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Short Text Classification of Invoices 
Based on BERT-TextCNN 

Jiuwei Zhang, Li Li, and Bo Yu 

Abstract Traditional invoice text classification methods are labor-intensive and 
inefficient. In order to effectively identify the types of invoices, a Chinese text clas-
sification model based on deep learning BERT-TextCNN is designed, and a short 
text classification dataset of invoices is obtained from a municipal tax bureau to train 
and test the model, and to compare and analyze the performance of BERT-TextCNN 
model, BERT model, and TextCNN model. As a result, compared to traditional 
neural network models, the BERT+ TextCNN model can accurately classify Chinese 
text, effectively prevent excessive fitting, and have good generalization ability. The 
performance of text classification is improved compared to both BERT model and 
TextCNN model alone. Draw a conclusion through experiments which show that the 
BERT-TextCNN model has good classification effect and good stability. 

13.1 Introduction 

The rapid development of computers, especially driven by online social networking, 
text data has gradually become a mainstream form of text. Due to the large amount of 
data and complex text semantics, text classification has become a challenge. Facing 
such a large and complex text data, it is especially important to classify them accu-
rately and effectively. The length of text can be long or short, so we can classify 
these text data into short text data and long text data. Short text has the characteris-
tics of short text content, easy to read, and easy to disseminate, and it exists widely in 
the Internet as a carrier of information dissemination and interaction, such as news 
headlines, social media information, invoice names, and other texts. Therefore, how 
to enable computers to classify large amounts of text data is becoming a topic of
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interest to researchers. In general, text classification tasks have only few classes. 
When the classification task has a large number of classes, traditional Recurrent 
Neural Network (RNN) [1] (e.g., LSTM and GRU) algorithms perform poorly in 
terms of accuracy. 

Therefore, in this article, we designed a BERT-based model and integrated its 
output into CNN to deal with classification matters. This method adopts the BERT 
Chinese model released by Google, which is pre-processed and then gets the word 
vector characteristics [2]. The feature of the word vector in the obtained sentence is 
the convolution kernel size from CNN. We combine the above two and use softmax 
to get the results. The reliability of this model in category task is demonstrated by 
comparing it with various text classification models. 

13.2 Related Research 

In the past, text categories were distinguished by plain Bayesian, KNN, decision 
tree, etc. With the rapid progress of deep learning, natural language processing tech-
nology has made rapid development. Deep neural networks are becoming a common 
method for text classification due to their powerful expressive power. Despite their 
attractiveness, neural text recognition models lack training data in many applica-
tions. In recent years, several Chinese classification methods emerge in an endless 
stream. Convolutional neural networks and recursive neural networks are applied to 
image processing and speech processing, and have made achievements. Later, they 
are applied to text processing technology. The first is to find a way to express words 
that can be recognized by computers that the computer will understand, making 
it possible for the computer to perform subsequent computation and analysis. The 
above is referred to as text representation. Word embedding is a kind of text repre-
sentation that is often used. Words are put into the space, and these are expressed as 
vectors. One-hot, bag-of-words model, TF-IDF, etc., are the common text representa-
tion ways. But, the above method will result in problems, e.g., higher dimensionality 
and sparsity. They cannot explain two words with similar meanings very well. This 
is the reason why Word2vec 1 model emerged later. Word2vec has different models. 
The sequential grouping model is used to analyze the value at this time through the 
previous and subsequent articles. The sequential skip-gram model (Skip-gram) uses 
the value at this time to judge the meaning of the previous and subsequent articles. 
This way is associated with the previous and subsequent articles. The problem of 
too much computation and waste of resources is solved. Word2vec is not good at 
handling polysemy words. Word2vec is a static method, so it cannot be adjusted 
dynamically to enhance the specified things. Bidirectional Encoder Representations 
from Transformers (BERT) [3] is a pre-training model, which solves the problem 
of multiple meanings well by considering contextual information. BERT pays more 
attention to the early training of words, so it only needs to adjust the model according 
to different scenarios [4].
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Liu et al. [5] proposed a multi-layer model construction, which can obtain the 
contents of previous and subsequent articles from the articles in a sequential manner. 
And LSTM is used to extract the contextual and sequential features of documents. 
The architecture of multi-layer models is more complex. It includes recursive neural 
networks such as LSTM, which require more computing resources and training time. 
The advantage of FastText text classification model is fast and efficient, but its direct 
use for distinguishing small text categories is of low accuracy rate. Feng Yong et al. 
proposed a method that fuses Term Frequency-Inverse Document Frequency (TF-
IDF) and Implicit Dirichlet Distribution (IDD). Latent Dirichlet Allocation (LDA) for 
distinguish different texts [6]. The method performs TF-IDF filtering on the lexicon 
processed by the n-grammar model in the input stage of the FastText text classification 
model, performs corpus topic analysis using the LDA model, and complements the 
feature lexicon based on the obtained results, thus biasing the input word sequence 
vector mean in favor of highly discriminative entries and making it is more suitable 
for the environment where short and small texts are distinguished. Comparing the 
experimental results, it can be seen that the way has a higher accuracy rate in the 
classification of Chinese short texts. The application of TF-IDF and LDA is based on 
specific tasks and corpora, and may require adjustments and optimizations to each 
task and dataset. The generalization ability of this method may be relatively low, 
making it difficult to adapt to the needs of different tasks and domains. 

