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Abstract 

Despite the fact that we all know that melatonin plays a role and has some 
profound effects on animals, recent studies have shown that this biochemical 
can also be found in plants, microorganisms, and algae, and its effects can be seen 
in these organisms as well. Primarily, melatonin is considered a “sleep hormone”. 
In animals, it acts as an antioxidant, anti-inflammatory, and anti-carcinogenic 
agent and is used to treat several diseases. It is available in the market as a 
supplement. Melatonin has several functional roles in the plants, such as abiotic 
stress tolerance, as a secondary metabolite, synthesis of several phytohormones, 
defence mechanism, acts as a phytohormone, seedling growth, fruit development, 
root development, seed germination, flower development, crop and fruit yield, 
fruit storage, etc. Melatonin acts differently in different growth phases of the 
plants, viz., vegetative and reproductive phases. Also, it is found to have nutra-
ceutical value. Here, in this chapter, we are dealing briefly with a historical 
perspective of this hormone, the isolation of this compound, how this hormone 
has importance in animals as well as in plants, how it was discovered, its 
biosynthetic pathways, the precursors and organelles involved in synthesis; 
altogether. Also, we are dealing with the comparative study of the mechanism
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of this newly discovered chemical in plants as well as animals, along with its 
current use in our day-to-day lives. Various studies have shown the abundance of 
this molecule and its benefits for humankind and plants.
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1.1 Introduction 

Melatonin has also been studied for use in treating sleep disorders in addition to jet 
lag. Generally speaking, it decreases sleep latency and enhances sleep, particularly 
when circadian phasing is disrupted. Patients with neurological illnesses benefited 
the most from this in the latter situation (Hardeland 2005; Altaf et al. 2023). Several 
initiatives designed to lessen the effects of neurodegenerative illnesses such as 
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic 
lateral sclerosis have been created or are being investigated to deal with these 
conditions (Altaf et al. 2022a, b). The effectiveness of this compound as a cancer-
fighting agent has been extensively studied. More research should be focused on the 
potential anti-inflammatory effects of N1-acetyl-5-methoxykynuramine (AMK), par-
ticularly given that AMK is a natural downregulation and inhibitor of COX-2 
(cyclooxygenase-2) (Hardeland 2005). The regulation of melatonin in the sleep/ 
wake cycle, seasonal rhythms, and other circadian rhythms has already been 
observed, as well as its effect as an immunostimulator and cytoprotective agent. It 
has been observed that the substance is capable of safeguarding mitochondrial 
electron flux, antioxidant protection, and neuroprotection in various experimental 
systems. At night, melatonin levels are more significantly elevated, then information 
about “darkness” is passed on to the brain and light suppresses the mechanism by 
which it increases (Hardeland et al. 2006). 

The chemical compound N-acetyl-5-methoxytryptamine, also referred to as mel-
atonin, has been extensively researched in other parts of the world, and it is found 
in all living organisms, i.e., it is everywhere (Lerner et al. 1958; Zhang et al. 2023). 
In addition, it has been identified as a plant hormone that plays an important role in 
facilitating the regulation and development of plants (Arnao and Hernández-Ruiz 
2019). A number of studies have shown that melatonin plays an essential role in 
maintaining a healthy circadian rhythm, sleep, mood, body temperature, appetite, 
and immune response in humans (Socaciu et al. 2020). Melatonin is a common 
indolamine that has received much research because the substance plays an essential 
role in controlling a wide range of physiological processes in animals and plants 
(Fig. 1.1). During the twentieth century, scientists discovered that certain plant 
species can synthesize large quantities of this chemical and store it in specialized 
tissues throughout the plant. As a result, it has been considered a ubiquitous 
molecule (Mannino et al. 2021).



