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Abstract The release of LoRaWAN in 2015 introduced specification v1.0, which 
outlined its key features, implementation, and network architecture. However, the 
initial version had certain flaws, particularly vulnerabilities to replay attacks due 
to encryption keys, counters, and nonce schema. To address these concerns, the 
LoRa Alliance subsequently released v1.1 of the LoRaWAN specification. This 
updated version aimed to enhance security by introducing new encryption keys, addi-
tional counters, and a revised network architecture. While the original LoRaWAN 
v1.0 specification spawned various device library implementations, such as IBM’s 
LoRaWAN MAC in C (LMiC) from which Arduini-lmic was derived, none of these 
existing implementations adopted the improved security features of the LoRaWAN 
v1.1 specification. To address the lack of an open-source implementation for v1.1 
end devices on open hardware platforms and to leverage the security enhancements 
of v1.1, a solution was devised and implemented to adapt the Arduino-lmic library. 
This adaptation process followed the principles of continuous improvement derived 
from the LEAN software development methodology, combined with the utilization 
of the Scrum framework. 
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1 Introduction 

LoRaWAN is a low-power wide area network protocol (LPWAN) focused on Inter-
net of Things applications [ 1]. LoRaWAN has several benefits compared to other 
LPWAN technologies. LoRaWAN uses a free spectrum for transmission which rep-
resents no cost. In terms of development it is opened as it allows to customize solu-
tions based on hardware and software. In 2015, LoRa Alliance published the first 
specification of LoRaWAN (v1.0) [ 2]. From this point onwards, the specification got 
revised several times, originating a division in the specification. On one side, the 
specification got overhauled with new encryption keys, and algorithms in specifica-
tion v1.1 [ 3]. On the other side, the revisions of the original specification gave place 
to specifications v1.0.2 and v1.0.3 [ 4]. Although specification v1.1 is compatible 
by default with all v1.0.x specification family; most of the implementations of the 
specification only focused on v1.0.x [ 4]. 

Since the growth of IoT research in recent years, several implementations of 
the LoRaWAN specification have been released for the main development plat-
forms like Arduino. In 2016 IBM released LoRaWAN MAC in C (LMiC) as an 
open-source implementation for the LoRaWAN v1.0 specification. Based on IBM’s 
implementation, the code was ported to work with the Arduino environment giving 
birth to the Arduino-lmic which currently supports LoRaWAN v1.0.2 and v1.0.3 
[ 5]. Even though LoRaWAN v1.1 has improved security characteristics compared to 
v1.0.x family; there are no open-source end-device implementations that work with 
such version, despite the existence of server-side deployments with support for both 
LoRaWAN v1.0.x and v1.1. 

Some researchers, like [ 6– 8] do not specify which end device implementation is 
being used, so most of these libraries are not released to the general public. Checking 
code repositories and IoT related forums like The Things Network [ 9], a list of end 
device implementations was found in [ 10]. From the listed implementations, only 
[ 11] supported LoRaWAN v1.1, with the limitation of only being able to use class 
A devices with OTAA and did not support rejoins. Due to the necessity of testing, 
developing, and creating new devices and sensors based on LoRaWAN there is an 
opportunity to take advantage of the improved features of v1.1. Taking this into 
account, in this work a re-engineered version of Arduino-lmic was developed to 
support the v1.1 specification of LoRaWAN. To the best of our knowledge this is the 
first available source code that implements LoRaWAN v1.1 for development over 
Arduino End-Devices. 

The rest of the paper is organized as follows. Section 2 presents the methodology 
applied to this project. Section 3 describes the changes done to Arduino-LMIC in 
order to comply with the LoRaWAN v1.1 specification. Section 4 presents the results 
obtained during several tests to verify its functionality. Lastly, Sect. 5 presents the 
conclusions.
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2 Methodology 

The continuous improvement cycle characteristic of LEAN software development 
[ 12] will be the methodological foundation for the present work combined with the 
Scrum framework for the adaptation of the code. The project was decomposed into 
the following phases: identification, planning, execution, and review as shown in 
Fig. 1. The use of LEAN is key to provide a set of phases to carry out our project. 
LEAN was chosen as it has a common and generyc cycle that could be widely applied 
to software development or project management. 

During the identification phase, LoRaWAN v1.0.x and v1.1 specifications were 
compared to extract similarities and differences between both them and abstract 
this to the Arduino-lmic code. Upon inspecting and understanding the code of the 
Arduino-lmic, a list of all the required changes for implementing LoRaWAN v1.1 
was specified. 

