 

The python code, which performs this task, is shown in Fig. 10.6, and the 
corresponding output is shown in Fig. 10.7. 

Inferences 
From Fig. 10.6, the following inferences can be made: 

1. The python code generates the sum of sine waves of 0, 2.5, 5 Hz frequency, and it 
is stored in the variable ‘x’. 

2. The input sine wave is downsampled by a factor of 2, and the result is stored in 
the variable ‘y’.
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#Spectrum of downsampled signal 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fftpack import fft,fftfreq 
#Step 1: Generating the input signal 
f1,f2,fs,N=2.5,5,75,512 
M,T=2,1/fs 
t=np.linspace(0,N*T,N) 
x1=0.5*np.ones(len(t))# DC signal 
x=x1+np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t)# 
#Step 2: Obtaining the downsampled signal 
y=x[::M] 
t1=np.linspace(0,N*T/M,len(y)) 
#Step 3: Obtaining the spectrum of the input signal and downsampled signal 
X=fft(x,N) 
Y=fft(y,N) 
f_axis=fftfreq(N,T)[0:N//M] 
#Step4: Plotting the result 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Input signal'),plt.subplot(2,2,2),plt.plot(t1,y),plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Downsampled signal') 
plt.subplot(2,2,3),plt.plot(f_axis,2/N*np.abs(X[0:N//M])),plt.xlabel('$\omega$-->'), 
plt.ylabel('|X($j\omega$)|'),plt.title('Spectrum of input signal') 
plt.subplot(2,2,4),plt.plot(f_axis,2/N*np.abs(Y[0:N//M])),plt.xlabel('$\omega$-->'), 
plt.ylabel('|Y($j\omega$)|'),plt.title('Spectrum of downsampled signal') 
plt.tight_layout() 

Fig. 10.6 Python code to plot the spectrum of downsampled signal 

3. Using the built-in function ‘fft’ and ‘fftfreq’ in ‘scipy’ library, the spectrum of the 
input signal ‘x’ and the output signal ‘y’ is obtained and stored in the variable ‘X’ 
and ‘Y’, respectively. 

4. The magnitude spectrum of the input and output signal is obtained using the built-
in function ‘abs’, which is available in ‘numpy’ library. 

From Fig. 10.7, the following inferences can be drawn: 

1. From the plot of the input signal and output signal, it is possible to observe that 
the length of the output signal is lesser than the length of the input signal. 

2. The magnitude spectrum of the input signal has peaks at 0, 2.5 and 5 Hz, which 
shows that the frequencies of the input signal are 0, 2.5 and 5 Hz. 

3. The magnitude spectrum of the output signal has peaks at 0, 5 and 10 Hz, which 
shows that the frequencies of the output signal are 0, 5 and 10 Hz. That is, the 
bandwidth of the downsampled spectrum increased by 2 because of the 
downsampling factor chosen as 2. 

4. This experiment reveals that compression in the time-domain is equivalent to 
expansion in the frequency domain.
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Fig. 10.7 Simulation result 

Fig. 10.8 Upsampling 
operation L 

x[n] y[n] 

Task 
1. Change the value of the M = 4 in the python code given in Fig. 10.6, and observe 

the result and comment on it. 

10.1.2 Upsampling Operation 

Upsampling operation increases the sampling rate by a factor of ‘L’. The upsampling 
operation by a factor of ‘L’ is shown in Fig. 10.8. 

The time-domain expression for upsampling by a factor of ‘L’ is given by 

y n½ ]= 
x 
n 
L 

, n= L, 2L, . . .  

0, otherwise 
ð10:3Þ 

From Eq. (10.3), it is possible to interpret that upsampling by a factor of ‘L’ in the 
time-domain is accomplished by inserting ‘L- 1’ zeros between successive samples 
of the input signal x[n]. This will increase the length of the input signal; hence,



upsampling operation can also be termed as ‘expansion operation’. The frequency-
domain expression for upsampling by a factor of ‘L’ is given by 

410 10 Multirate Signal Processing

Fig. 10.9 Interpolation by a 
factor of ‘L’ L H(z) 

x[n] y[n] 

Fs LFs LFs 

#Illustration of upsampling operation 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input signal x[n] 
N=5 
n=np.arange(N) 
x=np.ones(N) 
#Step 2: Upsampling the input signal 
L=2 
y=np.zeros(L*N) 
y[::L]=x 
# #Step 3: Plotting the results 
n1=np.arange(L*N) 
plt.subplot(2,1,1),plt.stem(n,x),plt.xticks(range(0,N)) 
plt.xlabel('n-->'),plt.ylabel('x[n]'),plt.title('Input Signal (x[n])') 
plt.subplot(2,1,2),plt.stem(n1,y),plt.xticks(range(0,L*N+1)) 
plt.xlabel('n-->'),plt.ylabel('y[n]'), 
plt.title('Upsampled Signal (y[n]) by L={}'.format(L)) 
plt.tight_layout() 

Fig. 10.10 Python code to perform upsampling operation 

Y zð Þ=X zL ð10:4Þ 

The above equation can be expressed as 

Y ejω =X ejωL ð10:5Þ 

The upsampler introduces spectral images. A filter is employed after the 
upsampler to remove the spectral images. Such type of filter is termed as ‘anti-
imaging’ filter. This is shown in Fig. 10.9. 

The cut-off frequency of the filter H(z) is chosen as π/L, which is basically a 
lowpass filter. 

Experiment 10.3 Upsampling Operation in the Time Domain 
In this experiment, the input signal x[n] is upsampled by a factor of 2 to obtain the 
output signal y[n]. The python code which performs this task is shown in Fig. 10.10, 
and the corresponding output is shown in Fig. 10.11.
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0 102 4 6  83 5 7 91 
n--> 

0.0 

1.0 

0.5

y
[n

] 

Upsampled Signal (y[n]) by L=2 

0 2  31 
n--> 

0.0 

1.0 

0.5 

Input Signal (x[n]) 

x
[n

] 

Fig. 10.11 Upsampling operation result 

L 
X[k] Y[k] 

Fig. 10.12 Pictorial representation of problem statement 

Inferences 
The following inferences can be made from this experiment: 

1. From Fig. 10.11, it is possible to observe that the length of the input signal x[n] is  
5, whereas the length of the output signal y[n] is 10. 

2. Thus, upsampling by a factor of 2 (L ) inserts one zero (L - 1) between two 
successive samples of the input signal x[n]. 

3. Therefore, upsampling is a ‘length stretching operation’. 

Experiment 10.4 Spectrum of Upsampled Signal 
The objective of this experiment is to obtain the spectrum of upsampled signal and to 
compare it with the spectrum of input signal. In order to accomplish this task, the 
following steps are carried out:

• Generate input signal sum of sine waves with the frequency of 0, 4 and 10 Hz.
• Pass this signal through a system that upsamples the input signal by a factor (L ) of  

2 to obtain the output signal.
• Plot the spectrums of the input and output signal, and comment on the observed 

result. 

The pictorial representation of the problem statement is shown in Fig. 10.12. 
From Fig. 10.12, X[k] represents the spectrum of the input signal, and Y[k] represents 
the spectrum of the output signal.
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#Spectrum of upsampled signal 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fftpack import fft,fftfreq 
#Step 1: Generating the input signal 
f1,f2,fs,N=4,10,50,512 
T=1/fs 
t=np.linspace(0,N*T,N) 
x1=0.5*np.ones(len(t))# DC signal 
x=x1+np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t)# 
#x=np.sin(2*np.pi*f*t) 
#Step 2: Obtaining the upsampled signal 
n = len(x) 
L = 2 # Upsample_factor 
y = np.zeros(L*n-(L-1)) 
y[::L] = x 
t1=np.linspace(0,N*T*L,len(y)) 
#Step 3: Obtaining the spectrum of input and downsampled signal 
X=fft(x,N) 
Y=fft(y,N) 
f_axis=fftfreq(N,T)[0:N//(2*L)] 
#Step4: Plotting the result 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Input signal'),plt.subplot(2,2,2),plt.plot(t1,y),plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Upsampled signal by L={}'.format(L)) 
plt.subplot(2,2,3),plt.plot(f_axis,2/N*np.abs(X[0:N//(2*L)])),plt.xlabel('$\omega$-->'), 
plt.ylabel('|X($j\omega$)|'),plt.title('Spectrum of input signal') 
plt.subplot(2,2,4),plt.plot(f_axis,2/N*np.abs(Y[0:N//(2*L)])),plt.xlabel('$\omega$-->'), 
plt.ylabel('|Y($j\omega$)|'),plt.title('Spectrum of upsampled signal by L={}'.format(L)) 
plt.tight_layout() 

Fig. 10.13 Python code to plot the spectrum of upsampled signal 

The python code, which plots the spectrum of the input and upsampled signals, is 
shown in Fig. 10.13, and the corresponding output is shown in Fig. 10.14. 

Inferences 
From Fig. 10.14, the following inferences can be drawn: 

1. From the plot of the input signal and output signal, it is possible to observe that 
the length of the output signal is more than the length of the input signal. 

2. The magnitude spectrum of input signal has peaks at 0, 4 and 10 Hz, which shows 
that the frequencies of the input signal are 0, 4 and 10 Hz. 

3. The magnitude spectrum of the output signal has peaks at 0, 2 and 5 Hz, which 
shows that the frequencies of the output signal are 0, 2 and 5 Hz. That is, the 
bandwidth of the upsampled spectrum is decreased by 2 because of upsampling 
factor chosen as 2.
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Fig. 10.14 Spectrum of input and upsampled signal 

M H(z) 
x[n] v1[n] y1[n] 

M H(zM) 
x[n] v2[n] y2[n] 

Fig. 10.15 Noble identity for downsampling operation 

4. This experiment reveals the fact that expansion in the time-domain is equivalent 
to compression in the frequency domain. 

Task 
1. Change the value of the L = 4 in the python code given in Fig. 10.13, and 

comment on the observed spectrum result. 

10.2 Noble Identity 

Noble identities describe the way to reverse the order of multirate operators and 
filtering. 

10.2.1 Noble Identity for Downsampling Operation 

The noble identity of the downsampling operation is depicted in Fig. 10.15.
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2 H(z) 
x[n] v1[n] y1[n] 

2 H(z2 ) 
x[n] v2[n] y2[n] 

Fig. 10.16 Noble identity for downsampling 

#Proof of noble identity for downsampling 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Define the signal x[n] 
n=np.arange(-10,11) 
x=np.ones(len(n)) 
M=2 
#Function to perform downsampling and upsampling operation 
def downsample(x,M): 
    y=x[::M] 
    return(y) 
def upsample(x,L): 
    n=len(x) 
    y=np.zeros(n*L) 
    y[::L]=x 
    return(y) 
#Obtaining the signal v1[n] 
v1=downsample(x,M)  #Downsampling of x[n] by a factor of two 
h=signal.firwin(5,0.5) #Defining the filter 
y1=signal.lfilter(h,1,v1);#Obtaining the signal y1[n] 
h1=upsample(h,2);#Equivalent to H(z^2) in time domain 
v2=signal.lfilter(h1,1,x)#Obtaining the signal v2[n] 
y2=downsample(v2,M)#Obtaining the signal y2[n] 
#Plotting the results 
plt.subplot(2,1,1),plt.stem(np.abs(y1)) 
plt.xlabel('n-->'),plt.ylabel('$y_1[n]$'),plt.title('$y_1[n]$') 
plt.subplot(2,1,2),plt.stem(np.abs(y2)) 
plt.xlabel('n-->'),plt.ylabel('$y_2[n]$'),plt.title('$y_2[n]$') 
plt.tight_layout() 

Fig. 10.17 Python illustration regarding noble identity for downsampling operation 

Experiment 10.5 Python Illustration of Noble Identity for Downsampling 
Operation 
The block diagram for the noble identity for downsampling operation considered for 
python illustration is shown in Fig. 10.16. 

In this experiment, downsampling factor is chosen as 2. In Fig. 10.16, H(z2 )  in  
time-domain represents upsampling of the filter coefficient h[n] by a factor of 2. The 
python code, which illustrates the noble identity for downsampling operation, is 
shown in Fig. 10.17, and the corresponding output is shown in Fig. 10.18.
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Fig. 10.18 Result of python code shown in Fig. 10.17 
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x[n] v1[n] y1[n] 

H(zL) L x[n] v2[n] y2[n] 
H(z) 

Fig. 10.19 Noble identity for upsampling operation 

Inference 
From Fig. 10.18, it is possible to observe that the output y1[n] is equal to the output 
y2[n]; thus, the noble identity for the downsampling operation is verified. 

10.2.2 Noble Identity for Upsampling Operation 

The noble identity for upsampling operation is shown in Fig. 10.19 

Experiment 10.6 Python Illustration of Noble Identity for Upsampling 
Operation 
This experiment attempts to prove the noble identity for upsampling operation for 
L = 2. The python code which performs this task is shown in Fig. 10.20, and the 
corresponding output is shown in Fig. 10.21. 

Inference 
Figure 10.21 shows that the signals y1[n] and y2[n] are identical, which means that 
the noble identity for upsampling operation has been verified for L = 2.
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#Noble identity for upsampling operation 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Define the signal x[n] 
n=np.arange(-10,11) 
x=np.ones(len(n)) 
L=2 
#Step 2: Function to perform upsampling operation 
def upsample(x,L): 
    n=len(x) 
    y=np.zeros(n*L) 
    y[::L]=x 
    return(y) 
v1=upsample(x,L)#Step 3: Obtaining the signal v1[n] 
h=signal.firwin(5,0.5) 
h1=upsample(h,L) 
y1=signal.lfilter(h1,1,v1)#Step 4: Obtaining the signal y1[n] 
v2=signal.lfilter(h,1,x)#Step 5: Obtaining the signal v2[n] 
y2=upsample(v2,L)#Step 6: Obtaining the signal y2[n] 
#Step 7: Plotting the result 
plt.subplot(2,1,1),plt.stem(y1) 
plt.xlabel('n-->'),plt.ylabel('$y_1[n]$'),plt.title('$y_1[n]$') 
plt.subplot(2,1,2),plt.stem(y2) 
plt.xlabel('n-->'),plt.ylabel('$y_2[n]$'),plt.title('$y_2[n]$') 
plt.tight_layout() 

Fig. 10.20 Python code to illustrate noble identity for upsampling operation 
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Fig. 10.21 Result of python code shown in Fig. 10.20
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10.3 Polyphase Decomposition 

Polyphase decomposition refers to the strategy through which the multirate operators 
can be used to decompose the system function H(z) into its polyphase representation. 
Polyphase decomposition can be broadly classified into (1) Type I polyphase 
decomposition and (2) Type II polyphase decomposition. 

Experiment 10.7 Python Illustration of Type I Polyphase Decomposition 
This python illustration aims to prove the Type I polyphase decomposition illus-
trated in Fig. 10.22 for the downsampling factor of M = 2. In Fig. 10.22, H(z) 
represents the filter, whereas E0(z) and E1(z) represent the polyphase components of 
H(z). The objective is to prove y1[n] is equal to y2[n]. The filter chosen in this 
illustration is a finite impulse response filter designed using the windowing 
technique. 

The python code which implements the Type I polyphase decomposition is 
shown in Fig. 10.23, and the corresponding output is shown in Fig. 10.24. 

Inference 
From Fig. 10.24, it is possible to observe that the output y1[n] is equal to the output 
y2[n]. Thus, the Type I polyphase decomposition is verified. 

Experiment 10.8 Type II Polyphase Decomposition 
Type II polyphase decomposition deals with the upsampling operation. Upsampling 
operation introduces multiple copies of the original signal spectrum, which is termed 
as ‘imaging’. The Type II polyphase decomposition structure is shown in Fig. 10.25. 

The python illustration of Type II polyphase decomposition is shown in 
Fig. 10.26, and the corresponding output is shown in Fig. 10.27. 

Inference 
From Fig. 10.27, it is possible to observe that the output y1[n] is equal to y2[n]. This 
implies that Type II polyphase decomposition is verified. 

2 H(z) 
x[n] y1[n] u[n] 2 

x[n] E0(z) 

2 E1(z) 

y2[n] v1[n] 

v2[n] 

w1[n] 

w2[n] 

= 
z-1 

Fig. 10.22 Type I polyphase decomposition
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#Type-I Polyphase decomposition 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Defining the input signal 
x=np.ones(8) 
h=signal.firwin(8,0.5) 
u=signal.lfilter(h,1,x) 
y1=u[::2] 
#Step 2 Polyphase decomposition 
e0=h[0::2]  # Obtaining E0(z) 
e1=h[1::2]  # Obtaining E1(z) 
x1=np.zeros(len(x)+1) 
x1[1:]=x 
v1=x[::2] 
v2=x1[::2] 
w1=signal.lfilter(e0,1,v1) 
w2=signal.lfilter(e1,1,v2) 
y2=w1+w2[0:len(w1)] 
#Step 3: Plotting the result 
plt.subplot(2,1,1),plt.stem(y1) 
plt.xlabel('n-->'),plt.ylabel('$y_1[n]$'),plt.title('$y_1[n]$') 
plt.subplot(2,1,2),plt.stem(y2) 
plt.xlabel('n-->'),plt.ylabel('$y_2[n]$'),plt.title('$y_2[n]$') 
plt.tight_layout() 

Fig. 10.23 Python code to illustrate Type I polyphase decomposition 
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Fig. 10.24 Result of python code shown in Fig. 10.23



10.4 Filter Bank 419

≡ 
z-1 

y2[n] 

R0(z) 
x[n] 

2 

R1(z) 2 

H(z)2 
x[n] y1[n] 

Fig. 10.25 Type II polyphase decomposition structure 

#Type-II polyphase decomposition 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Defining the input signal 
x=np.ones(8) 
h=signal.firwin(8,0.5) 
#Step 2: Polyphase components of H(z) 
r0=h[1::2]  # Obtaining R0(z) 
r1=h[0::2]  # Obtaining R1(z) 
#Step 3: Obtaining the output y1[n] 
u=np.zeros(2*len(x)) 
u[::2]=x 
y1=signal.lfilter(h,1,u) 
#Step 3: Obtaining the output y2[n] 
v1=signal.lfilter(r0,1,x) 
v2=signal.lfilter(r1,1,x) 
w1=np.zeros(2*len(v1)) 
w1[::2]=v1 
w2=np.zeros(2*len(v2)) 
w2[::2]=v2 
w11=np.zeros(len(w1)+1) 
w11[1:]=w1 
y2=w2+w11[0:len(w2)] 
#Step 4: Plotting the output signals 
plt.subplot(2,1,1),plt.stem(y1),plt.xlabel('n-->'),plt.ylabel('$y_1[n]$'), 
plt.title('$y_1[n]$'),plt.subplot(2,1,2),plt.stem(y2) 
plt.xlabel('n-->'),plt.ylabel('$y_2[n]$'),plt.title('$y_2[n]$') 
plt.tight_layout() 

Fig. 10.26 Python code to demonstrate Type II polyphase decomposition 

10.4 Filter Bank 

Filter bank is group of filters arranged in a specific fashion. Filter bank is used to split 
the signal into different frequency bands, which are termed as ‘subband coding’. 
While splitting the signal into various frequency bands, the signal characteristics are



different in each band, and different bits can be used for coding the subband signals. 
This idea is used in speech and image coding. Based on the number of paths 
available for the input signal, the filter bank can be broadly classified into (1) two-
channel filter bank and (2) M-channel filter bank. 
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Fig. 10.27 Output of python code shown in Fig. 10.26 
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Fig. 10.28 Structure of two channel filter bank 

10.4.1 Two-Channel Filter Bank 

Two-channel filter bank has two sections, namely, (1) analysis section and (2) syn-
thesis section, which is depicted in Fig. 10.28. The input signal fed into the two-
channel filter bank is x[n], and the output signal received from the two-channel filter 
bank is y[n]. The channel represents the medium through which the data is trans-
mitted. In Fig. 10.28, the filters in the analysis section are represented as H0(z) and 
H1(z). If H0(z) represents the lowpass filter, then H1(z) represents the highpass filter. 
The corresponding filters in the synthesis section are G0(z) and G1(z), respectively.
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Fig. 10.29 Two-channel filter bank 

For perfect reconstruction, the output signal y[n] has to be the delayed version of 
the input signal x[n]. The different threats for perfect reconstruction are (1) aliasing 
problem due to downsampling operation, (2) amplitude distortion and (3) phase 
distortion. Proper choice of analysis and synthesis filters will overcome the above-
mentioned threats and achieves perfect reconstruction. 

Experiment 10.9 Python Implementation of Two-Channel Filter Bank 
The structure of the two-channel filter bank which is implemented in this experiment 
is shown in Fig. 10.29. In Fig. 10.29, different nodes are marked as 1–8. 

The input signal x[n] is a sinusoidal signal of 5 Hz frequency. The choice of 
analysis and synthesis filters are H0 zð Þ= 1 2 þ 1 

2 z
- 1, H1 zð Þ= 1 2 -

1 
2 z

- 1, 
G0(z) = 1 +  z-1 and G1(z) = - 1 +  z-1 . The python code which implements this 
two-channel filter bank is given in Fig. 10.30, and the corresponding output is shown 
in Fig. 10.31. 

Inferences 
1. From Fig. 10.30, it is possible to observe that the filters chosen for the analysis 

section are h0 n½ ]= 1 
2 , 

1 
2 and h1 n½ ]= 1 

2 , -
1 
2 . The filters have only two 

coefficients. h0[n] act as lowpass filter, whereas h1[n] act as high pass filter. 
2. The variables chosen in the python code, as shown in Fig. 10.30 like x1, x2, . . ., 

x8, are in line with the nodes shown in Fig. 10.29. 
3. From Fig. 10.31, it is possible to observe that the output signal follows the input 

signal with one sample delay. That is, perfect reconstruction is achieved through 
the proper choice of filters. 

