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Abstract This study proposes a modified Hidden Markov Model (HMM) as a 
method for predicting electricity on an hourly basis in the Delhi region. Typically, 
load prediction involves utilizing statistical techniques that need significant modifi-
cations in the data to adapt to the random nature of the energy demand. Alternatively, 
data-based methods like artificial neural networks (ANNs) rely heavily on data to 
deliver reliable findings. An attempt is made to implement HMM taking into account 
short-term electricity demand as a non-stationary time series. This provides satisfac-
tory prediction results even with limited data. Furthermore, the proposed modified 
HMM technique outperforms alternative techniques in terms of computational time 
and complexity. 

Keywords Electricity demand · Hidden Markov Model · Short-term electricity 
forecasting 

1 Introduction 

Short-term demand for electricity forecasting is vital for power generation and distri-
bution. It is useful for the electricity sector in demand estimation, distribution plan-
ning, scheduling, demand side management, etc. Electricity forecasts are categorized 
as long-term, medium, and short-term forecasts. Long-term electricity prediction is 
obtained using several months of data. Long-term electricity demand forecasts are 
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generally easier to obtain than short-term forecasts since seasonal patterns are clearly 
visible in the long-term data. Hence, this type of data is easier than a forecast model. 
On the other hand, short-term electricity demand, especially hourly and half-hourly 
demand is highly stochastic in nature showing no such clear trends as compared to 
long-term electricity demand forecasting [ 1]. Hourly short-term forecast is required 
for manufacturing and planning-related purposes so that the demand is not under- or 
over-valued. A variety of methodologies have been developed to estimate short-term 
demand including intelligent methods [ 2– 4], statistical methods [ 5], machine learn-
ing methods [ 6, 7], and many more. In the case of statistical technique, detrending 
and other modifications to the non-stationary data are necessary. In recent years, 
other methods are used such as artificial neural networks (ANNs). ANN requires 
years of data and high computational power to produce forecasts [ 8]. 

HMM is suitable for application in the non-stationary nature of the time series and 
stochastic processes. It has found applications in various fields such as stock market 
prediction, speech recognition, and other varied fields [ 9– 14]. In this study, the HMM 
algorithm is modified using Bayesian inference for better performance. In addition, 
the Markov Chain Monte Carlo (MCMC) approach is utilized to determine the param-
eters of forecasting model rather than the conventional Baum–Welch procedure. The 
HMM and its modified version are used for short-term electricity prediction using 
hourly electricity demand of 2 years (2018–2019) for Delhi city. Following parame-
ter estimation using these HMM methods, forecast results are compared to test data 
in terms of mean absolute error (MAE) and root mean square error (RMSE). In addi-
tion, other forecasting models based on auto-regression (AR), auto-regressive moving 
average (ARIMA), exponential moving average (EMA), and long short-term mem-
ory networks (LSTM) techniques are used. The workflow structure of the proposed 
model is shown in Fig. 1. The main contributions of work are summarized below: 

• This study explores the application of a modified HMM technique to perform the 
STLF forecasting model which is simple and requires limited training data and 
less computational time. 

• This study looks at how well the suggested forecast model performs for STLF in 
a metropolitan city with variable weather, including excessive heat in the summer 
and extreme cold in the winter. Further, the load pattern in this city is unstable due 
to its fast-paced urban development. 

• Viterbi algorithm (VA) is used to train the model by determining the parameters 
using the Baum–Welch algorithm. 

• Comparative analysis with various alternative forecasting approaches such as AR, 
ARIMA, EMA, LSTM, and HMM to validate the suggested forecasting tech-
nique’s superior performance over others. 

