
An Extensive Study of Frequent Mining 
Algorithms for Colossal Patterns 

T. Sreenivasula Reddy and R. Sathya 

Abstract During the last decade of research, a lot of focus has been placed on the 
subject of frequent pattern mining (FPM). A profitable data set with a large sum 
of transactions and only a few items in each transaction has been used to develop 
numerous FPM algorithms. Because of the rise of bioinformatics, a new sort of 
data set called a high-dimensional data set has emerged, with fewer transactions 
but a greater sum of elements in each. The execution time of classical algorithms 
grows with deal length. High-dimensional data sets can’t be processed by existing 
algorithms. But when applied to large data sets with a lot of dimensions, mining 
algorithms generate a huge amount of data, much of which is useless to scientists 
because of the little and medium-sized patterns they include. As a way to lessen the 
number of output patterns for mining patterns, colossal pattern mining is discussed. 
Since small and mid-sized patterns aren’t mined, mining algorithms for enormous 
patterns run faster. In this work, an extensive study of colossal patterns, existing 
mining algorithms with its drawback is mentioned. The definitions of FPM, high 
utility mining and relation of colossal patterns with others are also explained. Pattern-
Fusion is the first algorithm, which is developed for colossal patterns that is described 
briefly in this work. 

Keywords Frequent pattern mining · Commercial data set · High-dimensional 
data set · Frequent colossal patterns · Data mining · Machine learning

T. S. Reddy (B) 
Research Scholar, Department of Computer Science and Engineering, Faculty of Engineering and 
Technology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu 608002, India 
e-mail: seenu4linux@gmail.com 

R. Sathya 
Assistant Professor, Department of Computer Science and Engineering, Faculty of Engineering 
and Technology, Annamalai University, Annamalai Nagar, Chidambaram, TamilNadu 608002, 
India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
R. Malhotra et al. (eds.), High Performance Computing, Smart Devices 
and Networks, Lecture Notes in Electrical Engineering 1087, 
https://doi.org/10.1007/978-981-99-6690-5_16 

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6690-5_16&domain=pdf
mailto:seenu4linux@gmail.com
https://doi.org/10.1007/978-981-99-6690-5_16


222 T. S. Reddy and R. Sathya

1 Introduction 

There are numerous applications for data mining, including the extraction of health 
computational biology, [1] detection of malicious online attacks, [2] web mining, 
[3] sentiment analysis and opinion mining in big data, [4] recommendation systems, 
[5] data warehousing, and [6] the use of data in decision-making. It is one of the 
most important practices for extracting from a data set that have occurred more than 
a user least threshold sum of transactions in the data set, and rule construction is 
the process of creating association rules using the patterns that have been extracted 
from the data set. A significant portion of research in association rule mining has 
been devoted to the FPM phase because of the enormous volume of computations, 
the lengthy execution time, and the enormous sum of memory it requires. 

Various FPM algorithms in the literature have retrieved a variety of patterns. 
Patterns such as itemsets [7], sequences [8], and graphs [9] have been discovered 
from a variety of data sets. Novel approaches with humbler data constructions and 
more effective pruning algorithms have gradually superseded the initial motives of 
employing growth-based FP-based itemset mining methods due to their increasing 
complexity and vast number of created projected trees. 

For efficient frequent itemset mining, several distributed tactics have been used 
[10]. Frequent itemset mining is an exponential problem, which means that mining 
methods produce a large number of extracted frequent itemsets as the outcome. The 
mining process may become less efficient as a result of the increased production. 
Research in the literature found that the best solutions to this problem were algorithms 
for closed pattern mining [11], maximum design mining [12], and colossal pattern 
mining [13]. The difficulty in mining frequent patterns is compounded by the fact that 
each pattern has an infinite number of sub-patterns, resulting in an enormous number 
of frequent patterns. Closed frequent pattern mining [14] and maximal frequent 
pattern mining (max-pattern) [15] have both been presented as solutions to this issue. 

There are a limited number of common patterns in the whole pattern set, hence 
the term “closed pattern set” applies. A pattern is dubbed closed frequent if it occurs 
frequently in a data set but there is no super-pattern with the same support as it. 
There are fewer pattern super patterns than there are regular patterns in a database. 
In contrast to the more compact set of maximal frequent patterns, closed pattern 
mining tends to condense the set of frequently occurring patterns. As a result, maxi-
mally frequent patterns may not always include the full supporting material for their 
equivalent often occurring patterns. 