Qiaohong Chen et al. proposed a novel text representation method to extract high-
quality features from the entire training set by applying Gini impurity, information 
gain, and chi-square test from phrase features [7]. The phrase features extracted 
from each document must be linearly represented by these high-quality features, 
and then, after Word2vec word vector representation, advanced features are drawn 
out using convolutional neural network convolutional and pooling layers, and finally 
classified using Softmax classifier. This method depends on the feature selection of 
the whole training set in the feature extraction stage. This may lead to inaccurate 
feature selection in situations where the dataset is insufficient or unevenly distributed, 
affecting the final classification performance. 

The attention mechanism is added to the text data coding, and the hierarchical 
structure of text classification is figured out. Attention mechanism is added to 
sentences and words, which is superior to long-term short-term memory (LSTM), 
CNN, and other models. Later, the transformer [8] model appeared, which abandoned 
the previous CNN and RNN, and the attention mechanism formed the entire network. 
It is a process of encoding and decoding, so this paper uses BERT. The BERT is used 
as an embedding [9] layer to access to other mainstream models and is trained and 
validated on the same invoice dataset. And it becomes one of the current mainstream 
models with good performance. Based on this, a network structure based on BERT-
TextCNN is proposed in this paper, and a comparison experiment with BERT model 
and TextCNN model in the invoice text dataset is conducted.
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13.3 Research Methodology 

In Chinese text analysis, the model we propose is the BERT-TextCNN model. The 
model structure is shown in Fig. 13.1. In this pattern, words and phrases are embedded 
into a model, taking into account the pre prepared BERT model. Extract attachment 
vector from BERT and use it as input of CNN. 

13.3.1 BERT 

Contrasted with the ELMO model released by Google in 2018, BERT [3] changes the 
language pattern between BiLSTM and transformer [10], which truly implements 
the concept of bidirectional coding. The BERT model consists of a stack of encoders 
of transformer. This is a two-way encoding pattern. The input is the sum total token 
flushbonading, segment flushbonading, and location embedding. In addition, the 
output is a T-vector with feature message. The model composition of BERT is shown 
in Fig. 13.2.

In Fig. 13.2, E represents the embedding layer, which is the input layer of the BERT 
model. At this layer, each word or marker in the text sequence is converted into a

Fig. 13.1 BERT-TextCNN structure 
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Fig. 13.2 BERT composition

corresponding vector representation, called an embedding vector. These embedding 
vectors will capture the semantic relationships and contextual information between 
words as input for subsequent processing. Trm represents a converter, which is a 
core component of the BERT model. BERT uses a multi-layer converter structure. 
Through the self-attention mechanism and the feedforward neural network layer, the 
input embedded vectors are encoded and feature extracted for multiple rounds. The 
transformer can capture contextual dependencies in text sequences and learn rich 
semantic feature representations. 

The main purpose of the model is to generate a language model, so only multi-layer 
encoder construction is used. The encoder is mainly composed of feedback network 
layer and self-attention layer. If we want the computer to focus on some information, 
the attention mechanism can be implemented. Self-attention mechanism is to add the 
preceding and following words to the current word. This article is to add the features 
in the front and back of words to the features of words with different permissions, so 
that the computer can determine whether words in the sentence are more compactly 
connected with other words in the sentence. 

In Fig. 13.3, multi-head attention is a self-attention mechanism used to capture 
the correlation between different positions in the input sequence. It maps the input 
sequence into multiple queries, keys, and values, and then aggregates the values 
by calculating attention weights. Multi-head attention allows the model to focus 
on different representation subspaces in the input sequence, thereby improving the 
model’s expressive ability. Dropout is a regularization technique used to reduce model 
overfitting. During training, dropout randomly discards a portion of the output of 
neurons, making the model independent of specific features of individual neurons. 
This helps to improve the generalization ability and robustness of the model. Add 
represents adding the input to the output of the sub-layer in the residual connection.
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In the encoder structure, after the self-attention and feedforward neural network 
sublayer, the residual connection will add the output of the sublayer to the input. This 
facilitates the flow of information and facilitates gradient propagation, promoting 
model training and convergence. Layer normalization is a normalization technique 
used to adjust the mean and variance of inputs at a hierarchical level. In encoder 
structures, layer normalization is usually followed closely by addition operations. It 
helps to alleviate the internal covariate offset problem and improve the stability and 
rate of convergence of the model. Feedforward is a sub-layer of the encoder structure, 
which processes the input by applying two linear transformations and nonlinear 
activation function. The feedforward neural network operates on the representation 
after position coding to extract higher level feature representation. It usually includes 
a hidden layer and an activation function, such as ReLU. 