10.4.2 Relationship Between Analysis and Synthesis Filters 

Let the analysis filter be expressed as 

H zð  Þ=H0 zð Þ ð10:6Þ 

The expression for H1(z) in terms of H(z) is given by



ð Þ ð Þ ð Þ
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#Two-channel filter bank 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Functions to perform downsampling and upsampling 
def downsample(x,M): 
    y=x[::M] 
    return(y) 
def upsample(x,L): 
    y=np.zeros(L*len(x)) 
    y[::L]=x 
    return(y) 
#Step 1: Define the filters 
h0=np.array([0.5,0.5]) 
h1=np.array([0.5,-0.5]) 
g0,g1=2*h0,-2*h1 
#Step 2: Generate the input signal 
f,fs,N=5,100,256 
T=1/fs; 
t=np.linspace(0,N*T,N) 
x=np.sin(2*np.pi*f*t) 
#Step 3: Traversing the path 
x1=signal.lfilter(h0,1,x) 
x2=signal.lfilter(h1,1,x) 
x3=downsample(x1,2) 
x4=downsample(x2,2) 
x5=upsample(x3,2) 
x6=upsample(x4,2) 
x7=signal.lfilter(g0,1,x5) 
x8=signal.lfilter(g1,1,x6) 
y=x7+x8 
plt.plot(t,x,'b',t,y,'r--',linewidth=2),plt.legend(['Input','Output'],loc=4) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Input and Output signals') 
plt.tight_layout() 

Fig. 10.30 Python code for two-channel filter bank 

H1 zð Þ=H - zð Þ ð10:7Þ 

The synthesis filters are expressed as 

G0 zð Þ= 2H zð Þ ð10:8Þ 
G1 z = - 2H - z 10:9 

From Eqs. (10.6)  to  (10.9), it is possible to infer the following



• Instead of designing four filters (2 for analysis and 2 for synthesis). It is sufficient 
to design one prototype filter H(z). All the other filters are obtained as a modified 
version of the prototype filter.

• If H(z) acts as lowpass filter, then H(-z) acts as highpass filter and vice versa. 
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Fig. 10.31 Plot of input and output signals of a two-channel filter bank 

Experiment 10.10 Relationship Between Analysis and Synthesis Filters 
This experiment tries to obtain the magnitude response of the analysis and synthesis 
filters. The python code to obtain the magnitude response of the analysis and 
synthesis filters is given in Fig. 10.32, and the corresponding output is shown in 
Fig. 10.33. 

Inferences 
From the magnitude response, the following inferences can be drawn: 

1. The analysis filter h0[n] behaves like a lowpass filter. 
2. The analysis filter h1[n] behaves like a highpass filter. 
3. The synthesis filter g0[n] behaves like a lowpass filter. 
4. The synthesis filter g1[n] behaves like a highpass filter. 
5. The filters h0[n] and h1[n] are complementary to each other. 
6. The filters g0[n] and g1[n] are complementary to each other. 

Experiment 10.11 Phase Responses of Analysis and Synthesis Filters 
This experiment discusses the phase responses of analysis and synthesis filters of 
two-channel filter bank. The python code to obtain the phase response of the analysis 
and the synthesis filters are given in Fig. 10.34, and the corresponding output is 
shown in Fig. 10.35.



424 10 Multirate Signal Processing

#Magnitude response of the analysis and synthesis filters 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
h0=[0.5,0.5] 
h0=np.array(h0) 
h1=np.array([0.5,-0.5]) 
g0,g1=2*h0,-2*h1 
#Frequency response of four filters 
w0, H0 = signal.freqz(h0,1) 
w1, H1 = signal.freqz(h1,1) 
w2, H2 = signal.freqz(g0,1) 
w3, H3 = signal.freqz(g1,1) 
#Plotting the result 
plt.subplot(2,2,1),plt.plot(w0, 10 * np.log10(abs(H0))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Magnitude(dB)') 
plt.title('$|H_0(e^{j\omega})|$') 
plt.subplot(2,2,2),plt.plot(w1, 10 * np.log10(abs(H1))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Magnitude(dB)') 
plt.title('$|H_1(e^{j\omega})|$') 
plt.subplot(2,2,3),plt.plot(w2, 10 * np.log10(abs(H2))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Magnitude(dB)') 
plt.title('$|G_0(e^{j\omega})|$') 
plt.subplot(2,2,4),plt.plot(w3, 10 * np.log10(abs(H3))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Magnitude(dB)') 
plt.title('$|G_1(e^{j\omega})|$') 
plt.tight_layout() 

Fig. 10.32 Python code to obtain the magnitude response of analysis and synthesis filters 

Inferences 
1. From the phase response of the analysis and synthesis filters, it is possible to infer 

that the filter exhibits linear phase characteristics in the pass band. 
2. Because of linear phase characteristics, phase distortion can be avoided. 
3. The filters will exhibit constant group delay. 

10.4.3 Two-Channel Filter Bank Without Filters 

This is a special case of two-channel filter bank in which delay is introduced instead 
of filters. For example, if H0(z) = 1, H1(z) = z-1 , G0(z) = z-1 and G1(z) = 1, then the 
structure of two-channel filter bank is modified as in Fig. 10.36. 

The relationship between the input and output in the frequency-domain is 
expressed as
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Fig. 10.33 Magnitude responses of analysis and synthesis filters 

Y zð Þ= z- 1 X zð Þ ð10:10Þ 

Upon taking inverse Z-transform, the relationship between the input and output is 
given by 

y n½ ]= x n- 1½ ] ð10:11Þ 

Experiment 10.12 Python Illustration of Two-Channel Filter Bank Without 
Filters 
This experiment deals with the illustration of two-channel filter bank without filters. 
The python code, which depicts filter bank without filters is shown in Fig. 10.37, and 
the corresponding output is shown in Fig. 10.38. 

Inference 
From Fig. 10.38, it is possible to observe that the output signal is a delayed version of 
the input signal. Hence, perfect reconstruction is achieved. There is one sample delay 
between the input and output signal.
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#Phase response of analysis and synthesis filters 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
h0=[0.5,0.5] 
h0=np.array(h0) 
h1=np.array([0.5,-0.5]) 
g0=2*h0 
g1=-2*h1 
#Frequency response of four filters 
w0, H0 = signal.freqz(h0,1) 
w1, H1 = signal.freqz(h1,1) 
w2, H2 = signal.freqz(g0,1) 
w3, H3 = signal.freqz(g1,1) 
#Plotting the result 
plt.subplot(2,2,1),plt.plot(w0,np.unwrap(np.angle(H0))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Degree') 
plt.title('$\Phi_{h0}{(e^{j\omega})}$') 
plt.subplot(2,2,2),plt.plot(w1,np.unwrap(np.angle(H1))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Degree') 
plt.title('$\Phi_{h1}{(e^{j\omega})}$') 
plt.subplot(2,2,3),plt.plot(w2,np.unwrap(np.angle(H2))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Degree') 
plt.title('$\Phi_{g0}{(e^{j\omega})}$') 
plt.subplot(2,2,4),plt.plot(w3,np.unwrap(np.angle(H3))) 
plt.xlabel('$\omega$ [rad/sample]'),plt.ylabel('Degree') 
plt.title('$\Phi_{g1}{(e^{j\omega})}$') 
plt.tight_layout() 

Fig. 10.34 Python code to obtain the phase response of analysis and synthesis filters 

10.4.4 Three-Channel Filter Bank Without Filters 

The structure of three-channel filter bank is shown in Fig. 10.39. From this figure, it 
is possible to infer that there are three channels and each channel contains an analysis 
and synthesis filters. 

If H0(z) = 1, H1(z) = z-1 and H2(z) = z-2 , G0(z) = z-2 , G1(z) = z-1 and 
G2(z) = 1, the structure of three-channel filter bank for this choice of filters is 
given in Fig. 10.40. 

The frequency-domain relationship between the input and output signal is given 
by 

Y  zð  Þ= z- 2 X  zð  Þ ð10:12Þ
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Fig. 10.35 Phase response of the analysis and synthesis filters 

1 

z-1 

  2 

  2 

  2 

  2 1 

z-1 

x[n] y[n] 

1 

2 

3 

4 6 

5 7 

8 

Fig. 10.36 Filter bank without filters 

Upon taking inverse Z-transform, the time-domain relationship between the input 
and output signal is given by 

y n½ ]= x n- 2½ ] ð10:13Þ 

Experiment 10.13 Illustration of Three-Channel Filter Bank Without Filters 
This experiment implements three-channel filter bank without filters using python, 
and the python code is shown in Fig. 10.41, and the corresponding output is shown 
in Fig. 10.42. 

Inference 
1. From Fig. 10.42, it is possible to observe that the output signal is a delayed 

version of the input signal.
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#Filterbank without filters 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of sine wave 
t=np.linspace(0,1,200) 
x=np.sin(2*np.pi*5*t) 
#Downsample x 
x1=x[::2] 
#Upsample x1 
x2=np.zeros(2*len(x1)) 
x2[::2]=x1 
#Introduce a delay to get x3 
delay=1 
x3=np.zeros(len(x)+delay) 
x3[delay:]=x 
x4=x3[::2] 
x5=np.zeros(2*len(x4)) 
x5[::2]=x4 
x6=np.zeros(len(x2)+delay) 
x6[delay:]=x2 
y=x6+x5[0:len(x6)] 
plt.plot(t,x,t,y[0:len(t)]),plt.legend(["Input", "Output"], loc ="upper right"), 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Input and Output signal') 
plt.xlim((0, 1)),plt.ylim((-1, 1)) 

Fig. 10.37 Python code which implements filter bank without filters 

2. There is two sample delay between the input and output signal, which is in 
agreement with the theoretical result. 

10.5 Tree-Structured Filter Bank 

The structure of uniform tree-structured filter bank is given in Fig. 10.43. The 
numbers after the block are used to understand the sequence of the process of the 
input signal. The same numbers are used as variables in the python code to 
understand the sequence of process. 

Experiment 10.14 Tree-Structured Filter Bank 
This experiment illustrates the concept of tree-structured filter bank using python. 
The python code for tree-structured filter bank is shown in Fig. 10.44, and the 
corresponding output is shown in Fig. 10.45. 

Inference 
The following inferences can be made from this experiment:
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Fig. 10.38 Result of filter bank without filters 
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
def downsample(x,M): 
    y=x[::M] 
    return(y) 
def upsample(x,L): 
    y=np.zeros(L*len(x)) 
    y[::L]=x 
    return(y) 
#Define the filters 
h0,h1,h2=[1],[0,1],[0,0,1] 
g0,g1,g2=[0,0,1],[0,1],[1] 
#Input signal 
t=np.linspace(0,1,200) 
x=signal.sawtooth(2*np.pi*5*t) 
x1=signal.lfilter(h0,1,x) 
x2=signal.lfilter(h1,1,x) 
x3=signal.lfilter(h2,1,x) 
x4=downsample(x1,3) 
x5=downsample(x2,3) 
x6=downsample(x3,3) 
x7=upsample(x4,3) 
x8=upsample(x5,3) 
x9=upsample(x6,3) 
x10=signal.lfilter(g0,1,x7) 
x11=signal.lfilter(g1,1,x8) 
x12=signal.lfilter(g2,1,x9) 
y=x10+x11+x12 
plt.plot(t,x,t,y[0:len(t)]),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Input and Output signal'), 
plt.legend(['Input','Output'],loc=1), plt.tight_layout() 

Fig. 10.41 Three-channel filter bank without filters 

1. The input signal to tree-structured filter bank is a sawtooth signal of 5 Hz 
frequency. The output signal is also a sawtooth signal. 

2. The output signal is a delayed version of the input signal. Thus, tree-structured 
filter bank obeys the perfect reconstruction criterion. 

3. Perfect reconstruction is achieved through the proper choice of analysis and 
synthesis filters.
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Fig. 10.42 Input and output signals of three-channel filter bank without filters 
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Fig. 10.43 Structure of tree-structured filter bank 

10.6 Transmultiplexer 

A transmultiplexer converts time division multiplexing (TDM) signals to frequency 
division multiplexing (FDM) and vice versa. A technique for sending multiple 
signals through the same physical medium is to use different portions of the available 
frequency spectrum. Frequency division multiplexing refers to the process of spec-
tral separation to permit the simultaneous transmission of signals from multiple 
users. In frequency division multiplexing, all the signals operate at the same time 
with different frequencies. In time-division multiplexing, all the signals operate with 
the same frequency at different times. The operation of converting from one form of
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#Tree structured filter bank 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
def downsample(x,M): #Function to perform downsampling operation 
    y=x[::M] 
    return(y) 
def upsample(x,L): #Function to perform upsampling operation 
    y=np.zeros(L*len(x)) 
    y[::L]=x 
    return(y) 
#Step 1: Define the filters 
h0=[0.5,0.5] 
h0=np.array(h0) 
h1=signal.qmf(h0) 
g0,=2*h0,-2*h1 
#Step 2: Generate the input signal 
t=np.linspace(0,1,100) 
x=signal.sawtooth(2*np.pi*5*t) 
#Step 3: Traversing the path(1: Analysis section) 
x1=signal.lfilter(h0,1,x) 
x2=signal.lfilter(h1,1,x) 
x3=downsample(x1,2) 
x4=downsample(x2,2) 
x5=signal.lfilter(h0,1,x3) 
x6=signal.lfilter(h1,1,x3) 
x7=downsample(x5,2) 
x8=downsample(x6,2) 
x9=signal.lfilter(h0,1,x4) 
x10=signal.lfilter(h1,1,x4) 
x11=downsample(x9,2) 
x12=downsample(x10,2) 
#2: Synthesis section 
x13=upsample(x7,2) 
x14=upsample(x8,2) 
x15=signal.lfilter(g0,1,x13) 
x16=signal.lfilter(g1,1,x14) 
x17=x15+x16 
x18=upsample(x17,2) 
x19=signal.lfilter(g0,1,x18) 
x20=upsample(x11,2) 
x21=upsample(x12,2) 
x22=signal.lfilter(g0,1,x20) 
x23=signal.lfilter(g1,1,x21) 
x24=x22+x23 
x25=upsample(x24,2) 
x26=signal.lfilter(g1,1,x25) 
y=x19+x26 
plt.plot(t,x,'k',t,y,'r'),plt.legend(['Input','Output'],loc=1),plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Input-Output waveform') 

Fig. 10.44 Python code for uniform tree-structured filter bank



multiplexing to another is termed as ‘transmultiplexing’. The structure of 
two-channel transmultiplexer is shown in Fig. 10.46.
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Fig. 10.46 Structure of two-channel transmultiplexer 

Proper choice of filters will avoid the problem of crosstalk in two-channel 
transmultiplexer. 

Experiment 10.15 Implementation of Two-Channel Transmultiplexer 
This experiment discusses the implementation of two-channel transmultiplexer 
using python. The python code, which implements a two-channel transmultiplexer, 
is shown in Fig. 10.47, and the corresponding output is shown in Fig. 10.48. 

Figure 10.47 shows that the signal x[0] is a sine wave of 5 Hz frequency, and the 
signal x[1] is a cosine wave of 5 Hz frequency. The transmitted signals are sine and 
cosine waves. The variables ‘n0 to n9’ in the python code shown in Fig. 10.46 align 
with the nodes depicted in Fig. 10.47. From Fig. 10.48, it is possible to observe that 
the received signals y[0] is a sine wave similar to the signal x[0], and the signal y[1] is 
a cosine wave similar to the transmitted signal x[1].
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#Two-channel transmultiplexer 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
def downsample(x,M): 
    y=x[::M] 
    return(y) 
def upsample(x,L): 
    y=np.zeros(L*len(x)) 
    y[::L]=x 
    return(y) 
#Step 1 defining x0 and x1 
f,fs,N,N1=5,100,256,128; 
T=1/fs 
t=np.linspace(0,N*T,N) 
x0=np.sin(2*np.pi*f*t) 
x1=np.cos(2*np.pi*f*t) 
#Step 2: Define the filters 
g0,g1,h0,h1=[0, 1, 1], [0, -1, 1], [0.5, 0.5], [0.5, -0.5]; 
#Step3 Tracing the structure 
n1=upsample(x0,2)  #At node 1 
n2=upsample(x1,2)  #At node 2 
n3=signal.lfilter(g0,1,n1) #At node 3 
n4=signal.lfilter(g1,1,n2) #At node 4 
n5=n3+n4   #At node 5 
n6=signal.lfilter(h0,1,n5) #At node 6 
n7=signal.lfilter(h1,1,n5) #At node 7 
n8=downsample(n6,2) #At node 8 
n9=downsample(n7,2) #At node 9 
plt.subplot(2,1,1),plt.plot(t,x0,t,n8),plt.legend(['Transmitted(x0)','Received(y0)'],loc=1) 
plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.subplot(2,1,2),plt.plot(t,x1,t,n9),plt.legend(['Transmitted(x1)','Received(y1)'],loc=1) 
plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.suptitle('Transmitted and received signals in transmultiplexer') 
plt.tight_layout() 

Fig. 10.47 Python code for two-channel transmultiplexer 

Inferences 
The following inferences can be drawn from Fig. 10.48: 

1. The received signals are similar to the transmitted signal without distortion; thus, 
crosstalk problem is avoided. The proper choice of synthesis and analysis filter 
avoids the crosstalk problem. 

2. Perfect reconstruction of transmultiplexer achieves complete crosstalk cancella-
tion and is distortion-free.
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Fig. 10.48 Transmitted and received signals in transmultiplexer 

Experiment 10.16 Audio Signal Transmission 
This experiment tests the process of two-channel transmultiplexer using audio signal 
as an input. Instead of transmitting sine wave and cosine wave as the input through 
transmultiplexer, pass male and female voices through two-channel 
transmultiplexer, and observe whether the male and female voices can be received 
in the output without distortion. 

The python code which performs this task is shown in Fig. 10.49, and the 
corresponding output is shown in Fig. 10.50. 

Inferences 
From Fig. 10.49, it is possible to observe the following: 

1. The library ‘sounddevice’ is used to play the speech signal. 
2. The built-in function ‘wavfile’ from ‘scipy’ library is used to read the speech 

signal. 
3. The two signals fed to the transmultiplexer are (a) x0 is a male voice and (b) x1 is 

a female voice. 
4. The output (variable name ‘n8’) represents the received male voice corresponding 

to the transmitted male voice (x0). 
5. The output (variable name ‘n9’) represents the received female voice 

corresponding to the transmitted female voice (x1). 
6. The transmitted and the received male and female voices are plotted and heard.
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#Transmultiplexer for speech signal 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.io import wavfile 
import sounddevice as sd 
#Functions to perform downsampling and upsampling 
def downsample(x,M): 
    y=x[::M] 
    return(y) 
def upsample(x,L): 
    y=np.zeros(L*len(x)) 
    y[::L]=x 
    return(y) 
#Step 1 Reading the speech signals 
fs, x0 = wavfile.read('Male.wav') 
fs, x1 = wavfile.read('Female.wav') 
x0=x0[:,0] 
x1=x1[:,1] 
#Step 2: Define the filters 
g0,g1,h0,h1=[0,1, 1], [0,-1, 1], [0.5, 0.5], [0.5, -0.5]; 
#Step3 Tracing the structure 
n1=upsample(x0,2) 
n2=upsample(x1,2) 
n3=signal.lfilter(g0,1,n1) 
n4=signal.lfilter(g1,1,n2) 
n5=n3+n4 
n6=signal.lfilter(h0,1,n5) 
n7=signal.lfilter(h1,1,n5) 
n8=downsample(n6,2) 
n9=downsample(n7,2) 
plt.subplot(2,2,1),plt.plot(x0),plt.title('Transmitted male voice') 
plt.subplot(2,2,2),plt.plot(x1),plt.title('Transmitted female voice') 
plt.subplot(2,2,3),plt.plot(n8),plt.title('Received male voice') 
plt.subplot(2,2,4),plt.plot(n9),plt.title('Received female voice') 
plt.tight_layout() 
#Hearing the audio signal 
sd.play(x0,fs)   #Transmitted male voice 
sd.wait() 
sd.play(n8,fs)  #Received male voice 
sd.wait() 
sd.play(x1,fs)   #Transmitted female voice 
sd.wait() 
sd.play(n9,fs)  #Received female voice 

Fig. 10.49 Python code for Experiment 10.16
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Fig. 10.51 Multirate 
system y[n]x[n] 

2 2 
System 

From Fig. 10.50, it is possible to observe that the received speech signal resem-
bles the transmitted speech signal, which confirms that the two-channel 
transmultiplexer is free from cross-talk. 

Exercises 
1. Write a python code to simulate the comb signal whose expression is given by 

x n½ ]= 
1 
M 

M- 1 

k = 0 

ej
2π 
Mkn , 0≤ n≤ 10 

For M = 1, 2, 3 and 4, comment on the observed output. 
2. Write a python code to prove that the downsampling operation obeys the 

superposition principle. The objective is to prove that downsampling operation 
obeys both additivity and homogeneity properties. 

3. Write a python code to prove that upsampling by a factor of 2 is a time-varying 
operation. 

4. Generate a square wave of 5 Hz fundamental frequency. Downsample this 
signal by a factor of 2. Plot the spectrum of the input and downsampled square 
waves, and comment on the observed result. 

5. Write a python code to prove the fact that the output signal y[n] is identical to the 
input signal x[n] for the multirate system shown in Fig. 10.51.
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Fig. 10.53 Two-channel filter bank 

6. Write a python code to implement the following multirate system depicted in 
Fig. 10.52. 

Plot the input and output signal and comment on the observed output. 
7. Read an audio signal. Downsample it by a factor of 2. Hear the original and 

downsampled audio signal and comment on the observation. 
8. Read an audio signal. Upsample it by a factor of 2. Hear the original and 

upsampled audio signal and comment on the observation. 
9. The input to the two-channel filter bank shown in Fig. 10.53 is a square of 5 Hz 

fundamental frequency. The impulse response of the analysis and synthesis 
filters are h0[n] = {0.5, 0.5}, h1[n] = {0.5, -0.5}, g0[n] = {1, 1} and g1[n] = 
{-1, 1}. The high pass filter section has to be masked. The bitstream from node 
4 has to be strings of zeros. The impact of masking the high frequency compo-
nent has to be analysed. 

Plot the input and output signal and comment on the observed output. 
10. Record two voice signals, namely, x[0] and x[1], with a sampling frequency of 

8000 Hz. The signal x[0] corresponds to the word ‘YES’, and the signal x 
[1] corresponds to the word ‘NO’. That is, the signal x[0] and x[1] are recorded 
voice signals with the word ‘YES’ and ‘NO’, respectively. Pass these two voice 
signals to crosstalk free transmultiplexer to obtain the output signal y[0] and y 
[1]. Comment on the observed output. 