The paper is structured as: The introduction and background of the present work 
are presented in Sect. 1. A description of HMM method is presented in Sect. 2. The  
proposed electricity forecasting approach and its implementation are discussed in 
Sect. 3. A simulation study and result analysis are presented in Sect. 4 to validate 
the performance of the modified HMM forecasting approach. Section 5 presents the 
conclusion along with the future direction of this work.
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Fig. 1 Workflow structure of proposed forecasting model 

2 Hidden Markov Model 

HMM is useful for non-stationary data due to its stochastic nature. Being a proba-
bilistic model, it is applicable to a time series which can be assumed as a Markov 
process. This is a kind of process in which the probability of each event happening 
in a particular sequence is determined only by its preceding state. The distribution 
of conditional probabilities for the subsequent state depends entirely on the previous 
state. It is mathematically represented as: 

.
Prob (Yn = yn|Yn−1 = yn−1, . . . Y0 = y0)

= Prob (Yn = yn|Yn−1 = yn−1)
(1) 

In HMM, the input sequence is assumed to be the “hidden” state as the input vari-
able is not actually being directly observed. The observed variables are calculated 
based on the transition probabilities of the input (or hidden) sequence. The HMM 
can be represented with its parameters in Fig. 2. The observable . Y (forecast output) 
is obtained by a sequence of hidden states, . y (sequenced input). Assume that the 
transitions between hidden states have the Markov property. They are obtained by 
the transition probability matrix, . A, by the emission probability matrix, .B (some-
times. θ ). Also,. π denotes the initial probability. With the following model parameters 
and observed data, the sequence of hidden states is estimated. The model parame-
ters are determined by the iterative Baum–Welch algorithm [ 15] for expectation– 
maximization where the forward–backward technique is used. The Baum–Welch 
method identifies local maxima as follows: 

.θ∗ = arg maxθProb(Y |θ) (2) 

where . θ maximizes the probability of observing X. Viterbi algorithm [ 16] discovers 
the most probable sequence of hidden states. For an observation . i , this algorithm 
computes the likelihood in terms of probability of observing . i th element in state l 
which is .el(i) as below 

.pl(i x) = el(i)max
k

(pk( j, x − 1) · pkl) (3)
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Fig. 2 HMM 

This algorithm calculates the likelihood that, given observation. i , the path would 
end in state k. .pk( j, x − 1) = Likelihood of the most plausible path endpoint in 
position.x − 1 and in the state. k with the. i th element..pkl = probability of transition 
from state l to state . k. 

The Viterbi method is used in the model to extract the sequence of hidden states 
with a series of observations. HMM parameters are then obtained using an obser-
vation likelihood matrix with the Baum–Welch procedure (known as the forward– 
backward algorithm). It begins with some given initialized values of the HMM param-
eters, and it follows the two steps for multiple iterations. This method involves two 
steps as follows: 
E-step: The expectation step 

.

χ = γl(i)σl( j)

γT qF
, ∀t, j

ξt (i, j) = γl(i)αi jβ j (ot+1σt+1( j))

γT (qF )
, ∀t, i, and j

(4) 

M-step: The maximization step 

.

 ̂αi j =
∑T−1

t=1 ξt (i, j)
∑T−1

t=1

∑N
k=1 ξt (i, k)

 ̂βvk =
∑T

t=1 s.t. O1=vk
γt ( j)

∑T
t=1 γt ( j)

(5) 

During E-step, “A” parameter is used for expected state occupancy counts, and “B” 
parameter is used for expected state transition counts. And further during the M-step, 
they are utilized to recalculate the probability for A and B. In the modified HMM, 
Bayesian HMM with inference performed via MCMC is used [ 17]. The Baum– 
Welch algorithm is not used to determine parameters in this case; instead, MCMC is 
used. HMM is a dynamic model as the probability of a state change is a function of
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time, and it is subject to change. The number of latent or hidden states in modified 
HMM varies as part of the fitting process. This is done using hierarchical Dirichlet 
prior (HDP), and then MCMC sampling is done on the hidden states to estimate the 
model parameters. MCMC updates the multinomial regression coefficients . σ , the  
state model parameter . θ , and the hidden variable . Z . 

Let .Zt = (Z1, . . . , Zt ) be the past observed process and .ζt = (ζ1, . . . , ζt ) repre-
sent the order of states from time = 1 to time = t.. fz(.) denotes the normal probability 
density function of .Zt ∨ Zt = s, s ∈ S, then the formulation of the joint likelihood 
function considering the observed data is represented as 

.

π
(

yT , zT |θ, σ
) = π

(

yT |zT θ, σ
)

π
(

zT |θ, σ
)

= fz1(y1)p
(1)
z1 , z2(y2) . . . p(T−1)

zT−1,zT , fzT (yT )

Pt
i j = exp(xtσ j )

∑m
l=1 exp(xtσil)

; for i, j = 1, . . . ,m.