The pattern mining challenge is space intensive for large data sets, even though 
closed pattern mining dramatically abridged the sum of processing and output 
capacity. Small and medium-sized patterns are frequently generated by mining algo-
rithms, yet this data is often useless in many applications. Finding methods for mining 
that only extract huge patterns and ignore tiny and medium-sized patterns makes 
sense because many applications benefit from only large patterns. This difficulty can 
be approached in a new way by mining large patterns instead of little ones.



An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 223

A bottom-up strategy to finding patterns is used by all previous techniques of 
pattern mining. These techniques begin with little designs and work their way up to 
larger ones. Small and medium-sized patterns, however, often lack useful information 
and can only be obtained from large-sized patterns, known as colossal patterns, in 
specific applications. It was in 2007 when the core Pattern-Fusion (core-fusion) 
technique, the first real approach for mining enormous patterns, was published [16]. 

1.1 Motivation 

In the case of huge and very large data sets, the solutions to pattern mining prob-
lems [17] take a long time and are completely inefficient when trying to solve more 
complex problems. Many optimization and high-performance figuring practices have 
been industrialised to increase the performance of the pattern mining systems [18– 
21]. However, when working with large databases, these solutions are ineffective 
since only a small number of useful patterns are showed to the end user. 

1.2 Problem Scope 

In general, the sub-patterns that make up a colossal pattern are expected to appear 
at about the same frequency as the main pattern, therefore they can be identified by 
counting the number of supporters for each sub-pattern. There would be ncr number 
of common sub-patterns of size r for a colossal pattern of size n. As a result, in 
order to get to the massive patterns, we must first study an immense number of 
smaller patterns. In order to swiftly find large patterns, a strategy has been proposed 
to traverse the search area in jumps, ignoring most of the mid-sized patterns. 

1.3 Structure of the Paper 

It gives an introduction to FPM and talks about the problem of a huge pattern in 
Sect. 1. Pattern mining and colossal pattern relationships are explained in Sect. 2; 
this is the beginning of the text. Section 3 gives an impression of the algorithms for 
colossal patterns. Section 4 explains how to do colossal pattern mining from a list of 
frequently used items. It comes to an end in Sect. 5.



224 T. S. Reddy and R. Sathya

2 Pattern Mining Problems 

A general definition of pattern mining is initially presented in this part, followed by 
an explanation of the connections between large-scale patterns and smaller ones. 

Definition 1 (pattern) Reflect I = 1, 2, . . . ,  n as a set of items, and T = 
t1, t2, . . . ,  m as a set of transactions with the sum of transactions. We create the 
function a, which reads p = for the item I in transaction t j. (i, j). 

Definition 2 (pattern mining) A pattern mining task involves discovering all of the 
patterns L that are relevant to a given problem 

L = {p|Interestingness(T , I, p) ≥ γ } (1) 

To analyse a pattern p among a set and a set of items I, the measure of Interesting-
ness(T, I, p) is used. Existing pattern mining issues can be summarised using these 
two definitions. 

Definition 3 (frequent itemset mining (FIM)) As an postponement of the pattern 
mining issue, we create a FIM problem (Def. 2) 

L = {p|Support(T , I, p) ≥ γ } (2) 

As described in Def. 1, the collection of transactions in a Boolean database, T, 
I, and p are all defined as a Boolean database, and Support (T, I, p) is the  sum of  
transactions in T covering the pattern _(T.I)/(|T|). 

Definition 4 (weighted folder) A weighted database is defined by defining the 
function 

σ (i, j ) =
{

wij i f  i  ∈ t j 
0 otherwise 

(3) 

W ij refers to the weight of Item I, which is part of the transaction Tj. 

Definition 5 (weighted itemset mining (WIM)) WIM problems are an expansion 
of the pattern mining problems (see Def. 2) by extending the 

L = {p|WS(T, I, p) ≥ γ } (4) 

It is possible to have WS (T, I) = WS (T, I) p ( j = 1)(|T |)W (tj, Ip). W (t j, I, p) 
is the least weight of the elements of the pattern p in the transaction t j, and is a least 
weighted threshold for the weighted database established in Def. 3. 

