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Abstract The weak EoR signal is submerged in the strong foreground radiation 
interference. The classic the foreground removal methods assume that the foreground 
spectrum is smooth, but the complex instrumental effect will affect the spectral struc-
ture, resulting in the failure to accurately detect the signal. In this paper, a deep 
learning network called CNN-LSTM model is proposed to separate the EoR signal 
to improve computing resource utilization for massive observational data. Based 
on the simulation data of SKA1-LOW, a CNN-LSTM fusion model is constructed 
to reconstruct the EoR signal. Experimental results show that compared with the 
traditional methods including polynomial fitting and continuous wavelet transform, 
the EoR signals detected by the proposed deep learning model have better quanti-
tative evaluation indexes of SNR and Pearson correlation coefficient. This property 
provides a new way to explore the research field of EoR. 
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1 Introduction 

The 21-cm neutral hydrogen line records the evolution stage of the universe from 
neutral hydrogen filled to ionized hydrogen. Studying the cosmic EoR signals of 
great significance for exploring the epoch of EoR (EoR) and the formation of the first 
generation of celestial bodies in the evolution of the universe. The radiation intensity 
of EoR signal is lower than 10 mK, while the brightness temperature of foreground 
radiation signal is about 4–5 orders of magnitude higher, and the power SNR reaches
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about -50 dB. The weak EoR signal is submerged in the strong foreground radiation 
interference, containing a large amount of noise caused by instrument effect. It indi-
cates that accurate identification and separation of foreground interference is the key 
to solve the problem of detecting EoR signal in image space and power spectrum 
space. 

At present, some methods can be used to detect the EoR signal. The traditional EoR 
signal separation methods mainly include foreground subtraction and foreground 
avoidance. The foreground subtraction method is to separate the EoR information 
from the strong foreground disturbance in image space or Fourier space by using the 
different characteristics of foreground contamination and EoR information displayed 
on the spectrum. Based on such ideas, V. Jellić et al. constructed a parametric model 
to describe the spectral variation of the foreground, so as to fit and deduct the pollution 
in the simulated radio sky map, which has a significant effect on removing the large-
scale foreground interference [1]. After that, Adrian Liu used weighted polynomials 
to fit the information content of each pixel. On the basis of maintaining the original 
effect, Adrian Liu processed the small-scale foreground components more effectively 
[2]. Anna Bonaldi applied the correlation component analysis (CCA) method to the 
simulated data of square kilometer array, effectively clearing the foreground and 
noise in the observation data within the exploration frequency range (100–200 MHz) 
[3]. However, the selection of fitting parameters makes the experimental results 
fluctuate greatly, and both over fitting and under fitting will cause the real features 
of the foreground to be unable to be accurately captured, thus affecting the detection 
effect of the EoR signal [3]. The Wp smoothing method proposed by Harker [4] 
avoids the fitting residuals being polluted by the power leakage in the foreground 
and makes full use of spectral features to achieve separation. Gu uses continuous 
wavelet transform to greatly reduce the calculation amount on the basis of ensuring 
the same reconstruction effect as Wp smoothing method [5]. 

Such methods require a high degree of smoothness in the foreground radiation 
spectrum to clearly distinguish the reionized signal. In many cases, the foreground 
deduction method may mistake some large-scale EoR signals as pollution and deduct 
them, which makes the fitted signals differ greatly from the input signals. Ian H 
assumed that the foreground interference existed in a region of the two-dimensional 
power spectrum and processed its power spectrum to avoid the foreground contam-
inated area to extract EoR signals. This foreground avoidance method reduced the 
deviation of the foreground deduction method, but it would cause the information 
of the observed data outside the EoR window to be ignored in the processing [6]. 
The work of Patil et al. discussed the influence of various factors on the EoR power 
spectrum by calibrating residual sidelobe noise, nonlinear effects, and gain errors 
caused by noise and ionosphere at the baseline [7]. 