1 Melatonin Discovery and Divergent Biosynthetic Pathways in Plants 3

Fig. 1.1 Roles of melatonin in human physiology. Melatonin serves as a beneficial molecule/ 
chemical in humans. Several functions of this hormone are depicted here entitled general actions, 
beneficial effects on sleep disorders, neurological disorders, other disorders, and anti-carcinogenic/ 
anti-tumoral effects. ROS reactive oxygen species 

It was originally thought that, when the substance was discovered, it was an 
antioxidant that had a wide range of positive effects on the various phases of plant 
growth and development, such as germination, root extension, photosynthesis, and 
leaf senescence (Arnao and Hernández-Ruiz 2019), as well as photosynthesis and 
leaf senescence (Wang et al. 2022). Among the many bioactive compounds present 
in vascular plants, it has been observed to be one of the most important (Ahmad et al. 
2023) The compound can be found in a wide range of plant tissues, including those 
of seeds, roots, leaves, and fruits (Ahmad et al. 2023) Melatonin has been used 
extensively for disease pathogenesis and therapeutic development since it has been 
shown to modulate antioxidant, anti-inflammatory, and other biological properties 
(Zhang et al. 2023). 

Melatonin is an artificially manufactured form of hormone present in animals, 
bacteria, plants, and fungi; apart from its antioxidant properties, melatonin has 
applications in beverages and food, dietary supplements, and pharmaceuticals. 
Bio-based “SPF” (spray polyurethane foam) is also synthesized from melatonin 
and having a role in generating insulation (Market analysis report 2019–2025). It 
is suggested by APA (American Psychiatric Association) reports that, throughout 
their lives, about one-third of adults experience sleep problems i.e., insomnia. 
Symptoms of this are persistent difficulties falling and persist in being asleep. 
Hence, it is obvious to observe the increased use of artificially synthesized melatonin 
(Lal et al. 2022; Mishra et al. 2022; Naz et al. 2022). It is expected that over the next 
5 years, according to calculations, the Compound Annual Growth Rate (CAGR) for 
the melatonin market will be greater than 10%. The major companies which are 
functional in Melatonin Market are, viz., LLC, Natrol, Aspen Holdings, Pfizer



Incorporation, Biotics Research Corporation, Nature’s Bounty (Market analysis 
report 2019–2025; Mordor Intelligence 2023–2028). 
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1.2 Melatonin Discovery in Animals and Plants 

Up until 1995, “melatonin” had been one of the compounds that had received the 
most attention in the scientific literature as well as specialized journals, such as the 
Melatonin Research and Journal of Pineal Research (founded in 1984), which was 
founded in 1985. There was a belief that an animal hormone might be the cause of 
this problem in particular. However, after that, the undeniable discovery of plant-
based melatonin was eventually made available to the scientific community back in 
1995 by a trio of different research groups (Hattori et al. 1995; Dubbels et al. 1995). 
Similarly, Dr. Saxena’s group in Canada has been developing and carrying out a line 
of research that is of particular interest. Various studies have suggested that melato-
nin may function as an auxin in in vitro cell cultures as a result of the structural 
similarities between IAA (indole-3-acetic acid) and melatonin. The researchers 
discovered phases of the phytomelatonin production pathway that were identical to 
the pathways already present in mammals (Murch et al. 2000, 2001; Murch and 
Saxena 2002) while they were studying the cells of St. John’s wort (Hypericum 
perforatum L.) culture. 

There was an initial confirmation in 2004 that melatonin had a growth-stimulating 
effect in the hypocotyls of etiolated lupin (Lupinus albus L.), with an estimated 
stimulatory potential up to 63% when compared to IAA’s effects on lupin 
(Hernández-Ruiz et al. 2004). As previously mentioned, melatonin is the scientific 
name given to a hormone that is able to contract melanophores, which is implicated 
in the lightening of skin in frogs and fish melanocytes (skin-lightening molecule) 
(Hardeland et al. 2006). As a matter of fact, melatonin is now well known to exist in 
all kingdoms of life, from prokaryotes to eukaryotes, and even in plants (Lal et al. 
2023; Kumar et al. 2023a, b). Phytomelatonin is the name given to a molecule that 
can be found in plants, known as melatonin (Arnao 2014). There is a distinction 
between phytomelatonin, which is derived from algae and plants, and animal or 
synthetic melatonin, which is derived from animals or synthetic materials. There are 
a number of studies that deal with plant-derived melatonin, such as those in food 
chemistry, plant physiology, phytochemistry, botany, and so on, but this term is 
often used in these studies. A pleiotropic chemical that has many roles in a variety of 
physiological reactions in plants is phytomelatonin (Arnao and Hernández-Ruiz 
2018, 2020a, 2022; Aghdam et al. 2022). 