Definition 6 (uncertain database) Setting the function (see Def. 2) as is how an 
uncertain database is defined.



An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 225

σ (i, j ) =
{
Probi, j if i ∈ t j 
0 otherwise 

(5) 

Note that the transaction t j’s uncertainty value for I is Prob (i, j). 

Definition 7 (uncertain itemset mining (UIM)) A UIM problem is defined as an 
postponement of the pattern mining problem (see Def. 2) by 

L = {p|US(T , I, p) ≥ γ } (6) 

With US(T , I, p) = 
|T |∑
j=1

∏
i∈p 

Probij. In the indeterminate database specified by Def. 

5. 

Definition 8 (utility database) Utility databases are defined by setting the function 
(Def. 2) 

σ (i, j ) =
{
iuij if i ∈ t j 
0 otherwise 

(7) 

It is important to keep in mind that eu denotes the item’s external utility; this is 
the value of i’s internal utility in the transaction (i). 

Definition 9 (high utility itemset mining (HUIM)) The pattern mining problem 
(Def. 2) is an extension of this problem, which is called a “HUIM problem.” 

L = {p|U (T , I, p) ≥ γ }, with U (T , I, p) 

= 
|T |∑
j=1

∑
i∈p 

iuij × eu(i ) (8) 

According to Definition 7, T is the set of transactions that can be found in the 
database defined by Def. 7. 

Definition 10 (sequence database) Shoulder that there is a total order on things, 
such as 1 > 2 > 3 > n… Sequences are an ordered list of s = [I 1, I 2, . . .  ,  I _(|s|)], 
where s is an itemet. The function (see Definition 2) is defined as (i, j) = i, if  I t  j  for 
each itemet Ii. 

Definition 11 (sequential pattern mining (SPM)) Mining is extended to include 
the SPM problem (see definition 2) by: 

L = {p|support(T , I, p) ≥ γ } (9) 

If the sequence database’s total transaction count (T ) is less than the minimum 
support criterion (), then the answer is.



226 T. S. Reddy and R. Sathya

2.1 Relationship of Colossal Patterns to Other Patterns 

Figure 1 shows how a colossal pattern develops over time. Minimum support should 
be 50. A and B are combined, and the frequency of AB lowers to 198 when AB is 
extended. As a result, pattern A appears 198 times, with pattern B appearing only 
once. Closed, but not massive, is the pattern AB. It is impossible to stop the pattern’s 
growth at C, since the addition of D provides the same level of support as the original 
design. Closed but not enormous ABCD pattern. The smaller pattern will not be 
called a monstrous pattern until there is a considerable difference in frequency when 
it is extended. When G is added to ABCDF, the frequency drops from 193 to 190, 
and we no longer regard ABCDF to be a huge pattern, but rather ABCDFG. There 
is a considerable decrease in the frequency of ABCDFG when it is extended with Q, 
therefore this extension is not regarded as massive. (Seen in the figure marked with 
a cross.2) Because of this, ABCDFG and ABCDFGQ are classified as enormous 
patterns, respectively. As a result, a maximum pattern does not always have to be 
huge. Large-scale patterns are depicted in Fig. 1 ABCDEH and ABCDFG. The 
following observations can be made, based on the case above: 

• There is no requirement that every closed frequent itemset is also a huge pattern, 
however this is not always the case. 

• A gargantuan pattern does not always have to be an itemset with the highest 
frequency possible.

Fig. 1 Pattern tree growth 
process 



An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 227

3 Brief Explanation of Existing Techniques 

3.1 Colossal Pattern Miner (CPM) Overview 

Step-Wise Method 

• There is an initial pool of 1 or 2 itemsets that we begin with (can be obtained 
using any frequent mining algorithm). 

• We use any standard clustering algorithm to divide the patterns in the initial pool 
into groups based on their frequency. Frequency bands is what we call them. 

• Choose a random seed pattern from the greatest frequency band and create a 
neighbourhood of -core seed patterns (depending on distance), startin–g with the 
present band and moving down through the other bands in declining order of their 
size. 

• To remove a -core pattern () from its parent frequency band if its frequency is less 
than 1-, use the following procedure. 

