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Introduction 

The mathematical inverse theory is dedicated to developing methods of recon-
structing the properties of the objects generating the observed data. This problem 
arises in many fields of science and for different applications. For example, in earth 
science, the geological and geophysical data collected on the ground are used to deter-
mine the earth’s internal structure and to find the locations of the minerals, oil and 
gas, water, and other natural resources. In medical science, the recordings of various 
medical sensors are used to determine the conditions of the internal organs of the 
human body. In astronomy, the data collected by optical and radio telescopes provide 
the basis for reconstructing the physical properties of distant stars and galaxies. This 
list of applications can be expanded to many other fields of science and engineering. 

In many applications, researchers collect different types of data representing the 
same object of investigation. For example, in medical imaging, various imaging 
techniques, e.g., X-ray, ultrasound, magnetic resonance imaging (MRI), etc., are 
used to study the internal organs of the human body. In earth science applications, 
multiple physical field data, e.g., gravity, magnetic, electromagnetic, seismic, etc., 
are collected to study the earth’s internal structure. In astronomy, optical and radiote-
lescopes are used to study electromagnetic radiation from the stars and galaxies, as 
well as observations of neutrinos, cosmic rays, or gravitational waves. 

One common feature of all these problems is that the observed data are known, but 
the sources generating these data are unknown and have to be recovered from the data. 
At the same time, many of these applications use multiphysics data to study the same 
object of interest while providing information about different physical properties of 
the target. Therefore, combining all available information about the target makes 
sense to produce the most reliable solution to the inverse problem. This concept is 
similar to how living organisms, including humans, study the environment. They 
do not rely on one specific sensor but evaluate the information provided by multiple 
organs of sense, e.g., eyes, ears, nose, or tongue. In other words, they see, hear, smell, 
taste, or feel the surrounding world. The advantage discovered by nature is that if the 
information provided by one sensor is incomplete, it could be complemented by the 
signals received by other sensors. The joint inversion and fusion of multiphysics data
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vi Introduction

serve the same purpose of integrating information from multiple sensors to produce 
the most reliable reconstruction of the objects generating the observed data. 

The field of “data fusion” or “information fusion” has been developed extensively 
over the last decades, specifically with application to multisensor data analysis in 
navigation, surveillance, and remote sensing. The classical data fusion techniques are 
based on data association, state of the target estimation, and probability estimation 
(decision-based) fusion. In this book, I use the term “fusion” in a more general sense 
as an integration of all available information about the target with the goal of the 
most reliable reconstruction of the target from the observed multiphysics data. The 
joint inversion methods provide a mathematical framework for integrated analysis 
and fusion of multiphysics data which can be used in solving this problem. 

In this book, I describe the state of the art in the field of joint inversion and present 
those advanced methods which emerged over the last decade. 

The book is organized into five parts. In Part I, I review some of the mathematical 
concepts we use in this book, including the elements of probability theory and func-
tional analysis. These concepts are critical to understanding the probabilistic and 
deterministic approaches to the inverse theory. 

Part II discusses the foundations of the inverse theory, starting with the princi-
ples of regularized inversion and considering different methods of inverse problem 
solutions. The regularization theory is critical for developing effective methods of 
inversion. It is based on the simple idea introduced in the pioneering work of Tikhonov 
that the nonuniqueness and instability in the inverse problem solution can be over-
come by bringing a priori information about the inverse model. This can also be 
achieved by using complementary data as the source of a priori information. 

Part III, central part of the book, focuses on the mathematical algorithms of joint 
inversion. I begin this part by formulating the multimodal inverse problem and the 
joint inversion based on analytical and statistical relationships between different 
model parameters. Then, the methods of joint inversion based on structural simi-
larities, joint focusing, and joint minimum entropy are introduced. This group of 
methods incorporates the a priori information in the form of structural constraints 
on the inverse problem solution. 

Chapters 12 and 13 introduce the theory of Gramian spaces and corresponding 
stabilizing functionals, which play an important role in the formulation of the general 
principles of joint inversion. Gramian constraints make it possible to enforce the 
relationships between model parameters without a priori knowledge of the specific 
form of these relationships. Gramian spaces provide the convenient quadratic metric 
in the model spaces, which simplifies the minimizations of the Gramian constraints 
for arbitrary multimodal parameterization. 

Chapter 14 focuses on the processing and fusion of multiphysics data as applied 
to digital image restoration. This problem is of great importance in biomedical, 
geophysical, astronomical, high-definition television, remote sensing, and other 
applications. I demonstrate that the methods of joint inversion of multiphysics data 
developed in this book can be effectively used for solving image restoration and 
deblurring problems.
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In Part IV of the book, I discuss the idea of using artificial intelligence (AI) 
algorithms in the solution of the inverse problem. The AI algorithms work through 
a process called “machine learning.” The concept of building machines possessing 
“artificial intelligence” was introduced long ago; however, this concept has become 
practical only recently with the rapid scaling up of computing power during the last 
decade. The application of AI algorithms in solving the inverse problem is usually 
based on using the training data that helps the algorithm to learn. I demonstrate 
that this process can be significantly improved by using knowledge-based neural 
networks, which rely both on the training data and a priori information about the 
laws governing the data prediction (forward modeling operators). 

The final Part V presents the case histories of joint inversion of the potential field 
data used in geophysical applications. The gravity and magnetic geophysical data are 
widely used in the exploration of mineral resources and regional geological studies. 
Chapter 17 provides an overview of the principles of modeling and inversion of 
gravity and magnetic data, including their gradients (gravity and magnetic tensors). 
In Chap. 18, I present several case histories illustrating the effectiveness of joint 
inversion of potential field data in geophysical exploration. 

In conclusion, I would like to thank my associates and graduate students in the 
Consortium for Electromagnetic Modeling and Inversion (CEMI) at the University of 
Utah, who contributed to developing different aspects of the joint inversion methods. 

I am deeply grateful to my wife, Olga, for her encouragement and continuing 
support during the work on this book. 

Salt Lake City, UT, USA 
March 2023 

Michael S. Zhdanov
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Mathematical Background



Chapter 1 
Introduction to Inversion Theory 

Abstract This chapter introduces the definitions of forward and inverse problems 
of mathematical physics and concepts of the well-posed and ill-posed problems. It 
also reviews the main principles of ill-posed inverse problem solutions based on the 
regularization theory developed in the pioneering research by Tikhonov. The notions 
of sensitivity and resolution, which are important in understanding the regularization 
principles, are also introduced. Finally, two different main approaches to formulating 
the inverse problem, one based on the deterministic concept and the other using the 
framework of the Bayesian probability theory, are considered as well. 

Keywords Inverse problem · Well-posed problem · Ill-posed problem ·
Regularization theory 

1.1 Formulation of Forward and Inverse Problems 

Scientific experiments are usually based on measuring the observable data in the 
lab or natural environment and determining the parameters of the object of investi-
gation based on these measurements. A similar problem arises in many biological, 
physical, and geophysical studies where the observer collects various physical field 
data emitted by the target and tries to draw a conclusion about the properties of the 
target by analyzing these data. In mathematical physics, predicting the observed data 
(measured fields) caused by the target is called a forward problem. The opposite 
problem of extracting information about the target from the observed data is called 
an inverse problem. 

One can express forward and inverse problems symbolically using the following 
mathematical notations: 

.d = A(m). (1.1) 

In Eq. (1.1), symbol.m represents a model characterizing the structure and properties 
of the target, e.g., geological structure of the earth in geological applications, or 
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internal structure of the brain or other body tissue in medical applications. Symbol 
. d denotes the observed data, e.g., geophysical data in geological applications or 
medical imaging data in medical applications. The symbol .A stands for the set of 
rules, represented by physical laws and/or mathematical equations, which relate the 
given model to the observed data. In mathematics, symbol .A is often called an 
operator, which transforms model, . m, into the data, . d. 

For example, if data, . d, represent the observed gravity field, and model, . m, 
describes a given distribution of the density of the target, then the operator, . A, is  
the mathematical representation of Newton’s law. Similarly, if data, . d, represent the 
observed electromagnetic field, and model, . m, describes a given distribution of the 
electrical properties of the target, then operator,. A, is the mathematical representation 
of the laws of electromagnetism (e.g., Maxwell’s equations). 

In a case when model .m is known, and the goal is to find the data, .d, generated 
by this model, Eq. (1.1) is called a forward modeling problem. Contrary, we call 
Eq. (1.1) an  inverse modeling problem, if the data, . d, are known, but the model, . m,

generating this data is unknown. 
One of the major difficulties with the solution of the inverse problems is related 

to the fact that the size of the set forming the unknown model parameters usually 
exceeds the size of the set of the observed data significantly. In other words, the inverse 
problems are hugely underdetermined. For example, in geophysical applications, the 
data are collected on a small area on the earth’s surface or in a borehole. Still, the 
inversion aims to recover the physical properties of the large volume of the rock 
formations underground. In medical imaging, the sensors are placed on or around 
the patient’s body, while the goal is to produce images of the internal organs. In 
addition, the observed data always have some instrumental noise, which also strongly 
affects the inversion. Solving these undetermined and uncertain problems requires 
developing specialized mathematical methods. These methods constitute the body of 
inversion theory, which development was stimulated by the needs of applied science, 
first and foremost by geophysical exploration problems. 

The history of the development of inversion theory goes back to the beginning of 
the twentieth century. 

Almost a century ago, French mathematician Hadamard (1902) formulated three 
critical questions related to the solution of any inverse problem: 

(1) Does the solution exist? 
(2) Is it unique? 
(3) Is it stable? 
The question of the solution’s existence is associated with the mathematical for-

mulation of the inverse problem. From the physical point of view, there should be 
some particular solution, if we study a real physical target. However, from the math-
ematical point of view, there could be a situation when we cannot fit the observed 
data by a specific class of models. For example, let us assume that the real target rep-
resents a body composed of 20 rectangular bricks of different densities; however, we 
are looking for a solution described by five rectangular bricks only. In this situation, 
an exact solution may not exist.
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The following formulae illustrate the question of the uniqueness of the solution. 
Assume that we have two different models, .m1 and .m2, which generate the same 
data . d0: 

. A(m1) = d0, A(m2) = d0.

In this case, it is impossible to distinguish these two models from the given data. 
That is why the question of uniqueness is so important in inversion. 

The last question of solution stability is a critical one in inversion theory as well. 
In fact, the observed data are always contaminated by some noise.δd. The question is 
whether the difference in the responses for different models is larger than the noise 
level. For example, let two different models, .m1 and.m2, generate two different data 
sets, .d1 and . d2, which can be expressed schematically as follows: 

. A(m1) = d1, and A(m2) = d2.

Assume also that these two models are very different, while the data difference is 
within the noise level . ε: 

. ||δm|| = ||m1−m2|| > C,

. ||δd|| = ||d1−d2|| < ε, C >> ε,

where symbol .||. . .|| denotes some norm or measure of the difference between two 
models and two data sets, and .C is some large number. We will discuss a rigorous 
definition of norm later. 

It is also impossible to distinguish these two models from the observed data in 
this situation. 

Hadamard realized the importance of these three questions for inverse problem 
solutions. He suggested that a particular mathematical problem was formulated cor-
rectly if and only if all three questions posed above had positive answers. In other 
words, the mathematical problem was well-posed, if its solution did exist, was unique, 
and was stable. 

A problem was ill-posed, according to Hadamard (1902), if at least one of the 
conditions listed above would fail. In other words, the problem was ill-posed if 
the solution did not exist, or was not unique, or if it was not stable. Furthermore, 
Hadamard considered that an ill-posed mathematical problem was not physically 
and mathematically meaningful (that was why one could call it an “ill” problem). 

Many mathematicians of the early twentieth century followed Hadamard’s view. 
They did not consider ill-posed problems as being the legitimate subject of the 
research. The rapid development of applied computational mathematics in the mid-
dle of the twentieth century made it clear, however, that ill-posed problems appeared 
in the majority of the practical computational problems. The researchers have to 
solve these problems in many natural science applications. It was also subsequently 
found that Hadamard’s opinion was incorrect: ill-posed problems were physically 
and mathematically meaningful and could be solved.
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The foundations of the theory of ill-posed problems were formulated by Russian 
mathematician A. N. Tikhonov in the middle of the twentieth century (Tikhonov 
1943; Tikhonov and Arsenin 1977). Since then, this theory has been developed in 
hundreds of research papers and monographs (e.g., Lavrent’ev et al. 1986; Isakov  
1993; Morozov 1993; Hansen 2010; Muller and Siltanen 2012; Neto and Neto 2013). 

This chapter reviews the main principles of ill-posed inverse problem solutions. 
A detailed exposition of this subject can be found in Zhdanov (2002, 2015). 

The solution of the inverse problem consists in determining such a model . mpr

(predicted model) that generates predicted data.dpr , that represent well the observed 
data. d. In other words, the goal is to find a model generating the predicted data being 
close enough to the observed data (usually within the accuracy of observations). 

In order to find a mathematical solution to this problem, one should define the 
notion of a “distance” between two data sets that will help us to evaluate the accuracy 
of the inverse problem solution. In other words, we need to introduce geometry to 
measure the distance between the actual and predicted data. The concept of a distance 
between two functions or two data sets is provided by the mathematical theory of 
function spaces, reviewed in Chap. 3. 

1.2 Concept of Well-Posed and Ill-Posed Inverse Problems 

In this section, we provide rigorous mathematical definitions of well-posed and ill-
posed problems. Consider a mathematical model of some phenomenon characterized 
by a multidimensional vector of the model parameters, .m, which belongs to some 
set of models . M . Let  . d be a multidimensional vector of observed data attributed to 
this phenomenon, which belongs to a set of data . D. We assume that data, . d, and 
model,. m, are related by a corresponding physical or mathematical law described by 
Eq. (1.1). 

In a case when the model parameters, .m, are known, formula (1.1) represents a 
forward modeling problem of finding data,. d, and. A is a forward modeling operator. 
Formula (1.1) becomes an equation of the inverse problem for. m, when the data and 
forward modeling operator are known. Our focus is on studying this inverse problem. 

We generally expect that the true data . d are not directly observable. Instead, we 
have only some approximate values,. dδ . The following formula provides an estimate 
of the accuracy of the observed data: .||d − dδ||D ≤ δ . In the last formula, . δ is the 
noise level of the data. Symbol .||. . .||D represents some norm (“distance” between 
vectors . d and . dδ) in the set of data, . D. Solution of the inverse problem consists of 
the following principal steps: 

(1) Finding a model,.mδ ∈ M , with the attributes (data) such that. ||d−A (mδ)||D ≤ δ

under the condition that .mδ → m as .δ → 0. 
(2) Determining, if possible, the errors of the approximate solutions within the 

adopted model; that is, the estimation of the distance between .mδ and .m using 
an appropriate metric.
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The mathematical difficulty in solving inverse problems is that the inverse oper-
ator, .A−1, may not exist or be continuous over the domain .AM ⊂ D, where .AM is 
formed by all possible data, attributed to all available models from the model set,. M . 

In the beginning of this chapter, we have already introduced the concept of ill-
posed and well-posed problems. We can now provide rigorous mathematical defini-
tions of these problems. A well-posed problem must meet the following requirements: 

(1) The solution .m of equation .d = A (m) exists over the entire set . D. 
(2) The solution .m is unique. 
(3) The solution is stable; that is, small perturbations of . d cause only small pertur-

bations of the solution, . m. 

The approximate solution of an inverse problem can be written as follows, . mδ =
A−1dδ , inasmuch as .mδ → m as .δ → 0. The problem (1.1) is ill-posed if at least 
one of the conditions listed above fails. As a consequence, the element. mδ = A−1dδ

(which may not even exist!) is not an approximate solution inasmuch as .mδ can 
deviate from the exact solution .m arbitrarily even for small . δ. 

Attempts to solve ill-posed problems were undertaken well before the develop-
ment of a coherent general approach. As a result, simple ill-posed problems were 
solved intuitively. However, intuitive techniques work when we consider relatively 
simple models only. Present capabilities in measuring and processing experimental 
data make it necessary to consider very complex models. At present, through the use 
of regularization theory, we can find highly effective numerical algorithms to solve 
a wide range of inverse problems for complex targets. This theory is based on the 
concept of a regularizing algorithm or operator. The regularizing operator establishes 
a relationship between each pair (.dδ, δ) and an element .mδ ∈ M such that . mδ → m
as.δ → 0. Regularizing algorithms have been developed for many ill-posed problems 
and implemented in computer codes. These permitted the automated processing of 
the experimental data. 

1.3 Regularized Solution of the Ill-Posed Problem 

The following fundamental idea serves as a basis of Tikhonov’s regularization theory. 
One can solve an ill-posed problem by substituting a family of well-posed problems 
for the original ill-posed problem. The requirement is that the well-posed solutions 
should provide an asymptotic approximation to the solution of the corresponding 
ill-posed problem. 

We can explain this major concept of regularization theory more rigorously using 
mathematical notations. Let us assume that the inverse problem described by Eq. (1.1) 
is ill-posed. The main idea of the regularization method is to consider, instead of one 
ill-posed inverse problem (1.1), a family of well-posed problems, 

.d = Aα(m), (1.2)
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which approximates the original inverse problem in some sense (Strakhov 1968, 
1969a, b). The scalar parameter .α > 0 is called a regularization parameter. Family 
of well-posed problems (1.2) delivers a solution to the ill-posed problem (1.1) if the  
following condition holds: 

.mα→ m, if α → 0. (1.3) 

The critical question of the regularization theory is how to find this family of 
the well-posed problem. Over the years, since Tikhonov conceived the concept of 
the regularized solution, many different methods were developed to construct this 
family. Most of these methods are based on introducing some a priori information 
about the properties of the required solution. For example, one can search for a target 
model with a smooth distribution of physical properties. Another example would be 
a solution with the bounded variations of the parameters within the given boundaries. 
In both examples, introducing additional constraints on the possible solution of the 
inverse problem results in limiting the class of possible solutions and, eventually, in 
making the ill-posed problem well-posed. 

In this book, we will discuss the multiple ways of regularization using various 
types of constraints imposed on the solution of the inverse problem. 

1.4 Sensitivity and Resolution of Data Inversion 

We formulate the notions of sensitivity and resolution, which are important in under-
standing the regularization principles. These notions can be readily introduced in 
a case when operator, . A, of forward modeling problem is a linear one. A rigorous 
definition of a linear operator will be given in Chap. 3; however, for the purpose of 
this section, it is enough to understand that the linear operator acts similarly to a 
linear function. In other words, the application of the linear operator to a sum of 
two vectors should be equal to the sum of the results obtained by applying the same 
operator to each vector separately. 

1.4.1 Sensitivity 

One can describe any forward problem by operator Eq. (1.1). Let us consider some 
given model .m0 and corresponding data . d0. For the sake of simplicity, we assume 
that in some vicinity of point .m0, operator .A = Amo is a linear operator. Then we 
have 

. Amo(m − m0) = Amom − Amom0 = d − d0,

or 
.Amo(∆m) = ∆d, (1.4)
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where 
. ∆m = m − m0 and ∆d = d − d0

are the perturbations of the model parameters and of the data, respectively. 
Following work by Dmitriev (1990), we can now give a corresponding definition 

of sensitivity. 

Definition 1.1 The sensitivity.Smo of the data is determined by the ratio of the norm 
of the perturbation of the data to the norm of the perturbation of the model parameters. 

The maximum sensitivity is given by the following formula: 

.Smax
mo

= sup

[ ||∆d||
||∆m||

]
= sup

[||Amo(∆m)||
||∆m||

]
= ||Amo|| , (1.5) 

where symbol .supϕ denotes the least upper bound or supremum of the variable . ϕ. 
We will find in Chap. 3 that .Smax

mo
is equal to the norm of operator .Amo . 

If we know .Smax
mo

, according to (1.4) and (1.5), we can determine the variations 
of the model that can produce the variations of the data greater then the errors of 
observations, . δ: 

.||m − m0|| ≥ δ/Smax
mo

. (1.6) 

Therefore, the data are sensitive to those perturbations of the model parameters only 
that exceed the level .δ/Smax

mo
. Thus, one cannot distinguish any other variations of 

the model from the data. 

1.4.2 Resolution 

Let us assume now that in some vicinity of the model .m0 the following inequality is 
satisfied: 

. ||Amo(∆m)|| ≥ k||∆m||,

for any .∆m, where .k > 0 is some constant. It will be shown in Chap. 3 (Theorem 
3.41) that, in this case, there exists a linear and bounded inverse operator .A−1

mo
. It  

means that the solution of the inverse problem in the vicinity of the model .m0 can 
be written as follows: 

.m = m0 + A−1
mo

(d − d0). (1.7) 

The same expression can be written for data. dδ , observed with some noise.dδ= d+δd: 

.mδ= m0 + A−1
mo

(dδ−d0). (1.8)
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From (1.7) and (1.8) we have  

.mδ−m = A−1
mo

(dδ−d). (1.9) 

Now we can determine the maximum possible errors in the solution of the inverse 
problem for the given level of the errors in the observed data, equal to .δ = ||δd||: 

.∆max = sup
||dδ−d||=δ

||mδ−m|| = sup
||dδ−d||=δ

||A−1
mo

(dδ−d)|| = ||A−1
mo

||δ, (1.10) 

where by Theorem 3.41 of Chap. 3, 

.||A−1
mo

|| ≤ 1

k
. (1.11) 

Based on the last formulae, we can determine the resolution of the data inversion. 
Two models, .m1 and .m2, in the vicinity of the model .m0, can be resolved if the 
following condition is satisfied: 

.||m1−m2|| ≥ ∆max = ||A−1 
mo

||δ = δ 
Rm0 

. (1.12) 

The value 

.Rm0 = 1

||A−1
mo ||

(1.13) 

is the measure of resolution of the given inverse problem. It follows from (1.11) and 
(1.13) that 

.Rm0 ≥ k . (1.14) 

The smaller the norm of the inverse operator, the bigger the resolution, .Rm0 , and the 
closer to each other are models that can be resolved. For example, in the case of 
unbounded inverse operator.A−1

mo
with the norm going to infinity, the resolution goes 

to zero,.Rm0 = 0. Therefore, the maximum possible errors in the determination of. m
are infinitely large. We have this case for the ill-posed problem precisely. 

1.5 Deterministic and Probabilistic Approaches 
to the Formulation of the Inverse Problem 

There are two different main approaches to the formulation of the inverse problem. 
The first approach is based on the deterministic concept, which considers the data 
and model parameters characterized by specific functions or vectors with certain
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(maybe unknown) values. This approach was developed in the works of Lanczos 
(1961), Backus and Gilbert (1967), Backus (1970a, b, c), Marquardt (1963, 1970), 
Tikhonov and Arsenin (1977), and others. 

In the second probabilistic approach, the observed data and model parameters are 
treated as realizations of some random variables. This approach was introduced in 
the pioneering papers of Foster (1961), Franklin (1970), Jackson (1972), Tarantola 
and Valette (1982), Tarantola (1987, 2005), among others. 

The probabilistic approach often formulates the inverse problem solution in the 
framework of the Bayesian probability theory. This allows bringing the a priori 
information about the models to reduce the ambiguity and instability of inversion. In 
addition, the probabilistic approach enables the use of statistical methods to evaluate 
the uncertainty and a posteriori probability of the inverse problem solutions. 

It can be demonstrated, however, that both these approaches result in similar 
numerical solutions of the inverse problem (Zhdanov 2002, 2015; Menke 2018). For 
example, in the framework of deterministic Tikhonov regularization, one can bring 
the a priori information into the solution by imposing specific constraints on the 
parameters of the models. At the same time, deterministic or probabilistic interpreta-
tion of the observed data and model parameters emphasizes different aspects of the 
inversion algorithms. This also helps understand better the properties of the inversion 
parameters. 

In this book, I will consider both approaches to inversion. The probabilistic and 
deterministic methods of inverse problem solutions are inextricably intertwined. 
Chapter 2 will present the elements of the probability theory, while in Chap. 3, I  
will discuss the concepts of functional model and data spaces which serve as the 
foundation of the deterministic approach. 
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Chapter 2 
Elements of Probability Theory 

Abstract In this chapter, we review the foundations of the probability theory, which 
are needed to develop a probabilistic approach to inverse problem solutions. These 
include basic formulas and notations from probability theory, properties of discrete 
and continuous random variables, and the concept of Shannon’s entropy. We also 
study linear correlations between random variables and describe the properties of 
the correlation coefficient and the covariance matrix of multiple random variables. 
These properties play a fundamental role in the joint inversion of multiphysics data 
sets. 

Keywords Probability theory · Random variables · Correlation coefficient ·
Covariance matrix · Entropy 
We have discussed in Chap. 1 that there exist two approaches to inverse problems 
based on probabilistic and deterministic concepts. This chapter reviews the founda-
tion of the probability theory, which is needed to develop a probabilistic approach to 
inverse problem solutions. The interested reader can find more details in the textbooks 
on the probability theory (e.g., Ross 2010). 

2.1 Basic Formulas and Notations from Probability Theory 

2.1.1 Discrete Random Variables 

In the framework of the probabilistic approach to the solution of the inverse problem, 
we can treat the data,. d, as a random variable because we do not know the data before 
conducting a physical experiment and the data are always contaminated by random 
noise. The actually observed data, .dobs can be considered as the realization of the 
random variable. d in a given experiment. In a general case, the value of the observed 
data is determined by the results of the physical experiment; therefore, we can assign 
probabilities to the possible values of the random data. 

In practice, the data are measured at discrete observation points and at discrete-
time moments. Therefore, we can represent the data as a discrete random variable 
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that can take on a finite number of possible values, .d = ξ = (ξ1, .ξ2, . . .ξn), with 
probabilities .(p (ξ1), .p (ξ2) , . . ., p (ξn)), respectively, where the function, .p (ξ), is  
called a probability mass function. This function is nonnegative, and it satisfies the 
following condition: 

.

n∑

i=1

p (ξi ) = 1, (2.1) 

since . ξ must take on one of the values . ξi . 
We can use the probability mass function to determine the expectation, or  mean 

value of a random variable, as follows: 

.<ξ> =
n∑

i=1

ξi p(ξi ). (2.2) 

Given the mean value and the probability mass function, one can introduce a 
variance, .σ2, of the random variable, .ξ, which characterizes the variations of . ξ from 
its mean value: 

.σ2 = <(ξ − <ξ>)2> =
n∑

i=1

(ξi − <ξ>)2 p(ξ). (2.3) 

In practice, we usually work with some samples of distribution of the random 
variable. In this case, we can calculate the statistical estimate of the mean value of 
the unknown distribution. For example, the mean value estimation of the sample of 
the normally distributed random variable . χ, can be calculated as follows (for the 
definition of the normal or Gaussian distribution, see Sect. 2.1.3 below): 

.<χ> = 1

n

n∑

i=1

χi . (2.4) 

The estimate of the variance, .σ2
χ, of the normally distributed random variable, . χ, 

takes the following form: 

. σ2
χ = <(χ − <χ>)2> = 1

n

n∑

i=1

(χi − <χ>)2 = 1

n

n∑

i=1

(χ2
i − 2χi <χ> + <χ>2)

. = 1

n

n∑

i=1

χ2
i − 2

1

n

n∑

i=1

χi <χ> + 1

n

n∑

i=1

<χ>2 =

. = 1

n

n∑

i=1

χ2
i − 2<χ><χ> + <χ>2 == 1

n

n∑

i=1

χ2
i − <χ>2. (2.5)
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2.1.2 Continuous Random Variables 

In many applications, it is convenient to consider continuous random variables. Let us 
assume that the random data. d can accept any real number in the experiment. Despite 
the random character of the data, . d, their properties can be fully described by the 
probability density function (PDF), .P(d). The probability that the measurement is 
between . d and .d + ∆d is determined by the value of .P(d)∆d, which is an analog 
of the probability mass function introduced above (see Fig. 2.1): 

. p(d) = P(d)∆d.

In particular, we have for a random variable, . d, the following equality: 

.

 +∞

−∞
P(d)∆d = 1, (2.6) 

where.∆d denotes a differential of. d, and integration is done over all possible values 
of the random variable, . d, from.−∞ to .+∞. Formula  (2.6) represents a simple fact 
that the random variable will take at least one value in the experiment. 

The following expression determines the mean value of the continuous random 
variable . d: 

.<d> =
 +∞

−∞
d P(d)∆d. (2.7) 

A variance .σ2, of the random variable, . d, describes the deviation of. d from its mean 
value. It is calculated by the following formula: 

.σ2 = <(d − <d>)2> =
 +∞

−∞
(d − <d>)2P(d)∆d. (2.8) 

The square root of the variance, . σ, is called the standard deviation of data . d. 

Fig. 2.1 The shaded area of 
the probability distribution 
gives the probability that the 
datum will fall between. d
and. d + ∆d

d Δd d + Δd 

P
(d

) 

measurement d
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The most likely measurement .dM L is the one with the highest probability: 

.P(dM L) = max {P(d)} . (2.9) 

The value .dM L is called the maximum likelihood point. 

2.1.3 Standard Probability Density Distributions 

In the solution of the inverse problems, we can consider several standard probability 
density distributions. The simplest one is uniform distribution. Random variable. d is 
said to have a uniform distribution over the interval [.dmin,.dmax], if it has the following 
PDF: 

.PU (d) =
[
1/(dmax − dmin), dmin ≤ d ≤ dmax

0, d < dmin or d > dmax
. (2.10) 

Formula (2.10) indicates that the random variable .d has an equal probability of 
taking any value between its maximum and minimum values. 

One of the most widely used types of probability density distributions is the 
normal or Gaussian distribution, described by the following formula: 

.PG(d) = 1

(2π)
1
2 σ

exp

[
− (d − <d>)2

2σ2

]
. (2.11) 

This distribution has a mean .<d> and variance .σ2. Figure 2.2 shows two typical 
Gaussian distributions with zero mean, .σ = 1 for curve A, and .σ = 2 for curve 
B. One can see that the smaller variance corresponds to the narrower and sharper 
probability distribution, while the bigger variance describes the wider and smoother 
distribution. 

The importance of the Gaussian distribution comes from the Central Limit Theo-
rem (CLT) of the probability theory. This theorem states that the normal distribution 
can approximate well the probability density distribution of a large sum of the ran-

Fig. 2.2 Typical Gaussian 
distributions with zero mean 
and.σ1 = 1 for curve A, and 
.σ2 = 2 for curve B. Variance 
.σ2
1 corresponds to the sharp 

probability distribution, 
while variance.σ2

2 describes 
the smooth distribution
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dom variables. One can always consider the observed data as the superposition of a 
large number of independent random variables. Therefore, we can apply the CLT to 
the observed data. 

Another widely used probability density function is lognormal distribution. The  
random variable, .d, is lognormally distributed if its natural logarithm, .ln d, is nor-
mally (Gaussian) distributed. The following formula describes the probability density 
function, .PL N (d), of lognormal distribution: 

.PL N (d) = 1

(2π)
1
2 σln d

exp

[
− (lnd − <ln d>)2

2σ2
ln d

]
, (2.12) 

where .σln d is the standard deviation of .ln d. 
Note that, the random variable that is lognormally distributed may have positive 

real values only. It is clear also that if random variable,. d̃, has a Gaussian distribution, 
then exponential function, .d = exp d̃ , has a lognormal distribution. 

One can also consider an exponential distribution. With the probability density 
function, .Pexp(d), defined as follows: 

.Pexp(d) = 1

(2)
1
2 σ

exp

[
−|d − <d>|

σ

]
. (2.13) 

It is helpful to note that the plot of the exponential distribution has much longer tails 
compared to the plot of the Gaussian distribution with the same variance, .σ, and 
mean value, .<d>. 

2.2 Multiple Random Variables 

Let us assume that we have the column vector .d = [d1, d2, d3, . . ., dN ]T of the 
observed data (where the upper subscript “. T ” denotes transposition). In this case, 
the mean value of the datum, . di , is determined by the following formula: 

.<di > =
 +∞

dN =−∞

 +∞

d2=−∞
. . .

 +∞

d1=−∞
di P(d)∆d1∆d2. . .∆dN . (2.14) 

It can be demonstrated that the mean value of the product of independent random 
variables is equal to the product of mean values of each random variable: 

.<d1d2. . .dN > = <d1><d2>. . .<dN >. (2.15) 

For example, for two independent random variables, .d1 and . d2, we have  

.<d1d2> = <d1><d2>. (2.16)
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We have already established that random variables .d1 and .d2 are dependent if 
equality (2.16) does not hold. In this case, we can use the difference between the 
left and right parts of Eq. (2.16) as the measure of their dependence. This measure is 
called the covariance: 

.cov(d1, d2) = <d1d2> − <d1><d2>. (2.17) 

It is easy to show that the mean value is a linear function: 

.<α1d1 + α2d2> = α1<d1> + α2<d2>, (2.18) 

where .α1 and .α2 are some scalar coefficients. 
Considering property (2.18), we can transform expression (2.17) for the covari-

ance as follows: 
.cov(d1, d2) = <(d1 − <d1>)(d2 − <d2>)>. (2.19) 

It is clear from formula (2.17) that the covariance of two independent random 
variables is always equal to zero. 

Finally, we should note that in the case of the normally distributed discrete random 
variables, . ξ and . χ, one can use the following statistical estimate of the covariance: 

.cov(ξ,χ) = 1

n − 1

n∑

i=1

(ξi − <ξ>)(χi − <χ>). (2.20) 

2.2.1 Linear Correlation Between Two Random Variables 

The covariance serves as a measure of probabilistic dependence of two random 
variables without specifying the form of this dependence. At the same time, we are 
often interested in the linear dependence between different observed data in practical 
applications. The measure of linear dependence between two random variables is 
provided by the correlation coefficient, . η, determined by the following formula: 

.η(d1, d2) = cov(d1, d2)

σ1σ2
, (2.21) 

where .σ1 and .σ2 are the standard deviations of .d1 and . d2, respectively. 
The correlation coefficient satisfies the following conditions: 

. − 1 ≤ η ≤ 1. (2.22) 

If the correlation coefficient between two random variables, .d1 and . d2, equals 
. 1 or .−1, these variables are linearly dependent. This means that there exist two
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coefficients, .c1 and. c2, satisfying the condition.c21 + c22 > 0, and the linear combina-
tion of the random variables .d1 and .d2 with these coefficients is equal to constant, 

.c1d1 + c2d2 = const, (2.23) 

with probability equal to 1. 
The closer the absolute value of the correlation coefficient to 1 is, the more accu-

rately the relationship between .d1 and .d2 can be described by the linear formula 
(2.23). 

In a general case, the relationship between the observed data,.d1 and. d2, is typically 
nonlinear. However, finding a linear function that best approximates this relationship 
is always possible. The line that best fits this linear relationship is known as a least-
squares regression. The following equation describes this line: 

.d(p)

2 = <d2> + η
σ2

σ1
(d1 − <d1>) , (2.24) 

where .d(p)

2 denotes the values of the random variable .d2 predicted by the linear 
regression. 

The deviation of the actual dependence between.d2 and.d1 from the linear regres-
sion (2.24) can be estimated by the error of linear approximation, . ε, calculated by 
the following formula: 

.ε2 = <d2 − d(p)

2 >2 = σ2
2

(
1 − η2

)
. (2.25) 

The linear approximation error, . ε, goes to zero if and only if the correlation 
coefficient .η = ±1. 

2.2.2 Linear Correlation Between Multiple Random 
Variables 

We consider again a set ofN random variables,.d1, d2, d3, . . ., dN . For dependent data, 
we can introduce some measure of their dependence by calculating the covariance: 

. cov(di , d j ) = <(di − <di >)(d j − <d j >)> =

.

 +∞

dN =−∞

 +∞

d2=−∞
. . .

 +∞

d1=−∞
(di − <di >)(d j − <d j >) P(d)∆d1∆d2. . .∆dN . (2.26) 

Note that the covariance of a datum with itself is just the variance: 

.cov(di , di ) = σ2
i . (2.27)
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Thus, for a column vector .d = [d1, d2, d3, . . ., dN ]T of the observed data, we can 
introduce a covariance matrix as follows: 

.σN =

⎡

⎢⎢⎣

σ11 σ12 . . . σ1N

σ21 σ22 . . . σ2N

. . . . . . . . . . . .

σN1 σN2 . . . σN N

⎤

⎥⎥⎦ = [σi j ] = [cov(di , d j )]. (2.28) 

In the next section, we show that the determinant of the covariance matrix, . 
||σi j

||
is always nonnegative, and it is equal to zero if and only if the random variables, 
.d1, d2, d3, . . ., dN , are linearly dependent. Thus, the determinant of the covariance 
matrix provides some measure of linear dependence between the random variables. 

In a general case, the relationship between random variable, . dk , and variables 
.d1, d2, d3, . . ., dk−1, can be nonlinear. However, in the case of multiple random vari-
ables, as we did for two variables, one can find a linear formula that best approximates 
the true dependence between the random variables. 

We consider a linear function of random variables defined by the following for-
mula: 

. L (d1, d2, d3, . . ., dk−1) = c0 + c1d1 + c2d2 + · · · + ck−1dk−1,

where .c0, c1, c2, . . ., ck−1 are some scalar coefficients defined under the minimum 
condition for the mean value of the square difference between random variable . dk

and .L (d1, d2, d3, . . ., dk−1): 

.<[dk − L (d1, d2, d3, . . ., dk−1)
]2> = min . (2.29) 

Using these coefficients, we can write the equation of multidimensional regression 
as follows: 

.d(p)

k = <dk> +
∑k−1

q=1
cq

(
dq − <dq>

)
, (2.30) 

where .d(p)

k denotes the values of the random variable .dk predicted by the linear 
regression. 

The deviation of empirical dependence between random variable,. dk , and variables 
.d1, d2, d3, . . ., dk−1, from multidimensional regression (2.30) can be characterized 
by the approximation error, . ε, calculated as follows: 

.ε2 = <
]
dk − d(p)

k

[2> = |σk |
|σk−1| , (2.31) 

where .|σk | is the determinant of the covariance matrix of a set of random variables 
.d1, d2, d3, . . ., dk−1, dk; and .|σk−1| is the determinant of the covariance matrix of 
random variables .d1, d2, d3, . . ., dk−1.
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In practice, it is convenient to use another parameter to characterize the degree of 
the linear relationship between .(k − 1) independent random variables, 
.d1, d2, d3, . . ., dk−1, and a single dependent variable, . dk . This parameter is called 
a multiple correlation coefficient, . R, which is calculated as follows: 

.R2 (dk |d1, d2, d3, . . ., dk−1 ) = 1 − |σk |
σ2

k |σk−1| . (2.32) 

The multiple correlation coefficient is a generalization of the standard correla-
tion coefficient for the multiple regression study. Substituting expression (2.32) into  
(2.31), we find the relationship between the approximation error, . ε, and the multiple 
correlation coefficient, . R: 

.ε2 = σ2
k

(
1 − R2

)
. (2.33) 

One can see that formula (2.33) is a complete analog for multiple random variables 
of expression (2.25) for two random variables. This formula shows that the absolute 
value of the multiple correlation coefficient, . R, similar to the standard correlation 
coefficient, . η, is always less or equal to 1, because .ε2 ≥ 0: 

. − 1 ≤ R ≤ 1. (2.34) 

The dependent variable, . dk , is linearly connected with independent random vari-
ables, .d1, d2, d3, . . ., dk−1, if and only if .R2 = 1 and .ε2 = 0. 

In the opposite case, when random variable .dk is completely independent of the 
random variables,.d1, d2, d3, . . ., dk−1, the multiple correlation coefficient is equal to 
zero, and the approximation error is equal to the standard deviation .σk of . dk : 

.R = 0, ε = σk . (2.35) 

Formula (2.35) shows that, in this case, variables .d1, d2, d3, . . ., dk−1 provide no 
information about the behavior of the random variable . dk . 

Thus, the multiple correlation coefficient estimates the quality of the prediction 
of the dependent variable by a linear combination of the independent variables. 

2.2.3 Properties of the Covariance Matrix 

In this section, we consider the properties of the covariance matrix,.σN , of a random 
vector-column,. d, formed by independent random variables,.d1, d2, d3, . . ., dN−1, dN . 
According to formula (2.19), this matrix can be represented in the following form: 

.σN = <(d − <d>)(d − <d>)T >, (2.36) 

where .<d> is the mean value of the random vector . d.
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The covariance matrix is symmetric, 

.σN = σT
N , (2.37) 

because 
. σi j = cov(di , d j ) = cov(d j , di ) = σ j i .

Its diagonal elements are equal to the variances of the scalar components of vector 
. d and therefore all positive: 

.σi i = cov(di , di ) = σ2
i > 0. (2.38) 

The symmetric .[N × N ] matrix, .BN , is called positive definite if the following 
inequality holds for any nonzero vector . x from Euclidean space .EN (for definition 
of .EN see Chap. 3): 

.xTBNx > 0. (2.39) 

We can prove that the covariance matrix, .σN , has this property. Let us consider 
arbitrary nonzero vector-column .x ∈EN and calculate the square of the product of 
vector-raw.((d − <d>))T and vector-column. x: 

. 
[
(d − <d>)T x

]2 = [
(d − <d>)T x

]T [
(d − <d>)T x

]

. = xT (d − <d>)(d − <d>)T x =
(

∑

i=1,2,...,N

(di − <di >)xi

)2

> 0, (2.40) 

where .xi (i = 1, 2, . . ., N ) are the scalar components of nonzero vector . x.
The mean value of expression .

{
xT (d − <d>)(d − <d>)T x

}
can be written using 

the definition of the covariance matrix (2.36) as follows:  

.
<
xT (d − <d>)(d − <d>)T x

> = xT
<
(d − <d>)(d − <d>)T

>
x = xT σNx. (2.41) 

From the last formula and inequality (2.40), it follows at once that 

.xT
N σNx > 0, (2.42) 

and covariance matrix, .σN , is positive definite. 
We can apply the spectral decomposition to the symmetric matrix (Golub and Van 

Loan 2013) and write covariance matrix in the following form: 

.σN = V∆VT , (2.43)
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where .V = (v1, v2, . . ., vN ) is an .N × N matrix formed by the eigenvectors, and . ∆

is an .N × N diagonal matrix, formed by the eigenvalues of the covariance matrix, 
.λ1,λ2, . . .,λN , respectively. Since the covariance matrix is symmetric and positive 
definite, all its eigenvalues are real and positive numbers (Golub and Van Loan 2013). 

The determinant of the covariance matrix can be calculated as follows: 

. det (σN ) = det (V) det (∆) det
(
VT

) = det (∆) = λ1λ2. . .. . .λN , (2.44) 

because. V is an orthogonal matrix,.det (V) = 1, and. ∆ is a diagonal matrix. 
Considering that all eigenvalues are positive numbers,.λi > 0, i = 1, 2, . . ., N ;we 

find the determinant of the covariance matrix is always positive for independent ran-
dom variables: 

. det (σN ) = |σN | > 0. (2.45) 

This determinant is equal to zero if and only if the random variables,.d1, d2, d3,…, 
.dN−1, dN , are linearly dependent. In this case, according to formulas (2.32) and 
(2.33), the multiple correlation coefficient. R is equal to 1, and the linear approxima-
tion error, . ε, reduces to zero. Thus, the determinant of the covariance matrix can be 
used as a measure of linear dependence between the random variables. 

2.2.4 Joint Probability Distribution of Multiple Random 
Variables 

The joint probability density .P(d) of multiple random variables, .d1, d2, d3, . . ., dN , 
determines the probability that the first datum is between.d1 and.d1 + ∆d1, the second 
datum between.d2 and.d2 + ∆d2, the third datum between.d3 and.d3 + ∆d3, etc. For  
example, if the data are independent, then the product of the individual distributions 
represents the joint distribution as follows: 

.P(d) = P(d1)P(d2)P(d3). . .. . .P(dN ). (2.46) 

The random variables .d1, d2, d3, . . ., dN are called dependent if Eq. (2.46) does not 
hold. Estimating .P(d) is quite challenging if the data are dependent (correlated). 
However, similar to the case of one random variable, according to the Central Limit 
Theorem, a large sum of multiple random variables can be characterized by the 
Gaussian joint distribution function defined by the following formula (Menke 2018): 

.P(d) = | σN |− 1
2

(2π)
N
2

exp

[
− 1

2
(d − <d>)T σ−1

N (d − <d>)
]
, (2.47)
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where .<d> is the mean value of vector .d, and .σN = [σi j ] is the covariance matrix 
introduced in expression (2.28). 

The set of linear functions of Gaussian random variables can also be characterized 
by the Gaussian distribution of the same form provided by expression (2.47). 

2.3 Shannon’s Entropy 

2.3.1 Concept of Entropy of a Discrete Random Variable 

Shannon introduced the concept of entropy in probability theory in his famous paper 
“A mathematical theory of communication” (Shannon 1948). It was proposed to 
provide a measure of uncertainty in the results of some physical experiments. We 
will find below that Shannon’s entropy is defined as a functional of the probability 
distributions. 

For simplicity, we begin with the concept of entropy for a discrete random variable. 
Let us again represent the data obtained in some physical experiment as a discrete 
random variable that can take on a finite number of possible values, .d = ξ = (ξ1, 
.ξ2, . . ., ξn), with probabilities .(p (ξ1), .p (ξ2) , . . ., p (ξn)). 

It is obvious that there is an uncertainty in what specific value will be measured 
as a result of an experiment. This uncertainty depends on the probability, .p (ξi ), 
associated with the particular results of the measurement, .d = ξi . The goal is to 
introduce the function .u (p), that will estimate the amount of this uncertainty. We 
call.u (p) the uncertainty function. Considering that probability,.p = p (ξ), is usually 
a positive number that cannot exceed 1,.0 < p ≤ 1, the uncertainty function is defined 
on the semi-segment .(0, 1]. We can now calculate the expectation or average value 
of the uncertainty function over all possible values of the random variable . ξ using 
formula (2.2) as follows:  

.<u (p)> =
n∑

i=1

p(ξi )u [p(ξi )] , (2.48) 

where . p is a vector formed by probabilities, .p =(p (ξ1), .p (ξ2) , . . ., p (ξn)). 
It is important to emphasize that the uncertainty in the results of measurements 

exists before conducting the experiment only. After the measurements are done, 
all uncertainty is completely removed, and the proper information about the data 
is obtained. It is also obvious that if there was little uncertainty in the results of 
the experiment, e.g., if we knew a priori that the data should be equal to a specific 
number (with some small variations), then the experiment itself would not provide 
any useful information about the data. Oppositely, if the uncertainty was large, then 
conducting the experiment would result in gaining significant new information about 
the data. Thus, we can conclude that the uncertainty can be equally treated as the 
amount of information supplied by the physical experiment. Hence, we arrive at the
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interpretation of the average uncertainty in the information theory as the measure of 
information contained in the data, .H (p), 

.H (p) = <u (p)> =
n∑

i=1

p(ξi )u [p(ξi )] . (2.49) 

Function .H (p) must satisfy several requirements in order to serve as a reason-
able measure of information (Aczel and Daroczy 1975). For example, it can be 
demonstrated that the uncertainty function .u (p), is proportional to the logarithm of 
probability (e.g., Khinchin 1957): 

.u (p) = −λ log p, (2.50) 

where. λ is a positive coefficient, which in information theory is selected as .1/ log 2. 
Substituting expression (2.50) into (2.49), we arrive at the following formula: 

.H (p) = <u (p)> = −
n∑

i=1

p(ξi ) log2 [p(ξi )] . (2.51) 

Expression (2.51) provides a definition of the famous Shannon’s entropy as the 
measure of uncertainty. Entropy defined by formula (2.51) possesses many useful 
properties (for details, see, for example, Aczel and Daroczy 1975; Cover and Thomas 
1991). The most important property of Shannon’s entropy is nonnegativity: 

.H (p) ≥ 0. (2.52) 

2.3.2 The Entropy of a Continuous Random Variable 

We now extend Shannon’s definition of entropy to the continuous random variables 
introduced above. Let us . d is a continuous random variable with the probability 
density function, .P(d). 

By analogy with formula (2.51), we can define entropy, .H(d), as follows: 

.H(d) = −
 +∞

−∞
P(d) ln P(d)∆d. (2.53) 

Note that the last expression is often called adifferential entropy because its properties 
are not exactly the same as of Shannon’s entropy for discrete random variables. For 
example, differential entropy may not satisfy inequality (2.52). 

One can see from the definition, formula (2.53), that the differential entropy is 
uniquely determined by the corresponding probability distribution of the random 
variable. Moreover, by imposing different conditions on the differential entropy, one
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can determine the probability distribution which satisfies these conditions. This result 
is known as the maximum entropy principle (Kapur 1989; Kapur and Kesovan 1992). 

The following standard probability distributions can be derived based on the max-
imum entropy principle. 

(1) The uniform probability distribution (2.10) provides the maximum value of 
the differential entropy. 

(2) The Gaussian probability distribution defined by the following formula: 

.PG(d) = 1

(2π)
1
2 σ

exp

[
− (d − <d>)2

2σ2

]
, (2.54) 

maximizes the differential entropy (2.53) subject to the constraints 

.

 +∞

−∞
d P(d)∆d = <d>, (2.55) 

and 

.

 +∞

−∞
(d − <d>)2P(d)∆d = σ2. (2.56) 

Imposing other constraints, one can arrive at different standard probability distri-
butions. 
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Chapter 3 
Vector Spaces of Models and Data 

Abstract The mathematical theory of functional spaces plays a critical role in 
inversion theory. This chapter introduces the concept of a mathematical space and 
describes the different types of spaces, including multi-dimensional Euclidean, met-
ric, linear vector, Hilbert, and Gramian spaces. The fundamental properties of all 
these spaces are discussed in detail. The definitions and properties of operators and 
functionals acting in mathematical spaces are also considered. The chapter concludes 
with a review of the major principles of variational calculus. 

Keywords Euclidean space · Vector space · Hilbert space · Gramian space ·
Operators · Functionals 
In this chapter, I review the key ideas and principles of the mathematical theory 
of functional spaces. These ideas help us understand how to introduce distance in 
describing multiphysics data and models and develop the mathematical framework 
of the inversion theory. 

I begin this chapter by describing the most fundamental space—Euclidean space, 
which is a straightforward generalization of the conventional 3D physical space into 
multi-dimensional space. I will move then to introducing the metric and linear vector 
spaces. This discussion will be concluded by constructing the Hilbert space, which 
is the generalization of the 3D physical space to the case of infinite dimensions. 1

3.1 Concept of a Space 

The main description of conventional three-dimensional physical space is provided 
by its geometrical properties. These properties were first described in detail in the 
classical book of the great Greek mathematician Euclid (Fig. 3.1), who introduced the 
five fundamental geometrical axioms. One of the most critical geometrical concepts 
of conventional physical space is the distance between two points and the triangle 

1 In presenting the theory of functional spaces, I will closely follow Appendix A of Zhdanov (2015). 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
M. S. Zhdanov, Advanced Methods of Joint Inversion and Fusion 
of Multiphysics Data, Advances in Geological Science, 
https://doi.org/10.1007/978-981-99-6722-3_3 

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6722-3_3&domain=pdf
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3
https://doi.org/10.1007/978-981-99-6722-3_3


28 3 Vector Spaces of Models and Data

Fig. 3.1 Euclidian geometry 

inequality theorem. According to this theorem, one side of a triangle can never be 
greater than the sum of the lengths of the other two sides. Thus, for example, if . A, 
. B, and .C be the three vertices of a triangle (Fig. 3.2), then the length of one side, 
.|AB|, is always shorter or equal to the sum of the lengths of other sides, .|AC | and 
.|CB|. In other words, the shortest distance between the two distinct points is always 
a straight line: 

. |AB| ≤ |AC | + |CB| . (3.1) 

One can write inequality (3.1) using vector notations as follows: 

. |a + b| ≤ |a| + |b| , (3.2) 

where vectors . a, .b, and (.a + b) represent three sides of the triangle.ACB, as shown  
in Fig. 3.2. 

These geometrical ideas, developed for the conventional physical space, can be 
expanded by introducing a more general concept of a mathematical space. This means 
that we can use as an element of a space not only geometrical points but also any 
mathematical objects, such as vectors or functions. In the last case, the corresponding 
space is called a function space. One of the most fundamental properties of mathemat-
ical space is the geometrical property, which allows us to consider a distance between
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Fig. 3.2 Triangle inequality C 

A B 

a+b 

a b 

any two elements (vectors) of the mathematical space. This property is fundamental 
in many physical and mathematical applications. The geometry assigned to much 
more complicated objects than just geometrical points makes it possible to measure 
the distance between complex physical and mathematical objects, which otherwise 
have no apparent geometrical representation (e.g., between different mathematical 
functions or digital data sets). 

To illustrate the significance of the geometrical concept in inversion theory, let 
us recall the formulation of the inverse problem provided above as a solution of the 
following operator equation: 

.d = A (m) , (3.3) 

where .m is some function (or a vector) describing the model parameters, and . d is a 
data set, which can also be characterized as a function of the observation point (in the 
case of continuous observations) or as a vector (in the case of discrete observations). 
The solution of the inverse problem consists in determining such a model, . mpr

(predicted model), which generates the predicted data,.dpr , fitting the observed data, 
.d, well. In practical applications, we do not want to fit the observed data exactly 
because they always contain some noise, which we should not fit. Therefore, we are 
looking for some predicted data to be close enough to the observed data (usually 
within the accuracy of observations). But what does “close enough” mean? How can 
we measure the closeness of the two data sets? 

We can answer this question by introducing some “distance” between the two data 
sets, which would allow us to evaluate the accuracy of the inverse problem solution. 
The mathematical theory of vector spaces provides us with the means of solving this 
problem. 

In the next section, we consider the most fundamental mathematical vector 
space—Euclidean space.
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3.2 Euclidean Space 

3.2.1 Vector Operations in Euclidean Space 

Conventional physical space has three dimensions. Any point in this space can be 
represented by three Cartesian coordinates .(x1, x2, x3). The natural generalization 
of three-dimensional (3D) physical space is the . n dimensional Euclidean space . En

(or .Rn), which can be described as the set of all possible vectors of order . n: 

. a = (a1, a2, a3, . . . . . . an),

where the scalars .a1, a2, a3, . . . . . . an are usually real numbers. 
By analogy with the length of the vector in 3D physical space, we can introduce 

a norm of the vector .||a|| as follows: 

.||a|| =
/
a21 + a22 + a23 + · · · · · · + a2n . (3.4) 

It is easy to check that the norm introduced above satisfies the conditions 

. ||a|| > 0 if a /= 0, ||a|| = 0 if a = 0, (3.5) 

. ||λa|| = |λ| ||a||, (3.6) 

.||a + b|| ≤ ||a|| + ||b||. (3.7) 

The last inequality is called a triangle inequality. In 3D physical space it has a very 
simple geometrical sense explained above (Fig. 3.2). In a general case of . n dimen-
sional Euclidean space, the triangle inequality comes from the Cauchy inequality, 
which we will discuss below. 

We can introduce also an operation on two vectors, called the inner (dot) product, 
as follows: 

.a · b =
n∑

i=1

aibi . (3.8) 

Obviously, a norm can be determined as a square root of the dot product of the vector 
with itself: 

.||a|| = √
a · a. (3.9) 

By analogy with conventional 3D physical space, we can say that two vectors . a and 
. b in Euclidean space are orthogonal if: 

.a · b = 0.
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The following vectors play a similar role in the space.En as the vectors of the Cartesian 
basis in 3D space: 

. 

e1 = (1, 0, 0, . . . . . . 0), e2 = (0, 1, 0, . . . . . . 0), e3 = (0, 0, 1, . . . . . . 0), . . . . . . .

en = (0, 0, 0, . . . . . . 1).

We will call these vectors, .e1, e2, . . . . . . en, a basis of Euclidean space. Any vector 
.a ∈ En can be represented as a linear combination of the basis vectors 

.a = a1e1 + a2e2 + · · · · · · · · · + anen =
n∑

i=1

aiei , (3.10) 

where numbers.a1, a2, a3, . . . . . . an are the scalar components of vector. a. Evidently 

. ei · ek = 0; if i /= k, ek · ek = 1. (3.11) 

We can write Eq. (3.11) in a short form: 

. ei · ek = δik =
 
1, i = k
0, i /= k

,

where symbol .δik is called a symmetric Kronecker symbol. Using this symbol one 
can find that.ak can be treated as the projection of the vector. a on the basis vector. ek : 

. a · ek =
n∑

i=1

ai (ei · ek) =
n∑

i=1

aiδik = ak .

Using the dot product operation, we can prove the Cauchy inequality: 

.a · b ≤ ||a||||b||, (3.12) 

which in scalar form can be written as follows: 

.

( n∑
i=1

aibi

)2

≤
( n∑

i=1

a2i

)( n∑
i=1

b2i

)
. (3.13) 

Proof Let us introduce a non-negative function .ϕ (x): 

. ϕ (x) =
n∑

i=1

(ai x + bi )
2 ≥ 0.

Opening the brackets in the last equation, we obtain
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.

(
n∑

i=1

a2i

)
x2 + 2

(
n∑

i=1

aibi

)
x +

n∑
i=1

b2i ≥ 0. (3.14) 

Inequality (3.14) means that the equation 

.

(
n∑

i=1

a2i

)
x2 + 2

(
n∑

i=1

aibi

)
x +

n∑
i=1

b2i = 0 (3.15) 

has only one real root, or no real roots at all, which is possible only if its discriminant 
is non-positive: 

.

(
n∑

i=1

aibi

)2

−
(

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
≤ 0, (3.16) 

which is exactly the Cauchy inequality (3.13). 

3.2.2 Linear Transformations (Operators) in Euclidean 
Space 

Suppose that for any.a ∈ En we can assign, according to a certain rule, some element 
.a' ∈ En. We call this rule an operator .A : a' = A (a). Operator .A is called linear 
if for any vectors .a1, a2 ∈ En and any scalars .α1,α2 ∈ E1 we have 

.A (α1a1 + α2a2) = α1A (a1) + α2A (a2) . (3.17) 

Let us find the relationships between the components of the vectors . a and . a': 

.a' = A(a) = A

( n∑
i=1

aiei

)
=

n∑
i=1

ai A(ei ). (3.18) 

At the same time, by applying operator .A to the basis vector .ei we obtain a new 
vector . e'

i , which in turn can be decomposed in terms of the basis vectors: 

.A(ei ) = e'
i =

n∑
k=1

Akiek . (3.19) 

Substituting Eq. (3.19) into (3.18), we obtain 

.a' = A(a) =
n∑

i=1

ai

n∑
k=1

Akiek . (3.20)
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On the other hand, we can also express vector .a' in the same basis by 

.a' = A(a) =
n∑

k=1

a'
kek . (3.21) 

Comparing (3.20) with (3.21), we find a very important relationship between the 
scalar components of the vectors . a and . a': 

. a'
k =

n∑
i=1

Akiai .

The matrix.[Aki ] is called the matrix of operator . A. It describes the transformation 
of the scalar components of the vector by the linear operator . A.

3.2.3 Norm of the Operator 

We can calculate a norm of the vector .a' as follows 

.||a'||2 =
n∑

i=1

a'2
i =

n∑
i=1

( n∑
k=1

Aikak

)2

. (3.22) 

From the Cauchy inequality we have 

.

( n∑
k=1

Aikak

)2

≤
( n∑

k=1

A2
ik

)( n∑
k=1

a2k

)
= Mi||a||2, (3.23) 

where .Mi = .
∑n

k=1 A
2
ik are some constants. Substituting Eq. (3.23) into (3.22), we 

obtain 

.||a'||2 ≤ M2||a||2, where M2 =
n∑

i=1

Mi =
n∑

i=1

n∑
k=1

A2
ik (3.24) 

or 
.||a'|| ≤ M||a||. (3.25) 

Let us introduce the definition 

Definition 3.1 The norm of an operator . A is the minimum value of all possible . M
that satisfy inequality (3.25): 

. ||A|| = min {M > 0, ||A (a)|| ≤ M||a||} , ||A|| ≤ M. (3.26)
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Thus we have 
. ||A (a)|| ≤ ||A|| ||a|| ≤ M||a||. (3.27) 

Based on the last formula, we can write an equivalent expression for the norm of 
operator . A as follows 

. ||A|| = sup
||a||/=0

||A (a)|| /||a||. (3.28) 

Taking into account this definition and inequality (3.24), we can write 

. ||A|| ≤
[|||

n∑
i=1

n∑
k=1

A2
ik . (3.29) 

Note that the expression on the right-hand side of inequality (3.29) is called the 
Frobenius norm of the matrix, .||A||F : 

. ||A||F =
[|||

n∑
i=1

n∑
k=1

A2
ik .

Definition 3.2 A linear operator . A is called a bounded operator if it has a bounded 
norm: 

. ||A|| < ∞

It is easy to show that a linear bounded operator is a continuous operator, i.e., that 
the small variations of the argument of the operator will result in a small variation 
of its values. Clearly, from inequality (3.27) we have  

. ||A(a) − A(b)|| = ||A(a − b)|| ≤ ||A||||a − b||.

Therefore, if .||a − b|| < δ = ε/||A||, then .||A(a) − A(b)|| < ε. 
In conclusion, note that in a finite-dimensional space, any linear operator is 

bounded and continuous. 

3.2.4 Linear Functionals 

A functional in Euclidean space is a rule that unambiguously assigns a single real 
number to an element in the space .En. The functional is linear if for any vectors 
.a1, a2 ∈ En and any scalars .α1,α2 ∈ E1 we have 

. f (α1a1 + α2a2) = α1 f (a1) + α2 f (a2) . (3.30)
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Consider as an example the following linear functional 

. f (a) = a · l , (3.31) 

where . a is an arbitrary vector, and . l is some fixed vector. 
The remarkable fact is that any linear functional can be represented in the form 

(3.31). To prove this, we introduce scalars .li = f (ei ), i = 1, 2, 3, . . ., n. Then 

. f (a) = f

( n∑
i=1

aiei

)
=

n∑
i=1

ai f (ei ) =
n∑

i=1

ai li = a · l,

which is exactly Eq. (3.31). 

3.2.5 Norm of the Functional 

Consider the Cauchy inequality 

. | f (a) |=| a · l |≤ ||a|| ||l||. (3.32) 

Let us introduce some large enough constant .L > 0, which satisfies the following 
inequality for all .a ∈ En: 

. | f (a) |≤ L||a||. (3.33) 

Definition 3.3 The norm of the functional . f is the minimum value of all possible 
. L that satisfy inequality (3.33): . || f || = min {L > 0, | f (a)| ≤ L||a||} , || f || ≤ L .

On the other hand we have 

. | f (l)| = l · l = ||l|| ||l|| ≤ L ||l||.

So the minimum value of . L that satisfies (3.33) is the norm of the constant vector . l: 

. L ≥ ||l||.

Therefore we have established that the norm of the functional is equal to the norm 
of the vector . l given by its representation (3.31 ): 

.|| f || = ||l||.
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3.3 Metric Space 

The metric space is the simplest and, at the same time, the most important mathe-
matical space that contains geometry (in the sense that there is a distance between 
any two elements of this space). 

3.3.1 Definition of the Metric Space 

A metric space is a set, .M, of elements, .{h}, for each two of which the non-negative 
number .μ(h, g) can be defined, called the distance between the two elements, . h and 
.g, or metric. Moreover, the metric has to satisfy the following conditions: 

. μ(h, g) = 0 if and only if h = g, (i)

. μ(h, g) = μ(g,h), (i i)

. μ(h, g) ≤ μ(h,q) + μ(q, g), for any h, g,q ∈ M. (i i i)

The last inequality is called the triangle inequality by analogy with the conven-
tional triangle inequality (3.1) of Euclidian geometry. Indeed, it also states that the 
distance between any two elements (points) in the metric space, . h and .g, is shorter 
or equal to the sum of distances between the given elements and the third element, 
. q (Fig. 3.3). 

One important property of the metric space is that we can introduce a concept of 
convergence of a sequence of elements in this space. 

Fig. 3.3 Triangle inequality in the metric space:.μ(h, g) ≤ μ(h,q) + μ(q, g)
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3.3.2 Convergence, Cauchy Sequences, and Completeness 

We begin with several definitions. 

Definition 3.4 In a metric space an infinite sequence of elements .f1, f2, f3, . . . is 
said to converge to element . g if as .k .→ 0, the distance between .fk and . g tends to 
zero: . μ(fk, g) → 0.

Definition 3.5 Any sequence in which the distance between any two elements tends 
to zero, .μ(fk, f j ) → 0, as .k, j → ∞, is called a Cauchy sequence. 

One can prove that any convergent sequence is a Cauchy sequence. In fact, from 
the triangle inequality, we can write 

. μ(fk, f j ) ≤ μ(fk, g) + μ(g, f j ) → 0, as k, j → ∞.

On the other hand, there exist Cauchy sequences of elements that do not converge 
to an element in the metric space. For example, let us consider as a metric space the 
internal part of the geometric 3D ball. B without a boundary. We can introduce series 
of points .s1, s2, s3, . . ., which converge to the element .s0 located at the boundary. 
Obviously, the set .s1, s2, s3, . . . forms a Cauchy sequence, but it converges to the 
element .s0 outside our metric space . B. From this point of view, we can call .B an 
incomplete metric space. 

Now we give a rigorous mathematical definition. 

Definition 3.6 A metric space is said to be incomplete if there are Cauchy sequences 
in it that do not converge to an element of this metric space. Conversely, a space . M
is complete if every Cauchy sequence converges to an element of the space. 

We give below several additional definitions which play an important role in 
inversion theory. 

Definition 3.7 A subset . C of the elements of the metric space .M is called compact 
if any sequence of elements .f1, f2, f3,. . . from .C contains a convergent sequence, 
which converges to an element .g .∈ . C . 

Definition 3.8 A subset .N of the elements of the metric space.M is called bounded 
if .μ(f, g) ≤ R = const for any .f, g ∈ N . 

For example, the metric 3D ball .B introduced above is a bounded subset of the 
physical 3D space. 

There are several important theorems about compact sets of elements. 

Theorem 3.9 Any compact set is bounded. 

Theorem 3.10 For any subset. S of Euclidean space. E to be compact, it is necessary 
and sufficient that . S be bounded.
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Thus we can see that a metric space contains one fundamental property of the 
conventional space: there is a distance between any two points. However, the metric 
space is very amorphous; it has no rigid geometrical structure. We would like to 
have more specific geometrical properties in many applications than just a distance 
between two points. This goal can be reached by introducing a new operation on the 
elements of an abstract mathematical space, which is a generalization of the vector 
operations in the conventional geometric space. 

3.4 Linear Vector Spaces 

3.4.1 Vector Operations 

A linear vector space is a set, .L , containing elements (vectors) that can be related 
by two operations, addition and scalar multiplication, satisfying the conditions 

. f + g = g + f,

. f + (g + h) = (f + g) + h,

. 0 ∈ L; f + 0 = f,

. (α + β)f = αf + βf,

. α(βf) = (αβ)f,

. α(f + g) = αf + αg,

where 
. α,β ∈ E1, f, g ∈ L ,

and element . 0 is called a zero element of the linear vector space. 
We now give several definitions, which largely determine the properties of linear 

spaces. 

Definition 3.11 A linear subspace of . L is a subset of . L that forms a linear vector 
space under the rules of addition and scalar multiplication defined for . L . 

Definition 3.12 A linear combination of elements .f1, f2, f3, . . .fn is any vector of 
the form. α1f1 + α2f2 + α3f3 + · · · + αnfn.

Definition 3.13 Elements .f1, f2, f3, . . .fn are linearly dependent if it is possible to 
find a linear combination of them whose value is zero element and not all the scalars 
of the combination are zero.
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Definition 3.14 Elements .f1, f2, f3, . . .fn are linearly independent if a linear com-
bination of them is equal to zero if and only if all the scalars of the combination are 
zero. 

Definition 3.15 The linear space .L is called finite dimensional if there is a finite 
number of linearly independent elements .e1, e2, e3, . . .en, a linear combination of 
which can determine any element of . L . 

The elements .e1, e2, e3, . . .en form a basis of . L . 
Thus, we can see that the linear vector space contains another very important 

Euclidean space property: the basis. However, there is no distance in a linear vector 
space. Therefore, it would be advantageous to combine these two properties of the 
Euclidean space, a distance, and a basis, within one space. This space is called a 
normed linear space. 

3.4.2 Normed Linear Spaces 

A normed linear space is a linear space,.N , in which for any vector. f there corresponds 
a real number, denoted by .||f|| and called the norm of . f , in such a manner that 

. ||f|| ≥ 0, and ||f|| = 0 if and only if f = 0, (i)

. ||αf|| =| α | ||f||, (i i i)

. ||f + g|| ≤ ||f|| + ||g||, (i i)

where .α ∈ E1. A normed linear space can be made a metric space if we introduce a 
metric by the following formula 

. μ(f, g) = ||f − g||.

We introduce a special type of linear space by the following definition: 

Definition 3.16 A Banach space . B is a complete linear normed space. 

This means that every Cauchy sequence in a Banach space converges to an element 
of this space. 

Thus we can see that a normed linear vector space contains both a basis and 
a distance. It has two important properties of Euclidean space, but not all of its 
properties. One property, which is still missing, is the analog of the dot product 
of two vectors in the conventional geometric space. This property is very important 
because it actually provides the possibility not only to determine the distance between 
two points but also to characterize the direction from one point to another in abstract 
mathematical space. Therefore, the geometrical properties of the space become more 
rigid. We introduce the space with these properties below.
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3.5 Hilbert Spaces 

The Hilbert space extends the geometrical properties of 3D physical or Euclidean 
spaces to mathematical spaces with any finite or infinite dimension. This extension 
is based on the inner product operation, which allows the measurement of both the 
distance and angles in this space, thus making it a complete geometrical analog of 
the conventional 3D physical space. 

3.5.1 Inner Product 

Let us introduce a linear vector space.L I in which for every pair of elements.f, g, we  
define a functional, called the inner product .(f, g), with the properties 

.(f, g) = (g, f) (symmetry), (3.34) 

.(f + g,h) = (f,h) + (g,h) (linearity), (3.35) 

.(αf, g) = α(f, g) (linearity). (3.36) 

where . α ∈ E1, f, g ∈ L I .

This functional must also be positive definite, i.e., 

.(f, f) > 0 (3.37) 

and 
. (f, f) = 0 if and only if f = 0. (3.38) 

The operation of the inner product can be treated as an analog of the dot product 
in Euclidean space. 

Evidently the space .L I comes equipped with the norm: 

. ||f|| = √
(f, f).

The linear normed space.L I equipped with the inner product is called a pre-Hilbert 
space. In order to obtain a Hilbert space we require that the space .L I be complete, 
in other words, every Cauchy sequence of elements from .L I must converge to an 
element of this space. So we arrive at the following definition. 

Definition 3.17 A Hilbert space .H is a complete linear normed space whose norm 
arises from the inner product defined above. 

We can now prove a very important inequality, which is the generalization of the 
Cauchy inequality for Euclidean space.
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Theorem 3.18 (Schwarz inequality) If . x and . y are any two vectors in a Hilbert 
space, then 

.(x, y) ≤ ||x|| ||y|| . (3.39) 

Proof When.y = 0 the result is clear, for both sides vanish. When.y /= 0 the inequality 
(3.39) is equivalent to 

. 

(
x,

y
||y||

)
≤ ||x||.

We have therefore prove only that if .||y|| = 1, then 

.(x, y) ≤ ||x|| for all x. (3.40) 

To prove the last inequality we note that: 

. 0 ≤ ||x − (x, y)y||2 = (x − (x, y)y, x − (x, y)y)

. = (x, x)−2(x, y)2+(x, y)2||y||2 = ||x||2−(x, y)2,

since .||y|| = 1, from which statement (3.40) follows at once. 
Thus, Hilbert space crowns the construction of different functional spaces. 

Figure 3.4 illustrates the hierarchy of functional spaces. 
The simplest is a metric space, which possesses only geometrical properties— 

a distance (a metric) between any two points. A linear vector space has algebraic 
properties—addition and multiplication of the vectors. A normed vector space com-
bines these geometrical and algebraic properties. However, the geometry is still very 
amorphous because there is no way to introduce direction or “angle” between two 
vectors in this space. 

The Hilbert space is the richest with geometrical properties. One can consider not 
only a distance between any two vectors from a Hilbert space, but also an angle, . ϕ,

between any two vectors, . f and . g, determined by the following formula: 

. cosϕ = (f, g)
||f|| ||g|| . (3.41) 

Fig. 3.4 The hierarchy of 
functional spaces 

Functional Spaces 

Metric Space Linear Space 

Normed Space 

Hilbert Space
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It follows from the Schwarz inequality that 

. 
|(f, g)|
||f|| ||g|| ≤ 1.

Therefore, for any . f and .g, expression (3.41) determines some angle .ϕ, and 
.0 ≤ ϕ ≤ π. 

If .(f, g) = 0, than we have from (3.41) that .ϕ = π/2, so that we can make the 
following definition. 

Definition 3.19 Two elements . f and . g of .H are orthogonal if .(f, g) = 0. 

The geometrical structure of the Hilbert space makes it possible to build a basis 
in the Hilbert space, similar to the orthogonal basis in the Euclidean space. We will 
introduce a basis by the following sequence of definitions and theorems. 

Definition 3.20 A finite or countable set of elements .{ei } of a Hilbert space .H is 
called an orthonormal set if 

. ei⊥ e j f or i /= j (3.42) 

. ||ei|| = 1 f or every i . 

Definition 3.21 An orthonormal set of elements .{ei } is said to be complete if 

. (x, ei ) = 0 (for any i) if and only if x = 0. (3.43) 

Theorem 3.22 If .{ei } is an orthonormal set in a Hilbert space . H, and if . x is an 
arbitrary vector in . H, then 

. x −
∑
i

(x, ei )ei⊥ e j

for each . j . 

Proof 

. (x−
∑
i

(x, ei )ei , e j ) = (x, e j )−
∑
i

(x, ei )(ei , e j ) = (x, e j ) − (x, e j ) = 0,

from which equation the theorem statement follows at once. 

Theorem 3.23 If .{ei } is an orthonormal and complete set in a Hilbert space . H, and 
if . x is an arbitrary vector in . H, then 

. x =
∑
i

(x, ei )ei (3.44) 

and 
. ||x||2=

∑
i

(x, ei )
2. (3.45)
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Proof From Theorem 3.22, .
(
x−∑

i (x, ei )ei
)
is orthogonal to .{ei }, so Eq.  (3.43) for  

orthonormal and complete set implies that 

. x−
∑
i

(x, ei )ei= 0,

or equivalently, that 

.x =
∑
i

(x, ei )ei . (3.46) 

By the joint continuity of the inner product, the expression in (3.45) yields 

. ||x||2= (x, x) =
(∑

i

(x, ei )ei ,
∑
j

(x, e j )e j

)
=
∑
i

∑
j

((x, ei )ei , (x, e j )e j )

. =
∑
i

((x, ei )ei , (x, ei )ei ) =
∑
i

(x, ei )
2,

from which statement (3.45) follows at once. 

Definition 3.24 An orthonormal and complete set of elements.{ei } in a Hilbert space 
.H is called an orthonormal basis of Hilbert space. The numbers .(x, ei ) are called 
the Fourier coefficients of . x , the expression .x = ∑

(x, ei )ei is called the Fourier 
expansion of . x , and the Eq. (3.45) is called Parseval’s equation. 

These terms come from the classical theory of the Fourier series. 

Theorem 3.25 Every nonzero Hilbert space contains a basis. 

We have thus demonstrated that the Hilbert space is a natural generalization of 
Euclidean space. It has almost the same properties as Euclidean space, but the Hilbert 
space elements are formed by much more complicated mathematical objects than 
simple geometrical points or vectors. This result opens a way to work with these 
complex objects in the same manner as we work with the geometrical points. For 
example, we can treat data as the elements of this space. Also, we can treat the 
models as elements of some Hilbert space. Therefore, we can easily introduce the 
distance between two different models and two different data sets. For example, 
we can measure the accuracy of fitting predicted data to observed data by using 
the distance between corresponding data sets. In other words, we can use all the 
power and simplicity of the geometrical structure of the Hilbert space to solve the 
inverse problems. I will consider below an example of solving a simple approximation 
problem in Hilbert space using the geometrical properties of the space.
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3.5.2 Approximation Problem in Hilbert Space 

In this section, I will illustrate how one can use the geometrical properties of the 
Hilbert space to solve an approximation problem. Suppose that. L is an. n dimensional 
subspace of a Hilbert space .H (.L ⊂ H ) and . L is spanned by a linearly independent 
set of. n vectors.{d1,d2, . . . . . . ,dn}. The problem is to determine for any.d0 ∈ H the 
vector .d ∈ L closest to .d0 (Fig. 3.5). 

To solve this problem, let us consider the norm of difference.||d0−d||. Any vector 
.d ∈ L can be represented in the form of a linear combination of basis vectors: 

. d = α1d1+α2d2+α3d3+· · ·+αndn.

Thus, we have the minimization problem 

.||d0−d|| = ||d0 − (α1d1+α2d2+α3d3+· · ·+αndn)|| = min, (3.47) 

which can be written, using inner product notation, in the following form: 

. ||d0−d||2 =
||||||||||d0 −

n∑
i=1

αidi

||||||||||
2

. =
(
d0 −

n∑
i=1

αidi , d0 −
n∑

i=1

αidi

)
= min .