In addition, the processing of massive data collected by large interferometric 
arrays such as SKA1-LOW is also a key bottleneck [8]. With high sensitivity and 
resolution, the equipment can detect signals with complex morphology and extremely 
high radiation intensity range, which provides more observation information for the 
detection of EoR signals.
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Literature [9–11] shows its outstanding performance in galaxy cluster identifica-
tion and classification, pulsar search, and other aspects. These applications indicate 
that deep learning has the potential to extract weak signals from highly time-varying 
data and can be used to solve the problem of EoR signal separation. 

In this paper, with the aid of OSKAR [https://github.com/OxfordSKA/OSKAR] 
and WSClean [https://sourceforge.net/projects/wsclean/] simulation with instrument 
effect data radio sky, the deep learning algorithm is used to construct the CNN-LSTM 
fusion model to separate the reionized signal from the complex foreground pollution, 
and it is compared with the traditional polynomial fitting and continuous wavelet 
transform method, which provides a new idea for detecting the reionized signal. 

1.1 EoR Signal Separation Approach 

At present, a number of methods have been proposed to try to separate EoR signals 
from foreground interference, including the traditional foreground deduction method, 
foreground avoidance method, and the newly developed crossover study of deep 
learning and EoR signal. In the study of EoR signals, the most classical methods are 
polynomial fitting [12] and continuous wavelet transform [5]. In fact, the separation 
algorithm has different treatment effects on the pollution components with different 
physical sources and morphological characteristics. 

1.2 Foreground Removal Method 

Di Matteo first uses the angle fluctuation of the 21-cm spectral line to separate the 
foreground contamination, but the effective signal is submerged by various fore-
ground radiation and difficult to separate. Later, Zaldarriaga et al. shifted their focus 
to the frequency correlation of foreground and used the mutual correlation as deduc-
tion, which evolved into the line of sight (LOS) method [13], that is, in image space or 
UV space (Fourier space). Based on the distinct spectral features of foreground radi-
ation and EoR signal, smooth foreground components are identified and subtracted 
for each pixel along the frequency dimension (i.e., line of sight direction). In the 
following research, Chapman et al. [14] divided it into the method that adopts func-
tional form (parameterized) for foreground signal and the method that slightly liber-
ates this form (non-parameterized), aiming to find the form of smooth foreground 
function along frequency for each line of sight and subtract it from the total signal. 
Leaving behind noise, fitting errors, and residuals of the cosmological signal.

https://github.com/OxfordSKA/OSKAR
https://sourceforge.net/projects/wsclean/
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2 Polynomial Fitting 

Early parametric methods used polynomials to fit directly to the measured data in 
the frequency or logarithmic frequency domain. The usual way of polynomial fitting 
is to fit the total observed spectrum along the line of sight with a smooth function, 
such as a polynomial of order N: 

log Tb,fg(v) = a0 + 
n∑

i=1 

ai log vi (1) 

The order n is set as 2, and Jelic adjusts the order n to 3 and discusses the influence 
of polynomial order on the fitting effect. If the order of polynomial is too small, the 
foreground fitting will be insufficient, and the fitting residuals will affect the EoR 
signal. If the order of the polynomial is too large, the EoR signal is over fitted. 

After stripping the radio source with very large brightness temperature in the 
frequency domain space, the foreground interference is deducted along the line of 
sight according to the characteristic that the foreground component has smoother 
spectrum than the EoR signal. In other words, the logarithm of the total signal inten-
sity I total of the observed frequency received by pixel Vi in the line of sight direction 
gives the function. 

Yi = lg(ITotal(Vi )) (2) 

The intensity of foreground component was simulated by multi-order polynomial 
fitting to the logarithmic signal Ifore, 

Ifore(Vi ) ≈ a0 + a1 lg(vi ) + a2 lg2 (vi ) (3) 

EoR signal radiation and instrument noise can be expressed as the difference 
between the overall radiation intensity and the fitted polynomial signal intensity. 