• Steps 3 and 4 should be repeated until all patterns have been picked or the desired 
number of neighbourhoods has been reached. 

• To create one or more super patterns, we merge the patterns in each neighbourhood 
(colossal patterns). 

• The new pool of super patterns is now the new initial pool, and the process repeats 
itself until we reach colossal patterns. 

3.2 Bit-Wise Vertical Bottom-Up Colossal (BVBUC) 

The enormous mining algorithm shown in Algorithm 1 is bit-wise vertical bottom-
up. To begin with, it takes as input m, which is an index of the first row in the parent 
rowset, as well as the maximum number of rows in the bitmatrix, l, the level of 
processing a tree is now at, as well as S, the input rowset for the method. 

This is a recursive algorithm with two major components. The algorithm initially 
determines if it has reached level minsup in the main if block. The method stops 
expanding the current branch if the level of three is the minimum level. This node’s 
pattern and its support are written to the output file if the new gargantuan pattern is 
calculated and does not already exist in it. It is a basic function called pattern (S) that 
calculates the appropriate pattern of the rowset S by performing a “AND” operation 
on the bit vectors of the row-ids t–here are in S and selecting the items that have a



228 T. S. Reddy and R. Sathya

value of 1 in the result “AND” vector. The support of pattern (S) provided by function 
support is the sum of row ids in rowset S (S). 

To begin, m is added to the S rowset, and then the else block builds the node’s 
matching rowset. The algorithm will stop increasing this third branch if the pattern 
does not reach a user-specified threshold if it is not massive. Mining can continue only 
if the pattern (S) is large. This child node’s rowsets will be generated by extending 
this node and creating its children for each row-id in the range of m + 1 to max  if  
the branch of consistent child reaches the minsup level. If p + m−a p is less than 
or equal to min sup, an algorithmic loop is in place. As a result of the closeness 
requirement method, we can now define a novel version of BVBUC that searches 
for closed, gigantic frequent patterns in data sets. BVBUC’s closed version will be 
depicted in the algorithm’s first component (the main if-block): 

If(l = min sup)then 

Begin 

If (Pattern(S)is colossal)then 

If(pattern(S)is not in file)then 

If(pattern(S)is closed)then 

Output(File, (Pattern(S), support(S))); 
End 

Only one condition has changed between the closed and primary versions of 
BVBUC, and that is the condition that tests for pattern proximity before adding it to 
output file. Since the algorithm has been altered, it can now mine closed, massively 
recurring patterns. 

Algorithm 1. BVBUC Algorithm



An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 229

3.3 LCCP: A Length Constraints with Algorithm for Mining 
Colossal Patterns 

Here, two theorems are presented to establish the theoretical foundation of the 
suggested approach, which is cost effective in mining enormous patterns with length 
limits. Candidate patterns that do not meet the min-length restriction can be swiftly 
discarded using Theorem 1. For candidates with a max-length restriction, Theorem 2 
has been found to be a time-saving tool. 

Theorem 1 Nodes in the CP-tree that do not meet the min-length restriction are not 
allowed to have any children that do meet the constraint. 

Theorem 1 states that if a node does not meet the least length requirement, it does 
not need to be expanded. As a result, mining operations can reduce the size of the 
exploration zone.



230 T. S. Reddy and R. Sathya

Theorem 2 Each child node in the CP-tree that meets the max-length criteria is 
considered to be a member of the parent node. 

Rapid extraction of enormous patterns with length limits is made possible by the 
effective method LCCP (min-length and max-length). In order to produce and prune 
enormous pattern candidates, LCCP relies on PCP-Miner [22]. Using Theorems 1 
and 2, it is possible to reject candidates who do not meet the min-length constraint 
and those who do not require the max-length condition to be tested. 

4 From Frequent Itemset Mining to Colossal Itemset 
Mining 

Itemsets that don’t fulfil the minimum support are pruned from the search space. 
These prior row-enumeration algorithms, even using the support measure, failed to 
uncover many interesting closed patterns. Since the support-based strategy filters out 
patterns with low support but high confidence, this is the case. Support-based algo-
rithms are discussed as alternatives in this part, which also examines approximately 
of the existing approaches. 