In the planning phase, the changes specified from the identification phase were 
organized based on how they are used. Based on activation methods, message types, 
and the expected behavior of LoRaWAN v1.1. With the organized changes, the 
project backlog was created. Each story takes the library as its user and focuses on 
solving the library’s needs, e.g., having the new encryption schema to communicate 
with LoRaWAN v1.1 infrastructure. 

The development environment was set during the planning phase. During this 
process, the main tools and infrastructure needed to adapt the library were installed 
and configured. Tools like Visual studio code and Platformio were key to the adapta-
tion of the library. To experiment with the existing implementation and test the new 
features of the adapted library, a complete LoRaWAN network was implemented 
using AWS, Chirpstack, a raspberry pi 3, and a TTGO LoRa32 device. 

Fig. 1 Continuous improvement cycle



200 J. M. Sulca et al.

Fig. 2 Changes to Arduino-lmic to comply with LoRaWAN v1.1 

Next, during the execution phase, all the changes found during the first and second 
phases were grouped based on the activation method. Figure 2 shows a general view 
of the changes implemented to the library based on the comparison done during the 
planning phase. 

Lastly, in the review phase, a set of validation tests were proposed to check if the 
adapted version is capable of communicating with a LoRaWAN v1.1 network seam-
lessly and without a significant loss of performance related to the additional security 
measures required by LoRaWAN v1.1. The test suite aims to validate all the possi-
ble scenarios supported by the original implementation in which a LoRaWAN v1.1 
device needs to work; these scenarios include, ABP and OTAA activation process, 
sending and receiving messages in both classes A and C, confirmed and unconfirmed 
messages.
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3 Proposed Work 

This section describes in detail the steps performed to apply the selected methodology 
(see Fig. 1) that let us develop the changes into LMiC library to support LoRaWAN 
v1.1. The proccess followed is described next. 

3.1 Identification 

During this phase, a comparison between both LoRaWAN technical specifications 
was performed alongside the reverse engineering of the Arduino-lmic implementa-
tion. The base for this comparison was LoRaWAN v1.0.3 [ 13] and LoRaWAN v1.1 
[ 3]; LoRaWAN v1.0.3 was chosen because it was the latest supported by Arduino-
lmic. The scope of the comparison was limited only to class A devices because class 
B have not been tested and class C are not supported at all. 

Table 1 provides a list of acronyms used to describe some of the fields of the 
LoRaWAN v1.1 specification for LoRaWAN frames structure. 

The first notable change between the two versions of LoRaWAN was the MAC 
message format. For LoRaWAN v1.0.3 the Message Integrity Code (MIC) of the 
join accept is not encrypted and in LoRaWAN v1.1 the MIC is encrypted. Also, a 
new message type called Rejoin-request is added in the specification. 

The next changes are present in the physical payload format, where the mini-
mum MAC payload size is increased from 1 byte in LoRaWAN v1.0.3 to 7 bytes in 

Table 1 LoRaWAN acronyms list 

Acronym Description 

MHDR MAC header 

MACPayload MAC payload 

MIC Message integrity code 

FHDR Frame header 

FPort Frame port 

FRMPayload Frame payload 

DevAddr Device address 

FCtrl Frame control 

FCnt Frame counter 

FOpts Frame options 

DevEUI Device EUI 

AppEUI Application EUI 

AppKey Application key
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Table 2 Differences between LoRaWAN specifications 

Element LoRaWAN v1.0.3 LoRaWAN v1.1 

Rejoin-request N/A New message type 

Join-accept MIC not encrypted MIC encrypted 

MAC payload size 1 byte–M 7 bytes–M 

MHDR Mtype N/A Rejoin-Request: 110 

Frame counter (FCnt) 2-counter schema 2-counter and 3-counter schema, 
persisted in non-volatile memory 

Frame options (FOpts) Not encrypted Encrypted with NwkSEncKey 

MIC Single algorithm for uplinks 
and downlinks 

Separate algorithms for uplink and 
downlink 

MAC commands No MAC commands for ABP 
or OTAA 

New MAC commands for OTAA and 
ABP 

AES keys 2 6 

OTAA Requires DevEUI, AppEUI, 
AppKey 

Require DevEUI, JoinEUI, AppKey, 
NwkKey 

ABP NwkSKey, AppSKey FNwkSIntKey, SNwkSIntKey, 
NwkSEncKey, AppSKey 

JoinNonce AppNonce Name changed and persisted in 
non-volatile memory 

LoRaWAN v1.1. In addition, a new value for the MType of the MHDR is added to 
accommodate the new message type (Rejoin-request). 