Fig. 3.5 Approximation 
problem in Hilbert space
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Let us calculate the derivatives of the.||d0−d||2 with respect to.α j which must vanish 
at an extremum point: 

. 
∂||d0−d||2

∂α j
= 2

(
d0 −

n∑
i=1

αidi , d j

)
= 0.

From the last equation, we have the system of linear equations for the unknown 
coefficients . αi : 

. 

n∑
i=1

αi (di ,d j ) = (d0,d j ).

We may write the system more compactly as follows: 

.

n∑
i=1

[ j iαi = (d0,d j ), (3.48) 

where the symmetric matrix .
[
[ j i
] = [

(di ,d j )
]
is called the Gram matrix. 

It can be demonstrated that the linear independence of the elements.di guarantees 
that matrix .

[
[ j i
]
is nonsingular, which means that the solution to (3.48) . {αi , i =

1, 2, . . .n} always exists for any .d0 and is unique. 
Note that, we can assume that .d0 are observed data, and .{d1,d2, . . . . . . ,dn} is 

the set of known theoretical data, which would correspond to some inverse problem 
solution. In this case, the minimization problem (3.47) is equivalent to the problem 
of observed data approximation by the given theoretical data set. We will discuss the 
different formulations of this problem in the next sections. 

3.5.3 Complex Hilbert Space 

We can introduce a complex Hilbert space with the scalar coefficients being both 
real and complex numbers. The vector operations in the complex Hilbert space are 
based on similar axioms, (3.34)–(3.38), to those for real Hilbert space, but with one 
significant modification. The point is that the axioms (3.34)–(3.38) cannot be satisfied 
simultaneously in a complex space. In fact, from (3.34) and (3.36), it follows that 

. (αf,αf) = α2(f, f).

In particular, if .α = i , we have  

.(if, if) = −(f, f).
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From the last formula we see that if .(if, if) > 0, then .(f, f) < 0, and vice versa, 
which contradicts axiom (3.37). Therefore, we have to introduce a different definition 
for the inner product of two vectors in the complex space. It is defined as a complex-
valued functional, .(f, g), with the properties 

.(f, g) = (g, f)∗ (complex symmetry), (3.49) 

where the asterisk * means complex conjugate, 

.(f + g,h) = (f,h) + (g,h) (linearity), (3.50) 

.(αf, g) = α(f, g) (linearity). (3.51) 

This functional has to be also positive definite, i.e., 

.(f, f) > 0, (3.52) 

and 
. (f, f) = 0 if and only if f = 0. (3.53) 

Thus, we have corrected the first axiom of the real Hilbert space without changing 
the other axioms. Note that from (3.49) and (3.51) it follows that 

.(f,αg) = α∗(f, g). (3.54) 

3.5.4 Properties of the Gram Matrix 

In this section, we consider the properties of the Gram matrix of a set of elements 
(vectors) . f (1), f (2), . . ., f (n−1), f (n), from a complex Hilbert space. 

The Gram matrix is formed by the inner products between elements 
. f (1), f (2), . . ., f (n−1), f (n) (which could represent some functions, for example), as 
follows: 

. Gn( f
(1), f (2), . . ., f (n−1), f (n))

. =

⎡
⎢⎢⎢⎢⎢⎣

(
f (1), f (1)

)
. . .

(
f (1), f (n−1)

) (
f (1), f (n)

)
(
f (2), f (1)

)
. . .

(
f (2), f (n−1)

) (
f (2), f (n)

)
...

. . .
...

...(
f (n−1), f (1)

)
. . .

(
f (n−1), f (n−1)

) (
f (n−1), f (n)

)
(
f (n), f (1)

)
. . .

(
f (n), f (n−1)

) (
f (n), f (n)

)

⎤
⎥⎥⎥⎥⎥⎦

. (3.55)
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We introduce a matrix-column, .Fn (r) formed by elements . f (i), i = 1, 2, . . .n: 

.Fn =

⎡
⎢⎢⎢⎢⎢⎣

f (1)

f (2)

...

f (n−1)

f (n)

⎤
⎥⎥⎥⎥⎥⎦

. (3.56) 

According to formula (3.55), Gram matrix can be represented in the following 
form: 

. Gn( f
(1), f (2), . . ., f (n−1), f (n)) =

. =

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

f (1)

f (2)

...

f (n−1)

f (n)

⎤
⎥⎥⎥⎥⎥⎦

,
[
f (1), f (2), . . ., f (n−1), f (n)

]

⎞
⎟⎟⎟⎟⎟⎠

= (
Fn,FT

n

)
, (3.57) 

where symbol .
(
Fn,FT

n

)
denotes the matrix multiplication involving inner product 

between the corresponding elements of the matrix-column and matrix-row, . F and 
.FT , as defined in formula (3.55). 

From the property (3.49) it follows that the Gram matrix is a Hermitian matrix, 
that is equal to its own conjugate transpose (Golub and Van Loan 2013): 

.Gn = (
Fn,FT

n

) = (
Fn,FT

n

)∗ = G∗
n. (3.58) 

3.5.4.1 Hermitian Matrices 

We now review some basic properties of the Hermitian matrices. AQ1 

The complex matrix .H is called a Hermitian matrix, if it is equal to its own 
conjugate transpose: 

. H = H∗.

Definition 3.26 The complex Hermitian .[N × N ] matrix, . H, is called positive 
semidefinite if for any nonzero vector . x from complex Euclidean space .x ∈EC

n : 

.x∗Hx ≥ 0, (3.59)
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where .x∗ is vector-row formed by the complex conjugate components of vector-
column. x: 

. x∗ = [
x∗
1 , x∗

2 , . . . . . . , x∗
n−1, x

∗
n

]
.

Definition 3.27 The Hermitian matrix .H is called positive definite if the following 
inequality holds for any nonzero vector . x: 

.x∗Hx > 0. (3.60) 

For the complex Hermitian matrix, . H, spectral representation (2.43) takes the 
form: 

.H = UΦU∗, (3.61) 

where. U is the unitary matrix and. Φ is real diagonal matrix formed by the eigenvalues 
.ϕ1, ϕ2, . . . . . . ϕN , of matrix . H. 

Note that unitary matrices are the complex analog of real orthogonal matrices. 
The inverse unitary matrix equals it conjugate transpose: 

.U−1 = U∗, and |detU| = 1. (3.62) 

From Eq. (3.61) it follows at once that the determinant of the Hermitian matrix 
can be calculated as follows: 

. detH = det
(
UΦU∗) = det (U) det (Φ) det

(
U∗) = det (Φ) = ϕ1ϕ2 . . . . . . ϕN ,

(3.63) 
where .ϕi , i = 1, 2, . . . . . . N are the eigenvalues of matrix . H. 

Finally, it can be shown that a Hermitian (or symmetric) matrix is positive defi-
nite if and only if all its eigenvalues are real positive numbers. Indeed, let .ϕi is an 
eigenvalue of matrix .H with a nonzero eigenvector, .x(i): 

.Hx(i) = ϕix(i), i = 1, 2, . . .N . (3.64) 

Then condition (3.60) of matrix,. H, being positive definite can be written as follows: 

.x(i)∗Hx(i) = x(i)∗ϕix(i) = ϕi

||||x(i)
||||2 > 0, i = 1, 2, . . .N . (3.65) 

This condition holds if and only if 

.ϕi > 0, i = 1, 2, . . .N . (3.66) 

From the last formula and Eq. (3.63), one can obtain at once that the determinant 
of the Hermitian matrix is positive,
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. detH > 0, (3.67) 

if and only if matrix .H is positive definite. 
Thus, we can formulate the following theorem. 

Theorem 3.28 The following conditions are equivalent: 
(a) Hermitian matrix is positive definite 

. x∗Hx > 0 for all x /= 0;

(b) All eigenvalues of .H satisfy the inequality . ϕi > 0;
(c) Determinant of .H is positive, 

. detH > 0.

A similar theorem holds for positive semidefinite matrices. 

Theorem 3.29 The following conditions are equivalent: 
(a) Hermitian matrix is positive semidefinite 

. x∗Hx ≥ 0 for all x /= 0.

(b) All eigenvalues of .H satisfy . ϕi ≥ 0.
(c) Determinant of .H is non-negative, 

. detH ≥ 0.

3.5.4.2 Gram Matrix as Hermitian Positive Semidefinite Matrix 

We can prove that the Gram matrix, .Gn, of any system of elements (functions) in 
Hilbert space is Hermitian positive semidefinite magtrix. Let us calculate the product 
of vector-row.x∗ and matrix .Gn: 

. x∗Gn =

. = [
x∗
1 , x∗

2 , . . . . . . , x∗
n−1, x

∗
n

]

⎡
⎢⎢⎢⎢⎣

(
f (1), f (1)

)
. . .

(
f (1), f (n−1)

) (
f (1), f (n)

)
(
f (2), f (1)

)
. . .

(
f (2), f (n−1)

) (
f (2), f (n)

)
. . . . . . . . . . . .(

f (n−1), f (1)
)

. . .
(
f (n−1), f (n−1)

) (
f (n−1), f (n)

)
(
f (n), f (1)

)
. . .

(
f (n), f (n−1)

) (
f (n), f (n)

)

⎤
⎥⎥⎥⎥⎦

. =
⎡
⎣ ∑
i=1,2,...,n

x∗
i

(
f (i), f (1)

)
. . . . . .

∑
i=1,2,...,n

x∗
i

(
f (i), f (n−1)

) ∑
i=1,2,...,n

x∗
i

(
f (i), f (n)

)
⎤
⎦ ,

(3.68)
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where.x∗
i (i = 1, 2, . . ., n) are the complex conjugate scalar components of nonzero 

vector . x.
We can now calculate the product of expression (3.68) with vector-column. x: 

. x∗Gnx =

. =
⎡
⎣ ∑
i=1,2,...,n

x∗
i

(
f (i), f (1)

)
. . . . . .

∑
i=1,2,...,n

x∗
i

(
f (i), f (n−1)

) ∑
i=1,2,...,n

x∗
i

(
f (i), f (n)

)
⎤
⎦

⎡
⎢⎢⎣

x1
. . .

xn−1

xn

⎤
⎥⎥⎦

. =
∑

i=1,2,...,n

∑
j=1,2,...,n

x∗
i

(
f (i), f ( j)

)
x j =

⎛
⎝ ∑

i=1,2,...,n

x∗
i f

(i),
∑

j=1,2,...,n

x∗
j f

( j)

⎞
⎠

. =
||||||||||

∑
i=1,2,...,n

x∗
i f

(i)

||||||||||
2.

≥ 0. (3.69) 

Note that in the last formula we took into account the property (3.54) of the inner 
product in the complex Hilbert space: 

. x∗
i

(
f (i), f ( j)

)
x j = (

x∗
i f

(i), f ( j)x∗
j

)
.

We can see from formula (3.69) that Gram matrix of any system of elements 
(functions) in Hilbert space is Hermitian positive semidefinite function. Therefore, 
according to Theorem 3.29, the determinant of this matrix is non-negative: 

. detGn ≥ 0. (3.70) 

Formula (3.70) is called Gram inequality (Everitt 1958; Barth 1999). 
Let us assume that elements of the Hilbert space. f (1), f (2), . . ., f (n−1), f (n) form 

a linear independent set of functions in Hilbert space. This means that any linear 
combination of these elements (e.g., functions) with the coefficients equal to scalar 
components of nonzero vector .x∗, cannot be equal to zero: 

.

∑
i=1,2,...,n

x∗
i f

(i) /= 0. (3.71) 

Therefore, according to (3.69), we have 

.x∗Gnx =
||||||||||

∑
i=1,2,...,n

x∗
i f

(i)

||||||||||
2

> 0. (3.72)
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Equation (3.72) shows that, in this case, Gram matrix, .Gn , is positive definite 
Hermitian matrix. 

From the last result we can formulate the following Theorem. 

Theorem 3.30 A necessary and sufficient condition for the elements . f (1), f (2), . . .,

f (n−1), f (n) to be linearly independent is that the corresponding Gram matrix is 
positive definite according to (3.72) .  

At the same time, according to Theorem 3.28 the Hermitian matrix is positive 
definite if and only if its determinant is positive: 

. detGn > 0. (3.73) 

Thus, we can formulate the following results. 

Corollary 3.31 A necessary and sufficient condition for the elements. f (1), f (2), . . .,

f (n) to be linearly independent is that the determinant of the corresponding Gram 
matrix is positive. 

One can also prove the following statement. 

Corollary 3.32 A necessary and sufficient condition for the elements,. f (1), f (2), . . .,

f (n), to be linearly dependent, is that the determinant of their Gram matrix is equal 
to zero: 

.Gn( f
(1), f (2), . . ., f (n)) = 0. (3.74) 

This means that there exist the nonzero vector . ̃x with the property 

.

∑
i=1,2,...,n

x̃i f
(i) = 0. (3.75) 

The proof of the above corollary is straightforward. 
(a) If elements . f (1), f (2), . . ., f (n) are linearly dependent, then according (3.69) 

and (3.75) we have  
.̃x∗Gn x̃ = 0. (3.76) 

Equation (3.76) means that matrix.Gn is not positive definite. In this case, accord-
ing to Theorem 3.28 its determinant cannot be positive, and, therefore, it is equal 
to zero, because, according to (3.70), the determinant of the Gram matrix is always 
non-negative. 

(b) If the determinant is equal to zero, the Gram matrix is not positive defi-
nite. Therefore, according to Theorem 3.28, elements. f (1), f (2), . . ., f (n) are linearly 
dependent. In other words, if .detGn = 0, there always exists the nonzero vector . ̃x
with the property (3.75). 

The properties of the Gram matrix formulated above provide the basis for using 
the Gram matrix in the multiphysics inversion (see Chap. 12).
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3.6 Examples of Linear Vector Spaces 

The Euclidean space formed by the vectors with real components is the simplest 
example of linear vector space. There are several other fundamental mathematical 
spaces that are widely used in applications. This section presents several important 
examples of these spaces. We begin the discussion with the real Euclidean space 
formed by real vectors. 

3.6.1 Euclidean Space Formed by Real Vectors 

The simplest example of a linear space is Euclidean space .EN (or .Rn), which is a 
natural generalization of three dimensional (3D) physical space to . n dimensions. 
We have introduced Euclidean space in the beginning of this chapter already. For 
convenience, let us summarize the main properties of this space. It can be described 
as a set of all possible vectors of order . n: 

. a = (a1, a2, a3, . . . . . . an),

where the scalars .a1, a2, a3, . . . . . . an are real numbers. 
By analogy with the length of the vector in 3D physical space, a norm of the vector 

.||a|| is defined as follows: 

.||a|| =
/
a21 + a22 + a23 + · · · · · · · · · + a2n . (3.77) 

It is easy to check that the norm introduced above satisfies the conditions 

. ||a|| > 0 if a /= 0, ||a|| = 0 if a = 0, (3.78) 

. ||λa|| = |λ| ||a||, (3.79) 

.||a + b|| ≤ ||a|| + ||b||, (3.80) 

where the last inequality is called triangle inequality 
We have also introduced an operation on two vectors, called the inner (dot) prod-

uct, as follows: 

.a · b =
n∑

i=1

aibi . (3.81) 

The norm (3.77) is equal to the square root of the dot product of the vector with itself: 

.||a|| = √
a · a. (3.82)
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3.6.2 Complex Euclidean Space 

We can introduce a complex Euclidean space, where the scalar components of the 
vectors, the scalars .a1, a2, a3, . . . . . . an, are the complex numbers. However, in this 
case we have to modify definitions (3.77) and (3.81) for the norm of the vector and 
the inner product in order to satisfy conditions (3.78)–(3.80). The norm of a vector 
in the complex Euclidean space is introduced as follows: 

.||a|| =
/

|a|21 + |a|22 + |a|23 + · · · · · · · · · + |a|2n. (3.83) 

The inner (dot) product of two vectors is introduced as a complex value, deter-
mined by the following formula 

.a · b =
n∑

i=1

aib
∗
i , (3.84) 

where asterisk * means complex conjugate. 
Obviously, a norm can still be determined as a square root of the dot square of 

the vector: 

.||a|| = √
a · a = √

a1a∗
1 + a2a∗

2 + a3a∗
3 + · · · · · · · · · + ana∗

n . (3.85) 

Note that in the complex Euclidean space the inner product operation is not sym-
metrical: 

.a · b = (b · a)∗ . (3.86) 

It also follows from Eq. (3.86), that 

.a·αb = (αb · a)∗ = α∗ (b · a)∗ = α∗a · b. (3.87) 

3.6.3 Typical Mathematical Function Spaces 

3.6.3.1 .C0 [a, b] Space 

The next example can be constructed using a set of real functions, continuously 
differentiable to order . n on the real interval .[a, b] . Obviously, the sum of two dif-
ferentiable functions is another differentiable function, and the multiplication of the 
function by a constant scalar is a differentiable function as well. Therefore, this set of 
functions forms some linear space, denoted by.Cn [a, b]. However, it is not a normed 
space yet, because we did not introduce a norm of the function.
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Fig. 3.6 The plot of one 
function,. f (x), is shifted 
vertically with respect to the 
plot of the other function, 
.g(x). The size of this shift is 
equal to the “distance” 
between two functions in the 
space with the uniform norm 

a b 

f(x) 

g(x) 
y 

x 

There are many different ways to introduce a norm in a function space. The 
simplest one is as follows: 

. || f ||∞ = max
a≤x≤b

| f (x)| . (3.88) 

It is easy to verify that the norm introduced in (3.88) satisfies all required condi-
tions for the norm of the normed space, and I leave this proof to the reader as an 
exercise. This norm is called the uniform norm. The linear space of continuous func-
tions,.C0 [a, b] , equipped with the uniform norm, forms a normed space, denoted by 
.C [a, b]. The distance between two functions, . f (x) and .g(x), in the space . C [a, b]
with the uniform norm is equal to 

.μ( f (x), g(x)) = max
a≤x≤b

| f (x) − g(x)| . (3.89) 

Figure 3.6 gives an illustration of this distance as applied to functions . f (x) and 
.g(x). In this case, one can see that the distance corresponds to the shift between the 
plots of these two functions. However, one can notice that the distance between two 
functions in this norm is determined by the extremum of the difference.[ f (x) − g(x)]. 

In other words, even if these two functions go very close to each other along the 
interval .[a, b], but are different only in a few points (as shown in Fig. 3.7), these 
differences will determine the distance between these two functions in the metric of 
the space .C[a, b]. 

3.6.3.2 .L p and Sobolev Spaces 

In practical applications, having a metric that reflects the average discrepancy 
between two functions is much more convenient. This metric can be introduced 
by a so-called .L1 norm:



3.6 Examples of Linear Vector Spaces 55

Fig. 3.7 The plots of two 
functions follow each other 
very closely along an entire 
interval.[a, b], with the 
exception of a few outliers. 
These two functions are 
considered to be very 
different in the function 
space with a uniform norm. 
However, in the function 
space with an.L1 norm these 
two functions are close to 
each other 

a b 

f(x) 

g(x) 

y 

x 

. || f ||L1
=
 b

a
| f (x)| dx . (3.90) 

In this case, the distance between two functions is given by the following formula: 

.μ( f (x), g(x)) =
 b

a
| f (x) − g(x)| dx . (3.91) 

Thus, now two functions will be close to each other if the integral of their differ-
ence is small enough. The presence of one or two outliers will not affect the result 
significantly (see Fig. 3.7). The linear space of continuous functions on the real inter-
val .[a, b] equipped with the .L1 norm, is called the .L1[a, b] space. This is a linear 
normed space but not a Hilbert space because it has no inner product operation. 

.L1 space is a special case of .L p spaces, when .p = 1. The metric in .L p spaces is 
introduced according to the following formula: 

. || f ||L p
=
( b

a
| f (x)|p dx

)1/p

, 0 < p < ∞. (3.92) 

Space.L p is a linear normed space, with norm satisfying the Minkowski inequality: 

. || f + g||L p
≤ || f ||L p

+ ||g||L p
. (3.93) 

Minkowski inequality is an analog to the triangle inequality of the metric space. 
Space .L2 plays a special role in the function space theory because one can intro-

duce the Hilbert metric in this space. Indeed, in space .L2 we define the norm as 
follows: 

. || f ||L2
=
/ b

a
f 2 (x) dx .
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This norm is called an.L2 norm. It follows that the distance between two functions 
will be measured as 

.μ( f (x), g(x)) = || f (x) − g(x)||L2
=
/ b

a
[ f (x) − g(x)]2 dx . (3.94) 

The advantage of this norm is that one can derive it from the inner product of two 
functions, defined as follows: 

.( f (x), g(x)) =
 b

a
f (x)g(x)dx . (3.95) 

Thus, a linear normed space .L2[a, b] is a Hilbert space, and therefore, possesses 
all the properties of the Hilbert space discussed above. 

One can introduce an inner product between two functions,. f (x) and.g(x), contin-
uously differentiable to order . n on the real interval .[a, b], using a different formula: 

.( f (x), g(x)) =
 b

a

n∑
k=0

q2
k (x)

dk f (x)

dxk
dkg(x)

dxk
dx, (3.96) 

where.q0(x), q1(x), . . ., qn(x) are given real functions, (.qn(x) is not identically equal 
to zero). The corresponding Hilbert space is called a Sobolev space,.Wn

2 .Themetric in  
the Sobolev space.Wn

2 (the distance between two functions) is determined according 
to the following formula 

.μWn
2
( f (x),g(x)) =

  b

a

p∑
k=0

q2
k (x)

 
dk [ f (x)−g(x)]

dxk

 2

dx

 1
2

. (3.97) 

Thus, two functions in Sobolev space will now be close to each other if the integral 
of their difference, and all their derivatives up to the order .n, are small enough. In 
other words, in Sobolev space, not only the functions. f (x) and.g(x) themselves but 
also all their derivatives (to order . n) should be close to each other. Therefore, the 
Sobolev metric imposes more control on the function behavior than the conventional 
.L2 metric. 

Another example of the Hilbert space is a space .LC
2 [a, b] formed by the sets of 

complex functions, integrable on the real interval .[a, b] and equipped with the inner 
product 

.( f (x), g(x)) =
 b

a
f (x)g∗(x)dx . (3.98) 

It is easy to check that expression (3.98) satisfies all axioms, (3.49)–(3.53), for the 
complex Hilbert space. 

Table 3.1 summarizes the examples of linear vector spaces.
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Table 3.1 Examples of linear vector spaces 

Symbol Description Name/comment 
The set of real vectors of order 

Euclidean space 

The set of functions, continuously 
differentiable to order on the real 
interval 

Not a normed  space  

equipped with the uniform 
norm Normed space 

equipped with the norm 
Normed space 

Set of real functions integrable 
on the real interval 
equipped with the inner product Hilbert Space 

equipped with the norm 
Sobolev space 

Set of complex functions integrable 
on the real interval 
equipped with the inner product Complex Hilbert space 

3.7 Gramian Spaces and Their Properties 

3.7.1 Inner Product in Gramian Space 

We assume that there is a set of complex integrable functions, . f (i) (r) 
.(i = 1, 2, 3, . . .,  n) , of a radius-vector.r = (x, y, z) defined within some volume. V 
of a 3D space. We can consider these functions as the elements of a complex Hilbert 
space .LC 

2 [V ] with a .L2 norm, defined by the corresponding inner product: 
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. ( f, g) =
 

V 
f (r) g∗ (r) dv, || f ||2 = ( f, f ) , (3.99) 

where asterisk “*” denotes the complex conjugate value. 
Let us consider two arbitrary functions from this Hilbert space, .p (r) and 

.q (r) ∈ LC 
2 [V ]. We can introduce a new inner product operation,.(p, q)G(n) , between 

two functions, . p and . q, as the determinant of the following matrix: 

. (p, q)G(n) = 

. =

||||||||||

(
f (1) , f (1)

) (
f (1) , f (2)

)
. . .

(
f (1) , f (n−1)

) (
f (1) , q

)
(
f (2) , f (1)

) (
f (2) , f (2)

)
. . .

(
f (2) , f (n−1)

) (
f (2) , q

)
. . . . . . .  . . . . . . . .(

f (n−1) , f (1)
) (

f (n−1) , f (2)
)

. . .
(
f (n−1) , f (n−1)

) (
f (n−1) , q

)
(
p, f (1)

) (
p, f (2)

)
. . .

(
p, f (n−1)

)
(p, q)

||||||||||
. (3.100) 

It is easy to check that all the properties of the inner product hold: 

. (p, q)G(n) = (q, p)∗ 
G(n) , (3.101) 

.
(
α1 p

(1) + α2 p
(2) ,q

)
G(n) = α1

(
p(1) ,q

)
G(n) + α2

(
p(2) ,q

)
G(n) , (3.102) 

and 
. ( p, p)G(n) ≥ 0. (3.103) 

The last property (3.103) follows from the fact that the norm square of a function, 
.||p||2 G(n) . , is equal to the determinant,.G( f (1) , f (2) , . . .,  f (n−1) , p), of the Gram matrix 
of a set of functions, .( f (1) , . f (2) , …,. f (n−1) , .p, ), which is called a Gramian: 

. ||p||2 G(n) = (p, p)G(n) = G( f (1) , f (2) , . . .,  f (n−1) , p) 

. =

||||||||||

(
f (1) , f (1)

) (
f (1) , f (2)

)
. . .

(
f (1) , f (n−1)

) (
f (1) , p

)
(
f (2) , f (1)

) (
f (2) , f (2)

)
. . .

(
f (2) , f (n−1)

) (
f (2) , p

)
. . . . . . . . . . . . . . .(

f (n−1) , f (1)
) (

f (n−1) , f (2)
)

. . .
(
f (n−1) , f (n−1)

) (
f (n−1) , p

)
(
p, f (1)

) (
p, f (2)

)
. . .

(
p, f (n−1)

)
(p, p)

||||||||||
. (3.104) 

We have demonstrated above in Sect. 3.5.4 that Gramian satisfies to Gram inequal-
ity: 

.G( f (1) , f (2) , . . .,  f (n−1) , p) ≥ 0. (3.105) 

Note that equality holds in (3.105) if and only if the system of functions 
.
(
f (1) , f (2) , . . .,  f (n−1) , p

)
is linearly dependent. 
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We will call the Hilbert space formed by the integrable functions, defined within 
some volume .V of a 3D space, with the inner product operation introduced by 
formula (3.100), a Gramian space, .G(n). The set of complex integrable functions, 
. f (i) (r) .(i = 1, 2, 3, . . .,  n), is called a Gramian core set. 

3.7.2 Properties of the Norm in Gramian Space 

The main property of the Gramian space is that the norm of the function . p in the 
Gramian space provides a measure of correlation between this function and functions 
. f (1) , f (2) , . . .,  f (n−1) from the corresponding Gramian core set. 

One can also introduce the Gramian space .G( j ), where inner product is defined 
by an expression similar to (3.100) with the only difference that functions . p and . q 
are located within the row and column with number . j , respectively: 

. (p, q)G( j ) = 

. =

||||||||||

(
f (1) , f (1)

) (
f (1) , f (2)

)
. . .

(
f (1) , q

)
. . .
(
f (1) , f (n)

)
. . . . . . .  . . . . . . . . . . . .(

p, f (1)
) (

p, f (2)
)

. . . (p, q) . . .
(
p, f (n)

)
. . . . . . .  . . . . . . . .(

f (n) , f (1)
) (

f (n) , f (2)
)

. . .
(
f (n) , q

)
. . .

(
f (n) , f (n)

)

||||||||||
. (3.106) 

In the Gramian space.G( j), the norm square of a function,.||p||2 G( j ) . , is equal to the 
Gramian of a set of functions, .( f (1) , . f (2) , …,. f ( j−1) , . p, f ( j+1) , . . .  f (n) ): 

. ||p||2 G( j ) = (p, p)G( j ) = G( f (1) , f (2) , . . .,  f ( j−1) , p, f ( j+1) , . . .  f (n) ). (3.107) 

Therefore, the norm of the function in the Gramian space .G( j ) provides a measure 
of linear dependence between this function and all other functions from the Gramian 
core set, with the exception of function. f ( j):. f (1) , f (2) , ……. f ( j−1) , f ( j+1) , . . .,  f (n) . 

Note that the Gramian norm has the following property: 

.

|||| f (i)||||2 G(i ) =
|||| f ( j)||||2 G( j ) , for i = 1, 2, . . .,  n; j = 1, 2, . . .,  n. (3.108) 

The last formula demonstrates that all the functions, . f (1) , f (2) ,….. . .,  f (n), have the  
same norm in the corresponding Gramian spaces . G( j ) , j = 1, 2, . . .,  n. 

Gramian spaces serve as an effective mathematical instrument for solving the 
problems of joint inversion of multimodal physical data. 
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3.8 Operators in Mathematical Spaces 

3.8.1 Operators and Their Properties 

We can treat the elements of mathematical spaces as geometrical points and consider 
different transformations of these points from one to another. These transformations 
can be described by corresponding rules, which are called operators. We now  give  a  
more strict definition of an operator. 

Definition 3.33 Let.X and. Y be metric spaces and.D some subdomain of. X : D ⊂ 
X . If for any .x ∈ D, we can assign according to a certain rule some element . y ∈ Y 
we say that the operator . A is given on .D with the values in . Y : 

. y =A (x) , x ∈ D ⊂ X, y ∈ Y. 

Figure 3.8 gives an illustration of operator . A acting from space .X into space . Y. 
Thus, we can see that the operator is a natural generalization of the function for 

an abstract mathematical space. 
We know that one of the fundamental properties of a function is whether it is 

continuous or discontinuous. This property can be applied to operators as well. 

Definition 3.34 Let .X and .Y be metric spaces with metrics .μ1
(
x', x'') and . μ2 

.
(
y', y''), and let .A be an operator, transforming elements of .X into . Y . .A is said 
to be continuous at a point .x0 in .X if for each real number .ε > 0 there exists a real 
number .δ > 0 such that, for any two elements .x, x0 ∈ X, satisfying the condition 
.μ1(x, x0) <  δ, the distance between the results of their transformation by operator 
. A is less than .ε : μ2(A (x) , A (x0)) <  ε. 

It is important to consider the sequence of elements .x1, x2, x3, . . .xn, . . .  ∈ X in 
the metric space. This sequence is said to converge to element .x0 if . μ (xn, x0) → 0 
as . n → ∞. 

Theorem 3.35 Let .X and . Y be metric spaces and . A an operator of .X into . Y . Then 
. A is continuous at .x0 if and only if the convergence of some sequence of the elements 
from the metric space .{xn} to element .x0 (.xn→ x0) results in the convergence of the 
transformed sequences of the elements .{A (xn)} to the element . A (x0) : A (xn) → 
A(x0). 

Fig. 3.8 Introducing 
forward and inverse 
operators in metric spaces 
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3.8.2 Linear Operators 

Let .X and .Y be normed spaces with the same system of scalars. There is a very 
important class of operators in the normed linear spaces which are called linear 
operators. 

Definition 3.36 An operator .y = L (x) is called linear if for any .xi ∈ X and any 
scalars . αi : 

. L(α1x1 + α2x2 +  · · · · · ·  +  αnxn) = α1L(x1) + α2L(x2) +  · · · · · ·  +  αn L(xn). 
(3.109) 

Definition 3.37 An operator.y =L (x) is called bounded if there exists a real number 
.M with the property that 

.||L (x) || ≤  M ||x|| (3.110) 

for every .x ∈ X . 

It is easy to prove the following theorem: 

Theorem 3.38 A linear operator . L is continuous if and only if it is bounded. 

Definition 3.39 The smallest constant.M for which condition (3.110) holds for any 
.x ∈ X is called the norm of the operator: 

. ||L|| =  min{M : M ≥ 0, ||L (x) || ≤  M||x||, for any x ∈ X}. 

From the last formula we see at once that 

. ||L (x) || ≤ ||L|| ||x||

for all .x ∈ X . 

3.8.3 Inverse Operators 

Let us consider the following equation 

.A (x) = y. (3.111) 

If the solution of Eq. (3.111) is unique, then we can assign to any . y', for  which  
Eq. (3.111) is solvable, the corresponding value. x' (see Fig. 3.8). Thus we can deter-
mine some operator .A−1: 

. x = A−1 y, 

which we call the inverse operator. 
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Theorem 3.40 The inverse operator .A−1 for a given linear operator .A exists and 
is linear if and only if the equation .Ax = 0 holds only for .x = 0. 

Theorem 3.41 The inverse operator.A−1 for a given linear operator. A exists, and is 
linear and bounded if and only if there exists a real number .m > 0 with the property 
that 

. ||A (x) || ≥  m||x||, 

for every .x ∈ X. 

In this case 

. ||A−1|| ≤  
1 

m 
. 

3.9 Functionals in Mathematical Spaces 

3.9.1 Linear Functionals 

In the previous section, we discussed the operators that transform elements (e.g., 
vectors) from a mathematical space into other elements from another space. There is 
a special class of operators that play a critical role in the theory and applications. This 
class contains an operator transforming vectors from an arbitrary metric space into 
real numbers, which can be treated as the elements of one-dimensional Euclidean 
space .E1. The operators from this class are called functionals. 

We will now give a more rigorous definition of functionals. 
Let. X be a metric or vector space,.D ⊂ X, and.E1 be a one-dimensional Euclidean 

space (a set of real numbers). Then, we introduce the following definition. 

Definition 3.42 If for any.x ∈ D we can assign according to a certain rule some real 
number .y ∈ E1, we say that the functional . f is given on . D. 

A functional is a special case of an operator when .Y = E1. Figure 3.9 illustrates 
the action of a functional in the vector space. 

Fig. 3.9 Functional,. f (x) , transforms vectors from an arbitrary vector space.X into the elements 
of one-dimensional Euclidean space.E1 
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A linear functional is a special case of a linear operator. Therefore, the following 
condition should hold for the linear functional defined in the linear vector space: 

. f (α1x1 + α2x2 +  · · · · · ·  +  αnxn) = α1 f (x1) + α2 f (x2) +  · · · · · ·  +  αn f (xn). 
(3.112) 

In other words, one can open brackets while considering an application of the linear 
functional to a linear combination of the vectors from a linear vector space. 

In a simplified way, we can summarize the actions of conventional functions, 
functionals, and operators as follows: 

(1) functions transform scalars into scalars; 
(2) functionals transform vectors into scalars; 
(3) operators transform vectors into vectors. 

3.9.2 Riesz Representation Theorem 

There are many ways to introduce a functional in Hilbert space, . H . The simplest 
example is the norm of a vector: 

.ϕ(x) = ||x||, x ∈ H. (3.113) 

Functional .ϕ((x) defined by formula (3.113) is not a linear functional, however, 
because 

.ϕ(x + y) = ||x + y|| /= ||x|| + ||y||. (3.114) 

Expression (3.114) shows that the requirement (3.112) for the linear functional does 
not hold in this case. 

Let us now introduce some examples of linear functionals in Hilbert space. We 
consider a fixed element . l of a Hilbert space . H . Then we can introduce a linear 
functional, . f (x), as a projection (inner product) of arbitrary vector . x on the fixed 
vector . l: 

. f (x) = (l, x), (3.115) 

for any .x ∈ H . 
It is easy to prove that the functional defined by expression (3.115) is indeed a 

linear one, considering the linear property of the inner product operation: 

. f (αx+βy) = (l,αx+βy) = α(l, x) + β(l, y) = α f (x) + β f (y). 

Moreover, . f (x) is a bounded linear functional: 

. | f (x) |< M||x||, 

where .M ≤ ∞. 
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This follows from Schwarz’s inequality: 

. | f (x) |=| (l, x) |≤ ||l||||x||. 

We can prove now that any linear functional in a Hilbert space can be represented in 
the form of (3.115). 

Theorem 3.43 (Riesz representation theorem) Every bounded linear functional 
. f (x) in a Hilbert space can be represented as .(l, x) and . l is uniquely determined by 
. f . 

Proof Consider a basis.{e1, e2, e3, . . . . . .  en, . . .} of the Hilbert space. We know that 
for any . x ∈ X, 

. x =
∑
i 

(x, ei )ei . 

Thus, due to the linearity of the functional, we can write 

. f (x) = f
(∑

i

(
x, ei

)
ei

)
=
∑
i 

(x, ei ) f (ei ). (3.116) 

Suppose that 
. f (ei ) = li . (3.117) 

We can introduce a vector . l with the scalar components . li : 

.l =
∑
i 

liei . (3.118) 

Then Eq. (3.116) can be written as follows: 

. f (x) =
∑
i 

(x, ei )li = (x,
∑
i 

liei ) = (x, l), (3.119) 

from which the first statement of the theorem follows. 
Suppose now that there is another vector .l(1) such that 

. f (x) = (x, l(1) ). (3.120) 

Then 
. f (ei ) = (ei , l(1) ) = l(1) i . 

At the same time, according to formula (3.119), we have: 

. f (ei ) = li . 
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From the last two equations, it follows that, 

. li = l(1) i , and l = l1 . 

Thus, we have proved that vector . l is uniquely determined by . f . 

3.9.3 Norm of the Functional 

The functional norm can be introduced by analogy with the norm of the operator, 
based on the following definitions. 

Definition 3.44 The functional .y = f (x) is called bounded if there exists a real 
number .M with the property that 

. | f (x) |≤ M||x||, (3.121) 

for every .x ∈ X . 

Consider the Schwarz inequality (3.39) 

.|| f (a)|| =  |  a · l |≤ ||a|| ||l||. (3.122) 

Therefore, one can always find a large enough constant .M with the following prop-
erty: 

.|| f (a)|| ≤  M||a||. (3.123) 

Definition 3.45 The norm of the functional . f is the minimum value of all possi-
ble .M that satisfy the inequality (3.123): . || f || = min {M > 0, | f (a)| ≤ M||a||} ,
|| f || ≤ M. 

On the other hand, we have 

. || f (l)|| =  l · l = ||l|| ||l|| ≤  M ||l||. 

So the minimum value of .M that satisfies (3.123), is the norm of the constant 
vector . l: 

. M ≥ ||l||. 

Therefore, we have established that the norm of the functional is equal to the norm 
of the vector . l given by its representation (3.115): 

.|| f || = ||l||. 



66 3 Vector Spaces of Models and Data 

3.9.4 Functional Representation of the Data and An Inverse 
Problem 

Assume that we have physical measurements in a fixed number of observation points 
.d j , j = 1, 2, . . .n; d j ∈ E1. These measurements depend on parameters of the cor-
responding models and therefore can be treated as the functionals, 

.d j = f j (m), (3.124) 

. j = 1, 2, . . .n; d j ∈ E1, m ∈ M, 

where .M is a Hilbert space of model parameters, and . f j (m) are linear functionals, 
defined on . M . 

According to the Riesz representation theorem, there exist vectors .l( j) (elements 
of the space . M) such that 

.d j = (m, l( j) ), (3.125) 

. j = 1, 2, . . .n; , l( j) ∈ M. 

Vectors .l( j) are called “the data kernels” (Parker 1994). 
Suppose that we know the data kernels .l( j). The problem is to determine model 

.m, which fits the observed data. In other words, we have to find the solution of the 
system of Eq. (3.125). 

To solve this problem, we assume that.{l( j) , j = 1, 2, . . .n; }  is a system of linear 
independent vectors, which forms the subspace .L ⊂ M . If the dimension of .M is 
greater than .L , the element .m is not unequally defined by (3.125). So we can find 
the solution of (3.125), which possesses the additional properties, for example, the 
smallest norm. 

First of all let us formulate the Decomposition Theorem 

Theorem 3.46 (The Decomposition Theorem) For a given complete subspace . L ⊂ 
M, any element .m ∈ M can be written as the sum of a part in . L and a part in .L⊥: 

.m = l + h, (3.126) 

where .L⊥ is the orthogonal complement of . L, such that if .l ∈ L , h ∈ L⊥, then 
.(l, h) = 0 (Fig. 3.10). 

By definition: 
.(l( j ) , h) = 0. (3.127) 

Substituting (3.126) into (3.125), we have 
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Fig. 3.10 Decomposition 
theorem 

.d j= (l, l( j ) ), (3.128) 

. j = 1, 2, . . .n; l( j) ∈ M, 

so that only element . l is to be determined to fit Eq. (3.125). An element . h can be 
chosen from the other conditions, for example, from the condition that the norm of 
.m is minimum. 

Let us calculate this norm: 

.||m||2= (l + h, l + h) = ||l||2+2(l, h) + ||h||2= ||l||2+||h||2 . (3.129) 

From (3.129) it follows that .||m|| =  min if 

.h = 0. (3.130) 

Thus we have the following solution for . m: 

.m = l = 
n∑

i=1 

βi l(i ) , (3.131) 

where .βi (i = 1, 2, . . .n) are unknown coefficients which have to be determined 
from the observed data. 

By substituting (3.131) into (3.125), we have 

.d j = 
n∑

i=1 

βi (l(i ) , l( j) ) = 
n∑

i=1

[ j i  βi , (3.132) 

where 
. [ j i  = (l(i) , l( j ) ) 

is the corresponding Gram matrix, which is nonsingular because the vectors .l( j ) are 
assumed to be linear independent. 
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Thus coefficients .βi (i = 1, 2, . . .n) are found as the solution of the system of 
Eq. (3.132). 

3.10 Adjoint Operators 

We assume that .X and . Y are Hilbert spaces and . A is a linear operator from.X to . Y : 

.y = Ax. (3.133) 

Theorem 3.47 For any linear operator . A on . X and any .y ∈ Y , there exists a unique 
element .x⋆ ∈ X such that for all . x ∈ X 

.(Ax, y)Y = (x, x⋆)X , (3.134) 

where 
.||x⋆||X ≤ ||A||||y||Y . (3.135) 

Proof If element . y is fixed, we can consider .(Ax, y)Y as a linear functional with 
respect to . x: 

.(Ax, y)Y = f (x). (3.136) 

According to the Riesz representation theorem, any linear functional can be repre-
sented as follows: 

. f (x) = (x, x⋆), (3.137) 

where .x⋆ ∈ X exists and is unique and 

.|| f || = ||x⋆||X . (3.138) 

On the other hand, according to (3.136) and the Schwarz inequality, we have 

.|| f (x)|| ≤ ||Ax||||y|| ≤ ||A||||x||X||y||Y . (3.139) 

Dividing the left-hand and the right-hand sides of (3.139) by .||x||, we have 

.|| f (x̃)|| ≤ ||A||||y||Y , (3.140) 

where .x̃ = x/||x|| and . f (x̃) = f (x)/||x|| by linearity. 
From the last inequality we find the following: 

.|| f || =  sup{ f (x̃), ||x̃|| =  1} ≤ ||A||||y||Y . (3.141) 
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Fig. 3.11 Introducing an adjoint operator 

By comparison of (3.138) and (3.141), we see that 

.||x⋆||X ≤ ||A||||y||Y . (3.142) 

From (3.137) and (3.142) the statement of the Theorem 3.47 follows at once. 
Figure 3.11 illustrates an idea of the adjoint operator. 

Definition 3.48 On the basis of Theorem 3.47 we can determine the operator . A⋆

which maps an element.y ∈ Y into the proper element.x⋆ ∈ X, according to formula 
(3.134): 

.x⋆ = A⋆y. (3.143) 

The operator .A⋆ is called the adjoint operator of . A: 

.( Ax, y) = (x, A⋆y). (3.144) 

Theorem 3.49 The adjoint operator is a linear operator and 

.||A⋆|| = ||A||. (3.145) 

Definition 3.50 A linear operator .A in a Hilbert space .H is called self-adjoint (or 
symmetric) if  

.A = A⋆. (3.146) 

Thus for a self-adjoint operator we have 

.(Ax, z) = (x, Az). (3.147) 

Definition 3.51 A symmetric operator is said to be positive on some subset . S ⊂ H 
if for all . x ∈ S 

.(Ax, x) ≥ 0 (3.148) 
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and 
. (Ax, x) = 0, 

if and only if .x = 0. 

Definition 3.52 A linear operator .A in a real Hilbert space .H is called positive 
definite in some subset .S ⊂ H , if we can find a constant .γ > 0 such that, for all 
.x ∈ S, the following relationship holds: 

.(Ax, x) ≥ γ (x, x) = γ||x||2 . (3.149) 

The last definition can be extended to the case of the complex Hilbert space . H . 

Definition 3.53 A linear operator .A in a complex Hilbert space .H is called an 
absolutely positive definite (APD) operator in some subset .S ⊂ H , if we can find a 
constant .γ > 0 such that, for all .x ∈ S, the following relationship holds: 

. |(Ax, x)| ≥ γ (x, x) = γ||x||2 . (3.150) 

3.11 Concepts from Variational Calculus 

3.11.1 Differentiation of Operators and Functionals 

Assume that .X and . Y are two Banach spaces (complete normed linear spaces) and 
. A is some operator from.X to . Y . 

Definition 3.54 The operator. A is called differentiable at some point.x ∈ X if there 
exists a linear bounded operator .Fx , acting from.X to . Y , such that 

.A(x+δx) − A(x) = Fx (δx) + o(||δx||), (3.151) 

where 

. 
o(||δx||)
||δx|| → 0, 

when .||δx|| →  0. 

The operator.Fx is called the Fréchet derivative of. A at. x and is written as follows: 

.Fx = A'(x). (3.152) 

The expression .Fx (δx) is called the Fréchet differential of .A(x) at . x and is written 
as 

.Fx (δx) = δ A(x,δx). (3.153) 
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In the particular case when we have a linear operator .B, its derivative is equal to the 
operator . B itself: 

. B '(x) = B. 

Suppose now that .X is a Banach space and . f (x) is a functional in it. 

Definition 3.55 If there exists such linear functional .F f x that in some point . x ∈ X, 

. f (x+δx) − f (x) = F f x (δx) + o(||δx||), (3.154) 

where 

. 
o(||δx||)
||δx|| → 0, when ||δx|| →  0, 

the functional . f (x) is called differentiable at the point . x . 

The .F f x is called the Fréchet derivative of . f (x) at . x and is written as follows: 

.F f x = f '(x). (3.155) 

The expression .F f x (δx) is called the Fréchet differential of . f (x) at . x and is written 
as 

.F f x (δx) = d f  (x,δx). (3.156) 

Example 3.56 Let us consider the functional . f (x) defined on the Hilbert space . X : 

. f (x) = ||x||2 

Then 
. ||x+δx||2 − ||x||2 = 2(x,δx) + ||δx||2 , 

from which we have at once 

.F f x (δx) = d f  (x,δx) = 2(x,δx). (3.157) 

3.11.2 Variational Operator 

In the calculus of variations it is a common practice to use .δ A or .δx to denote a 
variation of . A or . x: 

.δ Ax = A(x + δx) − A(x) ≈ Fx (δx) = δ A(x, δx). (3.158) 
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The operator . δ is called the variational operator and .δ A(x, δx) is called the first 
variation of . A. 

Note that, in expression (3.151), we can take into account the second order term 
with respect to .||δx||: 

.A(x + δx) − A(x) = Fx (δx) + 
1 

2 
F (2) 
x (δx) + o(||δx||2 ). (3.159) 

Operator.F (2) 
x is the operator of the second variation of operator. A. It has the meaning 

of the second order derivative of the original operator . A. 
Similar to expression (3.159) for an operator, we can write for a functional 

. f (x + δx) − f (x) = F f x (δx) + 
1 

2 
H f x (δx) + o(||δx||2 ), (3.160) 

where .H f x is the so-called Hessian operator, or second variation (second derivative) 
of the functional . f . 

Example 3.57 Let us consider the functional .g(x) defined on the Hilbert space . X : 

.g(x) = ||Ax − y0||2 , (3.161) 

where . A is some operator from.X to Hilbert space . Y : .y = Ax. Then 

. g(x + δx) − g(x) = (A(x + δx) − y0, A(x + δx) − y0) 

. − (
Ax − y0, Ax − y0

)

. =
([

Ax + Fx (δx) + 
1 

2 
F (2) 
x (δx) + o(||δx||2 ) − y0

]
, 

. 

[
Ax + Fx (δx) + 

1 

2 
F (2) 
x (δx) + o(||δx||2 ) − y0

])

. − (
Ax − y0, Ax − y0

) = 2
(
Ax − y0, Fx (δx)

)

. + (Fx (δx) , Fx (δx)) +
(
Ax − y0, F (2) 

x (δx)
)+ o(||δx||2 ). 

From the last formula we obtain the expression for the Fréchet differential of the 
functional . g: 

.Fg 
x (δx) = δg(x, δx) = 2(Ax − y0, Fx (δx)), (3.162) 

and for its Hessian: 

.H g x (δx) = 2 (Fx (δx) , Fx (δx)) + 2
(
Ax − y0, F (2) 

x (δx)
)
. (3.163) 
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Note that, similar to the basic formulae of calculus for conventional functions, 
we can obtain simple rules and operations of the variational calculus. Actually, the 
variational operator acts like a differential operator. For example, let us consider the 
following operators: 

. A(x), B(x), 

and the operator of two variables, 
. G(x, z). 

We have 
.δ(A + B) = δ A + δB, (3.164) 

.δ(AB) = Bδ A + AδB, (3.165) 

.δG = G '
x (δx, z) + G '

z(x,δz). (3.166) 

Using these simple rules and the properties of the inner product in the Hilbert space, 
one can derive, for example, the expression for the Fréchet derivative of the functional 
.g(x) determined by formula (3.161) using the following calculations: 

. δg = δ
||||Ax − y0

||||2 

. = δ(Ax − y0, Ax − y0) = (δ Ax, Ax − y0) + (Ax − y0, δ Ax) 

. ≈ (Fx (δx), Ax − y0) + (Ax − y0, Fx (δx)) = 2(Ax − y0, Fx (δx))). 

Thus, the first variation of the functional .g(x) is equal to 

.δg(x, δx) = 2(Ax − y0, Fx (δx)) , (3.167) 

which is the same as Eq. (3.162). 

3.11.3 Extremum Functional Problems 

Theorem 3.58 A differentiable functional . f (x) has an extremum at some point . x0 
only if the first variation of the functional at this point is equal to zero for any variation 
.δx of . x0: 

.δ f (x0, δx) = 0. (3.168) 

Proof According to the definition, 

.δ f (x0, λδx) = f (x0 + λδx) − f (x0) − o(||δx||). (3.169) 
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However, the first variation .δ f (x0, δx) is a linear functional with respect to . δx; 
therefore 

.δ f (x0, λδx) = λδ f (x0, δx). (3.170) 

Substituting (3.170) into (3.169) we have  

. f (x0 + λδx) − f (x0) = λδ f (x0, δx) + o(||δx||). (3.171) 

We now prove the statement of the theorem by contradiction. Let us assume that, 

.δ f (x0, δx) /= 0. (3.172) 

The sign of the right-hand side of (3.171) is governed by the sign of . δ f (x0, δx) 
and . λ. In this case, according to (3.171), the difference . f (x0 + λδx) − f (x0) can 
be either positive or negative according to the choice of . λ which means that there 
is no extremum at point . x0. Since assuming (3.171) leads to a contradiction, it is 
concluded that the statement of the theorem is, in fact, true. 

Example 3.59 Let us find the minimum of the functional.g(x) determined in Exam-
ple 3.57: 

.g(x) = ||Ax − y0||2 . (3.173) 

According to (3.167) and (3.168), we have.δg(x,δx) = 2(Ax − y0, Fx (δx)) = 0, for 
any.δx ∈ X . Note that the Fréchet derivative.Fx is a linear bounded operator. There-
fore we can determine the linear and bounded adjoint operator .F⋆

x , which satisfies 
the condition 

.(Ax − y0, Fx (δx)) = (F⋆
x ( Ax − y0), δx) = 0. (3.174) 

Equation (3.174) holds for any .δx if and only if 

. F⋆
x (Ax − y0) = F⋆

x (Ax) − F⋆
x (y0) = 0. 

Thus we have the following equation for the extremum point . x0: 

.F⋆
x A(x0) = F⋆

x (y0). (3.175) 

Example 3.60 Suppose now that operator .A is a linear operator. Then its Fréchet 
derivative .Fx is equal to operator . A itself: 

.Fx = A. (3.176) 

Substituting (3.176) into (3.175), we have the following equation for the extremum 
point . x0: 

.A⋆A(x0) = A⋆(y0). (3.177) 
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It is important to notice that operator .A⋆A is a self-adjoint (symmetric) positive 
operator. By inverting the operator .A⋆A, we finally have 

.x0 = (A⋆A)−1 A⋆(y0). (3.178) 

Example 3.61 Let us consider the function.Φ(k) of the complex variable. k defined 
by the norm of difference between two vectors in the complex Hilbert space . H : 

.Φ(k) = ||x−ky||, x, y ∈H. (3.179) 

We would like to find the minimum of this function. It is clear that the minimum of 
.Φ(k) coincides with the minimum of its square, .Φ2 (k). The first variation of this 
function is equal 

. δΦ2 (k) = δ (x−ky, x−ky) = −  (δky, x−ky) − (x−ky, δky) 

. = −  (δky, x−ky) − (δky, x−ky)∗ 

. = −δk (y, x−ky) − [
δk (y, x−ky)

]∗ = −2Re
[
δk (y, x−ky)

]
, (3.180) 

where we take into account the property of the inner product in the complex Hilbert 
space, 

. (x, y) = (y, x)∗ , 

and asterisk * denotes the complex conjugate. 
The necessary condition for the minimum of function .Φ2 (k) is 

.δΦ2 (k) = −2Re
[
δk (y, x−ky)

] = 0 for any δk. (3.181) 

For example, we can select .δk as follows 

.δk = (y, x−ky)∗ . (3.182) 

Substituting (3.182) into (3.181), we obtain: 

. |(y, x−ky)|2 = 0, 

and 
. (y, x) − (y, ky) = (x, y)∗ − k∗ (y, y) = 0, 

where we use another property of the inner product in the complex Hilbert space, 

. (x, ky) = k∗(x, y). 
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Therefore we have the following equation for the minimum point . k0: 

.k0 = 
(x, y) 
(y, y) 

. (3.183) 

Substituting (3.183) into (3.179), we find the corresponding minimum of the function 
.Φ(k): 

. minΦ (k) = Φ (k0) =
√

(x−k0y, x−k0y) =
[
(x, x) − (k0y, x) − (x, k0y) + (k0y, k0y)

]1/2 

. = [
(x, x) − (x, k0y)∗ − (x, k0y) + k∗ 

0k0 (y, y)
]1/2 

. = [
(x, x) − 2Re

[
k∗ 
0 (x, y)

]+ k∗ 
0k0 (y, y)

]1/2 

. =
[
(x, x) − 2Re

[
(x, y)∗ 

(y, y) 
(x, y)

]
+ 

(x, y)∗ 

(y, y) 
(x, y)

]1/2 

. =
[
(x, x) − 2

|(x, y)|2 
(y, y) 

+ 
|(x, y)|2 
(y, y)

]1/2 
= ||x||

/
1 − 

|(x, y)|2
||x|| ||y|| . (3.184) 
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Part II 
Foundations of Inverse Theory



Chapter 4 
Principles of Regularization Theory 

Abstract The regularization theory provides the framework for solving the ill-posed 
inverse problems. In this chapter, we discuss the foundations of the regularization 
theory, starting with the rigorous mathematical formulation of the well-posed and 
ill-posed problems and introducing the regularizing operators, stabilizing function-
als, and Tikhonov parametric functional. The concepts of smoothing and focusing 
stabilizing functionals are discussed. The important topic of this chapter is the opti-
mal regularization parameter selection, which can be based on the Tikhonov misfit 
condition or L-curve method. 

Keywords Regularizing operator · Stabilizing functional · Tikhonov parametric 
functional 

The formal solution to the ill-posed inverse problem could result in unstable, unreal-
istic models. The regularization theory guides how one can overcome this difficulty. 
The foundations of the regularization theory were developed in numerous publica-
tions by Andrei N. Tikhonov, which were reprinted in 1999 as a special book, pub-
lished by Moscow State University (Tikhonov 1999). In this chapter, I will present a 
short overview of the basic principles of the Tikhonov regularization theory follow-
ing Zhdanov (1993). A detailed description of the regularization theory of inverse 
problem solutions can also be found in Tikhonov and Arsenin (1977) and Zhdanov 
(2002, 2015). 

4.1 Formulation of Well-Posed and Ill-Posed Problems 

4.1.1 Formulation of the Inverse Problem in General 
Mathematical Spaces 

In the first chapter, we have introduced an inverse problem as the solution of the 
following operator equation: 

.d = A (m) , (4.1) 
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where.m is some function (or vector) describing the model parameters, and. d is a data 
set, which can also be characterized as a function of the observation point (in the case 
of continuous observations), or as a vector (in the case of discrete observations). The 
solution of the inverse problem consists in determining such a model.mpr (predicted 
model) that generates predicted data.dpr that fit well with the experimental data. d.We  
have already discussed that we do not want to fit the observed data exactly because 
they always contain some noise that we should not fit. Therefore, we are looking for 
some predicted data that will be close enough to the observed data (usually, within 
the accuracy of our observations). But what does “close enough” mean? How can 
we measure the closeness of two data sets? 

The answer to this question was provided in Chap. 3, where we introduced the 
mathematical technique to measure the distance between the observed and predicted 
data. This technique was based on the mathematical theory of vector spaces which 
provides us with guidance to solve this problem. We have also demonstrated in 
Chap. 3 that the most powerful example of a mathematical space used in inverse 
theory is the Hilbert space. Using the basic ideas of the mathematical theory of 
Hilbert spaces and operators acting in these spaces, we can now present a rigorous 
formulation of mathematical inverse problems. 

Let us assume that we are given two Hilbert spaces, .M and. D, and an operator . A
that acts from space .M to space . D: 

.A (m) = d, m ∈ M, d ∈ D. (4.2) 

We will call .D a space of data sets and .M a space of the model parameters. 
Operator .A is a forward modeling operator that transforms any model .m into the 
corresponding data. d. The inverse problem is formulated as the solution of the oper-
ator Eq. (4.1). We have already learned in Chap. 1 that there are two important classes 
of inverse problems: well-posed and ill-posed problems. We can now provide a rig-
orous mathematical description of these two classes of inverse problems. 

4.1.2 Well-Posed Problems 

Following classical principles of regularization theory (Tikhonov and Arsenin 1977; 
Lavrent’ev et al. 1986) we can give the following definition of the well-posed prob-
lem. 

Definition 4.1 The problem (4.1) is correctly (or well) posed if the following con-
ditions are satisfied: (i) the solution .m of Eq. (4.1) exists, (ii) the solution .m of 
Eq. (4.1) is unique, and (iii) the solution .m depends continuously on the left-hand 
side of Eq. (4.1) . d. 

In other words, the inverse operator .A−1 is defined throughout space .D and is 
continuous. The last condition means that minor data variations will result in small
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changes in the model parameters—this requirement is equivalent to the provision of 
inverse problem stability. 

Thus, the well-posed inverse problem possesses all the properties of the “good” 
solution discussed in Chap. 1: the solution exists, is unique, and is stable. 

If at least one of these conditions fails, the inverse problem becomes ill-posed. 
The following definition reflects this situation. 

Definition 4.2 The problem (4.1) is ill-posed if at least one of the conditions, (i), 
(ii), or (iii), listed above, fails. 

In Chap. 1, we have discussed that most inverse problems are ill-posed because 
at least one of the conditions listed above fails. However, it may happen that if we 
narrow the class of models used in inversion, the originally ill-posed inverse problem 
may become well-posed. Mathematically it means that instead of considering.m from 
the entire model space. M , we can select .m from some subspace of . M , consisting of 
simpler and more suitable models for the given inverse problem. Thus, we arrive at 
the idea of the correctness set and conditionally well-posed inverse problems. 

4.1.3 Conditionally Well-Posed Problems 

Suppose we know a priori that the exact solution belongs to a set, . C , of the  solu-
tions with the property that the inverse operator .A−1, defined on the image 1 .AC , is  
continuous. 

Definition 4.3 The problem (4.1) is conditionally well-posed (Tikhonov’s well-
posed) if the following conditions are met: (i) we know a priori that a solution of 
(4.1) exists and belongs to a specified set .C ⊂ M , (ii) the operator. A is a one-to-one 
mapping of . C onto .AC ⊂ D, and (iii) the operator .A−1 is continuous on .AC ⊂ D. 

We call set . C the correctness set. In contrast to the standard well-posed problem, 
a conditionally well-posed problem does not require solvability over the entire space. 
Also the requirement of the continuity of .A−1 over the entire space .D is substituted 
by the requirement of continuity over the image of .C in . D. Thus, introducing a 
correctness set makes even an ill-posed problem well-posed. 

Tikhonov and Arsenin (1977) introduced the mathematical principles for select-
ing the correctness set . C . For example, if a finite number of bounded parameters 
describes the models, they form correctness set .C in the Euclidean space of the 
model parameters. This result can be generalized for any metric space. 

First, we introduce the following definition. 

Definition 4.4 The subset.K of a metric space.M is called compact if any sequence 
.ml ∈ K of elements in .K contains a convergent subsequence .ml j ∈ K , which con-
verges to an element .m in . K .

1 The domain.AC ⊂ D formed by all vectors obtained as a result of operator. A applied to all vectors 
.m from the set. C , .m ∈ C , is called an image of the set . C in space. D. 
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For example, it is known that any subset .R of Euclidean space .En is compact if 
and only if it is bounded: 

. ||x|| ≤ c, c > 0, for any x ∈ R.

It can be demonstrated that any compact subset of the metric space M can be used 
as a correctness set for an ill-posed inverse problem (4.2) (Tikhonov and Arsenin 
1977; Zhdanov 2002). This fundamental result opens the way to constructing a stable 
solution to the ill-posed inverse problem. 

4.1.4 Quasi-solution of the Ill-Posed Problem 

The concept of a quasi-solution represents another critical element of the regular-
ization theory. We assume now that the problem (4.1) is conditionally well-posed 
(Tikhonov’s well-posed). Let us assume, also, that the left-hand side of (4.1) is given  
with some error: 

.dδ = d+δd, (4.3) 

where 
.μD(dδ,d) ≤ δ. (4.4) 

We now introduce the following definition of a quasi-solution of the ill-posed 
inverse problem. 

Definition 4.5 A quasi-solution of inverse problem (4.1) in the correctness set . C is 
an element .mδ ∈ C which minimizes the distance .μD(Am,dδ), i.e.: 

.μD(Amδ,dδ) = inf
m∈C

μD(Am,dδ), (4.5) 

where .inf ϕ denotes the greatest lower bound of the variable . ϕ. 

Obviously, we can reach the minimum of the.μD(Am,dδ) in. C , if the correctness 
set is a compact. In this case the quasi-solution exists for any data . dδ . 

Figure 4.1 illustrates the definition of a quasi-solution. The element .m ∈ M is an 
exact solution of the inverse problem 

.d = A (m) . (4.6) 

Subset .AC of the data space .D is an image of the correctness set .C obtained as a 
result of the application of operator . A. A quasi-solution, .mδ , is selected from the 
correctness set .C under the condition that its image, .A (mδ), is the closest element 
in the subset .AC to the observed noisy data, . dδ .
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Fig. 4.1 A quasi-solution, .mδ , is selected from the correctness set .C under the condition that 
its image, .A (mδ), is the closest element to the observed noisy data, . dδ , from the subset . AC :
μD(Amδ,dδ) = infm∈C μD(Am,dδ)

It can be proved also that the quasi-solution is a continuous function of. dδ . Indeed, 
let us consider the triangle inequality 

.μD(Amδ,d) ≤ μD(Amδ,dδ) + μD(dδ,d). (4.7) 

According to the definition of the quasi-solution and condition (4.4), it follows from 
inequality (4.7) that 

.μD(Amδ,d) ≤ 2δ. (4.8) 

Based on Tikhonov’s definition of the correctness set, we know that operator .A−1 is 
a continuous one on the image.AC of the correctness set . C . Therefore, we conclude 
from (4.8) that the quasi-solution is a continuous function of . dδ . Note that this 
property holds only in the correctness set . C . If one selects a solution, .m̃δ , from  
outside the correctness set, it may be no longer a continuous function of the data (see 
Fig. 4.1). 

The idea of the quasi-solution makes it possible to substitute the inverse problem 
solution by minimization of the distance .μD(Am,dδ) in some appropriate class of 
suitable models. We can solve this problem using standard functional minimization 
methods and, therefore, find the quasi-solution. In this way, we significantly sim-
plify the inverse problem solution. However, this approach is practical only if we 
know a priori the corresponding class of the models (the correctness set) where we 
are searching for the solution. It is difficult to describe this class entirely in many 
situations. Also, we usually prefer not to restrict ourselves to some specific class. In 
this case, we have to use a more general approach to a stable solution of the inverse 
problem.
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4.2 Regularizing Operators 

Let us consider the inverse geophysical problem described by the operator equation 

.d = A(m), (4.9) 

where .m represents model parameters, and . d is observed data. In general cases, the 
inverse operator .A−1 is not continuous and, therefore, the inverse problem (4.9) is  
ill-posed. 

The main idea of any regularization algorithm is to consider, instead of one ill-
posed inverse problem (4.9), a family of well-posed problems, 

.d = Aα(m), (4.10) 

which approximate the original inverse problem in some sense (Strakhov 1968, 
1969a, b; Zhdanov 2002, 2015). The scalar parameter .α > 0 is called a regular-
ization parameter. 

Because all problems (4.10) are well-posed, their solutions exist and are unique. 
Therefore, we can introduce the inverse operators, .A−1

α , which transform the data 
into the solutions of these well-posed problems. We require that these solutions, 

.mα = A−1
α (d) , (4.11) 

asymptotically go to the true solution of the original problem,.mt , when regulariza-
tion parameter . α goes to zero: 

.mα = A−1
α (d) → mt , if α → 0. (4.12) 

Note that inverse operator of the well-posed problem,.A−1
α , is by definition a contin-

uous and bounded operator. 
Thus, we replace the solution of one ill-posed inverse problem with the solutions of 

the family of well-posed problems, assuming that these solutions,.mα, asymptotically 
go to the true solution, as . α tends to zero. 

In other words, any regularization algorithm is based on the approximation of the 
noncontinuous inverse operator .A−1 by the family of continuous inverse operators 
.A−1

α (d) that depend on the regularization parameter . α. The regularization must be 
such that, as. α vanishes, the operators in the family should approach the exact inverse 
operator .A−1. 

Let us now give a more accurate definition. 
Inverse operators .A−1

α (d) are called the regularizing operators for Eq. (4.9). The 
regularizing operators are usually denoted as .R(d,α): 

.R(d,α) = A−1
α (d) . (4.13)



4.3 Stabilizing Functionals 85

The main property of the regularizing operators is that they deliver a stable but 
an approximate solution of the ill-posed problem: 

. mα = R(d,α) → mt ,

when .α → 0. 
We can see that the regularizing operators can be constructed by approximating the 

ill-posed Eq. (4.9) by the system of well-posed Eq. (4.10), where the corresponding 
inverse operators .A−1

α are continuous. 
There are many different ways how one can construct a family of regularizing 

operators. This chapter will discuss the most widely used approach, which was orig-
inally introduced by Tikhonov and Arsenin (1977). It is based on the concepts of 
stabilizing and parametric functionals. 

4.3 Stabilizing Functionals 

We have discussed in the previous sections of the book that the main factors causing 
the inverse problem to be ill-posed are related to the nonuniqueness and instability 
of the solutions. As a result, a formal inversion of the ill-posed problem may produce 
unrealistic models. The natural way to avoid this situation is to reduce the class of 
mathematically plausible solutions by imposing constraints. These constraints can 
be based on some a priori knowledge about the properties of the possible solution. 
For example, one could assume that the physical properties vary slowly within the 
target, thus restricting the class of possible solutions to the smooth continuous func-
tions. In other scenarios, we may anticipate the target has sharp physical boundaries. 
In this case, the class of possible solutions should be restricted to models with sharp 
boundaries. Our goal is to develop the mathematical theory of the regularized inver-
sion, allowing us to impose these different constraints on the solutions. We achieve 
this goal by introducing a concept of stabilizing functional. 

Using the mathematical language, we can say that a stabilizing functional (or a 
stabilizer) is used to select from space.M of all possible models the subset.Mc, which 
is a correctness set. 

Definition 4.6 A nonnegative functional .s(m) in some metric space .M is called a 
stabilizing functional if, for any real number .c > 0 from the domain of functional 
values, the subset .Mc of the elements .m ∈ M , for  which .s(m) ≤ c, is compact. 

We will give now several examples of stabilizing functionals.
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4.3.1 Minimum Norm and Maximum Smoothness Stabilizing 
Functionals 

We begin our discussion with the most widely used stabilizing functionals based on 
the .L2 norm of the function. 

Example 4.7 Let us consider a real Hilbert space.L2 formed by functions integrable 
in the interval .[a, b]. The metric in space.L2 is determined according to the formula 

.μ(m1,m2) =
[ b

a
[m1 (x) − m2 (x)]2 dx

]
1
2

. (4.14) 

It can be proved that any ball, 

. b (m0,c) = {m : μ(m,m0) ≤ c, c > 0 } ,

is compact in the Hilbert space. Therefore, we can introduce a stabilizing functional 
as follows: 

.s(m) = μ(m,m0), (4.15) 

where.m0 is any given model from.M =.L2. Obviously, the subset.Mc of the elements 
.m ∈ M for which .s(m) ≤ c, 

.s(m) = μ(m, m0) ≤ c, (4.16) 

is compact. 

Example 4.8 Let us consider a Sobolev space (which is at the same time a Hilbert 
space) .W p

2 formed by the functions continuously differentiable to the order . n in the 
interval .[a, b]. The metric in the space .W p

2 is determined according to the formula 

. μW p
2
(m1,m2) =

[

 b

a

p
∑

k=0

q2
k (x)

[

dk∆m(x)

dxk

]2

dx

 1
2

,

where.∆m(x) = m1(x) − m2(x); and.q0(x), q1(x), ...., qp(x) are the given real func-
tions (.qp(x) /= 0). We can introduce a stabilizing functional in the space .W p

2 as 
follows: 

. s(m) = μW p
2
(m,m0),

where .m0 is any given model from.M = W p
2 , and the sphere 

. s(m) = μW p
2
(m,m0) ≤ c

is compact.
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We have established above that the main role of the stabilizing functional (a 
stabilizer) is to select the appropriate class of models for inverse problem solution. 
The examples listed above show that there are several common choices for a stabilizer. 
One is based on the least-squares criterion, or, in other words, on the .L2 norm for 
functions describing model parameters: 

.sM N (m) = ||m||2L2
= (m,m)L2

=
 

V
|m (r)|2 dv = min . (4.17) 

In the last formula we assume that the function.m (r), describing model parameters, is 
given within a three-dimensional domain. V , and. r is a radius-vector of an observation 
point. The conventional argument in support of the norm (4.17) comes from statistics 
and is based on an assumption that the least-squares image is the best over the 
entire ensemble of all possible images. We call.sM N (m) a minimum norm stabilizing 
functional. 

We can use, also, a quadratic functional .sM Nw: 

.sM Nw (m) = ||Wm||2L2
= (Wm,Wm)L2

=
 

V
|w (r) m (r)|2 dv = min, (4.18) 

where .w (r) is an arbitrary weighting function, and .W is a linear operator of multi-
plication of function .m (r) by the weighting function .w (r). 

Another stabilizer uses a minimum norm of difference between a selected model 
and some a priori model .mapr : 

.sM Napr(m) = ||

||m − mapr

||

||

2
L2

= min . (4.19) 

The next several examples of stabilizing functionals arise from the norm in 
Sobolev space introduced above. The minimum norm criterion (4.17), as applied 
to the gradient of the model parameters .∇m, brings us to a maximum smoothness 
stabilizing functional 

. smax sm (m) = ||∇m||2L2
= (∇m,∇m)L2

. =
 

V
|∇m (r)|2 dv = min . (4.20) 

In some cases, one can use the minimum norm of the Laplacian of model parameters 
.∇2m, 

.smax sm (m) = ||

||∇2m
||

||

2 = (∇2m,∇2m
) = min . (4.21) 

It has been successfully used in many inversion schemes developed for geophysical 
data interpretation (see, for example, Constable et al. 1987; Smith and Booker 1991; 
Zhdanov and Fang 1996). This stabilizer produces smooth models, which in many
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practical situations fail to describe properly the real blocky geological structures. It 
also can result in spurious oscillations when .m is discontinuous. 

4.3.2 .L p-Norm Stabilizing Functionals 

It can be demonstrated also that the stabilizing functionals can be constructed based 
on .L p norm as follows: 

.sL p (m) = ||m||p
L p

=
 

V
|m (r)|p dv, 0 ≤ p < ∞. (4.22) 

Using Minkowski inequality, one can prove that the subset.Mc of the elements. m ∈ M
for which .sL p(m) ≤ c, 

. sL p (m) = μ(m, m0) ≤ c,

is compact. 
Note that, stabilizing functionals can be also introduced as the .L p norm of the 

gradient of the model parameters: 

.sL p (∇m) = ||∇m||p
L p

=
 

V
|∇m (r)|p dv. (4.23) 

For example, Rudin et al. (1992) introduced a total variation (TV) method for 
reconstruction of noisy, blurred images using a total variation stabilizing functional, 
which is essentially the .L1 norm of the gradient: 

.sT V (m) = ||∇m||L1
=
 

V
|∇m (r)| dv. (4.24) 

We call .sT V (m) a total variation stabilizing functional. The TV functional requires 
that the distribution of model parameters in some domain.V be of bounded variation 
(for definition and background see Giusti 1984). However, this functional is not 
differentiable at zero. To avoid this difficulty, Acar and Vogel (1994) introduced a 
modified TV stabilizing functional: 

.sβT V (m) =
 

V

/

|∇m (r)|2 + e2dv, (4.25) 

where . e is a small number. 
The advantage of this functional is that it does not require the function .m to be 

continuous, only piecewise smooth (Vogel and Oman 1998). Since the TV norm 
does not penalize discontinuity in the model parameters, we can remove oscillations 
while preserving sharp physical property contrasts. At the same time, it imposes a
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limit on the total variation of .m and on the combined arc length of the curves along 
which.m is discontinuous. That is why this functional produces a much better result 
than maximum smoothness functionals when the blocky structures are imaged. 

TV functionals .sT V (m) and .sβT V (m), however, tend to decrease the bounds of 
variation of the model parameters, as can be seen from (4.24) and (4.25), and in this 
sense they still try to “smooth” the real image. However, this “smoothness” is much 
weaker than in the case of traditional stabilizers (4.20) and (4.19). 

4.3.3 Focusing Stabilizing Functionals 

In many practical applications the solution of inverse problem is described by the 
blocky functions, having sharp boundaries separating the domains with different 
smooth distributions of the model parameters. In order to recover these sharp bound-
aries, Portniaguine and Zhdanov (1999), and Zhdanov (2002) introduced a family 
of focusing stabilizing functionals which minimize the area where significant vari-
ations of model parameters and/or discontinuity occur. These stabilizers are called 
minimum support (MS) or minimum gradient support (MGS) functionals. 

For the sake of simplicity we will discuss first a minimum support (MS) functional, 
which provides a model with a minimum area of the distribution of anomalous 
parameters. The minimum support functional was considered first by Last and Kubik 
(1983), where the authors suggested seeking a source distribution with the minimum 
volume (compactness) to explain the anomaly. 

We introduce a support of. m (denoted spt .m) as the combined closed subdomains 
of. V where.m /= 0. We call spt. m a model parameter support. Consider the following 
functional of the model parameters: 

. se (m) =
 

V

m2 (r)
m2 (r) + e2

dv =
 

spt m

[

1 − e2

m2 (r) + e2

]

dv

. = spt m − e2
 

spt m

1

m2 (r) + e2
dv, (4.26) 

where .e > 0 is a small number called a focusing parameter. 
From the last expression we can see that 

.se (m) → spt m, if e → 0. (4.27) 

Thus, .se (m) can be treated as a functional, proportional (for a small .e) to the model 
parameter support. We can use this functional to introduce a minimum support sta-
bilizing functional .sM S (m) as follows:
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.sM S (m) = se
(

m − mapr
) =

 

V

(

m − mapr
)2

(

m − mapr
)2 + e2

dv. (4.28) 

To justify this choice we should prove that .sM S (m) can actually be considered as 
a stabilizer according to regularization theory. According to the definition given 
above, a nonnegative functional.s (m) in some Hilbert space.M is called a stabilizing 
functional if, for any real .c > 0 from the domain of the functional .s (m) values, the 
subset .Mc of elements .m ∈ M , for  which .s (m) ≤ c, is compact. 

Let us consider the subset .Mc of the elements from. M , satisfying the condition 

.sM S (m) ≤ c, (4.29) 

where.sM S (m) is a minimum support stabilizing functional determined by Eq. (4.28). 
It can be proved that .sM S is a monotonically increasing function of .

||

||m − mapr

||

||

2
: 

.sM S (m1) < sM S (m2) , if
||

||m1−mapr

||

||

L2
<
||

||m2−mapr

||

||

L2
. (4.30) 

To prove this, let us consider the first variation of the minimum support functional: 

. δsM S (m) = δ

 

V

(

m − mapr
)2

(

m − mapr
)2 + e2

dv

. =
 

V

e2
[

(

m − mapr
)2 + e2

]2 δ
(

m − mapr
)2

dv =
 

V
a2δ

(

m − mapr
)2

dv,

where 

. a2 = e2
[

(

m − mapr
)2 + e2

]2 .

