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Abstract Evolving new diseases demand the need for technology to identify the 
disease in an effective way. Medical imaging in the field of disease identification 
helps to identify the disease by scanning the human parts, thereby preventing the 
increased rate of deaths. Deep learning algorithms make it easier to identify and 
analyze disease efficiently through medical imaging. The high performance of these 
models is needed for the disease to be predicted with accurate results. The prediction 
rate of the disease can be increased by the efficient use of deep learning modules and 
algorithms. This research involves the use of deep learning models in identifying 
brain hemorrhage and retinopathy diseases through deep learning algorithms. The 
deep learning algorithms AlexNet and convolutional neural network (CNN) with 
the accuracy of 90% and 96%, respectively, are employed for the detection of brain 
hemorrhage, and ResNet-50 and CNN with accuracy of 70% and 92%, respectively, 
are used for the identification of retinopathy. The output of the model is displayed 
using augmented reality (AR), which makes it interactive for the user to analyze the 
results. The AR display is achieved using the unity engine along with the Vuforia 
package and using the barracuda package for importing the deep learning model into
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unity. Thus, by increasing the accuracy rate of the system, this research demonstrates 
the high performance of the intelligent system. 

Keywords Deep learning · Convolutional neural network (CNN) · AlexNet ·
ResNet-50 · Medical imaging · Brain hemorrhage · Eye retinopathy · Open neural 
network exchange (ONNX) · Augmented reality (AR) 

1 Introduction 

The prevalence of diseases around the world urges the need for a high-performance 
intelligent system that detects the presence of various diseases through medical 
imaging [1]. This can be achieved by developing various deep learning models. 
Intelligent models that are used in the detection of such diseases must be efficient 
and must result in efficient output. This research involves the detection of brain 
hemorrhages and eye retinopathy through various deep learning algorithms and the 
results of which are displayed using augmented reality [2]. 

Brain hemorrhage is a condition caused by the blood vessels in the brain. Its 
presence can be sensed through various medical imaging techniques. Deep learning 
algorithms AlexNet and convolutional neural network (CNN) are used in the detec-
tion process. Medical imaging techniques like CT scans and MRI can be utilized 
to identify brain bleeding using deep learning models. CNNs are one method for 
analyzing the images and locating areas that are suggestive of brain bleeding [25]. 

Retinopathy is a disease caused in the retina of the eye due to complications of 
diabetes affecting the blood vessels of the eye [27–29]. There are several ways in 
which deep learning models can be used for the detection of retinopathy. One common 
approach is to use CNNs to analyze images of the retina and identify patterns or 
features that are characteristics of retinopathy. One way to do this is to use a dataset of 
retinal images that have been labeled as either healthy or unhealthy to train a CNN to 
classify new images as healthy or unhealthy based on their visual characteristics [26]. 
This type of deep learning model can be used to detect retinopathy at an early stage, 
potentially enabling earlier diagnosis and treatment. The intelligent system deployed 
here uses CNN and ResNet-50 as deep learning algorithms. The algorithms used for 
the identification of these conditions in the human body yield the best and most 
efficient accuracy [16–18]. A major part of these intelligent systems is diagnosing 
the disease at the earliest stage possible [19–23]. 

To help the augmented reality (AR) system comprehend the user’s environment, 
deep learning can be employed. To recognize items or landmarks in the surroundings, 
for instance, to evaluate images taken by the user’s webcam in real time, a deep 
learning model might be used. The user’s vision of the real world might then be 
supplemented with digital information using this information. Another method is 
to employ deep learning to help the AR system comprehend and react to the user’s 
motions and activities. To translate the user’s motions or facial expressions as orders
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for the AR system, a deep learning model may be utilized, for instance. The trained 
deep learning model is extracted as the h5 model in order to use that in unity [3]. 

The Keras model is then converted to the Open Neural Network Exchange 
(ONNX) model thereby deployed and executed in unity using the barracuda package. 
ONNX is the model used for importing the deep learning models into tools for using 
the models without changing its nature [9, 10]. To display the results as an augmented 
reality object, Vuforia SDK is employed. The output shows the accuracy along with 
the scanned image for the user convenience [11–15]. 