Objective Questions 
1. Downsampling by a factor of ‘M’ is a 

A. Linear, time-invariant operation 
B. Linear, time-variant operation 
C. Non-linear, time-invariant operation 
D. Non-linear, time-variant operation 

2. The time-domain expression for downsampling by a factor of ‘M’ is given by



½ ]

½ ] ½ ]

½ ]

4.

A. y n½ ]= 1
"
, 1, 1, 1

B. y n½ ]= 1
"
, 0, 1, 0

C. y n½ ]= 1
"
, - 1, 1, - 1
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A. y n  = x n M 

B. y[n] = x[nM] 
C. y[n] = x[n]M 

D. y n  = x n  
1 
M 

3. The input signal x[n] is upsampled by a factor of ‘L’; then, the result is 
downsampled by the same factor ‘L’ to obtain the signal y[n]. The relationship 
between y[n] and x[n] is given by 

A. y[n] = x[nL] 
B. y[n] = x[n] 
C. y n  = x n L 
D. y[n] = x[n]L 

The input signal x n½ ]= 1
" 
, 1, 1, 1  is passed through downsampling by a factor 

of 2. The result of downsampling operation is then passed through upsampling 
by a factor of 2 to obtain the output signal y[n]. The expression for the output 
signal is 

D. y[n] = {0, 0, 0, 0} 

5. Which of the following operation is an example of an idempotent operation 

A. Upsampling followed by downsampling 
B. Downsampling followed by upsampling 
C. Downsampling followed by downsampling 
D. Upsampling followed by upsampling 

6. Which of the following is an example of an identity operation 

A. Upsampling followed by downsampling 
B. Downsampling followed by upsampling 
C. Downsampling followed by downsampling 
D. Upsampling followed by upsampling 

7. Which of the following results in idempotent operation 

A. Downsampling by a factor of ‘M’ followed by upsampling by a factor of ‘M’ 
B. Upsampling by a factor of ‘M’ followed by downsampling by the same 

factor
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C. Downsampling followed by unit delay operation 
D. Upsampling followed by unit delay operation 

8. If the variable ‘x’ contain the input signal, the python command y=x[::2] results 
in 

A. Upsampling of the input signal by a factor of 2 
B. Downsampling of the input signal by a factor of 2 
C. Delaying of input signal by a factor of 2 
D. Advance of input signal by a factor of 2 

9. A function ‘operation’ is given below. The function accepts the input signal (x) 
and gives an output signal ( y). What is the relationship between the input and 
output signal? 

A. Output signal ‘y’ is downsampled by a factor of 2 
B. Output signal ‘y’ is upsampled by a factor of 2 
C. Output signal ‘y’ is delayed by a factor of 2 
D. Output signal ‘y’ is advanced by a factor of 2 

10. Downsampling is a 

A. Linear, time-invariant operation 
B. Linear, time-variant operation 
C. Non-linear, time-invariant operation 
D. Non-linear, time-variant operation 

11. Interchanging of upsampling by a factor of ‘L’ and downsampling by a factor of 
‘M’ is possible if and only if 

A. L and M are of same value 
B. L and M should be odd number 
C. L and M should be even number 
D. L and M are relatively prime 
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Chapter 11 
Adaptive Signal Processing 

Learning Objectives 
After reading this chapter, the reader is expected to

• Implement and analyse the Wiener filter.
• Write a python code to implement the LMS algorithm and its variants.
• Perform system identification using the LMS algorithm.
• Perform inverse system modelling using the NLMS algorithm.
• Implement adaptive line enhancer using the LMS algorithm and its variants.
• Implement the RLS algorithm. 

Roadmap of the Chapter 
The roadmap of this chapter is depicted below. This chapter starts with the Wiener 
filter, least mean square (LMS) algorithm and its variant approaches for adaptive 
signal processing applications like system identification and signal denoising. Next, 
the RLS algorithm is discussed with the suitable python code. 

Filter 

Optimum Filter Adaptive Filter 

Wiener Filter 
LMS Algorithm RLS Algorithm 

NLMS Algorithm 

Sign LMS Algorithm 
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PreLab Questions 
1. List out the valid differences between the optimal filter and the adaptive filter. 
2. What is an adaptive filter? How it differs from the ordinary filter. 
3. Examples of adaptive filter. 
4. When are adaptive filters preferred? 
5. List out the performance measures of the adaptive filter. 
6. What is an LMS algorithm? 
7. What do you mean by least square estimation? 
8. List out the variants of LMS algorithm. 
9. How the step size impacts the LMS algorithm? 

10. What is the RLS algorithm, and how it differs from LMS? 

11.1 Wiener Filter 

Wiener filter is the mean square error (MSE) optimal stationary linear filter for signal 
corrupted by additive noise. The Wiener filter computation requires the assumption 
that the signal and noise are in the random process. The general block diagram of the 
Wiener filter is shown in Fig. 11.1. The main objective of the Wiener filter is to 
obtain the filter coefficient of the LTI filter, which can provide the final output (y[n]) 
as much as the minimum MSE between the output and the desired signal or target (d 
[n]). In Fig. 11.1, s[n] denotes the original signal, which is a clean signal, and it is 
corrupted by additive noise η[n] to give the signal x[n]. The parameters of the filter 
have to be designated has to be designed in such a way that the output of the filter y 
[n] should resemble the desired signal d[n] such that the error ‘e[n]’ is minimum. 

The expression for the optimal Wiener filter is given by 

hopt =R- 1 p ð11:1Þ 

The above expression is termed as ‘Wiener-Hopf’ expression, which is named 
after American-born Norbert Wiener and Austrian-born Eberhard Hopf. The expres-
sion for optimal filter depends on the autocorrelation matrix (R) of the observed 
signal (x[n]) and the cross-correlation vector ( p) between the observed signal (x[n]) 
and the desired signal (d[n]). hopt denotes the optimal filter coefficients. 

Experiment 11.1 Wiener Filtering 
The aim of this experiment is to implement the Wiener filtering using python. Here 
the optimal filter coefficients are obtained using the Wiener-Hopf equation given in

Fig. 11.1 Block diagram of 
Wiener filter 

x[n] 

d[n] 

e[n] y[n] 

η[n] 

s[n] h[n] 



Eq. (11.1). The python code for Wiener filter is shown in Fig. 11.2. Simulation result 
of the python code given in Fig. 11.2 is depicted in Fig. 11.3.
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#Wiener filter 
import numpy as np 
from numpy.random import randn 
import matplotlib.pyplot as plt 
from scipy.linalg import toeplitz 
from scipy import signal 
#Step 1: Generation of signal s[n] 
t=np.linspace(0,1,100) 
s=np.sin(2*np.pi*5*t) 
Ns=len(s) 
#Step 2: Generation of random noise 
# n=randn(len(t))*0.1 
n=np.random.normal(0,.2,len(s)) 
#Step 3: Observed signal x[n] 
x=s+n 
#Step 4: Autocorrelation of observed signal 
rxx=np.correlate(x,x,mode='full') 
#Step 5: Cross-correlation between desired and observed signal 
rsx=np.correlate(s,x,mode='full') 
#Step 6: Deciding the length of the filter 
Nh=11 
#Step 7: Trimming the autocorrelation and cross-correlation values 
rxx1=rxx[Ns-1:Ns+Nh-1] 
rsx1=rsx[Ns-1:Ns+Nh-1] 
#Step 8: Obtaining the autocorrelation matrix 
Rx=toeplitz(rxx1) 
#Step 9: Inverse of the autocorrelation matrix 
Rx1=np.linalg.inv(Rx) 
#Step 10: Obtaining the filter coefficient 
w1=np.matmul(Rx1,rsx1) 
#Step 11: Filtering the noisy signal 
y=signal.lfilter(w1,1,x) 
plt.subplot(3,1,1),plt.plot(t,s),plt.xlabel('t-->'),plt.ylabel('Amplitude'),  
plt.title('Clean signal'),plt.subplot(3,1,2),plt.plot(t,x),plt.xlabel('t-->'), 
plt.ylabel('Amplitude'),plt.title('Noisy signal'),plt.subplot(3,1,3), plt.plot(t,y) 
plt.xlabel('t-->'),plt.ylabel('Amplitude'),plt.title('Filtered signal'),plt.tight_layout() 

Fig. 11.2 Python code for Wiener filtering 

The built-in functions used in python code shown in Fig. 11.2 is summarized in 
Table 11.1. 

Inference 
From Fig. 11.3, it can be made the following observations:
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Fig. 11.3 Simulation result of Wiener filter 

Table 11.1 Built-in functions used in the python code given in Fig. 11.2 

S. No. Objective Built-in function Library 

1 To generate a clean sinusoidal signal of 5 Hz frequency np.sin() Numpy 

2 To add white noise, which follows normal distribution to 
clean signal 

np.random.nor-
mal() 

Numpy 

3 To perform autocorrelation np.correlate() Numpy 

4 To obtain the inverse of the matrix np.linalg.inv() Scipy 

5 To perform convolution signal.lfilter() Scipy 

1. The input or clean signal frequency is 5 Hz, and it is a smooth sine waveform. 
2. The additive noise added signal as input to the Wiener filter, and it is a distorted 

signal. 
3. The filtered signal is not a smooth sine waveform. However, this waveform is far 

better than the noisy signal. Hence, the Wiener filter has a capability to minimize 
the impact of additive noise in a signal. 

Task 
1. Change the value of standard deviation in random noise generation python 

command ‘np.random.normal(0,.2,len(s))’ given in Fig. 11.2. Execute and 
make the appropriate changes in this python code to get ‘filtered signal’ as similar 
as ‘clean signal’. 

Experiment 11.2 Wiener Filter Using Built-In Function 
This experiment performs the Wiener filtering using built-in function in ‘scipy’ 
library. The built-in function is available in the ‘scipy’ library ‘wiener’ can be 
used to filter out the noisy components. In this experiment, noise-free sinusoidal 
signal of 5 Hz frequency is generated. The clean signal is corrupted by adding



random noise, which follows the normal distribution with zero mean and 0.2 
standard deviation. The corrupted signal is then passed through the Wiener filter to 
minimize the impact of noise. The steps followed along with the built-in functions 
used in the program are given in Table 11.2. 
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Table 11.2 Steps followed and built-in functions 

S. No. Objective Built-in function Library 

1 To generate a clean sinusoidal signal of 5 Hz frequency np.sin() Numpy 

2 To add white noise, which follows normal distribution to 
clean signal 

np.random.nor-
mal() 

Numpy 

3 To minimize the impact of noise using Wiener filter signal.wiener() Scipy 

#Wiener filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of clean signal 
t=np.linspace(0,1,100) 
s=np.sin(2*np.pi*5*t) 
#Step 2: Adding noise 
n=np.random.normal(0,.2,len(s)) 
x=s+n 
#Step 3: Wiener filter 
y=signal.wiener(x) 
#Step 4: Plotting the results 
plt.subplot(3,1,1),plt.plot(t,s), 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Clean signal') 
plt.subplot(3,1,2),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Noisy signal'),plt.subplot(3,1,3),plt.plot(t,y) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Filtered signal') 
plt.tight_layout() 

Fig. 11.4 Wiener filtering using built-in function 

The python code which performs this task is shown in Fig. 11.4, and the 
corresponding output is shown in Fig. 11.5. 

Inference 
From Fig. 11.5, it is possible to infer that the impact of noise is minimized after 
passing the noisy signal through Wiener filter. 

11.1.1 Wiener Filter in Frequency Domain 

From Wiener-Hopf equation, the expression for the optimal Wiener filter is given by
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Fig. 11.5 Result of Wiener filtering 

hopt =R- 1 p ð11:2Þ 

The above equation can be expressed as 

hopt = 
p 
R

ð11:3Þ 

In the above expression, ‘p’ represents the cross-correlation between desired 
signal and the observed signal, and ‘R’ represents the autocorrelation of the observed 
signal. Taking Fourier transform on both sides of Eq. (11.3), we get 

FT hopt = 
FT pf g  
FT Rf g ð11:4Þ 

According to the Wiener-Khinchin theorem, Fourier transform of autocorrelation 
function gives power spectral density. Using this theorem, Eq. (11.4) is expressed as 

H ejω = 
Sdx ejωð Þ  
Sxx ejωð Þ ð11:5Þ 

In Eq. (11.5), H(ejω ) represents the frequency response of the Wiener filter, 
Sdx(e

jω ) represents the cross-power spectral density estimation between desired and 
observed signal and Sxx(e

jω ) represents the power spectral density of the observed 
signal.
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Fig. 11.6 Wiener filter in frequency domain 

Experiment 11.3 Wiener Filter in Frequency Domain 
The steps followed in the implementation of Wiener filter in frequency domain are 
given in Fig. 11.6. The noisy signal is obtained by adding white noise, which follows 
normal distribution to the clean signal. The observed signal is a clean signal with 
white noise added to it. The power spectral density of the observed signal is 
represented by Sxx(e

jω ). The power spectral density between the desired and 
observed signal is represented by Sdx(e

jω ). The Wiener filter is obtained in the 

frequency domain using the relation H ejωð Þ= Sdx e
jωð Þ  

Sxx ejωð Þ. Here the desired signal is the 
clean signal s[n]. Upon taking inverse Fourier transform of H(ejω ), the impulse 
response of the Wiener filter is obtained. 

The python code used to implement the Wiener filter in frequency domain is 
shown in Fig. 11.7, and the corresponding output is in Fig. 11.8. 

The built-in functions used in the program and its purpose are given in Table 11.3. 

Inference 
From Fig. 11.8, the following observations can be made:
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#Wiener filter in frequency domain 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from matplotlib import patches  
t=np.linspace(0,1,100) 
s=np.sin(2*np.pi*5*t) #Step1: Generation of clean signal s[n] 
n=np.random.normal(0,0.1,len(t)) #Step 2: Generation of noise 
x=s+n #Step 3: Generation of observed signal x[n] 
Nh=25 
f,Pxx=signal.csd(x,x,nperseg=Nh) #Step 4: Power spectral density of observed signal 
f,Psx=signal.csd(s,x,nperseg=Nh) #Step 5: PSD of desired and observed signal 
H=Psx/Pxx #Step 6: Wiener filter in frequency domain  
h=np.fft.irfft(H) #Step 7: Wiener filter in time domain 
w, H1 = signal.freqz(h, 1) 
y=signal.filtfilt(h,1,x) #Step 8: Filtered signal 
plot1 = plt. figure(1) 
bx=plt.subplot(3,1,1) 
bx.plot(t,s),bx.set(title='Clean signal',xlabel='Time',ylabel='Amplitude') 
bx=plt.subplot(3,1,2) 
bx.plot(t,x),bx.set(title='Noisy signal',xlabel='Time',ylabel='Amplitude') 
bx=plt.subplot(3,1,3) 
bx.plot(t,y),bx.set(title='Filtered signal',xlabel='Time',ylabel='Amplitude') 
plt.tight_layout() 
plot2 = plt. figure(2) 
#Pole-zero plot of the filter 
ax = plt.subplot(2,2,3); 
unit_circle = patches.Circle((0,0),radius = 1 , fill = False,color='black',ls='solid',alpha = 0.1) 
ax.add_patch(unit_circle),ax.axhline(0,color='black',alpha = 0.5) 
ax.axvline(0,color='black',alpha = 0.5) 
b,a = h,[1] 
z,p,k = signal.tf2zpk(b,a) 
ax.plot(np.real(z),np.imag(z),'or',label='zeros') 
ax.plot(np.real(p),np.imag(p),'xb',label = 'poles') 
ax.set(title='Zeros and poles',xlabel='$\sigma$', ylabel='$j\omega$'),ax.legend(loc = 2),ax.grid() 
ax = plt.subplot(2,2,1) 
ax.stem(h),ax.set(title='Impulse response',xlabel='n-->',ylabel='Amplitude') 
ax = plt.subplot(2,2,2) 
ax.plot(w/np.pi,20*np.log10(abs(H1))),  
ax.set(title='Magnitude response',xlabel='w',ylabel='Magnitude') 
ax=plt.subplot(2, 2, 4) 
ax.plot(w/np.pi, 180/np.pi*np.unwrap(np.angle(H1))) 
ax.set(title='Phase response',xlabel='w',ylabel='Phase'),plt.tight_layout() 

Fig. 11.7 Python code to implement Wiener filter in frequency domain 

1. The impact of noise is minimized by applying the Wiener filter. 
2. The impulse response of the Wiener filter is not symmetric; hence, the phase 

response of the filter is not a linear curve. 
3. From the magnitude response, it is possible to observe that the filter is a lowpass 

filter, and it performs smoothing actions to minimize the impact of noise.
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Fig. 11.8 Result and characteristics of Wiener filtering 

Table 11.3 Built-in functions used in this experiment 

Built-in 
function 

1 To generate clean sinusoidal signal of 5 Hz frequency np.sin() Numpy 

2 To add white noise which follows normal distribution to 
clean signal 

np.random. 
normal() 

Numpy 

3 To compute the power spectral density signal.csd() Scipy 

4 To compute the impulse response of the filter from the 
frequency response 

np.fft.irfft() Numpy 

5 To obtain the frequency response of the filter signal.freqz() Scipy 

6 To obtain the poles, zeros and the gain of the filter from the 
transfer function 

signal.tf2zpk() Scipy 

Fig. 11.9 General block 
diagram of adaptive filtering 

x[n] Adaptive filter 
y[n] 

e[n] 

d[n] 

-

4. From the pole-zero plot, it is possible to observe that poles and zeros lie within the 
unit circle; hence the filter is stable. 

11.2 Adaptive Filter 

The adaptive filter is a non-linear filter, which updates the value of the filter 
coefficients based on some specific criterion. The general block diagram of the 
adaptive filter is shown in Fig. 11.9. From this figure, it is possible to observe that



the filter coefficients are updated based on the error, e[n] between the output of the 
filter y[n] and reference data d[n]. Examples of adaptive filters are LMS filter and 
RLS filter. 
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11.2.1 LMS Adaptive Filter 

The LMS is a least mean square algorithm that works based on the stochastic 
gradient descent approach to adapt the estimate based on the current error. The 
estimate is called the weight or filter coefficient. The weight or filter coefficient 
update equation of the LMS algorithm is given by. 

w nþ 1½ ]=w n½ ] þ μx n½ ]e n½ ] ð11:6Þ 

where w[n + 1] represents the new weight or updated weight, w[n] denotes the old 
weight, μ indicates the step size or learning rate, x[n] is the input signal or data and 
the error signal e[n] = d[n]- y[n]. d[n] is the reference data or target data, and y[n] is  
the actual output of the adaptive filter of the system. 

Experiment 11.4 Implementation of LMS Algorithm 
This experiment discusses the implementation of LMS algorithm for adaptive 
filtering using python. The python code to define the LMS algorithm as a function 
is shown in Fig. 11.10. This code can be called a function in the different applica-
tions of the LMS algorithm, which will be discussed in the subsequent experiments. 
From Fig. 11.10, it is possible to see that the weight updation formula of the LMS 
algorithm given in Eq. (11.6) exists in it. 

Inference 
1. From Fig. 11.10, it is possible to observe that the LMS algorithm is written as a 

function, and it can be called a signal processing application whenever needed. 

# This python code for LMS algorithm 
def LMS_algorithmm(x,mu,N,t): 
    # x = input data, mu = step size, t = reference data, N = Filter length 
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    e = np.zeros(N1-N) 
    for n in range(0, N-F): 
        xn = x[n+N:n:-1] 
        en = t[n+N] - np.dot(xn,w) # Error 
        w = w + mu * en * xn # Update filter (LMS algorithm) 
        e[n] = en # Record error 
    return w,e 

Fig. 11.10 Python code for LMS algorithm
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Fig. 11.11 Block diagram 
of system identification 

e[n] 

d[n] y[n] 

x[n] 

System w(n) 

Adaptive 

algorithm 
∑ 

import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N1 = 500 # Size of the Input data 
N = 25 # Filter size 
n_iter=[10,50,100,150]# it must be less than (N1-N) 
x = np.random.randn(N1) # Input to the filter 
h = signal.firwin(N, 0.25) # FIR filter to be identified 
t = signal.convolve(x, h) # Target/desired signal 
t = t + 0.01 * np.random.randn(len(t)) # with added noise 
mu = 0.04 # LMS step size 
plt.figure(),plt.title('Filter to be Identified'),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
for i in range(0,len(n_iter)): 
    [w,e]=LMS_algorithmm(x,mu,N,t,n_iter[i]); 
    plt.figure(),plt.title('Error signal at iteration %d' % n_iter[i]) 
    plt.stem(e),plt.xlabel('n-->'),plt.ylabel('e[n]') 
    plt.figure(),plt.title('Identified Filter at iteration %d' % n_iter[i]) 
    plt.stem(w),plt.xlabel('n-->'),plt.ylabel('w[n]') 

Fig. 11.12 Python code for unknown system identification 

2. The inputs to the LMS function are ‘x’, ‘mu’, ‘N’ and ‘t’. ‘x’ denotes the input 
data, ‘mu’ represents step size, ‘t’ denotes the reference data or target data and ‘N’ 
indicates the length of the adaptive filter. 

3. The outputs from this LMS function are ‘w’, which denotes the adaptive filter 
coefficients, and ‘e’ is an error between the estimate and target data. 

Experiment 11.5 System Identification Using LMS Algorithm 
This experiment deals with unknown system identification using the LMS algorithm. 
Let us consider the unknown system as an FIR filter with a length of 25. In this 
experiment, the output filter coefficients are obtained by using LMS algorithm with 
different number of iterations. The block diagram of the system identification is 
shown in Fig. 11.11. The python code to find the unknown system using the LMS 
algorithm is given in Fig. 11.12, and its simulation result is shown in Fig. 11.13.
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Fig. 11.14 Inverse system modelling using adaptive filter 

Figure 11.12 indicates that the number of iterations is considered as 10, 50, 
100 and 150, and the length of the unknown FIR filter is chosen as 25. The input 
to the LMS algorithm is a random signal with a length of 500 samples. The targeted 
or desired or reference data is obtained by convolving the input random signal with 
the unknown FIR filter coefficients along with the random noise. 

