
Chapter 6 
Probabilistic Methods of Inverse Problem 
Solution 

Abstract This chapter considers the methods of solving the linear discrete inverse 
problems using the probabilistic approach. We review two major techniques—the 
maximum likelihood and the maximum a posteriori estimation methods. The Bayes 
estimation method makes it possible to introduce some a priori information about the 
properties of the solution in the inversion. We demonstrate that the numerical imple-
mentation of these methods is similar to the weighted least-squares and Tikhonov’s 
regularization methods, respectively. A summary of the typical stochastic inversion 
techniques, e.g., Monte Carlo, genetic algorithm (GA), and simulated annealing (SA) 
methods, is also provided. 

Keywords Maximum likelihood method · Bayes estimation · Stochastic 
methods · Monte Carlo · Genetic algorithm (GA) · Simulated annealing (SA) 

In Chap. 5, we considered the methods of solving the linear discrete inverse problems 
using the deterministic approach based on Tikhonov regularization. However, there 
exists an alternative approach based on the ideas of the probability theory. Therefore, 
in this chapter presents several methods for inverse problem solutions using the 
probabilistic approach following Zhdanov (1993, 2002, 2015). 

6.1 Maximum Likelihood Method 

As discussed in Chap. 2, the probability distribution can be described by a very com-
plicated function in general cases. However, according to the central limit theorem, 
a large sample of a random variable tends to a very simple distribution, the so-called 
Gaussian (or normal) distribution , as the size of the random sample increases. 

The joint distribution of two independent Gaussian variables is just the product of 
two univariate distributions. When the data forming a vector . d are correlated (with 
mean .<d> and covariance .σ = [σi j ]), the appropriate distribution turns out to be as 
follows (Menke 2018): 
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(d − <d>)Tσ−1(d − <d>)]. (6.1) 

The idea that the model and data are related by an explicit relationship, 

.Am = d, (6.2) 

can now be reinterpreted in the sense that this relationship holds only for the mean 
data: 

.Am = <d>. (6.3) 

Substituting (6.3) into (6.1), we can rewrite the distribution of the data as follows: 
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exp[−1

2
fσ(m)], (6.4) 

where 
. fσ(m) = (d − Am)Tσ−1(d − Am).

Under this assumption, we can say that the optimum values for the model param-
eters are those that maximize the probability that the observed data are, in fact, 
observed. Thus, the method of maximum likelihood is based on maximization of the 
probability function (6.4) 

.P(d) = max . (6.5) 

Clearly, the maximum of.P(d) occurs when the argument of the exponential function 
has maximum or when . fσ(m) has minimum: 

. fσ(m) = (d − Am)Tσ−1(d − Am) = min . (6.6) 

Let us calculate the first variation of functional . fσ: 

. δ fσ(m) = −(δAm)Tσ−1(d − Am) − (d − Am)Tσ−1(δAm).

It can be shown that for symmetrical matrix .σ−1, the following equality holds: 

. aTσ−1b = bTσ−1a,

where. a and. b are two arbitrary column vectors. Therefore, we can write the necessary 
condition for the functional . fσ to have a minimum as follows:
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.δ fσ(m) = −2(Aδm)Tσ−1(d − Am) = −2(δm)TATσ−1(d − Am) = 0. (6.7) 

From Eq. (6.7), we obtain at once the following equation: 

. ATσ−1(d − Am) = 0.

The last formula provides the following normal system of equations for the “pseudo-
solution” of the minimization problem (6.6): 

.ATσ−1Am = ATσ−1d. (6.8) 

If the matrix .
(
ATσ−1A

)
is non-singular, then we can multiply both sides of nor-

mal system (6.8) by inverse matrix, .(ATσ−1A)−1, and write the pseudo-solution of 
minimization problem (6.6) in the explicit form as follows: 

.m0 = (ATσ−1A)−1ATσ−1d. (6.9) 

Comparing the last formula with the corresponding equation for the weighted least-
squares method (5.31), we see that we have obtained exactly the same result if we 
substitute matrix .W2 for .σ−1: 

.W2 = σ−1. (6.10) 

Note that if data happen to be uncorrelated, then the covariance matrix becomes 
diagonal: 

.σ = [diag(σ2
i )], (6.11) 

and the elements of the main diagonal are the variances of the data. In this case, the 
weights are given by the following formula: 

.w2
i = 1

σ2
i

. (6.12) 