This hormone, originally discovered as a hormone produced by the pineal gland 
of a cow (Lerner et al. 1958; Arnao and Hernández-Ruiz 2020b), is now produced by 
fungi, invertebrates, protozoa, bacteria, plants, the Harderian gland, skin, gut, 
leukocytes, and a number of extrapineal sites in vertebrates. As a result of the 
accumulation of melanin granules in the melanocytes, this active factor plays a 
crucial role in illuminating the skin colour of tadpoles, frogs, toads, and some fish, 
but does not affect animals (Fig. 1.2). Melatonin is the name of the compound, and it
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was scientifically identified as a N-acetylserotonin derivative in 1959 by Arnao and 
Hernández-Ruiz (Arnao and Hernández-Ruiz 2020a).
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In 1960, Lerner isolated and identified this compound as a small molecule with a 
molecular weight of 232 Daltons. It was discovered that this molecule aggregated 
pigment granules in both fish and frog skin; hence, it was named. Melatonin is an 
extensively dispersed chemical found in all kingdoms of life (Mannino et al. 2021; 
Arnao et al. 2022). There are several physiological properties of melatonin that 
contribute to its ability to combat oxidative stress, promote reproduction, and 
promote plant growth. Plant NPs (natural products) are considered to be hormones 
as well as plant hormones (Mangal et al. 2023; Watpade et al. 2023). In an indirect 
manner, melatonin is synthesized through the shikimate pathway, as it is a 
by-product of the shikimate pathway (Elshafie et al. 2023). Including its pleiotropic 
properties, melatonin is an important abiotic stress signalling molecule for plants as 
it makes them more resilient to both mild and severe conditions, and it affects many 
aspects of their development and function (Ahmad et al. 2023). 

1.3 Melatonin Precursors and Organelle Involved 

Melatonin was discovered to be a component of all vertebrates, to be rhythmically 
modulated by the pineal gland’s secretion, and to have a role in the circadian control 
and, occasionally, in the seasonal patterns (Hardeland et al. 2006). Several subcellu-
lar compartments, including the cytoplasm, endoplasmic reticulum, mitochondria, 
and chloroplasts, synthesize melatonin intermediates that control the following 
enzymatic pathways (Zhao et al. 2019; Arnao et al. 2023). It has been shown that 
rice plants contain up to four genes for histone DAC (deacetylases), enzymes that 
may reverse the conversions of 5-methoxytryptamine and serotonin into 
N-acetylserotonin and melatonin, respectively. Deacetylase activity of DAC is 
maximum for N-acetyltyramine. Also, the chloroplast-expressed DAC displayed 
enzyme activity towards melatonin, N-acetyltryptamine, and N-acetylserotonin 
(Lee et al. 2018; Arnao et al. 2023). 

The PMTR1, phytomelatonin receptor facilitates ROS signalling, controls 
homeostasis, and transmits a dark signal that stimulates night stomatal closure 
(preventing water loss during the night), which aids plant adaptation to dryland 
environments (Li et al. 2020). Melatonin is a multiregulatory molecule that controls 
the expression of genes related to abiotic stress resistance, the redox reactions and 
plant growth and development, sucrose metabolism {CWIN [cell wall invertase] and 
SUSY [sucrose synthase]}, and specialized metabolism {phenylpropanoid metabo-
lism: DFR [dihydroflavonol reductase], CHI [chalcone isomerase] (Fig. 1.3). PAL 
[phenylalanine ammonia lyase], F3H [flavanone 3-hydroxylase], CHS [chalcone 
synthase], and ANS [anthocyanidin synthase]} (Weeda et al. 2014; Ahmad et al. 
2023). 