(6) 

The time-dependent values of the transition matrix are obtained based on the 
parameter . σ from the presented equations. 

3 Proposed HMM as Forecasting Model 

The dataset of hourly electricity demand used was obtained from the state load dis-
patch center, Delhi. This center is responsible for scheduling and distributing power 
within Delhi, exercising supervision and control over the intrastate transmission sys-
tem, and monitoring grid operations, among other responsibilities. The data size was 
hourly electricity demand for 24 months from January 2018 to December 2019. It 
was divided into training and learning data (10,000 and 4000 dataset points). After 
exploratory data analysis, long-term and short-term trends were analyzed within the 
electricity demand. Since Delhi has fairly consistent and distinct seasons, long-term 
seasonality is observed right away. Then feature engineering and selection are done 
based on the observed data’s tendencies. 

3.1 Exploratory Analysis 

The long-term trends in Delhi’s electricity demand are notably visible because of 
the seasonal weather changes [ 18]. The monthly change in demand is drastic from 
the lowest demand being in the winter months (November, December, January) to 
the highest demand being in the hottest summer months (June, July). The monthly 
trends are fairly consistent throughout the years. The daily and weekly electricity 
demands were also found to be consistent within the same month of different years 
as shown in Fig. 3a–f. The weekend demand was found to be only slightly less than
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(a) Hourly electricity demand of Delhi. (b) Average daily demand of each month. 

(c) Total average power of each month. (d) Weekend vs weekday demand. 

(e) Average monthly temperature and demand 

Fig. 3 Data preparation
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(f) Daily demand of January. 

Fig. 3 (continued) 

the weekday demand and with the same trends. The daily and monthly temperatures 
were found to have a high correlation with the electricity demand. It is pertinent to 
mention that seasonal temperature effects as well as hourly temperature effects were 
prominent. 

3.2 Data Preparation 

First of all, the non-stationary nature of hourly electricity demand time series was 
confirmed using two methods: (i) augmented Dickey–Fuller (ADF) [ 19]; (ii) testing 
and plotting rolling mean and standard deviation. 

As shown in Fig. 4, the results of the ADF test have proved the non-stationarity of 
the time series with a P-value significantly greater than 0.05. The rolling mean and 

Fig. 4 ADF test on demand of a single day
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(a) Distribution of Energy Demand in MW. 

(b) The Elbow Method with optimum number of states. 

Fig. 5 Data analysis 

standard deviation were also found to be nonlinear. Since the statistical properties 
changed over time, it is a non-stationary time series. As illustrated in Fig. 5a, the 
distribution of demand was then analyzed in order to discretize the continuous data, 
as the HMM requires input in discrete sequences of states. An optimum number 
of states are computed with the use of K-means clustering [ 20] and the period for 
discretization. The elbow curve method was employed to confirm the ideal number 
of states for the present data as shown in Fig. 5b.
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3.3 Modified HMM 

The model was trained with the Viterbi algorithm, and the parameters (A, B) were  
determined by the Baum–Welch algorithm. The test data of 10,000 dataset points 
was used to train the model. The transition matrix obtained along with the emission 
probability matrix is shown in Fig. 6. 

The number of EM algorithm iterations in the training proceeds until it reaches 
convergence. The number of iterations converged the EM algorithm, and this is 
confirmed using the HMM learn library as shown in Fig. 7. 

After obtaining all the parameters, the future values are predicted and compared 
against test data. The modified HMM is then implemented; initially, Markov Chain 
Monte Carlo (MCMC) sampling is utilized to generate the starting-state probabilities, 
emission probabilities, and transition probability matrix as shown in Fig. 8. 

Fig. 6 Emission probability matrix 

Fig. 7 HMM learn library 

Fig. 8 Transition probability matrix
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It is seen in this section that the acquired transition and emission probabilities 
are used to predict future electricity demand values based on training data using the 
HMM. The obtained model parameters from MCMC are then used to forecast the 
next values using this HMM, and this is termed a modified HMM approach. 