Using a mean value theorem, we obtain 

. δsM S (m) = a2
 

V
δ
(

m − mapr
)2

dv

. = a2δ

 

V

(

m − mapr
)2

dv = a2δ
||

||m − mapr

||

||

2
L2

. = 2a2
||

||m − mapr

||

||

L2
δ
||

||m − mapr

||

||

L2
, (4.31) 

where.a2 is an average value of.a2 in the volume. V . Taking into account that . a2 > 0
and .

||

||m − mapr

||

||

L2
> 0, we obtain (4.30) from (4.31).
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Thus, from condition (4.29) and (4.30), we see that 

.

||

||m − mapr

||

||

L2
≤ q, m ∈ Mc, (4.32) 

where .q > 0 is some constant, i.e., .Mc forms a ball in the space .M with a center at 
the point.mapr . It is well known that the ball is compact in a Hilbert space. Therefore, 
the functional .sM S (m) is a stabilizing functional. 

This functional has an important property: it minimizes the total volume with 
nonzero departure of the model parameters from the given a priori model. Thus, a 
dispersed and smooth distribution of the parameters with all values different from the 
a priori model.mapr results in a big penalty function, while a well-focused distribution 
with a small departure from.mapr will have a small penalty function. 

The concept of minimum support functional could be extended by introducing 
.L p-norm minimum support functionals (MS.L p) as follows: 

.sM SL p (m) = seL p (m) =
 

V

|m|p

|m|p + ep
dv, 0 ≤ p < ∞. (4.33) 

Repeating the derivation above for the MS functional, we can show that MS. L p

functional is also proportional (for a small .e) to the model parameter support: 

. sM SL p (m) =
 

V

|m|p

|m|p + ep
dv =

 

spt m

[

1 − ep

|m|p + ep

]

dv

. = spt m − ep
 

spt m

1

m p (r) + ep
dv → spt m, if e → 0. (4.34) 

By changing factor. p one can control the degree of focusing the blocky structures. 
Another approach to increase the resolution of blocky structures is based on using 

a minimum gradient support functional, which is defined as follows: 

.sMGS (m) = se [∇m] =
 

V

∇m · ∇m

∇m · ∇m + e2
dv. (4.35) 

We denote by spt. ∇m the combined closed subdomains of.V where.∇m /= 0. We  
call spt.∇m a gradient support. Then, expression (4.35) can be modified: 

.sMGS (m) = spt∇m − e2
 

spt∇m

1

∇m · ∇m + e2
dv. (4.36) 

From the last expression we can see that 

.sMGS (m) → spt∇m, if e → 0. (4.37)
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Fig. 4.2 Illustration of the action of the minimum gradient support stabilizing functional. The top 
section of the figure shows a rectangular body with the physical property value .m1 (e.g., density 
or conductivity) positioned within the host medium with physical property value .m0. This body 
is intersected by the horizontal axis . x . The bottom section presents the plots of the same physical 
property along axis. x . The bold red line shows the plot of the true physical property change along the 
axis x. The thin black lines present the same plots of the physical property recovered by inversions 
produced with the smooth of focused stabilizers. A smooth stabilizer produces a smooth solution 
to the inverse problem, while the minimum gradient support stabilizer generates a sharp solution 
close to the true plot of the physical property changes along the axis. x

Thus, the functional .sMGS (m) can really be treated as a functional proportional 
(for a small .e) to the gradient support. This functional helps to generate a sharp 
and focused image of the inverse model. Figure 4.2 illustrates this property of the 
minimum gradient support functional. 

The top section of Fig. 4.2 shows a rectangular body with the physical property 
value .m1 (e.g., density or conductivity) positioned within the host medium with 
physical property value .m0. This body is intersected by the horizontal axis . x . The  
bottom section of Fig. 4.2 presents the plots of the same physical property along axis 
. x . The plot of the true model looks like a boxcar function with values equal to . m0

outside the rectangular body and equal to .m1 inside the rectangular body. The bold 
red line shows this plot of the true physical property change along the axis . x . The  
thin black lines present the same plots of the physical property recovered by inver-
sions produced with the smooth of focused stabilizers. The smooth solution shows 
a smooth increase of the physical property values inside the rectangular body, but 
it significantly underestimates the actual value of .m1. On the other hand, the sharp
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solution produced by the inversion with the minimum gradient support stabilizing 
functional represents the physical properties correctly with the practically true value 
of .m1 inside the body. This is achieved because the minimum gradient support sta-
bilizer tends to minimize the areas with rapid changes of physical values from . m0

outside the body to .m1 inside the body. We call these areas the “gradient support,” 
and the focusing stabilizer delivers the model with the minimum gradient support, 
as shown in Fig. 4.2. 

Repeating the considerations described above for .sM S (m), one can demonstrate 
that the minimum gradient support functional satisfies the Tikhonov criterion for a 
stabilizer. 

Note that, in principle, we can construct the stabilizers using different mono-
tonic functions of the model parameters or their gradients, for example, exponential 
functions: 

.sexpm (m) =
 

V
exp

(|m|2) dv, (4.38) 

or 

.sexp∇m (m) =
 

V
exp (∇m · ∇m) dv. (4.39) 

We just have to check every time that the corresponding functional satisfies all nec-
essary conditions for a stabilizer. 

4.3.4 Representation of a Stabilizing Functional in the Form 
of a Pseudo-quadratic Functional 

Note that all stabilizing functionals introduced above can be expressed as pseudo-
quadratic functionals of the model parameters: 

. s(m) = (

We
(

m − mapr
)

, We
(

m − mapr
))

L2

. =
 

V

|

|we (r)
(

m (r) − mapr (r)
)|

|

2
dv, (4.40) 

where.We is a linear operator of multiplication of the model parameter function. m (r)
by function.we (r), which may depend on. m. If operator.We is independent of.m (r), 
we obtain a quadratic functional, like the minimum norm (4.19) or the maximum 
smoothness (4.20) stabilizing functionals. In general cases, the function .we may 
even be a nonlinear function of . m, like the minimum support (4.28) or minimum 
gradient support (4.35) functionals. In these cases, the functional .s(m), determined 
by formula (4.40), is not quadratic. That is why we call it a “pseudo-quadratic” 
functional. However, presenting a stabilizing functional in a pseudo-quadratic form
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simplifies the solution of the regularization problem, and makes it possible to develop 
a unified approach to regularization with different stabilizers (Zhdanov 2002, 2015). 

For example, the maximum smoothness stabilizer is expressed by formula (4.40) 
if .mapr = 0 and 

.we (r) = wmax sm
e (r) = ∇m (r)

[

m2 (r) + β2
]1/2 , (4.41) 

where, ultimately, we shall let .β → 0. 
In the case of the TV stabilizing functional, .sβT V (m), we assume .mapr = 0, and 

the function .we (r) in (4.40) is  

.we (r) = w
βT V
e (r) =

(|∇m (r)|2 + e2
)1/4

(

m2 (r) + β2
)1/2 . (4.42) 

In the case of the minimum support functional, .sM S (m), we have  

.we (r) = wM S
e (r) = 1

[

(

m (r) − mapr (r)
)2 + e2

]1/2 . (4.43) 

In the case of .L p-norm minimum support functional, .sM SL p (m), we can write 

. we (r) = w
M SL p
e (r)

. =
(

m(i)−m(i)
apr

)p/2

[(

m (r) − mapr (r)
)p + ep

]1/2
[

(

m(i)−m(i)
apr

)2 + β2

]1/2 . (4.44) 

For the minimum gradient support functional .sMGS (m), we assume .mapr = 0, 
and find that 

.we (r) = wMGS
e (r) = ∇m (r)

[∇m (r) · ∇m (r) + e2
]1/2 [

m2 (r) + β2
]1/2 . (4.45) 

And finally, for exponential stabilizers (4.38) and (4.39), we have 

.we (r) = w
expm
e (r) = exp

(

1
2 |m (r)|2)

[

m2 (r) + β2
]1/2 , (4.46) 

or 

.we (r) = w
exp∇m
e (r) = exp

[

1
2∇m (r) · ∇m (r)

]

[

m2 (r) + β2
]1/2 . (4.47)
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Similar expressions for .we (r) can be easily derived for other types of stabilizing 
functionals. 

Thus, we can see that minimization of the stabilizing functionals can impose 
different conditions on the class of model parameters. For example, one case (e.g., 
maximum smoothness stabilizer) requires a smooth distribution of the model param-
eters. Another case (e.g., a minimum gradient support stabilizer) imposes sharpening 
conditions on the model parameter distribution. As a result, we can select different 
classes of inverse problem solutions by choosing one or another type of stabilizer. 
In other words, stabilizing functionals help to use a priori information about the 
desired properties of inverse problem solutions. This is the central role of stabilizing 
functionals in regularization theory. 

4.3.5 Regularizing Operators Revisited 

Let us analyze now more carefully how one can use a stabilizer to select an appropriate 
class of the models. Assume that the data .dδ are observed with some noise . dδ =
dt+δd, where .dt is the true solution of the problem. In other words, we assume that 
the misfit (distance) between the observed data and true data is less than the given 
level of the errors, . δ, in the observed data, 

.μD(dδ,dt ) ≤ δ, (4.48) 

where .δ = ||δd||. 
In this situation, it is natural to search for an approximate solution in the set . Qδ

of the models . m, such that 
.μD(A(m),dδ) ≤ δ. (4.49) 

Thus, .Qδ ⊂ M is a set of possible solutions. 
The main application of a stabilizer is to select from the set of possible solutions 

.Qδ the solutions that continuously depend on the data and which possesses a specific 
property depending on the choice of a stabilizer. Such solutions can be selected by 
the condition of the minimum of the stabilizing functional: 

.s(m; m ∈ Qδ) = min . (4.50) 

We have introduced a stabilizing functional under the condition that it selects a 
compact subset.MC from a metric space of the model parameters. Therefore, we can 
say that a stabilizer selects a solution from a set of possible solutions, .Qδ , which at 
the same time belongs to the correctness set.MC . Figure 4.3 helps to explain this role 
of the stabilizing functional.
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Fig. 4.3 The stabilizing functional selects from a set of the possible solutions,.Qδ , a solution,.mδ , 
which at the same time belongs to the correctness set. MC

The existence of the model, minimizing (4.50), was demonstrated by Tikhonov 
and Arsenin (1977). We will denote this model as .mδ: 

.s(mδ; mδ ∈ Qδ) = min . (4.51) 

One can consider a model .mδ as the result of an application of the operator 
.R(dδ, δ) to the observed data . dδ , depending on the parameter . δ: 

.mδ = R(dδ, δ). (4.52) 

The following theorem presents an important result of regularization theory: 

Theorem 4.9 The operator .R(dδ, δ), introduced by formula (4.52), is the regulariz-
ing operator for the equation (4.9), and. mδ can be used as an approximate solution of 
the inverse problem (note that in this case .α = δ, while in general cases .α = α(δ)). 

The proof of this theorem can be found in Zhdanov (2015). 
Thus, in the framework of the approach we have developed, the problem of the 

solution of Eq. (4.9) with approximate left-hand part.dδ can be reduced to the problem 
of minimization of the stabilizing functional on the set .Qδ: 

.s(m; m ∈ Qδ) = min,
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where 
.Qδ = {m;μD(A(m),dδ) ≤ δ}. (4.53) 

4.4 Tikhonov Parametric Functional 

It has been proved by Tikhonov and Arsenin (1977) that, for a wide class of stabilizing 
functionals, their minimum is reached on the model.mδ such that.μD(A(mδ),dδ) = δ. 
Therefore, we can solve the problem of minimization (4.50) under the condition that 

.μD(A(mδ),dδ) = δ. (4.54) 

In other words, one should consider the problem of minimization of the stabilizing 
functional (4.50), when the model .m is subject to the constraint (4.54). A common 
way to solve this problem is to introduce an unconstrained parametric functional 
.Pα(m,dδ), m ∈ M , given by the following expression: 

.Pα(m,dδ) = μ2
D(A(m),dδ) + αs(m), (4.55) 

and to solve the problem of minimization of this functional: 

.Pα(m,dδ) = min. (4.56) 

Functional.μ2
D(A(m), dδ) is often called a misfit functional, and is denoted as follows: 

.μ2
D(A(m),dδ) = ϕ(m). (4.57) 

Thus, the parametric functional .Pα(m,dδ) is a linear combination of the misfit and 
stabilizing functionals, and the unknown real parameter. α is similar to the Lagrangian 
multiplier. The regularization parameter . α can be determined under the following 
condition: 

.μD(A(mα),dδ) = δ, (4.58) 

where.mα is the element on which.Pα(m,dδ) reaches its minimum. This equality is 
called a misfit condition. 

The functional .Pα(m,dδ) is called the Tikhonov parametric functional. The fun-
damental theorem of regularization theory states that the solution of minimization 
problem (4.58) always exists and is unique for a wide class of forward modeling 
operators. Therefore, we can introduce an operator transforming the observed data 
into the model minimizing the parametric functional, .mα: 

.mα = R(dδ,α). (4.59)
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The fundamental result of the regularization theory is that this operator,.R(dδ,α), 
is a regularizing operator for the problem (4.9) (Tikhonov and Arsenin 1977). 

Therefore, as an approximate solution to the inverse problem (4.9), we take 
the solution of another problem (4.56) (minimization of the Tikhonov parametric 
functional .Pα(m,dδ)), close to the initial problem for the small values of the data 
errors . δ. 

4.5 Definition of the Regularization Parameter 

4.5.1 Optimal Regularization Parameter Selection 

The regularization parameter . α describes the trade-off between the best fitting and 
most reasonable stabilization. In a case where .α is selected to be too small, the 
minimization of the parametric functional .Pα(m) is equivalent to the minimization 
of the misfit functional; therefore, we have no regularization, which can result in an 
unstable incorrect solution. When. α is too large, the minimization of the parametric 
functional .Pα(m) is equivalent to the minimization of the stabilizing functional 
.s(m), which will force the solution to be closer to the a priori model. Ultimately, 
we would expect the final model to be exactly like the a priori model, while the 
observed data are totally ignored in the inversion. Thus, the critical question of the 
regularization theory is the selection of the optimal regularization parameter . α. The  
basic principles used for determining the regularization parameter . α are discussed 
in Tikhonov and Arsenin (1977). The solution of this problem can be based on the 
following consideration. 

Let us assume that data.dδ are observed with some noise,.dδ = dt + δd, where. dt

is the true solution of the problem and the level of the errors in the observed data is 
equal to . δ: 

.μD(dδ,dt ) ≤ δ. (4.60) 

Then the regularization parameter can be determined by the misfit condition (4.58). 
To justify this approach we will examine more carefully the properties of all 

three functionals involved in the regularization method: the Tikhonov parametric 
functional, the stabilizing and misfit functionals. 

Let us introduce the following notations: 

. p(α) = Pα(mα,dδ), parametric functional,

.s(α) = s(mα), stabilizing functional, (4.61) 

. i(α) = μ2
D(A(mα),dδ), misfit functional.

We examine some properties of the functions .p(α), i(α), s(α).
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Property 4.1 Functions .p(α), i(α), s(α) are monotonic functions: .p(α) and . i(α)

are not decreasing and .s(α) is not increasing. 

Proof Let .α1 < α2 and 

. pk = p(αk) = Pαk (mαk ,dδ),

. ik = i(αk) = μ2
D(A(mαk ),dδ),

. sk = s(αk) = s(mαk ).

The following inequality holds: 

.p2 = i2 + α2s2 ≥ i2 + α1s2, (4.62) 

because .α1 < α2. 
On the other hand 

.Pα1(mα2 ,dδ) = i2 + α1s2 ≥ i1 + α1s1 = p1 = Pα1(mα1 ,dδ), (4.63) 

because .mα1 realizes the minimum.p1 of the functional .Pα1(m,dδ). 
Thus from (4.62) and (4.63) we have  

.p2 ≥ p1 (4.64) 

for 
. α2 > α1,

which means that .p(α) is a monotonic function of . α. 
Furthermore, 

.Pα2(mα1 ,dδ) = i1 + α2s1 ≥ i2 + α2s2 = Pα2(mα2 ,dδ), (4.65) 

because .mα2 realizes the minimum.p2 of the functional .Pα2(m,dδ). 
Subtracting the left-hand side of inequality (4.65) from the right-hand side of 

inequality (4.63) and the right-hand side of inequality (4.65) from the left-hand side 
of inequality (4.63), we obtain 

.(α1 − α2)s2 ≥ (α1 − α2)s1. (4.66) 

Since .α1 < α2, 
.s1 ≥ s2. (4.67)
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From inequalities (4.63) and (4.67) it follows that 

. i2 − i1 ≥ α1(s1 − s2)

and hence 
. i2 ≥ i1.

Property 4.2 It can be proved that the functions .p(α), i(α), s(α) are continuous 
functions (if the element .mα is unique). 

Note, also, that 
. p(α) → 0 for α → 0,

and 
.p(0) = 0. (4.68) 

From the fact that 

. i(α) + αs(α) = p(α) → 0, for α → 0,

it follows that 
.i(0) = 0. (4.69) 

Thus we have proved the following theorem. 

Theorem 4.10 If .i(α) is a one-to-one function, then, for any positive number . δ <

δ0 = μD(A(m0),dδ) (where . m0 is some a priori model), there exists .α(δ) such that 
.μD(A(mα(δ)),dδ) = δ. 

Note that .i(α) is a one-to-one function when element .mα is unique. It happens, 
for example, when. A is a linear operator,.D is a Hilbert space, and.s(m) is a quadratic 
functional. 

Figure 4.4 helps in understanding of the principle of optimal regularization param-
eter selection. One can see that because of the monotonic character of the function 
.i(α), there is only one point, .α0, where .i(α0) = μ2

D(A(mα0),dδ) = δ2. 
Let us consider one simple numerical method for determining the parameter . α. 

Consider, for example, a progression of numbers: 

.αk = α1q
k−1, k = 1, 2, ..., n; 0 < q < 1. (4.70) 

For any number.αk we can find the element.mαk minimizing.Pαk (m,dδ) and calculate 
the misfit .μD(A(mαk ),dδ). The optimal value of the parameter .α is the number 
.α0 = αk0, for which, with the necessary accuracy, we have the equality 

.μD(A(mαk0),dδ) = δ. (4.71) 

As we noted above, equality (4.71) is called the misfit condition.



4.5 Definition of the Regularization Parameter 101

Fig. 4.4 Illustration of the 
principle of optimal 
regularization parameter 
selection 
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4.5.2 L-Curve Method of Regularization Parameter Selection 

L-curve analysis (Hansen 1998) represents a simple graphical tool for qualitative 
selection of the quasi-optimal regularization parameter. 

It is based on plotting for all possible . α the curve of the misfit functional, .i(α), 
versus the stabilizing functional, .s(α) (where we use notations (4.61)). The L-curve 
illustrates the trade-off between the best fitting (minimizing a misfit) and most rea-
sonable stabilization (minimizing a stabilizer). In a case where . α is selected to be 
too small, the minimization of the parametric functional .Pα(m) is equivalent to the 
minimization of the misfit functional; therefore.i(α) decreases, while.s(α) increases. 
When. α is too large, the minimization of the parametric functional.Pα(m) is equiva-
lent to the minimization of the stabilizing functional; therefore.s(α) decreases, while 
.i(α) increases. As a result, it turns out that the L-curve, when it is plotted in log-log 
scale, very often has the characteristic L-shape appearance (Fig. 4.5) that justifies its 
name (Hansen 1998). 

Fig. 4.5 L-curve represents 
a simple curve for all 
possible. α of the misfit 
functional, .i(α), versus 
stabilizing functional, .s(α), 
plotted in log-log scale. The 
approximate corner, 
separating the vertical and 
the horizontal branches of 
this curve, corresponds to the 
quasi-optimal value of the 
regularization parameter.α
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The approximate corner, separating the vertical and the horizontal branches of 
this curve, corresponds to the quasi-optimal value of the regularization parameter. α. 
However, in practice, the plot of the misfit functional versus the stabilizing functional 
does not have a distinct corner (as shown in Fig. 4.5), which makes it hard to determine 
the optimal regularization parameter using the L-curve method. Another limitation 
of this approach is that it requires solving a large number of minimization problems 
(4.56) with different values of regularization parameter. α to produce a representative 
.L-curve. 
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Chapter 5 
Linear Inverse Problems 

Abstract Linear inverse problems represent the most important and, at the same 
time, relatively simple type of inverse problems. Even for problems with nonlinear 
relationships, it is often possible to find an accurate linearized approximation, e.g., 
Born approximation for electromagnetic or acoustic fields. This chapter considers the 
general methods of linear discrete inverse problem solutions for both overdetermined 
and underdetermined systems of linear equations. The classical approach to solving 
the linear inverse problem is based on the least-squares method. We also discuss the 
weighted least-squares method, which takes into account the data errors. Tikhonov’s 
regularization method for solving the ill-posed linear inverse problems is considered 
as well as the classical Levenberg–Marquard method of damped least-squares. 

Keywords Linear inverse problem · Least-squares method · Overdetermined 
system · Underdetermined system · Weighting matrices 

Linear problems form the simplest but, at the same time, the most widely used class 
of inverse problems. The linear relationships between the model parameters and 
the corresponding data are typical for many physical and imaging problems. For 
example, the gravity field .g(r') is related to the density distribution, .ρ(r), within a 
domain .D by the linear Newton law: 

.g(r') = γ

   
D

ρ(r)
r − r'

| r − r' |3 dv, (5.1) 

where . γ is the universal gravitational constant. 
The magnetic field.H(r') is linearly proportional to the magnetization distribution 

within a domain .D according to the Gauss law: 

.H(r') = ∇'
   

D
I(r) · ∇' 1

|r − r'|dv, (5.2) 

where .I(r) is the magnetization. 
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The observed blurred images are related to the original images by the linear 
equation: 

.d = Bm, (5.3) 

where . d is the degraded (blurred) image, .m is the original (ideal) image, and . B is 
the blurring linear operator of the imaging system. 

Even for problems with nonlinear relationships, one can always find an accurate 
linearized approximation, e.g., Born approximation for electromagnetic or acoustic 
fields (Zhdanov 2002, 2018). 

In addition, in most applications, we have to work with discrete inverse problems 
where both the model parameters and the data sets are represented by a finite number 
of data points. This chapter considers the general methods of linear discrete inverse 
problem solutions following Zhdanov (1993, 2002, 2015) and Menke (2018). 

5.1 Least-Squares Inversion of the Linear Discrete Inverse 
Problem 

5.1.1 Linear Discrete Inverse Problem 

Let us consider a general inverse geophysical problem described by the following 
operator equation: 

.d = A(m), (5.4) 

where.m represents the model parameters, and. d are observed data. We assume that. N
measurements are performed in some physical experiments. Then we can treat these 
values as the components of the .N -dimensional vector . d. Similarly, some model 
parameters can be represented as the components of a vector .m of order . L: 

. 

d = [d1, d2, d3, ..., dN ]T ,

m = [m1,m2,m3, ...,mL ]T ,

where the superscript . T denotes the transpose of the two vectors. 
In a case where. A is a linear operator, Eq. (5.4) can be rewritten in matrix notation 

as follows: 
.d = Am, (5.5) 

where . A is the .N × L matrix of the linear operator . A. 
Expression (5.5) describes a system of.N linear equations for. L unknown param-

eters, .m1,m2,m3, ...,mL :
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.di =
L∑
j=1

Ai jm j , i = 1, 2, 3, ..., N . (5.6) 

Therefore, solving inverse problem (5.4) means solving the system of linear equa-
tions (5.6) with respect to parameters . m1,m2,m3, ...,mL .

The system (5.6) is called underdetermined if .N < L . The system (5.6) is called 
overdetermined if .N > L . In applications, we often work with an overdetermined 
system wherein the number of observations exceeds the number of model param-
eters. At the same time, in many situations, it may be necessary to work with an 
underdetermined system. We will examine both types of linear equation systems 
below. 

Thus, we can see that in the case of a linear discrete inverse problem, operator 
equation (5.4) is reduced to matrix equation (5.5). To solve this equation, we have 
to use some formulae and rules from matrix algebra (Golub and Van Loan 2013; 
Zhdanov 2015). 

5.1.2 Least-Squares Method 

The least-squares method is the most popular mathematical technique of analysis 
of experimental data. In this section, I will discuss the basic principles of the least-
squares method as applied to the solution of linear inverse problems. The interested 
reader can find more details on this subject in many publications dedicated to least-
squares applications in science and engineering (e.g., Wolberg 2006; Hansen et al. 
2013). 

Let us consider again a system of linear equations determining the relation-
ship between the observed data .{d1, d2, d3, ..., dN } and parameters of the model 
{.m1,m2,m3, ..., .mL}: 

.di =
L∑
j=1

Ai jm j , i = 1, 2, 3, ..., N , (5.7) 

where.N > L . In other words, we assume now that Eq. (5.7) describes an overdeter-
mined system. We know the column vector.d = [d1, d2, d3, ..., dN ]T of the observed 
data and matrix. A of the linear operator of the forward problem. Our goal is to deter-
mine the column vector .m = [m1,m2,m3, ...,mL ]T of the model parameters. Note 
that in this chapter, we assume, for simplicity, that all model parameters and data are 
represented by real numbers. 

Let us denote by .dp = [d p
1 , d

p
2 , d

p
3 , ..., d

p
N ]T a vector of the predicted data: 

.d p
i =

L∑
j=1

Ai jm j , i = 1, 2, 3, ..., N .
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We can now write 
. r = dp − d,

where.r = [r1, r2, r3, ..., rN ]T is the column vector of the residuals (errors) between 
the observed, .d, and predicted, .dp, data. 

However, we have more data.{d1, d2, d3, ..., dN } than model parameters {.m1, . m2,

.m3, ...., .mL}, so we cannot fit all the data. The best that we can do is to minimize 
the misfit between the observed and predicted data, which in the Euclidean metric 
of data space can be calculated as a sum of the squares of the errors: 

. f (m1,m2,m3, ...,mL) = ||r||2 =
N∑
i=1

r2i = min . (5.8) 

Functional . f is called a misfit functional. It can be written in the following form: 

. f (m) = ||dp − d||2 = ||Am − d||2

. = (Am − d,Am − d) = min . (5.9) 

Note that, using matrix notations, one can rewrite the last equation as follows: 

. f (m) = (Am − d)T (Am − d) = min . (5.10) 

The column vector .m0 = [m01,m02,m03, ...,m0L ]T , in which the misfit func-
tional reaches its minimum, is called a pseudo-solution of system (5.7). If . f (m0) =
0, then .m0 is the conventional solution of system (5.7). 

5.1.2.1 Minimization of the Misfit Functional 

It is well known that the best way to solve an optimization problem for conventional 
functions is based on differentiating the functions and equating the resulting deriva-
tives to zero. A similar approach can be applied in principle to functionals. However, 
we have to use an analog of calculus for functionals and operators called variational 
calculus. This generalization has been discussed in Chap. 3. 

The problem of minimization of the misfit functional (5.10) can be solved using 
variational calculus. Let us calculate the first variation of . f (m) :

. δ f (m) = 2(Aδm)T (Am − d).

The necessary condition for the minimum of the functional . f (m) has the following 
form:
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. δ f (m) = 2(Aδm)T (Am − d) = 2(δm)TAT (Am − d) = 0,

for any . δm.

From the last formula, we have the following system of equations: 

.ATAm = ATd. (5.11) 

System (5.11) is called the normal system for (5.7). Matrix .ATA is an . L × L
square matrix. Thus the solution of the normal system can be given in the following 
form: 

.m0 = (ATA)−1ATd, (5.12) 

where .m0 is called a pseudo-solution of original system (5.7). 
Note that the normal system can be obtained formally by multiplication of the 

original system (5.5) by the transposed matrix .AT . However, in general cases, the 
pseudo-solution .m0 is not equivalent to the solution of the original system because 
the new system described by Eq. (5.11) is not equivalent to the original system (5.5) 
if matrix .A is not square. The main characteristic of the pseudo-solution is that it 
provides the minimum of the misfit functional. 

To find a pseudo-solution numerically, we can apply the method of singular value 
decomposition and obtain the following result: 

. ATA = (UQVT )TUQVT

. = VQUTUQVT = VQ2VT , (5.13) 

where .Q is diagonal, and . U and . V are orthogonal matrices representing matrix . A: 

. A = UQVT .

Thus, system (5.11) can be rewritten as follows: 

.VQ2VTm0 = VQUTd. (5.14) 

Let us apply the inverse matrix .(VQ2VT )−1 to the right-hand and left-hand parts of 
Eq. (5.14): 

.m0 = (VQ2VT )−1VQUTd = VQ−1UTd = V
[
diag(

1

Qi
)

]
UTd. (5.15) 

Expression (5.15) gives directly the pseudo-solution of system (5.7). 
Matrix 

.A+ = V
[
diag(

1

Qi
)

]
UT (5.16)
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is called the pseudo-inverse or generalized inverse matrix for. A. The pseudo-inverse 
matrix is equal to the inverse matrix of a square matrix . A: 

. A+ = A−1.

Thus, minimization of the misfit functional opens a way to construct a gener-
alized inverse matrix for any matrix, rectangular or square, with the only limi-
tation being that the elements of the diagonal matrix .Q are not equal to zero: 
. Qi /= 0, i = 1, 2, ....L .

5.1.2.2 Underdetermined System of Linear Equations 

Assume that the inverse problem, 

.d = Am, (5.17) 

is purely underdetermined. This means that.N < L , and there are no inconsistencies 
in these equations. It is, therefore, possible to find more than one set of model 
parameters that precisely fit the observed data. Let us try to select from all possible 
solutions the one which is the simplest in some sense, for example, it has the smallest 
Euclidean norm: 

.l(m) = ||m||2 = min, (5.18) 

where 
.||m||2 = (m,m) = mTm. (5.19) 

Therefore, we have the following problem: find the.mest that minimizes.l(m) subject 
to the following constraint: 

.d − Am = 0. (5.20) 

We can solve this problem of the conditioned minimum by using the method of 
Lagrange multipliers: 

.φ(m) = mTm + λ (d − Am)T = min, (5.21) 

where . λ is a diagonal matrix of the Lagrange multipliers. 
Let us calculate the first variation of the functional .φ(m): 

.δφ(m) = 2δmTm − δmTATλ = δmT (2m − ATλ). (5.22) 

The necessary minimum condition for the functional gives 

.δφ(m) = δmT (2m − ATλ) = 0, (5.23) 

for any .δmT .
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Thus, we have the following expression for the solution .mest of our problem: 

.mest = 1

2
ATλ. (5.24) 

On the other hand, this solution must satisfy Eq. (5.17): 

. d = 1

2
AATλ.

The matrix .AAT is a square .N × N matrix and, if it is not singular, can be inverted: 

.λ = 2(AAT )−1d. (5.25) 

By substituting the last equation into (5.24), we have 

.mest = AT (AAT )−1d. (5.26) 

Formula (5.26) provides a minimum norm solution of the underdetermined problem. 

5.1.3 Weighted Least-Squares Method 

Let us introduce some weighting factors .w2
i for estimation of the residuals . ri . The  

reason for the weighing is that, in practice, some observations are made with more 
accuracy than others. In this case, one would like the prediction errors. ri of the more 
accurate observations to have a greater weight than the inaccurate observations. To 
accomplish this weighting, we define the weighted misfit functional. fw as follows: 

. fw(m1,m2,m3, ...,mL) = ||r||2w =
N∑
i=1

(wi ri )
2 = min . (5.27) 

We can introduce the weighting operator .W, which is a linear operator acting in the 
space of data .D and having the diagonal matrix .W: 

.W = [diag(wi )]. (5.28) 

Then Eq. (5.27) can be rewritten in the following form: 

. fw(m) = ||Wdp − Wd||2 = ||WAm − Wd||2

. = (WAm − Wd)T (WAm − Wd) = min . (5.29)
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The problem of minimization of the weighted misfit functional can be solved by 
calculating the first variation of this functional and setting it equal to zero: 

. δ fw(m) = 2 (δWAm)T (WAm − Wd) = 2(δm)T (WA)T (WAm − Wd) = 0.

Thus, we obtain the following system of equations: 

. (WA)T WAm = (WA)TWd

or 

.ATW2Am = ATW2d. (5.30) 

Assuming that matrix .ATW2A is non-singular, we can write 

.m0 = (ATW2A)−1ATW2d. (5.31) 

Equation (5.31) delivers the solution of the weighted least-squares problem.The 
method of selecting the proper weights, .wi , will be discussed in the next sections. 

The following matrix 

.A−w = (ATW2A)−1ATW2 (5.32) 

is called the weighted generalized inverse matrix. 

5.2 Tikhonov Regularization Method 

5.2.1 Tikhonov Parametric Functional Revisited 

Different modifications of least-squares solutions of the linear inverse problem dis-
cussed above have resulted from the direct minimization of the corresponding misfit 
functionals. However, all these solutions have many limitations and are very sen-
sitive to minor variations of the observed data. An obvious limitation occurs when 
the inverse matrices.(ATA)−1 or .(ATW2A)−1 do not exist. However, even when the 
inverse matrices exist, they can still be ill-conditioned (become nearly singular). In 
this case, the solution would be extremely unstable and unrealistic. To overcome 
these difficulties, we have to apply regularization methods. 

Let us consider first the general approach based on the Tikhonov regularization 
technique (Tikhonov and Arsenin 1977). The corresponding parametric functional 
can be introduced in the following form: 

.Pα(m,d) = ||WdAm − Wdd||2 + α||Wmm − Wmmapr||2,
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where .Wd and.Wm are some weighting matrices of data and model (not necessarily 
diagonal); .mapr is some a priori  model, and.||...|| denotes the Euclidean norm in the 
spaces of data and models. 

In the majority of practical applications, we assume that.Wm = I, but it also can be 
chosen arbitrarily (for example, as a matrix of first or second-order finite-difference 
differentiation to obtain a smooth solution). We will discuss some specific choices 
of .Wm later. 

We can also rewrite functional .Pα(m,d) in matrix notations as follows: 

. Pα(m,d) = (WdAm − Wdd)T (WdAm − Wdd)

. + α(Wmm − Wmmapr )
T (Wmm − Wmmapr ).

According to the basic principles of the regularization method, we have to find a 
quasi-solution of the inverse problem as the model.mα that minimizes the parametric 
functional 

. Pα(mα,d) = min .

The regularization parameter . α is determined from the misfit condition: 

. ||WdAmα − Wdd|| = δ,

where . δ is some a priori  estimation of the level of “weighted” noise of the data: 

.||Wdδd|| = δ. (5.33) 

To solve this problem, let us calculate the first variation of .Pα(m,d): 

. δPα(m,d) = 2(WdAδm)T (WdAm − Wdd)

. + 2α(Wmδm)T (Wmm − Wmmapr ) = 0.

The last equation can be rewritten in the following form: 

. 

δmT
]
(ATWT

d WdA + αWT
mWm)m

− (
ATWT

d Wdd + αWT
mWmmapr

)] = 0,

from which we obtain at once a regularized normal equation for the original inverse 
problem (5.5), 

.(ATWT
d WdA + αWT

mWm)mα = ATWT
d Wdd + αWT

mWmmapr , (5.34) 

and its regularized solution,



114 5 Linear Inverse Problems

.mα = (ATWT
d WdA + αWT

mWm)
−1(ATWT

d Wdd + αWT
mWmmapr ). (5.35) 

Usually, the weighting matrices .Wd and .Wm are selected to be symmetric (or even 
diagonal), so Eq. (5.35) can be rewritten as follows: 

.mα = (ATW2
dA + αW2

m)
−1(ATW2

dd + αW2
mmapr ). (5.36) 

The last expression gives the regularized solution of the generalized least-squares 
problem. 

5.2.2 Integrated Sensitivity 

Let us analyze the sensitivity of the data to the perturbation of one specific parameter 
.mk .To solve this problem, we apply the variational operator to both sides of Eq. (5.6): 

.δdi = Aikδmk . (5.37) 

In the last formula,.Aik are the elements of matrix. A of the forward modeling operator, 
and there is no summation over index. k. Therefore, the norm of the perturbed vector 
of the data can be calculated as follows: 

. ||δd|| =
/∑

i

(δdi )
2 =

/∑
i

(Aik)
2 |δmk | . (5.38) 

We determine the integrated sensitivity of the data to parameter .mk as the following 
ratio: 

.Sk = ||δd||
|δmk | =

/∑
i

(Aik)
2. (5.39) 

One can see that the integrated sensitivity depends on parameter. k. In other words, 
the sensitivity of the data to the different model parameters varies because the con-
tributions of the different parameters to the observation are also variable. 

Definition 1 The diagonal matrix with the diagonal elements equal to . Sk = ||δd||
/δmk is called an integrated sensitivity matrix: 

.S = diag

⎛
⎝
/∑

i

(Aik)
2

⎞
⎠ = diag

(
ATA

)1/2
. (5.40) 

In other words, it is formed by the norms of the columns of matrix .A.
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5.2.3 Definition of the Weighting Matrices for the Model 
Parameters and Data 

The basic idea of introducing a model weighting matrix, .Wm, for the model param-
eters can be described as follows. We identify this matrix as the diagonal integrated 
sensitivity matrix 

.Wm = ]
Wj

] = ]
Sj
] = S. (5.41) 

Thus, the weights are selected to be equal to the sensitivities: 

.Wj = Sj . (5.42) 

We can now introduce the weighted model parameters: 

.mw = Wmm. (5.43) 

Using these notations, we can rewrite the inverse problem, Eq. (5.5), as follows: 

.d = AW−1
m Wmm = Awmw , (5.44) 

where .Aw is a weighted forward modeling operator, 

.Aw = AW−1
m . (5.45) 

Now, we perturb the data with respect to one specific weighted parameter . mw
k :

. δdi = Aw
ikδm

w
k ,

and calculate a new integrated sensitivity .Swk of the data to the weighted parameter 
.mw

k as the ratio 

. Swk = ||δd||
δmw

k

=
/∑

i

(
Aw
ik

)2
δmw

k

δmw
k

=
/∑

i

(
Aw
ik

)2

. =
/∑

i

(
AikW

−1
k

)2 = W−1
k

/∑
i

(Aik)
2 = W−1

k Sk = 1. (5.46) 

Formula (5.46) shows that the new matrix of the integrated sensitivity .Sw is a unit 
matrix: 

. Sw = I.

Therefore, data are uniformly sensitive to the new weighted model parameters.
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Note that the corresponding weighted stabilizing functional takes the form 

. sw (m) = (m − mapr )
TW2

m(m − mapr )

. = (m − mapr )
TS2(m − mapr ). (5.47) 

It imposes a stronger penalty on departure from the a priori  model for those param-
eters that contribute more significantly to the data. 

Thus, the model weighting results in practically equal resolution of the inversion 
with respect to different parameters of the model. 

In a similar way, we can define the diagonal data weighting matrix, formed by  
the norms of the rows of matrix . A :

.Wd = diag

⎛
⎝
/∑

k

(Aik)
2

⎞
⎠ = diag

(
AAT

)1/2
. (5.48) 

These weights make normalized data less dependent on the specific parameters 
of observations (for example, frequency and distance from the anomalous domain), 
which improves the resolution of the inverse method. 

5.3 Levenberg–Marquardt Method 

Let us consider a special case when.Wd = I and.Wm = I. Then Eq. (5.36) takes the 
following form: 

.mα = (ATA + αI)−1(ATd + αmapr ). (5.49) 

Assume now that . mapr = 0 :

.mα = (ATA + αI)−1ATd. (5.50) 

Solution (5.50) describes the classical Levenberg–Marquardt methodof damped 
least-squares, where .α plays the role of a “damping factor” (Levenberg 1944; 
Marquardt 1963). 

For a better understanding of how the regularization parameter or “damping 
factor” . α works, let us apply a singular value decomposition method to matrix . A: 

. A = UQVT .

Then we have 
.ATA = VQ2VT . (5.51)
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From the last equation, we obtain at once 

. (ATA + αI)−1 = (VQ2VT + αVIVT )−1

. + (V
]
diag(α + Q2

i )
]
VT )−1 = V

[
diag(

1

α + Q2
i

)

]
VT . (5.52) 

We can clearly see from Eq. (5.52) how regularization makes the nearly singular 
matrix well-conditioned because even if .Qi → 0 division by zero does not occur. 

References and Recommended Reading to This Chapter 

Golub GH, Van Loan CF (2013) Matrix computations, 4th edn. The Johns Hopkins University 
Press, Baltimore and London, pp 753 

Hansen C, Pereyra V, Scherer G (2013) Least squares data fitting with applications. Johns 
Hopkins University Press, pp 328 

Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. 
Quart Appl Math 2:164–168 

Marquardt DW (1963) An algorithm for least squares estimation of nonlinear parameters. SIAM 
J. 11:431–441 

Menke W (2018) Geophysical data analysis: discrete inverse theory, 4th edn. Academic Press, 
pp 330 

Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. Wiley, pp 258 
Wolberg J (2006) Data analysis using the method of least squares. Springer, pp 250 
Zhdanov MS (1993) Tutorial: regularization in inversion theory. CWP-136, Colorado School of 

Mines, pp 47 
Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier, pp 609 
Zhdanov MS (2015) Inverse theory and applications in geophysics. Elsevier, pp 704 

Zhdanov MS (2018) Foundations of geophysical electromagnetic theory and methods. Elsevier, 

pp 770



Chapter 6 
Probabilistic Methods of Inverse Problem 
Solution 

Abstract This chapter considers the methods of solving the linear discrete inverse 
problems using the probabilistic approach. We review two major techniques—the 
maximum likelihood and the maximum a posteriori estimation methods. The Bayes 
estimation method makes it possible to introduce some a priori information about the 
properties of the solution in the inversion. We demonstrate that the numerical imple-
mentation of these methods is similar to the weighted least-squares and Tikhonov’s 
regularization methods, respectively. A summary of the typical stochastic inversion 
techniques, e.g., Monte Carlo, genetic algorithm (GA), and simulated annealing (SA) 
methods, is also provided. 

Keywords Maximum likelihood method · Bayes estimation · Stochastic 
methods · Monte Carlo · Genetic algorithm (GA) · Simulated annealing (SA) 

In Chap. 5, we considered the methods of solving the linear discrete inverse problems 
using the deterministic approach based on Tikhonov regularization. However, there 
exists an alternative approach based on the ideas of the probability theory. Therefore, 
in this chapter presents several methods for inverse problem solutions using the 
probabilistic approach following Zhdanov (1993, 2002, 2015). 

6.1 Maximum Likelihood Method 

As discussed in Chap. 2, the probability distribution can be described by a very com-
plicated function in general cases. However, according to the central limit theorem, 
a large sample of a random variable tends to a very simple distribution, the so-called 
Gaussian (or normal) distribution , as the size of the random sample increases. 

The joint distribution of two independent Gaussian variables is just the product of 
two univariate distributions. When the data forming a vector . d are correlated (with 
mean .<d> and covariance .σ = [σi j ]), the appropriate distribution turns out to be as 
follows (Menke 2018): 
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.P(d) = | σ |− 1
2

(2π)
N
2

exp[−1

2
(d − <d>)Tσ−1(d − <d>)]. (6.1) 

The idea that the model and data are related by an explicit relationship, 

.Am = d, (6.2) 

can now be reinterpreted in the sense that this relationship holds only for the mean 
data: 

.Am = <d>. (6.3) 

Substituting (6.3) into (6.1), we can rewrite the distribution of the data as follows: 

. P(d) = | σ |− 1
2

(2π)
N
2

exp[−1

2
(d − Am)Tσ−1(d − Am)]

. = | σ |− 1
2

(2π)
N
2

exp[−1

2
fσ(m)], (6.4) 

where 
. fσ(m) = (d − Am)Tσ−1(d − Am).

Under this assumption, we can say that the optimum values for the model param-
eters are those that maximize the probability that the observed data are, in fact, 
observed. Thus, the method of maximum likelihood is based on maximization of the 
probability function (6.4) 

.P(d) = max . (6.5) 

Clearly, the maximum of.P(d) occurs when the argument of the exponential function 
has maximum or when . fσ(m) has minimum: 

. fσ(m) = (d − Am)Tσ−1(d − Am) = min . (6.6) 

Let us calculate the first variation of functional . fσ: 

. δ fσ(m) = −(δAm)Tσ−1(d − Am) − (d − Am)Tσ−1(δAm).

It can be shown that for symmetrical matrix .σ−1, the following equality holds: 

. aTσ−1b = bTσ−1a,

where. a and. b are two arbitrary column vectors. Therefore, we can write the necessary 
condition for the functional . fσ to have a minimum as follows:
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.δ fσ(m) = −2(Aδm)Tσ−1(d − Am) = −2(δm)TATσ−1(d − Am) = 0. (6.7) 

From Eq. (6.7), we obtain at once the following equation: 

. ATσ−1(d − Am) = 0.

The last formula provides the following normal system of equations for the “pseudo-
solution” of the minimization problem (6.6): 

.ATσ−1Am = ATσ−1d. (6.8) 

If the matrix .
(
ATσ−1A

)
is non-singular, then we can multiply both sides of nor-

mal system (6.8) by inverse matrix, .(ATσ−1A)−1, and write the pseudo-solution of 
minimization problem (6.6) in the explicit form as follows: 

.m0 = (ATσ−1A)−1ATσ−1d. (6.9) 

Comparing the last formula with the corresponding equation for the weighted least-
squares method (5.31), we see that we have obtained exactly the same result if we 
substitute matrix .W2 for .σ−1: 

.W2 = σ−1. (6.10) 

Note that if data happen to be uncorrelated, then the covariance matrix becomes 
diagonal: 

.σ = [diag(σ2
i )], (6.11) 

and the elements of the main diagonal are the variances of the data. In this case, the 
weights are given by the following formula: 

.w2
i = 1

σ2
i

. (6.12) 

The functional 

. fw(m) = χ2(m) =
N∑

i=1

(
ri
σi

)2

=
N∑

i=1

(
di−d p

i

σi

)2

(6.13) 

is called a “chi-square.” 
In the cases where the measurement errors are normally distributed, the quantity 

.χ2 is a sum of .N squares of normally distributed variables, each normalized to its 
variance. Thus, by applying the weighted least-squares method, we can select the 
smaller weights for data with bigger standard deviations (less accurate data) and the
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bigger weights for data with smaller standard deviations (more certain data). If the 
data have equal variances, .σ2

0, then the weighting matrix becomes scalar: 

. W2 = σ−1 = 1

σ2
0

I,

and the chi-square functional becomes equal to the conventional misfit functional. 

6.2 The Maximum a Posteriori Estimation Method (The 
Bayes Estimation) 

Let us consider the regularization technique from the point of view of probability 
theory (Tarantola 1987). First of all, we introduce the following (normally distributed) 
densities of probability: 
(1) .P(d/m) is a conditional density of probability of the data. d, given the model . m. 
It means that it is the probability density of theoretical data . d to be expected from a 
given model . m. 
(2) .P(m/d) is a conditional density of probability of a model . m, given the data . d. 
According to the Bayes theorem, the following equation holds: 

.P(m/d) = P(d/m)P(m)

P(d)
, (6.14) 

where .P(d) and .P(m) are unconditional probability densities for data and model 
parameters, respectively. It is assumed that 

. <m> = mapr ,

where .mapr is an a priori constrained expectation of the model, and 

. [cov(mi ,m j )] = σm .

Thus, considering normally distributed parameters, we have the following probability 
distribution of the model, . m: 

.P(m) = | σm |− 1
2

(2π)
L
2

exp[−1

2
(m − mapr )

Tσ−1
m (m − mapr )]. (6.15) 

Analogously, it is assumed that, 

.[cov(di , d j )] = σd
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and we can write for the conditional density of probability of the data . d

.P(d/m) = | σd |− 1
2

(2π)
N
2

exp[−1

2
(d − Am)Tσ−1

d (d − Am)]. (6.16) 

The maximum likelihood method can now be used to find the model .m0 which 
maximizes the conditional probability of a model, .P(m/d): 

. P(m/d) = | σd |− 1
2

(2π)
N
2

exp[−1

2
(d − Am)Tσ−1

d (d − Am)] ×

. × | σm |− 1
2

(2π)
L
2

exp[−1

2
(m − mapr )

Tσ−1
m (m − mapr )]P−1(d). (6.17) 

It is evident that, to maximize.P(m/d), we have to minimize the sum of the expres-
sions in the exponential factors in Eq. (6.17): 

. fBayes = (d − Am)Tσ−1
d (d − Am) + (m − mapr )

Tσ−1
m (m − mapr ). (6.18) 

Note that the minimization of the first term in the above equation gives the classical 
maximum likelihood or weighted least-squares method. 

Let us calculate the first variation of . fBayes : 

. δ fBayes = −2(Aδm)Tσ−1
d (d − Am) + 2(δm)Tσ−1

m (m − mapr ) = 0.

From the last equation, we have 

. (δm)T [ATσ−1
d (d − Am) − σ−1

m (m − mapr )] = 0.

Thus, the normal system of equations for minimization of . fBayes can be written as 
follows: 

. ATσ−1
d (d − Am) − σ−1

m (m − mapr ) = 0,

From the last formula, we have at once the following equation: 

.(ATσ−1
d A + σ−1

m )m = ATσ−1
d d + σ−1

m mapr . (6.19) 

We can write the solution of Eq. (6.19) in the closed form as follows: 

.m0 = (ATσ−1
d A + σ−1

m )−1(ATσ−1
d d +−1

m mapr ). (6.20) 

By comparing Eqs. (6.20) and (5.36), we see that 

.σ−1
m = αW2

m, (6.21)
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so.σ−1
m plays the role of the regularization parameter and the model parameter weights 

simultaneously. 
Let us assume now that we have uncorrelated data with equal variances, 

. σd = σ2
dI,

and similarly for the a priori covariance of the model, 

. σm = σ2
mI.

Then Eq. (6.20) takes the following form: 

.m0 = (ATA + kI)−1(ATd + kmapr ), (6.22) 

where 

.k = σ2
d

σ2
m

= α (6.23) 

plays the role of the regularization parameter. 
We can see from formula (6.23) that large values of the variance.σ2

m of the model 
parameters correspond to a small regularization parameter .α, and vice versa, large 
values of. α correspond to a small variance.σ2

m .This means that, without regularization 
(. α close to zero), the uncertainty in determining the inverse model is great, while with 
regularization, it becomes smaller. The last formula illustrates once again the close 
connection between the probabilistic (Tarantola 1987) and deterministic (Tikhonov 
and Arsenin 1977) approaches to regularization. 

6.3 Stochastic Methods of Inversion 

We have already discussed in this and previous chapters that there are two different 
major points of view in addressing the inverse problem: 
(a) the algebraic (deterministic) point of view, dating back to the works of Lanczos 
(1961), Backus and Gilbert (1967), Backus (1970a, b, c), Marquardt (1963, 1970), 
Tikhonov and Arsenin (1977), etc.; 
(b) the probabilistic (stochastic) point of view, formulated in the pioneering papers 
of Foster (1961), Franklin (1970), Jackson (1972), Tarantola and Valette (1982), 
Tarantola (1987, 2005), etc. 

The stochastic point of view is widely used in literature because it is closely 
associated with the statistical nature of the noise in the data. At the same time, it has 
been demonstrated in many publications (e.g., the classical work by Sabatier (1977)) 
that in many cases, both points of view result in similar computational algorithms 
(see Sects. 6.1 and 6.2).
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The Monte Carlo inversion methods represent a general approach based on the 
stochastic point of view (Metropolis and Ulam 1949; Metropolis et al. 1953). They 
are named after the famous Casino in Monaco. There are two major types of Monte 
Carlo methods. The first one is based on an extensive random search in the space. M
of the model parameters for a solution, which generates the predicted data from 
the data space, . D, close to the observed data, realizing the global minimum of 
the corresponding misfit functional . f (m) (e.g., Cary and Chapman 1988; Khan 
et al. 2000; Khan and Mosegaard 2001). This method is suitable for problems with 
misfit functionals having multiple local minimums, where conventional gradient-type 
minimization methods may have difficulties getting out from a “deep” local minimum 
(see Chap. 7). The second type of Monte Carlo method uses an optimization algorithm 
in order to minimize the number of steps required by the random search methods. 
The most effective global optimization algorithms have been developed based on 
known physical or biological rules to evolve to the best solution. For example, the 
simulated annealing (SA) algorithm (Kirkpatrick et al. 1983; Corana et al. 1987) 
comes from annealing in metallurgy, a technique involving heating and controlled 
cooling of a material. It is known from physics that, in order to minimize the final 
lattice energy, one should apply a very slow cooling process. The SA method uses an 
analogy between the minimization of lattice energy in the framework of the physical 
process of annealing and numerical problem of determining the global minimum of 
a misfit functional, . f (m). 

The genetic algorithm (GA) (Holland 1975; Goldberg 1989; Michalewicz and 
Schoenauer 1996; Whitley 1994; Mosegaard and Sambridge 2002) is a heuristic 
search method that mimics the process of natural evolution. In a pure genetic algo-
rithm, a population of candidate solutions (individuals) for an optimization problem 
is evolved toward better solutions. Traditionally, the solutions are coded in binary 
form as strings of 0s and 1s to be mutated and altered. The evolution starts from a 
population of randomly generated solutions from the search space and proceeds as 
an iterative process. The population in each iteration is called a generation. In each 
generation, the fitness of every individual is evaluated by an objective functional 
(e.g., a misfit functional . f (m)). The individuals who have low misfits are stochas-
tically selected from the current population, and then they are chosen to form a new 
generation by applying genetic operations (mutation and crossover). The above steps 
run iteratively until the inversion process meets the termination conditions. 

A detailed overview of the simulated annealing and genetic algorithms can be 
found, for example, in Zhdanov (2015). 

The Monte Carlo methods are considered to be an effective optimization technique 
for many inverse problems where some general gradient-type methods fail. They can 
be applied for solving optimization problems with continuous or discrete parameters 
and with small sample intervals; there is no need to calculate the derivatives; the 
global minimization problem can be solved for the misfit functional with multiple 
local minima.
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The Monte Carlo methods were first applied to the solutions of earth science prob-
lems by Keilis-Borok and Yanovskaya (1967) and Press (1968, 1970a, b). The paper 
by Sambridge and Mosegaard (2002) provides an excellent review of applications of 
the Monte Carlo methods to solving geophysical inverse problems. 
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Chapter 7 
Gradient-Type Methods of Nonlinear 
Inversion 

Abstract This chapter presents a detailed description of the main methods for solv-
ing nonlinear inverse problems based on iterative minimization of the misfit or para-
metric functionals. The gradient-type methods discussed in this chapter include the 
steepest descent, the Newton, and the conjugate gradient methods. We also consider 
the application of the gradient-type methods to solving ill-posed nonlinear discrete 
inverse problems. The concept of integrated sensitivity is introduced, which plays an 
important role in the inversion. This chapter also presents a numerical comparison 
of three main minimization techniques—steepest descent, Newton, and conjugate 
gradient methods. 

Keywords Steepest descent · Newton method · Conjugate gradient method ·
Integrated sensitivity 

In previous chapters, we mainly considered the linear inverse problems. In a general 
case, however, the relationships between the data and the model parameters are 
nonlinear. This requires developing more general methods of nonlinear inversion. 
We found above that the solution of the linear discrete inverse problems can be 
presented in closed form using matrix inversion and matrix multiplications. However, 
there is no closed-form solution for nonlinear inverse problems. Most nonlinear 
inverse methods are based on iterative processes aimed at minimizing the misfit or 
parametric functionals (in the case of regularized inversion). Over the years, many 
iterative minimization methods have been developed. The gradient-type methods are 
most widely used, including the steepest descent, Newton, and conjugate gradient 
minimization techniques. We will review the basic gradient-type methods in this 
chapter, following the works by Zhdanov (1993, 2002, and 2015). 

7.1 Method of Steepest Descent 

Consider again the inverse problem 

.d = A (m) , (7.1) 
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where .m ∈ M is some element (vector) from a real Hilbert space .M of the model 
parameters, .d ∈ D is an element (vector) from a real Hilbert space .D of data sets, 
and . A is a nonlinear operator. 

To simplify the initial description of the gradient-type methods, we first assume 
that problem (7.1) is well possed, which means that the solution exists, is unique, 
and stable. In this case, one can solve inverse problem (7.1) by minimizing the 
corresponding misfit functional between the observed and predicted data, 

.φ(m) = ||A(m) − d||2 = (A(m) − d, A(m) − d) = min, (7.2) 

where .(..., ...) means the inner product of the elements from Hilbert space . D. 
This minimization problem can be solved directly in the case of the linear operator 

.A of forward modeling. However, in the general case of a nonlinear operator . A,

the solution can only be found iteratively. There are many different approaches to 
constructing the iterative process of functional minimization. One of the most widely 
used techniques for optimization is based on gradient-type methods. 

We start our discussion with the most important and easily understandable method 
of steepest descent. This method is based on the concept of the descent condition, 
which we discuss below. 

7.1.1 Descent Condition 

We consider an iterative algorithm of misfit functional minimization. It is reasonable 
to build this algorithm on the idea that misfit decreases at every iteration.mn . In other 
words, we impose the following descent condition : 

.φ(mn+1) < φ(mn) for all n ≥ 0. (7.3) 

A method that imposes this condition is called a descent method. The question is 
how to find iterations .{mn} which satisfies the descent condition. 

To solve this problem, we calculate the first variation of the misfit functional at 
point . m: 

. δφ(m) = δμ2
D(A(m),d) = δ(A(m) − d, A(m) − d) = 2(δA(m), A(m) − d).

(7.4) 
We also assume that operator . A is a nonlinear one (in general cases) but that it is a 
differentiable operator so that 

.δA(m) = Fmδm. (7.5) 

Here, .Fm is a linear operator called the Fréchet derivative of . A (see Chap. 3).
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By substituting Eq. (7.5) into (7.4), we obtain 

.δφ(m) = δμ2
D (A(m),d) = 2 (Fmδm, A(m) − d) . (7.6) 

Equation (7.6) can be simplified using the properties of the adjoint of the Fréchet 
derivative operator, considered in Chap. 3. 

The notion of the adjoint operator makes it possible to move a linear operator of 
a Fréchet derivative, .Fm, from the left to the right-hand side of the inner product in 
Eq. (7.6): 

.δφ(m) = 2
(
δm, F*

m(A(m) − d)
)
, (7.7) 

where .F*
m is the adjoint operator of the Fréchet derivative of . A. 

In order to satisfy the descent condition (7.3), we select 

. δm = −kl(m), (7.8) 

where . k is some positive real number and .l(m) is a direction determined by the 
following formula: 

.l(m) = F*
m(A(m) − d). (7.9) 

Certainly, by substituting Eqs. (7.8) and (7.9) into (7.7), we have 

.δφ(m) = −2k(l(m), l(m)) < 0, (7.10) 

so .l(m) describes the “direction” of increasing (ascent) of the functional .φ(m), 
because it is opposite to the descent direction, . δm.

Thus, we can construct the iterative process as follows: 

.mn+1 = mn + δmn = mn − knl(mn), (7.11) 

where .kn is a step length on the .n-th iteration. 
Iterations (7.11) will satisfy the descent condition (7.3) if the corresponding step 

lengths, .kn, are appropriately selected. The traditional way of selecting .kn is based 
on the following condition: 

.φ (mn+1) = φ (mn − knl(mn)) = Φ(kn) = min, (7.12) 

where the minimum is determined with respect to. kn . The last condition allows us to 
define a step length along the direction of the steepest descent. 

Figure 7.1 shows schematically the plot of the misfit functional value as a function 
of model parameters . m. The vector of the steepest ascent, .ln = l(mn), shows  the  
direction of “climbing on the hill” along the misfit functional surface. If we are at 
the point on this surface which corresponds to the . nth iteration, we will be moving 
“downhill” using formula (7.11) along the steepest descent direction to reach the 
.(n + 1)th iteration.



132 7 Gradient-Type Methods of Nonlinear Inversion

Fig. 7.1 The plot of the misfit functional value as a function of model parameters . m. The bold 
red vector of the steepest ascent, . ln , shows the direction of “climbing on the hill” along the misfit 
functional surface. The intersection between the vertical plane. P drawn through the direction of the 
steepest ascent at point.mn and the misfit functional surface is shown by a solid parabola-type curve. 
The steepest descent step begins at a point .φ (mn) and ends at a point .φ (mn+1) at the minimum 
of this curve. The second parabola-type curve is drawn for one of the subsequent iteration points. 
Repeating the steepest descent iterations, we move along the set of mutually orthogonal segments, 
as shown by the solid arrows in the space .M of the model parameters (modified from Zhdanov 
2015) 

The iterative process (7.11) together with the condition (7.12) gives us a numerical 
scheme for the steepest descent method applied to misfit functional minimization. 

7.1.2 Linear Line Search 

We will now discuss the problem of determining the length of the step, .kn. Over the 
years, numerous line search algorithms have been proposed based on the optimization 
of the functional . Φ(kn) :

. 
Φ(kn) = φ (mn+1) = φ (mn − knl(mn))

= (A(mn − knl(mn)) − d, A(mn − knl(mn)) − d) = (rn+1, rn+1) = min,
(7.13)
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where 
. rn+1 = A(mn − knl(mn)) − d,

is a residual vector at the .(n + 1)th iteration. 
We now consider how to find the minimum of the last functional with respect to 

.kn. Let us calculate the first variation of .Φ(kn) and equate it to zero at a minimum 
point: 

.δΦ(kn) = −2δkn(Fmn l(mn), A(mn − knl(mn)) − d) = 0. (7.14) 

The simplest technique of the line search arises if one assumes that in the last equation 
.knl(mn) is small enough that one can use a linearized representation of the operator 
. A(mn − knl(mn) :

.A (mn − knl(mn)) ≈ A(mn) − kn Fmn l(mn), (7.15) 

where .Fmn is Fréchet derivative operator. 
Substituting (7.15) into (7.14), we have 

.δΦ(kn) = −2δkn(Fmn l(mn), A(mn) − kn Fmn l(mn) − d) = 0. (7.16) 

Solving the last equation, we finally obtain 

. kn =
(
Fmn l(mn), A(mn) − d

)

(
Fmn l(mn), Fmn l(mn)

) =
(
l(mn), F*

mn
(A(mn) − d)

)

||||Fmn l(mn)
||||2

. = (l(mn), l(mn))||||Fmn l(mn)
||||2 = ||l(mn)||2||||Fmn l(mn)

||||2 , (7.17) 

where .F∗
mn

is adjoint Fréchet derivative operator. 
Formula (7.17) works well if .A is close to being a linear operator so that repre-

sentation (7.16) holds for every iteration step. That is why this technique may be 
referred to as a linear line search. 

It can be demonstrated that, if we apply the steepest descent method with the line 
search, the subsequent gradient directions are mutually orthogonal 

.
(
l(mn+1), l(mn)

) = 0. (7.18) 

This result comes from the simple fact that, if we minimize a functional along 
some direction, described by a parametric line, the direction of the steepest ascent 
must be perpendicular to this line at the minimum point on the line; otherwise, we 
would still not be reaching the minimum along this line. A formal proof of this result 
was presented in many textbooks on minimization methods (e.g., Press et al. 1987; 
Zhdanov 2015).
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7.2 The Newton Method 

7.2.1 Hessian Operator 

The main idea of the Newton method is to try to solve the problem of minimization 
in one step: 

.m1 = m0 + Δm. (7.19) 

Thus, instead of moving downhill along a long path formed by mutually orthogonal 
directions of the steepest descent, one can try to reach the minimum of the misfit 
functional along one direction. 

To determine this specific direction,.Δm, let us calculate the misfit functional for 
this first iteration 

.
φ(m1) = (A(m1) − d, A(m1) − d)

= (A(m0 + Δm) − d, A(m0 + Δm) − d).
(7.20) 

The first variation of the misfit functional with respect to.Δm is equal to the following: 

.
δΔmφ(m1) = 2(δΔm A(m0 + Δm), A(m0 + Δm) − d)

= 2(Fm0δΔm, A(m0 + Δm) − d).
(7.21) 

Using an adjoint operator for the Fréchet derivative, we find 

. δΔmφ(m1) = 2(δΔm, F*
m0

[A(m0 + Δm) − d]).

Note that, according to Theorem 3.58 of Chap. 3, the first variation of the misfit 
functional at the minimum must be equal to zero: 

.δφ(m1) = 2(δΔm, F*
m0

[A(m0 + Δm) − d]) = 0, (7.22) 

and Eq. (7.22) must hold for any variation .δΔm. For example, we can select . δΔm
as follows: 

.δΔm =F*
m0

[A(m0 + Δm) − d]. (7.23) 

Substituting Eq. (7.23) back into (7.22), we have: 

. (F*
m0

[A(m0 + Δm) − d], F*
m0

[A(m0 + Δm) − d]) = 0.

Therefore, the second multiplier in (7.22) is equal to zero as well: 

.F∗
m0

[A(m0 + Δm) − d] = 0. (7.24)
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It is difficult to find the exact solution of operator Eq. (7.24). However, one can 
simplify this problem by linearization of operator .A(m0 + Δm), using a Fréchet 
derivative operator: 

.A(m0 + Δm) ≈ A(m0) + Fm0Δm. (7.25) 

Substituting (7.25) into (7.24), we obtain 

. F*
m0

[A(m0) + Fm0Δm − d] = 0.

From the last equation, we find immediately that 

.F*
m0

Fm0Δm = −F*
m0

[A(m0) − d]. (7.26) 

According to (7.9), 
. F*

m0
[A(m0) − d] = l(m0),

so, from Eq. (7.26), we have the normal equation for the optimum step 

.
1

2
Hm0Δm = −l(m0), (7.27) 

where 
.Hm0 = 2F*

m0
Fm0 . (7.28) 

Operator .Hm0 is a quasi-Hessian operator called because it does not take into 
account the second variation.F (2)

m0
of operator . A (see expression (3.163) of Chap. 3). 

This operator is linear one. If there exists an inverse quasi-Hessian operator . H−1
m0

,

one can solve equation (7.27) as follows:  

.Δm = − 2H−1
m0

l(m0). (7.29) 

Substituting (7.29) into (7.19), we finally define the update.m1 of the initial model: 

.m1= m0 − 2H−1
m0

l(m0). (7.30) 

Note that expression (7.30) produces the final solution of the inverse problem only 
in the case of a linear forward operator . A. In this case, expression (7.30) takes the 
form 

.m1= m0 − (
F*

m0
Fm0

)−1
l(m0) = m0 − (

A* A
)−1

l(m0). (7.31) 

Of course, it is usually not enough to use only one iteration for the solution of 
a nonlinear inverse problem in the framework of Newton method (because we used 
the linearized approximation (7.25)). However, we can construct an iterative process 
based on relationship (7.30):
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. mn+1= mn − 2H−1
mn

l(mn).

Thus, the algorithm of the Newton method can be summarized as follows: 

.

rn = A(mn) − d, (a)

ln = l(mn) = F*
mn
rn, (b)

mn+1 = mn − 2H−1
mn

ln. (c)
(7.32) 

The iterative process (7.32) is terminated at.n = N when the misfit reaches the given 
level . ε0: 

. φ(mN ) = ||rN ||2 ≤ ε0.

7.2.2 The Newton Method with the Line Search 

Note that in general cases of an arbitrary nonlinear operator .A, algorithm (7.32) 
may not converge (see for details Fletcher 1995), and, in fact, .φ(mn) may not even 
decrease with the iteration number. n. This undesirable possibility can be eliminated 
by introducing a line search at every step of the Newton method: 

.mn+1 = mn − kn H−1
mn

ln. (7.33) 

As in the steepest descent method, the length of the Newton step, .kn, is determined 
from the condition that 

.Φ(kn) = φ (mn+1) = φ
(
mn − kn H−1

mn
ln

) = min . (7.34) 

Applying a linear line search to the last problem, we obtain the optimum length of 
the step equal to the following: 

.kn =
(
H−1

mn
l(mn), l(mn)

)

||
||Fmn H−1

mn l(mn)
||
||2 . (7.35) 

Algorithm of the Newton method with the linear line search can be summarized 
as follows: 

.

rn = A(mn) − d, (a)

ln = l(mn) = F*
mn
rn, gn = Fmn H−1

mn
ln (b)

kn = (
H−1

mn
l(mn), l(mn)

)
/ ||gn||2 , (c)

mn+1 = mn − kn H−1
mn

ln. (d)

(7.36) 

Iterative process (7.36) is terminated at .n = N when the misfit reaches the given 
level . ε0 :

.φ(mN ) = ||rN ||2 ≤ ε0.
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The advantage of the Newton method is that it converges much faster than the 
steepest descent method. However, each iteration of the Newton method is very 
expensive computationally because it requires the calculation of the inverse Hes-
sian matrix, while the steepest descent iterations involve matrix multiplication only. 
Therefore, it is desirable to develop an algorithm combining the simplicity of itera-
tions by the steepest descent method with the few iteration steps, similar to Newton’s 
method. I will show in the next section that this can be achieved by the conjugate 
gradient method. 

7.3 The Conjugate Gradient Method 

The slow convergence of the steepest descent method is related to the fact that every 
two subsequent gradient directions are mutually orthogonal according to Eq. (7.18). 
As a result, the iteration path in the model space resembles a zigzag line. Our goal 
is to develop an iterative method with better convergence than the steepest descent 
algorithm. This can be achieved by straightening the zigzag line, which is done by 
moving along the so-called conjugate gradient directions in the model space, which 
we will define below. 

The conjugate gradient method is based on the same ideas as the steepest descent, 
and the iteration process is very similar to the last one: 

. mn+1= mn + Δmn = mn − k̃n l̃(mn),

where 
.Δmn= −k̃n l̃(mn). (7.37) 

However, the “directions” of ascent .̃l(mn) are selected in a different way to achieve 
faster convergence. In the first step, we use the “direction” of the steepest ascent: 

. ̃l(m0) = l(m0).

In the next step, the “direction” of ascent is a linear combination of the steepest 
ascent on this step and the “direction” of ascent .̃l(m0) on the previous step: 

. ̃l(m1) = l(m1)+β1 l̃(m0).

In the .n-th step 
. ̃l(mn+1) = l(mn+1)+βn+1 l̃(mn).

The steps.k̃n are selected, as usual, by a line search to minimize the misfit functional: 

.φ(mn+1) = φ(mn − k̃n l̃(mn)) = Φ(k̃n) = min . (7.38)
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7.3.1 A Linear Line Search in the Conjugate Gradient 
Method 

To solve problem (7.38), we consider more carefully functional . Φ( ~kn) :

.
Φ( ~kn) = φ (mn+1) = φ

(
mn − ~kn l̃(mn)

)

= (A(mn − ~kn l̃(mn)) − d, A(mn − ~kn l̃(mn)) − d).
(7.39) 

Let us find the minimum of the last functional with respect to . ~kn. We calculate 
now the first variation of . Φ( ~kn) :

. δΦ( ~kn) = −2δ ~kn(Fmn l̃(mn), A(mn − ~kn l̃(mn)) − d). (7.40) 

In the last equation, we assume that . ~kn l̃(mn) is small enough that we can use a 
linearized representation for operator . A(mn − ~kn l̃(mn) :

.A(mn − ~kn l̃(mn)) ≈ A(mn) − ~kn Fmn l̃(mn). (7.41) 

Substituting (7.41) into (7.40), we have 

.δΦ( ~kn) = −2δ ~kn(Fmn l̃(mn), A(mn) − ~kn Fmn l̃(mn) − d) = 0. (7.42) 

Solving the last equation, we finally find 

.  ~kn = (Fmn l̃(mn), A(mn) − d)

(Fmn l̃(mn), Fmn l̃(mn))
= (Fmn l̃(mn), A(mn) − d)

||||||Fmn l̃(mn)

||||||
2

. = (l̃(mn), F*
mn

[A(mn) − d])
||||||Fmn l̃(mn)

||||||
2 = (l̃(mn), l (mn))

||||||Fmn l̃(mn)

||||||
2 . (7.43) 

7.3.2 Determining the Conjugate Directions 

There are different ways of defining coefficients. βn . The basic idea is to make direc-
tions .̃l(mn+1) and .̃l(mn) “conjugate” in some geometrical sense, which would guar-
antee much faster convergence of the iterations. The conjugate directions are defined 
as follows:



7.3 The Conjugate Gradient Method 139

Definition 7.1 Vectors . u and. v are said to be conjugate if they satisfy the condition 

. (u, Hv) = 0, (7.44) 

where .H is a linear operator. 

Consider first, for simplicity, a linear inverse problem. Suppose that we have 
moved from point .mn to point .mn+1 in the space of models. The change in the 
gradient directions can be described by the following formula: 

.γn= l(mn+1) − l(mn). 

. = A*[A(mn+1) − d] − A*[A(mn) − d] = A* AΔmn = Hmn Δmn, (7.45) 

where 
. Hmn = A∗ A.

Note that formula (7.45) holds approximately for a nonlinear operator as well: 

. γn= l(mn+1) − l(mn)

. = F*
mn+1

[A(mn+1) − d] − F*
mn

[A(mn) − d]

. ≈ F*
mn

Fmn Δmn = Hmn Δmn, (7.46) 

where .Hmn = F*
mn

Fmn is a Hessian operator. 
It has been demonstrated above that, if we apply the steepest descent method with 

the line search, the subsequent gradient directions are mutually orthogonal 

.
(
l(mn+1), l(mn)

) = 0. (7.47) 

In the framework of the conjugate gradient method, we require that the vectors 
.̃l(mn) introduced above, 

. ̃l(mn) = l(mn) + βn l̃(mn−1),

to be mutually conjugate with operator .H equal to Hessian operator at the current 
iteration. In other words, we require that the following equation holds: 

.

(
l̃(mn), Hmn l̃(mn−1)

)
= 0, (7.48)
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which is equivalent to the condition 

.

(
l̃(mn), γn−1

)
= 0. (7.49) 

Indeed, 

. 

(
l̃(mn), γn−1

)
=

(
l̃(mn), Hmn−1Δmn−1

)
= −k̃n−1

(
l̃(mn), Hmn−1 l̃(mn−1)

)
= 0,

which we took into account Eq. (7.37). The last formula proves Eq. (7.49). 
To simplify our analysis, we will use the notations 

.l(mn) = ln, l̃(mn) = l̃n. (7.50) 

To satisfy condition (7.49), let us calculate 

. 

(
l̃n, γn−1

)
=

(
ln + βn l̃n−1, ln−ln−1

)

. = (ln, ln) − (
ln, ln−1

) + βn

(
l̃n−1, ln

)
− βn

(
l̃n−1, ln−1

)

. = (ln, ln) − βn

(
l̃n−1, ln−1

)
= 0,

because 
.
(
ln, ln−1

) = 0 (7.51) 

and 
.

(
l̃n−1, ln

)
= 0. (7.52) 

Equation (7.51) follows from (7.47), and Eq. (7.52) holds because, in the previous 
step, we moved along the search line in the direction .̃ln−1 to the minimum, so the 
steepest descent direction . ln at the minimum point will be perpendicular to . ̃ln−1.

Also, it can be shown that 

. 

(
l̃n−1, ln−1

)
=

(
ln−1 + βn−1 l̃n−2, ln−1

)

. = (
ln−1, ln−1

) + βn−1

(
l̃n−2, ln−1

)
= (

ln−1, ln−1

)
, (7.53) 

because 
.

(
l̃n−2, ln−1

)
= 0.
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Therefore, 

. (ln, ln) − βn

(
l̃n−1, ln−1

)
= (ln, ln) − βn

(
ln−1, ln−1

) = 0,

and we finally determine . βn :

.βn = (ln, ln)(
ln−1, ln−1

) = (l(mn), l(mn))(
l(mn−1), l(mn−1)

) = ||l(mn)||2||||l(mn−1)
||||2 . (7.54) 

Note that there are several other popular techniques for determining the coeffi-
cients. βn , which I do not describe here. Instead, I refer interested readers to Tarantola’s 
(1987) and Fletcher’s (1995) books. 

The algorithm of the conjugate gradient method described above has been substan-
tiated for a linear inverse problem. For example, in the simplest case, when operator 
.A is a linear operator with a square matrix of order . N , it can be proved that the 
conjugate gradient algorithm will give an exact solution of the inverse problem in. N
iterations (Fletcher, 1995). This algorithm can also be used, similarly to the Newton 
method, for the solution of the nonlinear inverse problem. In general nonlinear cases, 
the number of iterations is not fixed, but the method converges very rapidly. 

7.4 Comparison of Three Main Minimization Methods 

7.4.1 Three Main Methods of Misfit Functional Minimization 

In summary, we can compare three main methods of misfit functional minimization 
introduced above. 

1. The steepest descent method is the simplest minimization technique, with every 
iteration computed by simple matrix multiplication. However, this method requires 
a large number of iterations to reach the minimum due to the complex zigzag-like 
path in the model space and the short length of each iteration step. 

2. The Newton method makes it possible to reach the minimum in one or a few 
large “jumps” from the initial model. However, this is achieved due to the high 
computational cost of finding the inverse Hessian on every iteration. 