According to the different angular power spectrum of the signal, the reconstructed 
signal is obtained by subtracting the instrument noise IEoR'

Ig(ITotal(Vi )) ≈ a0 + a1 lg(vi ) + a2 lg2 (vi ) + IEOR
(
vi

)
(4) 

IEOR'(vi ) ≈ ITotal(vi ) − 10a0+a1 lg(vi ) + a2 lg2 (vi ) (5) 

Fitting the foreground signal with various curve functions will have different influ-
ences on the extraction of EoR signal, such as exponential function, Fourier function, 
Gaussian function, and power exponential function. Chapman et al. showed in their 
research work that the EoR signal extracted by linear fitting the foreground signal is 
closer to the simulated signal [14]. In the work of Bonaldi [15]. and Brown, the idea of
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polynomial fitting was introduced into Fourier domain correlation component anal-
ysis, and second-order statistics were used to estimate the spectrum of foreground 
components from data [13]. For this study, we will adopt the conclusion of Jelic et al. 
and use third-order polynomials to fit in log space. 

2.1 Continuous Wavelet Transform 

Non-parametric methods do not directly assume that foreground spectra should 
conform to a particular parametric model, or any spatial structure about them, but 
make full use of the different spectral characteristics of foreground radiation and 
EoR signals to achieve the separation of the two. For example, typical methods are 
Wp smoothing, independent component analysis, ICA, generalized morphological 
component analysis (GMCA), and continuous wavelet transform (CWT). 

In this paper, we use the continuous wavelet transform method outlined by Harker 
et al., and according to the inverse CWT definition proposed by Daubechies [16], 

h(t) = 
2 

Cψ 

∞ ∫
0

[ ∞ ∫
−∞ 

Wx,ψ(τ, s) 
1 √|s| ψ

(
t − τ 
s

)
dτ

]
ds 

s2 
(6) 

where h(t) represents the real space signal to be transformed, ψ(t) called the mother 
wavelet function, and τ, s represents the real space and scale exponent of the wavelet 
coefficient Wx,ψ . Prospect in the study of EoR, radiation, and EoR signal distribu-
tion of significant coefficients is different, and the significant coefficients of smooth 
prospects mainly depend on the data boundary discontinuity, 

ψs(t) = 
ψ

(
t 
s

)
√|s| (7) 

where Td(v) represents the wavelet coefficient of the total radiation signal, δc is 
the Dirac delta function, and vmin represents the lower frequency limit. The wavelet 
coefficients of the total signal are filtered through a mask. Since the wavelet transform 
is actually the cross correlation between ψs (t) and the real space signal h(t), according 
to the cross correlation theorem, the real space signal can be effectively calculated 
in the Fourier space, and this equation is used to reconstruct the filtered EoR signal. 

h(t) = 
2 

Cψ 

∞∫

0 

F−1
{
F

{
Wx,ψ

} · ψs
}
(t, s) 

ds 

s2 
. (8) 

Harker introduced the Wp smoothing method into the EoR detection experiment 
and used the physical expected values of foreground components for separation. This 
method uses a smoothing function to fit a set of observations of a frequency channel. 
Machler first studied the boundary value problem to give a smooth function formula;
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Gu et al. further studied the problem and gave a new algorithm. Although a general 
smoothness of the foreground is assumed to make the method a good application, the 
method includes a smoothness parameter that allows the user to control the harshness 
of this smoothness condition to allow for deviations from the prior smoothness. 

In addition, Chapman et al. applied FastICA to EoR simulations as an independent 
component analysis technique, which assumes that foreground components are statis-
tically independent in order to model them. Emma Chapman et al., using the compo-
nent separation method, generalized morphological component analysis (GMCA) 
[14] has successfully conducted separation experiments on simulated LOFAR data. 

2.2 Foreground Avoidance Method 

The advantage of foreground deduction method is that it can retain all the information 
of EoR signal, but the disadvantage is that it may not be able to deduct foreground 
pollution accurately or some large-scale EoR signals are mistaken for foreground and 
deducted, resulting in a certain degree of deviation in the results. In order to effectively 
avoid the possible deviation caused by foreground pollution on EoR detection results, 
foreground avoidance method has been paid more attention and studied in recent 
years. 