Another difference is in the frame counter (FCnt) schema which uses two counters 
in LoRaWAN v1.0.3. In addition to implementing the two-counter schema, V1.1 adds 
a second counter schema which uses 3 counters and is used only when the device 
interacts with a LoRaWAN v1.1 network. Also, all counters must be persisted in 
non-volatile memory of LoRaWAN v1.1 devices. 

Other changes found between the two versions of LoRaWAN are the encryption 
of some fields of the message; e.g., the FOpts field is not encrypted in v1.0.3 but 
encrypted in v1.1. Likewise, the key derivation algorithms vary due to the additional 
encryption keys added to v1.1 changing from 2 session keys in v1.0.3 to 6 session 
keys. Also, the MIC calculation algorithm uses the new counter schema and keys. 

Equally important new MAC commands are added in LoRaWAN v1.1 to adjust 
network parameters after the device joined a network either using OTAA or ABP; as 
well as new commands to adjust session parameters during the device execution. 

Besides, the activation procedures have slight variations to support new encryption 
keys. Mainly key derivation algorithms and MAC commands sent after activation are 
changes introduced in v1.1. Table 2 summarizes the changes done to the Arduino-
lmic implementation.
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Table 3 User stories for the adaptation 

As I want So that Story points 

End-device To store the new encryption 
keys 

I can implement the algorithms 
of LoRaWAN v1.1 

13 

End-device To implement the new frame 
counter schema 

I am able to communicate with 
a LoRaWAN v1.1 network 

8 

End-device To implement the OTAA 
process 

I interact with a LoRaWAN 
network securely 

13 

End-device To implement the ABP process I interact with a LoRaWAN 
network securely 

13 

End-device To calculate the MIC of 
messages using the LoRaWAN 
v1.1 specification 

I can guarantee the integrity of 
the messages 

8 

End-device to store in non-volatile memory 
the nonces and counters 

I am able to reconnect to the 
network and restore the session 
context after a restart 

5 

3.2 Planning 

To create the project backlog, all the identified changes were written in form of user 
stories for feeding product backlog. To create user stories, the device assumed the 
user role; because Arduino-lmic exposes a low-level API oriented to other developers 
and should be completely transparent to the final user. The Table 3 shows the initial 
product backlog. 

The operation of LoRaWAN v1.1 was divided into 5 parts: End-device activation, 
messages, MAC commands, encryption/decryption, and MIC calculation. After the 
activation of any device using either OTAA or ABP; the end device has all the session 
context to send messages including the encryption keys, counter values, and nonces. 

Then, set up the development environment to adapt and test the library. For this, 
ChirpStack; an open-source LoRaWAN network server stack, was used to deploy the 
Network Server, Application Server, Join Server, and gateway firmware. When using 
ChirpStack it is not mandatory to use a Join Server because the Network Server can 
be configured to filter the join-request messages by JoinEUI or by connecting to an 
external Join Server. 

In order for the ChirpStack infrastructure to work, some additional components 
need to be deployed. A Mosquitto Broker, Redis Cache, and two PostgreSQL 
databases need to be provisioned to ChirpStack to communicate and persist data 
and configurations. To host all the network infrastructure AWS was chosen due to 
its low cost, and experience with the platform. See Fig. 3 

To implement the infrastructure, an AWS Lightsail instance was provisioned to 
host the Mosquitto Server, ChirpStack Application Server, Network Server, and Redis 
Cache. For the database, a PostgreSQL instance was provisioned using AWS RDS; 
a specialized service to host relational databases. The communication between the
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Fig. 3 LoRaWAN network deployed in AWS 

Lightsail instance and the database was configured inside the same subnet and VPC 
in AWS to be secure and completely isolated from the Internet. Only the Mosquitto 
Broker and the administration web page from the network server were exposed to 
the internet. Figure 3 shows the full architecture in AWS. 

A Raspberry Pi 3 with a RAK 2245 LoRaWAN shield and ChirpStack gateway 
OS was configured and deployed as gateway. It was configured to move messages 
from the end device to the cloud using MQTT; MQTT is a messaging protocol used 
to collect data under publisher/subscriber schema. The gateway was connected to 
the Internet through Ethernet. 

Finally, for the end device, a TTGO LoRa32 which is supported by the original 
implementation of the Arduino-lmic library and because it relies on ESP32 platform 
which is widely documented and supported. 

3.3 Execution 

The existing implementation of Arduino-lmic is based on a single function called 
engineUpdate_inner which determines the current state of the library using a series 
of flags, and values on a structure called lmic_t, and callbacks to mutate the flags 
and the lmic_t structure. 