Note that the inputs to the LMS algorithm ([w,e]=LMS_algorithmm(x,mu,N,t, 
n_iter[i])) are random signal (x), learning rate (mu), length of the filter (N), a 
reference signal (t) and number or iteration (n_iter). Also, note that the filter 
coefficients (h) are not given as input to the LMS algorithm. The outputs of the 
LMS algorithm are error signal (e) and identified filter output (w). 

The simulation result of the python code given in Fig. 11.12 is displayed in 
Fig. 11.13. 

Inference 
From Fig. 11.13, it is possible to observe that the adaptive filter result approaches the 
original filter coefficients while increasing the number of iterations. 

Task 
Increase/decrease the length of the FIR filter and fix the number of iterations is 50. 
Comment on the observed result. 

Experiment 11.6 Inverse System Modelling Using LMS Algorithm 
This experiment discusses the inverse system modelling using LMS algorithm. The 
general block diagram of inverse system modelling using adaptive filter is shown in 
Fig. 11.14. From this figure, it is possible to understand that the unknown system and 
the adaptive filter are connected in a cascade form, and the delayed version of the 
input signal act as a reference signal. The aim of adaptive filtering in this experiment 
is to obtain the inverse system of the unknown system so that y[n] and d[n] will be 
similar. If y[n] and d[n] are similar, then the adaptive filter is equal to the inverse of 
the unknown system. 

In communication systems, inverse system modelling is used as channel equal-
ization. In such scenario, the adaptive filter is termed as ‘equalizer’. Adaptive 
equalizer can combat intersymbol interference. Intersymbol interference arises 
because of the spreading of a transmitted pulse due to the dispersive nature of the 
channel.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
mu,W=0.04,2.2 # learning rate,Channel Capacity 
filt_order,t_samples,delay,trial=7,200,4,1000 
noise_var,data_var=0.001,1 
for i in range(0,trial): 
    inp=np.zeros(filt_order) 
    data=np.zeros(filt_order+t_samples) 
    v=np.zeros(filt_order+t_samples) 
    w=np.zeros(filt_order) 
    #Generation of random data and random noise 
    for j in range(filt_order-1,t_samples+filt_order): 
        data[j]=np.fix(np.random.rand(1)+0.5)*2-1 
        v[j]=np.fix(np.random.rand(1)+0.5)*2*np.sqrt(noise_var)-np.sqrt(noise_var) 
    # Impusle response of the channel  
    h=np.zeros(3) 
    for j in range(0,3): 
        h[j]=(1/2)*(1+np.cos(2*np.pi/W)*(j-(3-1)))   
    C_out=signal.convolve(h,data) # Output from Channel 
    Err_square=np.zeros(len(C_out)) 
    data=np.append(np.zeros(len(h)-1), data) 
    v=np.append(np.zeros(len(h)-1), v) 
    C_outn=C_out+v; 
    [w,e]=LMS_algorithmm(C_outn,mu,filt_order,data,len(C_outn)-filt_order); 
    e=np.append(e,np.zeros(filt_order)) 
    Err_square=Err_square+(e**2) 
mse=Err_square/trial 
plt.figure,plt.subplot(2,2,1),plt.stem(h),plt.title('Impulse Resp. of Channel filter') 
plt.xlabel('n-->'),plt.ylabel('h1[n]'),plt.subplot(2,2,2),plt.stem(w), 
plt.title('Impulse Resp. of Inverse filter'),plt.xlabel('n-->'),plt.ylabel('h2[n]') 
cas=signal.convolve(w,h);#Cascade operation 
mag=fft(cas);#Frequency Response 
plt.subplot(2,2,3),plt.stem(cas),plt.title('Impulse Resp. of Cascaded filter'),plt.xlabel('n-->'), 
plt.ylabel('h1[n]*h2[n]'),plt.subplot(2,2,4),plt.plot(np.abs(mag)), 
plt.title('Mag. Resp. of Cascaded filter'),plt.xlabel('$\omega$-->'), plt.ylabel('|H($\omega$)|'), 
plt.ylim(0,10),plt.tight_layout() 

Fig. 11.15 Python code for Inverse system modelling 

The impulse response of the channel is given by 

h n½ ]= 
1 
2 

1þ cos 2π 
W 

n- 2ð Þ  , n= 1, 2, 3 

0, otherwise 
ð11:7Þ 

In the above equation, ‘W’ represents the channel capacity. Higher value of ‘W’ 
implies that the channel is more complex. 

The python code to obtain the inverse of unknown system using LMS algorithm 
is given in Fig. 11.15, and its corresponding simulation result is shown in Fig. 11.16.
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Fig. 11.16 Simulation result of inverse system modelling 

Inference 
From Fig. 11.16, it is possible to perceive the following facts 

1. The impulse response of the cascaded system is an impulse. This implies that the 
cascade of channel filter and its inverse system results in an identity system. 

2. The Fourier transform of an impulse response will result in a flat spectrum. This is 
obvious by observing the spectrum of the cascaded system. 

Task 
1. Increase the order of the adaptive filter and obtain the impulse response of the 

inverse system. 

11.2.2 Normalized LMS Algorithm 

The weight updation formula for the normalized LMS algorithm is given by 

w n  þ 1½ ]=wT n½ ] þ β 

xk k2 þ c e n½ ]x n½ ] ð11:8Þ 

where ‘β’ is a positive constant, which controls the convergence speed of the 
algorithm. ‘c’ is a small regularization parameter; it is added with the norm of the 
signal x[n] to avoid the divide by zero error.
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# This code for NLMS algorithm 
def NLMS_algorithmm(x,N,t,beta,c,n_iter): 
    # x = input data, N = Filter length t = reference data,  
    # beta = Convergence parameter, c = regularization constant,  
    # n_iter = number of iteration  
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    e = np.zeros(N1-N) 
    for n in range(0, n_iter): 
        xn = x[n+N:n:-1] 
        en = t[n+N] - np.dot(xn,w) # Error 
        mu=beta/((xn*(np.transpose(xn)))+c)#Learning rate update 
        w = w + mu * en * xn # Update filter (NLMS algorithm) 
        e[n] = en # Record error 
    return w,e 

Fig. 11.17 Python code for NLMS algorithm 

Experiment 11.7 Normalized LMS (NLMS) Algorithm 
The python code for the normalized LMS algorithm is given in Fig. 11.17. 

Inference 
1. From Fig. 11.17, it is possible to observe that it is in the form of a function, and it 

can be called for the adaptive signal processing applications whenever required. 
2. Also, it is possible to know that step size or learning rate is not given as a direct 

input to the function. 
3. The step size is calculated using the input data, β and ‘c’. 

Experiment 11.8 Inverse System Modelling Using NLMS Algorithm 
This experiment is a repetition of the inverse system modelling experiment, which 
was discussed earlier. Here, Experiment 11.6 is repeated with the same specifica-
tions, and NLMS is used for adaptive filtering instead of LMS algorithm. The python 
code of this experiment is shown in Fig. 11.18, and its corresponding simulation 
result is displayed in Fig. 11.19. 

Inference 
The following conclusions can be made from this experiment: 

1. From this Fig. 11.19, it is possible to conclude that the cascade of channel and 
inverse filter gives the impulse response as unit impulse sequence. 

2. The magnitude response confirms that the cascaded filter spectrum is a dc. 
3. Therefore, the channel filter and the adaptive filter are inverse to each other.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
c,beta,W=1.5,0.25,2.2 # learning rate,Channel Capacity 
filt_order,t_samples,delay,trial=7,200,4,1500 
noise_var,data_var=0.001,1 
for i in range(0,trial): 
    inp=np.zeros(filt_order) 
    data=np.zeros(filt_order+t_samples) 
    v=np.zeros(filt_order+t_samples) 
    w=np.zeros(filt_order) 
    #Generation of random data and random noise 
    for j in range(filt_order-1,t_samples+filt_order): 
        data[j]=np.fix(np.random.rand(1)+0.5)*2-1 
        v[j]=np.fix(np.random.rand(1)+0.5)*2*np.sqrt(noise_var)-np.sqrt(noise_var) 
    # Impusle response of the channel  
    h=np.zeros(3) 
    for j in range(0,3): 
        h[j]=(1/2)*(1+np.cos(2*np.pi/W)*(j-(3-1)))   
    C_out=signal.convolve(h,data) # Output from Channel 
    Err_square=np.zeros(len(C_out)) 
    data=np.append(np.zeros(len(h)-1), data) 
    v=np.append(np.zeros(len(h)-1), v) 
    C_outn=C_out+v; 
    [w,e]=NLMS_algorithmm(C_outn,filt_order,data,beta,c,len(C_outn)-filt_order); 
    e=np.append(e,np.zeros(filt_order)) 
    Err_square=Err_square+(e**2) 
mse=Err_square/trial 
plt.figure,plt.subplot(2,2,1),plt.stem(h),plt.title('Impulse Resp. of Channel filter') 
plt.xlabel('n-->'),plt.ylabel('h1[n]'),plt.subplot(2,2,2),plt.stem(w),  
plt.title('Impulse Resp. of Inverse filter'),plt.xlabel('n-->'),plt.ylabel('h2[n]') 
cas=signal.convolve(w,h);#Cascade operation 
mag=fft(cas);#Frequency Response 
plt.subplot(2,2,3),plt.stem(cas),plt.title('Impulse Resp. of Cascaded filter') 
plt.xlabel('n-->'),plt.ylabel('h1[n]*h2[n]'),plt.subplot(2,2,4),plt.plot(np.abs(mag)), 
plt.title('Mag. Resp. of Cascaded filter'),plt.xlabel('$\omega$-->'), 
plt.ylabel('|H($\omega$)|'),plt.ylim(0,10),plt.tight_layout() 

Fig. 11.18 Python code for Experiment 11.8 

11.2.3 Sign LMS Algorithm 

The weight updation formula for Sign LMS algorithm is given by 

w nþ 1½ ]=w n½ ] þ  μ sign e n½ ]x n½ ]f g ð11:9Þ 

where ‘sign’ indicates the sign of the number, ‘w[n +  1]’ represents new weight and 
‘e[n]’ denotes the error signal between target and estimated signal.
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Fig. 11.19 Simulation result of the python code given in Fig. 11.18 
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Fig. 11.20 Block diagram of adaptive line enhancer 

Experiment 11.9 Adaptive Line Enhancer Using Sign LMS Algorithm 
This experiment discusses the python implementation of adaptive line enhancer 
using sign LMS algorithm. The block diagram of adaptive line enhancer is shown 
in Fig. 11.20. From this figure, it is possible to observe that input to the FIR filter is a 
noisy version of the input signal (x[n]), and the final output (y[n]) is the enhanced 
input signal or noise-free signal. The aim of this experiment is to remove the noisy 
components present in the input signal using sign LMS adaptive algorithm. The 
python code for the “sign LMS algorithm” is given in Fig. 11.21 as a function. 

The python code for adaptive line enhancer using sign LMS is given in 
Fig. 11.22. In this experiment, the input signal has 500, 2000 and 3500 Hz frequen-
cies. The sampling frequency is considered as 8000 Hz. The input signal is added 
with the external random noise, which is the input to the adaptive filter. The number



of delay is chosen as 10, and length of the adaptive FIR filter is fixed as 25. The main 
objective of this experiment is to recover or enhance the original signal from the 
noisy input data using sign LMS algorithm. The simulation result of the python code
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# This Code for Sign LMS algorithm 
def Sign_LMS_algorithmm(x,mu,N,t,n_iter): 
    # x = input data, mu = step size, t = reference data, N = Filter length 
    # n_iter = number of iteration  
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    e = np.zeros(N1-N) 
    for n in range(0, n_iter): 
        xn = x[n+N:n:-1] 
        en = t[n+N] - np.dot(xn,w) # Error 
        w = w + mu * np.sign(en * xn) # Update filter (LMS algorithm) 
        e[n] = en # Record error 
    return w,e 

Fig. 11.21 Python code for Sign LMS algorithm 

import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
f1,f2,f3,Fs=500,2000,3500,8000 # Signal and sampling freq 
T=1/Fs 
t=np.arange(0,1,T) 
noise=np.random.randn(len(t)); 
d=np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t)+np.sin(2*np.pi*f3*t)+noise; 
delay,N,mu=10,25,0.001 # Delay,Filter length and step size 
x=np.append(np.zeros(delay),d); 
 [w,e]=Sign_LMS_algorithmm(x,mu,N,d,len(t)-N) 
y1=signal.convolve(w,x) 
mag_x=fft(x)/len(x);#Frequency Response 
mag_y=fft(y1)/len(y1);#Frequency Response 
plt.figure(),plt.subplot(2,2,1),plt.plot(x),plt.title('Input noisy signal') 
plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.subplot(2,2,2),plt.plot(y1),plt.title('Denoised signal') 
plt.xlabel('t-->'),plt.ylabel('y(t)') 
plt.subplot(2,2,3),plt.plot(np.abs(mag_x[0:4000])),plt.title('Spectrum of noisy signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|X($\omega$)|') 
plt.subplot(2,2,4),plt.plot(np.abs(mag_y[0:4000])),plt.title('Spectrum of denoised signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|Y($\omega$)|') 
plt.tight_layout() 

Fig. 11.22 Python code for adaptive line enhancer using sign LMS



given in Fig. 11.22 is shown in Fig. 11.23. From the magnitude spectrum, it is 
possible to observe that the noise impact is reduced by the sign LMS algorithm.
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Fig. 11.23 Simulation result of the adaptive line enhancer using sign LMS 

Inference 
From this experiment, the following observations can be drawn: 

1. From Fig. 11.23, the magnitude response of the noisy signal indicates that the 
signal has three unique frequency components and noisy components. 

2. The magnitude response of denoised signal has three spikes, and the impact of the 
noisy components is lesser than the input magnitude response. 

Task 
1. Do the suitable adjustments in the parameters used in the python code given in 

Fig. 11.22 to reduce the effect of noise in the denoised or enhanced signal? 

11.3 RLS Algorithm 

Recursive least square (RLS) is an adaptive algorithm based on the idea of least 
squares. The block diagram of the adaptive filter based on RLS algorithm is shown in 
Fig. 11.24. From the figure x[n] is the input to the filter, d[n] is the desired signal and 
the difference between the desired signal and the output of the filter is the error signal 
e[n]. Forgetting factor is used in RLS algorithm to remove or minimize the influence 
of old measurements. A small forgetting factor reduces the influence of old samples 
and increases the weight of new samples; as a result, a better tracking can be realized 
at the cost of a higher variance of the filter coefficients. A large forgetting factor



	

keeps more information about the old samples and has a lower variance of the filter 
coefficients, but it takes a longer time to converge. 
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Fig. 11.24 Block diagram 
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Fig. 11.25 Flow chart of sequence of steps in RLS algorithm 

Let us define the a priori error as e n½ ]= d n½ ]-wT n- 1½ ]x n½ ] and the weight 
updation formula for the RLS algorithm is given by 

w n½ ]=w n- 1½ ] þ  P n- 1½ ]x n½ ]e n½ ]
λþ xT n½ ]P n- 1½ ]x n½ ] ð11:10Þ 

If k n½ ]= P n- 1½ ]x n½ ]
λþxT n½ ]P n- 1½ ]x n½ ] represents the gain, then the above expression can be 

written as 

w n½ ]=w n- 1½ ] þ  k n½ ]e n½ ] ð11:11Þ 

The flow chart of the sequence of steps followed in RLS algorithm is shown in 
Fig. 11.25. From the flow chart, it is possible to observe that the algorithm is 
iterative. Proper initialization of filter coefficients is necessary for convergence.
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# This Code for RLS algorithm 
def RLS_algorithmm(x,lamda,delta,N,t,n_iter): 
    # x = input data, lamda = Forgetting factor, delta = Regularization parameter 
    # t = reference data, N = Filter length, n_iter = number of iteration  
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    w=np.transpose(w) 
    e = np.zeros(N1-N) 
    P=np.eye(N)/delta 
    x=np.transpose(x) 
    for n in range(0, n_iter): 
        xn = x[n+N:n:-1] 
        k1=np.dot(P,xn) 
        k2=np.dot(np.transpose(xn),P) 
        k3=np.dot(k2,xn) 
        k =k1/(lamda+k3) 
        en = t[n+N] - np.dot(np.transpose(w),xn);# Error 
        w = w + np.dot(k,np.conjugate(en)) # Update filter (RLS algorithm) 
        P=(1/lamda)*P 
        e[n] = en # Record error 
    return w,e 

Fig. 11.26 Python code for RLS algorithm 

Experiment 11.10 Implementation of RLS Algorithm 
This experiment discusses the implementation of RLS algorithm using python. The 
python code for RLS algorithm is given in Fig. 11.26, and it is in the form of a 
function so that this function can be used for different applications. 

Experiment 11.11 Adaptive Line Enhancer Using RLS Algorithm 
This experiment is a repetition of Experiment 11.9; instead of sign LMS, RLS 
algorithm is used to filter out the noisy component present in the input signal. The 
python code for this experiment is given in Fig. 11.27, and its corresponding 
simulation result is displayed in Fig. 11.28. 

Inference 
From Fig. 11.28, it is possible to confirm that the magnitude response of the filtered 
or denoised output is better than the magnitude response of the noisy input. There-
fore, RLS algorithm can act as an adaptive line enhancer. 

Experiment 11.12 Comparison of System Identification with Different Adaptive 
Filters 
The main objective of this experiment is to compare the simulation result of different 
adaptive algorithms like LMS, NLMS, Sign LMS and RLS for the system identifi-
cation process. The python code to compare the simulation results of system 
identification is given in Fig. 11.29, and its simulation results are shown in 
Fig. 11.30.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
f1,f2,Fs=500,2000,8000 # Signal and sampling freq 
T,lamda,delta=1/Fs,1.9,0.05 
t=np.arange(0,1,T) 
noise=np.random.randn(len(t)); 
d=np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t)+noise; 
delay,N=10,50 # Delay,Filter length 
x=np.append(np.zeros(delay),d); 
[w,e]=RLS_algorithmm(x,lamda,delta,N,d,len(d)-N)  
y1=signal.convolve(w,x) 
mag_x=fft(x)/len(x);#Frequency Response 
mag_y=fft(y1)/len(y1);#Frequency Response 
plt.figure(),plt.subplot(2,2,1),plt.plot(x),plt.title('Input noisy signal') 
plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.subplot(2,2,2),plt.plot(y1),plt.title('Denoised signal') 
plt.xlabel('t-->'),plt.ylabel('y(t)') 
plt.subplot(2,2,3),plt.plot(np.abs(mag_x[0:4000])),plt.title('Spectrum of noisy signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|X($\omega$)|') 
plt.subplot(2,2,4),plt.plot(np.abs(mag_y[0:4000])),plt.title('Spectrum of denoised signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|Y($\omega$)|') 
plt.tight_layout() 

Fig. 11.27 Python code for adaptive line enhancer using RLS 

Inference 
From Fig. 11.30, it is possible to observe that proper selection of the adaptive filter 
parameters like step size or learning rate, forgetting factor and regularization plays a 
major role in using the adaptive filtering algorithm for the system identification 
application in signal processing. 

Task 
Write a python code to compare the simulation result of different adaptive algo-
rithms like LMS, NLMS, sign LMS and RLS for adaptive line enhancement 
application in signal processing. 

Exercises 
1. Execute the python code given in Fig. 11.12 and compare the estimated filter ‘w’ 

with the original filter coefficients ‘h’ for different length of the filter. Also, 
execute the same python code and comment on the convergence of the LMS 
algorithm with different values of learning rate ‘mu’, including negative value. 

2. Use the python code for the sign LMS algorithm given in Fig. 11.22 to compute 
the impulse response of the inverse filter and comment on the role of learning rate. 

3. Modify the sign LMS algorithm based on the equation of the sign regressor 
algorithm is given by w[n +  1]  = w[n]  +  μe[n] sign {x[n]}, and compute the 
impulse response of the inverse filter and comment on the simulation result.
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Fig. 11.28 Simulation result of the python code given in Fig. 11.27 

# Python code for the comparison of adaptive algorithms for system identification 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N1 = 1500 # Size of the Input data 
N = 25 # Filter size 
n=np.arange(0,N,1) 
n_iter=200# it must be less than (N1-N) 
x = np.random.randn(N1) # Input to the filter 
h = signal.firwin(N, 0.25) # FIR filter to be identified 
t = signal.convolve(x, h) # Target/desired signal 
t = t + 0.01 * np.random.randn(len(t)) # with added noise 
mu,mu1,beta,c,lamda,delta = 0.05,0.0005,0.05,1.5,1,0.25 # LMS step size 
plt.figure(1),plt.title('Filter to be Identified') 
plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
[w,e]=LMS_algorithmm(x,mu,N,t,n_iter); 
[w1,e1]=NLMS_algorithmm(x,N,t,beta,c,n_iter) 
[w2,e2]=Sign_LMS_algorithmm(x,mu1,N,t,n_iter) 
[w3,e3]=RLS_algorithmm(x,lamda,delta,N,t,n_iter) 
plt.figure(2),plt.subplot(2,2,1),plt.stem(n,w,'g'),plt.xlabel('n-->'),plt.ylabel('w[n]') 
plt.title('Identified by LMS'),plt.subplot(2,2,2),plt.stem(n,w1,'k'),plt.xlabel('n-->'), 
plt.ylabel('w[n]'),plt.title('Identified by NLMS'),plt.subplot(2,2,3), 
plt.stem(n,w2,'r'),plt.xlabel('n-->'),plt.ylabel('w[n]'),plt.title('Identified by Sign LMS') 
plt.subplot(2,2,4),plt.stem(n,w3,'b'),plt.xlabel('n-->'),plt.ylabel('w[n]') 
plt.title('Identified by RLS'),plt.tight_layout() 

Fig. 11.29 Python code for unknown system identification



20

11.3 RLS Algorithm 467

0 

0 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

5 10  
n--> 

Filter to be Identified 

h[
n]

 

15 20 25 

10 

Identified by Sign LMS 

Identified by LMS 

Identified by RLS 

Identified by NLMS 

20 
n--> 

0 10  20  
n--> 

0 10  
n--> 

0 

0.0 
0.00 

0.02 
0.1 

0.2 

0.0 

0.1 

0.0 

0.1 

0.2 0.2 

10 

w
[n

] 

w
[n

]
w

[n
] 

w
[n

] 

20 
n--> 

Fig. 11.30 Simulation result of the python code given in Fig. 11.29 

4. Modify the sign LMS algorithm based on the equation of sign-sign LMS algo-
rithm is given by w[n + 1]  = w[n] +  μ sign {e[n]} sign {x[n]}, and compute the 
impulse response of the inverse filter and comment on the simulation result. 