In plant cells, the location of the enzymes involved in the production of melatonin 
from tryptophan is varied. TDC is contained in the cytoplasm (Zhou et al. 2020). In 
chloroplasts, SNAT is expressed; in the endoplasmic reticulum, T5H is expressed



(Back 2021; Rather et al. 2022), ASMT and COMT, however, are found in the 
cytoplasm (Mannino et al. 2021). The first and second of the four probable biosyn-
thetic pathways of melatonin shown in Fig. 1.4 occur in the cytoplasm, while the
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Fig. 1.3 The different P450 isozymes react with melatonin in different ways. For example, 
CYP1A1, CYP1A2, and CYP1B1 cause dominant 6-hydroxylation, but CYP2C19 creates products 
of the O-demethylation only in certain circumstances. However, some products of the O-demethyl-
ation are also seen with CYP1A2 

Fig. 1.4 Simplified representation of the melatonin biosynthesis via four different pathways. TPH 
tryptophan hydroxylase, TDC L-tryptophan decarboxylase, T5H tryptamine-5-hydroxylase, SNAT 
serotonin N-acetyltransferase, ASMT acetylserotonin O-methyltransferase, COMT caffeic acid 3-O-
methyltransferase



third and fourth pathways lead to serotonin production in the endoplasmic reticulum 
(Back et al. 2016). Melatonin synthesis and accumulation can occur at a variety of 
ultimate subcellular sites; however, SNATs are exclusively found in the chloroplast 
and ASMTs/COMT in the cytoplasm. For instance, the serotonin SHT 
(N-hydroxycinnamoyl transferase) rapidly converts serotonin into phenylpropanoid 
amides in the cytoplasm, such as feruloylserotonin (Byeon and Back 2015). 2-OHM 
(2-hydroxymelatonin) is a product of the melatonin metabolism in chloroplasts; this 
reaction is catalysed by M2H (melatonin-2-hydroxylase). Conversely, melatonin is 
quickly transformed into cyclic 3-OHM (3-hydroxymelatonin) by M3H (melatonin-
3-hydroxylase) (Lee et al. 2016; Ye et al. 2019).
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1.4 Melatonin Biosynthetic Pathway in Animals and Plants 

All vertebrates now have an enlarged mechanism for melatonin production, and 
other creatures, like insects, can also use this system (Herbert et al. 1960; Rahman 
et al. 2023; Thakur et al. 2023; Bairwa et al. 2023). The availability of the precursor, 
tryptophan, is a glaring variation in melatonin synthesis between animals and plants. 
Animals must consume tryptophan through diet because they cannot synthesize it on 
their own, unlike plants (Naz et al. 2023). The main melatonin-producing organelles 
and concentration centres are found to be animal mitochondria, similar to plants 
(Reiter 1991). In an isotope tracer investigation, the idea of melatonin produced by 
plants was initially suggested (Murch et al. 2000). Although there is a great deal of 
controversy surrounding this, it is believed that the biosynthetic pathway for 
phytomelatonin in vascular plants is comparable to that in animals (Murch et al. 
2000; Tan et al. 2013; Zhao et al. 2019). Axelrod’s team first identified the mamma-
lian melatonin biosynthesis route in 1960, and it is now well understood (Hardeland 
and Poeggeler 2003). The two functional groups of an indoleamine N-acetyl-5-
methoxytryptamine (melatonin) have significance for the specificity of receptor 
binding, as well as for the molecule’s amphiphilicity, which allows it to enter any 
cell, compartment, or bodily fluid, and, intriguingly, for its oxidation chemistry 
(Hardeland et al. 2006). 

Pathways for biosynthesis appear to be the same. Membrane and nuclear 
receptors, additional chemical interactions, or binding sites mediate these pleiotropic 
activities. Hepatic P450 monooxygenases mostly convert circulating melatonin to 
6-hydroxyl and excrete it as 6-sulfatoxymelatonin. The relevance of pyrrole-ring 
cleavage is of the greater importance in other tissues, notably the brain. 
Photocatalytic, enzymatic, pseudoenzymatic, and multiple free-radical processes 
combine to produce the end product, N1-acetyl-N2-formyl-5-methoxykynuramine. 
Hydroxylation and nitrosation lead to the production of additional metabolites. N1-
acetyl-5-methoxykynuramine, a secondary metabolite, promotes mitochondrial 
activity and suppresses cyclooxygenase-2 (Hardeland et al. 2006). 