2 Related Works 

Balasooriya et al. [4] developed an intelligent system with deep learning models for 
the prediction of brain hemorrhage. The work dealt with the recognition and predic-
tion of brain hemorrhage disease using deep learning algorithms and performed 
performance metrics analysis for the analysis of the obtained output. The deep 
learning algorithm used for the research was an artificial neural network with the 
feature of finding the classification of the diagnosed condition of the hemorrhage. 
The study explored the potential for classifying brain hemorrhage utilizing segmen-
tation process from CT scan images created using the watershed approach, then 
providing the shared information from the retrieved brain CT image. 

Hidayatullah et al. [5] in research on the hemorrhage detection in the brain used a 
mathematical model for the diagnosis with watershed method, and the binary values 
of each phase was used for the calculation of the average error found in the entire 
research. As the work uses mathematical models over the deep learning models, it 
efficiently uses the techniques for the prediction of the system. The computation of the 
brain region from the testing process has an average inaccuracy of 1.13%. Regarding 
the test, the average deviation in calculating the hemorrhage area is 11.17%. 

Singh Gautam et al. [6] proposed a solution for the detection of eye retinopathy 
using an automated system with MATLAB algorithms and with various efficient 
mathematical models, with the simplest approach for early diabetic retinopathy 
(DR) detection, and preventing irreversible vision loss in patients was the suggested 
technique, which requires only a fundus camera as well as a system software with 
MATLAB installed. The accuracy obtained was comparatively low compared to the 
existing results. 

Masood et al. [7], in the transfer learning-based system for the identification 
of the eye retinopathy in the retina of the human eye, used neural networks like 
ImageNet algorithm in the process of the detection of the condition. The deep learning 
algorithm used for the detection purpose of the system efficiently analyzes the system 
of the input of the scanned images which are first fed into the system and trained 
with the ImageNet algorithm and with the output the model which is retrained with 
the same algorithm, thus attaining the efficient system for the detection. 

Brunet et al. [8] offered a technique for learning complicated elastic permanent 
deformation using a deep neural system and a method of finite elements with the
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goal of enabling augmented reality during liver surgery, which is based on the U-
Net design, constructed solely from physiologically models of an organ division 
performed prior to surgery. It was claimed to provide an efficient system with the 
accuracy that matches the accuracy of the FEM solution. The system thus resulted 
in the simulation of the results in the augmented reality in an effective way. 

3 Dataset Description 

For detecting the brain hemorrhage, the CT scan images of the patient’s head are 
collected. The dataset contains 2000 scanned images of brains, and the dataset also 
contains a CSV file that provides the metadata of the images whether the patient is 
affected by brain hemorrhage or not. It contains only two classes whether the patient 
is affected by the hemorrhage or not. 

The other dataset used for the detection of diabetic retinopathy is a large set of 
high-resolution images that contains images of eye from different angles which are 
labeled by the clinic with five different scales from no DR to mild, moderate, severe, 
and proliferative doctor. The dataset contains approximately 3500 images. 

4 Methodology 

The high-performance medical imaging works by getting an input image from the 
user which is then preprocessed and classified based on the type of image. Following 
the categorization of the disease, the image is sent to high-performance deep learning 
modules, which determine whether the patient is affected by the specific illness or 
not. Lastly, the outcome is depicted in augmented reality (Fig. 1).

4.1 Convolutional Neural Network 

4.1.1 Deep Learning 

A subunit of machine learning algorithms that are highly excellent at pattern recog-
nition but typically require a large amount of data is deep learning. Deep learning 
is effective in image object recognition because it employs three or more layers 
of artificial neural networks, each of which is in charge of extracting one or more 
characteristics from the image. Four convolutional layers and four pooling function 
layers make up the convolutional neural network model. It is a multi-layer perceptron 
with a convolution operation at the output layer, as it is typical. Because each neuron 
in the preceding layer interacts with every neuron in the layer after it, the phrase 
“Fully Connected” was coined. There are two Fully Connected layers and a SoftMax
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Fig. 1 Flowchart of medical imaging using AR

layer with varied color leaf classes. The input image is a color retina image with a 
resolution of 32 × 32 pixels (Fig. 2).