The functional 

. fw(m) = χ2(m) =
N∑

i=1

(
ri
σi

)2

=
N∑

i=1

(
di−d p

i

σi

)2

(6.13) 

is called a “chi-square.” 
In the cases where the measurement errors are normally distributed, the quantity 

.χ2 is a sum of .N squares of normally distributed variables, each normalized to its 
variance. Thus, by applying the weighted least-squares method, we can select the 
smaller weights for data with bigger standard deviations (less accurate data) and the
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bigger weights for data with smaller standard deviations (more certain data). If the 
data have equal variances, .σ2

0, then the weighting matrix becomes scalar: 

. W2 = σ−1 = 1

σ2
0

I,

and the chi-square functional becomes equal to the conventional misfit functional. 

6.2 The Maximum a Posteriori Estimation Method (The 
Bayes Estimation) 

Let us consider the regularization technique from the point of view of probability 
theory (Tarantola 1987). First of all, we introduce the following (normally distributed) 
densities of probability: 
(1) .P(d/m) is a conditional density of probability of the data. d, given the model . m. 
It means that it is the probability density of theoretical data . d to be expected from a 
given model . m. 
(2) .P(m/d) is a conditional density of probability of a model . m, given the data . d. 
According to the Bayes theorem, the following equation holds: 

.P(m/d) = P(d/m)P(m)

P(d)
, (6.14) 

where .P(d) and .P(m) are unconditional probability densities for data and model 
parameters, respectively. It is assumed that 

. <m> = mapr ,

where .mapr is an a priori constrained expectation of the model, and 

. [cov(mi ,m j )] = σm .

Thus, considering normally distributed parameters, we have the following probability 
distribution of the model, . m: 

.P(m) = | σm |− 1
2

(2π)
L
2

exp[−1

2
(m − mapr )

Tσ−1
m (m − mapr )]. (6.15) 

Analogously, it is assumed that, 

.[cov(di , d j )] = σd



6.2 The Maximum a Posteriori Estimation Method (The Bayes Estimation) 123

and we can write for the conditional density of probability of the data . d

.P(d/m) = | σd |− 1
2

(2π)
N
2

exp[−1

2
(d − Am)Tσ−1

d (d − Am)]. (6.16) 

The maximum likelihood method can now be used to find the model .m0 which 
maximizes the conditional probability of a model, .P(m/d): 

. P(m/d) = | σd |− 1
2

(2π)
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2

exp[−1

2
(d − Am)Tσ−1

d (d − Am)] ×

. × | σm |− 1
2

(2π)
L
2

exp[−1

2
(m − mapr )

Tσ−1
m (m − mapr )]P−1(d). (6.17) 

It is evident that, to maximize.P(m/d), we have to minimize the sum of the expres-
sions in the exponential factors in Eq. (6.17): 

. fBayes = (d − Am)Tσ−1
d (d − Am) + (m − mapr )

Tσ−1
m (m − mapr ). (6.18) 

Note that the minimization of the first term in the above equation gives the classical 
maximum likelihood or weighted least-squares method. 

Let us calculate the first variation of . fBayes : 

. δ fBayes = −2(Aδm)Tσ−1
d (d − Am) + 2(δm)Tσ−1

m (m − mapr ) = 0.

From the last equation, we have 

. (δm)T [ATσ−1
d (d − Am) − σ−1

m (m − mapr )] = 0.

Thus, the normal system of equations for minimization of . fBayes can be written as 
follows: 

. ATσ−1
d (d − Am) − σ−1

m (m − mapr ) = 0,

From the last formula, we have at once the following equation: 

.(ATσ−1
d A + σ−1

m )m = ATσ−1
d d + σ−1

m mapr . (6.19) 

We can write the solution of Eq. (6.19) in the closed form as follows: 

.m0 = (ATσ−1
d A + σ−1

m )−1(ATσ−1
d d +−1

m mapr ). (6.20) 

By comparing Eqs. (6.20) and (5.36), we see that 

.σ−1
m = αW2

m, (6.21)
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so.σ−1
m plays the role of the regularization parameter and the model parameter weights 

simultaneously. 
Let us assume now that we have uncorrelated data with equal variances, 

. σd = σ2
dI,

and similarly for the a priori covariance of the model, 

. σm = σ2
mI.