Tryptophan is assumed as the first substrate of the biosynthesis of melatonin and 
is engaged in four enzymatic steps that are catalysed by at least six enzymes, 
according to a number of research: including COMT (caffeic acid-O-



methyltransferase), ASMT (N-acetylserotonin methyltransferase), SNAT (serotonin-
N-acetyltransferase), T5H (tryptamine-5-hydroxylase), TPH (tryptophan hydroxy-
lase), and TDC (tryptophan decarboxylase) (Back et al. 2016; Sun et al. 2021). For 
the synthesis of melatonin, the two reactions that contribute to tryptophan are 
hydroxylation and decarboxylation. They have been found in plants that are classi-
fied as herbivorous (Ahmad et al. 2023). There are four potential pathways for the 
biosynthesis of auxin, or IAA (indole-3-acetic acid), which is produced naturally in 
plants, that is, IAM (indole-3-acetamide), TAM (tryptamine), IAOx (indole-3-
acetaldoxime), and IPyA (indole-3-pyruvic acid) (Fig. 1.5). There is still a need 
for more research into the synthesis of auxin from tryptophan in various crops under 
abiotic stress. N-acetylserotonin is produced by the catalysis of serotonin by SNATs, 
which is then methoxylated by ASMTs to produce melatonin (Ahmad et al. 2023). 
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Fig. 1.5 Tryptophan, a major ingredient in the production of melatonin in plants, is produced by a 
biosynthetic process. (1) DAHP synthase; (2) DHQ synthase; (3) DHQ dehydratase; (4) Shikimate 
dehydrogenase; (5) Shikimate kinase; (6) EPSP synthase; (7) Chorismate synthase; (8) Anthranilate 
synthase; (9) PRPP (phosphoribosyl pyrophosphate) transferase; (10) PRAI (PRA isomerase); 
(11) IGP synthase; (12) Tryptophan synthase. PEP 2-phosphoenolpyruvate, DAHP 3-deoxy-
Darabinoheptulosonate-7phosphate, DHQ 3-dehydroquinic acid, DHS 3-dehydroshikimate, EPSP 
5-enolpyruvylshikimate-3-phosphate, PRA Phosporibosyl antranilate 

Tryptophan is the precursor of melatonin production and is an amino acid that 
plants can synthesize de novo through the shikimate pathway. All aromatic amino 
acids, including tryptophan, can be biosynthesized in plants using this process, 
which entails seven distinct stages. Briefly, 

1. The enzyme DAHP synthase (EC 2.5.1.54) is responsible for converting PEP 
(phosphoenol pyruvate) and erythrose-4-phosphate into DAHP (3-Deoxy-D-
arabinoheptulosonate-7-phosphate). DHQ synthase (EC 4.2.3.4) is an enzyme
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that cyclizes DAHP into the 3-dehydroquinate form of DHQ by cyclizing DAHP 
into DHQ. 

2. DHQ dehydratase (EC 4.2.1.10) catalyses the dehydration which converts DHQ 
(3-dehydroquinic acid) into DHS (3-dehydroshikimate). Shikimate dehydroge-
nase (EC 1.1.1.25) further catalyses the dehydrogenation reaction, which 
converts DHS (3-dehydroshikimate) into Shikimate. 

3. The enzyme EPSP synthase (EC 2.5.1.19) transforms shikimate into EPSP 
(5-enolpyruvylshikimate-3-phosphate) after shikimate has been phosphorylated 
by the enzyme shikimate kinase (EC 2.7.1.71). 

4. The enzyme chorismate synthase (EC 4.2.3.5), the crucial stage in tryptophan 
biosynthesis, which transforms EPSP into chorismate, produces chorismite. 

5. Anthranilate synthase (EC 4.1.3.27) converts chorismate into anthranilate, which 
is then combined with PRPP (phosphoribosyl pyrophosphate) to produce PRA 
(phosphoribosyl anthranilate). 