5. Use the python code for RLS algorithm given in Fig. 11.26 to obtain the inverse 
filter coefficients and comment on the simulation result. Also, comment on the 
selection of the forgetting factor and regularization parameter. 

Objective Questions 
1. The filter which is based on the minimum mean square error criterion, is 

A. Wiener filter 
B. Window-based FIR filter 
C. Frequency sampling-based FIR filter 
D. Savitsky Golay filter 

2. If ‘R’ is the autocorrelation matrix of the observed signal and ‘p’ represents the 
cross-correlation between the desired signal and the observed signal, then the 
expression for the Wiener-Hopf equation is 

A. wopt = R × p 
B. wopt = R + p 
C. wopt = R - p 
D. wopt = p/R 

3. The weight update expression of the standard LMS algorithm is 

A. w(n + 1)  = w(n) +  μx[n]e[n] 
B. w(n + 1)  = w(n) - μx[n]e[n] 
C. w(n + 1)  = w(n) +  μx[n]e2 [n] 
D. w(n +  1)  = w(n) - μx[n]e2 [n]



λmax

min

Statements 1 and 2 are true
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4. If μ refers to the step size and λ refers to the eigen value of the autocorrelation 
matrix, then the condition for convergence of LMS algorithm is given by 

A. 0< μ< 2 
λmin 

B. 0< μ< 2 
λmax 

C. 0< μ< 2 
2 

D. 0< μ< 2 
λ2 

5. Statement 1: Wiener filter is based on the statistics of the input data. 
Statement 2: Wiener filter is an optimal filter with respect to minimum mean 

absolute error 

A. 
B. Statement 1 is correct, and Statement 2 is wrong 
C. Statement 1 is wrong, Statement 2 is correct 
D. Statements 1 and 2 are wrong 

6. The filter which changes its characteristics in accordance with the environment is 
termed as 

A. Optimal filter 
B. Non-linear filter 
C. Adaptive filter 
D. Linear filter 
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Chapter 12 
Case Study 

Learning Objectives 
After completing this chapter, the reader should be familiar with the following

• Applications of signal processing in speech signals
• ECG signal analysis
• Power line signal analysis 

Roadmap of the Chapter 
The case study discussed in this section focuses on the application of signal 
processing algorithms in the field of electrical and electronics engineering. Three 
case studies discussed in this section are (1) speech recognition, (2) QRS detection 
algorithm in ECG (3) power line signal analysis. Transform domain analysis of 
speech signal is discussed in the first case study. Analysis of ECG signal is the focus 
of second case study. Identification of different types of faults in power line signal is 
done in the third case study. 

12.1 Case Study 1: Speech Recognition Using MFCC 
(Mel-Frequency Cepstral Coefficient) 

Speech is the easiest and most widely used way of communication between humans. 
The interaction between a human and a computer is typical in the current scenario in 
the communication field. Communication between humans and computers can be 
made possible only with the help of hardware devices like keyboards, touch screens, 
mice, etc. However, humans prefer a more natural form of interaction than hardware 
devices. The speech signal is the most profound means of communication human 
beings use. For the human to human interaction, voice is the most significant feature, 
which helps us to recognize the speaker and extract the information from the 
speaker. The speech recognition system can be used to create documents from
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speech, saving more time and reducing the burden on a human. In general, voice 
samples contain more information, including the person’s gender and age. We can 
distinguish whether the voice belongs to a male or female, child or adult, based on 
the voice samples. Also, sometimes it reflects the state of mind of the speaker. The 
voice recognition method uses some of the information in the voice and identifies the 
speaker. Voice recognition is a technique that detects a voice sample from unique 
properties that may be acoustic or phonetic.
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Fig. 12.1 General block diagram of the speech recognition system 

The general block diagram of speech recognition system contains feature extrac-
tion, speaker modelling and pattern matching method to identify the speaker, which 
is illustrated in Fig. 12.1. In the first stage, a speech sample is considered an input to 
the system. Here the speech sample would be noise-free; to remove the noise 
components in the speech signal, preprocessing method can be used. The 
preprocessed speech signal is the input to the feature extraction process in the second 
stage of the system. Using the feature extraction approaches, some properties of 
speech, like acoustic or phonetic features, are extracted. Finally, in the third stage, 
training and testing of the speech recognition model is developed, which will give 
the final decision of the system (i.e.,) which speech belongs to whom. 

12.1.1 Speaker Identification 

The process of identifying a speaker’s voice from a group of speakers is called 
speaker identification. In this process, the voice of the input speaker is verified with 
the voice stored already in the database, and best match can be obtained using a 
pattern-matching algorithm. If the voice does not match the voices stored in the 
database, then the voice is a new one. The new voice can be updated in the database. 
The general block diagram of the speaker identification system is shown in Fig. 12.2.
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Fig. 12.2 Block diagram of speaker identification system 
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Fig. 12.3 General block diagram of a speaker verification system 

12.1.2 Speaker Verification System 

The process of authenticating a speaker based on the characteristics of voice samples 
is called speaker verification. In this system, the final output will be either accepted 
or rejected. The main applications of this system are military, aircraft and voice-
verified authentication areas. The block diagram of the speaker verification system is 
shown in Fig. 12.3. From this figure, it is possible to confirm that the major blocks in 
the speaker verification system are feature extraction, similarity identification and 
decision-maker. 

Feature extraction is the common block for both speaker recognition and verifi-
cation systems. In general, feature extraction approaches help us to extract some 
good features and characteristics from the voice samples. The mel-frequency 
cepstral coefficient (MFCC) is the most widely used feature extraction method. 
More detail about the MFCC is discussed in the next section.
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12.1.3 Mel-Frequency Cepstral Coefficient (MFCC) Feature 

The step-by-step procedure to compute the MFCC feature is discussed in this 
section. This procedure contains six major steps involved in the computation of 
MFCC; they are (1) pre-emphasis, (2) sampling and windowing, (3) fast Fourier 
transform (FFT), (4) mel filter bank, (5) logarithmic function and (6) discrete cosine 
transform. The block diagram of MFCC computation is depicted in Fig. 12.4. 

12.1.3.1 Pre-emphasis 

The voice samples are passed through a highpass filter, which is mathematically 
expressed as 

y n½ ]= x n½ ]- ax n- 1½ ] ð12:1Þ 

where x[n] is the input voice samples, ‘a’ is the filter constant and it takes the value 
between 0.9 to 1.0 and y[n] denotes the filtered voice samples. In this pre-emphasis 
process, the input voice samples are passed through a highpass filter, and the filtered 
output will emphasize the high-frequency component present in the input voice 
samples. 

The python code to read, normalize and display audio files is shown in Fig. 12.5, 
and its simulation results are shown in Fig. 12.6. 

From Fig. 12.6, it is possible to observe that the amplitude of the original audio 
signal is [-20,000, 20,000], whereas in the normalized audio, the amplitude varies 
from -1 to 1.  

12.1.3.2 Sampling and Windowing 

The speech signal is divided into small segments with a duration of 20–30 ms, which 
are called ‘frames’. While splitting the input voice samples may be allowed to 
overlap between the successive segments. Windowing can be used to avoid discon-
tinuity between consecutive segments. Also, the windowing technique smooths the 
extreme samples in both starting and ending of the segments. The commonly used 
windowing function is Hamming or Hanning. The process of windowing the input 
sequence is mathematically written as 

Input Voice 

Samples 

Pre-

emphasis 

Sampling & 

Windowing 
DFT 

Mel Filter 

Bank 

MFCC 
Log DCT 

Fig. 12.4 Block diagram of MFCC computation
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import numpy as np 
from scipy.io import wavfile 
import scipy.fftpack as fft 
from scipy.signal import get_window 
import IPython.display as ipd 
import matplotlib.pyplot as plt 
audio1 = "DSP_UV.wav" 
sample_rate, audio = wavfile.read(audio1) 
ipd.Audio(audio1) 
audio2=audio[50000:100000] 
duration = len(audio2)/sample_rate 
print(f"Sample rate: {sample_rate}Hz") 
print(f"Audio duration: {duration}s") 
t = np.linspace(0,duration,len(audio2)) 
plt.figure(figsize=(15,6)),plt.plot(t,audio2),plt.xlabel("Time (s)"),plt.ylabel("Amplitude") 
plt.title("Original Audio in Time domain"),plt.show() 
#Normalizing to amplitude ranging between +1 and -1 
normalizedAudio = audio2/np.max(np.abs(audio2)) 
plt.figure(figsize=(15,6)),plt.plot(t,normalizedAudio), 
plt.xlabel("Time"),plt.ylabel("Amplitude") 
plt.title("Normalized Audio in Time domain"),plt.show() 

Fig. 12.5 Python code for read, normalize and display audio file 
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Fig. 12.6 Plot of original and normalized audio signal



474 12 Case Study

def frame_audio(normalizedAudio, FFT_size=2048, hop_size=10, sample_rate=8000): 
    audio = np.pad(normalizedAudio, int(FFT_size / 2), mode='reflect') 
    frame_len = np.round(sample_rate * hop_size / 1000).astype(int) 
    frame_num = int((len(audio) - FFT_size) / frame_len) + 1 
    frames = np.zeros((frame_num,FFT_size)) 
    for n in range(frame_num): 
        frames[n] = audio[n*frame_len:n*frame_len+FFT_size] 
    return frames 
hop_size = 15 #ms 
FFT_size = 2048 
audio_framed = frame_audio(audio, FFT_size=FFT_size, hop_size=hop_size, 
sample_rate=sample_rate) 
print(f"Framed audio shape: {audio_framed.shape}") 
window = get_window("hann", FFT_size, fftbins=True) 
plt.figure,plt.subplot(3,1,1),plt.plot(window) 
plt.title("Hanning Window"),plt.xlabel("Samples"),plt.ylabel("Amplitude"),plt.grid(True) 
audio_win = audio_framed*window 
plt.subplot(3,1,2),plt.plot(audio_framed[72]) 
plt.xlabel("Samples"),plt.ylabel("Amplitude"),plt.title("Before Windowing") 
plt.subplot(3,1,3),plt.plot(audio_win[72]),plt.xlabel("Samples"),plt.ylabel("Amplitude") 
plt.title("After Windowing"),plt.tight_layout(),plt.show() 

Fig. 12.7 Python code for framing and windowing audio signal 

y n½ ]= x n½ ]×w n½ ] ð12:2Þ 

where w[n] represents the windowing function. 
The python code for framing and windowing of normalized audio signal is shown 

in Fig. 12.7. From this figure, it is possible to understand that the first part is the 
framing/segmenting/partitioning of the audio signal. Then Hanning window is used 
for the windowing operation on the partitioned audio signal in the second part. The 
simulation result of the python code given in Fig. 12.7 is shown in Fig. 12.8. From 
this Fig. 12.8, it is evident the importance of the windowing concept. The 
windowing method is used to smoothen the initial and end of the audio signal frame. 

12.1.3.3 Discrete Fourier Transform (DFT) 

DFT is a well-known transform to convert the time-domain information of speech 
signal into frequency-domain information. Also, it extracts useful information/some 
features of the speech signal without losing the information present in it. 

The python code to convert a time-domain audio signal into a frequency-domain 
magnitude spectrum is shown in Fig. 12.9. ‘FFT’ library is used here to compute the



magnitude spectrum. The output of the python code given in Fig. 12.9 is displayed in 
Fig. 12.10. Frame number 72 is displayed. 
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Fig. 12.8 Result of Hanning window and windowing audio signal 

audio_winT = np.transpose(audio_win) 
audio_fft = np.empty((int(1 + FFT_size // 2), audio_winT.shape[1]), dtype=np.complex64, order='F') 
for n in range(audio_fft.shape[1]): 
    audio_fft[:, n] = fft.fft(audio_winT[:, n], axis=0)[:audio_fft.shape[0]] 
audio_fft = np.transpose(audio_fft) 
frameNo = 72 
f_axis = fft.fftfreq(audio_framed[frameNo].size,1/sample_rate)[0:audio_framed[frameNo].size//2] 
plt.figure 
plt.plot(f_axis,2/audio_framed[frameNo].size*np.abs(audio_fft[frameNo][0:audio_framed[0].size//2])) 
plt.title(f"FFT of Frame:{frameNo}") 
plt.xlabel("Frequency"),plt.ylabel("Magnitude") 
plt.show() 
audio_power = np.square(np.abs(audio_fft)) 
print(audio_power.shape) 
freq_min = 0 
freq_high = sample_rate / 2 
mel_filter_num = 10 
print(f"Minimum frequency: {freq_min}"),print(f"Maximum frequency: {freq_high}") 

Fig. 12.9 Magnitude spectrum computation using FFT
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Fig. 12.10 Magnitude spectrum of frame number 72 
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Fig. 12.11 Frequency response of mel-frequency bandpass filter 

12.1.3.4 Mel-Frequency Bandpass Filter 

The mel-frequency bandpass filter is a triangular-shaped multiple bandpass filter. 
DFT obtains the magnitude spectrum of the speech signal, and this spectrum is 
multiplied with the set of triangular bandpass filters to smoothen the magnitude 
spectrum of speech signal, which is expressed as 

Y k½ ]=X k½ ]×H k½ ] ð12:3Þ 

where H[k] is the magnitude spectrum of the triangular bandpass filter. The sample 
triangular bandpass filter frequency responses are shown in Fig. 12.11. This figure 
shows a set of triangular filters that are used to compute weighted sum of filter 
spectral components so that the output of process approximates to a mel scale. Each 
filter’s magnitude response is triangular in shape, and the magnitude is unity at the 
centre frequency and decreases linearly to zero at the centre frequency of two 
adjacent filters. The final output is the sum of its filtered spectral components.
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def freq_to_mel(freq): 
    return 2595.0 * np.log10(1.0 + freq / 700.0) 

def met_to_freq(mels): 
    return 700.0 * (10.0**(mels / 2595.0) - 1.0) 

def get_filter_points(fmin, fmax, mel_filter_num, FFT_size, sample_rate=8000): 
    fmin_mel = freq_to_mel(fmin) 
    fmax_mel = freq_to_mel(fmax) 
    print("MEL min: {0}".format(fmin_mel)) 
    print("MEL max: {0}".format(fmax_mel)) 
    mels = np.linspace(fmin_mel, fmax_mel, num=mel_filter_num+2) 
    freqs = met_to_freq(mels) 
    return np.floor((FFT_size + 1) / sample_rate * freqs).astype(int), freqs 
filter_points, mel_freqs = get_filter_points(freq_min, freq_high, mel_filter_num, FFT_size, 
sample_rate=sample_rate) 
print(f"Filter Points : {filter_points}") 

def get_filters(filter_points, FFT_size): 
    filters = np.zeros((len(filter_points)-2,int(FFT_size/2+1))) 
    for n in range(len(filter_points)-2): 
        filters[n, filter_points[n] : filter_points[n + 1]] = np.linspace(0, 1, filter_points[n + 1] - 
filter_points[n]) 
        filters[n, filter_points[n + 1] : filter_points[n + 2]] = np.linspace(1, 0, filter_points[n + 2] - 
filter_points[n + 1]) 
    return filters 
filters = get_filters(filter_points, FFT_size) 
plt.figure 
for filter in filters: 
    plt.plot(filter) 
plt.title("Mel Filterbank"),plt.xlabel("Frequency"),plt.ylabel("Weights") 
plt.show() 
enorm = 2.0 / (mel_freqs[2:mel_filter_num+2] - mel_freqs[:mel_filter_num]) 
filters *= enorm[:, np.newaxis] 
plt.figure 
for n in range(filters.shape[0]): 
    plt.plot(filters[n]) 
plt.title("Normalized Mel Filterbank"),plt.xlabel("Frequency"),plt.ylabel("Weights") 
plt.show() 

Fig. 12.12 Python code for design of mel-filter bank 

The python code to design a mel-filter bank and normalized mel-filter bank is 
shown in Fig. 12.12. The simulation result of the python code given in Fig. 12.12 is 
shown in Fig. 12.13. 

Figure 12.13 shows that the gain of the filters in the mel-filter bank is unity, 
whereas, in the normalized mel-filter bank, the gain of the filters is different.
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Fig. 12.13 Mel-filter bank and normalized mel-filter bank 

audio_filtered = np.dot(filters, np.transpose(audio_power)) 
audio_log = 10.0 * np.log10(audio_filtered) 
plt.figure,plt.subplot(2,1,1),plt.plot(audio_filtered), 
plt.xlabel("Time in (sec)"),plt.ylabel("Amplitude"),plt.title("Filtered Signal") 
plt.subplot(2,1,2),plt.plot(audio_log), 
plt.xlabel("Frequency in (Hz)"),plt.ylabel("Magnitude") 
plt.title("Log Power Spectrum") 
plt.tight_layout() 

Fig. 12.14 Python code for the computation of cepstral components 

12.1.3.5 Log Operation 

The logarithmic function is used to compute cepstral components from the filtered 
acoustic signal. The python code to compute the cepstral components is given in 
Fig. 12.14, and its simulation result is shown in Fig. 12.15. This figure makes it 
possible to understand the use of the logarithmic function for the MFCC computa-
tion. The amplitude of the filtered signal is too high; the role of the logarithmic 
function is to reduce the amplitude level. 

12.1.3.6 Discrete Cosine Transform (DCT) 

The final mel-frequency cepstral coefficient is obtained by taking DCT on the 
cepstral component, which is the output of the logarithmic function. The mathemat-
ical expression of the computation MFCC is given by
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Fig. 12.15 Plot of filtered signal and its cepstral components 

C n½ ]= 
L- 1 

k = 0 

Y k½ ] cos πn 
N 

k-
1 
2

ð12:4Þ 

where n = 0, 1, 2, . . ., N - 1 and N denote the number of triangular bandpass filters. 
L represents the number of mel-scale cepstral coefficients. The primary use of DCT 
is to extract the output of bandpass filters to generate mel scale coefficients, and also 
it converts the frequency-domain spectrum into a time-domain signal. The outcome 
of the DCT is called ‘mel-scale cepstral coefficients’ (MFCC). These MFCC act as a 
feature of the voice signal, which helps for the different speech signal processing 
applications. 

The python code to compute the DCT of the logarithmic function output is given 
in Fig. 12.16. The simulation result of the python code, which is shown in Fig. 12.16, 
is displayed in Fig. 12.17. 

These features fed into the different classification methods, like SVM, KNN, 
random forest, etc., to identify and recognize the speakers. 

12.2 Case Study 2: QRS Detection in ECG Signal Using 
Pan-Tomkins Algorithm 

Electrocardiogram (ECG or EKG) is the electrical indication of the contractile 
process of the heart. Every heart contraction produces an electrical impulse captured 
by electrodes placed on the skin. ECG gives information about the heart rate, rhythm 
and morphology. ECG is characterized by a periodic wave sequence of P, QRS, J, T 
and U wavelets associated with each heartbeat. The QRS complex has a high clinical



significance, and its detection is the first stage of ECG signal processing. From the 
position of the QRS complex, it is possible to obtain the positions of P and T waves. 
The normal ECG signal with different intervals of wavelets is shown in Fig. 12.18. 
From this figure, it is possible to know that, in particular, QRS complex as compared 
to the other waves has the steepest slope, has the highest amplitude in most cases,
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def dct(dct_filter_num, filter_len): 
    basis = np.empty((dct_filter_num,filter_len)) 
    basis[0, :] = 1.0 / np.sqrt(filter_len) 
    samples = np.arange(1, 2 * filter_len, 2) * np.pi / (2.0 * filter_len) 
    for i in range(1, dct_filter_num): 
        basis[i, :] = np.cos(i * samples) * np.sqrt(2.0 / filter_len) 
    return basis 
dct_filter_num = 12 
dct_filters = dct(dct_filter_num, mel_filter_num) 
cepstral_coefficents = np.dot(dct_filters, audio_log) 
cepstral_coefficents.shape 
print(f"MFCCs : {cepstral_coefficents[:, 1:dct_filter_num+1]}") 
plt.figure(figsize=(10,6)) 
c = plt.imshow(cepstral_coefficents[:,1:dct_filter_num+1], aspect='auto', 
origin='lower',cmap='Spectral'); 
plt.title("Mel Frequency Ceptral Coefficiernt"),plt.ylabel("MFCC"),plt.xlabel("Frames") 
plt.tight_layout(),plt.colorbar(c) 

Fig. 12.16 Python code for the computation of DCT 
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lasts for less than 0.2 s, has a peak at R and is preceded by a P wave and succeeded 
by a T wave for a normal ECG.
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Fig. 12.18 Normal ECG showing different waves 
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Fig. 12.19 Block diagram QRS Detection 

QRS detection consists of three major processing steps; they are (1) linear digital 
filtering, (2) non-linear transformation and decision rule algorithms. Let us discuss 
the Pan and Tompkins QRS detection algorithm in this case study. This algorithm 
starts with the linear process, which includes a bandpass filter, a derivative operation 
and moving window integration. The second step is the non-linear transformation, 
which uses amplitude squaring. The final stage is a decision rule algorithm, which 
includes adaptive thresholds and QRS detection. The block diagram of QRS com-
plex detection in ECG using the Pan and Tompkins algorithm is given in Fig. 12.19. 

12.2.1 ECG Signal Preprocessing 

The normal ECG signals are time-varying with small amplitude ranging from 10 μV 
to 5 mV. The typical amplitude of the ECG signal is 1 mV and their frequencies vary 
from 0.05 to 100 Hz. The ECG signal is mainly concentrated in the 0.05–35 Hz



range. For the ECG signal analysis, the system requires a noise-free ECG signal to 
get an accurate prediction. However, ECG signals are affected by various noises and 
artifacts practically. The ECG analysis system’s first step is to remove its noise by 
using the filter. 
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12.2.1.1 Bandpass filter 

The bandpass filter is used to reduce the effect of muscle noise, powerline interfer-
ence, baseline wander and T wave interference. The desirable passband frequency to 
maximize the QRS energy is approximately 5–15 Hz. In this case study, the 
Butterworth filter is used with order 3, and passband frequency [0.5, 15] 
Hz. Instead of bandpass filter, cascaded lowpass and highpass filters may be 
preferred. Filtering the ECG signal, ‘butter’ and ‘lfilter’ python commands are 
used here. The python code to read the ECG data and noise removal is given in 
Fig. 12.20, and its corresponding output is shown in Fig. 12.21. 