3. The conjugate gradient method combines the advantages of both approaches, 
the steepest descent, and the Newton method. It uses matrix multiplication only for 
computing each iteration step. At the same time, it also requires fewer iterations 
than the steepest descent due to the straightened path to the minimum in the model 
space. This is achieved by moving along the conjugate directions instead of mutually 
perpendicular directions of the steepest descent method. 

We will illustrate the points listed above with a very simple example of the solution 
to the nonlinear inverse problem.
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7.4.2 Numerical Example 

We consider the following system of nonlinear equations: 

. x3 + y2 = 5,

.x2 − y = −1, (7.55) 

. − 2x + 2y2 = 6.

This system can be written in operator notations as follows: 

.A(m) = d, (7.56) 

where .m is the vector column containing model parameters, . x and . y, and . d is the 
vector column of the right-hand sides of these equations, which we consider the data, 

.m =
[

x
y

]
, d =

⎡

⎣
5

−1
6

⎤

⎦ . (7.57) 

In Eq. (7.56),. A is a non-linear operator acting on two input parameters,. x and.y, and 
producing three output data values . d (the predicted data values): 

.A(x, y) = A(m) =
⎡

⎣
x3 + y2

x2 − y
−2x + 2y2

⎤

⎦ =
⎡

⎣
5

−1
6

⎤

⎦ . (7.58) 

Our goal is to solve the inverse problem described by operator Eq. (7.56). Because 
the system of Eqs. (7.55) is overdetermined (there are three data values and only two 
unknown parameters), the exact solution may not exist. Instead, we are looking for a 
least-squares solution, which delivers the minimum of the misfit functional .ϕ(x, y), 
defined as the norm square of the residual,.r =A(m) − d, between the predicted and 
observed data: 

.ϕ(m) = ||r||2 = ||A(m) − d||2. (7.59) 

Using Euclidean norm, we can write the expression for the misfit functional in the 
following form: 

.ϕ(x, y) = (x3 + y2 − 5)2 + (x2 − y + 1)2 + (−2x + 2y2 − 6)2. (7.60) 

Thus, the inverse problem is reduced to the following minimization problem: 

.ϕ(m) = ||A(m) − d||2 = min . (7.61)
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We will now apply all three gradient-type methods introduced above to solve this 
problem. 

7.4.2.1 The Steepest Decent Method 

It was shown that the steepest descent method is based on the linearization of the 
nonlinear operator . A in some vicinity of point . m: 

.A(m+δm) ≈ A(m) + Fδm, (7.62) 

where .F is the Fréchet derivative operator at point . m, and .δm is a variation of 
the model parameters. In our case, the linear Fréchet derivative operator can be 
represented by a matrix, .F, which consists of the partial derivatives of data with 
respect to the model parameters: 

.F =

⎡

⎢⎢
⎣

∂d1
∂m1

∂d2
∂m1

∂d3
∂m1

∂d1
∂m2

∂d2
∂m2

∂d3
∂m2

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

∂d1
∂x
∂d2
∂x
∂d3
∂x

∂d1
∂y

∂d2
∂y

∂d3
∂y

⎤

⎥⎥
⎦ . (7.63) 

Taking into account expression (7.58) for operator.A,we calculate the Fréchet deriva-
tive matrix as follows: 

.F(x, y) =

⎡

⎢⎢
⎣

∂
∂x (x3 + y2)
∂
∂x (x2 − y)

∂
∂x (−2x + 2y2)

∂
∂y (x3 + y2)
∂
∂y (x2 − y)

∂
∂y (−2x + 2y2)

⎤

⎥⎥
⎦ =

⎡

⎣
3x2

2x
−2

2y
−1
4y

⎤

⎦ . (7.64) 

Using matrix notations, we can re-write the iterative process as follows: 

.mn+1 = mn + Δmn, (7.65) 

where 
.Δmn = −knFT

n rn, (7.66) 

.rn = A(mn) − d, (7.67) 

and .FT
n is the transposed Fréchet derivative matrix at iteration . n. 

We begin the iterations with a starting point .m0, compute Fréchet derivative at 
this point, find the residual vector using (7.67), find optimal model perturbation 
.Δmn using (7.66), and update model to .m1 using formula (7.65). Then, we repeat 
the process to update the model to .m2, etc.  

Thus, the numerical scheme of the steepest descent method with linear line search 
can be described by the following formulae:
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.

rn = A(mn) − d, (a)

ln = l(mn) = FT
n rn, (b)

gn = Fnln, (c)
kn = ||ln||2/||gn||2, (d)

mn+1 = mn − knln. (e)

(7.68) 

The iterative process (7.68) is terminated when the misfit reaches the given level. ε0 :

.ϕ(mN ) = ||rN ||2 ≤ ε0, (7.69) 

or using percent error: 

.P E = ||rn||
||d|| × 100%. (7.70) 

7.4.2.2 Newton Method 

Newton method aims at solving the inverse problem in one or a very few iterations. 
It is based on the linearization of the nonlinear operator . A in some vicinity of point 
. m: 

.A(m+Δm) ≈ A(m) + FΔm, (7.71) 

where . F is the Fréchet derivative matrix at point . m, and .Δm is a variation of the 
model parameters. In our case, Eq. (7.64) represents the Fréchet derivative matrix, 
. F, of the forward modeling operator. 

Using matrix notations, we can write Newton’s iterative process as follows: 

.mn+1 = mn + Δmn, (7.72) 

where 
.Δmn = − (

FT
n Fn

)−1
FT

n rn, (7.73) 

and 
.rn = A(mn) − d. (7.74) 

We begin the iterations with a starting point .m0, compute Fréchet derivative at 
this point, find the residual vector using (7.74), find optimal model perturbation 
.Δmn using (7.73), and update model to .m1 using formula (7.72). Then, we repeat 
the process to update the model to .m2, etc.  

To improve the convergence of the Newton method, one should apply the line 
search on every step of Newton’s iterations. The algorithm of the Newton method 
with the line search can be summarized as follows:
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.

rn = A(mn) − d, (a)

ln = l(mn) = FT
n rn, (b)

gn = FnH−1
n ln, (c)

kn = [(
H−1

n ln
)
ln

]
/ ||gn||2 , (d)

mn+1 = mn − knH−1
n ln, (e)

(7.75) 

where .Hn = FT
n Fn is the Hessian matrix. 

The iterative process (7.75) is terminated when the misfit reaches the given level 
. ε0 :

.ϕ(mN ) = ||rN ||2 ≤ ε0. (7.76) 

7.4.2.3 The Conjugate Gradient Method 

The algorithm of the conjugate gradient method introduced in this chapter can be 
summarized as follows: 

.

rn = A(mn) − d, (a)

ln = l(mn) = FT
n rn, (b)

βn = ||ln||2 / ||ln−1||2 , (c)
l̃n= ln+βn l̃n−1, l̃0 = l0, (d)

 ~kn =
(
l̃Tn ln

)
/

||||
||Fn l̃n

||||
||
2
, (e)

mn+1 = mn − ~kn l̃n. ( f )

(7.77) 

The iterative process (7.77) is terminated when the misfit reaches the given level . ε0
(Eq. (7.76)). 

We will also use the conjugate gradient method with linear line search and step 
length checks to ensure a decrease in the misfit functional at every iteration. To 
this end, we perform conjugate gradient minimization as outlined above, but with 
an added condition. Since this line search is based on a linear approximation to the 
nonlinear problem, we may encounter a computed optimal step length that overshoots 
the minimum and actually will increase the misfit functional at that iteration. The 
solution is to simply check the misfit of the new model parameters, and if it increased, 
decrease the step length by some factor, .k f ac, and repeat the calculations: 

. mn+1 = mn − k f ac ~kn l̃n.

The results of solving inverse problem (7.56) by all three gradient-type methods 
are shown in Figs. 7.2 and 7.3. These figures present the paths of the iterations in the 
model space and the convergent plots, respectively. Figure 7.2 shows the map of the 
misfit functional calculated as percent errors according to formula (7.70). The bold 
black star indicates the position of the starting point of the iteration process, while 
the red dot shows the minimum with the exact solution equal to
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Fig. 7.2 Map of the misfit functional calculated as percent errors according to formula (7.70). The 
bold black star indicates the position of the starting point of the iteration process, while the red dot 
is the minimum location. The green line corresponds to the iteration steps of the steepest descent 
method; the brown dashed line corresponds to the conjugate gradient iterations, and the red line 
shows the path of Newton’s iterations 

Fig. 7.3 Plots of the misfit functional as percent errors versus the iteration number produced by 
steepest descent (green line), Newton (red line), and the conjugate gradient (brown line) methods
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. xmin = 1; ymin = 2.

The green line corresponds to the iteration steps of the steepest descent method; the 
brown dashed line corresponds to the conjugate gradient iterations, and the red line 
shows the path of Newton’s iterations. We can clearly see the complicated zigzag 
path of the steepest descent method to the minimum. The initial steps of both the 
steepest descent and conjugate gradient methods are the same, as seen from the 
dashed green-brown segment of the iteration paths in this figure. However, after a 
couple of iterations, the conjugate gradient path is straightened and goes directly to 
the minimum. The first iteration of the Newton method brings the solution very close 
to the minimum, and the second iteration completes the job by going straight to the 
minimum. 

The convergence plots also illustrate this behavior of the gradient-type methods. 
Figure 7.3 shows the plots of the misfit functional calculated as percent errors accord-
ing to formula  (7.70) versus the iteration number produced by steepest descent (green 
line), Newton (red line), and the conjugate gradient (brown line) methods, respec-
tively. One can see that the steepest descent method requires almost ten times more 
iterations to reach the minimum than the Newton method. At the same time, the 
number of the conjugate gradient iterations is somewhat between the Newton and 
steepest descent method. 

Thus, the Newton method is the fastest, usually requiring a few iterations to solve 
the inverse problem. The downside of the Newton method is the computational cost 
involved in determining the inverse Hessian matrix.H−1

n . Therefore, considering that 
the cost of every iteration of the conjugate gradient method is practically the same 
as that of the steepest descent method, this is the method of choice in solving inverse 
problems. 

7.5 The Ill-Posed Nonlinear Discrete Inverse Problem 

We now consider again the ill-posed discrete problem, which we have discussed in 
Sect. 5.2.1. The discrete inverse problem can be written in the form of the following 
equation: 

.d = A(m), (7.78) 

where . A is a nonlinear discrete forward operator, . d is the .N -dimensional vector of 
observed data, and .m is the .L-dimensional unknown vector of model parameters: 

. 
d = [d1, d2, d3, ..., dN ]T ,

m = [m1, m2, m3, ..., mL ]T .

For simplicity, we assume within this section that all parameters are real numbers. 
However, the same technique with a bit of modification can also be applied to complex 
parameters.
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In this and the following sections, we also consider that inverse problem (7.78) is  
ill-posed. Therefore, we should implement the gradient-type methods in the frame-
work of regularization theory. For a regularized solution of a nonlinear inverse prob-
lem, we introduce a parametric functional, similar to the one considered in Sect. 5.2.1: 

. Pα(m,d) = ||WdA(m) − Wdd||2 + α||Wmm − Wmmapr||2

. = (WdA(m) − Wdd)T (WdA(m) − Wdd)

. + α(Wmm − Wmmapr )
T (Wmm − Wmmapr ), (7.79) 

where.Wd and.Wm are some weighting matrices of data and model parameters,. mapr

is an a priori model, and the upper script “. T ” denotes transposition, as usual. 
The methods of introducing .Wd and .Wm were discussed above in Chap. 5 for 

linear inverse problems. These methods can be naturally extended to the case of 
nonlinear problems. 

7.5.1 Integrated Sensitivity of the Nonlinear Problem 

In order to analyze the sensitivity of the data to the perturbation of one specific model 
parameter, .ml, we apply the variational operator with respect to this parameter, . δl to 
both sides of Eq. (7.78): 

.δld = δlA(m) = Fδlm, l = 1, 2, ..., L , (7.80) 

where . F is the Fréchet derivative matrix of the nonlinear discrete forward modeling 
operator, .A; .δlm is the vector column with only one nonzero component, . δml :

.δlm = [0, 0, δml , 0...0]
T . (7.81) 

The norm square of the perturbed vector of the data can be calculated as follows: 

. ||δld||2 = (δld)T δld = (Fδlm)T Fδlm = (δlm)T
(
FTF

)
δlm. (7.82) 

According to definition of vector .δlm (Eq. (7.81)), only diagonal elements of the 
.[L × L] square matrix.

(
FTF

)
are involved in multiplication with.(δlm)T and.δlm in 

Eq. (7.82). Therefore, we can write Eq. (7.82) in equivalent form: 

. ||δld||2 = (δlm)T diag
(
FTF

)
δlm = (δlm)T S2δlm, (7.83) 

where 
.S = diag

(
FTF

)1/2
. (7.84)
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A straightforward matrix multiplication shows that 

. (δlm)T S2δlm =S2
l |δml |2 ,

where .Sl is the .l-th diagonal element of matrix . S: 

. S =

⎡

⎢⎢⎢
⎣

S1 0 ... 0
0 S2 ... 0
...

...
. . .

...

0 0 ... SL

⎤

⎥⎥⎥
⎦

.

Therefore, the norm of the perturbed vector of the data can be calculated as follows: 

. ||δld|| = Sl |δml | , (7.85) 

and the diagonal elements of matrix. S represent the integrated sensitivity of the data 
to the parameter .ml as the ratio 

.Sl = ||δld||
|δmk | . (7.86) 

As a result of this analysis, we can expand to nonlinear problems the definition of 
integrated sensitivity originally introduced for linear inverse problems, as follows: 

Definition 7.2 The diagonal matrix with the diagonal elements equal to. Sk = ||δd|| /

δmk is called an integrated sensitivity matrix for nonlinear problem: 

.S = diag

⎛

⎝
√∑

i

(Fik)
2

⎞

⎠ = diag
(
FTF

)1/2
. (7.87) 

In other words, the integrated sensitivity matrix is formed by the norms of the 
columns of the Fréchet derivative matrix .F. Note that, for complex data and model 
parameters, the expression (7.84) for the diagonal matrix of integrated sensitivity 
takes the following form: 

.S = diag
(
F∗F

)1/2
. (7.88) 

We can recall that the product of the complex conjugate Fréchet derivative matrix 
by itself is proportional to the Hessian matrix: 

.F∗F = 1

2
H.
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Therefore, expression for the integrated sensitivity matrix takes the following form: 

.S = 1
2
diag (H)1/2 . (7.89) 

7.5.2 Weighting Matrices of Model Parameters and Data 

The basic idea of introducing a weighting matrix, .Wm, for the model parameters is 
as follows. We identify this matrix as the diagonal integrated sensitivity matrix 

Thus, the weights are selected to be equal to the sensitivities: 

.Wm = S. (7.90) 

We can now introduce the weighted model parameters: 

.mw = Wmm. (7.91) 

Using these notations, we can rewrite the inverse problem Eq. (7.78) as follows: 

.d = A
(
W−1

m Wmm
) = Aw (mw ) , (7.92) 

where .Aw is a weighted forward modeling operator. 
The variation of the weighted operator is defined as follows: 

.δAw (mw ) = Fwδmw = FwWmδm, (7.93) 

where .Fw is Fréchet derivative of .Aw . 
At the same time, according to expression (7.92), 

.δAw (mw ) = δA
(
W−1

m Wmm
) = FW−1

m Wmδm, (7.94) 

where . F is Fréchet derivative of the original operator, . A :

. δA (m) = Fδm.

Comparing Eqs. (7.93) and (7.94), we obtain at once a simple relationship between the 
Fréchet derivative matrices of the weighted and original forward modeling operators: 

.Fw = FW−1
m . (7.95)
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Now we perturb the data with respect to one specific weighted parameter .mw
k : 

. δkdi = Fw
ik δmw

k ,

and calculate a new integrated sensitivity .Sw
k of the data to the weighted parameter 

.mw
k as the ratio 

. Sw
k = ||δd||

δmw
k

=
√∑

i

(
Fw

ik

)2
δmw

k

δmw
k

=
√∑

i

(
Fw

ik

)2

. =
√∑

i

(
Fik W −1

k

)2 = W −1
k

√∑

i

(Fik)
2 = W −1

k Sk = 1, (7.96) 

where we took into account Eq. (7.95). 
Formula (7.96) shows that the new matrix of the integrated sensitivity.Sw is identity 

matrix: 
. Sw = I.

Therefore, data are uniformly sensitive to the new weighted model parameters! 
Note that the corresponding weighted stabilizing functional takes the form 

. sw (m) = (m − mapr )
TW2

m(m − mapr )

. = (m − mapr )
TS2(m − mapr ). (7.97) 

It imposes a stronger penalty on departure from the a priori model for those parameters 
that contribute more significantly to the data. 

Thus, the model weighting results in practically equal resolution of the inversion 
with respect to different parameters of the model. 

In a similar way, we can define the diagonal data weighting matrix, formed by the 
norms of the rows of the Fréchet derivative matrix . F :

.Wd = diag

⎛

⎝
√∑

k

(Fik)
2

⎞

⎠ = diag
(
FFT

)1/2
. (7.98) 

These weights make normalized data less dependent on the specific parameters 
of observations (for example, frequency and distance from the anomalous domain), 
which improves the resolution of the inverse method.
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7.6 Steepest Descent Method for Nonlinear Regularized 
Least-Squares Inversion 

7.6.1 Descent Method of Parametric Functional 
Minimization 

According to the basic principles of the regularization method, we have to find the 
model .mα , a quasi-solution of the inverse problem, which minimizes the parametric 
functional: 

. Pα(m,d) = min .

We consider an iterative algorithm for parametric functional minimization. It is rea-
sonable to build this algorithm on the idea that parametric functional decreases at 
every iteration .mn . In other words, we impose the descent condition as follows; 

.Pα(mn+1) < Pα(mn) for all n ≥ 0. (7.99) 

A method that imposes this condition is called a descent method. The question is 
how to find iterations .{mn} that satisfy the descent condition. To solve the problem 
of minimization of the parametric functional using the steepest descent method, let 
us calculate the first variation of .Pα(m,d), assuming that the operator .A(m) is 
differentiable, so that 

.δA(m) = Fmδm, (7.100) 

where .Fm is the Fréchet derivative matrix of . A. 
Thus, we have 

. δPα(m,d) = 2(WdFmδm)T (WdA(m) − Wdd) +

. + 2α(Wmδm)T (Wmm − Wmmapr ),

or after some algebra 

.δPα(m,d) = 2(δm)TFT
mW

2
d(A(m) − d) + 2α(δm)TW2

m(m − mapr ), (7.101) 

where we assume, for simplicity, that the matrices .Wd and .Wm are diagonal. 
In order to satisfy the descent condition (7.99), we select 

. δm = −kαlα(m), (7.102) 

where.kα is some positive real number (length of a step) and.lα(m) is a column matrix 
defining the direction of the steepest ascent of the parametric functional:
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.lα(m) = FT
mW

2
d(A(m) − d) + αW2

m(m − mapr ). (7.103) 

Certainly, by substituting Eqs. (7.102) and (7.103) into (7.101), we have 

.δPα(m,d) = −2kα(lα(m), lα(m)) < 0, (7.104) 

so .lα(m) describes the “direction” of increasing (ascent) of the functional .φ(m), 
because it is opposite to the descent direction, . δm.

An iterative process of the method is constructed according to the following 
formula: 

. mn+1 = mn + δm = mn − kα
n l

α(mn),

where coefficient .kα
n is defined by a line search according to the condition (Zhdanov 

2002): 

.Pα(mn+1) = Pα
(
mn − kα

n l
α(mn)

) = Φα(kα
n ) = min . (7.105) 

In particular, applying the linear line search, we find that the minimum of the 
parametric functional is reached if .kα

n is determined by the following formula: 

. kα
n = ||lα(mn)||2||||Fmn lα(mn)

||||2 + α ||W lα(mn)||2
.

7.6.2 Numerical Schemes of the Regularized Steepest 
Descent Method 

The algorithm of the regularized steepest descent method can be summarized as 
follows: 

.

rn = A(mn) − d, (a)

lαn= lα(mn) =F*
mn
rn+αW *W (m − mapr ), (b)

kα
n = ||||lαn

||||2
/
[||||Fmn l

α
n

||||2 + α
||||W lαn

||||2
]
, (c)

mn+1 = mn − kα
n l

α
n . (d)

(7.106) 

The iterative process (7.106) is terminated at .n = N when the parametric functional 
reaches the given level . ε0 :

.Pα(mN ) ≤ ε0.
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7.7 Newton Method of Nonlinear Regularized 
Least-Squares Inversion 

7.7.1 Optimal Newton Step 

The main idea of the Newton method is to try to solve the problem of minimization 
in one step: 

.m1 = m0 + Δm. (7.107) 

Thus, instead of moving downhill along a long path formed by mutually orthogonal 
directions of the steepest descent, one can try to reach the minimum of the misfit 
functional along one direction. To determine this specific direction,.Δm, let us write 
the linearized parametric functional 

. Pα(m1,d) = Pα(m0+Δm,d)

. = (WdA(m0) + WdFm0Δm − Wdd)T (WdA(m0) + WdFm0Δm − Wdd)

. + α(Wmm0 + WmΔm − Wmmapr )
T (Wmm0 + WmΔm − Wmmapr ). (7.108) 

The first variation of the parametric functional is equal to 

. δΔmPα(m1,d) = δΔmPα(m0+Δm,d)

. = (δΔm)T
[
FT

m0
W2

d

(
A(m0) + Fm0Δm − d

) + αW2
m(m0 + Δm − mapr )

]
.

It is evident that the necessary condition for the minimum of the parametric 
functional, 

. δPα(m1,d) = 0,

is satisfied only if 

. FT
m0
W2

d

(
A(m0) + Fm0Δm − d

) + αW2
m(m0 + Δm − mapr ) = 0.

From the last equation, taking into consideration Eq. (7.103) for the regularized 
steepest ascent direction, we obtain the following formula for the optimal Newton 
step: 

. Δm = −2H−1
α,m0

lα(mn),

where 
. Hα,m0 = 2

(
FT

m0
W2

dFm0 + αW2
m

)

is the regularized quasi-Hessian matrix.
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Thus, the Newton algorithm of the nonlinear regularized least-squares inversion 
can be expressed by the following formula 

. mn+1 = mn − 2H−1
α,mn

lα(mn),

where 
. Hα,mn = 2

(
FT

mn
W2

dFmn + αW2
m

)
.

7.7.2 Numerical Scheme of the Newton Method 

The algorithm of the Newton method for a discrete inverse problem can be summa-
rized as follows: 

.

rn = A(mn) − d, (a)

lαn
n = lαn (mn) = FT

mn
W2

drn + αnW2
m(mn−mapr ), (b)

Hαn ,mn = 2
(
FT

mn
W2

dFmn + αnW2
m

)
, (c)

mn+1 = mn − 2H−1
αn ,mn

lαn
n (mn), (d)

(7.109) 

where.αn are the subsequent values of the regularization parameter, updated on each 
iteration. This method is called the Newton method with adaptive regularization. The 
concept of adaptive regularization is discussed below in Sect. 7.8.2. 

The iterative process (7.109) is terminated when the misfit reaches the given level 
. ε0: 

. φ(mN ) = ||rN ||2 ≤ ε0.

7.8 Nonlinear Least-Squares Inversion by the Conjugate 
Gradient Method 

7.8.1 Regularized Conjugate Gradient Directions 

The conjugate gradient method is based on the same ideas as the steepest descent, 
and the iteration process is very similar to the last one: 

.mn+1= mn + δmn= mn − k̃α
n
 ~lα(mn), (7.110) 

where 
. δmn = −k̃α

n
 ~lα(mn).

However, the “directions” of ascent . ~lα(mn) are selected differently. In the first step, 
we use the “direction” of the steepest ascent:
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.  ~lα(m0) = lα(m0).

In the next step, the “direction” of ascent is a linear combination of the steepest 
ascent at this step and the “direction” of ascent .̃lα(m0) on the previous step: 

. ̃lα(m1) = lα(m1)+β1 l̃α(m0).

In the .n-th step 
. ~lα(mn+1) = lα(mn+1) + βα

n+1
 ~lα(mn). (7.111) 

The regularized steepest ascent directions are determined according to the formula 
for the least-squares method: 

.lα(mn) = FT
mn
W2

d(A(mn) − d) + αW2
mn

(mn−mapr ). (7.112) 

Determination of the length of iteration step, a coefficient. ~kα
n , can be based on the 

linear or parabolic line search: 

. Pα(mn+1) = Pα(mn − ~kα
n
 ~lα(mn)) = f ( ~kα

n ) = min .

Solution of this minimization problem gives the following best estimation for the 
length of the step using a linear line search: 

.  ~kα
n =  ~lαT (mn)lα(mn)

 ~lαT (mn)
[(
FT

mn
W2

dFmn + αW2
m

) ~lα(mn)
]

. =  ~lαT (mn)lα(mn)
||||WdFmn

 ~lα(mn)
||||2 + α

||||Wm ~lα(mn)
||||2 . (7.113) 

One can also use a parabolic line search (Fletcher, 1995) to improve the convergence 
rate of the RCG method. 

The CG method requires that the vectors. ~lα(mn) introduced above will be mutually 
conjugate. This requirement is fulfilled if the coefficients .βn are determined by the 
formula similar to Eq. (7.54) of the misfit functional minimization: 

.βα
n+1 = ||lα(mn+1)||2

||lα(mn)||2 . (7.114) 

Thus, vectors . ~lα(mn) represent the regularized conjugate gradient directions. Using 
Eqs. (7.110), (7.111), (7.113), and (7.114), we can obtain .m iteratively.
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7.8.2 Numerical Scheme of the Regularized Conjugate 
Gradient Method 

In this section, we first consider a method of selecting the parameter.α. The regular-
ization parameter. α describes a trade-off between the best fitting and most reasonable 
stabilization. In a case when . α is selected to be too small, the minimization of the 
parametric functional .Pα(m) is equivalent to the minimization of the misfit func-
tional.φ(m), and therefore we have no regularization, which can result in an unstable 
incorrect solution. When. α is too large, the minimization of the parametric functional 
.Pα(m) is equivalent to the minimization of the stabilizing functional .s(m), which 
will force the solution to be closer to the a priori model. Ultimately, we would expect 
the final model to be exactly like the a priori model, while the observed data are 
totally ignored in the inversion. Thus, the critical question in the regularized solution 
of an inverse problem is the selection of the optimal regularization parameter . α.

The basic principles used for determining the regularization parameter . α were 
discussed in the previous sections of the book. We introduced in Chap. 4 a simple  
numerical method to determine parameter . α. Consider for example the progression 
of numbers 

.αk = α1q
k−1; k = 1, 2, 3.....; q > 0. (7.115) 

The first iteration of the steepest descent or any other gradient method is run usually 
with.α0 = 0. The initial value of the regularization parameter,.α1, is determined after 
the first iteration, .m1, as a ratio: 

. α1 = ||WdA(m1) − Wdd||2
||Wmm1 − Wmmapr||2 .

In this way, we have an approximate balance between the misfit and stabilizing 
functional. For any number.αk we can find an element.mαk , minimizing.Pαk (m), and 
calculate the misfit .|| A

(
mαk

) − d ||2. The optimal value of the parameter . α is the 
number .αk0, for  which we have  

. || A
(
mαk0

) − d ||2= δ, (7.116) 

where . δ is the level of noise in the observed data. The equality (7.116) is  the misfit 
condition . This algorithm, as well as the L-curve method (see Chap. 4), has clear 
practical limitations, because it requires a complete numerical solution of the inverse 
problem for each value of the regularization parameter . αk .

An alternative approach is based on the simple idea, which we have already 
discussed above, that the regularization parameter . α can be updated in the process 
of the iterative inversion. For example, one can use the following algorithm for the 
RCG method: 

.̃lαn+1(mn+1) = lαn+1(mn+1) + βn+1 l̃αn (mn),
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where .αn are the subsequent values of the regularization parameter. This method is 
called the adaptive regularization method. In order to avoid divergence, we begin an 
iteration from a value of.α1, which can be obtained as a ratio of the misfit functional 
and the stabilizer for an initial model, then reduce.αn according to formula (7.115) on  
each subsequent iteration and continuously iterate until the misfit condition (7.116) 
is reached. 

The algorithm of the regularized conjugate gradient method can be summarized 
as follows: 

.

rn = A(mn) − d, (a)

lαn
n = lαn (mn) = FT

mn
W2

drn + αnW2
m(mn−mapr ), (b)

βαn
n = ||||lαn

n

||||2
/
||||lαn−1

n−1

||||2
, l̃αn

n = lαn
n +βαn

n l̃αn−1
n−1 , l̃α0

0 = lα0
0 , (c)

 ~kαn
n = ( ~lαn T

n lαn
n

)
/
{||||WdFmn

 ~lαn
n

||||2 + α
||||Wm ~lαn

n

||||2
}

, (d)

mn+1 = mn − ~kαn
n l̃αn

n , (e)

(7.117) 

where .αn are the subsequent values of the regularization parameter. The iterative 
process (7.117) is terminated when the misfit reaches the given level . ε0: 

. φ(mN ) = ||rN ||2 ≤ ε0.

This method is called the conjugate gradient method with adaptive regularization. 
I should note that the same comparison we made above for the gradient-type 

methods as applied to misfit functional minimization holds for the case of parametric 
functional minimization as well. This means that the convergence of the steepest 
descent method is usually slower than that of the conjugate gradient method because 
the former requires many short iteration steps to reach the minimum. The Newton 
method converges rapidly with every iteration making a big “jump” to a minimum; 
however, every step of the Newton method is computationally very expensive due 
to the need for the large Hessian matrix inversion. The conjugate gradient method 
combines the simplicity of iterative steps of the steepest descent technique with a 
relatively small number of iterations. Therefore, the conjugate gradient method is 
the most computationally efficient technique for solving large-scale ill-posed inverse 
problems. 

In the conclusion of this chapter, I would like to note that both the gradient-type 
optimization algorithms and the Monte Carlo-type methods discussed in Chap. 6 have 
their advantages and disadvantages. The gradient-type methods are characterized by 
relatively rapid convergence, but they have difficulties in the case of multiple local 
minima. The Monte Carlo-type methods converge very slowly, but they can find a 
global minimum even for the functionals with multiple local minima. However, it 
is possible to consider a hybrid approach to minimization by combining the Monte 
Carlo-type methods at the initial phase of the iterative inversion to overcome the 
presence of local minima with the gradient-type methods at the final stage for rapid 
convergence to the global minimum. The hybrid approach may be useful in many 
practical applications where the individual techniques are inefficient.



7.8 Nonlinear Least-Squares Inversion by the Conjugate Gradient Method 159

References and Recommended Reading to this Chapter 

Fletcher R (1955) Practical methods of optimization. John Willey & Sons, Chichester-New-York, 
pp. 436 

Press WH, Flannery BP, Teukolsky SA, Vettering WT (1987) Numerical recipes, The art of 
scientific computing, vols. I and II. Cambridge University Press, Cambridge, pp. 1447 

Zhdanov MS (1993) Tutorial: regularization in inversion theory. CWP-136, Colorado School of 
Mines, pp. 47 

Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier, Ams-
terdam, London, New York, Tokyo, pp. 628 

Zhdanov MS (2015) Inverse theory and applications in geophysics. Elsevier, Amsterdam, Lon-

don, New York, Tokyo, pp. 704



Part III 
Joint Inversion of Multiphysics Data



Chapter 8 
Joint Inversion Based on Analytical 
and Statistical Relationships Between 
Different Physical Properties 

Abstract This chapter discusses the general concepts of joint inversion of multi-
physics data. The mathematical formulation of the multimodal inverse problem is 
provided, which serves as a basis for joint inversion methods introduced in the book. 
We consider the cases of joint inversion when the known functional relationships 
exist between different model parameters. We also examine the cases of inversion of 
multiphysics data with different resolution capabilities. The principles of subspace 
representation of the model parameters and subspace inversion with resampling are 
also introduced. 

Keywords Multiphysics data · Joint inversion · Subspace representation ·
Resampling 

In many applications, researchers collect different types of data representing the same 
object of investigation. For example, in medical imaging, various imaging techniques, 
e.g., X-ray, ultrasound, magnetic resonance imaging (MRI), etc., are used to study 
the internal organs of the human body. In geophysical applications, multiple physical 
field data, e.g., gravity, magnetic, electromagnetic, seismic, etc., are collected to study 
the earth’s internal structure. In astronomy, optical and radiotelescopes are used to 
study electromagnetic radiation from the stars and galactic, as well as observations 
of neutrinos, cosmic rays, or gravitational waves. This list of applications can be 
expanded to many other fields of science and engineering. 

The common feature of all of these applications is that the multiphysics data are 
used to study the same object of interest while providing information about different 
physical properties of the target. The joint inversion methods provide a mathematical 
framework for integrated analysis of multiphysics data which can be applied to all 
these applications. 

As an illustration, we present the general concepts of joint inversion considering 
geophysical applications following Zhdanov (2015). Different geophysical fields 
provide information about different physical properties of rock formations. In many 
cases, this information is mutually complementary, which makes it natural to con-
sider a joint inversion of various geophysical data. There are different approaches to 
joint inversion (e.g., Dell’Aversana 2013) In a case where the corresponding model 
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parameters are identical or mutually correlated, the joint inversion can explore the 
existence of this correlation (e.g., Jupp and Vozoff 1975; Hoversten et al. 2003, 
2006). In a case where the model parameters are not correlated but nevertheless have 
similar geometrical features, the joint inversion can be based on structure-coupled 
constraints. This approach has been introduced in several publications (e.g., Fregoso 
and Gallardo 2009; Gallardo 2007; Gallardo and Meju 2003, 2004, 2007, 2011; Haber 
and Oldenburg 1997; Haber and Modersitzki 2007; Hu et al. 2009; Meju 2011). It 
is based on minimizing the value of the cross-gradients between different model 
parameters. This approach has been widely used for joint inversion of geophysical 
data (e.g., Colombo and DeStefano 2007;Hu et al. 2009; Jegenet al. 2009; De Stefano 
et al. 2011; Moorkamp et al. 2011). Note that, in practical applications, the empir-
ical or statistical correlations between different physical properties may exist, but 
their specific form may be unknown. In addition, there could be both analytical and 
structural correlations between different attributes of the model parameters. Hence, 
there is a need for a method of joint inversion, which would not require a priori 
knowledge about specific empirical or statistical relationships between the different 
model parameters and/or their attributes. 

In the works by Zhdanov et al. (2012a), and Zhdanov (2015), a new approach 
to the joint inversion of multimodal data using Gramian constraints was introduced. 
The Gramians are computed as determinants of the corresponding Gram matrices of 
the multimodal model parameters and/or their different attributes (see Sect. 3.8). The 
Gramian provides a measure of the correlation between the different model param-
eters or their attributes. By imposing the additional requirement of the minimum of 
the Gramian in regularized inversion, we obtain multimodal inverse solutions with 
enhanced correlations between the different model parameters or their attributes (see 
Chap. 12). 

In this and the following chapters, we will subsequently describe the methods of 
joint inversion based on analytical and statistical relationships, structural similarity, 
joint focusing, minimum entropy, and Gramian constraints. 

We begin our discussion with the joint inversion based on functional relationships 
between different model parameters. 

8.1 Formulation of the Multimodal Inverse Problem 

Considering inverse problems for multiple physical data sets, we can describe these 
problems by the operator relationships as follows: 

.d(i) = A(i)(m(i)), i = 1, 2, 3, ..., N , (8.1) 

where, in a general case, .A(i)
.(i = 1, 2, 3, ..., N ) are nonlinear operators, . d(i)

.(i = 1, 2, 3, ..., N ) are different observed data sets (which may have different physi-
cal natures), and.m(i)

.(i = 1, 2, 3, ..., N ) are the unknown sets of model parameters.
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Note that, in a general case, various model parameters may have different physical 
dimensions (e.g., density is measured in g/cm. 

3, resistivity is measured in Ohm-m, 
etc.). Therefore, it is convenient to introduce the dimensionless weighted model 
parameters, .m̃(i), defined as follows: 

.m̃(i) = W(i)
m m(i), i = 1, 2, 3, ..., N , (8.2) 

where .W(i)
m are the corresponding linear operators of the model weighting. 

We assume that the dimensionless weighted model parameters are described by 
integrable functions of a radius-vector .r = (x, y, z) defined within some volume 
.V of a 3D space. The set of these functions forms a complex Hilbert space of the 
model parameters, .M, with a .L2 norm, defined by the corresponding inner product: 

.
(

m̃(i), m̃( j)
)

M =
 

V
m̃(i) (r) m̃( j)∗ (r) dv,

||

||m̃(i)
||

||

2

M = (

m̃(i), m̃(i)
)

M , (8.3) 

where asterisk “*” denotes the complex conjugate value. 
Similarly, different data sets, as a rule, have different physical dimensions as well. 

Therefore, it is convenient to consider dimensionless weighted data, .˜d(i), defined as 
follows: 

.˜d(i) = W(i)
d d(i), i = 1, 2, 3, ..., N , (8.4) 

where .W(i)
d are the corresponding linear operators of the data weighting. 

We also assume that the weighted data belong to some complex Hilbert space of 
the data, . D, with the .L2 norm, defined by the corresponding inner product: 

.
(

˜d(i), ˜d( j)
)

D =
 

S

˜d(i) (r) ˜d( j)∗ (r) ds,
||

||d(i)
||

||

2

D = (

˜d(i), ˜d(i)
)

D , (8.5) 

where . S is an observation surface. 
The multimodal inverse problem is formulated as a solution of the system of 

Eq. (8.1) with respect to model parameters .m(i)
. (i = 1, 2, 3, ..., N ) .

8.2 Joint Inversion Based on Functional Relationships 
Between Different Model Parameters 

A priori functional relationships may exist between different model parameters in 
some cases. For example, let us assume that the relationship between all model 
parameters can be described by the following constraint equation: 

.C
(

m̃(1), m̃(2), ....,m̃(n)
) = 0, (8.6)
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where .C is some known operator defined on a set of functions .m̃(1),m̃(2), ....,m̃(n), 
from the model space, .M, with the values in the model space,.M, as well. Note that, 
in a general case, operator . C is a nonlinear differentiable operator. 

For the solution of nonlinear inverse problem (8.1), we introduce the following 
parametric functional with the constraint stabilizers: 

. Pα
C (m̃(1), m̃(2), ...., m̃(n)) =

N
∑

i=1

||

||˜A(i)(m̃(i)) −˜d(i)
||

||

2

D +

. + αc1

n
∑

i=1

S(i)
MN , MS, MGS + αc2SC(m̃(1),m̃(2), ....,m̃(n)), (8.7) 

where .˜A(i)(m̃(i)) are the weighted predicted data, 

. ˜A(i)(m̃(i)) = W(i)
d A(i)(m̃(i));

. α is the regularization parameter; and.c1 and.c2 are the weighting coefficients deter-
mining the weights of the different stabilizers in the parametric functional. 

The terms.S(i)
MN , S(i)

MS, and.S
(i)
MGS are the stabilizing functionals, based on minimum 

norm, minimum support, and minimum gradient support constraints, respectively (for 
definitions and properties see Sect. 4.3 above): 

. S(i)
MN = ||

||m̃(i)−m̃(i)
apr

||

||

2

M
=

 

V

(

m̃(i)−m̃(i)
apr

)2
dv,

.S(i)
MS =

 

V

(

m̃(i)−m̃(i)
apr

)2

(

m̃(i)−m̃(i)
apr

)2 + e2
dv, (8.8) 

and 

.S(i)
MGS =

 

V

∇m̃(i) · ∇m̃(i)

∇m̃(i) · ∇m̃(i) + e2
dv, (8.9) 

where . e is a focusing parameter. 
The term.SC is the constraint stabilizing functional, which enforces the parametric 

relationship (8.6): 

.SC(m̃(1),m̃(2), ....,m̃(n)) = ||

||C(m̃(1),m̃(2), ....,m̃(n))
||

||

2

M . (8.10)
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We have demonstrated in Chap. 4 that the regularized solution of the inverse 
problem (8.1) can be obtained by minimization of the parametric functional (8.7): 

.Pα
C (m̃(1), m̃(2), ...., m̃(n)) = min . (8.11) 

In order to solve the problem of minimization of the parametric functional with 
the constraint stabilizer, we calculate the first variation 

. δPα
C (m̃(1), m̃(2), ...., m̃(n))

. = 2
n
∑

i=1

(

δ˜A(i)(m̃(i)), ˜A(i)(m̃(i))−˜d(i)
)

D +

. + 2α

[

c1

n
∑

i=1

δS(i)
MN , MS, MGS + c2(δC,C)M

]

. (8.12) 

Taking into consideration that operators.˜A(i) and. C are differentiable, we can write 

.δ˜A(i)(m̃(i)) =˜F(i)
m̃ δm̃(i), (8.13) 

and 

.δC =
n
∑

i=1

FC
m̃(i) δm̃(i), (8.14) 

where .˜F(i)
m̃ is a linear operator of the Fréchet derivative of .˜A(i), and .FC

m̃(i) are linear 
operators of the Fréchet derivative of . C with respect to .m̃(i). 

It can be demonstrated that (Zhdanov 2015) 

. δS(i)
MN , MS, MGS = 2

(

δm̃(i), l(i)MN , MS, MGS

)

,

where vectors.l(i)MN , MS, MGS are the directions of the steepest ascent for the stabilizing 
functionals based on minimum norm, minimum support, and minimum gradient 
support constraints, respectively. These vectors represent the discrete analog of the 
corresponding gradient direction functions, .l(i)MN , l(i)MS, and .l(i)MGS: 

.l(i)MN =
[

l(i)MN

]

, l(i)MS =
[

l(i)MS

]

, l(i)MGS =
[

l(i)MGS

]

, (8.15) 

where 
.l(i)MN = (

m̃(i)−m̃(i)
apr

) ; (8.16)
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.l(i)MS = e2
(

m̃(i)−m̃(i)
apr

)

[

(

m̃(i)−m̃(i)
apr

)2 + e2
]2 ; (8.17) 

.l(i)MGS = ∇ · e2∇m̃(i)

(∇m̃(i) · ∇m̃(i) + e2
)2 . (8.18) 

Substituting expressions (8.13) through (8.18) into formula (8.12), we obtain 

. δPα(m̃(1), m̃(2), ...., m̃(n)) =

. 2
n
∑

i=1

(

δm̃(i),
[

˜F(i)⋆
m̃

(

˜A(i)(m̃(i))−˜d(i)
)+

. +α
(

c1l
(i)
MN , MS, MGS + c2FC⋆

m̃(i)C
)])

M
, (8.19) 

where .˜F(i)⋆
m̃ and .FC⋆

m̃(i) are the adjoint Fréchet derivative operators. 
Let us select 

.δm̃(i) = −kαlα(i)
C (m̃(1), m̃(2), ...., m̃(n)), (8.20) 

where.kα is some positive real number, and.lα(i)
C (m̃(1), m̃(2), ...., m̃(n)) is the direction 

of the steepest ascent of the functional .Pα
C as a function of model parameter . m̃(i)

only, 

.lα(i)
C =˜F(i)⋆

m̃

(

˜A(i)(m̃(i))−˜d(i)
) + α

(

c1l
(i)
MN , MS, MGS + c2FC⋆

m̃(i)C
)

. (8.21) 

Then 

.δPα
C (m̃(1), m̃(2), ...., m̃(n)) = −2kα

n
∑

i=1

||

||

||lα(i)
C (m̃(1), m̃(2), ...., m̃(n))

||

||

||

2

M
. (8.22) 

The last expression confirms that the selection of the perturbations of the model 
parameters based on formula (8.20) ensures the decrease of the parametric functional. 

We can construct an iterative process for the regularized conjugate gradient (RCG) 
algorithm of solving minimization problem (8.11), which can be summarized as 
follows:
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.

r̃k = ˜A(m̃k) −˜d, lαk= lα(m̃k) (a)

βα
k = ||

||lαk
||

||

2
/
||

||lαk−1

||

||

2
, l̃αk = lαk+βα

k l̃
α
k−1, l̃α0 = lα0 , (b)

s̃α
k =

(

l̃αk , lαk
)

/
{

||

||˜Fmk
˜lαk
||

||

2 + α
||

||W˜lαk
||

||

2
}

, (c)

m̃k+1 = m̃k − s̃α
k l̃αk . (d)

(8.23) 

In the last formula, we use the following notations: 
. ˜d is a vector of multiphysics observed data 

. ˜d = (

˜d(1),˜d(2), ....˜d(n)
)T ;

.m̃k is a vector of different model parameters computed at iteration number . k,

. m̃k =
(

m̃(1)
k ,m̃(2)

k , ....m̃(n)
k

)T ;

.˜A(m̃k) is a vector of the predicted data computed at iteration number . k;

.lαk is a vector of the direction of the steepest ascent computed at iteration 
number . k,

.lαk =
(

lα(1)
Ck , lα(2)

Ck , ....lα(n)
Ck

)T
. (8.24) 

The expressions for the steepest ascent directions are shown above in formula 
(8.21). 

The iterative process (8.23) is terminated when the misfit reaches the required 
level: 

.ϕ (m̃k+1) = ||rk+1||2D = δd . (8.25) 

8.3 Inversion of Multiphysics Data with Different 
Resolution Capabilities 

8.3.1 Different Resolution Capabilities 

Various observation methods used in applications have different resolution capabili-
ties. For example, in geophysical applications, seismic data are usually collected with 
a dense survey and have better resolution than the data produced by gravity, magnetic, 
or electromagnetic field observations. As a result, seismic data inversion can provide 
a detailed model of the subsurface distribution of seismic wave velocity. In contrast, 
the density, magnetization, or conductivity models inverted from the potential field or 
electromagnetic data do not have the same resolution. Brute force joint inversion of 
high-resolution (e.g., seismic) data and low-resolution (e.g., potential field or elec-
tromagnetic) data may produce fictitious (unreasonably fine) structures for model 
parameters corresponding to methods with low-resolution capabilities. Accounting
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for the resolution difference in a framework of a unified inversion method represents 
a very challenging problem of joint inversion. 

In order to address the issue of different resolution capabilities, one should decou-
ple the forward modeling meshes for different physical properties (Tu and Zhdanov 
2021). For example, seismic waves have a shorter wavelength compared to low-
frequency electromagnetic waves used in geophysics. As a result, the seismic method 
usually has a better resolution than the electromagnetic measurements. Therefore, 
one can use a much finer grid to discretize the velocity distribution in the subsurface 
than the conductivity grid for accurate forward modeling. At the same time, applying 
the fine grid used for seismic velocity to electromagnetic modeling may result in an 
oversampled conductivity model. It may increase the computation time of forward 
modeling and also introduce artificial details of conductivity models unresolvable by 
electromagnetic data. Thus, one has to use different forward modeling grids for effi-
cient computations and for honoring the different resolution capabilities of distinct 
data. 

At the same time, in order to jointly invert multiphysics data, the corresponding 
physical property models should be represented at the same scale, especially if the 
structural similarity between different models is considered. In this case, one should 
match only the long-wavelength structures of the high-resolution model (e.g., seis-
mic velocity) with the low-resolution model (e.g., conductivity or density), as the 
fine features of the former model are beyond the resolution of the latter model. These 
shared discretization models can be produced by the proper parameterization of the 
different physical properties. Mathematically, this task can be formulated as a sub-
space representation of the model parameters. Subspace representation of different 
model parameters can be obtained as a solution of approximation and interpolation 
problems. 

8.3.2 Approximation Problem 

Let us assume that the vector of model parameter .m(i) corresponds to the values of 
continuous function,..m(i) (x, y, z), defined on the nodes of some regular or irregular 
grid within some modeling domain . D. Function .m(i) (x, y, z) can be treated as an 
element of the Hilbert space .L2 (D) formed by a set of functions integrable on the 
domain .D, equipped with the inner product (see Chap. 3): 

. ( f, g)L2
=

   

D
f (x, y, z) g (x, y, z) dv, (8.26) 

where . f, g ∈ L2 (D) .

We have learned in Chap. 3 that, in a Hilbert space, there always exists a set of 
functions called basis functions, .ek (x, y, z) , .k = 1, 2, ..., and every function in the 
Hilbert space can be represented as a linear combination of the basis functions, e.g.,
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.m(i) (x, y, z) =
∑

k

αkek (x, y, z) , (8.27) 

where .αk, .k = 1, 2, ..., are the scalar coefficients of representation (8.27). 
In a general case, the number of basis functions in the Hilbert space is counted 

but unlimited. In practical applications, we always work with a limited number of 
the basis functions, which result in the following approximate representation of the 
model function .m(i) (x, y, z): 

.m(i) (x, y, z) ≈
K
∑

k=1

αkek (x, y, z) . (8.28) 

In this case, the coefficients of approximation (8.27) can be found using the solu-
tion of the approximation problem in a Hilbert space, discussed in Chap. 3. According 
to this method, we should find a minimum of the misfit functional, .ϕ (α1, α2, ...αK ): 

. ϕ (α1, α2, ...αK ) =
||

||

||

||

||

m(i) −
∑

k

αkek

||

||

||

||

||

2

L2

. =
([

m(i) −
K
∑

k=1

αkek

]

,

[

m(i) −
K
∑

k=1

αkek

])

L2

= min . (8.29) 

The minimum can be determined by taking the first variation of the misfit func-
tional, . ϕ, with respect to coefficient .αl and equal it to zero as follows: 

. δαlϕ = −2

([

m(i) −
K
∑

k=1

αkek

]

, el

)

L2

=

. − 2
(

m(i), el
)

L2
+ 2

(

K
∑

k=1

αkek, el

)

L2

= 0.

From the last equation, we have 

.
(

m(i), el
)

L2
=

K
∑

k

αk (ek, el)L2
, l = 1, 2, ..K . (8.30)
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We can write the last system of equations more compactly as follows: 

.

K
∑

k

[lkαk = (

m(i), el
)

L2
, l = 1, 2, ..K , (8.31) 

where .[lk are the elements of the Gram matrix, .[, formed by inner products of the 
basis functions 

.[lk = (ek, el)L2
. (8.32) 

Thus, Eq. (8.30) can be written in matrix notations as follows: 

.[α = M(i), (8.33) 

where . α and .M(i) are the vector-columns formed by the unknown coefficients, .. αk , 
.k = 1, 2, ...K ; and the inner products, .(m(i), el

)

L2
, l = 1, 2, ..K ; respectively. 

Assuming that the basis functions .ek, .k = 1, 2, ...K ; are linearly independent, 
we conclude that the Gram matrix is nonsingular. Therefore, there is also exist the 
inverse matrix .[−1; and the solution of Eq. (8.33) can be written in the following 
explicit form: 

.α = [−1M(i). (8.34) 

We can also write formula (8.34) using scalar notations: 

.αk =
K
∑

l=1

[−1
kl

(

m(i), el
)

L2
, k = 1, 3, ...K , (8.35) 

where.[−1
kl are the elements of the inverse Gram matrix, .[−1. Approximation (8.28) 

with the coefficients determined by formula (8.35) can be used for solving the inter-
polation problem. 

Formula (8.35) provides an analytical solution for the approximation problem. 
Indeed, by substituting expressions (8.35) for coefficients .αk into Eq. (8.28), we 
have 

.m(i) (x, y, z) ≈
K
∑

k=1

K
∑

l=1

[−1
kl

(

m(i), el
)

L2
ek (x, y, z) . (8.36) 

8.3.3 Interpolation and Subspace Representation 

We assume that the vector of model parameter.m(i) is given by the values of function 
.m(i) (x, y, z) in the nodes of some rectangular discretization grid, .Ω(i):
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.m(i)
qps = m(i)

(

xq , yp, zs
)

, q = 1, ..Q; p = 1, ..P, s = 1, ..S; (8.37) 

where .xq , yp, zs are the centers of the corresponding cells of the grid, .Ω(i). 
The interpolated data, .⌃m(i) (x, y, z) , can be described by the following formula: 

.⌃m(i) (x, y, z) =
∑

qps

Pqps (x, y, z)m(i)
qps, (8.38) 

where .Pqps (x, y, z) are some interpolation functions. 
These interpolation functions can be determined using the approximation formula 

(8.36). To this end, let us calculate the inner product .
(

m(i), el
)

L2
approximately on 

the grid .Ω(i): 

. 
(

m(i), el
)

L2
=

   

D
m(i) (x, y, z) el (x, y, z) dv

. ≈
∑

qps

m(i)
qpsel,qps∆v, (8.39) 

where .∆v is the volume of the rectangular cell, and .el,qps are the values of the 
corresponding basis functions in the center of the cells 

. el,qps = el
(

xq , yp, zs
)

.

Substituting Eqs. (8.39) into (8.36), we have 

.m(i) (x, y, z) ≈
K
∑

k=1

K
∑

l=1

[−1
kl

∑

qps

m(i)
qpsel,qps∆vek (x, y, z) . (8.40) 

Changing the order of summations, we can write 

.m(i) (x, y, z) ≈
∑

qps

{

K
∑

k=1

K
∑

l=1

[−1
kl el,qps∆vek (x, y, z)

}

m(i)
qps . (8.41) 

A comparison between Eqs. (8.41) and (8.38) shows that the interpolation functions 
can be expressed via the basis functions using the following formula: 

.Pqps (x, y, z) =
K
∑

k=1

K
∑

l=1

[−1
kl el,qpsek (x, y, z) ∆v. (8.42) 

Interpolation formula (8.38) allows us to resample the model parameters from 
discretization grid.Ω(i) to another grid with different cell’s size,.⌃Ω, which is used for
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all model parameters considered in joint inversion. Indeed, we can find the values of 
the model parameters .m(i) (x, y, z) in the nodes .(xn, yk, zl) from Eq. (8.38): 

.⌃m(i) (xn, yk, zl) =
∑

qps

Pqps (xn, yk, zl)m
(i)
qps . (8.43) 

Equation (8.43) shows that the vector of model parameters .⌃m(i) interpolated on the 
new grid, .⌃Ω, is related to the vector of model parameters .m(i) on the original grid, 
.Ω(i), by linear transformation: 

.⌃m(i) = P(i)m(i), (8.44) 

where.P(i) is the matrix formed by interpolation functions..Pqps (xn, yk, zl). The upper 
index.(i) at matrix.P(i) indicates that it depends on the parameters of the discretization 
grid .Ω(i). 

The action of .P(i) on vector .m(i) resamples the model to the corresponding grid. 
Equation (8.44) can be used, for example, for resampling the model parameters from 
a fine grid to the coarse grid, which may be required in a joint inversion if we use 
the same size of the grids for the high-resolution and low-resolution parameters. 
In this case, we can call transformation described by formula (8.44) a  subspace 
representation because it reduces the space of model parameter .m(i) representation. 
A review of the sampling theory can be found in Garcia (2000). 

There are many types of basis functions that can be used for subspace representa-
tion, for example, pseudo-linear and spline functions, trigonometric and exponential 
functions, Legendre and Chebyshev polynomials. Cubic B-spline basis functions are 
particularly useful in geophysical applications, since it offers differentiable continu-
ity, and can be used for an irregular distribution of nodes (Rawlinson 2008; Tu and 
Zhdanov 2021). 

8.3.4 Subspace Inversion with Resampling 

We can now rewrite the parametric functional with the constraint stabilizer (8.7), 
used for the solution of the multimodal inverse problem, as follows: 

. Pα
C (m̃(1), m̃(2), ...., m̃(n)) =

N
∑

i=1

||

||˜A(i)(m̃(i)) −˜d(i)
||

||

2

D +

. + αc1

n
∑

i=1

S(i)
MN , MS, MGS + αc2SC(⌃m(1),⌃m(2), ....,⌃m(n)), (8.45)
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where.⌃m(1),⌃m(2), ....,⌃m(n) are the model parameters resampled according to formula 
(8.44) at the same grid, 

The idea of resampling can be explained as follows. For forward modeling, we can 
use different discretization grids for various physical models, subject to the resolution 
of the data with regard to the corresponding model parameters. For example, in 
geophysical applications, we discretize the density model on a coarse grid, while the 
velocity model on a fine grid. At the same time, we can use another relatively coarse 
grid for coupling stabilizer .SC calculation to resample both the density and velocity 
models so that they are coupled at the same scale. 

In this chapter, we have discussed the application of resampling for joint inversion 
based on functional relationships between different model parameters. In the follow-
ing chapters, we will consider the various joint inversion methods with structural, 
Gramian, focusing, and other constraints. All these methods will require resampling 
the multimodal parameters on the same discretization grid for computing the corre-
sponding joint stabilizing functionals. 
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Chapter 9 
Joint Inversion Based on Structural 
Similarities 

Abstract An important approach to joint inversion is based on enforcing the struc-
tural similarity between different images of the target. This chapter considers two 
types of mathematical criteria for structural similarity. One is based on the structural 
similarity index (SSI). Another one requires the parallelism of the model parameter 
gradients. The concepts of the structural similarity index and structural similarity 
conditions are discussed in detail. The cross-gradient and dot-gradient similarity 
conditions are also introduced. This chapter demonstrates how the structural simi-
larity index and the method of parallel gradients can be used in the joint inversion of 
multiphysics data 

Keywords Structural similarity index · Similarity function · Cross-gradient 
condition · Dot-gradient condition 

9.1 Concept of Structural Similarity and Its Mathematical 
Formulation 

The common practice in many physical, geophysical, and other natural science exper-
iments or in medical imaging is collecting multiphysics data to study the target. Still, 
these data reflect different physical properties of the target, e.g., its density (if we 
measure the gravity field), its magnetization (if we measure the magnetic field), its 
conductivity (if we measure the electric or electromagnetic fields), etc. At the same 
time, the geometrical structure of the target is the same for all kinds of physical mea-
surements. For example, in geophysical applications, we have geophysical signatures 
of the same geologic structures underground; in optical applications, we analyze dif-
ferent optical images of the same object having unique structural characteristics 
analyzed by the human visual system. The medical images produced by various 
imaging instruments also represent the examined organ having a specific geometri-
cal structure. Thus, one important approach to joint inversion and image analyses 
can be based on preserving this structural similarity between different images of the 
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target in joint inversion or image reconstruction. This approach requires developing 
a proper mathematical formulation of the structural similarity concept. 

This chapter considers two types of mathematical criteria for structural similarity. 
One was introduced in image processing theory for image quality assessment (Wang 
et al. 2004). It is based on the structural similarity index (SSI). Another one was 
proposed for joint inversion of geophysical data. This approach requires the par-
allelism of the model parameter gradients (Droske and Rumpf 2003; Gallardo and 
Meju 2003). 

In the following Chaps. 10 and 11, I will discuss additional techniques to evalu-
ate the structural similarity of different inverse images based on joint focusing and 
minimum entropy functionals. 

9.1.1 Structural Similarity Index (SSI) 

The structural similarity index (SSI) was introduced as the quality measure of optical 
images. Let us assume that we have two images described by two non-negative contin-
uous functions,.m(1) and.m(2), which are distributed on the surface (two-dimensional 
images .m(1) (x, y) and .m(2) (x, y)) or within a volume (three-dimensional images 
.m(1) (x, y, z) and.m(2) (x, y, z)). Let us assume that both images represent the same 
object but have been taken under different conditions. There are three factors that 
can be evaluated for these images. The first factor is related to the luminance (or 
brightness) of the images. The second factor is related to the contrast of the images. 
Finally, the third factor characterizes the similarity of the images. 

These factors can be numerically evaluated using the statistical estimates if we 
consider the functions .m(1) (x, y, z) and .m(2) (x, y, z) being realizations of some 
random variables (see Chap. 2). Indeed, the luminances or brightness of the images 
are obviously proportional to the mean values of the functions .m(1) (x, y, z) and 
.m(2) (x, y, z), defined according to formula (2.7) of Chap. 2. The corresponding 
standard deviations can evaluate the contrasts between the images. 

The difference in luminances between two images can be measured as the square 
of the difference between the mean values of each function, 

.∆2
l

(
m(1), m(2)

) = [<m(1)> − <m(2)>]2 , (9.1) 

where.<m(1)> and.<m(2)> stand for mean values of the corresponding functions, defined 
according to formula (2.7) of Chap. 2. 

It is convenient to introduce a normalized square luminance difference, 

.∆̃2
l

(
m(1), m(2)

) =
[<m(1)> − <m(2)>]2
<m(1)>2 + <m(2)>2 = 1 − 2<m(1)> · <m(2)>

<m(1)>2 + <m(2)>2 . (9.2)
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The second term in the right side of Eq. (9.2) is called the luminance comparison 
function, .l

(
m(1), m(2)

)
: 

.l
(
m(1), m(2)

) = 2<m(1)> · <m(2)>
<m(1)>2 + <m(2)>2 . (9.3) 

Substituting equation (9.3) back into (9.2), we have 

.∆̃2
l

(
m(1), m(2)

) = 1 − l
(
m(1), m(2)

)
. (9.4) 

From the last two equations and conditions that .m(1) and .m(2) are non-negative 
functions, it follows at once that 

.0 ≤ l
(
m(1), m(2)

) ≤ 1. (9.5) 

Thus, we conclude that the luminance comparison function is equal to 1 if there 
is no luminance difference between the two images. It becomes equal to zero when 
we observe the maximum difference in brightness between two images. 

Similarly, the difference in contrasts between two images can be measured as 
the square of the difference between the standard deviations of the corresponding 
functions: 

.∆2
c

(
m(1), m(2)) = [σ1 − σ2]

2 , (9.6) 

where .σ1 and .σ2 are the standard deviations of the corresponding functions, defined 
according to formula (2.8) of Chap. 2. 

Introducing a normalized square contrast difference, .∆2
c

(
m(1), m(2)

)
, we write 

.∆̃2
c

(
m(1), m(2)

) = [σ1 − σ2]2

σ 2
1 + σ 2

2

= 1 − 2σ1 σ2

σ 2
1 + σ 2

2

= 1 − c
(
m(1), m(2)

)
, (9.7) 

where .c
(
m(1), m(2)

)
is the contrast comparison function : 

.c
(
m(1), m(2)) = 2σ1 σ2

σ 2
1 + σ 2

2

. (9.8) 

This function has the same property as the luminance comparison function, 

.0 ≤ c
(
m(1), m(2)) ≤ 1. (9.9) 

In other words, the contrast comparison function is equal to one if there is no contrast 
difference between two images. It goes to zero when this difference reaches the 
maximum. 

Note that, in practical calculations, it is convenient to write these functions in the 
following form (Wang et al. 2004):
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(1) the luminance comparison function: 

.l
(
m(1), m(2)

) = 2<m(1)> · <m(2)> + εl

<m(1)>2 + <m(2)>2 + εl
; (9.10) 

(2) the contrast comparison function: 

.c
(
m(1), m(2)

) = 2σ1 σ2 + εc

σ 2
1 + σ 2

2 + εc
. (9.11) 

The parameters . εl and.εc in Eqs. (9.10) and (9.11) are small positive numbers intro-
duced to avoid numerical instability of division by a small value when both mean 
values and standard deviations are close to zero. 

Finally, the similarity of the images can be analyzed by calculating the correlation 
coefficient between the two functions, .m(1) (x, y, z) and .m(2) (x, y, z). 
(3) The similarity function, .s

(
m(1), m(2)

)
, is equal to: 

.s
(
m(1), m(2)

) =
||cov

(
m(1), m(2)

)||

σ1 σ2
= ||η

(
m(1), m(2)

)|| , (9.12) 

where.cov
(
m(1), m(2)

)
and.η

(
m(1), m(2)

)
are the covariance and correlation coeffi-

cient between the corresponding functions defined according to formulas (2.17) and 
(2.21) of Chap. 2. Note that the similarity function satisfies the same inequality as the 
luminance and contrast comparison functions due to the property of the correlation 
coefficient: 

.0 ≤ s
(
m(1), m(2)

) ≤ 1. (9.13) 

The strongest similarity manifests itself by the linear correlation between two 
images with the correlation coefficient and the similarity function equal to 1. 

The structural similarity index (SSI) is introduced as a product of all these three 
functions: 

.ISS
(
m(1), m(2)

) = lα
(
m(1), m(2)

)
cβ

(
m(1), m(2)

)
sγ

(
m(1), m(2)

)
, (9.14) 

where . α, . β, and . γ are the positive coefficients used to tune up the contributions of 
each of these functions. 

Based on inequalities (9.5), (9.9), and (9.13), we conclude that 

.0 ≤ ISS
(
m(1), m(2)) ≤ 1. (9.15) 

Thus, the structural similarity index (SSI) equals 1 when all three image comparison 
functions, luminance . l, contrast . c, and similarity . s, are equal to 1 as well. This
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means that functions.m(1) (x, y, z) and.m(2) (x, y, z) have the same mean values and 
standard deviations and they are related linearly to each other: 

.<m(1)> = <m(2)>; (9.16) 

.σ1 = σ2; (9.17) 

.m(1) (x, y, z) = am(2) (x, y, z) + b. (9.18) 

Substituting equation (9.18) into (9.16), we find immediately that 

.a = 1, b = 0. (9.19) 

Thus, we have arrived at a very important conclusion that the structural similarity 
index equals one, .ISS = 1, if and only if two images are identical: 

.m(1) (x, y, z) = m(2) (x, y, z) . (9.20) 

Oppositely, the smaller the structural similarity index is, the more significant the 
difference between the two images becomes. 

9.1.2 Structural Similarity Conditions 

A similarity function (9.12) of two images describing various model parameters 
introduced above manifests the degree of closeness of the corresponding geometrical 
boundaries shown in the two images,.m(1) (x, y, z) and.m(2) (x, y, z). In an ideal case, 
these boundaries represent the surfaces (in 3D cases) or lines (in 2D cases) separating 
the volumes or areas with different values of the corresponding parameters. However, 
the functions.m(1) (x, y, z) and.m(2) (x, y, z) describing the inverse model parameters 
are usually continuous and differentiable. Therefore, we should treat these boundaries 
as thin layers with rapid changes in the model parameters. The gradients characterize 
the directions of the model parameter changes’ maximum rate; they are directed 
perpendicular to interfaces. Therefore, the closeness of the interfaces expressed in 
different model parameters can be measured by the degree of gradients being parallel. 

Figure 9.1 illustrates this idea. We assume that the geophysical study aims to image 
the salt dome structure. The salt forming this structure is characterized by specific 
density and seismic field velocity values different from those of the surrounding 
medium. The left panels in Fig. 9.1 show the vertical sections of the seismic velocity 
(panel a) and density (panel b) distributions in the subsurface. One can clearly see 
the geometric structure of the salt dome in these images, which is, of course, the 
same for both the density and velocity models. 

Let us denote by .m(1) (x, y, z) the velocity distribution of this model, and by 
.m(2) (x, y, z) the corresponding density distribution. It is also obvious that the



182 9 Joint Inversion Based on Structural Similarities

Fig. 9.1 Illustration of the concept of structural similarity. The left panels a and b show the vertical 
sections of the seismic velocity and density, respectively. The red and blue arrows in the right panels 
indicate the velocity and density gradients, respectively. The gradient vectors are parallel for the 
models with the same geometrical structure 

directions of the gradients of the velocity distribution, .∇m(1) (x, y, z), and those 
of the density distribution, .∇m(2) (x, y, z), are perpendicular to the surface of the 
salt dome as shown in the right panels of Fig. 9.1. The red arrows in this figure indi-
cate the velocity gradients, .∇m(1), while the blue arrows show the density gradients, 
.∇m(2), respectively. Therefore the gradients .∇m(1) and .∇m(2) have to be parallel. 

In more general mathematical terms, the structural similarity of the models 
described by two continuously differentiable functions, .m(1) (x, y, z) and 
.m(2) (x, y, z), can be analyzed by comparing the isosurfaces of these functions. 

The isosurfaces,.∑(1) and.∑(2) of functions.m(1) (x, y, z) and.m(2) (x, y, z) repre-
sent the points of constant values of these functions within a volume. The following 
equations define them: 

. ∑(1) : m(1) (x, y, z) = c(1) = const;

. ∑(2) : m(2) (x, y, z) = c(2) = const.

Obviously, these isosurfaces describe the geometrical structure of the corresponding 
models. Therefore, we consider that two models have a similar structure if their 
isosurfaces are alike. We can now give a formal definition of the structural similarity 
conditions: 

Definition 9.1 We say that two models .m(1) and .m(2) described by continuously 
differentiable functions, .m(1) (x, y, z) and .m(2) (x, y, z) have the same geometrical 
structure if isosurfaces of functions .m(1) (x, y, z) and .m(2) (x, y, z) passing through 
the same point in the volume coincide.
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Thus, to compare the structural similarity of the two models, we should develop 
a measure of the difference between two sets of isosurfaces, .∑(1) and .∑(2). Since 
the gradients,.∇m(1) and.∇m(2), are always directed along the normal to isosurfaces, 
the gradient vectors should be parallel for the models with the same geometrical 
structure. Therefore, we can use the difference between gradients,.∇m(1) and.∇m(2), 
as a structural similarity measure. 

Droske and Rumpf (2003) proposed to analyze the behavior of the normalized 
gradients: 

.u(1) (r) = ∇m(1) (r)
||∇m(1) (r)

|| , u(2) (r) = ∇m(2) (r)
||∇m(1) (r)

|| , (9.21) 

where.u(1) (r) and.u(2) (r) are the unit vectors of the corresponding gradient directions 
at point .r = (x, y, z). 

The structural similarity between two models, .m(1) and.m(2), can be estimated by 
the .L2 norm of the difference between .u(1) (r) and . u(2) (r) :

.Sng
(
m(1), m(2)

) = ||||u(1) − u(2)
||||2
L2

=
 

V

||u(1) (r) − u(2) (r)
||2 dv, (9.22) 

where .||....||L2
denotes .L2 norm calculated over inversion domain . V . 

We call.Sng
(
m(1), m(2)

)
a normalized gradient similarity functional. The smaller 

the.Sng similarity functional is, the closer the geometrical structure of two images are 
to each other. Functional .Sng provides a good quantitative estimate of the degree of 
structural similarity between two images. However, the calculation of this functional 
is complicated by singularities which may occur in the points or areas where gradients 
are close to zero. 

Gallardo and Meju (2003) proposed an idea of measuring the structural similarity 
of two models by calculating the cross products of the gradients of the corresponding 
functions,.m(1)(x, y, z) and.m(2)(x, y, z), describing the spatial distributions of their 
properties: 

. Scg
(
m(1),m(2)

) = ||||∇m(1) × ∇m(2)
||||2
L2

. =
 

V

||∇m(1) (r) × ∇m(2) (r)
||2 dv = min (9.23) 

Equation (9.23) is called a  cross-gradient condition. It enforces the structural 
similarity between the isosurfaces (or isolines in 2D case) of the different model 
parameters, .m(1) (x, y, z) and .m(2) (x, y, z). This condition is widely used in geo-
physical applications (e.g., Gallardo and Meju 2004, 2007, 2011, Gallardo et al. 
2005, 2007, 2009); however, it can also be applied to enforce the structural similari-
ties of the optical images, providing an alternative approach to the method based on 
the structural similarity index.
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We should note that in numerical implementation, it is convenient to present the 
cross-gradient condition (9.23) using dot-product operation. 

Indeed, the absolute value of the cross product of two vectors, . a and. b, is defined 
as follows: 

. |a × b| = |a| |b| sin ϕ, (9.24) 

where . ϕ is an angle between two vectors. 
The dot product of two vectors, . a and . b, is equal to 

.a · b = |a| |b| cosϕ. (9.25) 

From Eqs. (9.24) and (9.25), we can see at once that 

. |a × b|2 = |a|2 |b|2 sin2 ϕ = |a| 2 |b|2 (1 − cos2 ϕ
) = |a|2 |b|2 − |a · b|2 . (9.26) 

Therefore, based on vector identity (9.26), the cross-gradient condition (9.23) can 
be written in an equivalent form using the dot product of gradients as follows (Haber 
and Gazit 2013): 

. Scg
(
m(1),m(2)

) = Sdg
(
m(1),m(2)

) =

. =
 

V

[||∇m(1) (r)
||2 ||∇m(2) (r)

||2 − ||∇m(1) (r) · ∇m(2) (r)
||2
]
dv = min . (9.27) 

Equation (9.27) is called a dot-gradient condition. We will find below that the 
dot-gradient condition can be efficiently used to enforce the structural similarity in 
the regularized inversion. 

There is another equivalent form of this condition which arises from the following 
algebraic identity: 

. |a|2 |b|2 − |a · b|2 =
||||
(a · a) (a · b)

(b · a) (b · b)

|||| . (9.28) 

Therefore, we can write 

. Scg
(
m(1),m(2)

) = Sdg
(
m(1),m(2)

) = SGram
(
m(1),m(2)

) =

. =
 

V

||||

(∇m(1) (r) · ∇m(1) (r)
) (∇m(1) (r) · ∇m(2) (r)

)
(∇m(2) (r) · ∇m(1) (r)

) (∇m(2) (r) · ∇m(2) (r)
)
|||| dv = min . (9.29) 

We will show in Chap. 12 that the integrand in Eq. (9.29) is  Gramian, 
.G∇

(∇m(1),∇m(2)
)
, formed by the gradients of the model parameters, . ∇m(1) (r)

and . ∇m(2) (r) :

.G∇
(∇m(1),∇m(2)

) =
|||
|

(∇m(1) · ∇m(1)
) (∇m(1) · ∇m(2)

)
(∇m(2) · ∇m(1)

) (∇m(2) · ∇m(2)
)
|||
| . (9.30)
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The Gramian is equal to zero if vectors .∇m(1) and .∇m(2) are linearly dependent, 
which means they are parallel. Thus, substituting equation (9.30) into (9.29), we 
arrive at the following equivalent condition enforcing the structural similarity of the 
two models: 

.SG
(
m(1),m(2)

) =
 

V
G∇

(∇m(1),∇m(2)
)
dv = min . (9.31) 

This representation of the cross-gradient condition provides a link to the Gramian 
constraint for joint structural inversion introduced by Zhdanov et al. (2012). We 
discuss the general Gramian method of joint structural inversion in Chap. 12. 

Note that all three forms of the structural similarity conditions, cross-gradient, dot-
gradient, and Gramian, are mathematically equivalent; however, there is a significant 
difference in the numerical implementation of these conditions, which we will discuss 
below. 

9.2 The Maximum Structural Similarity Index Inversion 

This section demonstrates how the structural similarity index can be used in the joint 
inversion of multiphysics data. For example, let us consider an inverse problem for 
two data sets. The following system of operator equations describes this problem: 

.d(1) = A(1)(m(1)), and d(2) = A(2)(m(2)), (9.32) 

where functions .m(1) (x, y, z) and .m(2) (x, y, z) are the volume distributions of two 
different model parameters. 

The regularized joint solution of equations (9.32) can be obtained by minimization 
of the following parametric functional: 

.Pα
ISS (m

(1),m(2)) =
2∑

i=1

||||A(i)(m(i))−d(i)
||||2
D + αSISS

(
m(1),m(2)

) = min . (9.33) 

Note that in expression (9.33) and everywhere below in this chapter, we consider. m(1)

and.m(2) being the dimensionless weighted model parameters, as defined in Chap. 8. 
In the last formula, we have introduced stabilizing functional .SISS as follows: 

.SISS
(
m(1),m(2)

) = 1 − ISS
(
m(1), m(2)

)
. (9.34) 

According to inequality (9.15), functional .SISS is always positive and it reaches 
zero value if and only if two solutions, .m(1) (x, y, z) and .m(2) (x, y, z), coincide: 

.m(1) (x, y, z) = m(2) (x, y, z) . (9.35)
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Thus, the inversion based on the maximum structural similarity index imposes 
a very strong requirement on the joint inversion to produce identical results for 
both parameters. This requirement is helpful in image reconstruction (see Chap. 
14); however, it can rarely be used in multiphysics inversion when considering the 
different physical properties of the target. These properties should have a structural 
similarity but do not need to have the same values. 

I should also note that functional .SISS
(
m(1),m(2)

)
is not quadratic, which makes 

minimization of parametric functional .Pα
ISS

(m(1),m(2)) a computationally challeng-
ing problem. I will discuss in Chap. 14 how this difficulty can be effectively resolved. 

9.3 The Method of Parallel Gradients 

We consider again the joint inverse problem for two data sets described by 
equation (9.32). The structural similarities between two functions, . m(1) (x, y, z)
and .m(2) (x, y, z), can be measured by the cross-gradient condition (9.23), the dot-
gradient condition (9.27), or by the Gramian condition (9.31). All these conditions 
are based on the concept of parallel gradients of functions representing geometrically 
similar inverse models. We call the inversion algorithms based on these conditions 
the parallel gradient methods. 

The corresponding regularized inversion can be represented as a minimization of 
the following parametric functional: 

.Pα(m(1),m(2)) =
2∑

i=1

||||A(i)(m(i))−d(i)
||||2
D + αScg,dg,G

(
m(1),m(2)

) = min, (9.36) 

where .Scg,dg,Gram represents one of the structural similarity stabilizing functionals, 
.Scg , .Sdg , or .SG , introduced above in Eqs. (9.23), (9.27), or (9.31), respectively. 