4.1 Alternative User-Defined Threshold 

MAXCONF [23] presents an algorithm for discovering interesting gene interac-
tions from microarray data sets. In order to successfully narrow the search field, 
minsup is a measure of confidence rather than a requirement. For perturbation 
microarray data, which includes both common and rare (infrequent) correlations, 
this strategy was inspired by the view that support-based trimming is inappropriate. 
Multiple microarray data sets were used to evaluate MAXCONF and RERII [24], 
two improved versions of CARPENTER. For the purposes of categorising genes 
according to their molecular function, biological activity, and cell component, the 
extracted rules were subjected to the Gene Ontology’s international standard for gene 
annotation (GO). In order for a rule to be considered biologically relevant, it needs be 
annotated with GO annotations. Support pruning is not ideal for mining gene expres-
sion data sets, according to this study, which found that MAXCONF rules are more 
biologically relevant than those identified by RERII. Though research has shown 
support-based algorithms remove many intriguing rules, the authors did not recog-
nise the importance of pattern size. In association mining tasks, longer sequences 
are generally more essential than shorter sequences [25, 26].



An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 231

4.2 Current Colossal Pattern Mining Process 

First developed in an algorithm called Pattern-Fusion, the notion of colossal pattern 
was used to find an efficient approximation to gigantic patterns. In order to find the 
enormous pattern, Pattern-Fusion fused all of the smaller patterns into one, saving 
time and effort compared to manually traversing the pattern tree level by level. The 
Pattern-Fusion algorithm has been shown to be able to approximate large patterns in 
real data sets in several investigations. 

Randomly picked sub-patterns are fused to form the enormous pattern, then the 
support is counted utilising individual database scans in Pattern-Fusion. However, 
Colossal Pattern Miner (CPM) [27] proposed a more intelligent technique to combine 
and separate the sub-patterns, which avoided the vast number of mid-sized patterns. 
To further reduce the number of database scans, vertical data format is used. 
Unfortunately, this technique has not been compared to Pattern-Fusion in terms of 
performance. 

The data set is represented and compressed using a bit matrix by the BVBUC 
algorithm [28]. A bottom-up row list search tree is developed up to the minsup 
level since the greatest pattern of each branch is formed there. As a result, the time 
and memory requirements of most pattern mining algorithms are increased while 
searching for patterns with low minsup values. This is not the case in BVBUC, 
where when minsup drops, it also reduces the number of levels in the tree, removing 
branches that don’t meet the minimum. However, as we’ll see in a moment, this 
approach resulted in fewer purportedly mined itemsets. Another pruning strategy 
is to cease extending a node when the pattern has less elements than the minimum 
allowable quantity in a huge pattern. BVBUC beats both CPM and Pattern-Fusion 
in real data sets and microarray data sets, according to the authors. 

DisClose [29] is an algorithm that first enumerates high cardinality itemsets 
and then constructs smaller itemsets to extract enormous closed itemsets. The row-
enumeration tree is searched from the bottom-up like in BVBUC. Starting with a 
table that is transposed, the algorithm creates a compact row tree to hold the trans-
posed table’s itemsets. The CR-Tree is used during the search phase. Many rowset 
values are shared by a single node, making the suggested data structure compact 
and able to express itemsets with a minimum cardinality (mincard). Other methods 
employing a tree-based data structure, on the other hand, require a large amount of 
memory because of the length of the itemsets as well as the number of transactions 
that take place. 

Colossal pattern mining using the -core ratio has been proposed using the newly 
presented algorithms CP-Miner and its upgraded counterpart, PCP-Miner [30], the 
pattern is a -core pattern. If there are no supersets in the database, then a -core pattern is 
considered gigantic. Instead of requiring the usage of a -core ratio, BVBUC proposes 
an acceptable minimum threshold and an acceptable minimum sum of itemsets in an 
itemset. However, in terms of runtime, they’ve outperformed BVBUC. 

Using biological data sets, DPMine [13] proposes a new method for identi-
fying enormous Colossal Pattern Sequences (CPS). In the DPT + tree, a vector



232 T. S. Reddy and R. Sathya

intersection operator is used to build enormous pattern sequences by identifying 
Doubleton Patterns. DPMine uses a new integrated data structure called “D-struct,” 
which combines a doubleton data matrix with a one-dimensional array pair set to 
dynamically discover Doubleton Patterns from Biological data sets. DPT + trees 
are constructed using a bit-wise Top down Column enumeration tree. Constrained 
and predictable, D-main struct’s memory can execute at a phenomenally high rate 
if memory is limited. It simply takes one scan of the database to detect enormous 
colossal pattern sequences thanks to the algorithm’s construction. DPMine surpasses 
Colossal Pattern Miner (CPM) and BVBUC in a variety of biological data sets, 
according to an empirical investigation. 