From Fig. 12.21, it is possible to observe that the raw ECG signal has shifted the 
amplitude to 1 mV, whereas the filtered ECG signal amplitude is between -1 
and +1. 

# QRS peak detection in ECG using Pan-Tomkins algorithm 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.signal import butter, lfilter 
x0=np.loadtxt('ecg_data_1.csv',skiprows=1, delimiter=',') 
signal_freq,f_low,f_high,filt_order = 250,0.5,15.0,3 
y0=x0[:,1]; 
qrs_peak_value,noise_peak_value,threshold_value = 0.0,0.0,0.0; 
refractory_period = 120  # Change proportionally when adjusting frequency (in samples). 
qrs_peak_filtering_factor,noise_peak_filtering_factor,qrs_noise_diff_weight = 0.125,0.125,0.25; 
# Detection results. 
qrs_peaks_indices = np.array([], dtype=int) 
noise_peaks_indices = np.array([], dtype=int) 
#Bandpass filtering 
Fs = 0.5 * signal_freq 
low, high = f_low / Fs, f_high / Fs; 
b, a = butter(filt_order, [low, high], btype="band") 
y1 = lfilter(b, a, y0)#Band pass filtering 
plt.figure(1),plt.subplot(2,1,1),plt.plot(y0),plt.title('Raw ECG Signal') 
plt.xlabel('Time-->'),plt.ylabel('Amplitude in mV'),plt.subplot(2,1,2),plt.plot(y1),  
plt.title('Filtered ECG Signal'),plt.xlabel('Time-->'),plt.ylabel('Amplitude in mV') 
plt.tight_layout() 

Fig. 12.20 Python code for linear filtering
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Fig. 12.21 Raw and filtered ECG signals 

12.2.1.2 Derivative Process 

After bandpass filtering, the ECG signal is differentiated to provide QRS complex 
slope information. ‘np.ediff1d’ python command is used here to obtain the derivative 
of the filtered ECG signal. The first-order derivative equation can be written as 

y n½ ]= 
x n- 1½ ]- x n½ ]

2
ð12:5Þ 

where x[n] denotes the input signal and y[n] represents the derivative output signal. 

12.2.1.3 Squaring Operation 

After the derivative, the resultant signal is squared point by point. The squaring 
operation can be written as 

y n½ ]= x2 n½ ] ð12:6Þ 

The squaring operation makes all the data points positive and does non-linear 
amplification of the derivative output emphasizing the higher frequencies.
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12.2.2 Moving Window Integration 

Moving window integration helps to obtain the waveform feature information in 
addition to the slope of the R wave. The mathematical equation to perform moving 
window integration is given by 

y n½ ]= 
1 
N 

x n- N- 1ð Þ½ ] þ  x n- N - 2ð Þ½ ] þ  ⋯þ x n½ ]f 12:7Þ 

where N is the number of samples in the width of the integration window. In this case 
study, the length of the integration window is chosen as 15. The length of the moving 
window integration (N ) is important for QRS wave detection. Generally, the value of 
N should be approximately the same as the widest possible QRS complex. If the 
window length (N ) is large, the integration waveform will merge the QRS complex 
and T wave together. If the window length (N ) is small, some QRS complexes will 
produce several peaks in the integration waveform. This may cause difficulty in the 
subsequent QRS detection. The python code for the derivative process, squaring and 
moving window integration is shown in Fig. 12.22, and its corresponding output is 
displayed in Fig. 12.23. 

12.2.3 Fiducial Mark 

The QRS wave corresponds to the rising edge of the integrated waveform. The time 
duration of the rising edge is equal to the width of the QRS wave. A fiducial mark for 
the temporal location of the QRS wave can be obtained from the rising edge, and the 
desired waveform point is marked as peak of the R wave. The python code for the

# Python code for derivative, squaring, and moving window integration 
y2=np.ediff1d(y1);#Derivative 
y3=y2**2;#Squaring 
integral_window=15; 
y4=np.convolve(y3, np.ones(integral_window));#Moving Window Integration 
plt.figure(2),plt.subplot(3,1,1),plt.plot(y2),plt.title('Derivative ECG output') 
plt.xlabel('Time-->'),plt.ylabel('Amp. in mV') 
plt.subplot(3,1,2),plt.plot(y3),plt.title('Squared Derivative output') 
plt.xlabel('Time-->'),plt.ylabel('Amp. in mV') 
plt.subplot(3,1,3),plt.plot(y4),plt.title('Moving window integration output') 
plt.xlabel('Time-->'),plt.ylabel('Amp. in mV') 
plt.tight_layout() 

Fig. 12.22 Python code for derivative, squaring and moving window integration



peak detection of the integrated ECG measurement is given in Fig. 12.24. From this 
figure, it is possible to observe that the position of the peak value results in the 
variable ‘ind’ and the detected peak value can be obtained in the variable 
‘detected_peaks_vals’.

12.2 Case Study 2: QRS Detection in ECG Signal Using Pan-Tomkins Algorithm 485

0 

0 

A
m

p
. 
in

 m
V

A
m

p
. 
in

 m
V

A
m

p
. 
in

 m
V

 

0.0 

0.05 

–0.25 
0.00 

0.25 

0.5 

500 

500 

1000 

1000 

1500 2000 2500 

1500 2000 2500 

0 500 1000 1500 2000 2500 

Time--> 

Moving window integration output 

Squared Derivative output 

Derivative ECG output 

Time--> 

Time--> 

Fig. 12.23 Simulation result of python code is given in Fig. 12.22 

# Fiducial mark - peak detection on integrated measurements. 
spacing=50 
kk = y4.size 
y5 = np.zeros(kk + 2 * spacing) 
y5[:spacing] = y4[0] - 1.e-6 
y5[-spacing:] = y4[-1] - 1.e-6 
y5[spacing:spacing + kk] = y4 
peak_candidate = np.zeros(kk) 
peak_candidate[:] = True 
for s in range(spacing): 
    start = spacing - s - 1 
    h_b = y5[start: start + kk]  # before 
    start = spacing 
    h_c = y5[start: start + kk]  # central 
    start = spacing + s + 1 
    h_a = y5[start: start + kk]  # after 
    peak_candidate = np.logical_and(peak_candidate, np.logical_and(h_c > h_b, h_c > h_a)) 
ind = np.argwhere(peak_candidate) 
ind = ind.reshape(ind.size)#detected_peaks_indices 
detected_peaks_vals=y4[ind] 

Fig. 12.24 Python code for QRS peak detection
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12.2.4 Decision Rule Approach 

The decision rule consists of adaptive threshold selection. The thresholds are 
adjusted automatically based on the noise in the ECG signal. The adaptive two 
thresholds (Th1 and Th2) are calculated using the equation given below. 

Th1=NPKþ 0:25 SPK-NPKð Þ  
Th2= 0:5Th1

ð12:8Þ 

where NPK represents the running estimate of noise peak and SPK denotes the 
running estimate of the signal peak, which are computed as 

SPK= 0:125Pkþ 0:875SPK if Pk is signal peak 

NPK= 0:125Pkþ 0:875NPK if Pk is noise peak 

where Pk denotes peak. A peak is a local maximum determined by observing when 
the signal changes direction within a predefined time interval. The SPK is a peak the 
algorithm has already established to be a QRS complex. The NPK is any peak that is 
not related to the QRS. Here, the thresholds Th1 and Th2 are based on running 
estimates of SPK and NPK. When a new peak is detected, it must first be classified as 
a signal peak or noise peak. The peak is a signal peak if the peak exceeds Th1, and 
the QRS is obtained using Th2. The python code for threshold selection and the final 
QRS detection is given in Fig. 12.25. 

The simulation result of the python code given in Fig. 12.25 is shown in 
Fig. 12.26. From this figure, it is possible to observe that the R peak of the integrated 
ECG signal is detected, and the R peak of the filtered ECG is also shown. 

Inferences 
The following inferences can be made from Figs. 12.21, 12.23 and 12.26. 

1. The raw ECG signal is affected by the baseline wander (i.e. the base x-axis of a 
signal moves up and down rather than straight). 

2. The bandpass filtered signal shows that the baseline wander is removed and the x-
axis of the signal is in a straight line. 

3. The derivated ECG signal output highlights the positive and negative peaks of the 
ECG signal very clearly. The squared ECG signal displays that all the negative 
peaks are brought up into the positive peak. These results can be found in 
Fig. 12.23. 

4. The QRS peak marked moving window integrated ECG signal and the final R 
peak marked filtered ECG signal are displayed, which can be found in Fig. 12.26.
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for ind, detected_peaks_val in zip(ind, detected_peaks_vals): 
    try: 
        last_qrs_index = qrs_peaks_indices[-1] 
    except IndexError: 
        last_qrs_index = 0 
    if ind - last_qrs_index > refractory_period or not qrs_peaks_indices.size: 
        if detected_peaks_val > threshold_value: 
            qrs_peaks_indices = np.append(qrs_peaks_indices, ind) 
            qrs_peak_val = qrs_peak_filtering_factor * detected_peaks_val + \ 

   (1 - qrs_peak_filtering_factor) * qrs_peak_value 
        else: 
            noise_peaks_indices = np.append(noise_peaks_indices, ind) 
            noise_peak_value = noise_peak_filtering_factor * detected_peaks_val + \ 

     (1 - noise_peak_filtering_factor) * noise_peak_value 
        threshold_value = noise_peak_value + \ 
                               qrs_noise_diff_weight * (qrs_peak_value - noise_peak_value) 
qrs_peaks_indices_fin=qrs_peaks_indices-8; 
plt.figure(3),plt.subplot(2,1,1),plt.plot(y4),plt.title('Integrated ECG with QRS peak marked') 
plt.scatter(x=qrs_peaks_indices, y=y4[qrs_peaks_indices], c="red", s=10, zorder=2) 
plt.xlabel('Time-->'),plt.ylabel('Amplitude in mV') 
plt.subplot(2,1,2),plt.plot(y1),plt.title('Filterd ECG with R peak marked') 
plt.scatter(x=qrs_peaks_indices_fin, y=y1[qrs_peaks_indices_fin], c="red", s=10, zorder=2) 
plt.xlabel('Time-->'),plt.ylabel('Amplitude in mV') 
plt.tight_layout() 

Fig. 12.25 Python code for adaptive threshold selection and QRS detection 
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Fig. 12.26 Simulation result of the python code given in Fig. 12.25
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12.3 Case Study 3: Power Quality Disturbance Detection 

Power quality refers to maintaining a sinusoidal power distribution bus voltage at 
rated magnitude and frequency. The significant increase in non-linear load and the 
increased usage of semiconductor devices, lighting controls, solid-state switching 
devices, inverters and relaying equipment are causing non-linear loads, which lead to 
power quality disturbances. The basic power quality disturbances (PQD) are voltage 
sag, voltage swell, voltage interruption, harmonics, flickers, etc. A combination of 
these disturbances can occur simultaneously. Table 12.1 summarizes the causes and 
impact of power quality disturbances. 

Effective detection and recognition of power quality disturbances are necessary to 
ensure the reliability of electric power quality. This section focuses on the simulation 
of the power quality disturbance and analysis of power quality disturbance signals, 
which is depicted in Fig. 12.27. 

The first step in this direction is to generate different types of power quality 
disturbances. Mathematical models can be developed for different types of power

Table 12.1 Causes and effects of power quality disturbances 

Power 
quality 
disturbance 

1 Voltage sag 1. Inductive load 
2. Switching on and off of large loads 

1. Tripping of sensi-
tive equipment 
2. Tripping of motors 

2 Voltage 
swell 

1. Capacitor switching 
2. Switch off large loads 

1. Damage to insula-
tion and windings 
2. Damage to power 
supplies 

3 Harmonics 1. Non-linear loads 
2. Rectifier type equipment 

1. Malfunctioning of 
relays and equipment 
2. Capacitor failure 

4 Momentary 
interruption 

1. Equipment failure 
2. Control malfunction 

1. Loss of supply volt-
age to consumer 
equipment 
2. Shutdown of 
computers 

5 Flicker 1. Machinery with rapid fluctuations in load 
current or voltage 
2. Loads that cause voltage fluctuation include 
arc welding machines, arc furnaces, etc. 

1. Misoperation of 
relays and contactors 
2. Neurological prob-
lems in humans 

Simulation of PQD Analysis of PQD 
Signal Processing 

Techniques 

Fig. 12.27 Objectives of this section



quality disturbances. The second step is to analyse different types of power quality 
disturbances using time-frequency and time-scale representation.

12.3 Case Study 3: Power Quality Disturbance Detection 489

Table 12.2 Mathematical model of power quality disturbances 

S. No. PQ disturbance Mathematical model Parameters 

1 Voltage sag A(1 - α(u(t - t1) - u(t - t2)))sin 
(ωt) 

0.1 < α < 0.9 

2 Voltage swell A(1 + α(u(t - t1) - u(t - t2)))sin 
(ωt) 

0.1 < α < 0.9 

3 Harmonics Asin(ωt) +  7 
n= 3αn sin nωtð Þ 0.05 < αn < 0.15 

4 Momentary 
interruption 

A(1 - α(u(t - t1) - u(t - t2)))sin 
(ωt) 

0.9 < α < 1 

5 Flicker (1 + λ sin(kωt)) * sin(ωt) 0.1< λ < 0.2; 
5 < k < 50 

The mathematical models of different types of power quality disturbances are 
given in Table 12.2. 

12.3.1 Generation of Power Quality Disturbance 

The generation of various power quality disturbances like voltage sag, voltage swell 
and momentary interruption are simulated, and their results are plotted. The python 
code which generates various power quality disturbances is shown in Fig. 12.28, and 
the corresponding output is shown in Fig. 12.29. 

The following observations can be drawn from Fig. 12.29: 

1. The amplitude of a pure sine wave varies from-1 to +1. It is a sine wave of 50 Hz 
frequency. 

2. During the power quality disturbance ‘sag’, the amplitude of sine wave decreases 
for a brief period of time. 

3. During the power quality disturbance ‘swell’, the amplitude of sine wave 
increases for a brief period of time. 

4. During ‘momentary interruption’, the amplitude of sine wave approaches zero 
value for a brief period of time. 

5. During power quality disturbance, the characteristics of the signal (amplitude of 
the signal) vary with respect to time; hence, the power quality disturbances can be 
considered as a non-stationary signal.
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#Power Quality Disturbance 
import numpy as np 
import matplotlib.pyplot as plt 
A,fs,f,N,ph = 1,1000,50,200,0 
T = 1/fs 
t = np.linspace(0,N*T,N) 
#Pure sine wave 
pure_sine=np.sin(2*np.pi*f*t+ ph) 
#Power quality disturbance 
sag = np.sin(2*np.pi*f*t+ ph) - 0.5*np.sin(2*np.pi*f*t+ ph)*((t<0.15)&(t>0.08)) 
swell = np.sin(2*np.pi*f*t+ ph) + 0.5*np.sin(2*np.pi*f*t+ ph)*((t<0.15)&(t>0.08)) 
mi = np.sin(2*np.pi*f*t+ ph) - 0.98*np.sin(2*np.pi*f*t+ ph)*((t<0.15)&(t>0.08)) 
plt.subplot(2,2,1),plt.plot(t,pure_sine),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Pure sine wave') 
plt.subplot(2,2,2),plt.plot(t,sag),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Sag') 
plt.subplot(2,2,3),plt.plot(t,swell),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Swell') 
plt.subplot(2,2,4),plt.plot(t,mi),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Momentary interruption') 
plt.tight_layout() 

Fig. 12.28 Python code to simulate power quality disturbances 
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Fig. 12.29 Result of python code shown in Fig. 12.28
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import numpy as np 
import matplotlib.pyplot as plt 
A,fs,f,N,ph = 1,1000,50,200,0 
T = 1/fs 
t = np.linspace(0,N*T,N) 
#Pure sine wave 
pure_sine=np.sin(2*np.pi*f*t+ ph) 
#Power quality disturbance 
har = np.sin(2*np.pi*f*t+ ph)+0.2*np.sin(2*np.pi*3*f*t+ ph)+0.3*np.sin(2*np.pi*5*f*t+ ph) 
lamda=0.2 
k=50 
flicker=(1+lamda*np.sin(k*2*np.pi*f*t+ ph)) * np.sin(2*np.pi*f*t+ ph) 
#Plotting the results 
plt.subplot(3,1,1),plt.plot(t,pure_sine),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Pure sine wave') 
plt.subplot(3,1,2),plt.plot(t,har),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Harmonics') 
plt.subplot(3,1,3),plt.plot(t,flicker),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Flicker') 
plt.tight_layout() 

Fig. 12.30 Python code to simulate harmonics and flicker 
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Fig. 12.31 Result of python code shown in Fig. 12.30 

12.3.2 Simulation of Power Quality Disturbance 

The other power quality disturbances like ‘harmonics’ and ‘flicker’ are simulated 
using python. The python code which performs this task is shown in Fig. 12.30, and 
the corresponding output is shown in Fig. 12.31.
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From Fig. 12.31, the following inferences can be drawn 

1. A harmonic is an integer multiple of fundamental frequency. The fundamental 
frequency of the sinusoidal signal is 50 Hz. The odd harmonics of the signal are 
added to the original sinusoidal signal to obtain the harmonic signal. 

2. The term ‘flicker’ implies the effect the fluctuations in electric voltage have on 
electrical lighting devices. Loads, like arc furnaces, saw mills, welding machines 
and high-powered engines with fast stop-and-start cycle, can give rise to the 
phenomenon of flicker. 

12.3.3 Time-Frequency Representation of Power Quality 
Disturbance 

Time-frequency representation is a good tool to analyse non-stationary signal. 
Spectrogram is a square magnitude of short-time Fourier transform (STFT). STFT 
gives two-dimensional representation of a one-dimensional signal. In this section, 
the built-in function ‘plt.specgram’ is used here to obtain the time-frequency repre-
sentation of different types of power quality disturbance. The choice of the window 
function and the width of the window function is important in obtaining good time-
frequency representation so that one obtains good time and frequency resolution. 
The python code to obtain the time-frequency plot of normal sinusoidal waveform 
and sinusoidal waveform with sag is shown in Fig. 12.32, and the corresponding 
output is shown in Fig. 12.33. 

#Time-Frequency representation of sag 
import numpy as np 
import matplotlib.pyplot as plt 
A,fs,f,N,ph = 1,1000,50,256,0 
T = 1/fs 
t = np.linspace(0,N*T,N) 
#Pure sine wave 
pure_sine=np.sin(2*np.pi*f*t+ ph) 
#Generation of sag 
sag = np.sin(2*np.pi*f*t+ ph) - 0.5*np.sin(2*np.pi*f*t+ ph)*((t<0.15)&(t>0.08)) 
#Plotting the signal and its STFT 
plt.subplot(2,2,1),plt.plot(t,pure_sine),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Pure sine wave') 
plt.subplot(2,2,2),plt.plot(t,sag),plt.xlabel('Time'), plt.ylabel('Amplitude'),plt.title('Sag') 
plt.subplot(2,2,3),plt.specgram(pure_sine, Fs=fs, NFFT=32, noverlap=1,window =None) 
plt.xlabel('Time'),plt.ylabel('Frequency'),plt.title('Spectrogram of sine wave') 
plt.subplot(2,2,4),plt.specgram(sag, Fs=fs, NFFT=32, noverlap=1,window =None) 
plt.xlabel('Time'),plt.ylabel('Frequency'),plt.title('Spectrogram of Sag') 
plt.tight_layout() 

Fig. 12.32 STFT of sinusoidal signal and sinusoidal signal with ‘sag’
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Fig. 12.33 Result of python code shown in Fig. 12.32 

From Fig. 12.33, it is possible to infer that the short-time Fourier transform of 
pure sinusoidal signal shows a horizontal line at 50 Hz, which indicates that the 
generated sinusoidal signal has a 50 Hz frequency component. The STFT of the sag 
waveform clearly indicates the starting and ending of the sag in the sinusoidal 
waveform. 

The python code to obtain the time-frequency representation of a sinusoidal 
signal with momentary interruption is given in Fig. 12.34, and its simulation result 
is depicted in Fig. 12.35. 

Figure 12.35 represents the time-frequency representation of momentary inter-
ruption in a power line signal. Momentary interruption refers to zeroing of the 
amplitude of the sinusoidal signal for a brief period of time. From Fig. 12.35, it  is  
possible to observe that the time-frequency representation of momentary interruption 
is different from the time-frequency representation of the pure sinusoidal waveform. 
Thus, time-frequency representation clearly distinguishes pure sinusoidal signal 
from momentary interruption. 