In the study of Chapman et al. [17], it is shown that by deducting the foreground by 
modeling or by analyzing the specific part of the EoR delay power spectrum that is not 
affected by the foreground, there is an “EoR window” in the two-dimensional power 
spectrum theoretically because most of the instrumental color effect is confined to the 
wedge. The effectiveness of this method mainly depends on the instrument response 
and the smoothness of the observed sky [18]. 

Liu et al. proposed a mathematical formalism for describing wedges [19] that 
allows maximizing the range of the EoR window. Several methods have also been 
developed to estimate the covariance of prospects, which can then be incorpo-
rated into the power spectrum estimator. However, these foreground avoidance or 
suppression methods have the disadvantage of substantially reducing the sensi-
tivity of the instrument, as they reduce the number of detectable patterns. Moreover, 
Rajesh Mondal et al. [20] Future observation studies using the upcoming SKA-LOW 
measure the prospect of EoR signals and in this work quantitatively addresses the 
impact of prospects on map delectability predictions by avoiding signals contained 
within the planar foreground wedge. 

2.3 Deep Learning Method 

In recent years, some literatures have explored the idea of foreground removal based 
on machine learning, and several attempts have been made to improve the perfor-
mance and accuracy of neural networks for the task of detecting EoR signals, with
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varying degrees of success. Samuel Gagnon-Hartman et al. described and tested the 
implementation of a U-Net architecture [21] with the aim of using information from 
Fourier patterns to identify ionized regions in wedge-filtered images and to be able 
to reconstruct their shape, size, and location in the image. In the work of Li et al. 
[22]. 

In addition, Shimabukuro et al. [23] introduced artificial neural networks (ANNs) 
to constrain astrophysical parameters from the 21-cm power spectrum to rigorously 
estimate the 21-cm power spectrum from the interferogram while mitigating fore-
ground contamination, thus improving sensitivity. In La Plante’s work, the convolu-
tion neural network (CNN) is used to further constrain the cosmological parameters 
during the EoR period. By using several supervised learning methods to improve 
prediction accuracy, including neural networks, kernel regression, or ridge regres-
sion, this work compares the performance of these methods using a large training set 
of SKA simulated 21-cm power spectra. 

In contrast, in our work, in order to study the EoR signal separation problem, we 
treat foreground radiation as strong noise and EoR signal as effective signal, so the 
problem is transformed into the identification problem of EoR signal: By removing 
the noise (i.e., foreground radiation) in the total radiation signal (i.e., the sum of EoR 
signal and foreground radiation), the signal (i.e., EoR signal) is obtained, and the 
separation of EoR signal and foreground radiation is realized. 

3 Methods 

3.1 CNN BiLSTM Network Architecture 

We built a neural network to eliminate the foreground radiation seen in the instrument 
beam pattern and separate the weak EoR signal. The effect will be demonstrated with 
the help of a radio sky simulating SKA observations. According to the astrophysical 
theory, we preprocessed the OSKAR simulated visibility data to exclude the influence 
of instrument effect as much as possible and then standardized the data. 

3.2 Classic Convolutional Neural Network 

The essence of the problem of detecting the EoR signal is to separate the fore-
ground contamination and extract the EoR signal from the total radiation signal. One-
dimensional convolutional neural network (CNN) can extract a variety of abstract 
features from data and has a good performance effect in the separation of mono sound 
sources. The core of neural network is to extract features layer by layer through 
convolution operation,
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X (l) 
j = f 

⎛ 

⎝
∑

i∈M j 

X (l−1) 
j ∗ K (b) i j  + b(b) 

j 

⎞ 

⎠ (9) 

where l the number of is convolutional layers; X (l) 
j is the first feature map of the 

layer, K (b) i j  is the convolution kernel, and b is the bias term. ∗ stands for convolution 
operator. 