9.3.1 Steepest Ascent Directions for the Structural Similarity 
Functionals 

One can find the minimum of parametric functional (9.36) using any of the minimiza-
tion methods discussed in Chap. 7. The main problem with the practical implementa-
tion of these methods is related to computing the steepest ascent direction (gradient) 
of the corresponding stabilizing functionals,.Scg , .Sdg , or.SG . In the case of the cross-
gradient functional, .Scg , one has to apply some approximation of this functional to 
find the steepest descent direction (Meju and Gallardo 2016). This results in lower 
accuracy and slower convergence of the inversion procedure.
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I will demonstrate below that this problem can be solved rigorously without an 
approximation by using the Gramian form of structural similarity conditions (9.31): 

. SG =
 

V

[(∇m(1) (r) · ∇m(1) (r)
) (∇m(2) (r) · ∇m(2) (r)

) −

. − (∇m(1) (r) · ∇m(2) (r)
)2]

dv. (9.37) 

Let us calculate the first variation of the functional .SGram : 

.δSG(m(1),m(2)) = δm(1) SG(m(1),m(2))+δm(2) SG(m(1),m(2)). (9.38) 

The partial variations of the Gramian stabilizer, .δm(1) SG and.δm(2) SG can be calcu-
lated as follows: 

. δm(1) SG = 2
 

V

[(
δ∇m(1) (r) · ∇m(1) (r)

) (∇m(2) (r) · ∇m(2) (r)
) −

. − (
δ∇m(1) (r) · ∇m(2) (r)

) (∇m(1) (r) · ∇m(2) (r)
)]
dv, (9.39) 

. δm(2) SG = 2
 

V

[(
δ∇m(2) (r) · ∇m(2) (r)

) (∇m(1) (r) · ∇m(1) (r)
) −

. − (
δ∇m(2) (r) · ∇m(1) (r)

) (∇m(1) (r) · ∇m(2) (r)
)]
dv. (9.40) 

Taking .δ∇m(1) out of the brackets in Eq. (9.39), we arrive at the following 
formula: 

. δm(1) SG = 2
 

V

(
δ∇m(1) (r) · [∇m(1) (r)

(∇m(2) (r) · ∇m(2) (r)
) −

. − ∇m(2) (r)
(∇m(1) (r) · ∇m(2) (r)

)]
dv

. = 2
 

V

(∇δm(1) (r) · bm(1) (r)
)
dv, (9.41) 

where 

. bm(1) (r) = ∇m(1) (r)
(∇m(2) (r) · ∇m(2) (r)

) − ∇m(2) (r)
(∇m(1) (r) · ∇m(2) (r)

)
,

(9.42) 
and we take into account the following equality: 

.δ∇m(1) (r) = ∇δm(1) (r) .
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In order to obtain the steepest ascent direction of the Gramian functional, .SGram , 
we have to find the variation of the model, .δm(1) (r), which would result in positive 
variation of this functional: 

.δm(1) SG = 2
 

V

(∇δm(1) (r) · bm(1) (r)
)
dv > 0. (9.43) 

Inequality (9.43), however, contains the gradient of the variation, .∇δm(1). We can 
transform the integrand in the equation into the form which would explicitly include 
.δm(1) (r) by moving the del operator from the first to the second multiplier in the dot 
product. This can be done by integrating by parts using the Gauss theorem. 

Indeed, let us write the following differential identity for two continuously dif-
ferentiable in domain .V vector fields, .δm(1) (r) and . bm(1) (r) :

.∇ · [δm(1) (r) b (r)
] = ∇δm(1) (r) · bm(1) (r) + δm(1) (r) [∇ · b (r)] (9.44) 

Integrating both sides of identity (9.44) over domain .V and applying the Gauss the-
orem to the integral over divergence,.∇ · [δm(1) (r) b (r)

]
, we arrive at the following 

integral equality: 

. 

 

∂V

[
δm(1) (r) bm(1) (r)

] · nds

. =
 

V
∇δm(1) (r) · bm(1) (r) dv +

 

V
δm(1) (r) [∇ · bm(1) (r)] dv, (9.45) 

where .∂V is a boundary of domain . V , and . n is a unit vector of the normal to . ∂V
directed outward from domain . V . We assume that at the boundary, .∂V , both model 
parameters do not change, with their gradients equal to zero: 

. ∇m(1)
|
|
∂V

= 0, ∇m(2)
|
|
∂V

= 0.

Therefore, function .bm(1) is equal to zero at the boundary as well, and the surface 
integral in the left side of Eq. (9.45) vanishes. Thus, we obtain the following integral 
equality: 

.

 

V
∇δm(1) (r) · bm(1) (r) dv = −

 

V
δm(1) (r) [∇ · bm(1) (r)] dv. (9.46) 

Substituting equation (9.46) into Eq. (9.41) for the partial variation, .δm(1) SGram , 
we obtain the following important result: 

.δm(1) SG = −2
 

V
δm(1) (r) [∇ · bm(1) (r)] dv = 2

(
δm(1), l(1)Gram

)

L2(V )
, (9.47)
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where 
. l(1)Gram (r) = −∇ · bm(1) (r)

. = ∇ · [∇m(2) (r)
(∇m(1) (r) · ∇m(2) (r)

)] − ∇ ·
[
∇m(1) (r)

||∇m(2) (r)
||2
]

(9.48) 

Function.l(1)Gram (r) represents the direction of the steepest ascent with respect to model 
.m(1). Indeed, we can select the variation .δm(1) (r) to be proportional to function 
. l(1)G (r) :

.δm(1) (r) = k(1)l(1)Gram (r) . (9.49) 

Substituting equation (9.49) into (9.47), we have 

. δm(1) SG = 2
(
δm(1), l(1)Gram

)

L2(V )

. = 2k(1)
(
l(1)Gram, l(1)Gram

)

L2(V )
= 2k(1)

||||
||l(1)G

||||
||
2

L2(V )
> 0, (9.50) 

if .k(1) > 0. 
The steepest descent direction is opposite to vector .l(1)Gram (r). Therefore, the fol-

lowing equation provides the expression for the variation of the model .m(1) corre-
sponding to the steepest descent direction for the Gramian stabilizing functional: 

.δm(1) (r) = −k(1)l(1)Gram (r) . (9.51) 

We can apply similar derivations to Eq. (9.40) for the partial variation,.δm(2) SG , of  
the Gramian stabilizer with respect to parameter .m(2). 

. δm(2) SG = 2
 

V

(
δ∇m(2) (r) · [∇m(2) (r)

(∇m(1) (r) · ∇m(1) (r)
) −

. − ∇m(1) (r)
(∇m(1) (r) · ∇m(2) (r)

)]
dv

. = 2
 

V

(∇δm(2) (r) · bm(2) (r)
)
dv, (9.52) 

where 

. bm(1) (r) = ∇m(2) (r)
(∇m(1) (r) · ∇m(1) (r)

) − ∇m(1) (r)
(∇m(1) (r) · ∇m(2) (r)

)

(9.53) 
Applying integration by parts, we move the del operator from the first to the second 
multiplier in Eq. (9.52):
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.δm(2) SG = −2
 

V
δm(2) (r) [∇ · bm(2) (r)] dv. (9.54) 

From the last formula, we obtain the following expression for the steepest ascent 
direction, .l(2)G , with respect to parameter .m(2): 

. l(2)G = −∇ · bm(2) (r)

. = ∇ · [∇m(1) (r)
(∇m(1) (r) · ∇m(2) (r)

)] − ∇ ·
[
∇m(2) (r)

|
|∇m(1) (r)

|
|2
]
.

(9.55) 
Substituting equation (9.55) into (9.54), we can write the expression for the variation 
of the Gramian structural stabilizer with respect to .m(2) as follows: 

.δm(2) SG = 2
(
δm(2), l(2)G

)

L2(V )
. (9.56) 

Finally, taking into account expressions (9.47) into (9.56), we arrive at the compact 
form of the first variation of the functional .SGram : 

.δSG = 2
2∑

i=1

(
δm(i), l(i)Gram

)

L2(V )
, (9.57) 

9.3.2 Joint Structural Inversion of Two Data Sets 

We can now revisit the minimization problem (9.36): 

.Pα(m(1),m(2)) =
2∑

i=1

||||A(i)(m(i))−d(i)
||||2
D + αSG

(
m(1),m(2)

) = min, (9.58) 

where we keep Gramian functional,.SGram , only, considering that all three structural 
similarity stabilizing functionals, .Scg , .Sdg , or .SG , are equal. 

In order to solve this minimization problem, we calculate the first variation of the 
parametric functional .Pα(m(1),m(2)): 

. δPα(m(1),m(2))

. = 2
2∑

i=1

(
δA(i)(m(i)), A(i)(m(i))−d(i)

)
D +

. + αδSG(m(1),m(2)). (9.59)
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Taking into consideration that operators .A(i) are differentiable, we can write 

.δA(i)(m(i)) = F (i)
m δm(i), i = 1, 2, (9.60) 

where .F (i)
m are linear operators of the Fréchet derivative of .A(i). 

We have obtained the above Eq. (9.57) for the variation of the Gramian stabilizer. 
Substituting expressions (9.60) and (9.57) into formula (9.59), we find the equation 
for the variation of the parametric functional: 

. δPα(m(1),m(2)) =

. = 2
2∑

i=1

(
δm(i),

[
F (i)⋆
m

(
A(i)(m(i))−d(i)

) + αl(i)G

])

L2(V )
, (9.61) 

where .F (i)⋆
m are the adjoint Fréchet derivative operators. 

From Eq. (9.61), we obtain at once the directions of the steepest ascent of the 
functional .Pα: 

.l(i)α = F (i)⋆
m

(
A(i)(m(i))−d(i)

) + αl(i)G . (9.62) 

We can now apply one of the gradient-type algorithms discussed in Chap. 7 to 
solve the minimization problem (9.36). 

9.3.3 Joint Structural Inversion of Multiple Data Sets 

Thus, we have developed a unified approach to joint inversion based on the concept 
of parallel gradients. This approach can be naturally expanded to the case of joint 
inversion of multiple data sets considered above in Chap. 8: 

.d(i) = A(i)(m(i)), i = 1, 2, 3, . . . , N . (9.63) 

In this case, we can expand the parametric functional (9.58) as follows: 

. Pα(m(1),m(2), . . . ,m(N )) =
N∑

i=1

||
||
||A(i)(m(i))−d(i)

||
||
||
2

D
+ α

N∑

j=2

SG
(
m(1),m( j)

)
= min,

(9.64) 

where the stabilizing term in parametric functional, .
N∑

j=2

SG
(
m(1),m( j)

)
, is a super-

position of the structural Gramians between the first and all other physical model 
parameters:
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. 

N∑

j=2

SG
(
m(1),m( j)

) = SG
(
m(1),m(2)

) + SG
(
m(1),m(3)

) + · · · + SG
(
m(1),m(N )

)
.

(9.65) 

Minimization of this stabilizing functional keeps all gradient vectors, 
.∇m(1),∇m(2), . . . ,∇m(N ), parallel to each other. Considering that the gradient direc-
tions are orthogonal to the interfaces between the structures with contrasting physical 
properties, this condition results in structural similarities between the inverse models 
describing different physical properties (Zhdanov et al. 2021). 
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Chapter 10 
Joint Focusing Inversion of Multiphysics 
Data 

Abstract This chapter discusses the method of joint structural inversion based on 
joint focusing stabilizers. A family of joint focusing stabilizers is introduced, includ-
ing joint minimum support, Lp-norm joint minimum support, joint total variation, 
and joint minimum gradient support stabilizing functionals. The properties of these 
stabilizers and their first variations are analyzed in detail. These stabilizers force the 
domains corresponding to different physical models to coincide. The chapter con-
cludes with a description of the inversion methods based on joint focusing stabilizers. 

Keywords Joint focusing stabilizer · Joint minimum support · Joint minimum 
gradient support · Joint total variation 
In Chap. 9, we introduced two approaches to the joint inversion that provided struc-
tural similarity between different inverse models. One maximized the structural sim-
ilarity index (SSI). Another enforced the parallelism of the model parameter gra-
dients. The current chapter discusses another method of joint structural inversion 
based on joint focusing stabilizers. We have shown in Chap. 4 that focusing sta-
bilizers help produce the inverse images with the sharp model parameter contrast 
boundaries. Molodtsov and Troyan (2017) and Zhdanov and Čuma (2018) intro-
duced joint focusing stabilizers designed to ensure that these sharp boundaries for 
different model parameters coincide. I will present below some examples of joint 
focusing stabilizers and discuss the methods of joint focusing inversion using these 
stabilizers. 

10.1 Joint Focusing Stabilizers and Their Properties 

We consider a multimodal inverse problem for multiple physical data sets, which is 
described by the following operator equations: 

.d(i)= A(i)(m(i)), i = 1, 2, 3, . . . , N , (10.1) 
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where .A(i) are nonlinear operators, .d(i)
.(i = 1, 2, 3, . . . , N ) are different observed 

data sets; .m(i)
.(i = 1, 2, 3, . . . , N ) are the sets of model parameters, represented by 

functions .m(i) = .m(i) (x, y, z) = m(i) (r), defined in some domain, .r ∈ . V . 
We should note that, for convenience, we denote by the bold fonts, .m(i), the 

discrete representation on some 3D grid of the corresponding continuously differen-
tiable function, .m(i) (r) , describing the volume distribution of the model parameter. 
In Eq. (10.1), the observed data shown by the bold fonts,.d(i), also denotes the vector 
of discrete observed data. Note also that in expression (10.1) and everywhere below 
in this Chapter, we consider .d(1), d(2), . . . , d(n) and .m(1),m(2), . . . ,m(n) being the 
dimensionless weighted data and model parameters, as defined in Chap. 8. 

We now introduce a family of joint focusing stabilizing functionals, which enforce 
the structural similarity of the multimodal inverse images. 

10.1.1 Joint Minimum Support (JMS) Stabilizer 

The joint minimum support (JMS) stabilizer is introduced as follows (Zhdanov and 
Čuma 2018; Tu and Zhdanov 2022): 

.SJMS =
 
V

∑N
i=1

(
m(i)−m(i)

apr

)2
∑N

i=1

(
m(i)−m(i)

apr

)2 + e2
dv, (10.2) 

where. e is a small number (focusing parameter) introduced to avoid singularity when 
. m(i)≈m(i)

apr .

For every model parameter .m(i)
.(i = 1, 2, . . . , N ), we can introduce support of 

this specific parameter (denoted spt .m(i)) as the combined closed subdomains of . V
where .m(i) /= m(i)

apr . The joint support of all model parameters, spt .m, is a union set 
of all model parameter supports: 

.spt m =
N| |
i=1

spt m(i). (10.3) 

In other words, the joint support, .spt m, is the volume of the subdomain where 
at least one of the model parameters deviates from the a priori model. It can be 
demonstrated that the joint minimum support stabilizer is proportional (for a small 
.e) to the joint model parameter support, .spt m. Indeed, by adding and subtracting 
parameter .e2 in the nominator of the integrand in Eq. (10.2), we can write .SJMS in 
the following form:
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. SJMS =
 
V

∑N
i=1

(
m(i)−m(i)

apr

)2 + e2 − e2

∑N
i=1

(
m(i)−m(i)

apr

)2 + e2
dv

. =
 
spt m

⎡
⎢⎣1 − e2

∑N
i=1

(
m(i)−m(i)

apr

)2 + e2

⎤
⎥⎦ dv, (10.4) 

where the volume of integration was reduced to the joint model parameter support 
because outside .spt m, we have  

. m(i)=m(i)
apr for all i = 1, 2, . . . , N ,

and integrand in Eq. (10.2) for JMS stabilizer is zero. 
From Eq. (10.4), we obtain at once that 

.SJMS = spt m − e2
 
spt m

1
∑N

i=1

(
m(i)−m(i)

apr

)2 + e2
dv. (10.5) 

Thus, we can see that 

.SJMS → spt m, if e → 0, (10.6) 

which was to be proved. 
Therefore, the JMS functional can be used to minimize the total volume of the 

domain with the nonzero departure of any of the multimodal parameters from the 
given a priori  model. In other words, the JMS functional, similar to the minimum 
support stabilizing functional introduced in Chap. 4, provides the models with the 
smallest possible domains of anomalous parameters distribution. In addition, all these 
domains corresponding to different physical model parameters should coincide in 
order to minimize the joint model parameter support, . spt m.

Figure 10.1 illustrates the action of the JMS stabilizer. This stabilizer is propor-
tional to the combined subdomain volume where at least one of the model parameters 
deviates from the a priori model,.mapr . In this example, we have three subdomains, A, 
B, and C, where .m(1) /= m(1)

apr , m(2) /= m(2)
apr , and .m

(3) /= m(3)
apr , respectively. These 

subdomains may overlap (e.g., subdomains A and B) or be separate (e.g., subdomain 
C). The joint model parameter support, .spt m, is a combined volume of subdomains 
A, B, and C:.spt m = spt m(1) ∪ spt m(2) ∪ spt m(3).Minimizing the JMS functional 
decreases the joint support and, therefore, shrinks the combined volume. This forces 
all three subdomains to merge into one domain with the smallest possible volume, as 
shown on the right side of Fig. 10.1. Thus, the JMS functional enforces the structural 
similarities of the models representing different physical properties in the inversion.
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Fig. 10.1 Schematic illustration of the property of the joint minimum support (JMS) stabilizer. This 
stabilizer is proportional to the combined volume of subdomains A, B, and C with anomalous model 
parameters. Minimizing the JMS functional decreases the joint support and, therefore, shrinks the 
combined volume. This forces all three subdomains to merge into one anomalous domain with the 
smallest possible volume, as shown on the right side of the Figure 

10.1.2 .L p-Norm Joint Minimum Support Stabilizers 
(JMS.L p) 

We can also introduce .L p-norm joint minimum support functionals (JMS.L p) as  
follows: 

.SJMSL p =
 
V

∑N
i=1

||m(i)−m(i)
apr

||p
∑N

i=1

|||m(i)−m(i)
apr

|||p + ep
dv, 0 ≤ p < ∞. (10.7) 

Repeating the derivation above for the JMS functional, we can show that JMS. L p

functional is also equal (for a small .e) to the joint model parameter support, .spt m: 

. SJMSL p =
 
spt m

⎡
⎢⎣1 − ep∑N

i=1

|||m(i)−m(i)
apr

|||p + ep

⎤
⎥⎦ dv

. = spt m − ep
 
spt m

1∑N
i=1

|||m(i)−m(i)
apr

|||p + ep
dv → spt m, if e → 0. (10.8) 

By changing factor .p and focusing parameter . e, one can control the inverse 
images’ degree of focusing. Increasing factor . p or decreasing parameter . e results 
in sharper inverse images. At the same time, by minimizing the JMS.L p functional, 
we merge the domains occupied by different anomalous model parameters. There-
fore, all inverse models produced by the joint focusing inversion will have a similar 
structure.
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10.1.3 Joint Total Variation (JTV) Stabilizer 

The joint total variation (JTV) stabilizer can be introduced as a generalization of 
the total variation (TV) method (Haber and Gazit 2013; Molodtsov and Troyan 
2017). Indeed, we can apply expression (4.25) to the superposition of the gradients 
of different model parameters as follows: 

.SJT V =
 
V

[||| N∑
i=1

(∇m(i) · ∇m(i)
) + e2dv, (10.9) 

where . e is a small number. 
This stabilizer, similar to the conventional TV stabilizer, tends to generate a sparse 

model (Aster et al. 2013). In places where all models experience discontinuities or 
have sharp boundaries, the JTV stabilizer forces these discontinuities to coincide. 

Similarly, we can introduce a joint.L p-norm of the gradient stabilizing functional 
(JTV.L p) by extending formula (4.23) to the case of multi-modal parameters: 

.SJT V L p =
 
V

[
N∑
i=1

(∇m(i) · ∇m(i)
) + e2

]p/2

dv. (10.10) 

The application of the JTV.L p stabilizer to the regularized solution of the inverse 
problem also results in models with sharp physical property contrasts and consistent 
positions of the contrast boundaries for all model parameters. 

10.1.4 Joint Minimum Gradient Support (JMGS) Stabilizer 

The focusing effect of the stabilizing functionals can be increased by using a joint 
minimum gradient support functional (JMGS): 

.SJMGS =
 
V

∑N
i=1

(∇m(i) · ∇m(i)
)

∑N
i=1

(∇m(i) · ∇m(i)
) + e2

dv, (10.11) 

where we have assumed for simplicity that .∇m(i)
apr = 0, i = 1, 2, . . . , N . 

We call a joint model gradient support,.spt∇m, the combined closed subdomains 
of .V where . ∇m(i) /= 0, i = 1, 2, . . . , N :

.spt∇m =
N| |
i=1

spt ∇m(i). (10.12)
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Equation (10.11) for the JMGS functional can be modified as follows: 

. SJMGS =
 
spt∇m

[
1 − e2∑N

i=1

(∇m(i) · ∇m(i)
) + e2

]
dv

. = spt∇m − e2
 
spt∇m

1∑N
i=1

(∇m(i) · ∇m(i)
) + e2

dv. (10.13) 

Therefore, the JMGS functional is approximately equal (for a small .e) to the joint 
model gradient support: 

.SJMGS → spt∇m, if e → 0. (10.14) 

We have learned in Chap. 4 that the minimization of the minimum gradient support 
functional results in narrowing the areas of the rapid changes of the model parameters, 
thus producing the sharp boundaries in the inverse images. The minimization of the 
joint minimum gradient support functional not only sharpens the boundaries of the 
domains with the different values of the specific model parameter but also forces 
these boundaries to merge for multimodal parameters. The latter property is obvious 
because, by merging the boundaries, the JMGS functional minimizes the joint model 
gradient support of the inverse images. 

10.2 Steepest Ascent Directions of the Joint Focusing 
Functionals 

We have already demonstrated in the previous chapters that the numerical imple-
mentation of the regularized inversion requires the calculation of the steepest ascent 
directions (gradients) of the corresponding stabilizing functionals. Considering that 
the joint focusing stabilizers introduced above are non-quadratic, finding their gra-
dients is a non-trivial problem. In this section, we will find the expressions for the 
corresponding steepest ascent directions for JMS, JMS.L p, and JMGS stabilizers in 
the analytical form as examples. Similar expressions can be found for all other joint 
focusing functionals.
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10.2.1 The First Variation of the Joint Minimum Support 
(JMS) Stabilizer 

Let us calculate the first variation of the joint minimum support (JMS) stabilizer 
(10.2): 

.δSJMS =
N∑

n=1

δm(n) SJMS =
N∑

n=1

 
V

δm(n)

⎡
⎢⎣

∑N
i=1

(
m(i)−m(i)

apr

)2
∑N

j=1

(
m( j)−m( j)

apr

)2 + e2

⎤
⎥⎦ dv. (10.15) 

The variations of the integrands in Eq. (10.15) can be calculated as follows: 

. δm(n)

⎡
⎢⎣

∑N
i=1

(
m(i)−m(i)

apr

)2
∑N

j=1

(
m( j)−m( j)

apr

)2 + e2

⎤
⎥⎦ =

. = 2

(
m(n)−m(n)

apr

)
δm(n)

∑N
j=1

(
m( j)−m( j)

apr

)2 + e2
− 2

∑N
i=1

(
m(i)−m(i)

apr

)2 (
m(n)−m(n)

apr

)
δm(n)

[∑N
j=1

(
m( j)−m( j)

apr

)2 + e2
]2

. = 2
e2
(
m(n)−m(n)

apr

)
δm(n)

[∑N
j=1

(
m( j)−m( j)

apr

)2 + e2
]2 . (10.16) 

Substituting equation (10.16) back in the integral formula (10.15) for the variation 
of the JMS functional, we find 

. δSJMS = 2
N∑

n=1

⎡
⎢⎢⎢⎣
 
V

e2
(
m(n)−m(n)

apr

)
[∑N

j=1

(
m( j)−m( j)

apr

)2 + e2
]2 δm(n)

⎤
⎥⎥⎥⎦ dv

. = 2
N∑

n=1

(
δm(n), l(n)

JMS

)
L2

, (10.17) 

where functions .l(n)
JMS (r) represent the directions of the steepest ascent of the JMS 

functional with respect to model .m(n):
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.l(n)
JMS = e2

(
m(n)−m(n)

apr

)
[∑N

j=1

(
m( j)−m( j)

apr

)2 + e2
]2 . (10.18) 

10.2.2 The First Variation of the .L p-Norm Joint Minimum 
Support (JMS.L p) Stabilizer 

We now turn to the derivation of the first variation of the .L p-norm joint minimum 
support (JMS) stabilizer (10.2): 

. δSJMSL p =
N∑

n=1

δm(n) SJMSL p =
N∑

n=1

 
V

δm(n)

⎡
⎢⎣

∑N
i=1

||m(i)−m(i)
apr

||p
∑N

j=1

|||m( j)−m( j)
apr

|||p + ep

⎤
⎥⎦ dv.

(10.19) 
The variations of the integrands in Eq. (10.19) can be calculated as follows: 

. δm(n)

⎡
⎢⎣

∑N
i=1

||m(i)−m(i)
apr

||p
∑N

j=1

|||m( j)−m( j)
apr

|||p + ep

⎤
⎥⎦ =

. = p

||m(n)−m(n)
apr

||p−1
signum

(
m(n)−m(n)

apr

)
δm(n)

∑N
j=1

|||m( j)−m( j)
apr

|||p + e2
−

. − p

∑N
i=1

||m(i)−m(i)
apr

||p ||m(n)−m(n)
apr

||p−1
signum

(
m(n)−m(n)

apr

)
δm(n)

[∑N
j=1

|||m( j)−m( j)
apr

|||p + e2
]2

. = p
e2
||m(n)−m(n)

apr

||p−1
signum

(
m(n) − m(n)

apr

)
δm(n)

[∑N
j=1

|||m( j)−m( j)
apr

|||p + e2
]2 , (10.20) 

where symbol signum.
(
m(n) − m(n)

apr

)
denotes the sign of the difference . 

(
m(n)−

m(n)
apr

)
: 

. signum
(
m(n) − m(n)

apr

) =
⎧⎨
⎩

1, m(n) > m(n)
apr

0, m(n) = m(n)
apr

−1, m(n) < m(n)
apr

.

Substituting equation (10.20) back in the integral formula (10.19) for the variation 
of the JMS.L p functional, we find:
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. δSJMSL p = p
N∑

n=1

⎡
⎢⎣
 
V

e2
||m(n)−m(n)

apr

||p−1
signum

(
m(n)−m(n)

apr

)
[∑N

j=1

|||m( j)−m( j)
apr

|||p + e2
]2 δm(n)

⎤
⎥⎦ dv

. = 2
N∑

n=1

(
δm(n), l(n)

JMSL p

)
L2

, (10.21) 

where functions.l(n)
JMSL p

(r) represent the directions of the steepest ascent of the JMS 

functional with respect to model .m(n): 

.l(n)
JMSL p

= p

2

e2
||m(n)−m(n)

apr

||p−1
signum

(
m(n)

)
[∑N

j=1

|||m( j)−m( j)
apr

|||p + e2
]2 . (10.22) 

10.2.3 The First Variation of the Joint Minimum Gradient 
Support (JMGS) Stabilizer 

Finally, we derive the first variation of the joint minimum gradient support (JMGS) 
stabilizer (10.2): 

. δSJMGS =
N∑

n=1

δm(n) SJMGS =
N∑

n=1

 
V

δm(n)

[ ∑N
i=1

(∇m(i) · ∇m(i)
)

∑N
j=1

(∇m( j) · ∇m( j)
) + e2

]
dv.

(10.23) 
Similar to the case of the JMS functional, we calculate the variations of the integrands 
in Eq. (10.23) as follows: 

. δm(n)

[ ∑N
i=1

(∇m(i) · ∇m(i)
)

∑N
j=1

(∇m( j) · ∇m( j)
) + e2

]
=

. = 2
∇m(n) · ∇δm(n)

∑N
j=1

(∇m( j) · ∇m( j)
) + e2

− 2

∑N
i=1

(∇m(i) · ∇m(i)
)∇m(n) · ∇δm(n)

[∑N
j=1

(∇m( j) · ∇m( j)
) + e2

]2

. = 2
e2∇m(n) · ∇δm(n)

[∑N
j=1

(∇m( j) · ∇m( j)
) + e2

]2 . (10.24) 

Substituting equation (10.24) back in the integral formula (10.23) for the variation 
of the JMGS functional, we find
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.δSJMGS = 2
N∑

n=1

 
V

e2∇m(n) · ∇δm(n)

[∑N
j=1

(∇m( j) · ∇m( j)
) + e2

]2 dv (10.25) 

Let us examine the integrals in Eq. (10.25): 

.

 
V

e2∇m(n) · ∇δm(n)

[∑N
j=1

(∇m( j) · ∇m( j)
) + e2

]2 dv =
 
V
C(n) · ∇δm(n)dv, (10.26) 

where 
.C(n) = b2∇m(n), (10.27) 

and 
. b = e[∑N

j=1

(∇m( j) · ∇m( j)
) + e2

] .

Using the identity 

. ∇ · (C(n)δm(n)
) = (∇ · C(n)

)
δm(n) + C(n) · ∇δm(n),

we can take integral (10.26) by parts: 

. 

 
V
C(n) · ∇δm(n)dv = −

 
V

(∇ · C(n)
)
δm(n)dv +

 
V

∇ · (C(n)δm(n)
)
dv

. = −
 
V

(∇ · C(n)
)
δm(n)dv +

 
∂V

C(n)δm(n) · nds, (10.28) 

where we have applied the Gauss theorem, and . n is a unit vector of the normal 
directed outward from the domain . V .

We assume homogeneous Neumann (i.e., no flux) boundary conditions: 

. 

 
∂V

C(n)δm(n) · nds =
 

∂V
δm(n)b2

(∇m(n) · n) ds = 0.

The last condition can be reformulated as follows: 

. ∇m(n) · n =∂m(n)

∂n
= 0, r ∈ ∂V,

where.∂m(n)/∂n is a directional derivative in the direction of vector.n. In other words, 
we assume that at the boundary the model parameters do not change.
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Therefore, we have from Eq. (10.28) 

. 

 
V
C(n) · ∇δm(n)dv = −

 
V

(∇ · C(n)
)
δm(n)dv = − (

δm(n),
(∇ · C(n)

))
L2

.

(10.29) 
Taking into account Eqs. (10.26) and (10.29), we can write expression (10.25) for  

the first variation of the JMGS functional as follows: 

.δSJMGS = 2
N∑

n=1

(
δm(n), l(n)

JMGS

)
L2

, (10.30) 

where functions.l(n)
JMGS (r) represent the directions of the steepest ascent of the JMGS 

functional with respect to model . m(n) :

.l(n)
JMGS = ∇ · C(n) = ∇ · b2∇m(n). (10.31) 

This concludes our analysis of the steepest ascent directions of the joint focusing 
stabilizers. 

10.3 Inversion Based on the Joint Focusing Stabilizers 

We now revisit again the multimodal inverse problem (10.1). According to the 
basic principles of the regularization method, we have to find the models .m(1)

α ,.... 
.m(2)

α , ....m(N )
α , a quasi-solution of this inverse problem, which minimize the para-

metric functional: 

. Pα(m(1),m(2) , ....m(N )) =
N∑
i=1

||||||A(i)(m(i)) − d(i)
||||||2
D

+ αSJMS, JMSL p , JMGS = min,

(10.32) 
where . α is the regularization parameter. The terms .SJMS, JMSL p, JMGS are the joint 
stabilizing functionals based on minimum support, .SJMS, L p-norm minimum sup-
port, .SJMSL p , or minimum gradient support, .SJMGS, constraints, respectively. 

In order to solve this minimization problem, we calculate the first variation of the 
parametric functional with joint focusing stabilizers: 

.
δPα(m(1),m(2) , ....m(N )) =2

N∑
i=1

(
δA(i)(m(i)), A(i)(m(i)) − d(i)

)
D +

+ 2αδSJMS, JMSL p, JMGS.

(10.33)
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Taking into consideration that operators .A(i) are differentiable, we can write 

.δA(i)(m(i)) = F(i)
m δm(i), (10.34) 

where .F(i)
m is a linear Fréchet derivative operator of .A(i). 

It was shown above that, 

.δSJMS, JMSL p, JMGS = 2
N∑
i=1

(
δm(i), l(i)JMS, JMSL p, JMGS

)
, (10.35) 

where vectors .δm(i) and.l(i)JMS,JMSL p, JMGS are the discrete analogs of the functions, 

.δm(i) and .l(i)JMS,JMSL p, JMGS representing the variation of the model parameter . m(i)

and the corresponding directions of the steepest ascent for the stabilizing function-
als, based on joint minimum support, .L p-norm joint minimum support, and joint 
minimum gradient support constraints, described by formulas (10.18), (10.22), and 
(10.31), respectively. 

Substituting expressions (10.34) and (10.35) into formula (10.33), we obtain: 

. δPα(m(1),m(2), ....m(N ))

. = 2
N∑
i=1

(
δm(i),

[
F(i)∗
m

(
A(i)

(
m(i)

) − d(i)
) + l(i)JMS, JMSL p, JMGS

])
,

where .F(i)⋆
m are the adjoint Fréchet derivative operators. 

Let us select 
.δm(i) = −kαlα(i), (10.36) 

where .kα is some positive real number, and .lα(i) are the directions of the steepest 
ascent of the functional .Pα: 

.lα(i) = F(i)⋆
m

(
A(i)(m(i)) − d(i)

) + αl(i)JMS, JMGS. (10.37) 

Then 

.δPα(m(1),m(2), ....m(N )) = −2kα
N∑
i=1

||||lα(i)
||||2 . (10.38) 

The last expression confirms that the selection of the perturbations of the model 
parameters based on formula (10.36) ensures a decrease in the parametric functional. 

We can construct an iterative process for the regularized conjugate gradient (RCG) 
algorithm for solving minimization problem (10.32), which can be summarized as 
follows:
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.

rk = A(mk) − d, lαk = lα(mk) (a)

βα
k = ||||lαk

||||2 /
||||lαk−1

||||2 , l̃αk = lαk +βα
k l̃

α
k−1, l̃α0 = lα0 , (b)

sα
k =

(
l̃αk , lαk

)
/
{||||Fmk̃ l

α
k

||||2 + α
||||W l̃αk

||||2} , (c)

mk+1 = mk − sα
k l̃αk . (d)

(10.39) 

In the last formula, we used the following notations: 
.d is a combined vector of the observed data 

.d = (
d(1),d(2), ....d(N )

)T ; (10.40) 

.mk is a combined vector of different model parameters computed at iteration 
number . k,

.mk =
(
m(1)

k ,m(2)
k , ....m(N )

k

)T ; (10.41) 

.A(mk) is a vector of the predicted data computed at iteration number . k;
and .lαk is a combined vector of the directions of the steepest ascent calculated at 
iteration number . k,

.lαk =
(
lα(1)
Ck , lα(2)

Ck , ....lα(N )
Ck

)T
. (10.42) 

The expressions for the steepest ascent directions are shown above in formula (10.37). 
The iterative process (10.39) is terminated when the misfit reaches the required 

level: 
.ϕ (m̃k+1) = ||rk+1||2D = δd . (10.43) 

10.4 Re-weighted Gradient-Type Methods of Joint 
Focusing Inversion 

In the previous sections, we provided the exact analytical expressions for the steepest 
ascent directions of the joint focusing stabilizing functionals. In numerical calcula-
tions, however, it is convenient to use the approximate approach based on represen-
tations of these functionals in the pseudo-quadratic form. This representation makes 
it possible to apply the standard minimization algorithms developed for quadratic 
functional (see Chap. 4), simplifying the calculations.
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10.4.1 Representation of Joint Stabilizing Functionals 
in the Form of Pseudo-quadratic Functionals 

The joint focusing stabilizing functionals introduced above can be expressed as 
pseudo-quadratic functionals of the model parameters in a similar way as it was 
done in Chap. 4 for individual focusing stabilizers: 

.

s(m) = (
We

(
m − mapr

)
,We

(
m − mapr

))
L2

=
 
V

||we (r)
(
m (r) − mapr (r)

)||2 dv,
(10.44) 

where.We is a linear operator of the multiplication of the model parameters function 
.m (r) by function .we (r). We call this representation a pseudo-quadratic functional 
of .m because function .we (r) may depend on .m. The stabilizers’ presentation in a 
pseudo-quadratic form simplifies the calculation of the regularized steepest ascent 
directions in the solution of the minimization problem of the corresponding para-
metric functionals. 

For example, the joint minimum support functional, .SJMS(m), can be written as 
follows: 

.

SJMS (m) =
N∑
i=1

 
V

(
m(i)−m(i)

apr

)2
∑n

j=1

(
m( j)−m( j)

apr

)2 + e2
dv

=
N∑
i=1

 
V

||w(i)JMS
e (r)

(
m(i)−m(i)

apr

)||2 dv

=
N∑
i=1

(
WJMS

e

(
m(i)−m(i)

apr

)
,WJMS

e

(
m(i)−m(i)

apr

))
L2

(10.45) 

where .W(i)JMS
e (i = 1, 2, . . . , N ) are the linear operators of multiplication of the 

model parameter functions .
(
m(i)−m(i)

apr

)
by the following functions, . w(i)JMS

e (r) :

.w
(i)JMS
e (r) = 1[∑N

j=1

(
m( j) (r) − m( j)

apr (r)
)2 + e2

]1/2 . (10.46) 

We can derive a similar quadratic representation for .L p-norm joint minimum 
support functionals, .SJMSL p (m) , as follows:
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.. SJMSL p (m) =
N∑
i=1

 
V

|||m(i)−m(i)
apr

|||p
∑N

j=1

|||m( j)−m( j)
apr

|||p + ep
dv

=
N∑
i=1

 
V

|||m(i)−m(i)
apr

|||p
[(

m(i)−m(i)
apr

)2 + β2
]

[∑N
j=1

|||m( j)−m( j)
apr

|||p + ep
] [(

m(i)−m(i)
apr

)2 + β2

]dv

≈
N∑
i=1

 
V

|||w(i)JMSL p
e (r)

(
m(i)−m(i)

apr

)|||2 dv

=
N∑
i=1

(
W

(i)JMSL p
e

(
m(i)−m(i)

apr

)
,W

(i)JMSL p
e

(
m(i)−m(i)

apr

))
L2
(10.47) 

where.W(i)JMSL p
e (i = 1, 2, . . . , N ) are the linear operators of multiplication of the 

model parameter functions, .
(
m(i)−m(i)

apr

)
, by the following functions: 

. w
(i)JMSL p
e (r) =

||m(i)−m(i)
apr

||p/2
[∑N

j=1

|||m( j)−m( j)
apr

|||p + ep
]1/2 [(

m(i)−m(i)
apr

)2 + β2

]1/2 ,

(10.48) 
and . β is a small number introduced to avoid division by zero. 

For the joint minimum gradient support functional, .SJMGS (m) , we find: 

. 

SJMGS (m) =
N∑
i=1

 
V

(∇m(i) · ∇m(i)
)

∑N
j=1

(∇m( j) · ∇m( j)
) + e2

dv

=
N∑
i=1

 
V

(∇m(i) · ∇m(i)
) [(

m(i)
)2 + β2

]
[∑N

j=1

(∇m( j) · ∇m( j)
) + e2

] [(
m(i)

)2 + β2
]dv

≈
N∑
i=1

 
V

|||w(i)JMGS
e (r)m(i) (r)

|||2 dv =
N∑
i=1

(
W(i)JMGS

e m(i),W(i)JMGS
e m(i)

)
L2

,

(10.49) 
where .W(i)JMGS

e (i = 1, 2, . . . , N ) are the linear operators of multiplication of the 
model parameters functions, .m(i), by the following functions: 

.w
(i)JMGS
e (r) = ∇m(i) (r)[∑N

j=1

(∇m( j) · ∇m( j)
) + e2

]1/2 [(
m(i)

)2 + β2
]1/2 , (10.50) 

and . β is a small number introduced to avoid division by zero. 
Using the pseudo-quadratic form (10.44) of stabilizing functionals, we can present 

the corresponding parametric functional (10.32) as follows:
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. Pα(m(1),m(2), . . .m(N )) = (A(m) − d, A(m) − d)D +

. +
N∑
i=1

α(i)
(
W(i)

e

(
m(i)−m(i)

apr

)
,Wei

(
m(i)−m(i)

apr

))
L2

, (10.51) 

where .W(i)
e are linear operators of multiplication of the model parameters function 

.m(i) (r) by the function . w(i)
e (r) :

.

⎧⎨
⎩

w(i)JMS
e (r) , for joint minimum support functional,

w
(i)JMSL p
e (r) , for L p-norm joint minimum support functional,

w(i)JMGS
e (r) , for joint minimum gradient support functional.

(10.52) 

Therefore, the problem of minimization of the parametric functional introduced 
by Eq. (10.32) can be treated in a similar way to the minimization of the conventional 
Tikhonov parametric functional. The only difference is that now we introduce some 
variable weighting operators, .W(i)

e , which depend on the model parameters. We 
will discuss in the next section a practical technique of minimizing the parametric 
functional (10.32). 

10.4.2 Re-weighted Steepest Descent Method of Joint 
Focusing Inversion 

We have discussed in Chap. 7 (Sect. 7.5.2) the importance of using data weighting and 
model weighting matrices in regularized inversion. In this case, parametric functional 
(10.32) can be written using matrix notations as follows: 

. Pα(m(1),m(2), . . .m(N )) =

. 

N∑
i=1

(W(i)
d A(i)(m(i)) − W(i)

d d(i))T (W(i)
d A(i)(m(i)) − W(i)

d d(i)) +

. +
N∑
i=1

α(i)(W(i)
e W(i)

m m(i) − W(i)
e W(i)

m m(i)
apr )

T (W(i)
e W(i)

m m(i) − W(i)
e W(i)

m m(i)
apr ),

(10.53) 
where matrix .W(i)

e is a variable matrix of the focusing stabilizer, which depends on 
.m(1),m(2), . . .m(N ), and.W(i)

d and.W(i)
m are the conventional fixed diagonal matrices 

for weighting the data, .d(i), and model parameters, .m(i), respectively. 
Therefore, the problem of minimizing the parametric functional, given by 

Eq. (10.53), can be treated in a similar way to the minimization of the conventional 
Tikhonov functional. The only difference is that now we introduce some variable
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weighting matrices .W(i)
e for the model parameters. The minimization problem for 

the parametric functional introduced by Eq. (10.53) can be solved using the tradi-
tional gradient-type methods discussed in Chap. 7. 

For example, following Zhdanov (2002, 2015) we can describe the re-weighted 
steepest decent method. In the framework of this approach, the variable weighting 
matrices .W(i)

e , .i = 1, 2, . . . , N , are precomputed on each iteration, . W(i)
e = W(i)

en =
W(i)

e

(
m(1)

n ,m(2)
n , . . .m(N )

n

)
based on the values.m(1)

n ,m(2)
n , . . .m(N )

n , obtained on the 
previous iteration. As a result, they are treated as fixed matrices on each iteration. 
Under this assumption, we calculate the first variation of the parametric functional 
(10.53) as follows  

. δPα(m(1),m(2), . . .m(N )) =

. = 2
N∑
i=1

δm(i)TF(i)T
m W(i)2

d

(
A(i)(m(i)) − d(i)

) +

. + 2
N∑
i=1

α(i)δm(i)TW(i)2
e W(i)2

m

(
m(i) − m(i)

apr

)
.

After some algebra, we obtain: 

. δPα =

. = 2
N∑
i=1

δm(i)T
[
F(i)T
m W(i)2

d

(
A(i)(m(i)) − d(i)

) + α(i)W(i)2
e W(i)2

m

(
m(i) − m(i)

apr

)]
.

(10.54) 
Following the general scheme of the steepest descent method, we can again select 

. δm(i) = −kα(i)lα(i)(m(i)),

where .kα(i) are some positive real numbers (lengths of steps) and .lα(i)(m(i)) are 
column matrices defining the direction of the steepest ascent : 

. lα(i)(m(i)) =

. = F(i)T
m W(i)2

d

(
A(i)(m(i)) − d(i)

) + α(i)W(i)2
e W(i)2

m

(
m(i) − m(i)

apr

)
. (10.55) 

Thus, the regularized re-weighted steepest descent method is based on the successive 
line search in the gradient direction .lα(i)(m(i)

(n)): 

.m(i)
n+1= m(i)

n +m(i)= m(i)
n −kα(i)lα(i)(m(i)

n ), (10.56)
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where 

. lα(i)(m(i)
n ) = F(i)T

mn
W(i)2

d

(
A(i)(m(i)

n ) − d(i)
) + α(i)W(i)2

en W(i)2
m

(
m(i)

n − m(i)
apr

)
.

(10.57) 

10.4.3 Re-weighted Conjugate Gradient Method of Joint 
Focusing Inversion 

The regularized re-weighted conjugate gradient (RRCG) method can be developed 
in the same way as the steepest descent method; however, the model parameters 
are updated based on the successive line search in the conjugate gradient direction 
.̃lα(i)(m(i)

n ): 
. m(i)

n+1= m(i)
n +m(i)= m(i)

n −kα(i) l̃α(i)(m(i)
n ).

The conjugate gradient directions .̃lα(i)(m(i)
n ) are selected as follows. In the initial 

step, we use the “direction” of regularized steepest ascent for the initial model .m0: 

. ̃lα(i)
0 = l̃α(i)(m(i)

0 ) = lα(i)(m(i)
0 ) =

. = F(i)T
m0

W(i)2
d

(
A(i)(m(i)

0 ) − d(i)
)

+ α(i)W(i)2
e0 W(i)2

m

(
m(i)

0 − m(i)
apr

)
, (10.58) 

where .F(i)
m0

is the Fréchet derivative matrix for the initial model and . W(i)
e0 = W(i)

e0(
m(i)

0

)
. 

In the next step, the “direction” of ascent is a linear combination of the regularized 
steepest ascent on this step and the “direction” of ascent .̃lα(i)

0 on the previous step: 

. ̃lα(i)
1 = lα(i)

1 + βα(i)
1 l̃α(i)

0 .

In the .(n + 1)th step, we have 

.̃lα(i)
n+1 = lα(i)

n+1 + βα(i)
n+1̃l

α(i)
n , (10.59) 

where the regularized steepest ascent directions are determined now according to 
formula (10.58), and 

. ̃lα(i)
n = l̃α(i)(m(i)

n ); lα(i)
n = lα(i)(m(i)

n ).

The length of each iteration step, the coefficients .kα(i)
n , can be determined with a 

linear or parabolic line search: 

.Pα(m(1)
n+1,m

(2)
n+1, . . .m

(N )
n+1) =
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. Pα(m(1)
n − kα(1)

n l̃α(1)
n , . . .m(N )

n − kα(N )
n l̃α(N )

n ) = min .

Solution of this minimization problem gives the following best estimate for the 
lengths of the step using a linear line search: 

.kα(i)
n = l̃α(i)T

n lα(i)
n

l̃α(i)T
n

(
F(i)T
mn W2

dF
(i)
mn + αW(i)2

en W(i)2
m

)
l̃α(i)
n

. (10.60) 

One can use a parabolic line search also to improve the convergence rate of the RRCG 
method (Zhdanov 2002). 

The CG method requires that the vectors .̃lα(i)
n introduced above will be mutually 

conjugate. This requirement is fulfilled if the coefficients.βα(i)
n are determined by the 

formula 

. βα(i)
n+1 = ||lα(i)

n+1||2
||lα(i)

n ||2 .

Using Eqs. (10.56), (10.58) and (10.60), we can obtain .m(i) iteratively. 
We call this algorithm conjugate gradient re-weighted optimization because the 

weighting matrix .W(i)
en is updated on every iteration (Portniaguine and Zhdanov 

1999). 
Note that due to re-weighting, the stabilizing functional can change and even 

increase from iteration to iteration, 

. s
(
m(i)

n+1

)
=

. = (m(i)
n+1 − m(i)

apr )
TW(i)2

e(n+1)W
(i)2
m (m(i)

n+1 − m(i)
apr ) = γ(i)

n s
(
m(i)

n

)
, (10.61) 

where 

. γ(i)
n =

s
(
m(i)

n+1

)

s
(
m(i)

n

) =

. = (m(i)
n+1 − m(i)

apr )
TW(i)2

e(n+1)W
(i)2
m (m(i)

n+1 − m(i)
apr )

(m(i)
n − m(i)

apr )TW
(i)2
en W(i)2

m (m(i)
n − m(i)

apr )
. (10.62) 

In order to ensure the convergence of the parametric functional to the global 
minimum, we use adaptive regularization and decrease parameters.αn+1, if.γ(i)

n > 1: 

.α(i)
n+1 =

[
α(i)
n , if γ(i)

n ≤ 1,
α(i)
n /γ(i)

n , if γ(i)
n > 1.

(10.63) 

So, the product of the regularization parameter .α(i)
n+1 and the stabilizer . s (mn+1)

decreases or does not change:
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.α(i)
n+1s

(
m(i)

n+1

)
=

⎧⎨
⎩

α(i)
n s

(
m(i)

n+1

)
= α(i)

n γ(i)
n s

(
m(i)

n

)
, if γ(i)

n ≤ 1,

α(i)
n s

(
m(i)

n+1

)
/γ(i)

n = α(i)
n s

(
m(i)

n

)
, if γ(i)

n > 1.
(10.64) 

We also decrease the regularization parameter .αn+1, 

.α(i)'
n+1 = qα(i)

n+1, q < 1, (10.65) 

if the total misfit for all data does not decrease fast enough: 

. 

N∑
i=1

||||||W(i)
d A(i)(m(i)

n ) − W(i)
d d(i)

||||||2 −
N∑
i=1

||||||W(i)
d A(i)(m(i)

n+1) − W(i)
d d(i)

||||||2

. < 0.01
N∑
i=1

||||||W(i)
d A(i)(m(i)

n ) − W(i)
d d(i)

||||||2 . (10.66) 

Numerical experiments demonstrate that the recommended choice of the empirical 
coefficient . q is within an interval .(0.5; 0.9). 

The algorithm of the RRCG method can be summarized as follows: 

. 

r(i)n = A(i)(m(i)
n ) − d(i), g(i)

n = W(i)
enW

(i)
m (m(i)

n − m(i)
apr ), (a)

lαn(i)
n = F(i)T

mn W(i)2
d r(i)n + αnW

(i)
enW

(i)
m g(i)

n , (b)

β
αn(i)
n =

||||||lαn(i)
n

||||||2 /

||||||lαn−1(i)
n−1

||||||2 , l̃αn(i)
n = lαn(i)

n +β
αn(i)
n l̃αn−1(i)

n−1 , l̃α0(i)
0 = lα0(i)

0 , (c)

k̃αn(i)
n =

(
l̃αn(i)T
n lαn(i)

n

)
/
[
l̃αn(i)T
n

(
F(i)T
mn W(i)2

d F(i)
mn + αnW

(i)2
en W(i)2

m

)
l̃αn(i)
n

]
, (d)

m(i)
n+1 = m(i)

n − k̃αn(i)
n l̃αn(i)

n , γ
(i)
n = ||||gn+1

||||2 / ||gn||2 , (e)

α
(i)
n+1 = α

(i)
n , if γ

(i)
n ≤ 1, and α

(i)
n+1 = α

(i)
n /γ

(i)
n , if γ

(i)
n > 1, ( f )

α
(i)'
n+1 = qα

(i)
n+1, q < 1, if

||||||W(i)
d r(i)n

||||||2 −
||||||W(i)

d r(i)n+1

||||||2 < 0.01
||||||W(i)

d r(i)n

||||||2 , (g)

(10.67) 
where .α(i)

n are the subsequent values of the regularization parameter. The iterative 
process (10.67) is terminated when the misfit reaches the given level . ε0: 

. φ(m(i)
N ) =

||||||r(i)
N

||||||2 ≤ ε0.

This method is called the RRCG method with adaptive regularization (Zhdanov 2002, 
2015)
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Chapter 11 
Joint Minimum Entropy Inversion 

Abstract In this chapter, we consider an approach to joint inversion, which requires 
the minimum of joint entropy in the distribution of different model parameters. The 
entropy functional is introduced as a measure of the disorder in the distribution of 
the model parameters. By minimizing the entropy functionals, one decreases the 
uncertainty in the inverse problem solution, producing a more stable and robust 
solution of the inverse problem. The joint minimum entropy stabilizing functional 
characterizes the degree of joint disorder or uncertainty in the distribution of the 
different model parameters. By minimizing this functional in the framework of the 
regularized inversion, we produce a consistent image of the same geological structure 
expressed in various geophysical data. 

Keywords Entropy · Joint minimum entropy · Uncertainty · Disorder 

11.1 Concept of Entropy in the Inverse Problem Solution 

In this chapter, we consider an approach to joint inversion, which requires the mini-
mum of joint entropy in the distribution of different model parameters. This require-
ment forces the simplest multiphysics solution that fits the multimodal data. 

Shannon (1948) introduced the concept of entropy as the average level of “uncer-
tainty” in a system of random variables (see Chap. 2). In the framework of a proba-
bilistic approach to inverse problem solution (Franklin 1970; Tarantola 1987, 2005; 
Zhdanov 2002), one can treat the unknown physical model parameter, .m, as some 
random variable, with the volume distribution described by function . m = m(r),
where .r ∈V is a position of the observation point. In this case, the entropy of the 
model parameter distribution can be evaluated using the following formula for a 
differential entropy (2.53): 

.h(m) = −
 
V
p(r) ln p(r)dv. (11.1) 
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In the last formula, .p(r) can be introduced as an analog of the probability density 
function of the random variable, . m,

.p(r) = |m(r)| /Q, (11.2) 

where .Q is a volume integral of the absolute value of the distribution, .m(r): 

.Q =
 
V

|m(r)| dv. (11.3) 

It is important to note that, in a general case, we can use any transformation of 
the model parameters, ..T [m(r)], in formula (11.2) as an analog of the probability 
density function: 

.pT (r) = |T [m(r)]| /QT , where QT =
 
V

|T [m(r)]| dv. (11.4) 

For example, we may consider different powers of .m or the results of the appli-
cation of varying differential operators to.m, e. g., gradient, .∇m, or Laplacian,. ∆m,

operators. By selecting different transformations of the model parameters, we impose 
particular conditions on the behavior of the corresponding inverse models in order 
to satisfy the a priori known requirements. Some examples of these transformations 
will be discussed below. 

It was originally shown by Amato and Hughes (1991) and Kopec (1991) that the 
concept of entropy could be used in the regularized solution of Fredholm integral 
equations. Ramos (1999) and Zhdanov (2002) suggested using the minimum entropy 
stabilizer based on formula (11.1) to produce a focused solution of geophysical 
inverse problems: 

.sME (m) = −
 
V

||m − mapr

||+ β

Q
ln

||m − mapr

||+ β

Q
dv, (11.5) 

where 

. Q =
 
V

(||m − mapr

||+ β
)
dv,

and .β > 0 is a small positive number introduced to avoid a singularity in the above 
formulas. 

Note that the application of this stabilizer has some similarities with the maxi-
mum entropy principle in spectral analysis, considered, for example, in Ables (1974), 
Burg (1975), and Wernecke and D’Addario (1977). However, in the framework of 
Tikhonov regularization, the goal is to minimize a stabilizing functional, which jus-
tifies the “minimum entropy” name for this stabilizer. 

The entropy functionals defined by formulas (11.1) or (11.5) can be treated as a 
measure of the disorder in the distribution of the model parameters. By minimizing
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the entropy functionals, we decrease the uncertainty in the inverse problem solution, 
producing a more stable and robust solution of the inverse problem. 

11.2 Joint Minimum Entropy Stabilizers 

The concept of reducing uncertainty in the distribution of the inverse model param-
eters could also be extended to the case of joint inversion (Zhdanov 2022; Zhdanov 
et al. 2022). 

11.2.1 Joint Minimum Entropy Stabilizer of Order . q

Indeed, we introduce a joint minimum entropy stabilizing functional of order . q of 
multimodal parameters, .Sq JME , as follows (Zhdanov et al. 2022): 

.Sq JME = −
 
V

∑N
i=1

||m(i)−m(i)
apr

||q + β

QJ
ln

∑N
i=1

||m(i)−m(i)
apr

||q + β

QJ
dv, (11.6) 

where . q is an integer number (.q = 1, 2, ...N ), and 

.QJ =
 
V

(
N∑
i=1

||m(i)−m(i)
apr

||q + β

)
dv. (11.7) 

The joint minimum entropy stabilizing functional characterizes the degree of 
joint disorder or uncertainty in the distribution of the different model parameters. By 
minimizing this functional in the framework of the regularized inversion, we produce 
a consistent image of the same geological structure expressed in various geophysical 
data. 

11.2.2 Joint Minimum Entropy of Gradient Stabilizer 
of Order . q

The above approach can be extended to impose a structural similarity between inverse 
models corresponding to different physical parameters. We can achieve this by con-
sidering a spatial gradient, .∇m = ∇m(r), of the model parameter distribution func-
tion. Following Zhdanov (2002, 2015), we can introduce the . qth order minimum 
entropy of gradient stabilizer, .SqMEG :



218 11 Joint Minimum Entropy Inversion

.SqMEG (m) = −
 
V

|∇m|q + β

Q' ln
|∇m|q + β

Q' dv, (11.8) 

where 

. Q' =
 
V

(|∇m|q + β
)
dv.

Note that the spatial gradient,.∇m, increases at the interfaces between the different 
blocks, where the corresponding physical property changes rapidly and is directed 
perpendicular to these interfaces (see Chap. 9). Therefore, minimizing the entropy 
of the gradient stabilizer, .SqMEG, should produce a simpler geometrical structure of 
the inverse model. 

Similarly, we can introduce a joint minimum entropy of gradient functional 
.Sq JMEG (JMEG), as follows: 

. Sq JMEG =

. = −
 
V

∑N
i=1

(∇m(i) · ∇m(i)
)q/2 + β

Q'
J

ln

∑N
i=1

(∇m(i) · ∇m(i)
)q/2 + β

Q'
J

dv,

(11.9) 
where 

. Q'
J =

 
V

(
N∑
i=1

(∇m(i) · ∇m(i)
)q/2 + β

)
dv.

This joint entropy of gradient functional characterizes the degree of joint disorder 
of the spatial gradients of the different model parameters, .∇m(1), ∇m(2), ....∇m(N ). 
Applying this functional enforces the structural (geometric) similarity between the 
different images by minimizing the joint entropy of their structure. 

11.3 Steepest Ascent Directions of the Joint Minimum 
Entropy Functional 

Following the same logic we discussed in Chap. 10 for joint focusing inversion, we 
now derive the expressions for the steepest ascent directions of the joint minimum 
entropy functionals. Let us rewrite Eq. (11.6) in the following form: 

.Sq JME = −
 
V

pJ

QJ
ln

pJ

QJ
dv, (11.10) 

where 

.pJ =
N∑
i=1

||m(i)−m(i)
apr

||q + β, (11.11)
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and .QJ is defined above in Eq. (11.7). 
We can take the first variation of functional .Sq JME given by Eq. (11.10): 

.δSq JME =
N∑

n=1

δm(n) Sq JME = −
N∑

n=1

 
V

δm(n)

[
pJ

QJ
ln

pJ

QJ

]
dv. (11.12) 

One has to find the variations of the integrands in Eq. (11.12). Applying the standard 
rules of the variational calculus, we have 

. δm(n)

[
pJ

QJ
ln

pJ

QJ

]
=

. = δm(n)

[
pJ

QJ

]
ln

pJ

QJ
+ pJ

QJ
δm(n)

[
ln

pJ

QJ

]

. = δm(n)

[
pJ

QJ

]
ln

pJ

QJ
+ pJ

QJ

QJ

pJ
δm(n)

[
pJ

QJ

]

. =
(
ln

pJ

QJ
+ 1

)
δm(n)

[
pJ

QJ

]
. (11.13) 

We can now derive the variations of the ration .
pJ
QJ

: 

. δm(n)

[
pJ

QJ

]
= δm(n) pJ

QJ
− pJ δm(n) QJ

Q2
J

. = QJ δm(n) pJ − pJ δm(n) QJ

Q2
J

(11.14) 

The variations .δm(n) pJ and .δm(n) QJ in the last formula are calculated as follows: 

. δm(n) pJ = δm(n)

[
N∑
i=1

||m(i)−m(i)
apr

||q + β

]

. = q
||m(n)−m(n)

apr

||q−1
signum

(
m(n)−m(n)

apr

)
δm(n) = qu(n)δm(n), (11.15) 

and 

. δm(n) QJ =
 
V

δm(n)

(
N∑
i=1

||m(i)−m(i)
apr

||q + β

)
dv

. =
 
V
q
||m(n)−m(n)

apr

||q−1
signum

(
m(n)−m(n)

apr

)
δm(n)dv = q

 
V
u(n)δm(n)dv,

(11.16)



220 11 Joint Minimum Entropy Inversion

where we introduced a new function .u(n): 

.u(n) = ||m(n)−m(n)
apr

||q−1
signum

(
m(n)−m(n)

apr

)
. (11.17) 

Substituting Eqs. (11.15) and (11.16) into (11.14) and (11.13), we have 

. δm(n)

[
pJ

QJ
ln

pJ

QJ

]
=
(
ln

pJ

QJ
+ 1

)
δm(n)

[
pJ

QJ

]
=

. = q

Q2
J

(
ln

pJ

QJ
+ 1

)[
QJu

(n)δm(n) − pJ

 
V
u(n)δm(n)dv

]
. (11.18) 

Integrating the last formula over domain . V , we find 

. 

 
V

δm(n)

[
pJ
QJ

ln
pJ
QJ

]
dv =

. = q

Q2
J

 
V

(
ln

pJ
QJ

+ 1

)
QJu

(n)δm(n)dv − q

Q2
J

 
V

(
ln

pJ
QJ

+ 1

)
pJ dv

 
V
u(n)δm(n)dv.

(11.19) 
Let us introduce the following notations: 

. a(n) =
(
ln

pJ
QJ

+ 1

)
QJu

(n) = QJ

|||m(n)−m(n)
apr

|||q−1
signum

(
m(n)−m(n)

apr

)(
ln

pJ
QJ

+ 1

)
,

(11.20) 
and 

.b(n) =
 
V

(
ln

pJ

QJ
+ 1

)
pJdv. (11.21) 

Using these notations, we can write 

. 

 
V

δm(n)

[
pJ

QJ
ln

pJ

QJ

]
dv = q

Q2
J

 
V

(
a(n) − b(n)

)
δm(n)dv = −2

(
δm(n), l(n)

q JME

)
L2

,

(11.22) 
where functions .l(n)

q JME represent the directions of the steepest ascent of the joint 
minimum entropy functional with respect to model ..m(n): 

.l(n)
q JME = q

2Q2
J

(
b(n) − a(n)

)
. (11.23) 

Finally, we can write Eq. (11.12) for the first variation of the joint minimum entropy 
functional, as follows:
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.δSq JME =
N∑

n=1

δm(n) Sq JME = 2
N∑

n=1

(
δm(n), l(n)

q JME

)
L2

, (11.24) 

Similarly, one can calculate the first variation and the directions of the steepest 
ascent of the joint minimum entropy of gradient functional (11.8). 

11.4 Representation of the Minimum Entropy Stabilizing 
Functionals in Pseudo-Quadratic Form 

Expressions (11.6) and (11.9) show that the joint minimum entropy functionals 
are nonquadratic. In numerical applications, it is convenient to represent them in 
a pseudo-quadratic form, as it was done in Chap. 10 for focusing stabilizers. 

For example, the joint minimum entropy functional, .Sq JME (m) , can be written 
as follows: 

. Sq JME = −
 
V

∑N
i=1

||m(i)−m(i)
apr

||q + β

QJ
log

∑N
j=1

|||m( j)−m( j)
apr

|||q + β

QJ
dv

. ≈
N∑
i=1

 
V

||m(i)−m(i)
apr

||2 ||m(i)−m(i)
apr

||q
QJ

(|||m(i)−m(i)
apr

|||2 + β

) log
QJ∑N

j=1

|||m( j)−m( j)
apr

|||q + β
dv

. =
N∑
i=1

(
W(i)JME

eq

(
m(i)−m(i)

apr

)
,W(i)JME

eq

(
m(i)−m(i)

apr

))
M

, (11.25) 

where. β is a small positive number, and.W(i)JME
eq is a linear operator of the multiplica-

tion of the model parameter function.m(i) (r) by the following function,..w(i)JME
eq (r): 

. w
(i)JME
eq (r) =

. =

⎡
⎢⎢⎣

||m(i)−m(i)
apr

||q
QJ

(|||m(i)−m(i)
apr

|||2 + β

) log

⎡
⎣QJ/

⎛
⎝ N∑

j=1

||m( j)−m( j)
apr

||q + β

⎞
⎠
⎤
⎦
⎤
⎥⎥⎦

1
2

.

(11.26)
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For the joint minimum entropy of gradient functional, ..SJMEG (m), we find 

. Sq JMEG =

. =
 
V

∑N
i=1

(∇m(i) · ∇m(i)
)q/2 + β

Q'
J

log

⎡
⎣Q'

J /

⎛
⎝ N∑

j=1

(
∇m( j) · ∇m( j)

)q/2 + β

⎞
⎠
⎤
⎦ dv

. ≈
N∑
i=1

 
V

|||m(i)−m(i)
apr

|||2 (∇m(i) · ∇m(i)
)q/2

Q'
J

(|||m(i)−m(i)
apr

|||2 + β

) log

⎡
⎣Q'

J /

⎛
⎝ N∑

j=1

(
∇m( j) · ∇m( j)

)q/2 + β

⎞
⎠
⎤
⎦ dv

. =
N∑
i=1

(
W(i)JMEG

eq

(
m(i)−m(i)

apr

)
,W(i)JMEG

eq

(
m(i)−m(i)

apr

))
M

, (11.27) 

where .W(i)JMEG
eq is a linear operator of the multiplication of the model parameter 

function .m(i) (r) by the following function, ..w(i)JMEG
eq (r): 

. w
(i)JMEG
e (r)

. =

⎡
⎢⎢⎣

(∇m(i) · ∇m(i)
)q/2

Q'
J

(|||m(i)−m(i)
apr

|||2 + β

) log

⎡
⎣Q'

J/

⎛
⎝ N∑

j=1

(∇m( j) · ∇m( j)
)q/2 + β

⎞
⎠
⎤
⎦
⎤
⎥⎥⎦

1
2

.

(11.28) 

11.5 Joint Minimum Entropy Inversion of Multiphysics 
Data 

We can introduce the multiphysics inverse problem again as follows: 

.d(i) = A(i)(m(i)), i = 1, 2, 3, ..., N . (11.29) 

The regularized solution of a nonlinear inverse problem (11.29) can be obtained 
by minimization of the parametric functional with the minimum entropy stabilizers, 

.Pα(m(1),m(2), ....,m(n)) =
N∑
i=1

||||A(i)(m(i)) − d(i)
||||2
D + αSq JME, q JMEG, (11.30) 

where . α is the regularization parameter.
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The terms . Sq JME and .Sq JMEG are the joint stabilizing functionals based on 
minimum entropy and minimum entropy gradient constraints, respectively, defined 
above. 

Using the pseudo-quadratic forms (11.25) and (11.27) of stabilizing functionals, 
we can present the corresponding parametric functional (11.30) as follows:  

. Pα(m(1),m(2), ...m(N )) =
N∑
i=1

(
A(i)(m(i)) − d(i),A(i)(m(i)) − d(i)

)
D +

. +
N∑
i=1

α(i)
(
W(i)

e

(
m(i)−m(i)

apr

)
,Wei

(
m(i)−m(i)

apr

))
M

, (11.31) 

where .W(i)
e is a linear operator of multiplication of the model parameter function 

.m(i) (r) by the function ..w(i)
e (r): 

. 

 
w(i)

e = w JME
eq (r) , for joint minimum entropy functional,

w(i)
e = w(i)JMEG

eq (r) , for joint minimum entropy gradient functional.

Therefore, the problem of minimization of the parametric functional introduced 
by Eq. (11.31) can be treated in a similar way to the minimization of the conventional 
Tikhonov parametric functional. The only difference is that now we introduce some 
variable weighting operator.We, which depends on the model parameters. This prob-
lem can be solved using the re-weighted regularized steepest descent or conjugate 
gradient methods, as discussed in Chap. 10 for joint focusing inversion. 
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Chapter 12 
Gramian Method of Generalized Joint 
Inversion 

Abstract The Gramian space of model parameters is revisited. The norm of the 
function in the Gramian space is defined as the determinant of the Gram matrix of a 
system of different model parameters or their attributes. This determinant is called 
a Gramian. It is demonstrated that minimization of the Gramian results in enforcing 
the correlation between different transforms (attributes) of the model parameters, 
producing inverse images with similar patterns. This chapter also presents the meth-
ods of joint inversion with Gramian stabilizers. The concept of localized Gramian is 
introduced to allow for variable relationships between the different physical proper-
ties of the models over the area of investigation. 

Keywords Gramian space · Gramian functional · Gramian stabilizer · Localized 
Gramian 

In this chapter, we discuss a general approach to joint inversion of multimodal geo-
physical data using Gramian constraints, which is based on the minimization of the 
determinant of a Gram matrix of a system of different model parameters or their 
attributes (Zhdanov et al. 2012a; 2012b; Zhdanov 2019). This approach does not 
require any a priori knowledge about the types of relationships between the different 
model parameters. Instead, it determines the form of these relationships in the inver-
sion process. The Gramian constraints make it possible to consider both linear and 
nonlinear relationships between the different physical parameters of the model. Fur-
thermore, by specifying a type of Gramian constraint, one can enforce polynomial, 
gradient, or any other complex correlations. 

12.1 Gramian Spaces Revisited 

We consider inverse problems for multiple data sets. The following operator rela-
tionships can describe these problems: 

.d(i) = A(i)(m(i)), i = 1, 2, 3, ..., n, (12.1) 
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where, in a general case, .A(i) is a nonlinear operator, .d(i)
.(i = 1, 2, 3, ..., n) are dif-

ferent observed data sets, and.m(i)
.(i = 1, 2, 3, ..., n) are the unknown sets of model 

parameters described by integrable functions of a radius-vector.r = (x, y, z)defined 
within some volume. V of a 3D space. Note that in expression (12.1) and everywhere 
below in this chapter, we consider .d(1), d(2), ..., d(n) and .m(1),m(2), ...,m(n) being 
the dimensionless weighted data and model parameters, as defined in Chap. 8. 

In the framework of regularization theory, the solution of inverse problems (12.1) 
can be reduced to minimization of the following parametric functional: 

. Pα(m(1),m(2), ....m(n)) =
n∑

i=1

||||A(i)(m(i))−d(i)
||||2
D

. + αSJ (m
(1),m(2), ....m(n)) = min, (12.2) 

where . α is the regularization parameter and .SJ is the joint stabilizing functional, 
which enforces the mutual relationships between different physical parameters of 
the joint inversion. This chapter introduces Gramian stabilizing functional, which 
will serve this purpose. 

12.1.1 Gramian Space of Model Parameters 

In Chap. 3, we provided a definition of the Gramian space of complex functions of 
a radius-vector .r = (x, y, z) defined within some volume .V of a 3D space. We 
considered these functions as the elements of a complex Hilbert space .LC

2 [V ] with 
a .LC

2 norm, defined by the corresponding inner product: 

. ( f, g)LC
2

=
 

V
f (r) g∗ (r) dv, || f ||2 = ( f, f ) , (12.3) 

where asterisk “*” denotes the complex conjugate value. 
Following the same ideas, we now introduce a space .M of model parameters 

formed by some complex functions of the radius-vector .r = (x, y, z) , r ∈ V. Let  
us consider two arbitrary functions from the model space, .p (r) and .q (r) ∈M . We  
can define a new inner product operation, .(p, q)G(n) , between two functions, . p and 
. q, as the determinant of the following matrix: 

. (p, q)G(n) =

. =

||||||||||

(
m(1),m(1)

) (
m(1),m(2)

)
...

(
m(1),m(n−1)

) (
m(1), q

)
(
m(2),m(1)

) (
m(2),m(2)

)
...

(
m(2),m(n−1)

) (
m(2), q

)

... ... ... ... ...(
m(n−1),m(1)

) (
m(n−1),m(2)

)
...

(
m(n−1),m(n−1)

) (
m(n−1), q

)
(
p,m(1)

) (
p,m(2)

)
...

(
p,m(n−1)

)
(p, q)

||||||||||

, (12.4)
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where matrix elements are formed by the conventional.LC
2 [V ] inner product between 

two functions (see Chap. 3, Sect. 3.6.3) as follows: 

. 
(
m(i),m( j)

) = (
m(i),m( j)

)
LC
2

=
 

V
m(i) (r) m( j)∗ (r) dv,

. 
(
m(i), q

) = (
m(i), q

)
LC
2

=
 

V
m(i) (r) q∗ (r) dv,

.
(
p,m( j)

) = (
p,m( j)

)
LC
2

=
 

V
p (r) m( j)∗ (r) dv. (12.5) 

It is easy to check that all the properties of the inner product hold for Eq. (12.4) 
(see Chap. 3). 

Note that the norm square of a function, .||p||2G(n) , is equal to the determinant, 
.G(m(1),m(2), ....,m(n−1), p), of the Gram matrix, . G, of a set of functions, . (m(1),

.m(2), ...., .m(n−1), .p, ), which is called a Gramian: 

. ||p||2G(n) = (p, p)G(n) = G(m(1),m(2), ....,m(n−1), p) = |G| =

. =

||||||||||

(
m(1),m(1)

) (
m(1),m(2)

)
...

(
m(1),m(n−1)

) (
m(1), p

)
(
m(2),m(1)

) (
m(2),m(2)

)
...

(
m(2),m(n−1)

) (
m(2), p

)

... ... ... ... ...(
m(n−1),m(1)

) (
m(n−1),m(2)

)
...

(
m(n−1),m(n−1)

) (
m(n−1), p

)
(
p,m(1)

) (
p,m(2)

)
...

(
p,m(n−1)

)
(p, p)

||||||||||

. (12.6) 

It was demonstrated in Chap. 3 that Gramian satisfies Gram’s inequality (3.105): 

.G(m(1),m(2), ....,m(n−1), p) ≥ 0. (12.7) 

Equality holds in (12.7) if and only if the system of functions . 
(
m(1),m(2), ....,

m(n−1), p
)
is linearly dependent. 

We will call the Hilbert space formed by the integrable functions, defined within 
some volume .V of a 3D space, with the inner product operation determined by 
formula (12.4), a Gramian space of the model parameters, .G(n). The main property 
of the Gramian space is that the norm of the function in the Gramian space provides 
a measure of correlation between this function and the additional model parameters 
. m(1),m(2), ....,m(n−1).

It can be shown that one can introduce the Gramian space .G( j), where the inner 
product is defined by an expression similar to (12.6) with the only difference being 
that functions .p and . q are located within the row and column with number . j , 
respectively:



228 12 Gramian Method of Generalized Joint Inversion

. (p, q)G( j) =

. =

||||||||||

(
m(1),m(1)

) (
m(1),m(2)

)
...

(
m(1), q

)
...
(
m(1),m(n)

)

... ... ... ... ......(
p,m(1)

) (
p,m(2)

)
... (p, q) ...

(
p,m(n)

)

... ... ... ... ....(
m(n),m(1)

) (
m(n),m(2)

)
...

(
m(n), q

)
...

(
m(n),m(n)

)

||||||||||

. (12.8) 

In the Gramian space.G( j), the norm square of a function,.||p||2G( j) . , is equal to the 
Gramian of a set of functions, .(m(1), .m(2), ...., .m( j−1), . p, m( j+1), ....m(n)):

. ||p||2G( j) = (p, p)G( j) = G(m(1),m(2), ....m( j−1), p, m( j+1), ...,m(n)). (12.9) 

Therefore, the norm of the function in the Gramian space .G( j) provides a measure 
of linear dependence between this function and all other model parameters, except 
for parameter .m( j): . m(1),m(2),....... . m( j−1), m( j+1), ...,m(n).

One can see from formula (12.8) that the following identities hold: 

.

||||m(i)
||||2
G(i) = G(m(1),m(2), ...,m(n), for i = 1, 2, ..., n. (12.10) 

Therefore, we conclude at once that the Gramian norm has the following important 
property: 

.

||||m(i)
||||2
G(i) = ||||m( j)

||||2
G( j) , for i, j = 1, 2, ..., n. (12.11) 

The last formula demonstrates that all the functions, .m(1),m(2),.......,m(n), have the  
same norm in the corresponding Gramian spaces . G( j), j = 1, 2, ..., n.

12.1.2 Gramian Space of Model Parameter Gradients 

In many applications, it is necessary to jointly invert the data, which are produced by 
unrelated physical phenomena. In this case, one cannot use any correlation between 
different model parameters but instead should consider the possibility of some struc-
tural (geometrical) similarities between the different physical models. The concept 
of joint structure-coupled inversion was discussed in Chap. 9, where we considered 
two mathematical criteria for structural similarity. One was introduced in image 
processing theory for image quality assessment (Wang et al. 2004). It is based on 
the structural similarity index (SSI). Another approach requires the parallelism of 
the model parameter gradients (e.g., Fregoso and Gallardo 2009; Gallardo 2007; 
Gallardo and Meju 2003, 2004, 2007, 2011; Hu et al. 2009; Meju 2011). 