12.3.4 Time-Scale Representation of Power Quality 
Disturbance 

Time-scale representation can be obtained using wavelet transform. Wavelet trans-
form has the ability to perform multi-resolution analysis of the signal. In this section,
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#Time-Frequency representation of MI 
import numpy as np 
import matplotlib.pyplot as plt 
A,fs,f,N,ph = 1,1000,50,256,0 
T = 1/fs 
t = np.linspace(0,N*T,N) 
#Pure sine wave 
pure_sine=np.sin(2*np.pi*f*t+ ph) 
#Generation of sag 
mi = np.sin(2*np.pi*f*t+ ph) - 0.98*np.sin(2*np.pi*f*t+ ph)*((t<0.15)&(t>0.08)) 
#Plotting the signal and its STFT 
plt.subplot(2,2,1),plt.plot(t,pure_sine),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Pure sine wave') 
plt.subplot(2,2,2),plt.plot(t,mi),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Momentary interruption') 
plt.subplot(2,2,3),plt.specgram(pure_sine, Fs=fs, NFFT=16, noverlap=1,window =None) 
plt.xlabel('Time'),plt.ylabel('Frequency'),plt.title('Spectrogram of sine wave') 
plt.subplot(2,2,4),plt.specgram(mi, Fs=fs, NFFT=16, noverlap=1,window =None) 
plt.xlabel('Time'),plt.ylabel('Frequency'),plt.title('Spectrogram of MI') 
plt.tight_layout() 

Fig. 12.34 Python code for Time-frequency representation of momentary interruption 
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Fig. 12.35 Time-frequency representation of momentary interruption



time-scale representation of power quality disturbance is obtained using continuous 
wavelet transform. The library ‘pywavelet’ is used here to obtain the scalogram of 
the signal. Scalogram represents the square magnitude to continuous wavelet trans-
form. The choice of the wavelet and the scale are important in obtaining good time-
scale representation of the signal. The python code which obtains the time-scale 
representation of ‘momentary interruption (MI)’ is shown in Fig. 12.36, and the 
corresponding output is shown in Fig. 12.37.
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#Scalogram of Momentary Interruption 
import numpy as np 
import matplotlib.pyplot as plt 
import pywt 
A,fs,f,N,ph = 1,1000,50,200,0 
T = 1/fs 
t = np.linspace(0,N*T,N) 
#Pure sine wave 
pure_sine=np.sin(2*np.pi*f*t+ ph) 
#Momentary Interruption (MI) 
mi = np.sin(2*np.pi*f*t+ ph) - 0.98*np.sin(2*np.pi*f*t+ ph)*((t<0.15)&(t>0.08)) 
#Scalogram 
scale = [1.,2.] 
coef1,freqs1=pywt.cwt(pure_sine,scale,'gaus1') 
coef2,freqs2=pywt.cwt(mi,scale,'gaus1') 
#Plotting the result 
plt.subplot(2,2,1),plt.plot(t,pure_sine),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('Pure sine wave') 
plt.subplot(2,2,2),plt.plot(t,mi),plt.xlabel('Time'), plt.ylabel('Amplitude'), 
plt.title('MI'),plt.subplot(2,2,3), 
plt.imshow(abs(coef1),extent=[0,200,10,1],interpolation='bilinear',cmap='bone', 
           aspect='auto',vmax=abs(coef1).max(),vmin=-abs(coef1).max()) 
plt.gca().invert_yaxis(),plt.xticks(np.arange(0,201,25)) 
plt.xlabel('Time'),plt.ylabel('Scale'), plt.title('Scalogram of Sinewave'),plt.subplot(2,2,4), 
plt.imshow(abs(coef2),extent=[0,200,10,1],interpolation='bilinear',cmap='bone', 
           aspect='auto',vmax=abs(coef2).max(),vmin=-abs(coef2).max()) 
plt.gca().invert_yaxis(),plt.xticks(np.arange(0,201,25)) 
plt.xlabel('Time'),plt.ylabel('Scale'), plt.title('Scalogram of MI') 
plt.tight_layout() 

Fig. 12.36 Python code to obtain the scalogram of momentary interruption 

From Fig. 12.37, it is possible to observe that the scalogram of signal with 
momentary interruption is different from the scalogram of a normal sinusoidal 
signal. This implies that continuous wavelet transform at the proper scale can 
distinguish power quality disturbances from the normal signal.
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Appendix 

Chapter 1: Generation Of Continuous-Time Signals 

Answers to PreLab Questions 

1. A continuous-time signal can have infinite number of values in a range. Room 
temperature as a function of time is considered to be continuous-time signal. 
Speech signal is considered as a continuous-time signal. 

2. The built-in functions in the numpy library to create an array of numbers to 
generate independent variable like time are (a) np.linspace() and (b) np.arange. 
The linspace is a built-in function available in numpy library to create an evenly 
spaced sequence of numbers in a specified interval. The syntax of linspace is: 

np.linspace(start, stop, num, endpoint, retstep, dtype) 
In the above syntax, ‘start’ represents the starting value of sequence, ‘stop’ 

represents the end value of the sequence and ‘num’ represents the number of 
values to generate, and it has to be non-negative. The end point can be either 
‘true’ or ‘false’. If it is  ‘true’, the stop is the last sample, it is ‘false’ then end 
point value is excluded. The ‘retstep’ can be either true or false. If it is true, 
return (samples, step), where step is the spacing between samples. The ‘dtype’ is 
the data type of the output array. If ‘dtype’ is not specified, then it infers the data 
type from the other input arguments. 

Example: np.linspace(-1,1,5) returns ‘array([-1. , -0.5, 0. , 0.5, 1. ])’ where 
‘-1’ is the start value, ‘1’ is the end value. Five sample values are generated, 
including -1 and +1. The difference between sample values is uniform. 

Note: Similar to ‘np.linspace’, we have  ‘np.logspace’, which is used to create 
an array of evenly spaced numbers on a log scale value. 

The syntax of np.arangebuilt-in function is given by 
np.arange(start, stop ,step, dtype) 

The ‘start’ and ‘stop’ represent the beginning and the end value of the 
interval. The ‘step’ denotes the step size of the interval. The ‘dtype’ represent 
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the data type of the output array. The length of the array can be computed using 
the command ceil((stop-start)/step). 

Example: np.arange(0,1,0.1) generates array of numbers as array([0. , 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]). The length of the array is 10. By default, 
'np.arange' command does not allow to include the end point value. 

3. Most of the real-world phenomenon like motion of pendulum, under damped 
spring-mass system can be expressed as sinusoidal signal. The sinusoidal signal 
is a periodic signal, which varies smoothly with respect to time. According to 
Fourier series, it is possible to represent periodic signals as sum of sinusoids. 
Also, sinusoidal signals are eigen functions of linear time-invariant systems. 

4. The term ‘phase’ refers to position of the waveform with respect to the origin. 
The phase of the signal is measured in degrees or radians. 

5. Multidimensional signals require more than one independent variable to repre-
sent the signal. Examples of multidimensional signal include (a) grey scale 
image, (b) colour image and (c) video. Grey scale image is represented as 
f(x, y), where ‘x’ and ‘y’ are termed as spatial variable. The colour image is 
represented as f(x, y, λ), where ‘λ’ represents colour information. The video 
signal is basically sequence of image, which is represented as f(x, y, λ, t). The 
video signal is characterized by both spatial and temporal information. 

6. (a) The equation of current through the diode is given as 

ID = Is e 
VD 
ηVT - 1 

In the above expression, VD is the voltage across the diode and ID is the 
current through the diode; VT is the volt-equivalent of temperature, which is 
26 mV at room temperature, and η is the ideality factor, which is material 
dependent. Thus, the current through the diode is modelled as an exponential 
function. In this case, it is an exponentially growing function. 

(b) The equation for radioactive decay is expressed as 

A=A0e
- λt 

where ‘A’ is the ending activity and A0 is the initial activity, λ= 0:693 T1 
2 

, where 

T 1 
2 
is the half-life period of the element. Thus, the radioactive decay is modelled 

as exponentially decaying function. 
7. Few significant features of complex exponential function are
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(a) Complex exponential function is the basis function of Fourier transform. 
(b) It is a complex valued signal that simultaneously encapsulates both sine and 

cosine signal by posting them on the real and imaginary components of the 
complex signal. 

(c) Complex exponentials are Eigen functions of continuous-time linear time-
invariant system. 

8. Sinc function is mathematically defined as 

sin c tð Þ= 
sin πtð Þ  
πt 

The sinc function is an even function sinc(-t) = sin c(t). Few significant 
features of sinc function are 

(a) Sinc functions are used in the interpolation of signals 
(b) Sinc and rectangular functions are dual function. Fourier transform of sinc 

function results in rectangular function and vice versa. 

9. A stationary signal is one whose statistical characteristics do not vary with 
respect to time. Example is x(t) = A sin (2πft + ϕ). Here the frequency of the 
signal does not change with respect to time. It is considered as stationary. A non-
stationary signal is one whose statistical characteristics change with respect to 
time. Example of non-stationary signal includes y(t) = A sin (2πft2 ). Here the 
frequency of the signal changes with respect to time. It is considered as 
non-stationary. Chirp signal is considered as non-stationary signal. 

10. The Gaussian function is characterized by two parameters, which are (a) mean 
and (b) standard deviation. Few significant features of Gaussian functions are 

(a) Gaussian functions are used as smoothing functions. The extent of smooth-
ing is governed by the standard deviation. 

(b) Fourier transform of a Gaussian function result in another Gaussian 
function. 

Answers to Objective Questions 

Q. No. 1 2 3 4 5 6 7 8 9 10
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Chapter 2: Sampling and Quantization of Signals 

Answers to PreLab Questions 

1. The steps involved in converting the analogue signal into a digital signal are 
(a) sampling, (b) quantization and (c) encoding. Before sampling, it is necessary 
to ensure that the signal to be sampled is bandlimited. Sampling converts a 
continuous-time signal into a discrete-time signal. Quantization is basically 
mapping a large set of values to a smaller set of values. In quantization, the 
discrete-time signal is converted to a quantized signal. In encoding, the quan-
tized signal is converted to a digital code. 

2. The sampling theorem specifies the minimum sampling rate so that the sampled 
signal can be reconstructed from its samples without aliasing problem. In order 
to reconstruct the signal from the samples without an aliasing problem, the 
sampling frequency must be greater than twice the maximum frequency content 
of the signal. This is expressed as fs ≥ 2fmax, where fs represents the sampling 
frequency and fmax represents the maximum frequency content of the signal. 

3. Suppose the signal is a periodic and ideal interpolation is employed. In that case, 
all spectral components less than fs/2 (where fs represents the sampling fre-
quency) are reconstructed perfectly, but all higher-frequency spectral compo-
nents are aliased to a frequency less than fs/2. 

4. The square wave is not a bandlimited signal. It is not possible to reconstruct the 
square wave from its samples. 

5. Two prominent reasons for aliasing while performing sampling are 
(a) undersampling and (b) signal which is not a bandlimited signal. Here 
undersampling implies that the sampling rate fs < 2fmax, where fmax is the 
maximum signal frequency. 

6. Sampling is basically taking specific instants of the signal. The sampling rate (fs) 
is the number of samples per second. Sampling interval (Ts) is the time-interval 
between two consecutive samples. 

7. Nyquist rate = 2B = 2 × 5 kHz = 10 kHz. 
8. Quantization is mapping a large set of values to a smaller set of values. It will not 

obey the superposition principle; hence, it is considered as non-linear 
phenomenon. 

9. Quantization maps a large set of values to a smaller set of values. It is not a one-
to-one mapping; hence, error is inevitable, and it is considered as irreversible 
phenomenon. The meaning is that it is difficult to get the original signal exactly 
after quantization. 

10. The process of converting sampled data sequences to a continuous-time signal is 
termed as signal reconstruction. Different strategies include (a) zero-order hold, 
(b) first-order hold or linear interpolation and (c) ideal or sinc interpolation.
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Answers to Objective Questions 

Q. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Ke  

Chapter 3: Generation and Operation on Discrete-Time 
Sequence 

Answers to PreLab Questions 

1. Two important steps involved in converting continuous-time signal into a 
discrete-time signal are (a) sampling and (b) quantization. 

2. Different forms of representation of discrete-time signals are (a) graphical form, 
(b) functional form, (c) sequential form and (d) tabular form. 

3. Some standard discrete-time sequences are (a) unit sample sequence (δ[n]), 
(b) unit step sequence (u[n]), (c) unit ramp sequence (r[n]) and (d) exponential 
sequence, which can be broadly classified as real exponential sequence and 
complex exponential sequence. 

4. Some of the salient features of unit sample sequence are: 

(a) Any arbitrary signal x[n] can be expressed in terms of scaled and shifted 
versions of unit sample sequences. This is expressed as 

x n½ ]= 
1 

k= -
x k½ ]δ n- k½ ]. 

(b) Convolution of signal x[n] with unit sample signal will result in the signal x 
[n]. This is expressed as x[n] δ[n] = x[n]. 

(c) If unit sample sequence is applied to linear time-invariant discrete-time 
system, then the output of the system is termed as the impulse response of 
the system. This is illustrated in Fig. A.1. From Fig. A.1, it is possible to 
observe that the input to LTI discrete-time system is unit sample signal; 
then, the output of the system is termed as the impulse response of the 
system. 

5. It is to be noted that linear time-invariant discrete-time system is characterized 
by its impulse response. That is, by knowing the impulse response of the system, 
it is possible to know the properties of the system like causality and stability. 

Fig. A.1 Impulse response 
of the system LTI System 

x[n] =  δ[n] y[n] =  h[n]
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Table A.1 Descriptions of energy and power signals 

S. no. Energy signal Power signal 

1 For a discrete-time energy signal, the 
energy is finite and non-zero 

For a discrete-time power signal, the 
power is finite and non-zero. 

2 Non-periodic signals are energy signals Periodic signals are power signals 

3 Power of energy signal is zero Energy of power signal is infinite 

4 Examples of DT energy signal are 
x[n] = an u[n], |a| < 1 
x[n] = u[n] - u[n – 1] 

Examples of power signals are 
Unit step signal 
x[n] = Asin(ωon + φ) 

h[n]x[n] y[n] 

Fig. A.2 Linear time-invariant system 

6. Discrete-time signal x[n] is periodic if it obeys the condition ω 2π = k N. Here, ‘ω’ 
represents the angular frequency, and ‘N’ represents the fundamental period. 

7. The energy and power signal descriptions are summarized in Table A.1. 
8. Various mathematical operations that can be performed on DT signal include 

(a) folding or time reversal; (b) shifting operation, which include delay and 
advance operation; and (c) scaling operation, which could be time scaling 
operation, like downsampling and upsampling, and amplitude scaling operation. 

9. A DT signal is even if it obeys the condition x[-n] = x[n]. A DT signal is odd if 
x[-n] = -x[n]. Example of even signal is cosine signal, whereas example of 
odd signal is sinusoidal signal. Example of signal which is neither even and nor 
odd includes unit step signal and unit ramp signal. 

10. An energy signal has finite energy, whereas power signals have finite average 
power. There are certain signals, which are neither energy nor power signal. 
Example of finite energy signal is x[n] = (1/2)n u[n]. Example of power signal is 
unit step signal. Example of signal which is neither energy nor power signal is 
unit ramp signal. 

11. Convolution is one of the most important operations in signal processing. The 
three main mathematical operations involved in convolution are 
(a) multiplication, (b) addition and (c) shifting operation. Convolution basically 
performs filtering operation. It is represented in Fig. A.2 
In Figure A.2, the input and output signals are represented as x[n] and y[n] 
respectively. The impulse response of linear time-invariant system is denoted as 
h[n]. The nature of filtering is decided by h[n]. If h[n] = {0.5, 0.5}, the system 
behaves like a lowpass filter; on the other hand if h[n] = {0.5,-0.5}, the system 
behaves like a highpass filter. The nature of filtering is decided by the impulse 
response of the system. The expression for the output of the system is given by y 
[n] = x[n] * h[n], where ‘*’ denotes the convolution operation. 

The correlation between two signals x1[n] and x2[n] is given by



No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B B C B B C B C D C B B C D By

Key B B A B A D C B

Appendix 503

rx1x2 lð Þ= x1 n½ ] * x2 - n½ ]

Applications of correlation are summarized below: 

Convolving the folded version of sequence x2[n] with the sequence x1[n] 
results in correlation of the signal. The correlation can be broadly classified into 
(a) autocorrelation and (b) cross-correlation. Autocorrelation is finding the 
relative similarity of the signal with itself. 

(a) Correlation is used to find the relative similarity between signals. 
(b) Fourier transform of autocorrelation function gives the power spectral 

density of the signal. This is regarded as Wiener-Khinchin theorem. 
(c) Correlation can be used to estimate the pitch of the speech signal. 
(d) Correlation can be used for template matching. 

Answers to Objective Questions 

Q.  
Ke  

Q. No. 16 17 18 19 20 21 22 23 24 25 

Chapter 4: Discrete-Time Systems 

Answers to PreLab Questions 

1. Different forms of representation of discrete-time systems are (a) block diagram, 
(b) difference equation, (c) transfer function, (d) impulse response, (e) pole-zero 
plot and (f) state-space. 

2. A discrete-time system is said to be a relaxed system if zero input results in zero 
output. If x[n] = 0, then the corresponding output y[n] should be zero. 

3. A discrete-time system is linear if it obeys superposition theorem. Superposition 
theorem implies (a) homogeneity property and (b) additivity property. 
According to homogeneity property, scaling of the input results in scaling of 
the output. According to additivity property, the response of the system to sum 
of inputs must be equal to sum of the individual responses. Examples of linear
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system are as follows: (a) y[n] = x[-n], (b) y[n] = nx[n], (c) y[n] = Ax[n], (d) y 
[n] = x[Mn] and (e) y[n] = x[n/L]. 

4. Cascade of two non-linear systems may result in a linear system. For example, 
consider the cascade of two systems as shown below: 

System 1 System 2 
x[n] v[n] y[n] 

For system 1: The relationship between the input and output is given by v 
[n] = log {x[n]}. 

For system 2: The relationship between the input and output is given byy 
[n] = exp {v[n]}. 

It can be observed that both System-1 and System-2 are non-linear system, 
whereas the cascaded system is a linear system. This implies that cascading of 
two non-linear systems need not be always non-linear. 

5. A discrete-time system is causal, if its current output should not depend on the 
future value of the input. A real-world system cannot react to future input; 
hence, they are considered as causal systems. 

6. A system is memory-less if the current output of the system depends on the 
current input. All the memoryless systems are causal. A causal system is 
non-anticipatory. For a causal system, the current output will not depend on 
the future value of the input. For a causal system, the current output depends on 
the past input. If the system output depends on the past input, it is a memoryless 
system. Hence, all memoryless systems are causal, whereas all causal systems 
are not memoryless. For example, y[n] = Ax[n] is a memory less system, which 
is also causal. Consider the system y[n] = Ax[n] +  Bx[n - 1]; the system is 
causal, whereas it is not memory less. 

7. Consider the cascade of two discrete-time time varying system, which is 
depicted below. 

System 1 System 2 
x[n] v[n] y[n] 

System 1: The system performs upsampling of the input signal by a factor of 
2. The relationship between the input and output of the system is given by v[n]= 
x[n/2]. Upsampling by a factor of 2 is a time-varying system. 

System 2: System 2 performs downsampling of the input signal by a factor of 
2. The relationship between the input and output of the system is given by y[n]= 
v[2n]. Downsampling by a factor of 2 is a time-varying system. 

Cascaded system: Cascading of upsampling by a factor of 2 followed by 
downsampling of two is an identity system. Thus, the cascaded system is a time-
invariant system.
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Hence, it can be concluded that cascading of two time-varying discrete-time 
system need not always result in time-varying system. 

8. A discrete-time system is said to be invertible if ‘distinct input should in distinct 
output’. Example of invertible system is y[n] = x[n/2], which is upsampling of 
the input signal by a factor of 2. Example of non-invertible system is y[n] = x 
[2n], which is downsampling of the input signal by a factor of 2. 

9. It is possible to test the causality and stability of linear time-invariant system 
from its impulse response. A linear time-invariant system is causal if its impulse 
response is zero for n < 0. A linear time-invariant discrete time system is stable 
if its impulse response is absolutely summable. 

10. A discrete-time system is static if current output depends only on current input. 
A discrete-time system is dynamic if the current output depends on current 
input, past input and past output. Example of static system is y[n] = 
x2 [n]. Example of dynamic system is y[n] = x[n] +  y[n -1]. 

11. A discrete-time system is said to be non-recursive if the current output of the 
system depends on the current input and the past input. A discrete-time system is 
said to be recursive if the current output depends on the previous output of the 
system. 

Example of non-recursive system: y[n] = 0.5x[n] + 0.5x[n - 1]. For this 
system, the current output does not depend on the past output, hence it is 
non-recursive. 

Example of recursive system: y[n] = x[n] + 0.5y[n - 1]. It is a recursive 
system because the current output is a function of previous output. 

12. A zero at z = 1 is equivalent to zero at ω = 0. A zero at ω = 0, will block all low 
frequency component. The system will block DC component of the signal. The 
system will behave like a highpass filter. 

13. A discrete-time system is invertible if distinct input leads to distinct output. 
Example of a discrete-time system which is invertible is ‘accumulator system’. 
The impulse response of accumulator is h[n] = u[n], whereas the impulse 
response of the inverse of the accumulator system is given by h[n] = δ[n] -
δ[n - 1]. Example of discrete-time system which is non-invertible is 
downsampler system whose input-output relationship is given by y[n] = x[2n]. 

14. State-space representation is an application for multiple input and multiple 
output systems. State-space approach can be used to model non-linear and 
time-varying systems. 

15. From the impulse response of the discrete-time system, it is possible to infer 
whether the system is causal and stable. A discrete-time system is causal if its 
impulse response is zero for n < 0. A discrete-time system is stable if its impulse 
response is absolutely summable.
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Answers to Objective Questions 

Q.  
Ke  

Chapter 5: Transforms 

Answers to PreLab Questions 

1. Spectrum is a compact representation of the frequency content of a signal that is 
composed of sinusoids. 

2. The unilateral or one-sided Z-transform differs from the bilateral or double-sided 
Z-transform in that the summation is carried out only over non-negative values 
of time index (n), whereas the bilateral transform includes the both negative and 
positive values of time index (n). The unilateral Z-transforms can be used to 
analyse causal systems that are specified by linear constant coefficient difference 
equations with non-zero initial conditions. 

3. The range of variation of ‘z’ for which Z-transform converges is called region of 
convergence of Z-transform. 

4. The basis function has to be an orthogonal function. The basis function of 
Fourier transform is complex exponential function. 

5. Applying discrete Fourier transform is equivalent to applying discrete Fourier 
series on a periodically extended finite aperiodic signal. Discrete Fourier series 
is applied when the signal under analysis is periodic, and discrete Fourier 
transform is applied when the signal under analysis is aperiodic. 

6. DTFT is Z-transform evaluated on a unit circle. The expression for Z-transform 
is given by 

X zð Þ= 
1 

n= -1 
x n½ ]z- n 

Substituting z = rejω in the above expression, we get 

X ejω = 
1 

n= -1 
x n½ ] rejω - n 

For a unit circle, r = 1; hence, the above expression can be written as
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X ejω = 
1 

n= -1 
x n½ ]e- jωn 

Thus, DTFT is Z-transform evaluated on a unit circle. 
7. Double-sided spectrum of a signal composed of sinusoid is expressed as 

x tð Þ=X0 þ 
N 

k = 1 

Xk 

2 
ej2πf k t þ X

*
k 

2 
e- j2πf k t 

The set of pairs 0,X0ð Þ  f 1,
1 
2X1 , - f 1,

1 
2X

*
1 , . . . , f k,

1 
2Xk , - f k ,

1 
2X

*
k 

indicates the size and relative phase of sinusoidal component contributing at 
frequency fk. This is termed as frequency-domain representation of the signal. 