3.2.1 Long Short-Term Memory 

The bidirectional long short-term memory network (LSTM) derived from recurrent 
neural network (RNN) has a strong ability to extract weak features from highly time-
varying data. This model mainly adds three gating structures of hidden layers to the 
original recurrent neural network. The calculation method is as follows: 

ft = σ
(
W f ·

[
ht−1, xt

] + b f
)
, (10) 

it = σ
(
Wi ·

[
ht−1, xt

] + bi
)

(11)

C̃t = tan h
(
WC ·

[
ht−1, xt

] + bC
)

(12) 

Ct = ft ∗ Ct−1 + it ∗ C̃t , (13) 

ot = σ
(
Wo

[
ht−1, xt

] + bo
)

(14) 

ht = ot ∗ tan h(Ct ) (15) 

The parameters in the above formula are updated through the internal unit structure 
of LSTM, where xt represents the input value at the current unit time, ht-1 represents 
the output value at the previous unit time, C̃ represents the state information of 
candidate unit, and Ct represents the internal state information of current unit. The 
input gate i determines the part of the input information that can be reserved for Ct ; the  
forgetting gate f decides to save the part of the unit state Ct−1 at the previous moment 
according to the data feature information of the attention feature; the output gate o 
determines the part of the hidden state at the moment t−1 that can be transferred to 
the current state. Its unit structure is shown in Fig. 1.
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Fig. 1 LSTM internal structure diagram 

3.2.2 Fusion Module 

The analysis can predict that the two networks have the ability to process astronomical 
data and separate EoR signals. Since the signal-to-noise ratio of the signal to be 
measured is very low, we take advantage of the characteristics of CNN and LSTM 
and combine the advantages of the two frameworks to construct a new CNN-BiLSTM 
network. 

In the test phase, we constructed two kinds of fusion deep neural networks, which 
were vertically and horizontally combined with CNN and LSTM, respectively, and 
finally selected the vertical cascade structure with better performance as the model 
basis. In this model, LSTM receives the output of CNN and extracts features in a 
deeper way. The architecture of the CNN-BiLSTM model is shown in Fig. 2, followed 
by a detailed overview of the framework.

The local characteristics of the input data used in this paper, the model could reflect 
the key information of phase spectrum change point, convolution neural network 
(CNN) with multiple local feature extraction of convolution layer to the data, because 
each convolution filter layer contains a fixed size, and quantity greatly reduced, in 
the use of the limited weight of back propagation algorithm to update the parameters, 
After data preprocessing, each pixel in the observation area is listed in the dimension 
of observation frequency as the input of three one-dimensional convolutional layers, 
in which the first convolutional layer contains 32 filters of size 3 × 1, and the second 
and third convolutional layers contain 16 filters of size 3 × 1. The eigenvector is 
obtained by operation according to the equation vi,
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Fig. 2 Network architecture diagram

v (l) i = φ(l) 

⎛ 

⎝ 
ml−1∑

j=1 

v (l−1) 
j ∗ W (l) i + b(l) 

i 

⎞ 

⎠, i = 1, 2, . . . ,  m l (16) 

where l represents the sequence number of convolutional layer, m1 represents the 
total number of filters in layer l, ϕ represents the activation function of this layer, 
W (l) i and b(l) 

i , respectively, represent the weight parameter and bias term of layer 

l, and set
{
v (l) i

}
; i = 1, 2, . . . ,  m l represents the sum of feature vectors obtained 

from all filters in layer l. 

3.2.3 Activation Function 

By comparing and testing the effects of different activation functions, Swish function 
is finally determined as the activation function of network convolutional layer. 

f (x) = x ∗ σ (β x) (17) 

where σ stands for sigmoid function. Sigmoid function has saturation property, and 
introducing β can train parameters to avoid gradient disappearance. When β takes 
different values, the function image is as follows (Fig. 3).

Swish function is essentially a smooth function between linear function and ReLU 
function. Since the sparse processing forced by ReLU will reduce the effective 
capacity of the model, when the gradient is 0 when x < 0, it often leads to the 
problem of neuron death. The Swish function can correct this problem and adjust
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Fig. 3 Swish function curve

the training parameters suitable for the model so that the network can achieve higher 
performance than the standard ReLU. 

After maximum pooling, the feature vectors are passed through the LSTM layer 
containing hidden units, and the state activation function of TANH and the gate 
activation function of sigmoid are used. In addition, we add an appropriate dropout 
layer to the CNN model to discard 20% of random features and weaken the joint 
adaptability between neuronal nodes, thus avoiding overtraining of LSTM sequence 
data. At the same time, Adam algorithm is used to optimize the objective function 
to further improve the performance of the model. 