6. To create indole-3-glycerol phosphate, which is then spontaneously transformed 
into the indole scaffold, the ribose ring added in this final process is first opened 
by PRAI (PRA isomerase; EC 5.3.1.24). 

7. The final step in the production of tryptophan is the action of TPS (tryptophan 
synthase; EC 4.2.1.20), which is responsible for the interaction of indole with 
serine (Mannino et al. 2021). 

COMT, ASMT, and SNAT are three different enzymes, each of which may have 
several isoforms, which are required for two-step processes that produce melatonin 
from serotonin (Back et al. 2016). While the other two enzymes are 
methyltransferases, the first enzyme catalyses acetylation. Since serotonin, 
N-acetylserotonin, and 5-methoxytryptamine are substrates for all three enzymes, 
the order in which they function can also change in this situation (Park et al. 2013; 
Byeon et al. 2014; Lee et al. 2014). The conditions of plant growth determine which 
pathway is used for melatonin production (Fig. 1.6). In fact, the metabolic pathway 
from tryptophan to melatonin passes through the “tryptamine/serotonin/N-
acetylserotonin intermediate” before arriving at melatonin under stressful or normal 
circumstances that do not create a substantial accumulation of serotonin (Byeon et al. 
2015). 

The initial step in the biosynthesis of melatonin in plants corresponds to the 
generation of serotonin from tryptophan. Two distinct routes might be implicated. 

(a) In the first route, tryptophan is first decarboxylated by TPH into tryptamine, 
which TDC subsequently hydroxylates into serotonin. 

(b) “TDC converts 5-hydroxytryptophan into serotonin by decarboxylation” 
follows the “TPH-mediated hydroxylation of tryptophan into 
5-hydroxytryptophan, “ another alternative. 

Both of these approaches are feasible since TDC exhibits strong in vitro affinities 
for tryptophan and 5-hydroxytryptophan. Decarboxylation has been shown to occur 
more frequently in plants than hydroxylation as a preliminary step, though (Back



et al. 2016). An acetylated substance produced from serotonin is melatonin. The 
biosynthetic process in which the amino acid tryptophan produces indolic amines 
has been effectively examined in plants and mammals (Tan et al. 2015; Back et al. 
2016). 
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Fig. 1.6 Melatonin biosynthesis mechanisms in microbes, humans, and plants. Green (plants), 
blue (animals), yellow (bacteria), and black (yeasts) are represented by various arrow colours. 
Unproven reactions are indicated by dashed lines. TPH tryptophan hydroxylase, TDC L-tryptophan 
decarboxylase, T5H tryptamine-5-hydroxylase, SNAT serotonin N-acetyltransferase, ASMT 
acetylserotonin O-methyltransferase, COMT caffeic acid 3-O-methyltransferase, DAC deacetylases
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In plants, 

1. The enzyme TDC (tryptophan decarboxylase) transforms tryptophan into trypt-
amine (Fig. 1.6). 

2. The enzyme T5H (tryptamine-5-hydroxylase), which has been widely researched 
in rice, converts tryptamine into serotonin (5-hydroxytryptamine) but has not 
been well investigated. 

3. SNAT (serotonin N-acetyltransferase) is N-acetylated serotonin. The 
hydroxyindole-O-methyltransferase i.e., ASMT (acetylserotonin 
methyltransferase) then methylates N-acetylserotonin to produce melatonin. 
COMT (caffeic acid-O-methyltransferase), an enzyme with a broad range of 
potential substrates, such as quercetin and caffeic acid, can methylate N-
acetylserotonin in plants, as well (Byeon et al. 2014). 

4. After SNAT takes effect, serotonin may also be converted by ASMT/COMT into 
5-methoxytryptamine to produce melatonin. In times of stress or senescence, this 
approach would take place (Back et al. 2016; Tan et al. 2016). 