4.1.2 Constructing a Convolutional Neural Network 

Once preprocessing and splitting the dataset are performed, the neural network can 
be built. Three convolutional layers with a maximum grouping of 2 × 2 are used 
[24]. Though several architectures for deep learning are being investigated to handle 
diverse problems, CNNs are now the most prominent deep learning design categoriza-
tions for healthcare imaging. Convolutional neural network is a sort of artificial deep
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Fig. 2 Architecture of AlexNet—CNN algorithm

learning neural network. It is used in the fields of image recognition and computer 
vision. 

4.1.3 Max Pooling 

CNN usually employs the max pooling strategy to shrink the dimensions of the 
extracted features while preserving crucial data. It is a method for reducing image 
size by finding the maximum value of pixels from the grid. This also helps to reduce 
overfitting and generalizes the model. The following example demonstrates how the 
maximum pool of 2 × 2 works. The largest value found within every non-overlapping 
rectangular zone is chosen as the result of max pooling, which divides the input 
mapping into regions. By downsampling the feature maps and shrinking their spatial 
extent, max pooling aims to decrease computational complexity and overfitting. As 
the greatest value inside a pooling zone signifies the existence of a certain feature 
independent of its exact placement inside the region, it also increases the network’s 
resistance to little fluctuations in the data. Since the brain tumor will be very small 
in images and it is hard to find the affected part, max pooling is used to reduce the 
size of the image and to gather every feature to make the prediction more accurate 
(Fig. 3).

4.2 Brain Hemorrhage 

To develop a model, the dataset must be balanced. So, the amount of data count in 
each class is checked. Here, the dataset is balanced, but it contains only 2000 images 
which is very less for developing a deep learning model. To handle this issue, an 
image data generator [8] is used, which is an open-source library by TensorFlow, 
to generate more data with the help of the existing dataset. In the exploratory data 
analysis [9] phase, the images with different labels are visualized for analyzing the 
image size and image quality.
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Fig. 3 2 × 2 max pooling

Figure 4 shows the CT scans of patients affected by brain hemorrhage. Here, the 
images in the datasets vary a lot, and to notice the difference clearly, matplotlib is 
used, which visualizes the data in a more custom way to understand it easier. The 
images show how much the patient is affected by the brain hemorrhage with a good 
quality of scan that ensures the reliability of the images for developing a detection 
model.

From Fig. 5, it is clear that the dataset contains images of different sizes which 
affects the model development. To overcome these issues, the images are resized to 
a fixed size, but expanding the images will significantly reduce the image quality 
or remove the images. To avert this, the image size is reduced to 128 pixels instead 
of 134. Now, to increase the model accuracy, the dataset is enhanced by adding 
flipped images irrespective of the direction which increase the model performance. 
Even though the dataset size is increased by adding flipped images, it is not enough to 
create a model that accurately detects the hemorrhage. So, using image data generator, 
new images are created by resizing, zooming, and rotating the existing images which 
will help in creating an accurate model for the detection of hemorrhage.

4.3 Eye Retinopathy 

The dataset contains five different classes of eye retinopathy that range from no 
retinopathy, mild, moderate, severe, and proliferative retinopathy. The dataset is 
huge; it contains 35,000 images and out of which only 10,000 images are labeled. 
The diabetic-affected patients will have a defect in eye retina which causes severe 
issues in eyes visibility and also may lead to blindness. This module helps to identify 
the eye retina’s affected level and help patients to analyze the disease earlier. 

The dataset contains different classes, but the images are not evenly distributed 
among all the classes. Here, the patients who are affected by retinopathy are high 
and moderate affected people’s data ranks second, but all the other classes have only
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Fig. 4 CT scan images of patients affected by brain hemorrhage

Fig. 5 Graph showing the height and width of different images in the dataset
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minimum amount of data which creates a highly unstable dataset. Figure 6 shows 
that the dataset is highly imbalanced which leads to reduced model accuracy. 