4 Results 

The program is developed in Python programming language on Google Colabora-
tory web IDE. The IDE offers a 2.30 GHz CPU clock, Haswell as the CPU family, 
and 2 Core CPUs. Pmdarima, Statsmodel, Pandas, and Bokeh packages are used for 
statistical models, whereas NumPy, Pandas, Bokeh, Sklearn, and XGBoost packages 
are used for machine learning models. The program is developed using the available 
data (refer to Sect. 3.1) on a personal computer. Different forecast approaches (such 
as AR, ARIMA, and EMA, as well as the LSTM and HMM) are developed and sim-
ulated, and the corresponding results are shown in Fig. 9a–f. A study is conducted 
to compare the forecasting performance of the recommended modified HMM with 
other traditional models, including LSTM and HMM. As mentioned above, the mod-
ified HMM with MCMC obtained transition and emission probabilities that are used 
to obtain the forecast as shown in Fig. 9f. From the results, it is indicated that statis-
tical methods AR and ARIMA fail to perform well (as expected) on non-stationary 
time series. Each forecast outcome is compared to the test data, and the error metrics 
obtained for these models, namely MAE and RMSE, are displayed (refer Table 1). 
LSTM and the modified HMM have the lowest error metrics out of the five which can 
be inferred from Fig. 10 and Table 1. This comparative analysis validates the superior 
modified HMM forecast, which has the lowest MAE = 0.616 and RMSE = 0.165, 
respectively. In contrast, the LSTM [ 21– 24] is known to produce the most accurate 
forecasts and performs well, but it required significantly more computation time and 
processing power than the HMM and modified HMM. LSTM model produces the 
best accuracy of .97.765%, and then modified HMM performed with the accuracy 
of 97.446. HMM has comparable error metrics to LSTM with a higher MAE and 
the lowest RMSE. On the other hand, LSTM, being a deep learning-based method, 
requires a huge dataset, and its computational time is large as compared to HMM and 
modified HMM which requires less data and puts less computational burden on the 
processor. Also, the modified HMM method is very near to accuracy as compared to 
LSTM. Further, the temporal complexity of the two algorithms, LSTM and MCMC 
for parameter estimation in modified HMM, are compared using empirical values 
of the runtime of the algorithms. Considering the size of the present training data, 
the forecast model upon which the program is run, 100 iterations of LSTM take 
30–40 min to train, while 100 MCMC steps take 8 s per iteration making 13 min 
in total. It is known that for even larger-sized data, LSTM and other RNN models
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(a) EMA forecast result. (b) AR forecast result. 

(c) ARIMA forecast result. (d) LSTM forecast result.t. 

(e) HMM forecast result (f) Modified HMM forecast. 

Fig. 9 Forecast results using different approaches 

take a lot of training time. This result analysis concludes the work in the following 
section. 

5 Conclusion 

This research proposes a modified HMM for short-term electricity demand forecast-
ing. HMM is modified using Bayesian inference, using MCMC sampling to obtain 
the model parameters, as short-term electricity demand is a non-stationary time series 
with stochastic nature. From the result analysis, the overall performance of HMM
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Fig. 10 Comparative analysis using MAE and RMSE 

Table 1 Comparative performance analysis of forecasting models 

Performance 
indices. ↓

AR ARIMA EMA LSTM HMM Proposed 
HMM 

MAE 2.557 1.76 1.357 0.177 1.016 0.616 

RMSE 3.094 2.849 1.2 0.815 0.371 0.165 

% Accuracy 86.675 91.138 93.108 97.765 96.411 97.446 

and its modification proves better in predicting the future electricity forecast values 
than all other statistical methods if accuracy, computation time, and dataset size are 
considered together. Also, modified HMM and LSTM have better error metrics, but 
LSTM is way more time-consuming, computationally complex, and takes a lot of pro-
cessor power and time as compared to the HMM, whereas the MCMC sampling takes 
considerable computational time as compared to Baum–Welch HMM. Subsequently, 
it is concluded that the proposed modified HMM is capable of performing efficient 
short-term electricity load forecasting with limited training data, lower complexity, 
and overall ease of use. With the addition of weather conditions, the performance 
of the modified HMM approach can be improved even further. As a future direc-
tion of work, other inference methods can also be investigated for improved results. 
Furthermore, HMM can be incorporated into AI-based models to improve forecast 
accuracy into AI-based models to improve forecast accuracy when used for real-time 
applications.
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