3.3 Model Training 

The CNN-LSTM network architecture is trained and tested. Firstly, uniform initial-
ization was used to set all parameters of the network to random values. The initial 
learning rate was set as 0.003, and the batch size was set as 125. The total radiation 
spectrum data of pixels were input into the network model one by one for convolution 
operation. After 100 rounds of iterative training, EoR signals were separated from 
the network model. The loss function used to guide parameter tuning has been tested 
and decided to quantify the difference between the EoR signal obtained from the 
model and the EoR signal input to the network using cross-entropy, which is defined 
as 

C = −  
1 

n

∑

x 

[y ln a + (1 − y) ln(1 − a)] (18) 

In formula (19), x represents the sample, y represents the actual label, a represents 
the predicted output, and n represents the total number of samples. This loss function
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Fig. 4 Model training process: curve of loss function (left panel) and Evaluation function (right 
panel) 

avoids the problem that the weight of the square loss function is updated too slowly. 
When the error is large, the weight update speed is improved, and when the error is 
small, the weight update speed is slowed down, so that the parameter update strategy 
can be adjusted in time. At the same time, the evaluation function is set, and the 
accuracy is calculated to evaluate the performance of the current training model. 

Figure 4 shows the changes of the loss function and evaluation function with 
the training process, taking the training period as the variable. The final network 
accuracy is 0.972, indicating that the network has good performance. 

4 Experiments 

4.1 Datasets 

The observed data used in the experiment are from the OSKAR simulation data 
based on the SKA1-LOW site layout and the EoR simulation data published by the 
Evolution of 21 cm Structure project. Taking (R.A.,Dec.) = (3°,−27°) as the pointing 
center, the first image cube containing foreground and EoR signals is simulated in 
the frequency band range of 154–162 MHz. For the EoR signal, the data should be 
standardized after eliminating the outliers. We divided 70% of the data points in the 
first set of image cubes into training sets, and the remaining pixels were used as 
validation. All the data in the second image cube are used as the test set to test the 
network performance and reconstruct the complete image of EoR signal. Figure 5 
shows the entire framework of the preprocessing process.
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Fig. 5 Data preprocessing 
pipeline 

4.2 Model Performance 

In the study of EoR, the CLEAN algorithm has limitations on the processing effect of 
faint diffuse radiation, so we took advantage of the “Faintgalaxies” Lightcone image 
cube to generate sky maps by WSClean. As shown in Fig. 6. The EoR image shows 
the density distribution corresponding to the red shift, while in the superposed low-
frequency sky, the EoR signal with relatively low bright temperature is completely 
covered by the intense foreground radiation. 

Fig. 6 Simulated images of the EoR signal (left panel), the foreground emission (middle panel), 
and sky map (right panel) at 160 MHz
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The EoR signal after model processing was imaged, and the difference of EoR 
signal before and after reconstruction was compared. In Fig. 7, for detecting signals 
and reconstruction, overall space structure and the outline is almost the same, choose 
the same color display standardized after radiation intensity distribution. This is 
because there are fine small-scale ripples structures (small ripples) in the foreground 
Fig. 8, there are narrow bands in the power spectrum, making the fitting effect devia-
tion, optimize the model to get a more accurate fitting effect is our next improvement 
direction. 

Figure 9 shows the variation curve of the magnetic field intensity of the received 
foreground radiation signal, EoR signal, and total signal simulated by a randomly 
selected sky pixel as a function of frequency. It can be seen that the EoR signal 
presents a sawtooth spectral structure, but there is a gap of 4–5 orders of magnitude

Fig. 7 Comparison between reconstructed EoR signal (left panel) and reconstructed EoR signal 
(right panel) 

Fig. 8 Small ripples of original foreground signal (left panel) and bright stripe in the 2D power 
spectrum (right panel) 
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Fig. 9 EoR radiation signal 
foreground radiation 
signaling on total radiation 
signal 

between its brightness temperature and that of foreground component. The EoR 
signal cannot be visually distinguished in the total signal. 