The decision-making process will be hampered because not all of the association’s 
regulations will be generated. Most BVBUC enormous closed itemset support infor-
mation is incorrect. This generates inaccurate association rules and has an impact on 
the decision-making process. Large cardinality itemsets, also known as enormous 
itemsets, are of particular interest to ARM because they may be used in applications 
using High-Dimensional Biological Data sets (HDBD) [31]. Colossal itemsets are 
significantly relevant and influential in many applications [32]. Naulaerts et al. [33] 
and Alves et al. [34] proved the importance of mining enormous item collections 
from high dimensional. 

Since the time required to extract short and average-sized itemsets is exponential, 
[35] are inefficient for extracting FCCI from HDBD. The Pattern-Fusion approach 
was the first algorithm to come up with a large number of things [16]. In the Pattern-
Fusion approach, the approximation of gigantic closed itemsets aids in the mining of 
big cardinality itemset. This bottleneck prevents the Pattern-Fusion approach from 
extracting a high number of FCCI. As a result of an insufficient collection of associa-
tion rules, making decisions become more complicated. Even though HDBD contains 
a significant number of FCCI and frequently enormous itemsets, the BVBUC algo-
rithm is unable to extract any significant number of these. Association rules influence 
decision-making in part because they are created. Even for the vast majority of mined 
FCCI, the BVBUC delivers incorrect support info. As a result, incorrect association 
rules are formed, which has a negative effect on decision-making. 

The DisClose algorithm described by Zulkurnain et al. [36] mines FCCI from 
HDBD using a CompactRowtree (CR-tree). Before beginning the process of 
extracting FCCI from HDBD, the existing works do not have the ability to remove 
all unimportant characteristics and rows. As the number of rows enumerated in the 
mining search space grows exponentially, the algorithm becomes less efficient in 
mining FCCI. An efficient trimming methodology to minimise the row enumer-
ated search space and an well-organised rowset testing mechanism are missing from 
current FCCI mining methods. The best way to extract the FCCI from HDBD is to 
traverse the row enumerated tree. There is an inherent imbalance in the row enumer-
ated tree since the number of nodes in each row enumerated tree branch varies. Row 
enumerated trees must be distributed evenly across compute nodes in order to mine 
the FCCI efficiently. The compute nodes should be equally burdened when it comes 
to traversing.



An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 233

Recently, a technique known as LCCP for mining massive patterns has been devel-
oped [25]. To begin, the issue of mining enormous patterns while enforcing length 
restrictions was raised. To swiftly determine if a huge pattern satisfies the length 
limitations, two new theorems were presented. Theorems based on these were used 
to develop a real algorithm for mining huge patterns with length limitations, elimi-
nating those patterns that do not meet the length constraints in order to reduce mining 
durations. The min- and max-length limitations for mining gargantuan patterns were 
the focus of this paper. However, in order to mine the huge patterns, which necessitate 
the ideal selection of threshold values, it takes a long time to train the system. 

According to this assessment, the greatest patterns may be found in the rowset, 
which has a support of 1. A criterion for mining large itemsets from high-dimensional 
data involving the item’s support value is therefore unnecessary. As an alternative, a 
minimal permissible number of elements in a collection is known as the minimum 
cardinality of a collection. 

5 Conclusion 

To mine patterns in databases with a great number of characteristics and values, 
mining enormous patterns is utilised, although the number of occurrences in each 
database is limited. It is possible to extract gigantic patterns using efficient methods, 
but these methods cannot be applied to the case of constraint-based colossal pattern 
mining. It is the goal of this survey to investigate the extraction of enormous itemsets 
from biological data sets with high dimensionality. Massive mined itemsets of an 
average length do not include sufficient and useful info for making decisions. As 
a result, an enormous sum of time is spent mining a large number of short and 
medium-sized itemsets. The high-dimensional data set was created because of the 
increased interest in bioinformatics research and the abundance of data from a range 
of sources. These data sets have a great sum of features and a short number of rows. 
Bioinformatic applications, e.g. rely heavily on colossal pattern itemsets, which have 
a major impact on decision-making. From the enormous amount of information and 
knowledge that can be extracted, it is not an easy task. A high-dimensional data 
set’s sequential and computationally expensive sequential mining algorithms include 
gigantic closed itemsets (CCI). 