TPH (tryptophan hydroxylase) and TDC (tryptophan decarboxylase) operate in 
sequence to convert 5-hydroxytryptophan into serotonin in mammalian cells. The 
occurrence of 5-hydroxytryptophan revealed that certain enzymatic activities, 
including the action of TPH, operate with a reduced degree in the plant cells even 
though TPH was not identified in plants. Furthermore, according to several authors, 
5-methoxytryptamine can be converted into melatonin under stress, suggesting that 
plant cells have greater potential for metabolic adaptation than animal cells do. This 
suggests that the melatonin biosynthesis pathway may take many different kinds of 
alternative routes (Arnao and Hernández-Ruiz 2014; Tan et al. 2016). 

There are five enzymatic stages in the process (Fig. 1.7). Tryptophan is first 
hydroxylated by TPH to 5-hydroxytryptophan, which is then decarboxylated by the 
AADC (aromatic amino acid decarboxylase) to serotonin (5-hydroxytryptamine). 
For many years, the two last phases were ambiguous. In fact, neither the site of 
melatonin’s biosynthesis process nor the specific enzymes required for it were 
acknowledged to participate in the synthesis. When the mammalian melatonin 
biosynthetic route was found in 1960, it had been anticipated that only the pineal 
gland and liver are capable of acetylating serotonin to produce N-acetylserotonin 
(Pevet et al. 2017). It was incorrectly assumed that melatonin synthesis was not 
specialized in the liver, because ASMT was the first to be discovered in the pineal 
gland. Melatonin was first distinguished as a pineal-related neurohormone because 
of this. The production of melatonin by several organs and tissues in the periphery, 
including the skin, gut, hepatic cholangiocytes, lymphocytes, bone marrow, testis, 
ovary, Harderian gland, and retina, is currently well understood (Hardeland et al. 
2011). 

Because of the enzyme activity of ASMT for N-acetylserotonin was found to be 
around 14 times more potent, it was determined that this compound was the most 
suitable substrate of ASMT, as compared with the serotonin (Skene 2003). Based on 
these findings, it was hypothesized that firstly, AANAT acetylates serotonin in order



to generate N-acetylserotonin, and that ASMT then converts the subsequent 
N-acetylserotonin into melatonin. It is generally acknowledged that AANAT is the 
enzyme that limits melatonin synthesis, i.e., a limiting factor. In fact, blue light 
(420–480 nm) is the primary regulating component in the melatonin synthesis 
process in animals (Ganguly et al. 2005). This type of daytime irradiation reduces 
the production of melatonin instantaneously by impairing AANAT’s ability to 
function both through protein dephosphorylation and downregulation of gene 
expression (Tan et al. 2011; Venegas et al. 2012). Other variables that could interfere 
with an animal’s ability to produce melatonin include fluctuations in temperature, 
food consumption, and various kinds of health conditions (Mannino et al. 2021). 
N-acetyltryptamine, which is produced by SNAT, may be transformed by T5H into 
N-acetylserotonin, which is subsequently manufactured as melatonin (Arnao et al. 
2023). 
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Fig. 1.7 The conventional melatonin synthesis pathway in mammals. TPH Tryptophan hydroxy-
lase, AADC aromatic amino acid decarboxylase, AANAT aralkylamine N-acetyltransferase, ASMT 
acetylserotonin O-methyltransferase 

1.5 Conclusion/Future Directions 

Several recent studies have established the critical significance of melatonin in plant 
processes, notably its control of crop development and productivity. However, a full 
knowledge of melatonin, which affects crop development and production under 
abiotic stress conditions, is still inadequate. Other melatonin biosynthetic pathways, 
including ones independent of serotonin synthesis, may exist. The enzymes involved 
have yet to be discovered, and those that are known do not appear to be participating 
in this process. Aromatic and therapeutic plants have greater phytomelatonin levels 
than conventional veggies. Such botanical medicinal plants are perfect choices for 
future melatonin supplements. Controlling growing conditions might aid in the



production of phytomelatonin-rich plants. Additional investigation on other species 
and varieties is required. The existence of phytomelatonin in all plant species studied 
so far suggests that it might be used as a nutraceutical ingredient. The discovery and 
research of phytomelatonin-rich species and variants should be prioritized. In terms 
of melatonin intake, we should focus on alternatives to synthetic melatonin and 
boost organically generated melatonin. 
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