In this section, we consider a Gramian-based method to find the inverse models 
possessing the maximum geometrical similarities between the different physical
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modalities. This method is based on the Gramian space of model parameter gradients. 
We introduce this space following Zhdanov (2015). 

Let us consider a complex Hilbert space .M∇ formed by gradients of the func-
tions differentiable within volume.V with the metric, defined by the following inner 
product operation: 

. (∇ p,∇q)M∇ =
 

V

(∇ p (r) · ∇q∗ (r)
)
dv, (12.12) 

where .p(r), .q(r) ∈ M∇, and .∇ p(r) and .∇q(r) are the gradients of functions . p(r)
and .q(r), respectively (.r ∈V ). 

Note that the inner product in the space of the gradients, .M∇, can be transformed 
into the inner product in the space of the original functions, . LC

2 .

Indeed, we can integrate integral (12.12) by parts: 

. 

 

V

(∇ p · ∇q∗) dv = −
 

V
p∇2q∗dv +

 

∂V
p∇q∗ · nds,

where we have applied the Gauss theorem, and . n is a unit vector of the normal 
directed outward from domain . V .

We assume homogeneous Neumann (i.e., no flux) boundary conditions for the 
gradients: 

. 

 

∂V
p∇q∗ · nds = 0.

Therefore we have 

. (∇ p,∇q)M∇ =
 

V

(∇ p · ∇q∗) dv = −
 

V
p∇2q∗dv = − (

p,∇2q∗)
LC
2
. (12.13) 

We can now introduce a new inner product operation, .(∇ p,∇q)G(n)
∇

, between 
two functions, .∇ p and .∇q, from the space, .M∇, of the model parameter gradients, 
.∇ p (r) and .∇q (r) ∈M∇, as the determinant of the following matrix: 

. (∇ p,∇q)G(n)
∇

=

. =

|||||||||||

(∇m(1),∇m(1)
)
M∇

(∇m(1),∇m(2)
)
M∇

...
(∇m(1),∇q

)
M∇(∇m(2),∇m(1)

)
M∇

(∇m(2),∇m(2)
)
M∇

...
(∇m(2),∇q

)
M∇

... ... ... ...(∇m(n−1),∇m(1)
)
M∇

(∇m(n−1),∇m(2)
)
M∇

...
(∇m(n−1),∇q

)
M∇(∇ p,∇m(1)

)
M∇

(∇ p,∇m(2)
)
M∇

... (∇ p,∇q)M∇

|||||||||||

, (12.14)
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where 

. 
(∇m(i),∇m( j)

)
L2(M∇ )

=
 

V

(∇m(i) (r) · ∇m( j)∗ (r)
)
dv,

. 
(∇m(i),∇q

)
L2(M∇ )

=
 

V

(∇m(i) (r) · ∇q∗ (r)
)
dv,

.
(∇ p,∇m( j)

)
L2(M∇ )

=
 

V

(∇ p (r) · ∇m( j)∗ (r)
)
dv. (12.15) 

The norm square of a gradient of a function, .||∇ p||2
G(n)

∇
, is equal to the Gramian of a 

set of gradients, .∇m(1),∇m(2), ....,∇m(n−1), . ∇ p:

. ||∇ p||2
G(n)

∇
= G(∇m(1),∇m(2), ....,∇m(n−1), ∇ p). (12.16) 

We will demonstrate in Chap. 13 that the norm of the gradient of function . p in 
the Gramian space provides a measure of the correlation between the gradient of this 
function and the gradients of the additional model parameters . ∇m(1),∇m(2), ....,

∇m(n−1). Minimization of this norm, .||∇ p||G(n)
∇

, results in producing multimodal 
inverse images with correlated directions of the parameter changes, similar to the 
result of the minimum cross-gradient joint inversion (see Chap. 9). 

As it was discussed in the previous section, one could introduce the Gramian 
space .G( j)

∇ , where the inner product is defined by an expression similar to (12.14) 
with the only difference being that functions .∇ p and.∇q are located within the row 
and column with number. j , respectively. The norm square of a gradient of a function, 
.||∇ p||2

G( j)
∇

, in Gramian space.G( j)
∇ is equal to the Gramian of a set of gradients,. ∇m(1),

.∇m(2), ...., . ∇m( j−1), .∇ p, . ∇m( j+1), ....∇m(n) : 

. ||∇ p||2
G( j)

∇
= (∇ p,∇ p)G( j)

. = G(∇m(1),∇m(2), ...,∇m( j−1),∇ p, ∇m( j+1), ....∇m(n)). (12.17) 

Therefore, the norm of the gradient of the function in the Gramian space.G( j)
∇ provides 

a measure of the structural correlation between this function, .∇ p, and the gradients 
of all other model parameters, except for parameter.m( j):. ∇m(1),∇m(2),...,. ∇m( j−1), 
. ∇m( j+1),.... ∇m(n). 

Finally, one can check that the Gramian norm of the gradients has the same 
property (12.11), as the Gramian norm of the model parameters: 

.

||||∇m(i)
||||2
G(i)

∇
= ||||∇m( j)

||||2
G( j)

∇
, for i, j = 1, 2, ..., n. (12.18)
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12.1.3 Gramian Spaces of Different Transforms of the Model 
Parameters 

The approach to the joint inversion based on Gramian constraints makes it possible 
to consider different properties (attributes) of the model parameters in the fusion of 
multimodal inversions. We can use, for example, second derivatives of the model 
parameters, absolute values of the gradients and/or second derivatives of the model 
parameters, or any other transforms of the model parameters and their gradients. The 
idea is that in joint inversion, one could search for inverse images that have similar 
features expressed by the areas of strong variations of the model parameters or by 
the boundaries outlying the areas of the strong contrasts in physical properties. 

Let us introduce an operator,. T , of a transformation of the model parameters from 
space .M into a transformed model space .MT : 

. fT = T f, gT = T g; f, g ∈ M; fT , gT ∈ MT .

Operator. T can be chosen as a differential operator (e.g., gradient or Laplacian of the 
model parameters) or as an absolute value of the model parameters or their derivatives 
(e.g., the absolute value of the gradient or Laplacian of the model parameters), or as a 
Fourier transform or any other transformations which emphasize specific properties 
of the inverse images. We can treat all these transformations as some “attributes” of 
the model parameters. 

The inner product operation, .( fT , gT )G(n)
T

, between two functions, . fT and .gT , is  
determined as the determinant of the following matrix: 

. ( fT , gT )G(n)
T

=

. =

|||||||||||

(
Tm(1), Tm(1)

)
MT

(
Tm(1), Tm(2)

)
MT

...
(
Tm(1), gT

)
MT(

Tm(2), Tm(1)
)
MT

(
Tm(2), Tm(2)

)
MT

...
(
Tm(2), gT

)
MT

... ... ... ...(
Tm(n−1), Tm(1)

)
MT

(
Tm(n−1), Tm(2)

)
MT

...
(
Tm(n−1), gT

)
MT(

fT ,∇m(1)
)
MT

(
fT ,∇m(2)

)
MT

... ( fT , gT )MT

|||||||||||

. (12.19) 

The norm square of a transformed function,.||T p||2
G(n)

T
. , is equal to the Gramian of 

a set of transforms, .Tm(1), .Tm(2), ...., .Tm(n−1), . T p:

. ||T p||2
G(n)

T
= G(Tm(1), Tm(2), ...., Tm(n−1), T p). (12.20) 

Therefore, the norm of the transformed function. p in the Gramian space provides 
a measure of the correlation between the transform of this function and similar trans-
forms of the additional model parameters.Tm(1), Tm(2), ...., Tm(n−1). Minimization 
of this norm, .||T p||G(n)

T
, results in producing the multimodal inverse images with
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correlated transformations of the parameters (correlated attributes), which generates 
the inverse images with similar patterns in the corresponding transformations. 

12.2 Gramian Stabilizing Functionals 

The Gramian stabilizing functional, .SG = SG(m(1),m(2), ....m(n)), is introduced as 
the Gramian norm of function.m(n)(r) describing the distribution of the model param-
eters: 

.SG(m(1),m(2), ....m(n)) = ||||m(n)
||||2
G(n) = G

(
m(1),m(2), ...,m(n)

)
, (12.21) 

where according to formula (12.6), Gramian, .G
(
m(1),m(2), ...,m(n)

)
, is defined as 

follows: 
. G(m(1),m(2), ...,m(n))

. =

||||||||

(
m(1),m(1)

) (
m(1),m(2)

)
... ...

(
m(1),m(n)

)
(
m(2),m(1)

) (
m(2),m(2)

)
... ...

(
m(2),m(n)

)

... ... ... ... ...(
m(n),m(1)

) (
m(n),m(2)

)
... ...

(
m(n),m(n)

)

||||||||
. (12.22) 

Note that, according to the properties of the norm,.||...||G(n) , in the Gramian space 
.G(n), minimization of this norm results in enforcing the correlation between the 
different model parameters .m(1),m(2), ..., and .m(n). 

Similarly, one can introduce a Gramian stabilizing functional based on the gradi-
ents of the functions describing the corresponding model parameters, as follows: 

. SG∇ (m(1),m(2), ....m(n)) = ||||∇m(n)
||||2
G(n)

∇

. = G(∇m(1),∇m(2), ...., ∇m(n)). (12.23) 

Minimization of the norm,.||...||G(n)
∇

, in the Gramian space.G(n)
∇ results in enforcing 

the structural correlation between the inverse images obtained for different model 
parameters. 

Finally, we introduce a Gramian stabilizer based on the transformed function 
describing the corresponding model parameters: 

.SGT (m
(1),m(2), ....m(n)) = ||||Tm(n)

||||2
G(n)

T
= G(Tm(1), Tm(2), ..., Tm(n)). (12.24) 

Minimization of the norm, .||...||G(n)
T

, in the Gramian space .G(n)
T results in enforcing 

the correlation between different transforms (attributes) of the model parameters, 
producing the inverse images with similar patterns.
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12.3 Steepest Ascent Directions of the Gramian Functionals 

As discussed in the previous chapters, the key step in developing the regularized 
inversion algorithm is the calculation of the steepest ascent directions (gradients) of 
the corresponding stabilizing functionals. Based on their first variations, I will derive 
below the expressions for the steepest ascent directions for the Gramian stabilizing 
functionals. 

12.3.1 The First Variation of the Gramian Stabilizer 

Let us calculate the variation of the Gramian norm: 

. δSG(m(1),m(2), ....m(n)) = δ
||||m(n)−m(n)

apr

||||2
G(n)

=
n∑

i=1

δm(i)

||||m(n)−m(n)
apr

||||2
G(n)

.

(12.25) 
Taking into account property (12.11) of the Gramian norm, Eq. (12.25) can be written 
as follows: 

. δSG(m(1),m(2), ....m(n)) =
n∑

i=1

δm(i)

||||m(i)−m(i)
apr

||||2
G(i)

. = 2
n∑

i=1

(
δm(i), m(i)−m(i)

apr

)
G(i) . (12.26) 

Assuming first, for simplicity, that .m(i)
apr = 0, one can write expression 

.
(
δm(i), m(i)

)
G(i) in the following explicit form: 

. 
(
δm(i), m(i)

)
G(i) =

. =

||||||||||

(
m(1),m(1)

) (
m(1),m(2)

)
...

(
m(1),m(i)

)
...
(
m(1),m(n)

)

... ... ... ... ......(
δm(i),m(1)

) (
δm(i),m(2)

)
...

(
δm(i),m(i)

)
...
(
δm(i),m(n)

)

... ... ... ... ....(
m(n),m(1)

) (
m(n),m(2)

)
...

(
m(n),m(i)

)
...
(
m(n),m(n)

)

||||||||||

. =
⎛

⎝δm(i),

n∑

j=1

(−1)i+ j Gm
i jm

( j)

⎞

⎠ =
(
δm(i), l(i)G

)
, (12.27) 

where.Gm
i j is the corresponding minor of Gram matrix. G(m(1),m(2), ....,m(n−1),m(n))

formed by eliminating column. i and row. j .
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In a general case of nonzero .m(i)
apr , we obtain 

. 
(
δm(i), m(i)−m(i)

apr

)
G(i) =

(
δm(i), l(i)G

)

M

. =
⎛

⎝δm(i),

n∑

j=1

(−1)i+ j G
m−mapr

i j

(
m(i)−m(i)

apr

)
⎞

⎠ , (12.28) 

where vectors.l(i)G are the directions of the steepest ascent for the Gramian stabilizing 
functionals, 

.l(i)G =
n∑

j=1

(−1)i+ j G
m−mapr

i j

(
m(i)−m(i)

apr

)
. (12.29) 

Thus, we obtain the following expression for the first variation of the Gramian 
stabilizer: 

.δSG(m(1),m(2), ....m(n)) = 2
n∑

i=1

(
δm(i), l(i)G

)
. (12.30) 

12.3.2 The First Variation of the Gramian of a Set 
of Gradients of the Model Parameters 

Let us consider a stabilizing functional formed by the Gramian of a set of gradients 
of the model parameters: 

. SG∇ (m(1),m(2), ....m(n))

. = G(∇m(1),∇m(2), ....,∇mn−1), ∇ p) = ||||∇m(n)
||||2
G(n)

∇
. (12.31) 

Let us calculate the first variation: 

. δSG∇ (m(1),m(2), ....m(n)) = δ
||||∇m(n)

||||2
G(n)

∇

. =
n∑

i=1

δm(i)

||||∇m(n)
||||2
G(n)

∇
=

n∑

i=1

δm(i)

||||∇m(i)
||||2
G(i)

∇
, (12.32) 

where we take into account the property (12.18) of the Gramian norm.
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The first variation of the norm.

||||∇m(i)
||||2
G(i)

∇
can be calculated as follows: 

. δm(i)

||||∇m(i)
||||2
G(i)

∇
= 2

(
δ∇m(i),∇ m(i)

)
G(i)

∇

. = 2

⎛

⎝δ∇m(i),

n∑

j=1

(−1)i+ j G∇m̃
i j ∇m( j)

⎞

⎠

M∇

, (12.33) 

where .G∇m
i j is the corresponding minor of Gram matrix, . G(∇m(1),∇m(2), ....,

∇m(n−1),∇m(n)), formed by eliminating column. i and row. j . 
Taking into account property (12.13) of the inner product.(..., ...)M∇ ,we can write 

. δm(i)

||||∇m(i)
||||2
G(i)

∇
= −2

⎛

⎝δm(i),

n∑

j=1

(−1)i+ j G∇m̃
i j ∇2m( j)

⎞

⎠ = 2
(
δm(i), l(i)G∇

)
,

(12.34) 
where vectors.l(i)G∇ are the directions of the steepest ascent for the Gramian stabilizing 
functionals, formed by the Gramian of a set of gradients of the model parameters 

.l(i)G∇ =
n∑

j=1

(−1)i+ j G∇m
i j ∇2m( j). (12.35) 

12.3.3 The First Variation of the Gramian of the 
Transformed Model Parameters 

Let us consider a stabilizing functional formed by the Gramian of the transformed 
model parameters: 

. SGT (m
(1),m(2), ....m(n))

. = G(Tm(1), Tm(2), ...., Tm(n−1), T p) = ||||Tm(n)
||||2
G(n)

∇
. (12.36) 

Let us calculate the first variation: 

. δSGT (m
(1),m(2), ....m(n)) = δ

||||Tm(n)
||||2
G(n)

T

. =
n∑

i=1

δm(i)

||||Tm(n)
||||2
G(n)

T
=

n∑

i=1

δm(i)

||||Tm(i)
||||2
G(i)

T
, (12.37) 

where we take into account the property (12.11) of the Gramian norm.
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The first variation of the norm.

||||Tm(i)
||||2
G(i)

T
can be calculated as follows: 

. δm(i)

||||Tm(i)
||||2
G(i)

∇
= 2

(
δTm(i), T m(i)

)
G(i)

T

. = 2

⎛

⎝δTm(i),

n∑

j=1

(−1)i+ j GTm
i j Tm( j)

⎞

⎠

LT

, (12.38) 

where .GTm
i j is the corresponding minor of Gram matrix . G(Tm(1), Tm(2), ....,

Tm(n−1), Tm(n)) formed by eliminating column. i and row. j . 
We assume that operator . T is differentiable, and 

. δTm(i) = FT δm(i),

where .FT is Fréchet derivative of . T . 
Taking into account the property of the adjoint operator .F∗

T , we can write 

. δm(i)

||||Tm(i)
||||2
G(i)

T
= 2

⎛

⎝δm(i),

n∑

j=1

(−1)i+ j GTm
i j F∗

T Tm
( j)

⎞

⎠ = 2
(
δm(i), l(i)GT

)
,

(12.39) 
where vectors.l(i)GT

are the directions of the steepest ascent for the Gramian stabilizing 
functionals, formed by the Gramian of the transformed model parameters 

.l(i)GT
=

n∑

j=1

(−1)i+ j GTm
i j F∗

T Tm
( j). (12.40) 

12.4 Joint Inversion with Gramian Stabilizers 

We consider again the inverse problem (12.1) for multiple geophysical data sets. 
Following the principles of Tikhonov regularization theory, we introduce a parametric 
functional with the Gramian stabilizers, 

. Pα(m(1),m(2), ....m(n)) =
n∑

i=1

||||A(i)(m(i))−d(i)
||||2
D

. + αc1

n∑

i=1

S(i)
MN , MS, MGS + αc2SG, G∇ , GT (m

(1),m(2), ....m(n)), (12.41) 

where. α is the regularization parameter, and.c1 and.c2 are the weighting coefficients 
determining the weights of the different stabilizers in the parametric functional.
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The terms.S(i)
MN , S(i)

MS, and.S(i)
MGS are the stabilizing functionals based on minimum 

norm, minimum support, and minimum gradient support constraints, respectively, 
defined in Eqs. (8.8) and (8.9). 

The terms .SG, SG∇ , and .SGT are the Gramian stabilizing functionals, 

. SG(m(1),m(2), ....m(n)) = ||||m(n)−m(n)
apr

||||
G(n)

. = G
([
m(1)−m(1)

apr

]
,
[
m(2)−m(2)

apr

]
, ...,

[
m(n)−m(n)

apr

])
, (12.42) 

. SG∇ (m(1),m(2), ....m(n)) = ||||∇m(n)
||||2
G(n)

∇

. = G(∇m(1),∇m(2), ...., ∇m(n)), (12.43) 

.SGT (m
(1),m(2), ....m(n)) = ||||Tm(n)

||||2
G(n)

T
= G(Tm(1), Tm(2), ..., Tm(n)). (12.44) 

Note that, according to the properties of the norm,.||...||G(n) , in the Gramian space 
.G(n), minimization of this norm results in enforcing the linear dependence between 
the weighted model parameters. Minimization of the norm,.||...||G(n)

∇
, in the Gramian 

space.G(n)
∇ results in enforcing the structural correlation between the inverse images 

obtained for different model parameters. Finally, minimization of the norm,.||...||G(n)
T
, 

in the Gramian space .G(n)
T results in enforcing the linear relationships between dif-

ferent transforms (attributes) of the model parameters, producing the inverse images 
with similar patterns. 

According to the basic principles of the regularization method, we have to find the 
models.m(1)

α , .m(2)
α , ....m(n)

α , a quasi-solution of the inverse problem, which minimize 
the parametric functional 

.Pα(m(1)
α ,m(2)

α , ....m(n)
α ) = min . (12.45) 

To solve this minimization problem, we calculate the first variation of the para-
metric functional with Gramian stabilizers: 

. δPα(m(1),m(2), ....m(n))

. = 2
n∑

i=1

(
δA(i)(m(i)), A(i)(m(i))−d(i)

)
D +

. + α

(
c1

n∑

i=1

δS(i)
MN , MS, MGS + c2δSG, G∇ , GT (m

(1),m(2), ....m(n))

)
. (12.46)
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Taking into consideration that operators .A(i) are differentiable, we can write 

.δA(i)(m(i)) = F (i)
m δm(i), (12.47) 

where .F (i)
m is a linear operator of the Fréchet derivative of .A(i). 

It was noted above that, 

.δS(i)
MN , MS, MGS = 2

(
δm(i), l(i)MN , MS, MGS

)
, (12.48) 

where vectors.l(i)MN , MS, MGS are the directions of the steepest ascent for the stabilizing 
functionals, based on minimum norm, minimum support, and minimum gradient 
support constraints, described by formulas (8.16), (8.17), and (8.18), respectively. 

We have also shown that 

.δSG, G∇ , GT = 2
n∑

i=1

(
δm(i), l(i)G, G∇ , GT

)
, (12.49) 

where vectors .l(i)G, G∇ , GT
are the directions of the steepest ascent for the Gramian 

stabilizing functionals, respectively. 
Substituting expressions (12.47) through (12.49) into formula (12.46), we obtain 

. δPα(m(1),m(2), ....m(n)) =

. = 2
n∑

i=1

(
δm(i),

[
F (i)⋆
m

(
A(i)(m(i))−d(i)

)+

. +α
(
c1l

(i)
MN , MS, MGS + c2l

(i)
G, G∇ , GT

)])
, (12.50) 

where .F (i)⋆
m are the adjoint Fréchet derivative operators. 

Let us select 
.δm(i) = −kαlα(i)(m(1),m(2), ....m(n)), (12.51) 

where.kα is some positive real number, and.lα(i)(m(1),m(2), ....m(n)) are the directions 
of the steepest ascent of the functional .Pα: 

.lα(i) = F (i)⋆
m

(
A(i)(m(i))−d(i)

) + α
(
c1l

(i)
MN , MS, MGS + c2l

(i)
G, G∇ , GT

)
. (12.52) 

Then 

.δPα(m(1),m(2), ....m(n)) = −2kα
n∑

i=1

||||lα(i)(m(1),m(2), ....m(n))
||||2 . (12.53)
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The last expression confirms that the selection of the perturbations of the model 
parameters based on formula (12.51) ensures the decrease of the parametric 
functional. 

We can construct an iterative process for the regularized conjugate gradient (RCG) 
algorithm of solving minimization problem (12.45), similar to one, which was sum-
marized in Chap. 8 in Eq. (8.23). However, in this case, vector .lαk of the direction of 
the steepest ascent computed at iteration number . k is calculated based on formula 
(12.52): 

.lαk =
(
lα(1)
k ,lα(2)

k , ....lα(n)
k

)
. (12.54) 

As usual, the iterative process (8.23) is terminated when the misfit reaches the 
required level: 

. ϕ (mk+1) = ||r+1||2D = δd .

12.5 Localized Gramian Stabilizer 

12.5.1 Definition of the Localized Gramians 

The constraints based on the Gramian stabilizer of the model parameters .SG , 
Eqs. (12.42), or of their gradients .SG∇ , Eq.  (12.43), can be treated as the global 
constraints because they enforce similar correlation conditions over the entire inver-
sion domain. In practical applications, however, the specific form of the correla-
tions may vary within the area of investigation. To address this situation, we can 
subdivide the inversion domain, . V , into  .N subdomains, .Vk , with potentially differ-
ent types of relationships between the model parameters, and define the Gramians, 
.Gk(m(1),m(2), ...,m(n)), for each of these subdomains separately: 

. Gk(m
(1),m(2), ...,m(n))

. =

|||||||||||

(
m(1)

k ,m(1)
k

) (
m(1)

k ,m(2)
k

)
... ...

(
m(1)

k ,m(n)
k

)

(
m(2)

k ,m(1)
k

) (
m(2)

k ,m(2)
k

)
... ...

(
m(2)

k ,m(n)
k

)

... ... ... ... ...(
m(n)

k ,m(1)
k

) (
m(n)

k ,m(2)
k

)
... ...

(
m(n)

k ,m(n)
k

)

|||||||||||

, (12.55) 

where .m(1)
k ,m(2)

k , ...,m(n)
k are the set of model parameters describing the different 

physical properties of the medium (e. g., density, susceptibility, or conductivity) 
within subdomain.Vk , and matrix elements are formed by the conventional .LC

2 inner 
product between two functions defined within subdomain .Vk , respectively: 

.

(
m(i)

k ,m( j)
k

)
=

(
m(i)

k ,m( j)
k

)

LC
2

=
 

Vk

m(i)
k (r) m( j)∗

k (r) dv.
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The localized Gramian stabilizer, .SLG(m(1),m(2), ...,m(n)), is introduced as 
follows: 

.SLG(m(1),m(2), ...,m(n)) =
∑N

k=1
Gk(m

(1),m(2), ...,m(n)). (12.56) 

Similarly, we can introduce localized Gramian-based structural constraints using 
the localized Gramian of model parameter gradients, .G∇k , defined by the following 
formula: 

. G∇k(m
(1),m(2), ...,m(n))

. =

|||||||||||

(
∇m(1)

k ,∇m(1)
k

) (
∇m(1)

k ,∇m(2)
k

)
... ...

(
∇m(1)

k ,∇m(n)
k

)

(
∇m(2)

k ,∇m(1)
k

) (
∇m(2)

k ,∇m(2)
k

)
... ...

(
∇m(2)

k ,∇m(n)
k

)

... ... ... ... ...(
∇m(n)

k ,∇m(1)
k

) (
∇m(n)

k ,∇m(2)
k

)
... ...

(
∇m(n)

k ,∇m(n)
k

)

|||||||||||

, (12.57) 

where 

. 

(
∇m(i)

k ,∇m( j)
k

)
=

(
∇m(i)

k ,∇m( j)
k

)

LC
2

=
 

Vk

(
∇m(i)

k (r) · ∇m( j)∗
k (r)

)
dv.

(12.58) 

The corresponding localized Gramian-based structural stabilizing functional, 
.SLG∇(m(1),m(2), ...,m(n)), is written as follows: 

.SLG∇(m(1),m(2), ...,m(n)) =
∑N

k=1
G∇k(m

(1),m(2), ...,m(n)). (12.59) 

For example, in the case of two model parameters, localized Gramian (12.57) 
takes the form: 

. G∇k(m
(1),m(2))

. =
||||||

(
∇m(1)

k ,∇m(1)
k

) (
∇m(1)

k ,∇m(2)
k

)

(
∇m(2)

k ,∇m(1)
k

) (
∇m(2)

k ,∇m(2)
k

)

||||||
, (12.60) 

and the corresponding stabilizing functional is written as follows: 

.SLG∇(m(1),m(2)) =
∑N

k=1
G∇k(m

(1),m(2)). (12.61) 

The advantage of using the localized Gramian constraints over the global con-
straints is that the former can be applied in a complex model setting with the variable 
relationships between different physical properties of the models over the area of 
investigation.
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Note that, in the case of the localized Gramian constraints (12.56) for the model 
parameters, the size of the subdomain,.Vk, should be large enough to provide a mean-
ingful measure of the correlation between these parameters within each subdomain. 
For example, one cannot reduce subdomains .Vk to one point of observation. 

At the same time, in the case of Gramian structural constraints (12.59), one can 
subdivide the inversion domain into an infinite number of infinitesimally small sub-
domains. Indeed, for the infinitesimally small subdomain, .Vk → dv, inner product 
(12.58) is reduced to the conventional dot product of two vectors: 

. 

(
∇m(i)

k ,∇m( j)
k

)
=

. =
 

Vk

(
∇m(i)

k (r) · ∇m( j)∗
k (r)

)
dv →

(
∇m(i)

k (r) · ∇m( j)∗
k (r)

)
dv, if Vk → dv.

(12.62) 
Therefore, the summation over subdomains.Vk in the expression for the localized 

stabilizing functional (12.59) will become an integral over the inversion domain . V : 

. SLG∇(m(1),m(2), ...,m(n)) =
   

V
G∇(m(1) (r) ,m(2) (r) , ...,m(n) (r) )dv,

(12.63) 
where the calculation of the Gramian.G∇(m(1) (r) ,m(2) (r) , ...,m(n) (r) ) is reduced 
to the following expression: 

. G∇k(m
(1) (r) ,m(2) (r) , ...,m(n) (r) )

. =

|||||||||||

(
∇m(1)

k · ∇m(1)
k

) (
∇m(1)

k · ∇m(2)
k

)
... ...

(
∇m(1)

k · ∇m(n)
k

)

(
∇m(2)

k · ∇m(1)
k

) (
∇m(2)

k · ∇m(2)
k

)
... ...

(
∇m(2)

k · ∇m(n)
k

)

... ... ... ... ...(
∇m(n)

k · ∇m(1)
k

) (
∇m(n)

k · ∇m(2)
k

)
... ...

(
∇m(n)

k · ∇m(n)
k

)

|||||||||||

. (12.64) 

For example, for two model parameters, expression (12.64) takes the following 
form: 

.SLG∇(m(1),m(2)) =
   

V
G∇(m(1) (r) ,m(2) (r) )dv. (12.65) 

Thus, the localized Gramian stabilizer (12.65) requires the gradients of the differ-
ent model parameters to be parallel (linearly dependent) vectors at every point while 
allowing for the coefficients of these linear dependences to vary from point to point. 
This provides more flexibility to the joint inversion.
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12.5.2 Equivalence Between the Localized Gramian-Based 
Structural Stabilizing Functional for Two Model 
Parameters and Cross-Gradient Stabilizer 

It was shown in Chap. 9 that the localized Gramian-based structural stabilizer (12.65) 
is equivalent to the cross-gradient functional, .Scg (9.23). We reproduce this proof 
here for convenience. 

Indeed, using the integral representation of.L2 norm of the cross-gradient product 
.
[∇m(1) × ∇m(2)

]
, one can write the cross-gradient functional, .Scg, as follows: 

.Scg(m
(1),m(2)) =

   

D

||∇m(1) (r) × ∇m(2) (r)
||2 dv. (12.66) 

Let us compare the expressions under the integral sign in formulas (12.65) and 
(12.66). 

Considering that in every point, .r, the inner product used in Gramian definition 
(12.60), is reduced to the dot product of the gradient vectors, we have 

. G∇(m(1) (r) ,m(2) (r) )

. =
||||

(∇m(1) (r) · ∇m(1) (r)
) (∇m(1) (r) · ∇m(2) (r)

)
(∇m(2) (r) · ∇m(1) (r)

) (∇m(2) (r) · ∇m(2) (r)
)
|||| . (12.67) 

To simplify the derivations, we will use the following notations: 

.∇m(1) (r) = a; ∇m(2) (r) = b, (12.68) 

where. a and. b are the corresponding gradient vectors in point. r.Using these notations, 
we express Gramian (12.67) as follows: 

.G∇(m(1) (r) ,m(2) (r) ) = (a · a) (b · b) − (a · b)2 . (12.69) 

According to the definition of the dot product, 

. (a · b) = |a| |b| cosϕ,

where . ϕ is an angle between two vectors, . a and .b. Therefore, we have 

.G∇(m(1) (r) ,m(2) (r) ) = |a|2 |b|2 − |a|2 |b|2 cos2 ϕ = |a|2 |b|2 sin2 ϕ. (12.70) 

From the last formula it follows at once that 

.G∇(m(1) (r) ,m(2) (r) ) ≥ 0. (12.71)
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At the same time, the square of absolute value of the gradients’ cross product 
takes the form: 

. |a × b|2 = |a|2 |b|2 sin2 ϕ = G∇(m(1) (r) ,m(2) (r) ). (12.72) 

Thus, we have identical expressions under integrals in formulas (12.65) and 
(12.66). This concludes the proof of equivalence of the localized Gramian stabilizer 
(12.65) to the cross-gradient functional, .Scg , Eq.  (9.23), in the case of two model 
parameters, .m(1) (r) and .m(2) (r). 
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Chapter 13 
Probabilistic Approach to Gramian 
Inversion 

Abstract The meaning of Gramian and its role in the joint inversion are explained 
using a probabilistic approach to inverse problem solution. We introduce a Hilbert 
space of random variables with the metric defined by the covariance matrix between 
random variables, representing different model parameters. Using this Hilbert space, 
the probabilistic Gramian is represented as the determinant of the covariance matrix 
between the different model parameters and their attributes. By minimizing the prob-
abilistic Gramian, we enforce the linear correlation between various inverse models 
produced by joint inversion. Several gradient-type techniques are considered for 
solving this minimization problem. 

Keywords Random variables · Covariance matrix · Probabilistic Gramian 

In Chap. 12, the Gramian method of joint inversion was introduced in the framework 
of the deterministic approach to the solution of the inverse problem, which considers 
the data and model parameters characterized by specific functions or vectors with 
certain (maybe unknown) values. However, as discussed in Chap. 6, there is a proba-
bilistic approach to inverse problems where the observed data and model parameters 
are treated as realizations of some random variables. This approach was introduced 
in the pioneering papers of Foster (1961), Franklin (1970), Jackson (1972), Tarantola 
and Valette (1982), Tarantola (1987), Tarantola (2005). 

It can be demonstrated that both these approaches result in similar numerical solu-
tions of the inverse problem (Zhdanov 2002, 2015). At the same time, deterministic 
or probabilistic interpretation of the observed data and model parameters emphasizes 
different aspects of the inversion algorithms. This also helps understand better the 
properties of the inversion parameters. 

This chapter introduces an approach to the joint inversion where the Gramian 
constraints are represented in the probabilistic form as the determinant of the covari-
ance matrix between the different model parameters and their attributes (Zhdanov 
et al. 2021, 2023). We begin our discussion with the concept of the Gramian space 
of random variables. 
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13.1 Gramian Space of Random Variables 

The meaning of Gramian and its role in the joint inversion can be better explained 
using a probabilistic approach to inverse problem solution. In the framework of this 
approach, one can treat the observed data and the model parameters as the realizations 
of some random variables (see Chap. 2). 

We can also introduce a Hilbert space of random variables with the metric defined 
by the covariance between random variables, representing different model parame-
ters. Indeed, let us consider a set, .[(n), of random variables,. ϕ, ψ...., representing 
different model parameters. 

For any two random variables, .ϕ, ψ ∈ [(n), we can define an inner product 
operation, .(ϕ,ψ)[(n) , as the determinant of the following covariance matrix: 

. (ϕ,ψ)[(n) =

. =

|
|
|
|
|
|
|
|
|
|

cov
(

γ(1), γ(1)
)

cov
(

γ(1), γ(2)
)

... cov
(

γ(1), γ(n−1)
)

cov
(

γ(1),ψ
)

cov
(

γ(2), γ(1)
)

cov
(

γ(2), γ(2)
)

... cov
(

γ(2), γ(n−1)
)

cov
(

γ(2),ψ
)

... ... ... ... ...

cov
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γ(n−1), γ(1)
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cov
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γ(n−1), γ(2)
)
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γ(n−1), γ(n−1)
)

cov
(

γ(n−1),ψ
)

cov
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ϕ, γ(1)
)

cov
(

ϕ, γ(2)
)

... cov
(

ϕ, γ(n−1)
)

cov (ϕ,ψ)

|
|
|
|
|
|
|
|
|
|

,

(13.1) 
where.γ(1), γ(2) , ..., γ(n−1) are some random variables representing a subset of. (n − 1)
known model parameters from.[(n). We will call this set a core of the set . [(n).

Let us check that the operation defined by formula (13.1) satisfies all the properties 
of the inner product in the Hilbert space. 
1. The symmetry of operation (13.1): 

. (ϕ,ψ)[(n) =

. =

|
|
|
|
|
|
|
|
|
|

cov
(

γ(1), γ(1)
)

... cov
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γ(1), γ(n−1)
)

cov
(

γ(1),ψ
)

cov
(

γ(2), γ(1)
)

... cov
(

γ(2), γ(n−1)
)

cov
(

γ(2),ψ
)

... ... ... ...

cov
(

γ(n−1), γ(1)
)

... cov
(

γ(n−1), γ(n−1)
)

cov
(

γ(n−1),ψ
)

cov
(

ϕ, γ(1)
)

... cov
(

ϕ, γ(n−1)
)

cov (ϕ,ψ)

|
|
|
|
|
|
|
|
|
|

. =

|
|
|
|
|
|
|
|
|
|

cov
(

γ(1), γ(1)
)

... cov
(

γ(n−1), γ(1)
)

cov
(

γ(1),ϕ
)

cov
(

γ(1), γ(2)
)

... cov
(

γ(n−1), γ(2)
)

cov
(

γ(2),ϕ
)

... ... ... ...

cov
(

γ(1), γ(n−1)
)

... cov
(

γ(n−1), γ(n−1)
)

cov
(

γ(n−1),ϕ
)

cov
(

ψ, γ(1)
)

... cov
(

ψ, γ(n−1)
)

cov (ψ,ϕ)

|
|
|
|
|
|
|
|
|
|

. = (ψ,ϕ)[(n) . (13.2)
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Equality (13.2) holds because (a) the determinant of the original matrix is equal to 
the determinant of the transposed matrix and (b) covariance is a symmetric function: 

. cov (ϕ,ψ) = cov (ψ,ϕ) .

2. The linearity of operation (13.1): 

. (c1ϕ1 + c2ϕ2,ψ)[(n) = c1 (ϕ1,ψ)[(n) + c2 (ϕ2,ψ)[(n) . (13.3) 

Equality (13.3) comes immediately from the linearity of the covariance: 

.cov (c1ϕ1 + c2ϕ2,ψ) = c1cov (ϕ1,ψ) + c2cov (ϕ2,ψ) . (13.4) 

Indeed, according to Eq. (13.1), we have 

. (c1ϕ1 + c2ϕ2,ψ)[(n) =

. 

|
|
|
|
|
|
|
|
|
|

cov
(

γ(1), γ(1)
)

... cov
(

γ(1), γ(n−1)
)

cov
(

γ(1), c1ϕ1 + c2ϕ2
)

cov
(

γ(2), γ(1)
)

... cov
(

γ(2), γ(n−1)
)

cov
(

γ(2), c1ϕ1 + c2ϕ2
)

... ... ... ...

cov
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γ(n−1), γ(1)
)
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γ(n−1), γ(n−1)
)

cov
(

γ(n−1), c1ϕ1 + c2ϕ2
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cov
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ψ, γ(1)
)

... cov
(

ψ, γ(n−1)
)

cov (ψ, c1ϕ1 + c2ϕ2)

|
|
|
|
|
|
|
|
|
|

. = D. (13.5) 

Using the linearity of the covariance, Eq. (13.4), the determinant in the right side of 
Eq. (13.5) can be written as follows: 

. D =

. = c1
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)

cov
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ψ, γ(1)
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... cov
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ψ, γ(n−1)
)

cov (ψ,ϕ1)

|
|
|
|
|
|
|
|
|
|
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|
|
|
|
|
|

cov
(

γ(1), γ(1)
)

... cov
(

γ(1), γ(n−1)
)

cov
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γ(1),ϕ2
)

cov
(

γ(2), γ(1)
)

... cov
(

γ(2), γ(n−1)
)

cov
(

γ(2),ϕ2
)

... ... ... ...

cov
(

γ(n−1), γ(1)
)

... cov
(

γ(n−1), γ(n−1)
)
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γ(n−1),ϕ2
)
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)
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. + c1 (ϕ1,ψ)[(n) + c2 (ϕ2,ψ)[(n) .
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3. Functional (13.1) defining the inner product operation, .(ϕ,ψ)[(n) , is positive def-
inite: 

. (ϕ,ϕ)[(n) ≥ 0, (13.6) 

and 
. (ϕ,ϕ)[(n) = 0, if and only if ϕ

.= 0. (13.7) 

The symbol “dot” above the equality sign in formula (13.7) means that random 
variable . ϕ is a linear combination of the random variables . γ(1) , γ(2) , γ(3) , ..., γ(n−1) ,

forming the core of set .[(n): 

.ϕ =
n−1
∑

i=1

b(i)

i γ + c, (13.8) 

where .bi (i = 1, 2, ..., n − 1) and . c are some constant coefficients. 
Inequality (13.6) holds because the determinant of the covariance matrix is always 

positive for independent random variables (see Chap. 2). This determinant is equal 
to zero if and only if the random variables,.γ(1) , γ(2) , γ(3) , ..., γ(n−1) , and. ϕ are linearly 
dependent 

According to the theory of Hilbert spaces (Chap. 3), the inner product of some 
element . ϕ by itself defines the norm square of this element: 

. (ϕ,ϕ)[(n) = ||ϕ||2
[(n) . (13.9) 

Thus, we can see that the zero value of the Gramian norm of some random 
variable . ϕ means that this variable is linearly related to the elements of the core, 
.γ(1) , γ(2) , γ(3) , ..., γ(n−1) . In other words, any linear combination of the elements of the 
core of the set .[(n) has a zero norm. 

We will call the set .[(n) of random variables with the metric (inner product) 
defined by formula (13.1), the Gramian space of random variables. 

Similar to the Gramian norm of functions, Eq. (12.11), the Gramian norm of 
random variables has the following properties: 

.

||
||γ(i)

||
||
2

[(i) = ||
||γ( j)

||
||
2

[( j) , for i, j = 1, 2, ..., n. (13.10) 

The last formula demonstrates that all the random variables, .γ(1), γ(2),......., γ(n), 
have the same norm in the corresponding Gramian spaces . [( j), j = 1, 2, ..., n.

This property of the introduced metric allows us to use this metric to select the 
solutions to the inverse problem, which would correlate the best with the preselected 
model parameters forming the core of Gramian space . [(n).

In conclusion of this section, we should note that, in Gramian space.[(1), the inner 
product of two random variables is equal to their covariance: 

. (ϕ,ψ)[(1) = cov (ϕ,ψ) , (13.11)
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and the norm square of . ϕ is simply its variance: 

. ||(ϕ,ψ)||2[(1) = σ2 (ϕ) . (13.12) 

13.2 The Maximum Likelihood Method in the Joint 
Inversion 

We can now apply the maximum likelihood method, introduced in Chap. 6, to the  
solution of the multiphysics inverse problem. 

Let us consider geophysical inverse problems for multiple geophysical data sets. 
It was shown in Chap. 8 that the following operator relationships can describe these 
problems: 

.d(i) = A(i)(m(i)), i = 1, 2, ..., n, (13.13) 

where, in a general case, .A(i) are nonlinear operators; .d(i)
.(i = 1, 2, 3, ..., n) are 

the random variables representing different observed data sets; and .m(i)
. (i =

1, 2, 3, ..., n) are the unknown random variables representing different model 
parameters. 

In the framework of the probabilistic approach to solving the inverse problem, we 
consider the observed data and the model parameters as realizations of some random 
variables. Assuming that these variables have Gaussian probability distribution, we 
can apply the maximum likelihood method to solve inverse problems (13.13) (see 
Chap. 6). According to this method, the optimum values for the model parameters 
are those that maximize the probability, .P(d(i)), that the observed data, .d(i), are, in 
fact, observed: 

.P(d(i)) = max, i = 1, 2, ..., n. (13.14) 

It was demonstrated in Chap. 6 that for uncorrelated data with uniform variance 
maximum of.P(d(i)) occurs when the misfit between the observed,.d(i), and predicted 
data, .A(i)(m(i)), reaches its minimum: 

. f (i)(m(i)) = ||
||A(i)(m(i))−d(i)

||
||
2

D = min, i = 1, 2, ..., n. (13.15) 

Combining all functionals . f (i)(m(i)) together, we arrive at the following misfit 
condition for the solution of the multiphysics inverse problem: 

.Φ
(

m (1) ,m (2) , ...,m(n)
) =

n−1
∑

i=1

w2
i f

(i)(m(i)) = min, (13.16) 

where.Φ
(

m (1) ,m (2) , ...,m(n)
)

is combined misfit functional, and. wi , i = 1, 2, ..., n,

are some scalar weighting coefficients. These coefficients are usually selected as 
inverse values of the standard deviation of data, .d(i):
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.wi = 1/σi , i = 1, 2, ..., n. (13.17) 

There are two problems with Eq. (13.16). First of all, direct minimization of the 
misfit functional .Φ

(

m (1) ,m (2) , ...,m(n)
)

can result in an unstable solution of the ill-
posed inverse problems (13.13). Second, combining all functionals . f (i)(m(i)) in 
one minimization condition does not impose any requirement on the relationships 
between the different model parameters, which is the key to joint inversion. However, 
as we discussed in Chaps. 8 through 12, the joint inversion requires the enforcement 
of some relations between different model parameters. In the framework of the prob-
abilistic approach, this can be achieved by adding the term containing the covariance 
matrix between different model parameters, which serves as an analog of Gramian 
in the deterministic approach (Zhdanov et al. 2012a, b). 

13.3 Covariance Representation of the Probabilistic 
Gramian Stabilizer 

The probabilistic Gramian stabilizer, .SGσ
, can be introduced as the determinant of 

the covariance matrix between different model parameters in a probabilistic approach 
to the inversion theory: 

. SGσ
(m(1),m(2), ....m(n)) =

. =

|
|
|
|
|
|
|
|
|
|

cov
(

m(1),m(1)
)

... cov
(

m(1),m(n−1)
)

cov
(

m(1),m(n)
)

cov
(

m(2),m(1)
)

... cov
(

m(2),m(n−1)
)

cov
(

m(2),m(n)
)

... ... ... ...

cov
(

m(n−1),m(1)
)

... cov
(

m(n−1),m(n−1)
)

cov
(

m(n−1),m(n)
)

cov
(

m(n),m(1)
)

... cov
(

m(n),m(n−1)
)

cov
(

m(n),m(n)
)

|
|
|
|
|
|
|
|
|
|

. (13.18) 

It was demonstrated in Chap. 2 that the determinant of the covariance matrix 
is always nonnegative, and it is equal to zero if and only if the random variables, 
.m (1) ,m (2) , ...,m(n), are linearly dependent. This property of the probabilistic Gramian 
is similar to that of the deterministic Gramian defined by formula (12.6) of Chap. 12. 
The key difference is in the way how we treat the model parameters. In the frame-
work of the deterministic approach, they are described by specific (though unknown) 
functions. In the framework of the probabilistic approach, the model parameters are 
the realizations of some unknown random variables. 

We should note also that the direct analogy between expressions (12.21) and 
(13.18) holds when the random model parameters have zero mean values. Indeed, in 
the case of discrete and real model parameters, according to Eq. (2.20), the statistical 
estimate of the covariance is as follows:
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.cov(m (i) ,m ( j) ) = 1

L − 1

L
∑

l=1

(

m (i)

l − (m (i)

l )) (

m ( j)

l − (m ( j)

l )) , (13.19) 

where .(m (i)

l ) indicates the mean. 
If the mean values are zero, .(m (i, j)

l ) = 0, then according to Eq. (13.19), we have 

.cov(m (i) ,m ( j) ) = 1

L − 1

L
∑

l=1

m (i)

l m ( j)

l = 1

L − 1
(m (i) ,m ( j) ) . (13.20) 

Let us consider the Gramian space .[(n) of random variables, representing model 
parameters with the core elements formed by model parameters. m (1) ,m (2) , ...,m (n−1) .

Then according to the definition of a norm in this space, Eqs. (13.1) and (13.9), we 
can write probabilistic Gramian as the norm of parameter .m (n) : 

.SGσ
(m(1),m(2), ....m(n)) = ||

||m(n)
||
||
2

[(n) . (13.21) 

Following the general principles of regularization theory, we can now introduce a 
probabilistic parametric functional, .Pα

σ , as a linear combination of combined misfit 
functional, .Φ

(

m (1) ,m (2) , ...,m(n)
)

, and probabilistic Gramian: 

. Pα
σ

(

m (1) ,m (2) , ...,m(n)
) = Φ

(

m (1) ,m (2) , ...,m(n)
) + αSGσ

(m(1),m(2), ....m(n)),

(13.22) 
where .α ∈ [0,∞) is regularization parameter. 

Substituting Eqs. (13.15), (13.16) into (13.22), we arrive at the following mini-
mization problem for the multiphysics inversion: 

. Pα
σ

(

m (1) ,m (2) , ...,m(n)
) =

. =
n−1
∑

i=1

w2
i

||
||A(i)(m(i))−d(i)

||
||
2

D + αSGσ
(m(1),m(2), ....m(n)) = min . (13.23) 

We should note that expression (13.22) is similar to formula (12.2) if the  joint  
stabilizing functionals, .SJ , is selected equal to the probabilistic Gramian: 

.SJ (m
(1),m(2), ....m(n)) = SGσ

(m(1),m(2), ....m(n)). (13.24) 

Several standard gradient-type methods exist that can be used to solve the mini-
mization problem—steepest descent, Newton, and conjugate gradient methods. They 
all require calculating the steepest ascent direction (gradient) of the corresponding 
functional. In the following sections, we will consider this problem in detail.
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13.4 Minimization of the Probabilistic Parametric 
Functional Using the Regularized Gradient-Type 
Methods 

13.4.1 Steepest Ascent Direction of the Probabilistic 
Parametric Functional 

The first variation of the parametric functional, .Pα
σ , with the probabilistic Gramian 

stabilizer, can be calculated as follows: 

. δPα
σ (m (1) ,m (2) , ...,m(n))

. = 2
n

∑

i=1

w2
i

(

δA(i)(m(i)), A(i)(m(i))−d(i)
)

[
(1)
D

+

. + 2αδSGσ
(m(1),m(2), ....m(n)). (13.25) 

The variation of the probabilistic Gramian stabilizer, according to (13.21), can be 
expressed as follows: 

. δSGσ
(m(1),m(2), ....m(n)) = δ

||
||m(n)

||
||
2

[(n)

. =
n

∑

i=1

δm(i)

||
||m(n)

||
||
2

[(n) =
n

∑

i=1

δm(i)

||
||m(i)

||
||
2

[(i) , (13.26) 

where we took into account that, according to (13.10): 

.

||
||m(n)

||
||
2

[(n) = ||
||m( j)

||
||
2

[( j) , for j = 1, 2, ..., n. (13.27) 

Using the properties of the inner product operation in the Gramian spaces of random 
variables, .[(i), we can calculate the variation of the norm square of .m(i) as follows: 

. δm(i)

||
||m(i)

||
||
2

[(i) = 2
n

∑

i=1

(

δm(i), m(i)
)

[(i)

. = 2

|
|
|
|
|
|
|
|
|
|

cov
(

m(1),m(1)
)

cov
(

m(1),m(2)
)

... cov
(

m(1),m(i)
)

...cov
(

m(1),m(n)
)

... ... ... ... ......

cov
(

δm(i),m(1)
)

cov
(

δm(i),m(2)
)

... cov
(

δm(i),m(i)
)

...cov
(

δm(i),m(n)
)

... ... ... ... ....

cov
(

m(n),m(1)
)

cov
(

m(n),m(2)
)

... cov
(

m(n),m(i)
)

...cov
(

m(n),m(n)
)

|
|
|
|
|
|
|
|
|
|

. = 2cov

⎛

⎝δm(i),

n
∑

j=1

(−1)i+ j Gm
σi jm

( j)

⎞

⎠ = 2cov
(

δm(i), l(i)Gσ

)

, (13.28)
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where .Gm
σi j is the corresponding minor of Gram matrix . Gσ(m(1),m(2), ....,m(n−1),

m(n)) formed by eliminating column. i and row. j , and elements.l(i)Gσ
are the directions 

of the steepest ascent for the probabilistic Gramian stabilizing functionals, 

.l(i)Gσ
=

n
∑

j=1

(−1)i+ j G
m−mapr

σi j m(i). (13.29) 

We now introduce the probabilistic Gramian space of the model parameters, . [(1)
M ,

with the inner product defined by covariance according to formula (13.11). Therefore, 
Eq. (13.28) can be written as follows: 

.δm(i)

||
||m(i)

||
||
2

[(i) = 2
n

∑

i=1

(

δm(i), m(i)
)

[(i) = 2
(

δm(i), l(i)Gσ

)

[
(1)
M

. (13.30) 

Substituting the last formula in Eq. (13.26), we arrive at the following expression for 
the first variation of the probabilistic Gramian: 

. δSGσ
(m(1),m(2), ....m(n)) = δ

||
||m(n)

||
||
2

[(n)

. = 2
n

∑

i=1

δm(i)

||
||m(i)

||
||
2

[(i) = 2
n

∑

i=1

(

δm(i), l(i)Gσ

)

[
(1)
M

. (13.31) 

Let us examine again expression (13.25) for the variation of the parametric func-
tional: 

. δPα
σ (m (1) ,m (2) , ...,m(n))

. = 2
n

∑

i=1

w2
i

(

δA(i)(m(i)), A(i)(m(i))−d(i)
)

[
(1)
D

+

. + αδSGσ
(m(1),m(2), ....m(n)). (13.32) 

Considering that operators .A(i) are differentiable, we can write 

. δA(i)(m(i)) = F (i)
m δm(i),

where .F (i)
m is a linear operator of the Fréchet derivative of .A(i). Therefore, the inner 

product in the first term in formula (13.32) can be modified as follows: 

.
(

δA(i)(m(i)), A(i)(m(i))−d(i)
)

[
(1)
D

=
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. = (

F (i)
m δm(i), A(i)(m(i))−d(i)

)

[
(1)
D

= (

δm(i), F (i)*
m

[

A(i)(m(i))−d(i)
])

[
(1)
M

,

(13.33) 
where .F (i)*

m are the adjoint Fréchet derivative operators. 
Substituting Eqs. (13.33) and (13.31) in the first and second terms of formula 

(13.32), we obtain the following important result: 

. δPα
σ (m (1) ,m (2) , ...,m(n))

. = 2
n

∑

i=1

w2
i

(

δm(i), F (i)*
m

[

A(i)(m(i))−d(i)
])

[
(1)
M

+

. + 2α
n

∑

i=1

(

δm(i), l(i)Gσ

)

[
(1)
M

. (13.34) 

Combining two sums in Eq. (13.34), we finally arrive at the following compact 
formula: 

. δPα
σ (m(1),m(2), ...,m(n)) =

. = 2
n

∑

i=1

(

δm(i), lα(i)
σ (m(1),m(2), ...,m(n))

)

[
(1)
M

, (13.35) 

where .lα(i)
σ (m(1),m(2), ....m(n)) are the directions of the steepest ascent of the proba-

bilistic functional .Pα
σ : 

. lα(i)
σ (m(1),m(2), ...,m(n))

. = w2
i F

(i)*
m

[

A(i)(m(i))−d(i)
] + αl(i)Gσ

= F (i)*
m r (i) + αl(i)Gσ

, (13.36) 

and .r (i) are the weighted residuals between the predicted and observed data: 

.r (i) = w2
i

[

A(i)(m(i))−d(i)
]

. (13.37) 

13.4.2 Steepest Descent Method of Joint Inversion 

The expression for the steepest ascent direction, introduced above, can be used in 
constructing the computational schemes for the different gradient-type methods of 
solving the minimization problem (13.23). 

We begin with the most simple steepest descent method.
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Let us select 
.δm(i) = −kαlα(i)

σ (m(1), m(2), ...,m(n)), (13.38) 

where .kα is some positive real number, and .lα(i)
σ (m(1),m(2), ....m(n)) are the direc-

tions of the steepest ascent of the functional .Pα
σ defined by Eq. (13.36). Substituting 

formula (13.38) into (13.35), we have 

.δPα
σ (m(1),m(2), ....m(n)) = −2kα

n
∑

i=1

||
||lα(i)

σ (m(1), m(2), ...,m(n))
||
||
2

[
(1)
M

< 0, (13.39) 

so, the vector, 
.lασ= (

lα(1)
σ , lα(2)

σ , .., lα(n)
σ

)

, (13.40) 

describes the “direction” of increasing (ascent) of the functional.Pα
σ , in other words, 

the direction of “climbing” on the hill. We can represent vector.lα as a superposition 
of the steepest ascent (gradient), .lσ, of misfit functional .Φ

(

m (1) ,m (2) , ...,m(n)
)

, and 
the direction of the steepest ascent, .lGσ

, of the probabilistic Gramian, .SGσ
: 

.lασ= lσ + αlGσ
, (13.41) 

where 

.lσ = (

F (1)*
m r (1), F (2)*

m r (2), .., F (n)*
m r (n)

)

, lGσ
=

(

l(1)Gσ
, l(2)Gσ

, .., l(n)
Gσ

)

. (13.42) 

To simplify the notations, we also introduce vector .m formed by different model 
parameters: 

.m = (

m(1),m(2), ..,m(n)
)

, (13.43) 

and vector .Fm formed by the corresponding Fréchet derivative operators: 

.Fm = (

F (1)
m , F (2)

m , .., F (n)
m

)

. (13.44) 

We can construct an iterative process for the regularized steepest descent as follows: 

.mn+1= mn + δmn= mn − kα
n l

α
σ(mn), (13.45) 

where the coefficient .kα
n is found by using the minimization of the parametric func-

tional with respect to . kα
n : 

.Pα
σ (mn+1) = Pα

σ (mn − kα
n l

α
σ(mn)) = f (kα

n ) = min . (13.46) 

In particular, applying the linear line search, we find that the minimum of the proba-
bilistic parametric functional is reached if.kα

n is determined by the following formula:
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. kα
n =

||
||lασ(mn)

||
||
2

||
||Fmn lασ(mn)

||
||
2 + α

||
||lασ(mn)

||
||
2 .

The iterative process (13.45) is terminated at .n = N when the combined misfit 
functional reaches the given level . ε0: 

. Φ(mN ) ≤ ε0.

13.4.3 Conjugate Gradient Method of Joint Inversion 

We have established in Chap. 7 that the conjugate gradient method is based on the 
same ideas as the steepest descent, and the iterative process is very similar to the last 
one: 

.mn+1= mn + δmn= mn − k̃α
n
~lασ(mn), (13.47) 

where 
. δmn= −k̃α

n
~lασ(mn).

However, the “directions” of ascent .~lασ(mn) are selected differently. In the first step, 
we use the “direction” of the steepest ascent: 

. ~lασ(m0) = lασ(m0).

At the next step, the “direction” of ascent is a linear combination of the steepest 
ascent at this step and the “direction” of ascent .~lασ(m0) on the previous step: 

. ~lασ(m1) = lασ(m1)+β1~lασ(m0).

At the .n-th step 

.~lασ(mn+1) = lασ(mn+1) + βα
n+1

~lασ(mn). (13.48) 

The regularized steepest descent directions are determined according to formulas 
(13.41) and (13.42). 

Determination of the length of the iteration step, coefficient .~kα
n , can be based on 

the linear or parabolic line search: 

. Pα
σ (mn+1) = Pα

σ (mn −~kα
n
~lασ(mn)) = f (~kα

n ) = min .

The solution of this minimization problem gives the following best estimation for 
the length of the step using a linear line search:
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.~kα
n = ~lαTσ (mn)lα(mn)

||
||Fmn

~lασ(mn)
||
||
2 + α

||
||~lασ(mn)

||
||
2 . (13.49) 

One can also use a parabolic line search (Fletcher 1985) to improve the convergence 
rate of the RCG method. 

The CG method requires that the vectors.~lασ (mn) introduced above will be mutually 
conjugate. This requirement is fulfilled if the coefficients .βn are determined by the 
following formula (Chap. 7): 

.βα
n+1 = ||lασ(mn+1)||2

||lασ(mn)||2 . (13.50) 

Using Eqs. (13.47), (13.48), (13.49), and (13.50), we can obtain .m iteratively. 
The iterative process (13.47) is terminated when the combined misfit functional 

reaches the given level . ε0: 

. Φ(mN ) = ||rN||2 ≤ ε0.

This concludes our description of the probabilistic approach to Gramian inversion. 
We have established that Gramian is an analog of the determinant of the covariance 
matrix between the different physical properties representing model parameters. This 
helps understand better the role of Gramian in enforcing the relationships between 
different physical models. It also presents an alternative numerical implementation 
of the Gramian-type constraints by using the statistical estimates of the components 
of the covariance matrix. 
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Chapter 14 
Simultaneous Processing and Fusion 
of Multiphysics Data and Images 

Abstract This chapter considers the problem of restoration of blurred images. The 
image restoration and deblurring problem arises in biomedical, geophysical, astro-
nomical, high-definition television, remote sensing, and other applications. This 
problem is formulated as the solution of the corresponding ill-posed inverse problem, 
which can be effectively solved by applying the family of focusing stabilizers. The 
solution of the joint image deblurring problem is illustrated by using the joint mini-
mum entropy approach. We consider, as an example, the problem of reconstructing 
blurred images of the brain produced by the Magnetic Resonance Imaging (MRI) 
method. 

Keywords Blurred image · Blurring operator · Image deblurring · Joint image 
deblurring 

14.1 Digital Restoration of the Blurred Images 

We begin our discussion with the general concept of image restoration. This concept 
has been applied for image restoration and deblurring in biomedical, geophysical, 
astronomical, high-definition television, remote sensing, and other applications. The 
comprehensive coverage of the image restoration and recovery problem can be found, 
for example, in Pratt (2007), Stark (2013), Gonzalez (2009), Ekstrom (2012), and 
many other publications. 

The concept of image restoration can be described in compact form as the solution 
of the following operator equation (e.g., Portniaguine and Zhdanov 2005; Oliveira 
et al. 2009; Wang and Tao 2014): 

.d = Bm, (14.1) 

where . d is the degraded (blurred) image, .m is the original (ideal) image, and . B is 
the blurring linear operator of the imaging system. Note that the original image, as 
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well as the blurred image, can be defined in a plane (2D image:. m = m (x, y) , d =
d (x, y)) or in a volume (3D image: .m = m (x, y, z) , d = d (x, y, z)). 

A wide variety of medical, geophysical, radiophysical, and astronomical blurred 
images can also be described by Eq. (14.1) with different blurring operators (see, 
for example, Pratt 2007; Ekstrom 2012; Stark 2013). Thus, the problem of image 
restoration and deblurring, in a general case, is formulated as the solution of 
the inverse problem (14.1), which is a typical ill-posed problem, as discussed in 
Chap. 4. Following the principles of regularization theory, a stable solution to the 
inverse problem (14.1) is based on the minimization of the Tikhonov parametric 
functional: 

.Pα(m) = φ (m) + αs (m) , (14.2) 

where .φ (m) is a misfit functional determined as a norm of the difference between 
observed and predicted (theoretical) degraded images: 

.ϕ (m) = ||Bm − d||2 . (14.3) 

Functional .s (m) is a stabilizing functional (a stabilizer). 
In Chap. 4, we discussed several typical stabilizing functionals. One is based on 

the least-squares criterion, or, in other words, on.L2 norm of the functions describing 
the image: 

.sL2 (m) = ||m||2 = (m,m) =

⎧
⎪⎨

⎪⎩

∫

S
m2 (x, y) ds

∫

V
m2 (x, y, z) dv

⎫
⎪⎬

⎪⎭
= min, (14.4) 

where . S and .V are the area of 2D image or volume of 3D image definition, respec-
tively, and .(..., ...) denotes the .L2 inner product operation. 

Another stabilizer uses a minimum norm of the difference between the selected 
image and some a priori (reference) image . mapr :

.sL2apr (m) = ||
||m − mapr

||
||2 = min . (14.5) 

This criterion, as applied to the gradient of image parameters .∇m, brings us to a 
maximum smoothness stabilizing functional: 

.smax sm (m) = ||∇m||2L2
=

⎧
⎪⎨

⎪⎩

∫

S
|∇m (x, y)|2 ds

∫

V
|∇m (x, y, z)|2 dv

⎫
⎪⎬

⎪⎭
= min . (14.6)



14.1 Digital Restoration of the Blurred Images 261

This stabilizer produces smooth images, which in many practical situations don’t 
properly describe the original (ideal) image. It also can result in spurious oscillations 
when .m is discontinuous. 

To mitigate this problem, (Rudin et al., 1992) proposed a total variation (TV)-
based approach to reconstruct noisy, blurred images. This approach uses a total 
variation stabilizing functional, which is essentially .L1 norm of the gradient: 

.sT V (m) = ||∇m||L1
=

⎧
⎪⎨

⎪⎩

∫

S
|∇m (x, y)| ds

∫

V
|∇m (x, y, z)| dv

⎫
⎪⎬

⎪⎭
= min . (14.7) 

If the functions.m (x, y) or.m (x, y, z) representing the images are discontinuous, 
the calculation of the total variation functional .sT V (m) may produce singularities. 
Vogel and Oman (1998), Vogel (2002) modified the TV stabilizing functional to 
avoid these singularities as follows (see Chap. 4): 

.sβT V (m) = ||∇m||L1
=

⎧
⎪⎨

⎪⎩

∫

S

√
|∇m (x, y)|2 + β2ds

∫

V

√
|∇m (x, y, z)|2 + β2dv

⎫
⎪⎬

⎪⎭
= min, (14.8) 

where . β is a small number. 
We have also considered in Chap. 4 the family of focusing stabilizers introduced 

by Portniaguine and Zhdanov (1999, 2005), Zhdanov (2002, 2015). To simplify the 
notations, I review these stabilizers for the case of the 3D (volume) images only. 

I present first an .L p-norm minimum support functional (MS.L p), which provides 
the image with the minimum area of the anomalous image parameter distribution. 

.sMSL p (m) = sβL p (m) =
∫

V

|m|p
|m|p + β p

dv, 0 ≤ p < ∞. (14.9) 

We can also introduce an .L p-norm minimum gradient support functional 
(MGS.L p), which provides the image with the smallest areas of image variations. 
This stabilizer is defined as follows: 

.sMGSL p (m) = sβL p [∇m] =
∫

V

|∇m|p
|∇m|p + β p

dv, 0 ≤ p < ∞. (14.10) 

The MGS.L p functional helps produce the sharp reconstructed image. Indeed, this 
stabilizer forces the areas with rapid changes in the parameters of the image (e.g., 
brightness, color, etc.) to be reduced, thus increasing the sharpness of the image. 

In order to illustrate this property, I consider a simple numerical experiment of 
image enhancement and sharpening conducted for a seismic image. Figure 14.1 
shows an example of the original seismic image of a geological cross section.
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Fig. 14.1 Original seismic 
depth migration image of a 
geological cross section 

Fig. 14.2 Typical blurred 
seismic image of the 
geological cross section 

Figure 14.2 presents the typical blurred seismic image of the same cross section, 
which is generated as the result of the conventional seismic data processing technique 
of depth migration.
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Fig. 14.3 Reconstructed 
seismic depth migration 
image of the geological cross 
section 

This image has been processed by the digital image deblurring method with the 
minimum gradient support functional outlined above (Portniaguine and Zhdanov 
2005). The reconstructed image is shown in Fig. 14.3. One can see that this image 
is practically identical to the original image presented in Fig. 14.1. 

14.2 Formulation of the Joint Image Deblurring Problem 

Considering multiple images of the same target collected by different physical and/or 
electron-optical devices with different blurring operators, we can describe the process 
of joint image deblurring by the following operator relationships: 

.d(i) = B(i)(m(i)), i = 1, 2, 3, ..., N , (14.11) 

where .d(i)
.(i = 1, 2, 3, ..., N ) are different degraded (blurred) images (which may 

correspond to different types of sensors); .m(i)
.(i = 1, 2, 3, ..., N ) are the original 

(ideal) images of physical properties of the target; and .B(i) are the linear blurring 
operators of the multisensor imaging system, corresponding to different sensors, 
respectively. 

The restoration of the deblurred images, .m(i), from the blurred recorded images, 
.d(i), can be treated as a solution of the system of equations (14.11). 

To this end, we introduce the following parametric functional: 

.Pα(m(1),m(2), ....,m(n)) =
N∑

i=1

||
||B(i)(m(i)) − d(i)

||
||2

D
+ αSJ , (14.12) 

where. α is the regularization parameter and.SJ is a joint stabilizing functional respon-
sible for enforcing some relationships between multiple images, .m(i), . 

.(i = 1, 2, 3, ..., N ).
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The choice of the joint stabilizing functional depends on the type of relationships 
or correlation we want to impose on the multiple images. For example, we can 
impose the joint constraints by using the joint focusing, joint minimum entropy, or 
Gramian stabilizers discussed in Chaps. 10, 11, and 12, respectively. To illustrate the 
application of the joint stabilizers for a fusion of multiple images, let us solve the 
joint image deblurring problem using the minimum entropy approach, as an example. 

We have learned in Chap. 11 that the joint stabilizing functionals based on mini-
mum entropy,.SJME , and minimum entropy gradient constraints,.SJMEG , are defined 
according to the following formulas. 

A joint minimum entropy stabilizer is introduced as follows: 

.SJME = −
∫

V

∑N
i=1

|
|m(i)−m(i)

apr

|
| + β

QJ
log

∑N
i=1

|
|m(i)−m(i)

apr

|
| + β

QJ
dv, (14.13) 

where 

. QJ =
∫

V

(
N∑

i=1

|
|m(i)−m(i)

apr

|
| + β

)

dv.

Similarly, we can introduce a joint minimum entropy gradient functional,.SJMEG : 

. SJMEG =

. −
∫

V

∑N
i=1

√(∇m(i) · ∇m(i)
) + β

Q'
J

log

∑N
i=1

√(∇m(i) · ∇m(i)
) + β

Q'
J

dv, (14.14) 

where 

. Q'
J =

∫

V

(
N∑

i=1

√(∇m(i) · ∇m(i)
) + β

)

dv.

According to the basic principles of the regularization method, we have to find 
the models .m(1)

α ,.... .m(2)
α , ....m(N )

α , a quasi-solution of the inverse problem, which 
minimizes the parametric functional: 

. Pα(m(1),m(2), ....,m(n)) =

. =
N∑

i=1

||
||B(i)(m(i)) − d(i)

||
||2

D + αSJME, JMEG = min . (14.15) 

In order to solve this minimization problem, we calculate the first variation of the 
parametric functional with joint minimum entropy stabilizers:
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.

δPα(m(1),m(2) , ....m(n)) = 2
N∑

i=1

(
δB(i)(m(i)), B(i)(m(i)) − d(i)

)

D +

+ 2αδSJME, JMEG .

(14.16) 

Taking into consideration that operators .B(i) are linear, we can write 

.δB(i)(m(i)) = B(i)δm(i), (14.17) 

and 
.δSJME, JMEG = 2

(
δm(i), lJME, JMEG

)
, (14.18) 

where vectors .lJME, JMEG are the directions of the steepest ascent for the stabiliz-
ing functionals, based on joint minimum entropy and minimum entropy gradient 
constraints, described by formulas (14.13) and (14.14), respectively. 

Substituting expressions (14.17) and (14.18) into formula (14.16), we obtain: 

. δPα(m(1),m(2), ....m(n))

. = 2
N∑

i=1

(
δm(i),

[
B(i)*

(
A(i)(m(i)) − d(i)

) + αlJME, JMEG
])

, (14.19) 

where .B(i)* are the adjoint blurring operators. 
Let us select 

.δm(i) = −kαlα(i)(m(1),m(2), ....m(n)), (14.20) 

where.kα is some positive real number, and.lα(i)(m(1),m(2), ....m(n)) is the direction 
of the steepest ascent of the functional .Pα: 

.lα(i) = B(i)*
(
B(i)(m(i)) − d(i)

) + αlJME, JMEG . (14.21) 

Then 

.δPα(m(1),m(2), ....m(n)) = −2kα
N∑

i=1

||
||lα(i)(m(1),m(2), ....m(n))

||
||2

. (14.22) 

The last expression confirms that selection of the perturbations of the images based 
on formula (14.20) ensures a decrease of the parametric functional. 

We can construct an iterative process for the regularized conjugate gradient (RCG) 
algorithm for solving the minimization problem (14.15), which can be summarized 
as follows:
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.

rk = B(mk) − d, lαk = lα(mk) (a)

βα
k = ||

||lαk
||
||2

/
||
||lαk−1

||
||2

, l̃
α

k = lαk +βα
k l̃

α

k−1, l̃
α

0 = lα0 , (b)

sα
k =

(
l̃
α

k , lαk
)

/
{||
||B~lαk

||
||2 + α

||
||~lαk

||
||2

}
, (c)

mk+1 = mk − sα
k l̃

α

k . (d)

(14.23) 

In the last formula, we used the following notations: 
. d is a vector of the observed blurred images 

.d = (
d(1),d(2), ....d(N )

)T ; (14.24) 

.mk is a vector of images computed at iteration number . k,

.mk =
(
m(1)

k ,m(2)
k , ....m(N )

k

)T ; (14.25) 

.A(mk) is a vector of the predicted (deblurred) images computed at iteration num-
ber . k;

and .lαk is a vector of the direction of the steepest ascent computed at iteration 
number . k,

.lαk =
(
lα(1)
Ck , lα(2)

Ck , ....lα(N )
Ck

)T
. (14.26) 

The expressions for the steepest ascent directions are shown above in formula (14.21). 
The iterative process (14.23) is terminated when the misfit reaches the required 

level: 
.ϕ (~mk+1) = ||~rk+1||2D = δd . (14.27) 

Note that the focusing stabilizing functionals introduced above can be expressed 
as pseudo-quadratic functionals as it was discussed in Chap. 11: 

.

s(m) = (
We

(
m − mapr

)
,We

(
m − mapr

))

L2

=
∫

V

|
|we (r)

(
m (r) − mapr (r)

)|
|2 dv,

(14.28) 

where.We is a linear operator of the multiplication of the images.m (r) by the function 
.we (r) ,which may depend on .m. If the operator .We is independent of .m (r) , we 
obtain a quadratic functional, like the minimum norm or the maximum smoothness 
stabilizing functionals. In general cases, the function .we may even be a nonlinear 
function of .m, like the minimum entropy (14.13) or minimum entropy gradient 
(14.14) functionals. It was shown in Chap. 4 that presenting a stabilizing functional
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in a pseudo-quadratic form simplifies the solution of the regularization problem 
and makes it possible to develop a unified approach to regularization with different 
stabilizers. 

14.3 Re-weighted Steepest Descent Method of Joint Image 
Deblurring 

In the case of the image deblurring problem, the corresponding parametric functional 
(14.12) can be written as follows: 

. Pα(m(1),m(2), ...m(N )) =

.

=
N∑

i=1

(B(i)(m(i)) − d(i))T (B(i)(m(i)) − d(i))+

+
N∑

i=1

α(i)(W(i)
e m(i) − W(i)

e m(i)
apr )

T (W(i)
e m(i) − W(i)

e m(i)
apr ),

(14.29) 

where matrix.W(i)
e is a variable matrix of the minimum entropy (gradient) stabilizer, 

which depends on .m(1),m(2), ...m(N ). 
Therefore, the problem of minimizing the parametric functional, given by Eq. 

(14.12), can be treated in a similar way to the minimization of the conventional 
Tikhonov functional. The only difference is that now we introduce some variable 
weighting matrices .W(i)

e for the image functions. The minimization problem for the 
parametric functional introduced by Eq. (14.29) can be solved using the ideas of 
traditional gradient-type methods. 

Following Chap. 10, we will use the re-weighted gradient method. In the frame-
work of this approach, the variable weighting matrices .W(i)

e , .i = 1, 2, ..N , are pre-
computed on each iteration, .W(i)

e = W(i)
en = W(i)

e

(
m(1)

n ,m(2)
n , ...m(N )

n

)
based on the 

values .m(1)
n ,m(2)

n , ...m(N )
n , obtained on the previous iteration. As a result, they are 

treated as fixed matrices on each iteration. Under this assumption, we calculate the 
first variation of the parametric functional (14.29) as follows: 

. δPα(m(1),m(2), ...m(N )) =

.

= 2
N∑

i=1

δm(i)TB(i)T
(
B(i)(m(i)) − d(i)

)+

+ 2
N∑

i=1

α(i)δm(i)TW(i)2
e

(
m(i) − m(i)

apr

)
.

(14.30)
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Finally, we obtain 

. δPα =

.2
N∑

i=1

δm(i)T
[
B(i)T

(
B(i)(m(i)) − d(i)

) + α(i)W(i)2
e

(
m(i) − m(i)

apr

)]
. (14.31) 

Following the general scheme of the steepest descent method, we can again select 

.δm(i) = −kα(i)lα(i)(m(i)), (14.32) 

where.kα(i) is some positive real number (length of a step) and.lα(i)(m(i)) is a column 
matrix defining the direction of the steepest ascent: 

. lα(i)(m(i)) =

.B(i)T
m

(
B(i)(m(i)) − d(i)

) + α(i)W(i)2
e

(
m(i) − m(i)

apr

)
. (14.33) 

Thus, the regularized re-weighted steepest descent method is based on the successive 
line search in the gradient direction .lα(i)(m(i)

(n)): 

.m(i)
n+1= m(i)

n +m(i)= m(i)
n −kα(i)lα(i)(m(i)

n ), (14.34) 

where 

.lα(i)(m(i)
n ) = B(i)T

(
B(i)(m(i)

n ) − d(i)
) + α(i)W(i)2

en

(
m(i)

n − m(i)
apr

)
. (14.35) 

14.4 Re-weighted Conjugate Gradient Method of Joint 
Image Deblurring 

The regularized re-weighted conjugate gradient (RRCG) method can be developed 
in the same way as the steepest descent method; however, the model parameters 
are updated based on the successive line search in the conjugate gradient direction 

.l̃
α(i)

(m(i)
n ): 

.m(i)
n+1= m(i)

n +m(i)= m(i)
n −kα(i) l̃

α(i)
(m(i)

n ). (14.36) 

The conjugate gradient directions.l̃
α(i)

(m(i)
n ) are selected as follows. In the initial 

step, we use the “direction” of regularized steepest ascent for the initial model . m0:

.~lα(i)
0 =~lα(i)(m(i)

0 ) = lα(i)(m(i)
0 ) =
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. = B(i)T
(
B(i)(m(i)

0 ) − d(i)
)

+ α(i)W(i)2
e0

(
m(i)

0 − m(i)
apr

)
, (14.37) 

where .F(i)
m0

is the Fréchet derivative matrix for the initial model and . W(i)2
e0 =

W(i)2
e0

(
m(i)

0

)
. 