References 

1. Xu J, Zhang Y, Zhang P, Mahmood A, Li Y, Khatoon S (2017) Data mining on ICU mortality 
prediction using early temporal data: a survey. Int J Inf Technol Decis Mak 16:117–159 

2. Sohrabi MK, Karimi F (2018) Feature selection approach to detect spam in the facebook social 
network. Arabian J Sci 43:949–958



234 T. S. Reddy and R. Sathya

3. Kapusta J, Munk M, Drlik M (2018) Website structure improvement based on the combination 
of selected web structure and web usage mining methods. Int J Inf Technol Decis-Making. 
https://doi.org/10.1142/S0219622018500402 

4. Hemmatian F, Sohrabi MK (2018) A survey on classification techniques for opinion mining 
and sentiment analysis. Artific Intell Rev. 10.1007/ s10462-017-9599-6 

5. Sohrabi MK, Azgomi H (2017) Parallel set similarity join on big data based on localitysensitive 
hashing. Sci Comput Program 145:1–12 

6. Liao S, Chang H (2016) A rough set-based association rule approach for a recommendation 
system for online consumers. Inf Process Manage 52:1142–1160 

7. Sohrabi MK, Roshani R (2017) Frequent itemset mining using cellular learning automata. 
Comput Hum Behav 68:244–253 

8. Huynh B, Vo B, Snasel V (2017) An efficient parallel method for mining frequent closed 
sequential patterns. IEEE Access 5:17392–17402 

9. Cheng X, Su S, Xu S, Xiong L, Xiao K, Zhao M (2018) A two-phase algorithm for differentially 
private frequent subgraph mining. IEEE Trans Knowl Data Eng 30:1411–1425 

10. Sohrabi MK, Taheri N (2018) A haoop-based parallel mining of frequent itemsets using N-Lists. 
J Chin Inst Eng 41:229–238 

11. Rodríguez-González AY, Lezama F, Iglesias-Alvarez CA, Martínez-Trinidad JF, Carrasco-
Ochoa JA, de Cote EM (2018) Closed frequent similar pattern mining: reducing the number of 
frequent similar patterns without information loss. Expert Syst Appl 96:271–283 

12. Fasihy H, Shahraki MHN (2018) Incremental mining maximal frequent patterns from univariate 
uncertain data. Knowl-Based Syst 152:40–50 

13. Prasanna K, Seetha M (2015) Efficient and accurate discovery of colossal pattern sequences 
from biological datasets: a doubleton pattern mining strategy (DPMine). Proc Comput Sci 
54:412–421 

14. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for asso-
ciation rules. In: Proceeding of the 7th international conference on database theory (ICDT’99). 
Israel, pp 398–416 

15. Burdick D, Calimlim M, Gehrke J (2001) MAFIA: a maximal frequent itemset algorithm for 
transactional databases. In: Proceeding of the 2001 international conference on data engineering 
(ICDE’01). Heidelberg, Germany, pp 443–452 

16. Zhu F, Yan X, Han J, Yu P, Cheng H (2007) Mining colossal frequent patterns by core pattern 
fusion. In: Proceeding of the 2007 Pacific-Asia conference on knowledge discovery and data 
mining 

17. Fournier-Viger P, Lin JC-W, Vo B, Chi TT, Zhang J, Le HB (2017) A survey of itemset mining. 
Wiley Interdisc Rev: Data Mining Knowl Disc 4(7):e1207 

18. Zhang L, Fu G, Cheng F, Qiu J, Su Y (2018) A multi-objective evolutionary approach for 
mining frequent and high utility itemsets. Appl Soft Comput 62:974–986 

19. Djenouri Y, Comuzzi M (2017) Combiningapriori heuristic and bio-inspired algorithms for 
solving the frequent itemsets mining problem. InfSci 420:1–15 