4.3 Result Comparison 

In order to verify the difference between the proposed method and the traditional 
method, qualitative and quantitative comparisons of the effects of the two evaluation 
methods were used to compare the separation of EoR signals. 

A. Spectral Analysis 

In the observed frequency band, the spectrum characteristics of the reionized signal 
obtained by the continuous wavelet transform method, polynomial fitting, and deep 
learning model are compared with the original signal. In order to emphasize the 
change effect, the radiation signal is normalized. Can be seen from the Figs. 10, 11, 
and 12 model is presented by this paper get the signal is compared with the other 
two traditional methods to get more close to the input signals of ionization signal, 
again shows that under the complex beam effect can still treat signal fluctuation of 
smaller amplitude and scale of reconstruction, get more complete ionization signal 
spectrum structure again.

B. Quantitative Analysis 

In order to quantify the similarity between the reconstructed reionized signal and 
the input signal, Pearson correlation coefficient and the signal-to-noise ratio (Rsn) of  
the separated signal and the original signal are introduced as quantitative analysis 
indicators to measure the reconstruction effect, so as to better reflect the numerical 
differences of the results obtained by different methods. Combined with the under-
standing of the signal magnetic field strength, the signal-to-noise ratio index (Rsn)
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Fig. 10 Result of 
polynomial fitting method 

Fig. 11 Result of 
continuous wavelet 
transform method 

Fig. 12 Result of 
CNN-LSTM model
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Table 1 Comparison of the 
performance of EoR signal 
reconstruction between 
traditional methods and deep 
learning method 

Index Rsn/dB Pearson 

Polynomial fitting method 9.352 0.477 

Continuous wavelet transform method 13.340 0.316 

CNN-LSTM model 17.231 0.813 

and Pearson correlation coefficient were defined as follows 

Rsn = 10 lg 
E(|reor|)2 

E(|xeor − reor|)2 
, (19) 

(reor, xeor) = 

n∑
j=1

(
reor, j − r eor

)(
xeor, j − xeor

)

/
n∑
j=1

(
reor, j − r eor

)2 n∑
j=1

(
xeor, j − xeor

)2 
. (20) 

where reor is reconstruction EoR signal, xeor is original input EoR signal, and n is 
the length of the signal. Pearson’s correlation coefficient is close to 1, indicating that 
the more accurate the reconstructed EoR signal is, the better the performance of the 
processing method is. Table 1 shows the statistical results of the SNR separation 
performance index, reflecting the different performance effects of polynomial fitting 
method with order 4 and continuous wavelet transform method and deep learning 
model for the same test data. 

These results fully demonstrate that the trained deep learning model can effectively 
separate the spectrum of foreground radiation and EoR signals, so as to accurately 
detect EoR signals. 

5 Conclusions 

The existing EoR signal separation algorithms are not good for signal reconstruction 
when dealing with the foreground components with complex morphological changes 
in massive observation data. This paper first introduces the traditional polynomial 
fitting and wavelet transform method and then discusses the deep learning model from 
the theoretical aspect. After that, it is verified by experiments that the CNN-LSTM 
model is better than the traditional EoR signal separation algorithm in removing 
foreground components, and the SNR and Pearson correlation coefficient are used 
as the evaluation indexes of quantitative analysis to evaluate the separation results 
of different methods. The research can provide a new reference idea for EoR signal 
separation, which can save computing resources such as memory and time, and 
reduce the requirement of hardware. For further improving the reconstruction effect, 
there are still many key problems to be solved, such as the complex instrument effect
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introduced in the observation and the size of the imaging sky area, which will affect 
the detection. In the next work, we will study the influence of wide-field imaging 
of SKA1-LOW on small-scale radiation celestial signals and explore the dispersion 
degree and magnetic field intensity changes of point signals at different phases far 
from the zenith. Since the experiment in this paper is conducted on simulated data, 
the processing effect of observation data from other telescopes needs to be further 
explored. 
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