In the next step, the “direction” of ascent is a linear combination of the regularized 
steepest ascent on this step and the “direction” of ascent .~lα(i)

0 on the previous step: 

.~lα(i)
1 = lα(i)

1 + βα(i)
1

~lα(i)
0 . (14.38) 

In the .(n + 1)th step 
.~lα(i)
n+1 = lα(i)

n+1 + βα(i)
n+1

~lα(i)
n , (14.39) 

where the regularized steepest ascent directions are determined now according to 
formula (14.37), and 

.~lα(i)
n =~lα(i)(m(i)

n ); lα(i)
n = lα(i)(m(i)

n ). (14.40) 

The length of each iteration step, the coefficients .kα(i)
n , can be determined with a 

linear or parabolic line search: 

. Pα(m(1)
n+1,m

(2)
n+1, ...m

(N )
n+1) =

.Pα(m(1)
n − kα(1)

n
~lα(1)
n , ...,m(N )

n − kα(N )
n

~lα(N )
n ) = min . (14.41) 

Solution of this minimization problem gives the following best estimate for the 
lengths of the step using a linear line search: 

.kα(i)
n = ~lα(i)T

n lα(i)
n

~lα(i)T
n

(
B(i)TB(i) + αW(i)2

en

)
~lα(i)
n

. (14.42) 

One can use a parabolic line search also (Zhdanov, 2002) to improve the convergence 
rate of the RRCG method. 

The CG method requires that the vectors .~lα(i)
n introduced above will be mutually 

conjugate. This requirement is fulfilled if the coefficients.βα(i)
n are determined by the 

formula 

.βα(i)
n+1 = ||lα(i)

n+1||2
||lα(i)

n ||2 . (14.43) 

Using equations (14.34), (14.37), and (14.42), we can obtain .m(i) iteratively. 
Note that due to re-weighting, the stabilizing functional can change, and even 

increase from iteration to iteration,
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. s
(
m(i)

n+1

)
=

.(m(i)
n+1 − m(i)

apr )
TW(i)2

e(n+1)(m
(i)
n+1 − m(i)

apr ) = γ(i)
n s

(
m(i)

n

)
, (14.44) 

where 

. γ(i)
n =

s
(
m(i)

n+1

)

s
(
m(i)

n

) =

.
(m(i)

n+1 − m(i)
apr )

TW(i)2
e(n+1)(m

(i)
n+1 − m(i)

apr )

(m(i)
n − m(i)

apr )TW
(i)2
en (m(i)

n − m(i)
apr )

. (14.45) 

In order to ensure the convergence of the parametric functional to the global 
minimum, we use adaptive regularization and decrease the .αn+1, if . γ(i)

n > 1:

.α(i)
n+1 =

(
α(i)
n , if γ(i)

n ≤ 1,
α(i)
n /γ(i)

n , if γ(i)
n > 1.

(14.46) 

So, the product of the regularization parameter .α(i)
n+1 and the stabilizer . s (mn+1)

decreases or does not change: 

.α(i)
n+1s

(
m(i)

n+1

)
=

⎧
⎨

⎩

α(i)
n s

(
m(i)

n+1

)
= α(i)

n γ(i)
n s

(
m(i)

n

)
, if γ(i)

n ≤ 1,

α(i)
n s

(
m(i)

n+1

)
/γ(i)

n = α(i)
n s

(
m(i)

n

)
, if γ(i)

n > 1.
(14.47) 

We also decrease the regularization parameter .αn+1, 

.α(i)'
n+1 = qα(i)

n+1, q < 1, (14.48) 

if the total misfit for all data does not decrease fast enough: 

.

N∑

i=1

||
||B(i)(m(i)

n ) − d(i)
||
||2 −

N∑

i=1

||
||
||B(i)(m(i)

n+1) − d(i)
||
||
||
2

(14.49) 

. < 0.01
N∑

i=1

||
||B(i)(m(i)

n ) − d(i)
||
||2

. (14.50) 

Numerical experiments demonstrate that the recommended choice of the empirical 
coefficient . q is within an interval ..(0.5; 0.9). 

The algorithm of the RRCG method can be summarized as follows:
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. 

r(i)
n = B(i)(m(i)

n ) − d(i), g(i)
n = W(i)

en (m(i)
n − m(i)

apr ), (a)

lαn(i)
n = B(i)T r(i)

n + αnW(i)
en g

(i)
n , (b)

βαn(i)
n = ||

||lαn(i)
n

||
||2

/

||
||
||lαn−1(i)

n−1

||
||
||
2
, l̃

αn(i)

n = lαn(i)
n +βαn(i)

n l̃
αn−1(i)

n−1 , l̃
α0(i)

0 = lα0(i)
0 , (c)

~kαn(i)
n =

(
l̃
αn(i)T

n lαn(i)
n

)
/
[
l̃
αn(i)T

n

(
B(i)TB(i) + αnW(i)2

en

)
l̃
αn(i)

n

]
, (d)

m(i)
n+1 = m(i)

n −~kαn(i)
n l̃

αn(i)

n , γ(i)
n = ||gn+1||2 / ||gn||2 , (e)

α(i)
n+1 = α(i)

n , if γ(i)
n ≤ 1, and α(i)

n+1 = α(i)
n /γ(i)

n , if γ(i)
n > 1, ( f )

α(i)'
n+1 = qα(i)

n+1, q < 1, if
||
||
||W(i)

d r(i)
n

||
||
||
2 −

||
||
||W(i)

d r(i)
n+1

||
||
||
2

< 0.01
||
||
||W(i)

d r(i)
n

||
||
||
2
, (g)

(14.51) 
where .α(i)

n are the subsequent values of the regularization parameter. The iterative 
process (14.51) is terminated when the misfit reaches the given level . ε0:

.φ(m(i)
N ) =

||
||
||r(i)

N

||
||
||
2 ≤ ε0. (14.52) 

14.5 Numerical Examples of Reconstructing the Blurred 
MRI Images 

Let us consider that we have two independent original images of the same target, 
.m(1)and .m(2), collected by different physical and/or electron-optical devices with 
different blurring operators, .B(i): 

.d(i) = B(i)(m(i)), i = 1, 2. (14.53) 

We also assume that the original images, as well as the blurred images, can be defined 
in a plane: 

. m(i) = m(i)(x, y), d(i) = d(i)(x, y), i = 1, 2;
or in a discrete form: 

. m(i)
kl = m(i)(xk , yl), d(i)

kl = d(i)(xk , yk), where − K ≤ k ≤ K , −L ≤ l ≤ L , and i = 1, 2.

We can represent a blurred 2D image .dkn as a convolution of the original image 
.mk 'n' with the kernel .b (k, n) of the blurring operator:
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. dkn =
k+W∑

k−W

n+W∑

n−W

b
(
k − k ', n − n')mk 'n' , where − K ≤ k, k ' ≤ K , −L ≤ l, l ' ≤ L .

(14.54) 
In the last formula, .2W is the width of the kernel ..b (k, n). 

In this section, we consider, as an example, the problem of reconstructing blurred 
images produced by the Magnetic Resonance Imaging (MRI) method. It is based 
on nuclear magnetic resonance (NMR) principles, a spectroscopic technique used to 
obtain microscopic physical data about molecules. Magnetic resonance imaging is 
performed through the strong pulse of the magnetic field in the radio frequency (RF) 
range of the electromagnetic spectrum. All the atoms, including those that compose 
the human body, have a property known as spin (a fundamental property of all atoms 
in nature like mass or charge). The human body is mainly composed of fat and water, 
which makes the human body content of about 63% hydrogen. The MRI machine 
applies a very strong magnetic field of up to 20,000 gauss in the radio frequency 
(RF) range specific to hydrogen. The pulse directed to a specific body area causes 
the protons to absorb energy and spin in different directions, known as resonance. 
When the RF pulse is turned off, the hydrogen protons slowly return to their natural 
alignment within the magnetic field and release excess stored energy. This generates 
the secondary RF electromagnetic field, which is recorded by the corresponding 
receivers (induction coils). The recorded signal is transformed into a 3D image of 
the specific part of the body using the specific computer visualization software. 

The following is the example of the reconstruction of brain MRI images using the 
joint minimum entropy method outlined above (Fig. 14.4). 1

The original (ideal) MRI images are shown in panels (a) and (e) of this figure. 
In real medical applications, these images could be taken on two different occasions 
and can be variously degraded by deviating conditions of MRI testing. 

In order to computer simulate this situation, we have applied the Gaussian digital 
filter to the original image (a) of Fig. 14.4 using MATLAB. The coefficients of the 
Gaussian filter are as follows: 

.bG (k, l) = aG (k, l)
∑+W

−W

∑+W
−W aG (k, l)

, (14.55) 

where 

. aG (k, l) = exp

[
− (

k2 + l2
)

2σ2

]

, −W ≤ k, l ≤ W.

We have also applied the Pillbox filter to the original image (e) of Fig. 14.4 using 
MATLAB. The Pillbox filter is defined by the following equations: 

.bP (k, l) = aP (k, l)
∑+W

−W

∑+W
−W aP (k, l)

, (14.56)

1 These images were computer simulated by graduate student Xiaolei Tu. 
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Fig. 14.4 Reconstruction of MRI images of the brain using minimum gradient entropy stabilizer: 
panels a and e are original (actual) MRI images; b is the blurred image by a Gaussian filter with 
a standard derivation of 7, contaminated with 2% random Gaussian noise; f is the blurred image 
by a Pillbox filter with a radius of 7, contaminated with 7% random Gaussian noise; panels c and 
g present the separately reconstructed images with minimum gradient entropy stabilizer; panels d 
and h show the jointly reconstructed images with joint minimum gradient entropy stabilizer 

where 

. aP (k, l) =
(
1, k2 + l2 ≤ R2

0, otherwise
.

In this numerical experiment, we use the Gaussian filter with.W = 21, and.σ = 7, 
and the Pillbox filter with R = 15. We then contaminated the images blurred by 
Gaussian and Pillbox filters with 2% and 7% Gaussian noise, respectively. Note that 
the Gaussian noise added to the two images is uncorrelated. The noise-contaminated 
blurred images are shown in panels (b) and (f) of Fig. 14.4. 

We first reconstructed the images using the deblurring method outlined above 
with separate minimum gradient entropy stabilizers calculated individually for each 
image. The reconstructed images are shown in panels (c) and (g) of Fig. 14.4. We  
can see an improvement in these images compared to the blurred images (b) and (f); 
however, some brain structure details are still diffused and unfocused. 

The degraded images (b) and (f) were also jointly reconstructed using the joint 
minimum gradient entropy stabilizer. The results of joint image enhancement and 
deblurring, (d) and (h), show significant improvement in resolution and quality of 
the deblurred images, which become almost indistinguishable from the original MRI 
images (a) and (e) of Fig. 14.4. In summary, the joint image reconstruction recovers 
the details of the deblurred images better than the separate reconstructions.



274 14 Simultaneous Processing and Fusion of Multiphysics Data and Images

References and Recommended Reading 

Ekstrom MP (2012) Image recovery: theory and applications. Academic 
Gonzalez RC (2009) Digital image processing. Pearson Education, India 
Oliveira JP, Bioucas-Dias JM, Figueiredo MA (2009) Adaptive total variation image deblurring: a 
majorization–minimization approach. Signal Process 89(9):1683–1693 
Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64:874– 
887 
Portniaguine ON, Zhdanov MS (2005) Method of digital image enhancement and sharpening: US 
Patent No. 6,879,735 
Pratt WK (2007) Digital image processing: PIKS scientific inside, vol 4. Wiley-Interscience, Hobo-
ken 
Rudin LI, S. Osher, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys 
D 60:259–268 
Stark H (2013) Image recovery: theory and applications. Academic 
Vogel CR, Oman ME (1998) Fast, robust total variation-based reconstruction of noisy, blurred 
images. IEEE Trans Image Process 7(6):813–824 
Vogel CR (2002) Computational methods for inverse problems. Soc Indust Appl Math 
Wang R, Tao D (2014) Recent progress in image deblurring: arXiv preprint arXiv:1409.68308 
Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier 

Zhdanov MS (2015) Inverse theory and applications in geophysics. Elsevier



Part IV 
AI-Aided Inversion



Chapter 15 
Machine Learning in the Context 
of Inversion Theory 

Abstract This chapter reviews the basic ideas of Artificial Intelligence (AI) and 
Machine Learning (ML) methods. The similarities and differences between the 
machine learning approach and inverse problem solution are discussed in detail. 
We introduce the concept of multilayer perceptron, which forms an artificial neu-
ral network, and discuss the importance of the Universal Approximation Theorem 
for neural networks. It is shown that network training can be treated as the inverse 
problem solution. The backpropagation algorithm of deep neural network training is 
presented as well. We also demonstrate that training the deep neural network (DNN) 
or finding the optimal weights of the DNN can be reduced to the application of the 
standard methods of regularized inversion. 

Keywords Artificial intelligence (AI) · Machine learning (ML) · Perceptron ·
Activation function · Artificial neural network 

15.1 Machine Learning Versus Inversion 

The term machine learning was initially introduced for solving pattern recognition 
problems (see, for example, Bishop 2006; Mohri et al. 2012). Machine learning has 
been developed for solving complex problems for which there was no clear specifica-
tion of how the observed data were related to the object or image under investigation. 
In this case, the machine learning approach attempts to simulate how human beings 
learn from our experience and practical experiments rather than following specific 
physical or other natural science laws. 

Over the years, several mathematical techniques have been developed to describe 
in numerical form the learning process. These algorithms are usually subdivided 
into two classes—unsupervised learning and supervised learning (Mehlig 2021). 
Unsupervised learning involves such techniques as data and model clustering, prin-
cipal component analysis (PCA), singular value decomposition (SVD), etc. These 
methods can recover the concealed patterns of images or data. The importance of 
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unsupervised learning is in its ability to discover similarities and differences in the 
observed data or models without using a priori information. 

Another class—supervised learning—includes linear and nonlinear regressions, 
classification, ranking, and neural network simulation, among others (Mohri et al. 
2012; Schuster 2023). Supervised learning is based on training the algorithms on 
the known input and output parameters, measuring the effectiveness of this train-
ing through the corresponding error functions, and continuing the training until the 
desired level of errors is reached. This process is similar to an inverse problem solu-
tion when we iteratively update the model parameters until the misfit between the 
observed and predicted data reaches the desired level of errors. However, there are 
some important differences. 

For example, in formulating the inverse problem, which is the subject of this book, 
we always assume that we know the specific laws or mathematical rules which relate 
the observed data, . d, to the corresponding model, . m. We express these rules in the 
form of the following operator equation: 

.d = A(m), (15.1) 

where. A is the forward modeling operator. We always suppose that the forward mod-
eling operator is known because it represents specific physical laws or mathematical 
rules. 

In the framework of the supervised machine learning approach, in a general case, 
there is no need to know the specific form of this operator. Instead, the algorithm is 
based on the assumption that multiple pairs,.{mi ,di ; i = 1, 2, ...N } , of the observed 
data and the models generating these data are known. The “machine” or computer 
operates with these sets to “learn” the relationships between the data and models 
through numerical experiments. It is important to note that for the machine learning 
algorithm, there is no difference if we want to find the actions of the forward operator, 
. A, or of the inverse operator, .A−1, transforming the data into the models: 

.m = A−1(d). (15.2) 

The algorithm simulates the actions of the inverse operator based on the known pairs 
of the input/output parameters. 

In the following sections, we will show that the machine learning algorithm can 
provide an accurate numerical approximation of the inverse operator. Indeed, the 
majority of machine learning methods use the concept of an artificial neural network 
(ANN) as a learning engine. According to the Universal Approximation Theorem for 
neural networks, which we will discuss in detail below, practically any continuous 
function can be approximated by a corresponding neural network with any given 
accuracy, . ε (Hornik et al. 1989). 

From the theory of ill-posed inverse problems (Chap. 4), we know that, in a general 
case, the inverse operator, .A−1, may not necessarily be continuous and bounded. 
Therefore, the Universal Approximation Theorem would not work to solve the ill-
posed problems. However, we demonstrated in Chap. 4 that we can replace the
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solution of one ill-posed inverse problem (15.1) with the solutions of the family of 
well-posed problems, 

.d = Aα(m), (15.3) 

assuming that these solutions, 

.mα = A−1
α (d) , (15.4) 

asymptotically go to the true solution, .mt , as . α tends to zero: 

.mα = A−1
α (d)→ mt , if α → 0, (15.5) 

where .α ≥ 0 is a regularization parameter;. and .A−1
α are continuous and bounded 

inverse operators for the well-posed problems (15.3). The operators .A−1
α are called 

the regularizing operatorsfor Eq. (15.1)),. R(d,α): 

.R(d,α) = A−1
α (d) . (15.6) 

We can now apply the Universal Approximation Theorem to produce the required 
approximation of the regularizing operators: 

. ||Mα (d) − R(d,α)|| < εα, (15.7) 

where .Mα (d) denotes the results obtained by the corresponding machine learning 
algorithm, and .εα .> 0 are small positive values of accuracy levels of these approxi-
mations, which can vary with . α. 

Thus, we can see that both machine learning inversion and the classical inversion 
methods are used to solve the same problem of finding the corresponding regular-
izing operators (15.6). The main difference between these two approaches is in the 
way how they construct .R(d,α). The classical inversion methods discussed in the 
previous chapters of this book rely on the a priori knowledge of the forward modeling 
operator and the properties of the inverse models to reduce the computer memory 
requirements and speed up the calculations. In other words, classical methods use 
the laws of physics or other related sciences to design the inversion algorithms. On 
the contrary, the machine learning approach does not use any specific physical laws. 
Instead, it develops the approximations of these laws by training the algorithms on 
the known input and output parameters. The major limitation of this approach is 
related to the fact that the volume of the known parameters and the computer power 
required to process this volume increases significantly with the complexity of the 
inverse problem. However, with the recent dramatic increase in computer power, this 
limitation has become less critical, which resulted in the renewed interest in artificial 
neural networks and machine learning algorithms.
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In the following chapter, we will show that by synthesizing the ideas from both 
approaches to inversion—machine learning and classical methods of regularization— 
we can arrive at a new powerful technique for solving general inverse problems. 

15.2 Artificial Neural Networks 

The concept of “neural network” was first introduced as a model of biological neurons 
(McCulloch and Pitts 1943). This concept provided the basis for building the first 
prototypes of machines possessing “artificial intelligence” (AI) by Rosenblatt (1957, 
1962) and others. However, those efforts did not receive much traction because of 
the limited resources of computers at that time. The modern dramatic increase in 
the interest in AI and machine learning can be attributed first and foremost to the 
rapid scaling up of computing power during the last decade. At the same time, the 
concept of a neural network is still a fundamental building block of machine learning 
algorithms. 

15.2.1 Perceptron 

In the center of the classical neural network is the perceptron proposed by Rosen-
blatt (1962), which describes the nonlinear input and output process mimicking the 
operations of the human brain’s neurons. To explain the concept of the perceptron, 
we consider a neural network containing one input layer, one hidden layer, and one 
output layer of neurons, as shown in Fig. 15.1. 

Fig. 15.1 Schematic diagram of the perceptron
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The actions of this basic neural network model can be described as a set of 
linear and nonlinear transformations. The first transformation is given by a linear 
combination, .z(1)

j , of the input variables, .xi , x2, ...xN0 , with some weights: 

.z(1)
j =

N0∑

k=1

w
(1)
jk xk + w

(1)
j0 , j = 1, 2, ..., N1, (15.8) 

where the weight of the link from the . kth input neuron to the . j th output neuron is 
denoted as .w(1)

jk (where the second index always refers to the link’s “beginning”; the 
first, to its “end”), and .N0 is the number of neurons in the input layer. Thus, each 
link in Fig. 15.1 for neuron from one layer to neuron in the other layer is associated 
with the weights. The parameters .w(1)

0 j are called biases. 
The neurons forming the second layer are often called hidden neurons. There are 

.N1 hidden neurons in our model. The actions of the hidden neurons are quite different 
from that of the first-layer neurons. The hidden neurons transform the input variables 
by nonlinear differentiable activation functions. The most widely used activation 
function is a sigmoid (S-shaped) function, .σ (z) , which is defined as follows: 

.σ (z) = 1

1 + e−bz
= (

1 + e−bz
)−1

, (15.9) 

where . b is a parameter of the sigmoid. 
The sigmoidal function is a continuous, monotonically increasing function with 

a characteristic S-like curve, as shown in Fig. 15.2. 
In this case, the. j th hidden neuron from the first hidden layer receives as input the 

weighted sum, .z(1)
j of input data, .xk, and subjects this sum to the neuron activation 

function, . σ (z) :

.h(1)
j = σ

(
z(1)
j

)
= σ

(
N0∑

k=1

w
(1)
jk xk + w

(1)
j0

)
, j = 1, 2, ..., N1. (15.10) 

There are .N2 output neurons. The output neuron generates a linear combination 
of the inputs from the first hidden layer . h(1)

j , ( j = 1, 2, ..., N1) :

.z(2)
i =

N1∑

j=1

w
(2)
i j h

(1)
j + w

(2)
i0 =

N1∑

j=1

w
(2)
i j σ

(
z(1)
j

)
+ w

(2)
i0 , i = 1, 2, ..., N2, (15.11) 

and subject it the same activation function, .σ (z), as shown in Fig. 15.1: 

.h(2)
i = σ

(
z(2)
i

)
= σ

⎛

⎝
N1∑

j=1

w
(2)
i j h

(1)
j + w

(2)
i0

⎞

⎠ , i = 1, 2, ..., N2. (15.12)
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Fig. 15.2 Examples of the sigmoidal function 

Thus, the output data,.h(2)
i , i = 1, 2, ..., N2, resulting from input data propagation 

from the input layer through two neuron layers with activation function .σ (z) , can 
be expressed as follows: 

.h(2)
i = σ

⎛

⎝
N1∑

j=1

w
(2)
i j σ

(
N0∑

k=1

w
(1)
jk xk + w

(1)
0 j

)
+ w

(2)
i0

⎞

⎠ , i = 1, 2, ..., N2, (15.13) 

where .N2 is the total number of the output neurons. 
Expression (15.13) shows that perceptron transforms the input data by a com-

bination of linear and nonlinear operations. As a result, according to the Universal 
Approximation Theorem, the perceptron operation can approximate any continuous 
operator applied to the input data (with the proper selection of the weights). The key 
is to find these weights. I will discuss a solution to this problem using a more general 
concept of multilayer perceptron. 

15.2.2 Multilayer Perceptron 

The term multilayer perceptron is usually applied to a fully connected class of 
artificial neural network, where the data flow from the input neuron layer to the 
output layer is strictly feedforward.
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Let us revisit the neural network formed by the perceptron (Fig. 15.1). The . i th 
neuron of the output layer receives the weighted sum, .z(2)

i , of the values, .h(1)
j , . j =

1, 2, ...N1, coming from the neurons of the first hidden layer and, again, subjects it 
to the same activation function, .σ (z), as shown in formula (15.12). This is how the 
. i th output is obtained. 

If we have two hidden layers, the process will continue as follows. The. i th output 
from the output layer is obtained using the following formula: 

.h(3)
i = σ

(
z(3)
i

)
= σ

⎛

⎝
N2∑

j=1

w
(3)
i j h

(2)
j + w

(3)
i0

⎞

⎠ , i = 1, 2, ...N3. (15.14) 

This process can be extended to any number of hidden layers as we discuss in the 
following section. 

It is convenient to describe the transformations performed by the neural network 
using the vector and matrix notations to simplify the mathematical analysis of this 
process. For example, we can introduce the vector-columns, 

.x = (x1, x2, ...., xN0)
T and z(q)= (z(q)

1 , z(q)

2 , ...., z(q)

Nq
)T , q = 1, 2, 3; (15.15) 

formed by the input variables (where the upper subscript “. T ” denotes a transposition), 
and the matrices, .w(1), .w(2), and .w(3), formed by the weights, .w(1)

jk , w
(2)
i j and . w

(3)
i j ,

with.N1 × N0 , .N2 × N1, and.N3 × N2 components, respectively. We also introduce 
the bias vectors as follows: 

. b(1) = (w
(1)
10 , w

(1)
20 , ...., w

(1)
N10)

T ; b(2) = (w
(2)
10 , w

(2)
20 , ...., w

(2)
N20)

T ;

. b(3) = (w
(3)
10 , w

(3)
20 , ...., w

(3)
N20)

T .

Using these notations, we have the output of the first neuron layer, formula (15.8), 
equal to: 

.z(1) = w(1)h(0) + b(1), (15.16) 

where for convenience, we use the following notations: 

. x = h(0).

The output of the first hidden layer, Eq. (15.10) can be rewritten as follows: 

.h(1) = σ
(
z(1)

) = σ
(
w(1)h(0) + b(1)

)
, (15.17) 

where 

.h(1) =
[
h(1)
1 , h(1)

2 , ...., h(1)
N1

]T
,
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and .σ
(
z(1)

)
denotes the vector obtained by application of the sigmoidal activation 

function, .σ (z) to every component of vector . z(1).

The output of the neuron of the second hidden layer, formula (15.12), takes the 
form: 

.h(2) = σ
(
w(2)h(1) + b(2)

)
, (15.18) 

where 

. h(2) =
[
h(2)
1 , h(2)

2 , ...., h(2)
N2

]T
.

The output of the neuron of the output layer, formula (15.14), can be written as 
follows: 

.h(3) = σ
(
w(3)h(2) + b(3)

)
, (15.19) 

where 

. h(3) =
[
h(3)
1 , h(3)

2 , ...., h(3)
N3

]T
.

Therefore, Eq. (15.14) can be presented as the following recursive formula: 

. M (x;W, B) = h(3) = σ
(
w(3)h(2) + b(3)

)

. = σ
(
w(3)σ

(
w(2)h(1) + b(2)

) + b(3)
)

. = σ
(
w(3)σ

(
w(2)σ

(
w(1)h(0) + b(1)

) + b(2)
) + b(3)

)
, (15.20) 

where .M (x;W, B) is called the neural network operator. Symbols . W =
.
(
w(1), w(2),w(3)

)
and.B = (

b(1), b(2),b(3)
)
denote the groups of weights and biases, 

respectively. 
Thus, the neural network can be mathematically represented as a nonlinear oper-

ator, .M (x;W, B) , acting on a vector of input variables, .x = h(0), which is con-
trolled by the matrices representing the weights, .

(
w(1), w(2),w(3)

)
, and the biases 

.
(
b(1), b(2),b(3)

)
.The process of supervised learning of the neural network is equiva-

lent to adjusting these weights and biases to achieve the most accurate representation 
of the true output parameters by the network. Below we will consider this process 
for a more general case of a neural network with .(Q − 1) hidden layers. 

15.2.3 Deep Neural Networks 

We have presented in Fig. 15.1 the most commonly used architecture of the artificial 
neural network. At the same time, this architecture can be easily expanded by includ-
ing an additional number of hidden layers. For example, if we consider a multilayer 
network with .(Q − 1) hidden layers (Fig. 15.3), the corresponding neural network 
operator can be expressed by the following recursive formulas:
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Fig. 15.3 Schematic diagram of the multilayer perceptron 

. M (x;W, B) = h(Q),

. h(Q) = σ(z(Q)), z(Q)= w(Q)h(Q−1) + b(Q),

. h(Q−1) = σ
(
z(Q−1)

)
, z(Q−1)= w(Q−1)h(Q−2) + b(Q−1),

. ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::,

. h(3) = σ
(
z(3)

)
, z(3) = w(3)h(2) + b(3),

. h(2) = σ
(
z(2)

)
, z(2)= w(2)h(1) + b(2),

. h(1) = σ
(
z(1)

)
, z(1)= w(1)h(0) + b(1),

. h(0) = x, (15.21) 

where for compactness of the notations, symbols .W = .
(
w(1), w(2), ...,w(Q)

)
and 

.B = (
b(1), b(2), ...,b(Q)

)
denote the groups of weights and biases, respectively. 

The artificial neural network with an increased number of hidden layers between 
the input and the output layers is usually called a deep neural network (DNN). 

According to Eq. (15.21), the transition from the .(q − 1)th hidden neuron layer 
to the . qth hidden layer can be described as follows: 

.h(q) = σ
(
z(q)

)
, z(q) = w(q)h(q−1) + b(q). (15.22) 

Note that in the last equation, .b(q), z(q) and .h(q) are vector-columns formed by 
biases, inputs, and outputs of the hidden layer .q,
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. b(q) =
[
b(q)

1 , b(q)

2 , ...., b(q)

Nq

]T
,

. z(q) =
[
z(q)

1 , z(q)

2 , ...., z(q)

Nq

]T
,

.h(q) =
[
h(q)

1 , h(q)

2 , ...., h(q)

Nq

]T
, (15.23) 

where .Nq is the number of neurons in layer . q. 
Matrix .w(q) is .

]
Nq × Nq−1

]
matrix formed by the corresponding weights: 

.

⎡

⎢⎢⎢⎣

w
(q)

11 w
(q)

12 w
(q)

1Nq−1

w
(q)

21 w
(q)

22 w
(q)

2Nq−1

w
(q)

Nq1 w
(q)

Nq2 w
(q)

Nq Nq−1

⎤

⎥⎥⎥⎦ . (15.24) 

Using notations of equations (15.21), we can rewrite the key equation of the 
machine learning algorithm for inverse problem solution based on inequality (15.7) 
in the following form: 

. ||M (x;W, B) − R(d,α)|| = min . (15.25) 

Therefore, the machine learning process is reduced to solving the minimiza-
tion problem (15.25) for weights, .W = .

(
w(1), w(2), ...,w(Q)

)
and biases, . B =(

b(1), b(2), ...,b(Q)
)
. This is a very challenging problem considering the huge num-

ber of unknown weights and biases. In order to develop an effective method of 
solving this problem, we first reformulate the recursive equations (15.21) describing 
the action of the neural network operator in a more convenient form of matrix-vector 
multiplications, which simplifies the mathematical analysis. 

To this end, we introduce a new column vector .W(q) obtained by concatenating 
the rows of matrix .w(q), Eq.  (15.24), as follows: 

.W(q) =
[
w

(q)

11 ... w
(q)

1Nq−1
w

(q)

21 ... w
(q)

2Nq−1
w

(q)

Nq1 ... w
(q)

Nq Nq−1

]T
. (15.26) 

We also introduce.
]
Nq × (

Nq−1Nq
)]

matrix.H(q−1) composed of vector-columns 
(15.23) of the hidden layers outputs, . h(q−1)T ,

.H(q−1) =

⎡

⎢⎢⎢⎣

h(q−1)T 0 ... 0
0 h(q−1)T ... 0
...

...
. . .

...

0 0 ... h(q−1)T

⎤

⎥⎥⎥⎦ , (15.27) 

where according to definition (15.23), .h(q−1)T is a vector-row of length .Nq−1.
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Then, it is easy to show the following matrix identity: 

.w(q)h(q−1) = H(q−1)W(q). (15.28) 

Indeed, according to Eq. (15.24), .w(q) is a rectangular .
]
Nq × Nq−1

]
matrix, and 

vector-column .h(q−1) has the length of .Nq−1. Therefore, their product is a vector-
column of the length. Nq with the . i th component, .a(q)

i , equal to 

.a(q)

i =
Nq∑

j=1

w
(q)

i j h
(q−1)
j , i = 1, 2, ..., Nq . (15.29) 

At the same time, according to Eq. (15.27), matrix .H(q−1) is a rectangular 
.
]
Nq × (

Nq−1Nq
)]

matrix, and vector-column .W(q) has the length of . 
(
Nq−1Nq

)
.

The product of matrix .H(q−1) and vector-column .W(q) results in vector-column of 
the length. Nq with the same . i th component as one defined by expression (15.29) 
above: 

. 

[
h(q−1)
1 , h(q−1)

2 , ...., h(q−1)
Nq

]

⎡

⎢⎢⎢⎢⎣

w
(q)

i1

w
(q)

i2
...

w
(q)

i Nq

⎤

⎥⎥⎥⎥⎦
=

. =
Nq∑

j=1

w
(q)

i j h
(q−1)
j = a(q)

j , i = 1, 2, ..., Nq . (15.30) 

This proves the vector identity (15.28). 
Therefore, expression (15.22) for a transition from the .(q − 1)th hidden neuron 

layer to the . qth hidden layer takes the following form: 

.h(q) = σ
(
z(q)

)
, z(q) = H(q−1)W(q) + b(q), (15.31) 

Formula (15.31) plays an important role in the derivation of the backpropagation 
method of neural network training. 

15.2.4 Universal Approximation Theorem 

It is important that we consider the networks with feedforward architecture, where 
the data flow from input to output neurons is strictly feedforward. This means that 
the data processing can extend over multiple layers of neurons. Still, no closed cycles 
are present, that is, connections extending from outputs of units to inputs of units in 
the same layer or previous layers.
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This is important due to the remarkable property of the feedforward architecture 
arising from the Universal Approximation Theorem for neural networks (Cybenko 
1989; Hornik et al. 1989). 

This theorem states, in general terms, that a superposition of sigmoidal functions 
can approximate any continuous operator .F(x) with arbitrary accuracy, . ε (provided 
a sufficiently large number of sigmoidal functions used for this approximation). In 
terms of the neural network approach, the Universal Approximation Theorem proves 
that the continuous function can be approximated to arbitrary accuracy by a network 
with a single hidden layer, if there is a sufficient number of neurons in the hidden 
layer. Therefore, considering that operator .M (x;W, B) according to Eq. (15.20) is  
a linear combination of sigmoidal functions, we can state that there exist the weights, 
.W, and biases, .B, with the property that 

. ||M (x;W, B) − F (x)||∞ < ε, (15.32) 

where in a general case, .||...||∞ is a uniform norm (see Chap. 3). 
The question arises of how to find the optimal weights and biases delivering 

condition (15.32). 

15.3 Network Training as the Inverse Problem Solution 

15.3.1 Formulation of the Regularized Inverse Problem for 
Training the Deep Neural Network 

The main goal of machine learning algorithms is to find the optimal weights of a 
neural network so it can correctly predict the output values from the input variables. 
This process is called neural network training. In order to train the network, we 
should assume that we know a training set comprising of the pairs of vectors, . x(k)

and .y(k), representing the input and output data, respectively: 

.
{
x(k)

}
and

{
y(k)

}
, k = 1, 2, ....., K , (15.33) 

where input vectors form a subset.Ex of the Euclidean space.EN0 ,.x ∈ Ex , and output 
vectors form a subset .Ey of the Euclidean space .ENQ , . y ∈ Ey .

For example, vectors.y(k) can comprise different physical properties (e.g., density, 
magnetization, conductivity, seismic attributes, etc.) at specific locations in the sub-
surface, and vectors .x(k) can include various physical fields (e.g., gravity, magnetic, 
electromagnetic, seismic) measured in the observation points. Training consists in 
calculating the optimal weights and biases, which ensures that the neural network 
predicts the correct values of output data,.y(k), for a given input data,.x(k) (the “train-
ing sample”).
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In mathematical dressing, this problem is equivalent to the solution of the. follow-
ing operator equation with respect to the weights, .w(1), w(2), ...,w(Q), and biases, 
.b(1), b(2), ...,b(Q): 

.y(k) = M
(
x(k);W, B

)
, k = 1, 2, ....., K . (15.34) 

Thus, we have arrived at the classical inverse problem similar to the one introduced 
in Chap. 1 of this book. The solution to this inverse problem—the training process— 
can be achieved by applying any of the large variety of inversion methods discussed 
in this book. In addition, one can use the probabilistic or deterministic approaches 
to solving this problem. As an illustration of a typical training method, we consider 
below the solution based on the deterministic approach. 

It is important to note that inverse problem (15.34) is, in a general case, an ill-posed 
problem. The regularized solution of this problem can be obtained by minimization 
of Tikhonov parametric functional, .Pα (W, B) , as follows: 

.Pα (W, B) = ϕ (W, B) + αS(W, B) = min, (15.35) 

where . ϕ and . S are misfit and stabilizing functionals, respectively, and . α is a regu-
larization parameter. 

The misfit functional is defined as a sum of the squares of the corresponding 
least-square norms of the difference between the predicted output, .M

(
x(k);W, B

)
, 

and the learning sample output, .y(k), calculated over all training set pairs 

.ϕ (W, B) = 1

K

K∑

k=1

||||M
(
x(k);W, B

) − y(k)
||||2

ENQ
, (15.36) 

where .||...||ENQ
is the least-square norm defined in the Euclidean space . ENQ .

A conventional way of selecting the stabilizing functional is in the form of the 
square norm of the difference between the current weights and biases,.w(q),b(q), and 
a priori selected parameters, . w(q)

apr , b(q)
apr :

.S(W, B) =
Q∑

q=1

[
||w(q) − wq

apr||2F + ||b(q) − bqapr||2ENQ

]
, (15.37) 

where .||...||F is the Frobenius norm of the matrices. If no a priori (initial) weights 
are known, a standard minimum norm stabilizer can be used: 

.SMN (W, B) =
Q∑

q=1

[
||w(q)||2F + ||b(q)||2ENQ

]
. (15.38)
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The problem of parametric functional minimization can be solved using the 
gradient-type methods described in Chap. 7. We will discuss the implementation 
of some of these techniques below. 

We call the parameters, .W, B, delivering the minimum of the parametric func-
tional, .Pα (W, B) , the trained parameters, . Wtr , Btr .

After the trained weights and biases are determined, one can use the trained ANN 
in order to predict the output (predicted) values, .ypr(k), for a new set of the input 
variables, .xinp(k), as follows: 

.ypr(k) = M
(
xinp(k);Wtr , Btr

)
, k = 1, 2, ....., K . (15.39) 

15.3.2 Network Training by the Steepest Descent Method 

We have demonstrated in Chap. 7 that the steepest descent method represents the 
simplest but still powerful technique for functional minimization. The critical step of 
this method involves computing the steepest descent direction of the corresponding 
parametric functional. 

Indeed, in the framework of the conventional steepest descent method, we can 
update the weights and biases iteratively as follows: 

. w(q)

n+1 = w(q)
n + δw(q) = w(q)

n − k(q)
wn

lα(w(q)
n ),

.b(q)

n+1 = b(q)
n + δb(q) = b(q)

n − k(q)

bn l
α(b(q)

n ), (15.40) 

where .k(q)
wn > 0 and .k(q)

bn > 0 are positive coefficients, and .lα(w(q)
n ) and .lα(b(q)

n ) are 
the steepest ascent directions satisfying the following conditions: 

. δw(q) Pα (W, B) = −2k(q)
wn

(l(w(q)
n ), l(w(q)

n )) < 0,

.δb(q) Pα (W, B) = −2k(q)

bn (l(b(q)
n ), l(b(q)

n )) < 0, (15.41) 

and symbols .δw(q) and .δb(q) denote the variations of the parametric functional with 
respect to weights, .w(q), and biases, .b(q), respectively 

Thus, .lα(w(q)
n ) and.lα(b(q)

n ) describe the “directions” of increasing (ascent) of the 
functional .Pα, because they are opposite to the descent directions, 

.δw(q) = −k(q)
wn

lα
(
w(q)

n

) ; δb(q) = −k(q)

bn l
α
(
b(q)
n

)
. (15.42) 

The positive coefficients .k(q)
wn > 0 and .k(q)

bn > 0 are the steepest descent step 
lengths. In machine learning theory, these parameters are known as the learning 
rates. They are defined by a line search according to the following conditions:
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. Pα(w(q)

n+1) = Pα
(
w(q)

n − k(q)
wn

lα(w(q)
n )

) = Φα
wn

(k(q)
wn

) = min,

.Pα(b(q)

n+1) = Pα
(
b(q)
n − k(q)

bn l
α(b(q)

n )
)

= Φα
bn (k

(q)

bn ) = min . (15.43) 

Thus, the proposed algorithm to conduct the network training can be described by 
iterative process (15.40) if we know how to compute the steepest ascent directions 
(gradients), .lα(w(q)

n ) and.lα(b(q)
n ), of the parametric functional. This problem can be 

solved by using the backpropagation method which we discuss below. 

15.3.3 Backpropagation Method for Steepest Descent 
Calculation 

We have learned above that the action of the neural network operator can be described 
as a recursive process summarized in Eq. (15.21). This specific structure of the 
network operator makes it possible to develop a very efficient method of computing 
the steepest ascent directions (gradients) of the misfit and parametric functionals. 

We introduce the basic principles of the backpropagation method considering 
the problem of misfit functional minimization first. After that, we will expand this 
method to a general case of parametric functional minimization. 

According to Eq. (15.36), the misfit functional, .ϕ (W, B) , can be treated as an 
average over the misfit functionals, .ϕk (W, B), calculated separately for each pair 
of the training input and output data .

{
x(k); y(k)

}
: 

.ϕ (W, B) = 1

K

K∑

k=1

ϕk (W, B) , (15.44) 

where 
.ϕk (W, B) = ||||M

(
x(k);W, B

) − y(k)
||||2

ENQ
. (15.45) 

Therefore, we can simplify the explanation of the backpropagation method by focus-
ing on the minimization of the individual misfit,.ϕk (W, B) , only. This is equivalent 
to the assumption that we have just one training set .

{
x(k) = xtr ; y(k) = ytr

}
. After  

developing the minimization method for one training set, we can easily apply the 
result to the arbitrary number of the training sets by averaging over all available 
training samples. With this assumption in mind, we present expression (15.45) for  
the misfit functional under consideration as follows: 

.ϕk (W, B) = ||||M
(
xtr ;W, B

) − ytr
||||2
ENQ

. (15.46)
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We can write the norm square of the difference between the predicted output 
values .M

(
xtr ;W, B

)
and the training sample of the output data, .ytr , using the 

matrix multiplication: 
. 

||||M
(
xtr ;W, B

) − ytr
||||2
ENQ

. = (
M

(
xtr ;W, B

) − ytr
)T (

M
(
xtr ;W, B

) − ytr
)
. (15.47) 

We can also recall that, according to Eq. (15.21) the predicted output values are 
generated by the output neuron layer . Q :

.M
(
xtr ;W, B

) = h(Q) = σ
(
z(Q)

)
, (15.48) 

where .σ
(
z(Q)

)
is the corresponding activation function. 

Therefore, Eq. (15.47) for the misfit functional takes the following form: 

. ϕk (W, B) = (
σ

(
z(Q)

) − ytr
)T (

σ
(
z(Q)

) − ytr
)

. = (
h(Q)− ytr

)T (
h(Q)− ytr

)
. (15.49) 

To simplify the future notations, we will drop the subscript “. k” from the  sym-
bol of the misfit functional, denoting .ϕk as .ϕ. Following the standard logic of the 
steepest descent method, summarized in Chap. 7, the steepest ascent direction can be 
found by calculating the variations of the misfit functional and imposing the descent 
conditions: 

. δw(q)ϕ (W, B) < 0; q = 1, 2, ..., Q,

.δb(q)ϕ (W, B) < 0; q = 1, 2, ..., Q. (15.50) 

In the last formulas,.δw(q)ϕ represents the variations of the misfit corresponding to 
perturbations (changes) in the weights,.w(q). The  term.δb(q)ϕ describes the variations 
of the misfit corresponding to perturbations (changes) in the biases, .b(q). 

The descent conditions (15.50) serve as the basis for finding the ascent directions 
(gradients) of the misfit functional with respect to the weights,.w(q), and biases,.b(q). 
However, as the first step in solving this problem, it is convenient to consider the 
variations of the misfit with respect to input in the . qth neuron layer, . z(q).

To this end, let us recall some rules of differentiation of vector and scalar functions 
of vector argument. First of all, if we are given a vector function .g (z) of the vector 
argument . z with .g ∈EM and .z ∈EN , we can write it in the form of vector-column:
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. g (z) =

⎡

⎢⎢⎢⎣

g1 (z)
g2 (z)

...

gM (z)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

g1 (z1, z2, ..zN )

g2 (z1, z2, ..zN )
...

gM (z1, z2, ..zN )

⎤

⎥⎥⎥⎦ .

The Fréchet derivative (Jacobian) matrix for this function is.[M × N ] matrix defined 
as follows: 

.Fz (g) =

⎡

⎢⎢⎢⎢⎣

∂g1
∂z1

∂g1
∂z2

...
∂g1
∂zN

∂g2
∂z1

∂g2
∂z2

...
∂g2
∂zN

...
...

. . .
...

∂gM
∂z1

∂gM
∂zx2

...
∂gM
∂zN

⎤

⎥⎥⎥⎥⎦
. (15.51) 

Therefore, the first variation of .g (z) can be calculated as follows: 

.δg (z) = Fz (g) δz, (15.52) 

where .δz is .[N × 1] matrix-column: 

. δz =

⎡

⎢⎢⎢⎣

δz1
δz2
...

δzN

⎤

⎥⎥⎥⎦ .

In particular, if we have a function . f (z) , its Fréchet derivative is .[1 × N ] matrix-
row: 

.Fz ( f ) =
[

∂ f
∂z1

∂ f
∂z2

...
∂ f
∂zN

]
. (15.53) 

We can use formula (15.53) to derive the variation of the misfit with respect to the 
input in the last . Qth layer, . z(Q) :

.δz(Q)ϕ = Fz(Q) (ϕ) δz(Q), (15.54) 

where symbol .Fz(Q) (ϕ) denotes the Fréchet derivative (Jacobian) matrix of misfit 
functional. ϕwith respect to.z(Q).According to (15.53), this is a vector-row. 

]
1 × NQ

]

matrix defined by the following formula 

.Fz(Q) (ϕ) =
[

∂ϕ

∂z(Q)
1

∂ϕ

∂z(Q)
2

...
∂ϕ

∂z(Q)
NQ

]
. (15.55) 

An efficient way to calculate.Fz(Q) (ϕ) is based on the chain rule of differentiation, 
which we summarize below. Let us consider a composite vector function,
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.Φ(z) = f [h (z)] , (15.56) 

where.z ∈ENq .Vector function.h (z) ∈ ENl transforms.ENq into.ENl , vector function 
.f [h]∈ENq transforms .ENl into .ENm , and .Φ(z) transforms .ENq into . ENm .

Then, the Fréchet derivative matrix (Jacobian) of. Φwith respect to. z is. 
]
Nm × Nq

]

matrix defined according to the following chain rule: 

.Fz (Φ) = Fh (f)Fz (h) , (15.57) 

where .Fh (f) and .Fz (h) are .[Nm × Nl] and .
]
Nl × Nq

]
Fréchet derivative matrices 

of functions .f [h] and .h (z) , respectively. 
We apply now the above rules of Fréchet derivative calculations to find the vari-

ation of the misfit functional (15.49). According to Eq. (15.54), we need to find 
. Fz(Q) (ϕ) .

We can use the chain rule of differentiation and present Fréchet derivative. Fz(Q) (ϕ)

as the product of.Fh(Q) (ϕ) , Fréchet derivative of. ϕwith regard.h(Q), and. Fz(Q)

(
h(Q)

)
,

Fréchet derivative of .h(Q) with regard to .z(Q): 

.Fz(Q) (ϕ) = Fh(Q) (ϕ)Fz(Q)

(
h(Q)

)
. (15.58) 

In the last formula, .Fh(Q) (ϕ) is .[1 × N ] matrix-row, defined by the following equa-
tion, similar to (15.55): 

.Fh(Q) (ϕ) =
[

∂ϕ

∂h(Q)
1

∂ϕ

∂h(Q)
2

...
∂ϕ

∂h(Q)
NQ

]
. (15.59) 

Using compact matrix notations given by formula (15.49),.Fh(Q) (ϕ) can be written 
as follows: 

. Fh(Q) (ϕ) = ∂ϕk

∂h(Q)

. = ∂

∂h(Q)

[(
h(Q)− ytr

)T (
h(Q)− ytr

)] = 2
(
h(Q)− ytr

)T
. (15.60) 

We can also recall that, according to Eq. (15.21) the predicted output values are 
generated by the output neuron layer . Q :

. h(Q) = σ
(
z(Q)

)
.

Therefore 
.Fz(Q)

(
h(Q)

) = σ' (z(Q)
)
, (15.61) 

where .σ' (z(Q)
)
is the matrix of the Fréchet derivative of the activation function 

.σ
(
z(Q)

)
.
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It can be demonstrated that the Fréchet derivative of the vector function can be 
calculated based on the following equations: 

. δσ
(
z(Q)

) = δ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(
z(Q)
1

)

σ
(
z(Q)
2

)

σ
(
z(Q)
3

)

...

σ
(
z(Q)
Nq

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δσ
(
z(Q)
1

)

δσ
(
z(Q)
2

)

δσ
(
z(Q)
3

)

...

δσ
(
z(Q)
Nq

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ'
(
z(Q)
1

)
δz(Q)

1

σ'
(
z(Q)
2

)
δz(Q)

2

σ'
(
z(Q)
3

)
δz(Q)

3

...

σ'
(
z(Q)
Nq

)
δz(Q)

Nq

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ'
(
z(Q)
1

)
0 0 ... 0

0 σ'
(
z(Q)
2

)
0 ... 0

...
...

...
. . .

...

0 0 0 ... σ'
(
z(Q)
Nq

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

δz(Q)
1

δz(Q)
2

...

δz(Q)
Nq

⎤

⎥⎥⎥⎥⎥⎥⎦

. = σ' (z(Q)
)
δz(Q) = Fz(Q)

(
h(Q)

)
δz(Q), (15.62) 

where.σ' (z(Q)
)
is.

]
NQ × NQ

]
diagonal matrix formed by the derivatives of function 

. σ (z) :
.σ' (z(Q)

) = diag
[
σ'

(
z(Q)
i

)]
. (15.63) 

Note that, for a sigmoidal function, its derivative is equal to: 

.σ' (z) = b (1 − σ (z)) σ (z) . (15.64) 

Thus, from Eq. (15.63) we have  

.σ' (z(Q)
) = bdiag

[(
1 − σ

(
z(Q)
i

))
σ

(
z(Q)
i

)]
. (15.65) 

Substituting Eqs. (15.60) and (15.61) back into formula (15.58), we arrive at the 
following equation: 

.Fz(Q) (ϕ) = Fh(Q) (ϕ)Fz(Q)

(
h(Q)

) = 2
(
h(Q)− ytr

)
σ' (z(Q)

)
, (15.66) 

where.Fz(Q) (ϕ) is .[1 × N ] matrix-row of the Fréchet derivative of functional . ϕ with 
respect to the input of the . Qth neuron layer, .z(Q).
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However, we need to find the Fréchet derivatives .Fz(q) (ϕ) with respect to the 
inputs to every hidden layer. q. In order to solve this problem, we again use the chain 
rule according to formula (15.58): 

.Fz(q) (ϕ) = Fz(q+1) (ϕ) Fz(q)

(
z(q+1)

)
, (15.67) 

where .Fz(q+1) (ϕ) is .
]
1 × Nq+1

]
matrix of derivatives of the misfit functional with 

respect to.z(q+1), and.Fz(q)

(
z(q+1)

)
denotes.

]
Nq+1 × Nq

]
matrix of Fréchet derivative 

of .z(q+1) with respect to . z(q).

At the same time, according to (15.22) 

.z(q+1) = w(q+1)σ
(
z(q)

) + b(q+1). (15.68) 

Therefore, using (15.61), we can write: 

.Fz(q)

(
z(q+1)

) = w(q+1)Fz(q)

]
σ

(
z(q)

)] = w(q+1)σ' (z(q)
)
, (15.69) 

where .σ' (z(q)
)
is the diagonal matrix of the Fréchet derivatives of the activation 

function .σ
(
z(Q)

)
, defined in Eq. (15.63) above. 

Substituting (15.69) into (15.67) we have:  

.Fz(q) (ϕ) = Fz(q+1) (ϕ)w(q+1)σ' (z(q)
)
. (15.70) 

Formula (15.70) shows that Fréchet derivative matrix of the misfit functional 
with respect to the input variables at the . qth neuron layer, an .

]
1 × Nq

]
matrix-row 

.Fz(q) (ϕ) , is related to similar matrix at the .(q + 1)th neuron layer, an . 
]
1 × Nq+1

]

vector-row.Fz(q+1) (ϕ) , by simple multiplication with the corresponding. 
]
Nq+1 × Nq

]

matrix of weights.w(q+1), and diagonal.
]
Nq × Nq

]
matrix of the derivative of the acti-

vation function,.σ' (z(q)
)
. One can quickly check that the dimensions of all matrices 

and their product in formula (15.70) are consistent: 

. 
]
1 × Nq

] = ]
1 × Nq+1

] · ]
Nq+1 × Nq

] · ]
Nq × Nq

]
.

Note that we have already found the expression of the Fréchet derivative at the output 
neuron layer: 

.Fz(Q) (ϕ) = 2
(
h(Q)− ytr

)
σ' (z(Q)

)
. (15.71) 

Thus, Eqs. (15.70) and (15.71) provide a recursive method to find .Fz(q) for any . q
by propagating the solutions backward from the last neuron layer of the network: 
. q = Q, Q − 1, Q − 2, ...., 2, 1.

Descent conditions (15.50), however, require that the variations of the misfit func-
tional, .ϕ, with respect to weights, .w(q), and biases, .b(q), must be negative. We will 
demonstrate, using the chain rule, that these variations can be calculated based on 
the known Fréchet derivatives with respect to inputs, .z(q).
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Indeed, we can write the expressions for the variations of the misfit functional 
with respect to the weights and biases as a product of .

]
1 × Nq

]
vector-row. Fz(q) (ϕ)

and vector–columns .δw(q)z(q) and .δb(q)z(q) of the variations of the inputs: 

. δw(q)ϕ = Fz(q) (ϕ) δw(q)z(q),

.δb(q)ϕ = Fz(q) (ϕ) δb(q)z(q), (15.72) 

where, according to (15.22): 

.z(q) = w(q)h(q−1) + b(q). (15.73) 

Applying the variation operators.δw(q) and.δb(q) to Eq. (15.73), we obtain at once that 

. δw(q)z(q) = δw(q)h(q−1),

.δb(q)z(q) = δb(q). (15.74) 

Substituting Eq. (15.74) into (15.72), we have: 

.δw(q)ϕ = Fz(q) (ϕ) δw(q)h(q−1), (15.75) 

.δb(q)ϕ = Fz(q) (ϕ) δb(q). (15.76) 

In the last formula, .δw(q) is .
]
Nq × Nq−1

]
matrix formed by the variations of the 

corresponding weights: 

.δw(q) =

⎡

⎢⎢⎢⎢⎣

δw
(q)

11 δw
(q)

12 ... δw
(q)

1Nq−1

δw
(q)

21 δw
(q)

22 ... δw
(q)

2Nq−1

...
...

. . .
...

δw
(q)

Nq1 δw
(q)

Nq2 ... δw
(q)

Nq Nq−1

⎤

⎥⎥⎥⎥⎦
. (15.77) 

Vector column.h(q−1) has a dimension of.
]
Nq−1 × 1

]
. Therefore, the misfit func-

tional variation, .δw(q)ϕ, is a scalar (matrix with one cell): 

. [1 × 1] = ]
1 × Nq

] · ]
Nq × Nq−1

] · ]
Nq−1 × 1

]
.

Our goal is to find the variations of the weights, .δw(q), which would guarantee 
the descent conditions (15.50). 

.δw(q)ϕ
(
w(1), ..,w(Q)

)
< 0; q = 1, 2, ..., Q. (15.78)
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With this goal in mind, we can rewrite formula (15.76) using the identity (15.28): 

.δw(q)ϕ = Fz(q) (ϕ) δw(q)h(q−1) = Fz(q) (ϕ)H(q−1)δW(q), (15.79) 

where matrix .H(q−1) is a rectangular .
]
Nq × (

Nq−1Nq
)]

matrix, 

.H(q−1) =

⎡

⎢⎢⎢⎣

h(q−1)T 0 ... 0
0 h(q−1)T ... 0
...

...
. . .

...

0 0 ... h(q−1)T

⎤

⎥⎥⎥⎦ , (15.80) 

and vector-column.δW(q) has the length of . 
(
Nq−1Nq

) :

.W(q) =
[
w

(q)

11 ... w
(q)

1Nq−1
w

(q)

21 ... w
(q)

2Nq−1
w

(q)

Nq1 ... w
(q)

Nq Nq−1

]T
. (15.81) 

Following the standard logic of the steepest descent method (Chap. 7), in order 
to satisfy the descent condition (15.78), we select the perturbation of weights as 
follows: 

.δW(q) = −kW(q) lW(q) = −kW(q)

(
Fz(q) (ϕ)H(q−1)

)T
, (15.82) 

where .kW(q) is some positive real number (length of a step) and .lW(q) is a . 
]
Nq × 1

]

vector-column defining the direction of the steepest ascent of the misfit functional: 

.lW(q) = (
Fz(q) (ϕ)H(q−1)

)T
. (15.83) 

Using notations (15.83), Eq. (15.79) for the variation of the misfit functional can 
be written as follows: 

.δw(q)ϕ = Fz(q) (ϕ) δw(q)h(q−1) = lTW(q)δW(q), (15.84) 

Finally, substituting Eq. (15.82) for .δW(q) into (15.84), we have 

.δw(q)ϕ = −kW(q) lTW(q) lW(q) = −kW(q) ||lW(q)||2 < 0. (15.85) 

We can see that.lW(q) describes the “direction” of increasing (ascent) of the functional 
. ϕ, because it is opposite to the descent direction,. δW(q). 

We can also find the directions of steepest ascent with respect to the biases. Indeed, 
the first variation of the misfit functional with respect to biases is equal: 

.δb(q)ϕ = Fz(q) (ϕ) δb(q). (15.86)
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According to descent condition (15.50) for biases, we select the perturbation of 
.b(q) as follows: 

.δb(q) = −kb(q) lb(q) = −kb(q) (Fz(q) (ϕ))T , (15.87) 

where .kb(q) is some positive real number (length of a step) and .Fz(q) (ϕ) is . [1 × N ]
matrix-row of the Fréchet derivative of functional . ϕ with respect to the input of the 
. qth hidden neuron layer, . z(q).

.lb(q) is a vector-column of the steepest ascent of the misfit functional, equal to 
the transposed Fréchet derivative matrix with respect to the inputs to the . qth hidden 
layer of the network: 

.lb(q) = (Fz(q) (ϕ))T . (15.88) 

Using notations (15.88), Eq. (15.86) for the variation of the misfit functional can 
be written as follows: 

.δb(q)ϕ = Fz(q) (ϕ) δb(q) = lTb(q)δb(q), (15.89) 

By substituting Eq. (15.87) into (15.89), we have 

.δb(q)ϕ = −kb(q) lTb(q) lb(q) = −kW(q) ||lb(q)||2 < 0. (15.90) 

Thus,.lb(q) describes the “direction” of increasing (ascent) of the functional. ϕ, because 
it is opposite to the descent direction,. δb(q). 

15.3.4 Backpropagation Algorithm 

Let us summarize the main operations applied on every iteration step, . n, of the  
steepest descent method based on the backpropagation algorithm. 

1. Feedforward propagation. Apply the training set.xtr to the network and feed-
forward through all neuron layers to find the activations of all hidden neuron layers 
using formulas (15.21): 

. h(0)
n = xtr ;

. h(1)
n = σ

(
z(1)
n

)
, z(1)

n = w(1)
n h(0)

n + b(1)
n ,

. h(2)
n = σ

(
z(2)
n

)
, z(2)

n = w(2)
n h(1)

n + b(2)
n ,

. ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::,

. h(Q)
n = σ(z(Q)

n ), z(Q)
n = w(Q)

n h(Q−1)
n + b(Q)

n ,

. M
(
xtr ;Wn, Bn

) = h(Q)
n , (15.91)



300 15 Machine Learning in the Context of Inversion Theory

where index . n denotes the parameters of the network (inputs, outputs, weights and 
biases) at the current iteration of the steepest descent method. 

2. Output residual. Calculate the residuals between the output of the network 
and the training sample, . ytr :

.rn = M
(
xtr ;Wn, Bn

) − ytr = h(Q)
n − ytr . (15.92) 

3. Output Fréchet derivative calculations. Calculate the Fréchet derivative 
.Fz(Q)

n
(ϕ) of the misfit functional with respect to the input to the last hidden layer 

. Q: 

.Fz(Q)
n

(ϕ) = 2
(
h(Q)
n − ytr

)
σ' (z(Q)

n

) = 2rnσ' (z(Q)
n

)
. (15.93) 

4. Backpropagation of the Fréchet derivatives. Calculate the Fréchet derivatives 
.Fz(q)

n
(ϕ) of the misfit functional with respect to the input to each hidden layer . q by 

backpropagation formula: 

.Fz(q)
n

(ϕ) = Fz(q+1)
n

(ϕ)w(q+1)
n σ' (z(q)

n

)
. (15.94) 

5. Evaluation of the steepest descent directions (gradients). The steepest 
descent directions of the misfit functional are given by the following formulas: 

.lW(q)
n

=
(
Fz(q)

n
(ϕ)H(q−1)

n

)T
, (15.95) 

.lb(q)
n

=
(
Fz(q)

n
(ϕ)

)T
. (15.96) 

6. Updating the weights and biases using the steepest descent method. The  
parameters of the neural network are updated according to the following formulas: 

. W(q)

n+1 = W(q)
n + δW(q)

n = W(q)
n − kW(q)

n
lW(q)

n
,

.b(q)

n+1 = b(q)
n + δb(q)

n = b(q)
n − kb(q)

n
lb(q)

n
, (15.97) 

where the iteration steps (learning rates), .kW(q)
n
and.kb(q)

n
, are defined by a line search 

according to the conditions: 

. ϕ(w(q)

n+1) = ϕ
(
w(q)

n − kW(q)
n
lα(w(q)

n )
)

= Φα
wn

(kW(q)
n

) = min,

.ϕ(b(q)

n+1) = ϕ
(
b(q)
n − kb(q)

n
lα(b(q)

n )
)

= Φα
bn (kb(q)

n
) = min . (15.98)
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The iterative process described above is terminated at .n = N when the misfit 
functional reaches the given level of error . ε0 :

.ϕ(
(
xtr ;Wn, Bn

)
) ≤ ε0. (15.99) 

15.3.5 Regularized Steepest Descent Method of Deep Neural 
Network Training 

We can now return to the problem of regularized network training based on mini-
mization of the parametric functional (15.35), which we copy here for convenience: 

.Pα (W, B) = ϕ (W, B) + αSMN (W, B) = min, (15.100) 

where 
.ϕ (W, B) = ||||M

(
xtr ;W, B

) − ytr
||||2
ENQ

, (15.101) 

and .SMN is the minimum norm stabilizer, 

.SMN (W, B) = 1

2

Q∑

q=1

[
||w(q)||2F + ||b(q)||2Eq

]
. (15.102) 

Using matrix notations, we can present the parametric functional in the form 
similar to Eq. (15.49) for the misfit functional: 

. Pα (W, B) = (
h(Q)− ytr

)T (
h(Q)− ytr

) +

. + α
1

2

Q∑

q=1

]
W(q)TW(q) + b(q)Tb

] = min . (15.103) 

Following a standard logic of the gradient-type optimization methods, let us cal-
culate the first variation of the parametric functional (15.103): 

.δW(q) Pα (W, B) = δW(q)ϕ (W, B) + αW(q)T δW(q), (15.104) 

.δb(q) Pα (W, B) = δb(q)ϕ (W, B) + αb(q)T δb(q) (15.105) 

We have found already the expressions (15.84) and (15.89) for the variations of 
the misfit functional:
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.δW(q)ϕ = Fz(q) (ϕ)H(q−1)δW(q) = lTW(q)δW(q) (15.106) 

.δb(q)ϕ = Fz(q) (ϕ) δb(q) = lTb(q)δb(q), (15.107) 

where 
.lW(q) = (

Fz(q) (ϕ)H(q−1)
)T ; lb(q) = (Fz(q) (ϕ))T (15.108) 

Substituting these expressions into (15.104) and (15.105), we obtain: 

. δW(q) Pα (W, B) = lTW(q)δW(q) + αW(q)T δW(q) =

. = (
lW(q) + αW(q)

)T
δW(q), (15.109) 

and 
. δb(q) Pα (W, B) = lTb(q)δb(q) + αb(q)T δb(q)

. = (
lb(q) + αb(q)

)T
δb(q) (15.110) 

From the last formulas we obtain at once the expressions for the regularized 
steepest ascent directions: 

.lαW(q) = lW(q) + αW(q), (15.111) 

and 
.lαb(q) = lb(q) + αb(q). (15.112) 

Substituting formulas (15.111) and (15.112) back into (15.109) and (15.110), we 
have: 

. δW(q) Pα (W) = lαTW(q)δW(q),

.δb(q) Pα (W) = lαTb(q)δb(q). (15.113) 

All the standard principles of the regularized inversion are applied in this case. 
Indeed, following the general scheme of the steepest descent method, we can 

select 
.δW(q) = −kα

WlαW(q) , δb(q) = −kα
b l

α
b(q) , (15.114) 

where.kα
W and.kα

b are some positive real numbers (step lengths). Substituting (15.114) 
into (15.113), we can see that 

. δW(q) Pα (W) = −kα
WlαTW(q) lαW(q) = −kα

W

||||lαW(q)

||||2
< 0,

.δb(q) Pα (W) = −kα
b l

αT
b(q) lαb(q) = −kα

b

||||lαb(q)

||||2
< 0. (15.115)
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The iterative process of the method is constructed according to formulas 

. W(q)

n+1 = W(q)
n + δW(q) = W(q)

n − kα
WlαW(q) ,

.b(q)

n+1 = b(q)
n + δb(q) = b(q)

n − kα
b l

α
b(q) , (15.116) 

where the coefficients .kα
W and .kα

b are defined by the line search method. 
The described method represents a conventional steepest descent algorithm of the 

parametric functional minimization. As was discussed in the previous chapters of 
the book, the more efficient Newton and/or conjugate-gradient methods can be used 
to solve the minimization problem. 

Thus, training of the DNN, or finding the optimal weights of the DNN is reduced 
to the application of the standard methods of the regularized inversion. 

15.4 Convolution Neural Network 

In some applications, it is convenient to include a convolution operator in the con-
struction of neural network; Schuster (2023). This concept was originally introduced 
to improve the performance of machine learning algorithms in solving computer 
vision problems. The idea is that the data representing the visual images are usually 
behave smoothly, so that there is some sort of similarity in the values of neighbor-
ing pixels of the images. The same can be applied to all types of the data used in 
geophysical, medical and other applications. Therefore, instead of operating with 
a single-point data, we can use as input signal in the neural layer of the ANN the 
convolution of the data within a specific digital window. For example we can write 
formula (15.8) as follows:  

.z(1)
j =

M∑

k=1

w
(1)
jk ∗ xk + w

(1)
j0 , (15.117) 

where symbol “. ∗” denotes a convolution operator: 

.w
(1)
jk ∗ xk =

P−1∑

p=1

w
(1)
j p xk−p, (15.118) 

and .P is the size of digital window used in the convolution process. 
Therefore, the output from the first hidden layer (formula (15.10)) will take the 

form: 

.h(1)
j = σ

(
z(1)
j

)
= σ

(
M∑

k=1

w
(1)
jk ∗ xk + w

(1)
j0

)
, j = 1, 2, ...L . (15.119)
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In a general case of multilayer convolution neural network (CNN) the transition from 
the.(q − 1)th hidden neuron layer to the. qth hidden layer can be described as follows: 

.h(q) = σ
(
z(q)

)
, z(q) = w(q) ∗ h(q−1) + b(q). (15.120) 

Thus, all the expressions derived above for a conventional ANN can be easily applied 
to the CNN by using the convolution operation. Considering that this operation is a 
linear one, it is easy to show that the training of the CNN can be, in general, described 
by the same algorithms we discussed above for the conventional ANN. 
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Chapter 16 
Machine Learning Inversion 
of Multiphysics Data 

Abstract In this Chapter, we discuss the application of machine learning methods 
to the solution of the inverse problem. Considering that machine learning algorithms 
do not require the knowledge of the function or operator they approximate, one can 
apply the neural network operator to determine the regularized solution of the inverse 
problem. This operator is called a regularizing neural network operator, and the cor-
responding network is the regularizing neural network (RNN). This chapter presents 
the methods of constructing the RNN algorithms using different types of stabilizing 
functionals introduced in the previous chapters of the book. We also introduce the 
concept of a knowledge-based neural network. It is based on the ability of the neural 
network to accurately approximate any mathematical or physical law represented by 
the forward modeling operator. Thus, a knowledge-based neural network provides 
a solution based on a priori knowledge about the laws governing the relationships 
between the model and data. The methods of joint inversion of multiphysics data 
using a regularizing neural network (RNN) are also considered. 

Keywords Neural network operator · Regularizing neural network ·
Knowledge-based neural network 

16.1 Approximation of the Regularizing Operator of the 
Inverse Problem by the Neural Network Operator 

We consider now the classical inverse problem introduced in Chap. 1: 

.d = A(m), (16.1) 

where.m represents a model characterizing the structure and properties of the target, 
and . d denotes the observed data. We also assume, as usual, that linear or nonlinear 
forward modeling operator,. A, is known and defined by physical and/or mathematical 
laws that relate the given model to the observed data. 
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In a general case, inverse problem (16.1) is ill posed, which means that the solution 
may not exist or be nonunique and/or unstable. The regularized solution, ..mα , of the 
ill-posed inverse problem (16.1) can be found by solving a family of well-posed 
problems: 

.mα = A−1
α (d) = R(d,α) → mt , if α → 0, (16.2) 

where regularizing operator .R(d,α)is unknown. 
The convenience of machine learning algorithms is that they do not require the 

knowledge of the function or operator they approximate. Instead, they are based 
on the known pairs of vectors, representing the data, ..dtr= (dtr

1 , dtr
2 , ...., dtr

M )T , and 
models, .mtr= (mtr

1 ,mtr
2 , ....,mtr

N )T , generating these data 
According to the Universal Approximation Theorem, there always exists a neural 

network operator, ..Nα (d,W,B), which approximates the regularizing operator with 
the given accuracy . ε: 

. ||Nα (d,W,B) − R(d,α)||∞ ≤ ε. (16.3) 

We call operator .Nα (d,W,B) a regularizing neural network operator, and the 
corresponding network the regularizing neural network (RNN). The RNN operator 
provides a regularized solution of the original inverse problem (16.1): 

.mα = Nα (d,W,B) . (16.4) 

The question is how to find the weights, .W, and biases, . B, of the RNN operator, 
..Nα (d,W,B). 

The general principles of solving this problem are the same as discussed above for 
the artificial neural network. However, the stabilizing term in Eq. (15.37) is different. 
Instead of imposing some conditions on the weights and biases, we use the stabilizing 
functional based on the desired property of the inverse problem solution, . m. 

We write the corresponding parametric functional,..Pα
RNN (W,B), in the following 

form: 

.Pα
RNN (W,B) = ϕ (W,B) + αSRNN (W,B), (16.5) 

where .ϕ (W,B) is the misfit functional defined as the square of the corresponding 
least-square norm of the difference between the predicted models, 

.m = Nα

(
dtr ,W,B

)
, (16.6) 

and the training sample model, .mtr : 

.ϕ (W,B) = ||||m − mtr
||||2
L2

= ||||Nα

(
dtr ,W,B

) − mtr
||||2
L2

, (16.7) 

where .||...||L2
is the .L2 norm.
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In order to define the stabilizing term .SRNN (W,B), we recall the family of sta-
bilizing functionals for model parameters, introduced in Chap. 4. To simplify the 
notations, we reproduce here the expressions for these functionals assuming that 
the model parameters are described by some function, ..m (r), defined over the target 
domain, .. V . This function can always be discretized or parameterized, when we use 
these stabilizers in the construction of the regularized neural network operator. 

The following stabilizers can be used, for example, to impose an additional con-
straint on the behavior of the model parameters. 

1. Stabilizer based on the minimum norm of the difference between the selected 
model and some a priori model .mapr : 

.SMN (m) = ||||m − mapr

||||2
L2

= min . (16.8) 

The corresponding RNN stabilizer can be obtained by substituting the neural 
network operator .Nα (d,W,B) into (16.8): 

. SMN (W,B) = SMN (m)

. = SMN [Nα (d,W,B)] = ||||Nα (d,W,B) − mapr

||||2
L2

. (16.9) 

Note that, in a general case, we can use all available data, . d, in calculations of the 
stabilizing functional. In contrast, we use only the training set of data, ..dtr , for misfit 
functional calculations. 

2. Maximum smoothness stabilizing functional: 

. Smax sm (m) = ||∇m||2L2
= (∇m,∇m)L2

=

.

 

V
|∇m (r)|2 dv = min . (16.10) 

We construct the related RNN stabilizer by substituting the neural network operator 
.Nα (d,W,B) into (16.10): 

. SRNN ,max sm(W,B) = Smax sm (m)

. = Smax sm [Nα (d,W,B)] = ||∇Nα (d,W,B)||2L2
. (16.11) 

3. By using the .L p norm stabilizer, 

.SL p (m) = ||m||p
L p

=
 

V
|m (r)|p dv, 0 ≤ p < ∞, (16.12)
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we arrive at .L p norm RNN stabilizer: 

.SRNN ,L p (W,B) = SL p (m) = SL p [Nα (d,W,B)] = ||Nα (d,W,B)||p
L p

. (16.13) 

4. The minimum support RNN stabilizing functional is determined as follows: 

.SRNN ,MS(W,B) = SMS (m) = SMS [Nα (d,W,B)] , (16.14) 

where 

.SMS (m) =
 

V

(
m − mapr

)2
(
m − mapr

)2 + β2
dv. (16.15) 

5. The minimum gradient support RNN functional is given by the following 
expressions: 

.SRNN ,MGS(W,B) = SMGS (m) = SMGS [Nα (d,W,B)] , (16.16) 

where 

.SMGS (m) =
 

V

∇m · ∇m

∇m · ∇m + β2
dv. (16.17) 

We can extend this list by including all other stabilizing functions discussed in 
the previous chapters. 

Thus, the weights and biases, ..Wtr ,Btr , of the trained RNN operator . 

.Nα

(
d,Wtr ,Btr

)
can be found by minimizing the parametric functional (16.5): 

. Pα
RNN (W,B) = ||||Nα

(
dtr ,W,B

) − mtr
||||2 + αS∗ [Nα (d,W,B)] = min,

(16.18) 
where .S∗ stands for any functional from the family of stabilizing functionals 

considered in this book. 
The minimization problem (16.18) can be solved by applying the same gradient-

type methods and backpropagation algorithm we introduced before in Chap. 15 for 
the regularized neural network training. The only difference is that in Sect. 15.3.5 we 
applied the stabilizing functional to the weights and biases, while in solving inverse 
problem (16.1) we can apply the stabilizing functionals to the model parameters, 
produced by the neural network during the training process according to formula 
(16.6). 

After training, the regularizing neural network operator .Nα

(
d,Wtr ,Btr

)
can be 

applied to the observed data, . d, to generate the regularized solution of the inverse 
problem (16.1): 

.mα = Nα

(
d,Wtr ,Btr

)
. (16.19)
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16.2 Knowledge-Based Neural Network 

In the previous section, we described the machine learning inversion method based 
on neural network approximation of the inverse operator..A−1(d). This approach does 
not require the knowledge of the forward operator, .A(m). However, in the majority 
of inverse problems, this operator is known. Therefore, using this knowledge in 
constructing the corresponding machine learning algorithm for solving the inverse 
problem can be advantageous. In this section, we present an algorithm based on 
this approach. We call this approach a knowledge-based neural network by analogy 
with the physics-informed neural networks introduced in Raissiet al. (2019), and 
Karniadakis et al. (2021), see also Schuster (2023). 

The cited papers introduced the concept of physics-informed neural networks, 
which are trained by taking into account the known laws of physics. This is achieved 
by employing deep neural networks capable of solving the partial differential equa-
tions describing the corresponding laws of physics. 

I present here an approach to solving the same problem of incorporating the laws 
of physics and mathematics in the machine learning algorithm based on the ability 
of the neural network to accurately approximate any mathematical or physical law, 
represented by the forward modeling operator, . A. It is important to note that, in the 
knowledge-based neural network framework, we explicitly use the corresponding 
mathematical or physical law, represented by operator . A, in the machine learning 
algorithm. 

To illustrate this approach, let us consider the classical inverse problem again, 

.d = A(m), (16.20) 

where .A is the forward modeling operator, . d are the observed data, and .m is the 
distribution of the model parameters on the plane or in the 3D volume, . V , described 
by the following continuous function: 

.m = m (r) , r ∈V, (16.21) 

where . r is a radius-vector of the observation point in some Carthesian coordinate 
system. 