For the library to work some functions need to be implemented by the client in 
order to set the encryption keys and EUIs in the case of OTAA devices or use the 
LMIC_setSession in the case of ABP devices. To configure other parameters like 
region and frequency, this needs to be done by setting constants during compilation. 
This makes it impossible to dynamically change the region during the execution of 
the device.



Customizing Arduino LMiC Library Through LEAN and Scrum … 205

During the modification of the library, not only the functionality was changed, 
but the semantic of the implementation in order to use the same semantic as the 
technical specification. For example, the library used ArtKey for the (Application 
Key); which was changed to AppKey (as in the specification). Also, new function 
parameters were named using more descriptive names to help with the readability 
and maintainability of the codebase. The first step of the implementation was to 
store the counters and keys required by LoRaWAN v1.1 in the lmic_t data structure. 
All keys used by LoRaWAN are AES keys of 16 bytes length; in v1.1 the follow-
ing keys were added: NwkSEncKey, SNwkSIntKey, FNwkSIntKey, and AppSKey 
which are needed for both ABP and OTAA. For OTAA operation, the JSIntKey 
and JSEncKey were also added to be used during the join process. The next step 
was to implement two flags on the lmic_t structure to handle sending and receiv-
ing ResetInd, RekeyInd, ResetConf, and RekeyConf MAC commands belonging 
to ABP and OTAA join procedures. These commands need to be sent after setting 
a session between the device with the server, and then the server has to respond 
with the corresponding Conf MAC command in order to acknowledge the join 
procedure. 

The structure of the messages was updated with the MAC Header (MHDR) to 
adapt the new message types and length calculation of the messages which is needed 
for the MIC and message encryption. 

Later, the MAC Payload was updated with the structure presented in LoRaWAN 
v1.1, FHDR (1 byte), FPort (1 byte), and FRMPayload (1–M byte). Under v1.1, a 
valid payload needs to have FHDR but can omit FPort, and FRMPayload. 

Another change was an update to the FHDR with the following information 
DevAddr (4 bytes), FCtrl (1 byte), FCnt (2 bytes), FOpts (0–15 bytes), where the 
FOpts were encrypted using the NwkSEncKey. FCnt field was updated to include 
new counter schema presented in v1.1. The algorithms used to encrypt this field 
includes a specific block that needs to be generated using the device address, the 
frame counter, and the direction of the message. 

Another key difference is the frame counter schema. In LoRaWAN v1.0.x, there 
are two counters for the messages, i.e., FCntUp for uplink messages and FCntDown 
for downlink messages. On the other hand, the v1.1 specification uses a three-counter 
schema where FCntUp increases with every uplink, NFCntDown for all messages 
with no port or targeted to port 0, and AFCntDown for messages with destination to 
all other ports. In addition, for updating the frame counter schema, two new counters 
were added in the OTAA join procedure. RJcount0 for rejoins of type 0 or 2 and 
RJcount1 for rejoins of type 1. The updated OTAA join procedure adds a new type 
of message called rejoin request with three different types to adjust the parameters 
of the device on the fly. 

The next step was updating the format and implementation of the Join-request, 
Join-accept, and Rejoin-request messages. One of the key differences is that, in v1.1, 
some values like the DevNonce and JoinNonce need to be persistent in the device to 
successfully join a network and validate the Join-accept message from the network 
server. The DevNonce starts at 0 when the device is initialized and increases in



206 J. M. Sulca et al.

Table 4 LoRaWAN v1.1 frame header format 

FPort Frame type Key 

0 Uplink/downlink NwkSEncKey 

1–255 Uplink/downlink AppSKey 

– Join-accept NwkKey/JSEncKey 

one with each Join-request. On the other hand, the JoinNonce will always need to be 
greater than the last valid received JoinNonce as it is used to calculate the End-device 
session keys. 

Considering that the key derivation algorithms are almost the same between 
LoRaWAN v1.0.3 and v1.1; but with some variations, v1.1 utilizes 6 encryption 
keys instead of the 2 keys present in v1.1. Taking this into account, the original 
implementation was only used as a guide for the implementation of the derivation of 
the new keys. 

Additionally, the OTAA join procedure was adjusted to incorporate the new keys, 
counters and message formats described in the LoRaWAN v1.1 specification. One 
specific aspect that needed to be adjusted is the MIC calculation since it depends 
on message length, the use of the newly added integrity keys, and the new counter 
schema. At the same time, the keys used to encrypt the FRMPayload before the MIC 
calculation were adjusted to follow the schema described in the new specification. 
The used encryption key depends on the frame type (Uplink, Downlink, or Join-
accept) and the port where message is directed to (see Table 4). 