As we all know, attention mechanism can make the computer pay attention to the 
information that we want it to pay attention to. The self-attention mechanism is to 
integrate the context into the encoding of the current vocabulary. In this paper, the 
features of a word in a context are added to the features of the word with different 
weights, so that the computer can judge which words in a sentence are more closely 
related to the other words in the sentence.

Fig. 13.3 Encoder structure diagram 
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The calculation of self-attention can be summarized as follows: first, prepare 
the input vector, and create a query vector, key vector, and value vector for each 
word. These vectors are obtained by multiplying the word embedding and three 
transformation matrices (W_Q, W_K, W_V), which are learned in training. Note 
that the dimensions of these new vectors are smaller than those of the input word 
vectors (512 → 64), which is not necessary. This structure is intended to make the 
computation of the multi-headed attention more stable. Then, calculate the score, 
and calculate the self-attention of “Thinking” in “Thinking Matches”. We need to 
calculate the score of “Thinking” for each word in the sentence, which determines 
the degree of attention paid to other parts of the sentence when encoding “Thinking”. 
This score is obtained by calculating the dot product of the query vector of “Thing” 
and the key vector of other words. Second, divide the score by 8, so that the gradient 
will be more stable. Then, normalize the score by softmax to make the sum equal to 1. 
The softmax score determines how much each word pays attention to this position. 
Multiply the softmax score by the vector corresponding to value (to prepare for 
subsequent sum ups). The purpose of this is to retain the value of the concerned 
words and weaken the value of the irrelevant words (e.g., multiply by a small value 
of 0.001). Accumulate all weighted value vectors to produce the output result of 
self-attention at the location. Calculate the matrix of query, key and value, combine 
all input word vectors into matrix X, and multiply them by the trained weight matrix 
(WQ, WK, WV). The matrix is calculated as follows: 

x × wq = q (13.1) 

x × wk = k (13.2) 

x × wv = v (13.3) 

Z = soft max

(
q × kt √

dk

)
× v (13.4) 

In (13.4), the calculation result of matrix Q, K inner product shows the matching 
degree of the two vectors. After softmax function, the influence degree (weighted 
result) of the current word to the coding position can be obtained. Dividing by the 
root sign dk is to prevent the score from expanding with the increase of dimensions. 
Without this step, softmax will get a smooth and indistinguishable result. Then, 
multiply the value matrix to get the self attention score of the current word. Finally, 
calculate all the words according to the above steps. 

A set of Q, K, and V matrices can get a current word’s eigenvalue through calcula-
tion. The multi-attention mechanism is like a filter in convolutional neural network, 
which can help us to extract a variety of features. As shown in the figure below, 
multiple feature expressions are obtained through different heads, all features are
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spliced together, and finally, dimension reduction is carried out through the full 
connection layer. This algorithm uses 8 heads for feature stitching. 

13.3.2 TextCNN 

Convolutional neural network CNN [11] is used for graphics processing. As its 
variant model, text convolutional neural network (TextCNN) extracts local features 
of different sizes in text sequences by setting filters of different sizes. The convo-
lution layer is more important in TextCNN model. It requires less parameters than 
other deep learning models. Different features of input information can be extracted 
by convolution. The convolution layer is composed of several convolution kernel 
modules. The fully connected layer is shown in Fig. 13.4. 

In the traditional neural network, each neuron is connected to each neuron in the 
next layer, which is called full connection. In CNN, the input layer is convoluted to get 
the output, which is not all connected but becomes local connection, that is, the local 
area of the input is connected to a neuron, and each layer uses different convolution 
kernels, and then combines them. The pooling layer is an important structure in 
convolutional neural networks. It is applied after the convolution layer. The pooling 
layer downsamples its input. The most common method is to retain the maximum 
information, which is generally the maximum pooling through windowing.

Fig. 13.4 TextCNN model 
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13.4 Experiment 

13.4.1 Experimental Environment and Data Set 

The experiment in this paper is implemented under the deep learning TensorFlow. 
The Python version is 3.7. The operating system is Windows 10 (64 bit). As for 
experimental hardware, the CPU is i3-9100f. 