20. Xun Y, Zhang J, Qin X, Zhao X (2017) FiDoop-DP: data partitioning in frequent itemset mining 
on hadoop clusters. IEEE Trans Parallel Distrib Syst 28(1):101–114 

21. Djenouri Y, Lin JC-W, Nørvåg K, Ramampiaro H (2019) Highly efficient pattern mining 
based on transaction decomposition. In: IEEE international conference on data engineering, 
pp 1646–1649 

22. Nguyen T, Vo B, Snásel V (2017) Efficient algorithms for mining colossal patterns in high 
dimensional databases. Knowl-Based Syst 122:75–89 

23. McIntosh T, Chawla S (2007) High confidence rule mining for microarray analysis. IEEE/ 
ACM Trans ComputBiolBioinform 4:611–623 

24. G. Cong, K.-L. Tan, A. Tung, and F. Pan, “Mining Frequent Closed Patterns in Microarray 
Data,” Proc. Fourth IEEE Int ”l Conf. Data Mining (ICDM), vol. 4, pp. 363–366, 2004. 

25. Le T, Nguyen TL, Huynh B, Nguyen H, Hong TP, Snasel V (2021) Mining colossal patterns 
with length constraints. Appl Intell 51(12):8629–8640

https://doi.org/10.1142/S0219622018500402


An Extensive Study of Frequent Mining Algorithms for Colossal Patterns 235

26. Alves R, Rodriguez-Baena DS, Aguilar-Ruiz JS (2009) Gene association analysis: a survey of 
frequent pattern mining from gene expression data. Brief Bioinform 11(2):210–224 

27. Madhavi D, Mogalla S (2010) An efficient approach to colossal pattern mining. IJCSNS Int J 
Comput Sci Netw Secur 10(1) 

28. Sohrabi MK, Barforoush AA (2012) Efficient colossal pattern mining in high dimensional 
datasets. Knowl-Based Syst 33:41–52 

29. Zulkurnain NG (2012) DisClose: discovering colossal closed itemsets from high dimensional 
datasets via a compact row-tree 

30. Nguyen TL, Vo B, Snasel V (2017) Efficient algorithms for mining colossal patterns in high 
dimensional databases. Know-Based Syst 122(C):75–89 

31. Sohrabi MK, Barforoush AA (2012) Efficient colossal pattern mining in high dimensional 
datasets. Knowl-Based Syst 33:41–52 

32. Yoon Y, Lee GG (2012) Subcellular localization prediction through boostingassociation rules. 
IEEE/ACM Trans Comput Biol Bioinform 9(2):609–618 

33. Naulaerts S, Meysman P, Bittremieux W, Vu TN, Berghe WV, Goethals B, Laukens K (2015) 
A primer to frequent itemset mining for bioinformatics. Brief Bioinform 16(2):216–231 

34. Alves R, Rodriguez-Baena DS, Aguilar-Ruiz JS (2009) Gene association analysis: a survey of 
frequent pattern mining from gene expression data. Brief Bioinform bbp042 

35. Zaki MJ, Hsiao C-J (2005) Efficient algorithms for mining closed itemsets andtheir lattice 
structure. IEEE Trans Knowl Data Eng 17(4):462–478 

36. Zulkurnain NF, Haglin DJ, Keane JA (2012) Disclose: discovering colossal closeditemsets via 
a memory efficient compact row-tree. In: Emerging trends in knowledge discovery and data 
mining. Springer, pp 141–156


	 An Extensive Study of Frequent Mining Algorithms for Colossal Patterns
	1 Introduction
	1.1 Motivation
	1.2 Problem Scope
	1.3 Structure of the Paper

	2 Pattern Mining Problems
	2.1 Relationship of Colossal Patterns to Other Patterns

	3 Brief Explanation of Existing Techniques
	3.1 Colossal Pattern Miner (CPM) Overview
	3.2 Bit-Wise Vertical Bottom-Up Colossal (BVBUC)
	3.3 LCCP: A Length Constraints with Algorithm for Mining Colossal Patterns

	4 From Frequent Itemset Mining to Colossal Itemset Mining
	4.1 Alternative User-Defined Threshold
	4.2 Current Colossal Pattern Mining Process

	5 Conclusion
	References