According to the Universal Approximation Theorem discussed above, there exists 
a feedforward neural network that approximates .m (r) with a given accuracy . ε: 

. ||Nm (r,W,B) − m (r)||∞ < ε, (16.22) 

where .Nm (r,W,B) is the corresponding neural network operator. 
In other words, for the purpose of solving inverse problem (16.20), we can repre-

sent the model parameters distribution as follows: 

.m (r) = Nm (r,W,B) . (16.23)



310 16 Machine Learning Inversion of Multiphysics Data

Following the classical principles of the regularization theory, we reduce the solution 
of the inverse problem to minimization of the corresponding parametric functional: 

.Pα (m) = ϕ (m) + αS(m) = min, (16.24) 

where .ϕ (m) is a conventional misfit functional between the observed and predicted 
data, 

.ϕ (m) = ||A (m) −d||2L2
= ||A (Nm (r,W,B))−d||2L2

, (16.25) 

and .S(m) is a properly selected stabilizing functional. 
We can substitute now neural network representation (16.23) into (16.24): 

.Pα (Nm (r,W,B)) = ϕ (Nm (r,W,B)) + αS(Nm (r,W,B)) = min . (16.26) 

To simplify the further discussion, we introduce the following notations: 

. Pα
N (W,B) = Pα (Nm (r,W,B)) ,

. ϕN (W,B) = ϕ (Nm (r,W,B)) = ||A (Nm (r,W,B))−d||2L2
,

. SN (W,B) = S (Nm (r,W,B)) . (16.27) 

Using these notations, expression (16.26) can be written in the following equivalent 
form: 

.Pα
N (W,B) = ϕN (W,B) + αSN (W,B) = min . (16.28) 

Thus, the inverse problem is reduced to finding the optimal weights and biases of the 
corresponding neural network. This can be done by applying the proper optimization 
algorithms, introduced in Chaps. 6 and 7, to the solution of Eq. (16.28). 

After solving this problem, the corresponding model can be found from 
Eq. (16.23). 

We can see from expressions (16.25) and (16.27) that calculation of the parametric 
functional.Pα

N (W,B) involves the application of the corresponding mathematical or 
physical laws, represented by operator . A, to the model, generated by the neural 
network..m (r) = Nm (r,W,B). In other words, in the process of finding the optimal 
weights and biases of the knowledge-based neural network, we explicitly use our 
knowledge about related laws. 

The advantage of using the knowledge-based neural network over regularizing 
neural network (RNN) is that the former explicitly depends on the known forward 
modeling operator,. A, while the latter finds the regularizing inverse operator,.R(d,α), 
without any assumption about the mathematical or physical laws governing the solu-
tion of the forward problem. Simply stated, a knowledge-based neural network pro-
vides a solution based on a priori knowledge about the laws governing the relation-
ships between the model and data, while the application of the RNN can be treated 
as an intuition-based solution.
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16.3 Joint Inversion of Multiphysics Data Using 
Regularizing Neural Network (RNN) 

We can extend the application of the RNN and machine learning algorithms to joint 
inversion of multiphysics data. 

Let us consider the multiphysics inverse problem described by the following 
system of operator equations: 

.d(i) = A(i)(m(i)), i = 1, 2, ..., n, (16.29) 

where in a general case, .A(i) are nonlinear operators, .d(i)
.(i = 1, 2, ..., n) are dif-

ferent observed data sets, and .m(i)
.(i = 1, 2, ..., n) are the unknown sets of model 

parameters. For simplicity, we assume that both the observed data and the model 
parameters are dimensionless, which could be easily done by applying the corre-
sponding weights (see Chap. 8). 

We consider . n regularizing neural networks with the corresponding RNN oper-
ators, ..N(i)

(
d(i),W(i),B(i)

)
, which can be used to transform the observed data into 

the corresponding model parameters: 

.m(i)= N(i)
(
d(i),W(i),B(i)

)
, i = 1, 2, ..., n. (16.30) 

We also assume that we have . n sets of pairs of vectors, representing the data, 
..dtr(i)= (dtr(i)

1 , dtr(i)
2 , ...., dtr(i)

M )T , and models, .mtr(i)= (mtr(i)
1 ,mtr(i)

2 , ....,mtr(i)
N )T , 

generating these data, which can be used for training the RNN operators . 
.N(i)

(
d(i),W(i),B(i)

)
,.. (i = 1, 2, ...n). 

The training process can be represented as a minimization of the following joint 
parametric functional: 

. Pα(W(1), ...,W(n);B(1), ...,B(n)) =

. =
n∑

i=1

||||N(i)
(
dtr(i),W(i),B(i)

) − mtr(i)
||||2 + αc1

n∑

i=1

S(i)
∗

[
N(i)

(
d(i),W(i),B(i)

)]

. + αc2SJ∗
[
N(1)

(
d(1),W(1),B(1)

)
, ...,N(n)

(
d(n),W(n),B(n)

)] = min, (16.31) 

where. α is the regularization parameter, and.c1 and.c2 are the weighting coefficients 
determining the weights of the different stabilizers in the parametric functional. 

The terms.S(i)∗ are the stabilizing functionals, based on minimum norm, minimum 
support, and minimum gradient support constraints, respectively, defined above in 
Eqs. (16.9), (16.14) and (16.16). The term.SJ∗ is the joint stabilizing functional, which 
can be represented by joint structural, focusing, entropy, or Gramian stabilizers, 
discussed in Chaps. 9, 10, 11, and 12, respectively. It is also important to note that, in 
expression (16.31), the misfit functionals between the predicted and known models
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are calculated for the training sets, .dtr(i) and ..mtr(i), only. At the same time, the 
stabilizing functionals are applied to all models produced by the corresponding neural 
network operators, ..N(i)

(
d(i),W(i),B(i)

)
, for all available data, ..d(i), i = 1, 2, ....n. 

The training process is now reduced to minimization of the joint parametric func-
tional (16.31). This problem can be solved using the technique discussed above in 
Chap. 15. After the training of the neural networks.N(i)

(
d(i),W(i),B(i)

)
is completed, 

the solution of the inverse problem can be found by application of these networks to 
the observed data using formulas (16.30). 

16.4 Joint Inversion of Multiphysics Data Using 
Knowledge-Based Neural Network 

In this section, I describe the technique of joint inversion of multiphysics data based 
on a synthesis of neural network and forward modeling operators. We consider 
again the multiphysics inverse problem given by the system of operator Eq. (16.29). 
According to the Universal Approximation Theorem, there exist the correspond-
ing neural network operators, ..N(i)

m (r,W,B), approximating .m(i) (r) with a given  
accuracy . ε: 

.

||||N(i)
m (r,W,B) − m(i) (r)

||||∞ < ε, i = 1, 2, ..., n; (16.32) 

or 
.m(i) (r) ≈ N(i)

m

(
r,W(i),B(i)

)
, i = 1, 2, ..., n. (16.33) 

The solution of the multiphysics inverse problem (16.29) is equivalent to the mini-
mization of the corresponding parametric functional: 

. Pα(W(1), ...,W(n);B(1), ...,B(n)) =

. =
n∑

i=1

||||A
[
N(i)

m

(
r,W(i),B(i)

)] − d(i)
||||2
L2

+ αc1

n∑

i=1

S∗
[
N(i)

m

(
r,W(i),B(i)

)]

. + αc2SJ∗
[
N(1)
m

(
r,W(1),B(1)

)
,N(2)

m

(
r,W(2),B(2)

)
, ....N

(n)

m

(
r,W(n),B(n)

)]
= min,

(16.34) 
where. α is the regularization parameter, and.c1 and.c2 are the weighting coefficients 
determining the weights of the different stabilizers in the parametric functional. As 
above, the terms.S(i)∗ are the stabilizing functionals, based on minimum norm, mini-
mum support, or minimum gradient support constraints, respectively, defined above 
in Eqs. (16.9), (16.14) and (16.16). The term .SJ∗ is the joint stabilizing functional 
(joint structural, focusing, entropy, or Gramian stabilizers).
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One can see that in the framework of this approach, neural network operators, 
..N(i)

m (r,W,B), serve as the parameterization of the corresponding model functions 
..m(i) (r). Thus, in the case of multiphysics inversion, the inverse problem is also 
reduced to finding the optimal weights and biases of the corresponding neural net-
works. This can be achieved by using the backpropagation algorithm described in 
Chap. 15. 

The principle difference between minimization problems (16.34) and (16.31) can 
be described as follows. In case of joint inversion based on a regularizing neural 
network (RNN) (Eq. (16.31)), we do not use any knowledge about a specific form 
of the forward modeling operators. In other words, RNN does not use the laws of 
physics but finds the inverse problem solution based on the training sets only. This 
is what I call an intuition-based solution. At the same time, joint inversion based on 
forward modeling operators (Eq. (16.34)) employs the corresponding laws of physics 
in the framework of the machine learning algorithm (a knowledge-based solution). 
This approach seems more attractive for the following reasons. First, it explicitly uses 
the known forward modeling operator, while RNN has to approximate the inverse 
operator, which may require more intense computations. Second, the knowledge of 
the specific form of the forward modeling operator imposes additional constraints 
on the solution, making it more robust. 

16.5 Approximation of the Joint Stabilizing Functional 
by the Neural Network Operator 

Another approach to joint inversion is based on the approximation of the joint sta-
bilizing functional by the neural network operator. The idea is that we can use the 
neural network to enforce some relationships between the different model parameters 
without a priori knowledge about the specific form of these relationships. 

Let us consider for simplicity the joint inverse problem for two model parameters, 
.m(1) and .m(2): 

.d(1) = A(1)(m(1)), d(2) = A(2)(m(2)). (16.35) 

We assume that there may exist some relationship between .m(1) and .m(2) described 
by a continuous operator, . Φ: 

.m(2) = Φ
(
m(1)

)
. (16.36) 

We can represent Eq. (16.36) in the form similar to Eq. (8.6) of Chap. 8: 

.C(m(1),m(2)) = Φ
(
m(1)

) − m(2) = 0, (16.37) 

where operator ..C(m(1),m(2)), in a general case, is some unknown operator defined 
on a set of functions .m(1) and .m(2).
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In Chap. 8, we developed a method of joint inversion under the assumption that 
operator.C(m(1),m(2))was known and could be given in an explicit form. However, in 
practical applications, the specific form of this operator is usually unknown. One way 
to overcome this difficulty is to find the neural network operator, which approximates 
operator ..Φ

(
m(1)

)
, and therefore .C(m(1),m(2)) the best. 

With this goal in mind, let us assume that we know pairs of vectors (the training 
set) representing these two model sets, .mtr(1) and .mtr(2), which correspond to the 
same target (e.g., density and conductivity of the same body). 

According to the Universal Approximation Theorem, we can introduce a neural 
network operator,..NΦ

(
m(1),WJ ,BJ

)
, which approximates the continuous operator, 

.Φ with the given accuracy . ε: 

. 

||
||NΦ

(
m(1),WJ ,BJ

) − Φ
(
m(1)

)||||∞ = ||
||NΦ

(
m(1),WJ ,BJ

) − m(2)
||
||∞ ≤ ε.

(16.38) 
We can apply the regularized neural network training algorithm described in 

Sect. 15.3.5 of Chap. 15, and determine the weights and biases ..WJ ,BJ , of the . NΦ

operator using the training set .mtr(1) and ..mtr(2). 
The joint inverse problem for two model parameters, .m(1) and ..m(2), can be now 

reformulated as a minimization of the following joint parametric functional: 

. Pα(m(1),m(2)) =

. =
2∑

i=1

||||A(i)(m(i)) − d(i)
||||2
D + α

||||NΦ

(
m(1),WJ ,BJ

) − m(2)
||||2
M = min . (16.39) 

The minimization problem (16.39) can be solved using any gradient-type method 
discussed in this book. 

Finally, let us consider again a multimodal inverse problem described by the 
system of operator equations: 

.d(i) = A(i)(m(i)), i = 1, 2, 3, ..., n. (16.40) 

We assume now that there exists a relationship between all different model param-
eters, which in a general case, can be expressed in the following form: 

.m(n) = J
(
m(1),m(2), ...,m(n−1)) , (16.41) 

where . J is some unknown but continuous operator. 
We also assume that we know the training sets of vectors representing all these 

models, .mtr(1), .mtr(2), ...., mtr(n), corresponding to the same target. Based on the 
Universal Approximation Theorem, one can construct the neural network opera-
tor,. N j

(
m(1), ...,m(n−1),WJ ,BJ

)
, which approximates the operator relationship 

(16.41) with the given accuracy . ε:
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. 

||||NJ
(
m(1), ...,m(n−1),WJ ,BJ

) − J
(
m(1),m(2), ...,m(n−1)

)||||∞

. = ||||NJ
(
m(1), ...,m(n−1),WJ ,BJ

) − m(n)
||||∞ ≤ ε. (16.42) 

We call operator .NJ a joint neural network operator, and the corresponding net-
work the joint neural network (JNN). The weights and biases ..WJ ,BJ , of the JNN 
operator could be computed using the conventional machine learning method based 
on the known training sets .mtr(1), .mtr(2), ...., mtr(n), and the gradient-type mini-
mization with backpropagation algorithm presented in Chap. 15. 

We can now introduce the following multimodal parametric functional: 

. Pα(m(1),m(2), ...,m(n)) =

. =
n∑

i=1

||
||A(i)(m(i)) − d(i)

||
||2
D + α

||
||NJ

(
m(1), ...,m(n−1),WJ ,BJ

) − m(n)
||
||2
M .

(16.43) 
The minimization of the parametric functional (16.43) delivers the solution to the 

joint multimodal inverse problem (16.40). Indeed, one can see that by minimizing 
parametric functional we determine the models, ..m(i), i = 1, 2, ..., n, which fit the 
observed data, while enforcing the complex relationships between different inverse 
models. The major advantage of this approach over the conventional joint inversion 
based on functional relationships between different model parameters is related to the 
use of the neural network operator as a stabilizer. The JNN-based stabilizer does not 
require exact knowledge about the specific functional relationships between different 
types of models. Instead, we use the relationships obtained by training the joint neural 
network over the training sets and extrapolate these relationships to the entire model 
space. 
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Part V 
Case Histories of Joint Inversion



Chapter 17 
Modeling and Inversion of Potential Field 
Data 

Abstract This chapter illustrates the inversion methods discussed in the book by 
joint inversion of potential field geophysical data. Methods of forward modeling the 
potential field data (gravity and magnetic, gravity and magnetic gradiometry) are 
discussed in detail. We also consider modeling and inversion of the total magnetic 
intensity (TMI) data. The general principles of standalone and joint inversion of 
potential field data are introduced. In the case of magnetic data, the inversion could 
be done for magnetic susceptibility and for the full magnetization vector, which is 
important for recovering the remanent magnetization. 

Keywords Gravity field · Gravity potential ·Magnetic field ·Magnetic potential ·
Total magnetic intensity (TMI) · Magnetic susceptibility · Magnetization ·
Remanent magnetization 

In this and the following chapters, I illustrate the inversion methods discussed in the 
book by case histories of joint inversion of potential field geophysical data. These 
data are widely used in the exploration of mineral resources and regional geological 
studies. I begin with reviewing the principles of modeling and inversion of gravity 
and magnetic data, followed by gravity and magnetic gradient tensors modeling and 
inversion. 

17.1 Modeling and Inversion of the Gravity Fields 

This section presents a short overview of modeling and inversion methods for gravity 
and gravity gradiometry data. 
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17.1.1 Forward Modeling of the Vertical Component 
of the Gravity Field 

The following equation describes the gravity forward modeling problem: 

.g(r') = γ

   
V

ρ(r)
r − r'

|r − r'|3 dv, (17.1) 

where. r is the source location;. r' is the receiver location;.ρ(r) is the density distribu-
tion within some domain. V ; and. γ is the universal gravitational constant. According 
to equation (17.1), forward modeling is reduced to calculating the integral over the 
domain occupied by masses with density . ρ(r).

It is important to note that the scalar components, .gα(r), α = x, y, z, of the 
gravity field .g(r), can be represented as the partial derivatives of the scalar gravity 
potential, .U (r), as follows: 

.gα(r) = ∂

∂α
U (r), α = x, y, z, (17.2) 

where 

.U (r) = γ

   
V

ρ(r')
|r' − r|dv'. (17.3) 

We divide volume .V, filled with the masses of density .ρ (r) , into .Nm small 
rectangular cells, .Vk , .V = ∪Nm

k=1Vk, and assume that the density is constant within 
each cell, .ρ (r) = ρk, r ∈Vk . As a result, the vertical component of the gravity field, 
. gz , can be calculated using the following formula: 

.gz(r') = γ

Nm∑
k=1

ρk

   
Vk

z − z'

| r − r' |3 dv. (17.4) 

Assuming a relatively small size of rectangular cells,.Vk , we can use the point-mass 
approximation, which dramatically speeds up the processing time while yielding a 
very accurate result (Zhdanov 2009). We denote the coordinates of the cell centers 
as .rk= (xk, yk, zk), .k = 1, ...Nm, and the cell sides as .∆x,∆y,∆z. Also, we have a 
discrete number of observation points.r'

n = (
x '
n, y

'
n, z

'
n

)
,.n = 1, ...Nd .Using discrete 

model parameters and discrete data, we can present the forward modeling operator 
for the gravity field (17.4) as follows:  

.gz(r'
n) ≈

Nm∑
k=1

Aρ

nkρk, n = 1, ...Nd , (17.5)
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where the gravity field kernels, .Aρ

nk, according to Eq. (17.4), are equal to 

.Aρ

nk = γ

(
zk − z'

n

)
∆x∆y∆z

r3nk
, (17.6) 

and 

. rnk =
/(

xk − x '
n

)2 + (
yk − y'

n

)2 + z2k .

Thus, the discrete forward modeling operator for the gravity field can be expressed 
in matrix notations as follows: 

.d = Agm. (17.7) 

Here.m is a vector of model parameters (densities, . ρk) of the order .Nm ; . d is a vector 
of observed data, .gz, of the order .Nd ; and .Ag is a rectangular matrix of the size 
.Nd × Nm , formed by the gravity field kernels, Eq. (17.6). 

17.1.2 Forward Modeling of the Full Tensor Gravity 
Gradiometry Data 

The gravity gradient tensor is formed by the second spatial derivatives of the gravity 
potential . U (r),

.gαβ(r) = ∂2

∂α∂β
U (r), α,β = x, y, z. (17.8) 

The components,.gαβ(r), can be organized in the form of a gravity gradient tensor, 

.⌃g =
⎡
⎣ gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

⎤
⎦ . (17.9) 

They can be calculated based on formulas (17.8) and (17.3 ), as follows: 

.gαβ(r) = γ

   
V

ρ(r')
1

|r' − r|3 Kαβ

(
r'−r

)
dv', (17.10) 

where the kernels, .Kαβ, are equal to 

.Kαβ

(
r' − r

) =

⎧⎪⎪⎨
⎪⎪⎩
3 (α−α')(β−β')

|r'−r|2 , α /= β,

3 (α−α')
2

|r'−r|2 − 1, α = β,

, α,β = x, y, z. (17.11)



322 17 Modeling and Inversion of Potential Field Data

In order to derive numerical expressions for the gravity tensor, we use the same 
discretization as above for the vertical component of the gravity field. Considering 
each cell as a point mass and using discrete model parameters and discrete data, 
we can present the forward modeling operator for the gravity tensor components, 
(17.10), as follows: 

.gαβ(rn) ≈
Nm∑
k=1

Aαβ
nk ρk, n = 1, ...Nm; α,β = x, y, z, (17.12) 

where the gravity tensor kernels, .Aαβ
nk , according to (17.11) are expressed as follows 

.Aαβ
nk = γ

∆x∆y∆z

rnk3
K αβ

nk , (17.13) 

where 

.K αβ
nk =

⎧⎪⎨
⎪⎩
3 (α'

k−αn)(β'
k−βn)

rnk 2
, α /= β,

3 (α'
k−αn)

2

rnk 2
− 1, α = β,

, α,β = x, y, z; (17.14) 

and 

. rnk =
/(

x '
k − xn

)2 + (
y'
k − yn

)2 + (
z'
k − zn

)2
.

Expression (17.12) represents a point-mass approximation of the gravity tensor 
components. It was demonstrated by Zhdanov (2009) that this approximation is very 
accurate while being much more computationally efficient than the conventional 
approach based on the exact analytical expression of the gravity gradient field pro-
duced by prismatic cells. 

We can write Eq. (17.12) in matrix notations as follows: 

.d = A⌃gm, (17.15) 

where .m is a vector of model parameters (densities, . ρk); . d is a vector of observed 
tensor data, . ⌃g; and .A⌃g is a rectangular matrix, formed by the gravity gradient field 
kernels, Eq. (17.13). 

17.1.3 Inversion of the Gravity and Gravity Gradiometry Data 

Gravity field and/or gravity tensor inversions are reduced to the solution of the linear 
matrix equations (17.7) or (17.15). In compact form, these equations can be written 
as follows: 

.d = Am, (17.16)
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where .A stands for the matrices of forward modeling operators, .Ag or .A⌃g; .m is a 
vector of anomalous density distribution; and . d is a vector formed by the observed 
gravity or gravity tensor data sets, .gz or . ⌃g. 

To produce a stable solution of this problem, we can use the classical regularization 
approach based on the minimization of the Tikhonov parametric functional, described 
in detail in Chap. 4: 

.Pα(m) = φ(m) + α s(m) = min, (17.17) 

where the misfit functional, .φ(m), is specified by the least-square norm of the dif-
ference between the weighted predicted and observed data, 

.φ(m) = ||Wd (Am − d))|| 2, (17.18) 

. α is a regularization parameter,.Wd is the data weighting matrix, and.s(m) is the cor-
responding stabilizer selected from the family of stabilizing functionals introduced 
in Chap. 4. We can also apply the model parameter weights to improve the depth 
resolution of the inversion, as discussed in Chap. 5. 

The choice of stabilizing functional is usually based on the available knowledge 
about the targets. In Chap. 4, we described different smooth and focusing stabilizers 
in order to produce diffused or sharp images of the target. Examples of smooth 
stabilizers include minimum norm and spatial derivatives functionals. 

A minimum norm (MN) stabilizer seeks to minimize the norm of the difference 
between the current model and an a priori model: 

.sMN (m) =
   

V
(m − mapr )

2dv, (17.19) 

and it usually produces a relatively smooth model. 
The first derivative (FD) stabilizer implicitly introduces smoothness by minimiz-

ing the norm of spatial derivatives of the model parameters: 

.sFD(m) =
   

V
(∇m − ∇mapr )

2dv. (17.20) 

The minimum support (MS) stabilizer, 

.sMS(m) =
   

V

(m − mapr )
2

(m − mapr )2 + e2
dv, (17.21) 

minimizes the volume with nonzero departures from the a priori model, effectively 
recovering compact bodies. Therefore, a smooth distribution of all model parameters 
with a small deviation from the a priori model is penalized.
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The minimum gradient support (MGS) stabilizer, 

.sMGS(m) =
   

V

∇m · ∇m

∇m · ∇m + e2
dv, (17.22) 

minimizes the areas where the big model parameter changes occur, thus emphasizing 
the sharp boundaries. There are several other choices of stabilizing functionals listed 
in this book. 

The minimization problem (17.17) can be solved by the corresponding gradient-
type methods of Chap. 7. Details of the numerical implementation of these methods 
can be found in Zhdanov (2014) and Čuma and Zhdanov (2014). 

17.2 Modeling and Inversion of the Magnetic Fields 
for Magnetic Susceptibility 

We now consider modeling and inversion methods for magnetic field data. Geo-
physicists study different components of the magnetic field. The most widely used 
are the total magnetic intensity (TMI) data based on measuring the magnitude of the 
magnetic field. One can also measure and analyze three scalar components of the 
magnetic field. Recently, the methods of measuring full tensor magnetic gradiometry 
(FTMG) data formed by the second derivatives of magnetic field potential have been 
introduced as well. 

17.2.1 Forward Modeling of the Magnetic Field Data 

The magnetic field of volume .D, filled with magnetic masses with the intensity of 
magnetization .I (r), can be expressed as a gradient of the magnetic potential, .U (r), 
as follows (Zhdanov 1988, 2002): 

.H(r') = ∇'U (r'), (17.23) 

where: 

.U (r') =
   

V
I (r) · ∇' 1

|r − r'|dv. (17.24) 

The magnetic geophysical methods are often based on the assumption that there 
is no remanent magnetization, and the observed magnetic data are caused by induced 
magnetization only. Under such assumptions, the intensity of magnetization in the 
rock formation is linearly related to an inducing magnetic field, .H0, through the 
magnetic susceptibility, .χ (r):
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.I (r) = χ (r)H0 = χ (r) H 0l, (17.25) 

where . r is the radius-vector of a point within the volume . V ; .H 0 is the magnitude 
of the inducing field; and .l = (lx , ly, lz) is a unit vector in the direction of this field. 
Assuming that the .x-axis is directed eastward, the .y-axis has a positive direction 
northward, and the .z-axis is directed downward, one can calculate the direction of 
the inducing magnetic field as follows: 

. lx = cos(I )sin(D − A),

ly = cos(I )cos(D − A), (17.26) 

lz = sin(I ), 

where. I is the inclination, .D is the declination, and. A is the azimuth of the inducing 
field. The values of . I , . D, . A,. H 0 are variable with time and location on the Earth. 
The inclination, . I , is given by an angle that can assume values between -90. 

◦ (up) at 
the south magnetic pole to 90. 

◦ (down) at the north magnetic pole. Declination,. D, is  
positive for an eastward deviation of the field relative to true north. It could be –90. ◦
to 90 . ◦ in most areas. The intensity of Earth’s magnetic field .H 0 ranges between 
approximately 25,000 and 65,000 nT. The values of . I , . D, .A, .H 0 can be found at 
International Geomagnetic Reference Field (IGRF) (Alken et al. 2021). 

Thus, substituting formula (17.25) for the intensity of magnetization into equa-
tions (17.24) and (17.23), after some algebra, we arrive at the following integral 
representation of the magnetic field: 

.H(r') = −H0

   
V

χ(r)
|r − r'|3

[
l − 3

(
l · (r − r')) (r − r')

|r − r'|2
]
dv. (17.27) 

By discretizing the 3D earth model into a grid of .Nm cells, each of constant 
magnetic susceptibility, we obtain the following discrete form of Eq. (17.27): 

.H(r') = −H0

Nm∑
k=1

χk

   
Vk

1

|r − r'|3 [l−3(l · (r − r'))(r − r')
|r − r'|2 ]dv, (17.28) 

where .r' = (x ', y', z') denotes the point of observation, .r = (x, y, z) denotes the 
point of source location, .l = (lx , ly, lz), and .H0 are the direction and the absolute 
value of the inducing magnetic field, .H0, respectively. 

Closed-form solutions for the volume integral in Eq. (17.28) over right rectan-
gular prisms of magnetic susceptibility have been previously presented (e.g., Bhat-
tacharyya (1980)). We can also evaluate the volume integral numerically using single-
point Gaussian integration with pulse basis functions in a similar way we considered 
above for the gravity field (Zhdanov 2009). In this case, .r = (x, y, z) denotes the 
cell center. We assume constant discretization of .∆x , .∆y, and .∆z in the . x , . y, and . z
directions, respectively.
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Therefore, Eq. (17.28) can be simplified as follows: 

.H(r') = −H0

Nm∑
k=1

χk
1

|r − r'|3 [l−3(l · (r − r'))(r − r')
|r − r'|2 ]∆x∆y∆z. (17.29) 

From Eq. (17.29), we can derive discrete expressions for the scalar components 
of the magnetic field: 

. Hx (r') = −H0

Nm∑
k=1

χk
1

|r − r'|3 [lx−3t (xk − x ')
|r − r'|2 ]∆x∆y∆z,

.Hy(r') = −H0

Nm∑
k=1

χk
1

|r − r'|3 [ly−3t (yk − y')
|r − r'|2 ]∆x∆y∆z, (17.30) 

. Hz(r') = −H0

Nm∑
k=1

χk
1

|r − r'|3 [ly−3t (yk − y')
|r − r'|2 ]∆x∆y∆z,

where 
.t = lx (xk − x ') + ly(yk − y') + lz(zk − z'). (17.31) 

and .r = rk = (xk, yk, zk), k = 1, ...., Nm; denotes the center of the cell, . k. In  
compact operator form, we can write system of equations (17.30) as follows 

.d = AHχ(m), (17.32) 

where.m is a vector of model parameters (susceptibility,. χl);. d is a vector of observed 
magnetic field data.H ; and.AHχ is the discrete magnetic forward modeling operator 
described by equations (17.30). 

17.2.2 Forward Modeling of the Total Magnetic Intensity 
Data 

The standard geophysical surveys usually collect the total magnetic intensity (TMI) 
field data, which can be approximately represented as follows: 

.T
(
r') ≈ l · H (

r') = −H 0
   

V

χ(r)
|r − r'|3

[
1 − 3

(
l · (r − r'))2
||r − r'||2

]
dv, (17.33)
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where . r is the source location; . r' is the receiver location; .χ(r) is the susceptibility 
distribution within domain . V . 

The discrete form of integral formula (17.33) is obtained by dividing domain . V
into .Nm small rectangular cells, .Vk , and assuming that the susceptibility is constant 
within each cell, .χk . As a result, expression (17.33) for the TMI field takes the 
following form: 

.T
(
r') = −H 0

Nm∑
k=1

χk

   
Vk

1

|r − r'|3
[
1 − 3

(
l · (r − r'))2
|r − r'|2

]
dv. (17.34) 

Assuming a relatively small size of rectangular cells, .Vk , we again can use the 
point-mass approximation, which dramatically speeds up the processing time while 
yielding very accurate results (Zhdanov 2009). The coordinates of the cell centers 
are .rk = (xk, yk, zk), .k = 1, ..., Nm . and the cell sides are .∆x , .∆y, .∆z. Also,  we  
have a discrete number of observation points.r'

n = (x '
n, y

'
n, z

'
n), .n = 1, ..., Nd . Using  

discrete model parameters and discrete data, we can present the forward modeling 
equation for the magnetic field (17.34 ), as follows: 

.T (r'
n) =

Nm∑
k=1

Aχ
nkχk , (17.35) 

where the magnetic field kernels, .Aχ
nk , are calculated by the following formula: 

. Aχ
nk = −H 0 1

r3nk

[
1 − 3

(
lx
(
x '
k − xn

)+ ly
(
y'
k − yn

)+ lz
(
z'
k − zn

))2
r2nk

]
∆x∆y∆z,

(17.36) 
and 

. rnk =
/(

x '
k − xn

)2 + (
y'
k − yn

)+ (
z'
k − zn

)
.

Using the discrete model parameters introduced above, we can approximate the 
forward modeling operator for the TMI field produced by the volume distribution of 
magnetic rocks with susceptibility . χ as follows: 

.d = ATχ(m). (17.37) 

Here .m is a vector of model parameters (susceptibility, .χk) of the order .Nm ; . d
is a vector of observed TMI data . T , of the order .Nd ; and .ATχ is a rectangular 
matrix formed by the magnetic field kernels, Eq. (17.36). Note that the number of 
discretization cells,.Nm , in the voxel-type inversion is obviously significantly greater 
than the number of observed data, .Nd : .Nm >> Nd .
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17.2.3 Forward Modeling of Magnetic Gradiometry Data 

Another important representation of the magnetic field is given by the second deriva-
tives of the magnetic potential: 

.Hαβ(r) = ∂2

∂α∂β
U (r), α,β = x, y, z. (17.38) 

The second spatial derivatives of the magnetic potential form a symmetric tensor 
with zero trace: 

.⌃H =
⎡
⎣ Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

⎤
⎦ , Hxx + Hyy + Hzz = 0, (17.39) 

where: 

.Hαβ = ∂Hα

∂β
, α,β = x, y, z. (17.40) 

This implies that of the nine tensor components, only five are independent. 
After some algebra, we find from equations (17.30) and (17.40) the discrete forms 

of each component of the magnetic tensor: 

. Hxx (r') = 3H0

Nm∑
k=1

χk{ [−lx(xk − x ') − t]r2 + 2(x ' − xk)2t

r7

+[lx − 3t (xk − x ')
r2

] (x
' − xk)

r5
}∆x∆y∆z,

. Hxy(r') = 3H0

Nm∑
k=1

χk{−ly(xk − x ')r2 − 2(y' − yk)(xk − x ')t
r7

+[lx − 3t (xk − x ')
r2

] (y
' − yk)

r5
}∆x∆y∆z,

.Hxz(r') = 3H0

Nm∑
k=1

χk{−lz(xk − x ')r2 − 2(z' − zk)(xk − x ')t
r7

+[lx − 3t (xk − x ')
r2

] (z
' − zk)

r5
}∆x∆y∆z,
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. Hyx (r') = 3H0

Nm∑
k=1

χk{−lx (yk − y')r2 − 2(x ' − xk)(yk − y')t
r7

+[ly − 3t (yk − y')
r2

] (x
' − xk)

r5
}∆x∆y∆z,

. Hyy(r') = 3H0

Nm∑
k=1

χk{ [−ly(yk − y') − t]r2 + 2(y' − yk)2t

r7

+[ly − 3t (yk − y')
r2

] (y
' − yk)

r5
}∆x∆y∆z,

. Hyz(r') = 3H0

Nm∑
k=1

χk{−lz(yk − y')r2 − 2(z' − zk)(yk − y')t
r7

+[ly − 3t (yk − y')
r2

] (z
' − zk)

r5
}∆x∆y∆z,

. Hzx (r') = 3H0

Nm∑
k=1

χk{−lx (zk − z')r2 − 2(x ' − xk)(zk − z')t
r7

+[lz − 3t (zk − z')
r2

] (x
' − xk)

r5
}∆x∆y∆z,

. Hzy(r') = 3H0

Nm∑
k=1

χk{−ly(zk − z')r2 − 2(y' − yk)(zk − z')t
r7

+[lz − 3t (zk − z')
r2

] (y
' − yk)

r5
}∆x∆y∆z,

.Hzz(r') = 3H0

Nm∑
k=1

χk{ [−lz(zk − z') − t]r2 + 2(z' − zk)2t

r7
(17.41) 

+[lz − 
3t (zk − z') 

r2
] (z

' − zk) 
r5 

}∆x∆y∆z, 

where . t is defined by Eq. (17.31), and 

.r = [(xk − x ')2 + (yk − y')2 + (zk − z')2]1/2.
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Equations (17.41) provide the basis for computing the full tensor magnetic gra-
diometry (FTMG) data for the models without the remanent magnetization. These 
equations can be written in compact operator form as follows: 

.d = A⌃Hχ(m), (17.42) 

where.m is a vector of model parameters (susceptibility,. χl);. d is a vector of observed 
FTMG data .⌃H ; and .A⌃Hχ is the corresponding discrete FTMG forward modeling 
operator described by equations (17.41). 

17.2.4 Inversion of Magnetic Field Data into Susceptibility 

The regularized inversion of the magnetic field data is based on the same principles 
as gravity inversion discussed above. The fundamental inverse problem equation is 
written in a standard form, as follows: 

.d = Am, (17.43) 

where. A stands for the forward modeling operators.AHχ, ATχ, or.A⌃Hχ ;.m is a vector 
of anomalous susceptibility distribution,. χ ; and. d is a vector formed by the observed 
magnetic field, TMI or FTMG data sets, .H, T , or . ⌃H. 

We introduce the Tikhonov parametric functional, 

.Pα(m) = ϕ (m) + αSMN , MS, MGS (m) → min, (17.44) 

where.ϕ (m) is a misfit functional specified by the least-square norm of the difference 
between the weighted predicted and observed data, 

.φ(m) = ||Wd (Am − d))|| 2, (17.45) 

and .Wd is the data weighting matrix. 
The terms .SMN , SMS, and .SMGS are the stabilizing functionals based on mini-

mum norm, minimum support, and minimum gradient support constraints defined by 
equations (17.19), (17.21), and (17.22), respectively. The minimization problem of 
parametric functional (17.44) can be solved using a variety of optimization methods 
described in this book.
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17.3 Magnetization-Based Modeling and Inversion 
of the Magnetic Fields 

17.3.1 Magnetization-Based Modeling of the Magnetic Field 
Data 

Remanent magnetization (or remanence) is a permanent magnetization of a rock that 
was obtained in the past when the Earth’s magnetic field had a different magnitude 
and direction than what it has today. It follows that the total intensity of magne-
tization, .I(r), is linearly related to both the induced, .Mind , and remanent, . Mrem,

magnetizations (Jorgensen et al. 2023): 

.I(r) = H0 [Mind (r) + Mrem(r)
]
, (17.46) 

where induced magnetization, .Mind , is linear proportional to the inducing magnetic 
field, .H0(r), through the magnetic susceptibility, .χ(r): 

.Mind (r) = χ(r)H0/H0 = χ(r)l, (17.47) 

and . l the unit vector in the direction of the inducing magnetic field, defined by 
equations (17.26). 

We should note that we have defined the magnetization vectors (both the induced 
and remanent) as unitless for convenience of derivations. 

The Koenigsberger ratio, . Q, is the ratio of the absolute values of the remanent 
magnetization to the induced magnetization (Koenigsberger 1938): 

.Q = |Mrem |
|Mind | . (17.48) 

For Koenigsberger ratios greater than 1, the remanent magnetization vector is the 
predominant contribution to the total intensity of magnetization. 

We can rewrite Eq. (17.25) as follows: 

.I(r) = H0M, (17.49) 

where .M is the magnetization vector: 

.M(r) = Mind(r) + Mrem(r). (17.50) 

For modeling of the magnetic field data, we can use again the basic formulas 
(17.24) and (17.23). However, in the case of the arbitrary intensity of magnetization 
vector, .I (r) , we substitute expression (17.49) for .I (r) into (17.24) and (17.23). As 
a result, we arrive at the following integral representation of the magnetic field: 

.H(r') = −H0

   
V

1

|r − r'|3
[
M (r) −3(M (r) · (r − r'))(r − r')

|r − r'|2
]
dv, (17.51)
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where .M (r) is the magnetization vector defined by Eq. (17.50). 
We discretize the 3D earth model into a grid of .Nm cells, each of a constant 

magnetization vector. Then integral representation (17.51) of the magnetic field can 
be expressed in discrete form as follows: 

.H(r') = −H0

Nm∑
k=1

   
Vk

1

|r − r'|3 [Mk−3(Mk ·(r − r'))(r − r')
|r − r'|2 ]dv, (17.52) 

where .Mk= (Mxk, Myk, Mzk) is the magnetization vector of the .kth cell. 
As discussed above, we evaluate the volume integral numerically using single-

point Gaussian integration with pulse basis functions. This numerical solution is 
almost as accurate as the analytic solution provided the depth to the center of the 
cell exceeds twice the dimension of the cell (Zhdanov 2009). In this case, . rk =
(xk, yk, zk), k = 1; ::: Nm ; denotes the center of the cell, . k. We assume constant 
discretization of .∆x , .∆y, and .∆z in the . x , . y, and . z directions, respectively. Also, 
we have a discrete number of observation points .r'

n = (x '
xk, y

'
yk, z

'
zk), .n = 1, . . . Nd . 

Using discrete model parameters and discrete data, we can present (17.52) as follows:  

.H(r') = −H0

Nm∑
k=1

1

|r − r'|3
[
Mk−3(Mk ·(r − r'))(r − r')

|r − r'|2
]

∆x∆y∆z. (17.53) 

From Eq. (17.53), we obtain discrete expressions for the vector components of 
the magnetic field: 

.Hx (r') = −H0

Nm∑
k=1

1

|r − r'|3
[
Mxk−3tk(xk − x ')

|r − r'|2
]

∆x∆y∆z, (17.54) 

.Hy(r') = −H0

Nm∑
k=1

1

|r − r'|3
[
Myk−3tk(yk − y')

|r − r'|2
]

∆x∆y∆z, (17.55) 

.Hz(r') = −H0

Nm∑
k=1

1

|r − r'|3
[
Mzk−3tk(yk − y')

|r − r'|2
]

∆x∆y∆z, (17.56) 

where indices . n and . k at the corresponding radius vectors of the observation and 
integration points are omitted to simplify the notations, and 

.
|r − r'| = rnk =

√
(xk − xn)2 + (yk − yn)2 + (zk − zn)2,

tk = Mxk(xk − x '
n) + Myk(yk − y'

n) + Mzk(zk − z'
n).

(17.57) 

We can write equations (17.54) to (17.56) in a compact form as follows:
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. Hα(r') = −H0

Nm∑
k=1

1

|r − r'|3
[
Mαk−3tk(αk − α')

|r − r'|2
]

∆x∆y∆z, α = x, y, z.

(17.58) 
We can now write the magnetization-based modeling Eq. (17.58 ) in operator form 
as well: 

.d = AHM (m) , (17.59) 

where .AHM is the discrete magnetic field forward modeling operator, .m is a 
model parameter vector representing the discrete magnetization vector distribution 
.M

(
Mx , My, Mz

)
, and . d is a vector of the corresponding magnetic field data, . H. 

17.3.2 Magnetization-Based Modeling of TMI Data 

For modeling the magnetic data, we project the magnetic field, Eq. (17.51), onto the 
direction, . l, of the inducing magnetic field, .H0: 

. T
(
r') ≈ l · H (

r') = −H0l(r')·
   

D

1

|r − r'|3
[
M−3(M · (r − r'))(r − r')

|r − r'|2
]
dv.

(17.60) 
We again discretize the 3D earth model into a grid of .Nm cells, each of constant 

magnetization vector. According to formula (17.60), the total magnetic intensity 
field can be computed approximately as follows: 

. T (r') ≈ l(r') · H(r') =

. = −H0

Nm∑
k=1

l(r')·
   

Vk

1

|r − r'|3
[
Mk−3(Mk ·(r − r'))(r − r')

|r − r'|2
]
dv, (17.61) 

where .Mk= (Mxk, Myk, Mzk) is the magnetization vector of the .kth cell. 
As was done above for Eq. (17.33), we can also evaluate the volume integral 

numerically with sufficient accuracy using the point-mass approximation (Zhdanov 
2009) (where indices . n and. k at the corresponding radius vectors of the observation 
and integration points are omitted to simplify the notations): 

. T (r') ≈

. ≈ −H0

Nm∑
k=1

l(r')· 1

|r − r'|3
[
Mk−3(Mk ·(r − r'))(r − r')

|r − r'|2
]

∆x∆y∆z. (17.62) 

where .r = rk = (xk, yk, zk), k = 1, ...., Nm; denotes the center of the cell, . k. 
As in the case of susceptibility-based modeling, Eq. (17.62) can be written in a
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compact form as well: 
.d = AT M (m) , (17.63) 

where.AT M is the discrete TMI field forward modeling operator,. m is a model parame-
ter vector representing the discrete magnetization vector distribution . 

.M
(
Mx , My, Mz

)
, and .dM is a vector of the corresponding TMI data, . T . 

17.3.3 Magnetization-Based Modeling of the Full Tensor 
Magnetic Gradiometry Data 

The following formulas define the second spatial derivatives of the magnetic potential 
(Cai 2012; Jorgensen et al. 2023): 

.Hαβ(r') = ∂2

∂α∂β
U (r) = ∂Hα(r')

∂β' , α,β = x, y, z. (17.64) 

By introducing .rk = r = [(xk − x ')2 + (yk − y')2 + (zk − z')2]1/2 and differen-
tiating Eq. (17.58), after some algebra, we find discrete forms of each component of 
the magnetic tensor: 

. Hαβ(r') = −H0
∂

∂β'

Nm∑
k=1

1

|r − r'|3 [Mαk−3tk(αk − α')
|r − r'|2 ]∆x∆y∆z, α,β = x, y, z.

(17.65) 
We now take the derivatives: 

. 
∂

∂β'

(
1

|r − r'|3
[
Mαk−3tk(αk − α')

|r − r'|2
])

=

.
3

|r − r'|5
[(

βk − β')Mαk−5tk(αk − α')
(
βk − β')

|r − r'|2 + Mβk(αk − α') + tkδαβ

]
, (17.66) 

where: 

. δαβ =
 
1, α = β
0, α /= β

.

Substituting Eq. (17.66) into (17.65), we obtain: 

.Hαβ(r') = −3H0

Nm∑
k=1

1

|r − r'|5 ×
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. 

[(
βk − β')Mαk−5tk(αk − α')

(
βk − β')

|r − r'|2 + Mβk(αk − α') + tkδαβ

]
∆x∆y∆z.

(17.67) 
According to (17.57), we can write: 

.tk =
∑

γ=x,y,z

(γk − γ')Mγk . (17.68) 

and 
.Mαk =

∑
γ=x,y,z

δαγMγk, Mβk =
∑

γ=x,y,z

δβγMγk . (17.69) 

Substituting (17.68), and (17.69) into (17.67), we have: 

. Hαβ(r') = −3H 0
Nm∑
k=1

∆x∆y∆z

|r − r'|5 ×

. 
∑

γ=x,y,z

[(
βk − β') δαγ+

[
δαβ − 5(αk − α')

(
βk − β')

|r − r'|2
]

(γk − γ') + (αk − α')δβγ

]
Mγk .

(17.70) 
We introduce a sensitivity kernel for magnetic tensor as follows: 

. Gγ
αβk =

. 
(
βk − β') δαγ+

[
δαβ − 5(αk − α')

(
βk − β')

|r − r'|2
]

(γk − γ') + (αk − α')δβγ .

(17.71) 
Using these notations, we can rewrite Eq. (17.70) in the following compact form: 

.Hαβ(r') = −3H0

Nm∑
k=1

∆x∆y∆z

|r − r'|5
∑

γ=x,y,z

Gγ
αβkMγk, α,β = x, y, z, (17.72) 

where indices . n and . k at the corresponding radius vectors of the observation and 
integration points are omitted to simplify the notations and.Mγk are the components 
of the magnetization vector: 

. Mk = [
Mxk, Myk, Mzk

]T
.

Equations (17.58) and (17.72) are the key equations that we need for solving both 
modeling and inversion problems for remanent magnetization. 

Finally, we present equations (17.72) in compact operator form as follows:
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.d = A⌃HM (m) , (17.73) 

where.A⌃HM is the discrete FTMG forward modeling operator described by equations 
(17.72);. m is a model parameter vector representing the discrete magnetization vector 
distribution.M

(
Mx , My, Mz

)
, and. d is a vector of the corresponding observed FTMG 

data, . ⌃H. 

17.3.4 Inversion of Magnetic Field Data into Magnetization 
Vector 

The inverse problem for magnetization vector can be written in compact form as 
follows: 

.d = A (m) , (17.74) 

where . A represents the magnetic field, TMI or FTMG forward modeling operators, 
.AHM , AT M , or .A⌃HM , described by equations (17.59), (17.63), or (17.73); .m is a 
model parameter vector representing the discrete magnetization vector distribution 
.M

(
Mx , My, Mz

)
, and . d is a vector of the corresponding observed magnetic, TMI, 

or FTMG data sets, . H, . T or . ⌃H. 
Inverting for the magnetization vector is a more challenging problem than invert-

ing for scalar magnetic susceptibility because we have three unknown scalar com-
ponents of the magnetization vector for every cell. We should notice that there is an 
inherent correlation between the different components of the magnetization vector. 
The different scalar components have similar spatial variations and represent the 
same zones of anomalous magnetization. Therefore, it is possible to expect that the 
different components of the magnetization vector should be mutually correlated (Zhu 
et al. 2015). It was demonstrated in Chap. 12 that one could enforce the correlation 
between the different model parameters by using the Gramian constraints. Following 
this idea, Zhu et al. (2015) and Jorgensen and Zhdanov et al. (2021) included the 
Gramian constraint in Eq. (17.44) as follows: 

.Pα(m) = ϕ (m) + αc1SMN , MS, MGS (m) + αc2
∑

β=x,y,z

SG(mβ,χeff), (17.75) 

where .α is the regularization parameter; .c1 and .c2 are the weights defining the 
relative contributions of the focusing and Gramian stabilizers;. m is the .3Nm vector 
of magnetization vector components;.mβ is the.Nm length vector of the. β component 
of magnetization vector, .β = x, y, z; .χeff is the .Nm length vector of the effective 
magnetic susceptibility, defined as the magnitude of the magnetization vector, 

.χeff =
/
M2

x + M2
y + M2

z ; (17.76)
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and .SG is the Gramian stabilizer, 

.SG(mβ,χeff) =
|||| (mβ,mβ)

(
mβ,χeff

)
(
χeff,mβ

)
(χeff,χeff)

|||| . (17.77) 

Using the Gramian constraint (17.77), we enhance a direct correlation between 
the scalar components of the magnetization vector with .χeff , which is computed at 
the previous iteration of an inversion and is updated on every iteration. The advantage 
of using the Gramian constraint, Eq. (17.77), is that it does not require any a priori 
information about the magnetization vector (e.g., direction, the relationship between 
different components, etc.). 

The minimization problem (17.75) can be solved using one of the regularized 
methods described in this book. 
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Chapter 18 
Case Histories of Joint Inversion 
of Gravity and Magnetic Data 

Abstract This chapter presents several case histories of joint inversion of potential 
field geophysical data as an illustration of the joint inversion methods introduced in 
this book. We describe, as an example, the joint inversion of the airborne gravity 
gradient (AGG) and total magnetic intensity (TMI) data collected by Fugro in the 
Ring of Fire area of northwestern Ontario, Canada. A comparison of the standalone 
inverted density and magnetization vector models versus the jointly inverted mod-
els demonstrates that the latter recovers more compact bodies with more structural 
correlation and more geologically reasonable models than the standalone inverse 
solutions. Another example illustrates the joint Gramian inversion of the gravity full 
tensor gradiometry (FTG) and total magnetic intensity (TMI) data collected within 
the Nordkapp basin in the Barents Sea, offshore Norway. It shows the improved 
correlation between the density and magnetization in the vertical sections of the cor-
responding inverse models produced by the joint probabilistic Gramian inversion. 
Finally, this chapter presents a case history of a joint inversion of gravity and mag-
netic data covering the US state of Alaska and the Canadian province of Yukon. A 
computationally effective algorithm for joint inversion of the gravity and magnetic 
data on a continental scale based on a Gramian stabilizer has been developed. It is 
demonstrated that the utility of a joint inversion approach on a continental scale lies 
in a single coupled density and susceptibility model of the whole continent, where 
a geoscientist can focus on areas of geological interest without the need to perform 
separate inversions in these areas. 

Keywords Total magnetic intensity (TMI) · Full tensor gradiometry (FTG) ·
Gramian stabilizer · Continental scale inversion 
This final chapter presents several case histories of joint inversion of potential field 
geophysical data, as an illustration of the joint inversion methods introduced in this 
book. The interested reader can find many other examples of joint inversion published 
in geophysical literature over the last decade. 
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18.1 Joint Inversions of Airborne Gravity Gradient (AGG) 
and Magnetic Data in the Ring of Fire, Ontario, 
Canada 

This section 1 describes, as an example, the joint inversion of the airborne gravity 
gradient (AGG) and total magnetic intensity (TMI) data, collected by Fugro in the 
Ring of Fire area of northwestern Ontario, Canada (Fig. 18.1). The Ring of Fire 
comprises mafic metavolcanic flows, felsic metavolcanic flows, pyroclastic rocks, 
and a suit of layered mafic to ultramafic intrusions that trend subparallel with and 
obliquely cut the westernmost part of the belt, close to a large granitoid batholith 
lying west of the belt. The significant layered intrusion at its base hosts Ni-Cu-PGE 
deposits of exceptional grade and overlying stratiform chromite deposits further east 
and higher in the layered intrusion stratigraphy (Ontario Geological Survey and 
Geological Survey of Canada 2011). 

Jorgensen and Zhdanov (2021) studied the Thunderbird deposit consisting of 
semi-massive vanadium and titanium-enriched magnetite, corresponding to strong 
gravity and magnetic anomalies. Panel A of Fig. 18.2 shows the vertical gradient of 
the gravity field, Gzz, observed by AGG data acquisition system. Panel B shows the 
observed TMI data map. The location of profile AA’ is shown in black. We filtered 

Fig. 18.1 Geological map of the Ring of Fire area with marked known deposits (from Mungall 
et al. 2010)

1 This section was written in collaboration with M. Jorgensen. 
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Fig. 18.2 Panel A presents the.Gzz component of the observed AGG data shown in UTM coordi-
nates. Panel B presents the observed TMI data map. The location of profile AA’ is shown by black 
line 

the observed data by a spatial filter with a wavelength longer than 10 km to remove 
the regional anomaly. 

We have inverted the observed data separately and jointly on the same 50 m by 
50 m horizontal grid with a logarithmic depth discretization ranging from 25 at the 
top to 150 m at the bottom. The total grid size was about 250,000 cells. The joint 
inversion of the gravity and magnetic data was run using two methods. One was 
based on the joint focusing stabilizing functional, and the other used the Gramian 
stabilizer. 

Figure 18.3 shows, as an example, a comparison between the observed and pre-
dicted Gzz component of the gravity gradient field and TMI data produced by stan-
dalone and joint inversions. One can see an excellent fit of the observed data with the 
data computed for the inverse models using all three approaches—standalone, joint 
Gramian, and focusing inversions. 

Figure 18.4 shows the vertical sections of the inverse density and magnetization 
vector models produced by standalone, joint focusing and joint Gramian inversions. 
One can see that the jointly inverted images have sharper boundaries and more struc-
tural correlation, while maintaining the same level of data misfit as the standalone 
inversions. 

Figure 18.5 presents model parameter cross plots for the different inversion sce-
narios. Additionally, the correlation coefficient was calculated for the density model 
versus the vertical component of the magnetization vector. In the case of the stan-
dalone inversions, the correlation coefficient was about 0.8; for joint focusing inver-
sion, it increased to 8.5. The models produced by the joint Gramian inversion have 
the highest value of the correlation coefficient of 8.9. 

Comparison of the standalone inverted density and magnetization vector models 
versus the jointly inverted models demonstrates that the latter recovers the more 
compact bodies, with more structural correlation and more geologically reasonable
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Fig. 18.3 Panels A and B show observed and predicted .Gzz component of gravity gradient field 
data from standalone inversion, respectively. Panels C and D show observed and predicted TMI 
data from standalone inversion, respectively. Panels E and F show observed and predicted . Gzz
component of gravity gradient field data from Gramian inversion, respectively. Panels G and H 
show observed and predicted TMI data from Gramian inversion, respectively. Panels I and J show 
observed and predicted.Gzz component of gravity gradient field data from joint focused inversion, 
respectively. Panels K and L show observed and predicted TMI data from joint focused inversion, 
respectively 

models than the standalone inverse solutions. The Gramian inversion does provide 
the highest level of structural correlation. 

18.2 Joint Inversion of Marine Gravity Gradient 
and Magnetic Data 

This section 2 illustrates the joint Gramian inversion of the gravity full tensor gra-
diometry (FTG) and total magnetic intensity (TMI) data collected within the Nord-
kapp basin in the Barents Sea, offshore Norway (Fig. 18.6). The Nordkapp basin can 
be divided into two parts—the south-western part (SWP) and the northeastern part 
(NEP). The SWP sub-basin (Obelix survey location) is a narrow, northeast-trending 
150 km long and 25–50 km wide geological structure. It contains some 17 salt

2 This section was written in collaboration with Jorgensen and Tao (Zhdanov et al. 2023). 
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Fig. 18.4 Panels A and B show vertical sections of the standalone inverted density and magnetic 
vector models, respectively. Panels C and D present vertical sections of the Gramian jointly inverted 
density and magnetic vector models, respectively. Panels E and F show vertical sections of the jointly 
focused inverted density and magnetic vector models, respectively. The color map in panels (B), 
(D), and (F) is the vertical component of the magnetic vector, the black arrows are the full magnetic 
vector, and the red arrows in the upper right corner indicate the direction of the inducing field 

Fig. 18.5 Model parameter cross plots shown in Panels A, B, and  C correspond to the standalone 
inversions, joint Gramian inversion, and joint focusing inversion, respectively
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Fig. 18.6 Location of the multiphysics survey area in the Nordkapp basin in the Barents Sea, 
offshore Norway 

diapirs located along the basin’s axis. The NEP sub-basin is about 200 km long and 
50–70 km wide, and it contains more than 16 salt domes. The hydrocarbon (HC) 
exploration in the Nordkapp basin started in the 1980s. Several wells have been 
drilled to date, all on the flanks of the basin. The recent results of geological and geo-
physical exploration and the discovery of hydrocarbons in wells outside the basin 
indicate that there is a potential for HC reservoir discovery within the Nordkapp 
basin. 

The complex salt diapirs, however, represent the major geological structures 
known in this area. Much of the present uncertainty and exploration risk associ-
ated with these salt features results from severe seismic imaging/distortion problems 
and subsequent interpretation ambiguity of the salt isopach (specifically the ability 
to define/map base of salt seismically). The multiphysics survey aimed to provide 
additional information for evaluating these complex salt overhang geometries. FTG, 
by its very nature, is very well suited to solve this problem. It can be used to define the 
geological boundaries with the strong density contrasts typical for salt dome struc-
tures. In addition, the salt diapirs are characterized by diamagnetic properties, which 
makes it possible to use magnetic data to delineate the salt. There were a number of 
publications dedicated to standalone inversions of the FTG and TMI data (Wan and 
Zhdanov 2008; Gernigon et al. 2011; Stadtler et al. 2014; Paoletti et al. 2020; Tu and 
Zhdanov 2021; Tao et al. 2021).
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Fig. 18.7 Map of the vertical gradient of the gravity field,.Gzz, over the area of inversion. The salt 
diapirs are manifested by the relatively low values of.Gzz . The location of profile LL’ is shown by 
black line 

However, to produce well-resolved images of the salt structure, conducting a 
joined inversion of the FTG and TMI data is advantageous. In this section, I present 
the results of the joint inversion of the.Gzz component of the gravity tensor and TMI 
field using the Gramian stabilizers. 

Figure 18.7 shows the  map of the.Gzz component observed in the Nordkapp survey 
area. The black rectangular outlines the inversion area. One can clearly see the lateral 
position of the salt diapirs in this map shown by cool colors, which corresponds to 
the relatively low values of the vertical gradient of the gravity field, .Gzz . The black 
line shows profile II’ traversing the salt diapirs. 

Figure 18.8 presents the map of the TMI component over the survey area. The 
diapirs are not as clearly shown in the magnetic map as in the gravity gradient data 
(Fig. 18.7). Nevertheless, some local lows in the magnetic data can be observed 
along the same profile II’ on the magnetic field map as on the gravity gradient map 
data (Fig. 18.7). 

We have applied three types of inversion to the observed gravity gradient and 
magnetic data: (1) separate (standalone) inversions of each data set; (2) joint inversion 
using the deterministic Gramian stabilizer; (3) joint inversion using the probabilistic 
Gramian stabilizer.
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Fig. 18.8 Map of the total magnetic intensity field over the area of inversion. The salt diapirs are 
manifested by the relatively low magnetization. The location of profile LL’ is shown by black line 

The iterative conjugate-gradient method was used in all inversions. Figure 18.9 
shows the convergence plots of the iterative process for the standalone inversions 
(gravity and magnetic) and joint inversions with deterministic and probabilistic 
Gramian, respectively. We use the same level of 5% for the normalized misfit between 
the observed and predicted data to terminate all iterative inversions. One can see that 
the standalone inversions converge very fast in less than ten iterations. The deter-
ministic Gramian requires a relatively large number of iterations (about 110). The 
inversion based on probabilistic Gramian converges much faster (about 60 iterations). 

Figures 18.10, 18.11, and 18.12 show the vertical sections along profile II’ of 
the inverse density and magnetization images produced by standalone, deterministic 
Gramian, and probabilistic Gramian, respectively. One can clearly see the salt diapirs 
in these images manifested by low density and magnetization. A typical density of 
the base tertiary rocks in the area of investigation is within 2.30–2.38 g/cm. 

3. The  salt  
diapirs are usually characterized by negative density anomalies, which is clearly seen 
in top panels of Figs. 18.10, 18.11, and 18.12. The negative magnetization within the 
salt diapir indicates that it is opposite to the direction of the inducing magnetic field, 
which corresponds to a diamagnetic property of the salt structures. At the same time, 
the magnetization is positive outside the diapir, which is typical for paramagnetic 
minerals present in Cretaceous sea-bottom layers of the host formations (Paoletti et al. 
2020; Tao et al. 2021). Thus, the volume distribution of the density and magnetization
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Fig. 18.9 Convergence plots of the iterative process for the standalone inversions are shown by 
blue line for gravity inversion and by green line for magnetic inversion. The corresponding conver-
gence plots for joint inversions are shown by black and red lines for deterministic and probabilistic 
Gramian, respectively 

Fig. 18.10 Vertical sections of the inverse density (top panel) and magnetization (bottom panel) 
models produced by standalone inversions 

produced by inversion indicates the salt diapir structure in the Nordkapp basin. Note 
that all three inversions generate the density and magnetization anomalies in the 
respective models with approximately the same locations. However, the structure of 
diapers mapped by the separate gravity and magnetic inversions is quite different. 
At the same time, we observe a robust structural correlation between density and 
magnetization models generated by the Gramian inversions. 

Figure 18.13 presents the cross-correlation plots of density versus magnetization 
for the models produced by each of the three inversions discussed above. The cross-
plot produced by the results of the separate inversions (upper panel in Fig. 18.13) 
represents a cloud with a weak correlation (the calculated correlation coefficient, . η
is equal 0.7). The joint inversion results with deterministic Gramian have a slightly



348 18 Case Histories of Joint Inversion of Gravity and Magnetic Data

Fig. 18.11 Vertical sections of the inverse density (top panel) and magnetization (bottom panel) 
models produced by the joint deterministic Gramian inversion 

Fig. 18.12 Vertical sections of the inverse density (top panel) and magnetization (bottom panel) 
models produced by the joint probabilistic Gramian inversion 

improved correlation with.η = 0.73 (middle panel in Fig. 18.13). The joint inversion 
with the probabilistic Gramian shows the best structural correlation with . η = 0.93
(bottom panel in Fig. 18.13). One can also observe the improved correlation between 
the density and magnetization in the vertical sections of the corresponding inverse 
models produced by the joint probabilistic Gramian inversion (Fig. 18.12).
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Fig. 18.13 Cross-correlation plots of density versus magnetization for the models produced by 
standalone inversions (top panel), joint deterministic Gramian inversion (middle panel) and joint 
probabilistic Gramian inversion (bottom panel)
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18.3 Joint Gramian Inversion of Alaska and Yukon Gravity 
and Magnetic Data 

We now discuss the case history 3 representing a joint inversion of gravity and mag-
netic data covering the US state of Alaska and the Canadian province of Yukon. Čuma 
and Zhdanov (2014) developed a computationally effective algorithm for joint inver-
sion of the gravity and magnetic data on a continental scale based on a Gramian 
stabilizer. The developed algorithm was applied to the gravity and magnetic data 
collected over the US state of Alaska and the Canadian province of Yukon, covering 
an area of approximately 2,300,000 km. 

2 ( Čuma and Zhdanov 2017). 
Figure 18.14 presents the geological map of Alaska and Yukon, with the area of 

investigation outlined by the red line. Geologically, Alaska and Yukon are highly 
complex. Fundamentally, the geology of this vast region can be viewed as a collage 

Fig. 18.14 The geological map of Alaska and Yukon. The red line outlines the area of investigation

3 This section was written in collaboration with M. Čuma. 
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of terranes pieced together about 65 to 100 million years ago. Still, the process of their 
formation and assembly continues today. That is why using geophysical methods is 
extremely important to understand the geological structure of the vast region rich 
with mineral resources. 

The gravity and magnetic data over Alaska and Yukon are available as global prod-
ucts, with the base data typically obtained by satellite observations and augmented 
with the ground or airborne data, where available. 

In this case study, Čuma and Zhdanov (2017) used the Alaska ground-based 
gravity data from the United States Geological Survey (USGS), with a total of 91,547 
stations covering an area of approximately 1,800,000 km. 

2. Natural Resources Canada 
assembled the Yukon gravity data based on 12,211 stations distributed over an area 
of roughly 500,000 km. 

2. We have interpolated the corresponding Bouguer gravity 
anomaly data into a 1 km by 1 km grid resulting in 2,504,665 observation points. In 
addition, these gravity data were then processed with a high-pass filter with a cutoff 
of 10,000 m to remove regional effects. Figure 18.15 presents the map of the Bouguer 
anomaly gravity data used in the inversion. The black dots denote the coastline. 

Fig. 18.15 Map of the Bouguer Anomaly gravity data used in the inversion. The black dots denote 
the coastline, and the black box outlines the Minchumina Basin area analyzed in more detail
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Fig. 18.16 Map of the total magnetic intensity data used in the inversion. The black dots denote 
the coastline and the black box outlines the Minchumina Basin area analyzed in more detail 

Magnetic data for this study were based on EMAG2_V3 model (Meyer et al. 
2016), which was compiled from satellite, ship, and airborne magnetic measurements 
and delivered on a 2-arc-minute grid (approximately 2 km) in WGS94 coordinate 
system. We extracted the data covering the area of Alaska and Yukon and analytically 
continued the data upward to an elevation of 4 km. Figure 18.16 shows the map of 
magnetic data on a 2 km.× 2 km grid used in the inversion. 

For both independent and joint inversions on the continental scale, we have dis-
cretized the inversion domain by a rectangular grid with a horizontal cell size of 2 km 
by 2 km and with the vertical discretization started with a 200 m vertical cell size 
and increased by 3% at every horizontal layer up to a total depth of the inversion 
domain of 27 km. Thus, the total number of cells in the discretization grid was about 
60 million. The inversion was done with a parallel OpenACC GPU-enabled program 
( Čuma and Zhdanov 2014). 

I present the results of independent and joint inversions of the gravity and magnetic 
data here.
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Fig. 18.17 Horizontal cross sections of recovered density by separate (left panels) and joint (right 
panels) inversions at 500 m depth (upper two panels) and 10 km depth (lower two panels) 

Figures 18.17 and 18.18 show horizontal cross sections of density and suscepti-
bility obtained with separate and joint continental-scale inversions. The differences 
between the results of the individual and joint inversions are hard to notice due to 
the large scale of the inversion domain, but overall, they are relatively small due to 
the aforementioned weak coupling enforcement. 

To assess the utility of continental-scale inversion for regional anomaly explo-
ration and to evaluate the effect of density and susceptibility coupling at a reasonably 
observable scale, we also focused on a regional section of about 100 km by 100 km 
in the Minchumina Basin in central Alaska. There is a number of underexplored 
basins in Alaska that have hydrocarbon potential, and this is one of them. We ran 
this regional scale inversion on 500 m by 500 m horizontal cell size and vertical size 
starting with 150 m and increasing by 3% up to the depth of 27 km. In this basin, the 
correlation between density and susceptibility is relatively strong, and therefore we 
were able to increase the strength of the Gramian stabilizer. As in the whole domain 
case, we ran the inversion to a normalized .L2 norm misfit of 1%.
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Fig. 18.18 Horizontal cross sections of recovered susceptibility by separate (left panels) and joint 
(right panels) inversions at 500 m depth (upper two panels) and 10 km depth (lower two panels) 

In Figs. 18.19 and 18.20, we compare the results of the separate and joint inversions 
of the Minchumina Basin subset for a few horizontal cross sections obtained from the 
continental-scale inversions. The density maps shown in the figures are fairly similar 
between the separate and joint inversions, but we observe noticeable focusing of the 
susceptibility, particularly near the surface. For these particular upward continued 
TMI data, the main advantage of the joint inversion is the considerably improved 
susceptibility resolution at the near-surface. 

Thus, the utility of a joint inversion approach on a continental scale lies in a 
single coupled density and susceptibility model of the whole continent, where a 
geoscientist can focus on areas of geological interest without the need to perform 
separate inversions on these areas. 

We should note that the cited paper Čuma and Zhdanov (2017) did not account for 
the variability of relationships between materials’ properties. In large-scale interpre-
tation like this, one can expect different correlations between rock properties, varying 
with the area. In this case, one can apply a concept of localized Gramian discussed 
in Chap. 12 (Sect. 12.5). This concept allows the researcher to recover multiple litho-
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Fig. 18.19 Minchumina Basin area: horizontal cross sections of density recovered by the inde-
pendent continental-scale inversion (left panels) and joint continental-scale inversion (right panels) 
at 500 m depth (upper panels) and 10 km depth (lower panels) 

logic relationships between the different physical properties, which can vary over the 
survey area. Future research should be directed toward implementing this approach 
in the framework of continental-scale inversion. Also, it was shown above that inver-
sion for the magnetization vector instead of susceptibility is more flexible as it allows 
accounting for irregularly magnetized rocks such as those with remanence or strong 
magnetization.
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Fig. 18.20 Minchumina Basin area: horizontal cross sections of susceptibility recovered by the 
independent continental-scale inversion (left panels) and joint continental-scale inversion (right 
panels) at 500 m depth (upper panels) and 10 km depth (lower panels) 
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Mitrinović DS, Pečarić JE, Fink AM (1993) Gram’s inequality. In: Classical and new inequalities 
in analysis. Mathematics and its applications (East European Series), vol 61. Springer 

Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. MIT Press 
Molodtsov DM, Troyan V (2017) Multiphysics joint inversion through joint sparsity regularization. 
In: Expanded Abstracts: Proceedings of 87th annual international meeting. Society of Exploration 
Geophysicists: Tulsa, OK, USA, pp 1262–1267 

Moorkamp M, Heincke B, Jegen M, Robert AW, Hobbs RW (2011) A framework for 3-D joint 
inversion of MT, gravity and seismic refraction data. Geophys J Int 184:477–493 

Morozov VA (1993) Regularization methods for ill-posed problems. CRC Press 
Mosegaard K, Sambridge M (2002) Monte Carlo analysis of inverse problems. Inverse Probl 
18:R29–R54 

Muller JL, Siltanen S (2012) Linear and nonlinear inverse problems with practical applications. 
SIAM Press 

Mungall JE, Harvey JD, Balch SJ, Azar B, Atkinson J, Hamilton MA (2010) Eagle’s nest: a magmatic 
Ni-sulfide deposit in the James Bay Lowlands. Ontario, Canada, vol 15. SEG Special Publication, 
pp 539–557 

Neto FDM, Neto AJ (2013) An introduction to inverse problems with applications. Springer



Bibliography 363

Oliveira JP, Bioucas-Dias JM, Figueiredo MA (2009) Adaptive total variation image deblurring: a 
majorization-minimization approach. Signal Proc 89(9):1683–1693 

Ontario Geological Survey and Geological Survey of Canada (2021) Ontario airborne geophysical 
surveys, gravity gradiometer and magnetic data, grid and profile data (ASCII and Geosoft formats) 
and vector data. Geophysical Data Set, McFaulds Lake area, In Ontario Geological Survey, p 1068 

Paoletti V, Milano M, Baniamerian J, Fedi M (2020) Magnetic field imaging of salt structures at 
Nordkapp Basin, Barents Sea. Geophys Res Lett 47(18) 

Parker RL (1994) Geophysical inverse theory. Princeton University Press, Princeton, NJ, p 386 
Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 
64(3):874–887 

Portniaguine ON, Zhdanov MS (2005) Method of digital image enhancement and sharpening. US 
Patent No. 6,879,735 

Pratt WK (2007) Digital image processing: PIKS Scientific inside, vol 4. Wiley-Interscience, Hobo-
ken, New Jersey 

Press F (1968) Earth models obtained by Monte Carlo inversion. J Geophys Res 73:5223–34 
Press F (1970) Earth models consistent with geophysical data. Phys Earth Planet Inter 3:3–22 
Press F (1970) Regionalized earth models. J Geophys Res 75:6575–81 
Press WH, Flannery BP, Teukolsky SA, Vettering WT (1987) Numerical recipes, the art of scientific 
computing, vol I and II. Cambridge University Press, Cambridge, 1447 pp 

Raissi M, Paris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. 
J Comput Phys 378:686–707 

Ramos FM, Campos Velho HF, Carvalho JC, Ferreira NJ (1999) Novel approaches to entropic 
regularization. Inverse Probl 15:1139–1148 

Rawlinson N, Hauser J, Sambridge M (2008) Seismic ray tracing and wavefront tracking in laterally 
heterogeneous media. Adv Geophys 49:203–273 

Reddy BD (1998) Introductory functional analysis. Springer, 472 pp 
Rosenblatt F (1957) The Perceptron—a perceiving and recognizing automaton. Report 85-460-1. 
Cornell Aeronautical Laboratory 

Rosenblatt F (1962) Principles of neurodynamics. Spartan Books, DC Washington 
Ross S (2010) A first course in probability, 8th edn. Printice Hall, Upper Saddle River, New Jersey, 
p 07458 

Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. 
Physica D 60:259–268 

Sabatier PC (1977) On geophysical inverse problems and constraints. J Geophys Res 43:115–137 
Schuster G (2023) Machine learning methods in geoscience. Society of Exploration Geophysicists 
Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev 
Geophys 40(3):1–29 

Shannon CE (1948) A mathematical theory of communication. Bell Sys Tech J 27(379–423):623– 
656 

Smith JT, Booker JR (1991) Rapid inversion of two- and three-dimensional magnetotelluric data. J 
Geophys Res 96:3905–3922 

Smith RT, Zoltani CK, Klem GJ, Coleman MW (1991) Reconstruction of the tomographic images 
from sparse data sets by a new finite element maximum entropy approach. Appl Opt 30:573–582 

Stadtler C, Fichler C, Hokstad K, Myrlund EA, Wienecke S, Fotland B (2014) Improved salt imaging 
in a basin context by high resolution potential field data: Nordkapp Basin. Barents Sea. Geophys 
Prospect 62(3):615–630 

Stark H (2013) Image recovery: theory and applications. Academic 
Strakhov VN (1968) Numerical solution of incorrect problems representable by integral equations 
of convolution type (in Russian). DAN SSSR 178(2):299 

Strakhov VN (1969) Theory of approximate solution of the linear ill-posed problems in a Hilbert 
space and its application in applied geophysics, Part I (in Russian). Izvestia AN SSSR, Fizika 
Zemli, No 8:30–53



364 Bibliography

Strakhov VN (1969) Theory of approximate solution of the linear ill-posed problems in a Hilbert 
space and its application in applied geophysics, Part II (in Russian). Izvestia AN SSSR, Fizika 
Zemli, No 9:64–96 

Tao M, Jorgensen M, Zhdanov MS (2021) Mapping the salt structures from magnetic and gravity 
gradiometry data in Nordkapp Basin. SEG/AAPG International meeting for applied geoscience 
& energy, Houston, Texas, USA, Barents Sea, pp 874–878 

Tarantola A (1987) Inverse problem theory. Elsevier, Oxford, New York, Tokyo, Amsterdam, p 613 
Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, 
344 pp 

Tarantola A, Valette B (1982) Generalized nonlinear inverse problem solved using the least squares 
criterion. Rev Geophys Space Phys 20:219–232 

Tikhonov AN (1943) On the stability of inverse problems (in Russian). Doklady AN SSSR 
39(5):195–198 

Tikhonov AN (1999) Mathematical geophysics (in Russian). Moscow State University, 476 pp 
Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. V. H. Winston and Sons 
Tu X, Zhdanov MS (2020) Enhancement and sharpening the migration images of the gravity field 
and its gradients. Pure Appl Geophys 177(6):2853–2870 

Tu X, Zhdanov MS (2021) Joint Gramian inversion of geophysical data with different resolution 
capabilities: case study in Yellowstone. Geophys J Int 226(2):1058–1085 

Tu X, Zhdanov MS (2022) Joint focusing inversion of marine controlled-source electromagnetic 
and full tensor gravity gradiometry data. Geophysics 87(5):K35–K47 

Vogel CR, Oman ME (1998) Fast total variation based reconstruction of noisy, blurred images. 
IEEE Trans Image Proc 7:813–824 

Vogel CR (2002) Computational methods for inverse problems. Society for Industrial and Applied 
Mathematics 

Wan L, Zhdanov MS (2008) Focusing inversion of marine full tensor gradiometry data in offshore 
geophysical exploration. 78th SEG technical program expanded abstracts. Tulsa, OK, pp 751–754 

Wang R, Tao D (2014) Recent progress in image deblurring. arXiv:1409.6838 
Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility 
to structural similarity. Proc IEEE Trans Image Proc 13(4):600–612 

Wernecke SJ, D’Addario LR (1977) Maximum entropy image reconstruction. IEEE Trans Comput 
26:351–364 

Whitley DL (1994) A genetic algorithm tutorial. Stat Comput 4:65–85 
Wolberg J (2006) Data analysis using the method of least squares. Springer, 250 pp 
Zhdanov MS, Fang S (1996) 3-D quasi-linear electromagnetic inversion. Radio Sci 3(4):741–754 
Zhdanov MS (1988) Integral transforms in geophysics. Springer, Berlin, London, Tokyo, New York, 
p 367 

Zhdanov MS (1993) Tutorial: regularization in inversion theory. CWP-136, Colorado School of 
Mines, 47 pp 

Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier, 628 pp 
Zhdanov MS (2009) New advances in 3D regularized inversion of gravity and electromagnetic data. 
Geophys Prospect 57(4):463–478 

Zhdanov MS (2015) Inverse theory and applications in geophysics. Elsevier, 704 pp 
Zhdanov MS (2018) Foundations of geophysical electromagnetic theory and methods. Elsevier, 
770 pp 

Zhdanov MS (2019) Method of simultaneous imaging of different physical properties using joint 
inversion of multiple datasets. U.S. Patent 10,242,126 

Zhdanov MS (2022) Joint minimum entropy method for simultaneous processing and fusion of 
multi-physics data and images. U.S. Patent Application 17/343,218 
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