In supervised learning, the performance of the model is largely dependent on 
the dataset. The learning of neural networks also depends on datasets, and if the 
number of datasets is small, the learning will be insufficient. In order to provide 
suitable datasets for model training and model result evaluation, this paper selects 
real data from tax offices. Among them, 200,000 invoices are selected, and there 
are ten categories: tea, pet supplies, textile supplies, clothing, handicrafts, goods, 
furniture, wine, toys, and jewelry. Each category has 20,000 items with an average 
text character length of 15–30. 180,000 of them are used as the training set, 10,000 
are used as the validation set, and the remaining 10,000 are used as the test set. 

13.4.2 Experimental Setup 

In training TextCNN, BERT, and BERT-TextCNN, we use cross-entropy as the loss 
function. TextCNN uses ADAM as the optimizer with a learning rate of 0.001. 
Meanwhile, in the model, BERT acts as the encoder of comment text and uses 
the embedding function of BERT language model to encode each comment into a 
sentence formed by stacking word vectors. As a new feature, it is used as the input 
of the CNN layer. In order to prevent overfitting, a dropout layer with a discarding 
rate of 0.5 is added in front of the full connection layer. The hyperparameter settings 
in this paper are given in Table 13.1. 

Table 13.1 Hyperparameter 
Parameter Value 

Embedding 64 

Learning rate 1e−3 

Train epoch 100 

Dropout 0.3 

Batch size 128 

Epoch 20



162 J. Zhang et al.

13.4.3 Evaluation Indicators 

The commonly used evaluation indicators for classification tasks include precision, 
recall, and F1 score. The calculation formula is as follows. 

P = TP 

TP + TF 
(13.5) 

R = TP 

TP + FN 
(13.6) 

F1 = 
2 · P · R 
P + R 

(13.7) 

13.4.4 Analysis of Experimental Results 

In the experiment, we compared the effects of different convolution kernel sizes on 
the model. 

As given in Table 13.2, the best effect is obtained when using convolution kernels 
of (3, 4, 5) sizes. Therefore, we chose convolution kernel sizes of 3, 4, and 5. Model 
comparison was performed with the same dataset. 

In this paper, we perform comparison experiments on invoice text dataset classi-
fication using different models of BERT-TextCNN, BERT, TextCNN, and CNN + 
Attention. The experiments measure the average accuracy (P), average recall (R), 
and average F1 value for ten labels. BERT model [14]: word vectors are trained 
by BERT model, and CLS flag bit feature vectors are used directly for downstream 
classification task. TextCNN [12] is implemented with Word2vec. CNN + Attention 
[13] obtains important local information from CNN and then calculates the score 
through attention. 

As given in Table 13.3, the accuracy of BERT-TextCNN is 3.16% and 6.15% 
higher than that of BERT and TextCNN, respectively. It shows that this model is 
better than other models in invoice classification. BERT-TextCNN model has a high 
accuracy rate in invoice classification, which shows that the model has a good effect 
in invoice text classification. Its fine-tuning based on pre-training can effectively

Table 13.2 Comparison of convolutional kernel size 

Size Acc Pre Rec F1 

(2, 3, 4) 93.28 93.36 93.28 93.25 

(3, 4, 5) 93.97 94.04 93.97 93.93 

(4, 5, 6) 93.32 93.46 93.32 93.29 
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Table 13.3 Model performance comparison 

Model Acc Pre Recall F1 

TextCNN 87.57 85.52 83.02 82.45 

CNN + Attention 89.96 90.73 90.17 90.21 

BERT 90.56 92.89 92.50 90.78 

BERT + TextCNN 93.72 94.83 92.96 92.73 

Table 13.4 Comparison between test set and validation set 

Data Acc Pre Rcc F1 

Validation 95.96 96.03 95.96 95.92 

Test set 96.34 96.40 96.44 96.40 

solve the problem of polysemy of traditional word vectors, which is the key to obtain 
high accuracy of the model (Table 13.4). 

There is hardly any difference between the test set and the verification set, so the 
model has good generalization. 

13.5 Conclusion 

In this paper, an improved BERT-TextCNN classification model based on deep 
learning algorithm is proposed for invoice short text data. The model uses BERT 
pre-training to generate word vectors and embeds words into convolutional neural 
networks. The test results show that the model performs well in all aspects, with high 
efficiency and accuracy. However, the data used in this paper is not enough, and a 
large number of data are needed to better train, so it may perform better with the 
increase of samples. 

Although BERT-TextCNN has a significant improvement over TextCNN and 
BERT in classification, there are still some problems that need to be improved. 
The number of model parameters is large, and it takes a lot of time for training 
and loading, so it is an important research work to study the compression of BERT 
model and reduce the complexity of the model without suffering a large loss of model 
accuracy. 
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