For balancing the dataset, a Python script is used which oversamples the data 
and produces images equally for each class. In Fig. 7, the imbalanced dataset is 
balanced for all the classes by applying undersampling and oversampling techniques 
apparently for specific classes as needed. Now, finding the difference in each class 
of the images is explored, which is shown in Fig. 8. 

The above image shows the dataset from different classes during exploratory data 
analysis. The image contains images of eyes in different angles and with different 
color shades. Since the image contains different color shades which affects the effi-
ciency of the model learning, the data is converted to gray scale and the edges of 
the images are also detected that will make the image more qualified for feeding 
as a training dataset. After performing all the steps, the images are now passed for 
model development which takes all the images to develop an adequate model. Since

Fig. 6 Graph showing images count in each classes 

Fig. 7 Images in each classes after oversampling the dataset
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Fig. 8 Images for different classes

the dataset is balanced and contains enough data for model development, it is not 
necessary to perform any feature engineering techniques. Now, the dataset can be 
split into training and testing groups and used for model building. 

4.4 Architectural Diagram 

Figure 9, the development of the model, is deployed in unity for the augmented reality 
output. For this purpose, the model fed is first extracted as a Keras model. The Keras 
model is an h5 file which is then converted into the ONNX model which is done by 
importing the libraries that are essential for the development of the model.

First, an input image is obtained from the user, then the system finds whether 
it is a brain tumor or eye retinopathy, and then moves on to the image processing 
stage, where the image is processed. Next, the processed brain tumor images move 
to the AlexNet model and the eye retinopathy to the ResNet model. This model is 
then fed into the unity engine for the further process of visualizing the output through
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Fig. 9 Architectural diagram for high-performance medical imaging

augmented reality. By importing the barracuda package for the visualization process, 
the AR image can be seen accurately on the predicted image of the disease, as shown 
in Fig. 10. The developed model cannot be directly imported into the unity engine. 
The model thus trained is converted into the ONNX model, and using the barracuda 
package, which is a package that supports deep learning systems to be implemented 
in the unity engine, the model is imported. 

The developed deep learning model is converted into an ONNX model (which 
is a model that makes the artificial intelligence models to adopt any framework). 
The converted ONNX model is then imported into unity. Using Vuforia, the object 
is trained to be placed in the mid-air or ground plane. The output of the model is 
connected with Vuforia to get the intended result.

Fig. 10 Augmented reality output for both models 
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5 Experiment 

To develop a model for a brain hemorrhage, the dataset must be separated as test 
and train data. The train data is used to create a model, and the test data is used to 
test the model after development. Since the data contains only two classes, a simple 
conventional neural network can be used for model building. The model is built with 
three hidden layers, with max pooling, and global average pooling, which finds the 
difference in small areas rather than comparing it with the entire image which will 
be helpful to find the hemorrhage in the brain. 

[n, n, nc] ∗ [ f, f, nc] =
[[

n + 2 p − f 
s

+ 1
]
,

[
n + 2 p − f 

s
+ 1

]
, n f

]
(1) 

Equation 1 shows the working of conventional neural network. The sigmoid acti-
vation function is used since it is a binary classification problem. The model has to 
produce very minimal false positive output because the false positive outputs will 
lead to risking the patient’s life. So, an imbalanced dataset is used that reduces the 
possibilities of false negative outputs. Finally, the model produces 90% accurate 
models. 

(CNN → RN → MP)2 → (CNN3 → MP) 

→ (FC → DO)2 → Linear → SoftMax (2) 

Here, 

CNN Convolutional layer (with ReLU activation). 
RN Local response normalization. 
MP Max pooling. 
FC Fully Connected layer (with ReLU activation). 
Linear Fully Connected layer (without activation). 
DO Dropout. 

The above equation shows the working of AlexNet, where the CNN is processed 
with pooling techniques and activation function to create a seamless architecture. 

y = f (x, W ) + x (3) 

Here, 

y Final output. 
W Weights. 
x Input. 
f (x, W ) Function mapping from input to weights.
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Figure 11 shows that the final output of the mappings is predicted using the above 
equation with the function that accepts the inputted value and weights as input added 
to the input value. 