Then Eq. (6.20) takes the following form: 

.m0 = (ATA + kI)−1(ATd + kmapr ), (6.22) 

where 

.k = σ2
d

σ2
m

= α (6.23) 

plays the role of the regularization parameter. 
We can see from formula (6.23) that large values of the variance.σ2

m of the model 
parameters correspond to a small regularization parameter .α, and vice versa, large 
values of. α correspond to a small variance.σ2

m .This means that, without regularization 
(. α close to zero), the uncertainty in determining the inverse model is great, while with 
regularization, it becomes smaller. The last formula illustrates once again the close 
connection between the probabilistic (Tarantola 1987) and deterministic (Tikhonov 
and Arsenin 1977) approaches to regularization. 

6.3 Stochastic Methods of Inversion 

We have already discussed in this and previous chapters that there are two different 
major points of view in addressing the inverse problem: 
(a) the algebraic (deterministic) point of view, dating back to the works of Lanczos 
(1961), Backus and Gilbert (1967), Backus (1970a, b, c), Marquardt (1963, 1970), 
Tikhonov and Arsenin (1977), etc.; 
(b) the probabilistic (stochastic) point of view, formulated in the pioneering papers 
of Foster (1961), Franklin (1970), Jackson (1972), Tarantola and Valette (1982), 
Tarantola (1987, 2005), etc. 

The stochastic point of view is widely used in literature because it is closely 
associated with the statistical nature of the noise in the data. At the same time, it has 
been demonstrated in many publications (e.g., the classical work by Sabatier (1977)) 
that in many cases, both points of view result in similar computational algorithms 
(see Sects. 6.1 and 6.2).
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The Monte Carlo inversion methods represent a general approach based on the 
stochastic point of view (Metropolis and Ulam 1949; Metropolis et al. 1953). They 
are named after the famous Casino in Monaco. There are two major types of Monte 
Carlo methods. The first one is based on an extensive random search in the space. M
of the model parameters for a solution, which generates the predicted data from 
the data space, . D, close to the observed data, realizing the global minimum of 
the corresponding misfit functional . f (m) (e.g., Cary and Chapman 1988; Khan 
et al. 2000; Khan and Mosegaard 2001). This method is suitable for problems with 
misfit functionals having multiple local minimums, where conventional gradient-type 
minimization methods may have difficulties getting out from a “deep” local minimum 
(see Chap. 7). The second type of Monte Carlo method uses an optimization algorithm 
in order to minimize the number of steps required by the random search methods. 
The most effective global optimization algorithms have been developed based on 
known physical or biological rules to evolve to the best solution. For example, the 
simulated annealing (SA) algorithm (Kirkpatrick et al. 1983; Corana et al. 1987) 
comes from annealing in metallurgy, a technique involving heating and controlled 
cooling of a material. It is known from physics that, in order to minimize the final 
lattice energy, one should apply a very slow cooling process. The SA method uses an 
analogy between the minimization of lattice energy in the framework of the physical 
process of annealing and numerical problem of determining the global minimum of 
a misfit functional, . f (m). 

The genetic algorithm (GA) (Holland 1975; Goldberg 1989; Michalewicz and 
Schoenauer 1996; Whitley 1994; Mosegaard and Sambridge 2002) is a heuristic 
search method that mimics the process of natural evolution. In a pure genetic algo-
rithm, a population of candidate solutions (individuals) for an optimization problem 
is evolved toward better solutions. Traditionally, the solutions are coded in binary 
form as strings of 0s and 1s to be mutated and altered. The evolution starts from a 
population of randomly generated solutions from the search space and proceeds as 
an iterative process. The population in each iteration is called a generation. In each 
generation, the fitness of every individual is evaluated by an objective functional 
(e.g., a misfit functional . f (m)). The individuals who have low misfits are stochas-
tically selected from the current population, and then they are chosen to form a new 
generation by applying genetic operations (mutation and crossover). The above steps 
run iteratively until the inversion process meets the termination conditions. 

A detailed overview of the simulated annealing and genetic algorithms can be 
found, for example, in Zhdanov (2015). 

The Monte Carlo methods are considered to be an effective optimization technique 
for many inverse problems where some general gradient-type methods fail. They can 
be applied for solving optimization problems with continuous or discrete parameters 
and with small sample intervals; there is no need to calculate the derivatives; the 
global minimization problem can be solved for the misfit functional with multiple 
local minima.
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The Monte Carlo methods were first applied to the solutions of earth science prob-
lems by Keilis-Borok and Yanovskaya (1967) and Press (1968, 1970a, b). The paper 
by Sambridge and Mosegaard (2002) provides an excellent review of applications of 
the Monte Carlo methods to solving geophysical inverse problems. 
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