8. Transform is a tool to analyse the signals and systems. Signals are converted 
from time or spatial domain to frequency domain using transform. Frequency 
domain is used to describe the signal with respect to frequency. Each frequency 
has its own amplitude and phase. From the spectrum, it is possible to interpret 
the frequencies are present in the signal. Thus, the time-domain and the 
frequency-domain representation of the signal are equivalent. It is possible to 
transform the signal from time domain to frequency domain and vice versa 
without any loss of information. Mathematically, transform is taking the inner 
product of the signal with the basis function. The inner product is one way of 
quantifying the similarity or the dissimilarity of two signals. 

9. The signal x[n] must be conjugate symmetric. This is expressed as x[n] = x* [-
n]. 

10. The basis function of Fourier transform is complex exponential, which oscillates 
for all the time. Fourier transform describes the frequency components in the 
signal averaged over all the time. It is difficult for the Fourier transform to 
represent signals that are localized in time. Fourier transform is not an effective 
tool to analyse non-stationary signals. 

Time localization in Fourier transform can be achieved by windowing the 
signal over which the signal is nearly stationary, which leads to the development 
of short-time Fourier transform (STFT). It can be represented to non-stationary 
signal and gives both time and frequency resolutions. However, the time and 
frequency resolutions are fixed based on the windowing signal. 

11. The DCT provides a decomposition of any discrete time signal as a weighted 
sum of basis functions and these basis functions are cosines. If x[n] is a real for 
all ‘n’, then the DCT output X[k] is real for all ‘k’. The DCT has excellent energy 
compaction for many real-world signals (i.e. signals with high correlation 
among neighbouring samples). 

12. Wavelet transform has the ability to perform multi-resolution analysis of the 
signal, whereas STFT cannot perform multi-resolution analysis. STFT provides 
time-frequency representation of the signal, whereas wavelet transform provides 
time-scale representation of the signal.
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Answers to Objective Questions 

Chapter 6: Filter Design Using Pole-Zero Placement Method 

Answers to PreLab Questions 

1. If h[n] represents the impulse response of the lowpass filter, then the filter whose 
impulse response is (-1)n h[n] will act as a highpass filter. 

2. A discrete-time system with transfer functionH(z) is a minimum phase system if 
the following conditions are met. 

(a) All the zeros of the system are inside the unit circle centred about the origin. 
(b) All the poles of the system are inside the unit circle centred about the origin. 
(c) The numerator and the denominator of the transfer function (H(z)) have 

equal orders of ‘z’. 

3. The transfer function of a discrete-time system is given by H(z) = B(z)/A(z). The 
frequencies for which the values of the denominator and numerator become zero 
in a transfer function are called poles and zeros. Poles are the roots of the 
denominator of a transfer function. Similarly, zeros are the roots of the numer-
ator of the transfer function. For a discrete-time system to be stable, the poles of 
the system should lie within the unit circle. 

4. For a discrete-time system to be stable, (a) the poles of the system should lie 
within the unit circle, and (b) the impulse response should be absolutely 
summable. 

5. The basic principle underlying the pole-zero placement method is to locate poles 
near points of the unit circle corresponding to frequencies to be emphasized and 
locate zeros near the frequencies to be deemphasized. All the poles should be 
placed within the unit circle for the filter to be stable. All complex zeros and 
poles must occur in complex conjugate pairs for the filter coefficients to be real. 

6. All-pass filters can be used as delay equalizer or phase equalizer. When an all-
pass filter is placed in cascade with a system that has an undesired phase 
response, a phase equalizer is designed to compensate for the poor phase 
characteristics of the system such that the cascaded system will exhibit linear 
phaseresponse. 

7. Notch filter is used to eliminate one particular frequency. It is used to minimize 
power line interference in biomedical equipment. It can be used in radio 
receivers to remove unwanted interfering frequencies.
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8. Moving average filter basically performs lowpass filtering of the input signal. 
Lowpass filter converts drastic variation in the signal to a gradual variation. 
When a square wave is fed as input to the M-point moving average filter, the 
output will be a triangular wave. Square wave exhibits sharp transition between 
‘ON’ and ‘OFF’ state. Triangular waveform exhibits gradual variation between 
‘ON’ and ‘OFF’ state. 

9. From the input-output relation, it is possible to observe that the current output is 
a function of current input and previous input; hence, the given filter is finite 
impulse response (FIR) filter. 

10. Pole-zero plot is a two-dimensional plot with x-axis as the real part and y-axis as 
the imaginary part. The pole-zero plot shows the unit circle with zeros marked as 
‘0’, and poles are indicted with the symbol ‘x’. Zeros and poles near the unit 
circle are expected to have a strong influence on the magnitude response of the 
filter. 

Answers to Objective Questions 

Q.  
Ke  

Chapter 7: FIR Filter Design 

Answers to PreLab Questions 

1. The difference equation relating the input and output of an FIR filter is given by 

y n½ ]= 
M 

k = 0 

bkx n- k½ ]

From the difference equation, the following inferences can be drawn: 

(a) The current output of FIR filter depends on current input and previous 
inputs. 

(b) The number of previous outputs necessary to compute the current output is 
termed as the order of FIR filter. 

(c) Since the current output is not a function of previous output, FIR filter is 
considered as a ‘non-recursive filter’. It can also be termed as ‘all-zero’ filter 
with the poles at the origin. 

(d) The filter coefficients are denoted as ‘bk’. The nature of filtering depends on 
‘bk’.
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2. Based on symmetry and number of coefficients, the FIR filters are classified as 
Type I, Type II, Type III and Type IV FIR filters 

(a) Type I FIR filter: Even symmetry with odd number of coefficients 
(b) Type II FIR filter: Even symmetry with even number of coefficients 
(c) Type III FIR filter: Odd symmetry with odd number of coefficients 
(d) Type IV FIR filter: Odd symmetry with even number of coefficients 

3. An FIR filter with impulse response ‘h[n]’ is said to exhibit even symmetry if h 
[n] = h[N – 1- n], where ‘N’ is the number of coefficients of FIR filter. An FIR 
filter is said to exhibit odd symmetry if h[n] = -h[N – 1 - n]. 

4. A digital filter exhibits linear phase characteristics if its impulse response is 
either symmetric or anti-symmetric. 

5. If a digital filter exhibits linear phase characteristics, then it will not introduce 
phase distortion. All the frequency components of the input signal will pass 
through the filter with constant delay so that there will not be any phase 
distortion. 

6. The relationship between group delay (τg) and the phase response (ϕ(e
jω )) of the 

filter is given by τg = - d 
dω ϕ e

jω . 
7. Order of FIR filter (M) is the number of previous input samples necessary to 

compute the current output. If ‘M’ denotes the order of the FIR filter and ‘N’ 
denotes the number of coefficients of FIR filter, then the relationship between 
‘M’ and ‘N’ is given by N = M + 1.  

8. FIR filter is an ‘all-zero’ filter with the poles occurring at the origin. For a digital 
system to be stable, the pole should lie within the unit circle. Since the pole of 
FIR filter occurs at the origin, the FIR filter is an inherently stable filter. 

9. The advantages of FIR filter are: 

(a) FIR filter exhibits linear phase characteristics; hence, there will not be phase 
distortion 

(b) The group delay of FIR filter is constant; hence, all the frequency compo-
nent of the input signal passes through FIR filter with equal delay. 

(c) The poles of FIR filter lie at the origin; hence, FIR filter is inherently stable 
filter 

(d) The coefficients of FIR filter are either symmetric or anti-symmetric in 
nature. Symmetricity of filter coefficient leads to linear phaseresponse of 
the filter. 

10. FIR filters can be designed using (a) windowing method, (b) frequency sampling 
method and (c) optimal method.
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Answers to Objective Questions 

Q.  
Ke  

Chapter 8: Infinite Impulse Response Filter 

Answers to PreLab Questions 

1. In a recursive filter, the present output depends on both the inputs and previously 
calculated outputs. 

2. The IIR filter is a recursive filter. The present output of the IIR filter depends on 
input and past output. Hence, the IIR filter is a recursive filter. 

3. Ripple is the fluctuations in the passband or stopband of the filter’s frequency 
response. It is expressed in decibels. 

4. Based on the ripples in the frequency response of the IIR filter, the filters are 
classified as (a) Butterworth filter, (b) Chebyshev filter (Type I), (c) inverse 
Chebyshev filter (Type II) and (d) elliptic filter. 

5. The Butterworth filter’s magnitude response is monotonically decreased at all 
frequencies, and also, there are no local maxima or minima in both the passband 
and stopband. Hence, it is also called as flat-flat filters. 

6. Mapping is a technique used in IIR filter design for converting analogue filter 
into digital filter. The different types of mapping techniques are (a) backward 
difference method, (b) impulse invariant technique (IIT), (c) bilinear transfor-
mation technique (BLT) and (d) matched Z-transformtechnique. 

7. While converting an analogue filter into an equivalent digital filter, it is neces-
sary that stable analogue filter should be mapped to a stable digital filter. The 
points of the analogue filter in the left half S-plane must be mapped into inside 
the unit circle in the Z-plane to preserve the stability of the filter. Therefore, all 
the mapping techniques must preserve the stability of the filter. 

8. The steps involved in obtaining the transfer function of a digital filter using the 
impulse invariant technique are summarized below: 

(a) Obtain the transfer function of an analogue filter (H(s)), which has to be 
converted into an equivalent digital filter (H(z)). 

(b) From the analogue transfer functionH(s), get the impulse response h(t) using 
the inverse Laplace transform. 

(c) Apply the sampling process on impulse response h(t) to get h[nT]. 
(d) Take Z-transform of the sampled impulse response h[nT] to get the equiv-

alent transfer functionH(z).
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Table A.2 Comparison of IIR filters 

S. no. 
Type of IIR 
filter 

Ripple in 
passband 

Ripple in 
stopband 

Transition 
width 

Order of the filter to meet the 
given specification 

1 Butterworth 
filter 

NO NO Widest Highest 

2 Chebyshev 
filter 

YES NO Narrower Lower 

3 Inverse 
Chebyshev 
filter 

NO YES Narrower Lower 

4 Elliptic filter YES YES Narrowest Lowest 

9. The drawbacks of impulse invariant technique are listed below: 

(a) It is more suitable for all pole filters and does not consider the system’s 
zeros. 

(b) The mapping of analogue frequency ‘Ω’ to digital frequency ‘ω’ is ‘many-
to-one’; hence, aliasing problem exists. 

(c) Due to the presence of aliasing, the impulse invariant method is appropriate 
for the design of lowpass and bandpass filters only. It is not a suitable 
technique for the design of highpass and band reject filters. 

10. The bilinear transformation is a conformal mapping that maps the ‘jΩ’ axis of 
the S-plane into the unit circle of the Z-plane only once. Therefore, it can avoid 
aliasing problems. 

11. The bilinear transformation technique maps the analogue frequency and digital 
frequency in a non-linear fashion. The relationship between the analogue and 
digital frequency is given by ω= 2 tan - 1 ΩT 

2 . The non-linear relationship 
between analogue and digital frequency is termed as ‘frequency warping’. To  
overcome the frequency warping problem, ‘prewarping’ technique is used. 
Prewarping will preserve the edge frequencies but not the exact shape of the 
magnitude response. 

12. Comparison of different types of IIR filter is given in Table A.2 
13. The following steps are involved in the IIR filter design: 

Step 1: Convert the digital filter specifications into an equivalent analogue filter 
specification. 

Step 2: Convert the analogue filter specifications to normalized lowpass proto-
type specifications. 

Step 3: Design a normalized lowpass prototype filter by using any one of the 
analogue filters: (a) Butterworth filter, (b) Chebyshev Type I filter, 
(c) Chebyshev Type II filter or (d) elliptic filter. 

Step 4: Use the analogue transformation technique to convert the normalized 
lowpass prototype filter into the desired analogue filter.
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Step 5: Use the mapping technique to convert the desired analogue filter into a 
desired digital one. 

Answers to Objective Questions 

Chapter 9: Quantization Effect of Digital Filter Coefficients 

Answers to PreLab Questions 

1. The finite word length introduces an error that can affect the performance of the 
DSP system. The finite word length has limited precision, and it is not sufficient 
to represent the filter coefficients accurately. This causes errors between the 
original filter coefficients and finite word length coefficients. The finite number 
of bits is used in the arithmetic operations in DSP, which is insufficient to give 
the proper result. 

2. In fixed point arithmetic representation, the numbers are represented in a fixed 
range with a finite number of bits of precision. The numbers beyond the fixed 
range are either saturated or wrapped around. It is preferred for high speed and 
low cost. 
In floating-point arithmetic representation, every number is represented in two 
parts (a) mantissa and (b) exponent. Floating-point representation has a higher 
dynamic range and no need for scaling. It can be used to perform more complex 
algorithms in it. 

3. The numbers can be represented in binary format, which contains ‘0s’ and ‘1s’. 
In sign-magnitude representation, most significant bit (MSB) is used to denote 
the number as positive or negative. It is called as sign bit, and the remaining bits 
are used to represent the number, which is called as magnitude bits. 

4. Quantization is a process in which a quantity X is approximated into a quantity 
Q(X). The approximated value will have a distortion between X and Q(X), called 
quantization error. 

5. Rounding is a method to perform quantization operation. It selects the quantized 
value nearest to the original value. The error between the quantized and original 
value will not exceed ±(Δ/2). Here ‘Δ’ denotes step size, which is obtained byΔ 
= 2-B , and B is the number of binary bits.
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6. The two’s complement truncation is another method to perform the quantization 
operation. This method always gives a resultant quantized value less than or 
equal to the original value. The truncation error will to (-Δ to 0). 

7. The magnitude truncation is another approach to perform the quantization 
operation. The result of the quantized value is always less than the original 
value for X > 0, and the quantized result is always greater than the original value 
for X < 0. The advantage of magnitude truncation is that it can inherently 
suppress the limit cycle oscillation. 

8. If the dynamic range of the signals crosses the word length limit, then the 
overflow exists. The different types of overflows are (a) saturation, (b) zeroing 
and (c) two’s complement. 

Saturation: If the input value crosses the maximum/minimum limit (X/-X), 
the output will be X/-X. 

Zeroing: The output will be zero if the input value exceeds the maximum 
limit. 

Two’s complement: It is a periodic continuation of the 45° straight line. The 
advantage of this method has the capability of correcting the intermediate 
overflows automatically. 

9. A limit cycle oscillation is a low-level oscillation that can exist in a stable filter 
due to the non-linearity associated with the quantization operation, like rounding 
or truncation of the arithmetic calculations in the filtering operation. This limit 
cycle oscillation is also termed a multiplier round-off limit cycle. These limit 
cycle oscillations do not occur in non-recursive FIR filters. 

10. Infinite precision is needed to represent the filter coefficients. However, the finite 
number of bits represents the filter coefficients in the real world. Therefore, the 
representation of the filter coefficients from infinite precision to finite number 
precision may introduce coefficient quantization. Due to the finite precision 
representation of filter coefficients, the response of the quantized filter may 
deviate from the response of the original filter. 

Answer to Objective Questions
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Chapter 10: Multirate Signal Processing 

Answers to PreLab Questions 

1. When two devices operating at different sampling rate are to be interconnected, it 
is necessary to change the sampling rate of the signal. Often there is a mismatch 
between the sampling rates of the recording and playback system. The sampling 
rate of audio signals in compact disc is 44.1 kHz, whereas the sampling rate of 
audio signals in digital audio tape is 48 kHz. Sampling rate conversion is required 
for the interconnection of compact disc with digital audio tape. 

2. A sampling rate converter is a device or software that accepts digital input 
signals at one sampling rate and outputs a digital signal at a different sampling 
rate. This is shown below. 

Sampling rate converter
x[n] y[n] 
fs f’s 

Block diagram of sample rate converter 

3. The two basic operations in multirate signal processing are (a) downsampling 
and (b) upsampling. Downsampling reduces the sampling rate of the input 
signal, whereas upsampling increases the sampling rate of the input signal. 

4. Downsampling in time domain may lead to spectral overlap in the frequency 
domain, which is termed as ‘aliasing’. To overcome aliasing, a lowpass filter is 
used before downsampling. This filter is termed as ‘anti-aliasing filter’. This is 
depicted below. 

y[n]x[n] 
M 

Anti-aliasing 

filter 

Decimation operation 

To overcome the problem of aliasing, the cut-off frequency of the anti-aliasing 
filter is chosen as fs/M. 

5. Upsampling by a factor of ‘L’ is the process of inserting ‘L - 1’ zeros between 
successive samples. Upsampling in time domain results in the creation of 
multiple copies of the original spectrum in the frequency domain. The anti-
aliasing filter is a lowpass filter that retains only the original spectrum and 
removes multiple copies of the original spectrum. The block diagram of anti-
imaging filter with upsampling operation is shown below. The sampling fre-
quency of the anti-imaging filter is chosen as fs/L. 

y[n]x[n] 
L 

Anti-imaging 

filter 

Interpolation operation
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6. The time-domain expression for downsampling by a factor of ‘M’ is given by y 
[n] = x[nM]. The frequency-domain expression for downsampling by a factor of 

‘M’ is given by Y zð Þ= 1 M 

M- 1 

k = 0 
X z  

1 
Me- j2π Mk . 

7. The time-domain expression for upsampling by a factor of ‘L’ is given by y[n] = 
x[n/L]. The frequency-domain expression is given by Y(z) = X(zL ). 

8. The three significant properties of downsampling operation are 

(a) Downsampling is a linear operation. 
(b) Downsampling is a time-variant operation. 
(c) Downsampling is an irreversible operation. 

9. (a) Upsampling is a linear operation, because it obeys additivity and homoge-
neity properties. Thus, upsampling obeys the superposition principle; hence, it is 
a linear operation. 

(b) Upsampling has varying responses to the same input at different instants 
of time; hence, it is considered as time-variant operation. 

10. Downsampling by a factor ‘M’ and upsampling by a factor of ‘L’ are inter-
changeable if ‘L’ and ‘M’ are relatively prime. 

11. Idempotent operations are operations, which can be applied multiple times 
without changing the result. Downsampling by a factor of ‘M’ followed by 
upsampling by the same factor gives the same result if the operation is repeated 
many times; hence, it is considered as idempotent operation. 

12. Polyphase decomposition ensures that filtering operations are performed at the 
lowest possible sampling rate in the system, which reduces the computational 
complexity and the overall system’s cost. Polyphase decomposition can be 
classified as (a) Type I polyphase decomposition and (b) Type II polyphase 
decomposition. 

13. Filter bank is a group of filters arranged in a specific fashion. Filter bank is used 
for subband decomposition of the signal. It is useful for signal denoising and 
signal compression. 

14. The main threats for perfect reconstruction in a two-channel filter bank are 
(a) aliasing problem, (b) amplitude distortion and (c) phase distortion. Perfect 
reconstruction can be achieved by proper choice of analysis and synthesis filters. 

15. Transmultiplexer is a multiple input-multiple output system (MIMO). It uses 
multirate operators and filters to combine ‘M’ signals for transmission across a 
channel and then recovers the ‘M’ input signals at the receiver end. The 
separation of signals should be perfect, and the recovery of each signal should 
be performed without leakage of signal from one channel to another, which is 
generally termed as crosstalk. The proper choice of filters can avoid the crosstalk 
problem.
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Answers to Objective Questions 

Q. No. 1 2 3 4 5 6 7 8 9 10 11 

Chapter 11: Adaptive Signal Processing 

Answers to PreLab Questions 

1. In optimal filtering, the input and the desired signals are available for a given 
time window, and the optimal parameters of the filter are computed only once. In 
adaptive filtering, the input and the desired signal are provided to the algorithm, 
and the algorithm computes the parameters of the filter and is updated; hence, it 
is iterative in nature. Adaptive filter does not require previous knowledge of the 
signal statistics. 

2. An adaptive filter is a filter with filter coefficients that are non-constants. The 
filter coefficients are adjusted based on some specific criterion defined to 
optimize the filter’s performance. In an ordinary filter, the filter coefficients 
are constant and do not vary with respect to specific criteria. 

3. Some examples of the adaptive filter include Wiener filter, least mean square 
filter, RLS filter, etc. 

4. The adaptive filters are generally preferred in the following contexts: 

(a) The filter characteristics are necessary to be changed or adapted to specific 
conditions. 

(b) Spectral overlap between the signal and noise 
(c) If the noise present in the signal is unknown or varies with time. 

5. The performance measures of the adaptive filter are rate of convergence, 
misadjustment, tracking, robustness, computational complexity, filter structure, 
numerical stability and accuracy. 

6. The least mean square (LMS) algorithm is an adaptive filter method that uses a 
gradient-based method of steepest descent to obtain the least mean square error 
between the output and the reference data. It is an iterative procedure that 
corrects the weight vector (filter coefficient) in the direction of the negative of 
the gradient vector, which eventually leads to the minimum mean square error. 

7. The cost function of least square estimation is defined as the sum of weighted 
error squares. The least square estimation is to minimize the error of the filter 
output to the reference signal. In this process, statistical modelling is not 
involved directly. 

8. The variants of LMS algorithm include (a) normalized LMS, (b) leaky LMS, 
(c) block LMS and (d) sign LMS.
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9. The step size parameter plays a vital role in the LMS algorithm. The larger the 
step size value, the faster the adaption, increasing residual MSE. Also, it affects 
the stability of the algorithm. Therefore, the step size selection cannot be 
arbitrarily large. 

10. The recursive least squares is an adaptive filter algorithm, which recursively 
obtains the filter coefficients that minimize a least squares cost function relating 
to the input. In this algorithm, input signals are considered deterministic, 
whereas input signals are considered stochastic in the LMS. As a result, the 
RLS algorithm converges faster than the LMS algorithm. 

Answers to Objective Questions
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