The data is trained with AlexNet [11] algorithm which is a type of CNN which 
contains five conventional layers, three max pooling layers, two normalization layers, 
and one SoftMax layer, which helps to detect the minor difference in the images and 
classify based on it. Since the AlexNet contains eight layers, it performs detection 
in a smaller area better than other algorithms. The model produced an accuracy of 
96% which will detect the hemorrhage better than the CNN [10] model (Fig. 12). 

The resultant model development phase of eye retinopathy CNN is implemented in 
matplotlib and used for creating a model that classifies the type based on the dataset. 
To perform the classification using CNN, the model is built with five layers out of 
which three hidden layers with SoftMax activation function and Adam optimizer.

Fig. 11 Model accuracy for training and test data 

Fig. 12 Model accuracy for 
train and test data with 
AlexNet algorithm 
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Fig. 13 Model accuracy and loss with respect to data 

The model is trained with 40 epochs, and the loss decreases gradually and finally 
produces an accuracy of 70%. Since the model is used for medical imaging, the 
accuracy is not enough for real-time application. 

By using transfer learning, a better model can be built. Here, ResNet-50 is used 
which is a widely used transfer learning model which is pretrained with ImageNet 
dataset, and it also makes the training easier with the help of fast artificial intelligence. 
Finally, it produces an accuracy of 92% with minimal loss. The graph in Fig. 13 shows 
that the model is learning in a faster way, and adequate results are produced with the 
training dataset. 

6 Results and Discussion 

The results of the deep learning models were much more efficient. For the brain 
hemorrhage model, the algorithms used are CNN and AlexNet which yielded the 
accuracy of 90% and 96%, respectively, and in case of eye retinopathy, the deep 
learning model is developed with the deep learning algorithms including CNN 
and ResNet-50 [12] with accuracy of about 70% and 92%, respectively. These are 
compared with the existing deep learning models developed for the same purpose 
and identified with high-performance models with high-performance algorithms. 
Tables 1 and 2 results are obtained from the deep learning models.

Since the model is trained with huge dataset, a reasonable accuracy that is above 
91% is produced. The model will produce a reliable output in real-time use cases. 
Large datasets are employed to treat the model, and feature engineering procedures 
as well as other model tuning methods, including max pooling, have been heavily 
focused. The performance of the model can be improved by training the model with
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Table 1 Brain hemorrhage 
Algorithm Accuracy (%) 

CNN 90 

AlexNet 96 

Table 2 Eye retinopathy 
Algorithm Accuracy 

CNN 70 

ResNet-50 92

more datasets with a GPU setup which will improve the model learning rate that 
improves the performance of the model. 

The results of the model are displayed using augmented reality via unity based on 
computer vision by deploying the model in the unity using barracuda package, and 
the output is displayed along with the accuracy of the detection of the deep learning 
model developed. The model prediction is obtained by developing a deep learning 
model with AlexNet and ResNet, fine-tuning both models for classifying tumors and 
retinopathy, and testing the model, thus achieving an accuracy of 96% and 92%, 
respectively, throughout testing. 

7 Conclusion 

The need of diagnosing the critical body conditions of the humans is crucial as it 
reduces the chance of death due to such cases. An intelligent system is developed 
with high performance, which involves the use of deep learning algorithms with 
high performance and accuracy. Two conditions are used for the development of 
a high-performance intelligent system, and various deep learning algorithms are 
used to compare the results. The accuracy of the CNN and AlexNet algorithms for 
the detection of brain hemorrhage resulted in 90 and 96%. The detection of eye 
retinopathy using the deep learning algorithms resulted in 70 and 92% accuracy. 
The models thus resulting with the efficient and accurate output proved the high 
performance of the intelligent system. 

8 Future Work 

In the future, the medical imaging can be enhanced by using more real-time dataset 
for brain hemorrhage detection, and the research work can be expanded by combining 
all the other disease detection modules in a single application. In eye retinopathy, 
different algorithms can be used to create more accurate classification using machine
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learning algorithm. The patients can be screened by a separate model that detects the 
problem, and then it is further transferred to these models for accurate results. The 
results of simulation can be the extended and integrated mixed reality combination 
of augmented reality and virtual reality using 3D models for better visualization. 
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