In general, the session keys are used to encrypt and decrypt the messages except 
when the message is a Join-accept one. In case of the Join-accept responds to a 
Join-request, the key used is the NwkKey since the session keys are not yet derived. 
On the other hand, if the Join-accept responds to a Rejoin-request, the key used for 
encryption is the JSEncKey which corresponds to the Join Session Encryption Key. 

Once the device has joined the network either using OTAA or ABP, the device 
can send frames to sever. These frames can be empty frames, frames with MAC 
commands, with application data, or with MAC commands and application data. 
Every payload sent through the network needs to be encrypted using AES with 
128-bit keys. 

Since the original implementation of the library already included an implemen-
tation of the AES algorithm, there was no need for implementing it or making any 
adjustments. The main changes made were the structure of the payloads, the keys 
used for encryption, and the A blocks for the encryption process 

Then, refactor the ABP process, which uses the same keys as OTAA when the 
device has joined the network but needs the keys to be set before, so there is no 
key derivation procedure. One last difference between these two procedures is that 
a MAC command is sent to the server once the session is established, and a MAC 
command is used to acknowledge successful communication.
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Four MAC commands were added to the library implementation, ResetInd and 
ResetConf for ABP devices, and RekeyInd and RekeyConf) for OTAA devices. The 
ResetInd and RekeyInd commands need to be sent on every frame after the device 
joins the network until the corresponding ResetConf or RekeyConf are sent as part 
of the server response. 

In order to set all root keys, the original implementation of the library uses func-
tions that need to be implemented by the client. Using this as a template, similar 
function declarations were created not only to set the keys of the device but also to 
persist counters, nonces, and data to know if the device has been restarted or not. 

3.4 Review 

In order to validate the adaptation of the library according to the requirements spec-
ified during the identification phase, a set of validation tests were proposed. Each 
test was performed on a real network deployed on AWS using ChirpStack (an open-
source LoRaWAN server implementation), a Raspberry Pi 3 working as a gateway, 
and a TTGO LoRa32 as the end device. 

The following test suite (Table 5) was proposed in order to test the correct exe-
cution of different join procedures, communication of different types of Uplinks or 
Downlink messages, and other possible use cases of the library. 

Figure 4, details a summary of the outcomes obtained on every stage of the applied 
methodology. 

Table 5 describes the way to test that our proposed solution complies with 
LoRaWAN v1.1 specification. We extracted the feautes from the specification that 
need to be present in the library code. The features to test are related to LoRaWAN 
v1.1 activation processess, for each feature we have described the type of the test 
that need to be performed. These tests aim to show that our implementation has 
not changed the activation process, also that the activation process complies to the 
new requirements of the specification and that uplink and downlink messages are 
able to be delivered included new security features as described in LoRaWAN v1.1 
specification. 

Table 5 LoRaWAN v1.1 validation test suite 

Test Feature to test 

Class A OTAA unconfirmed uplinks OTAA, unconfirmed uplink MIC 

Class A ABP confirmed uplinks ABP procedure, confirmed uplinkns MIC 

Class A ABP confirmed downlinks Downlink MIC 

Key persistence and device restart using ABP Restore ABP session 

Key persistence and device restart using OTAA Restore OTAA session params and join 

LoRaWAN v1.0 Class A ABP versus 
LoRaWAN v1.1 Class A ABP 

Performance test compared to the original 
implementation
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Fig. 4 Methodology and outcomes generated 

Our solution was deployed in a Proof of Concept (PoC) where we used open 
hardware (Arduino) to validate that changes are not tied to a specific hardware plat-
form. In contrast to other implementations, our solution is free to access and use, it 
uses open software libraries that can be deployed over any Arduino-based platform. 
To validate that LoRaWAN is working, we used an older version of LMiC library 
(supports LoRaWAN 1.0.x) and our proposed version to perform tests that validate 
ABP process and any performance changes within the used device. 

4 Result Analysis 

The use of LEAN allowed us to establish guidelines to carry out and to conti-
nously improve this project. Scrum, has allowed us to build during the execution 
phase of LEAN, a minimum viable product (MVP) by developing and implementing 
LoRaWAN v1.1 over a Proof of Concept scenario (PoC). User stories, were key to 
identify and prioritize the scope of this solution.
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All the tests proposed during the review phase were executed successfully with 
promising results. For each of the tests, a new device was created on the server. Each 
device was started with all of the counters in the initial value and no established 
session. It means that devices are started out as “brand new” to derive all session 
keys in the case of OTAA or correctly beginning communication in the case of 
ABP. Each test consisted on a set of messages being sent (10, 25, 50, 75, 100), 
depending on the number of messages, each stage lasted 5–35 min approximately. 
The tests were performed for the following types of messages: Unconfirmed uplinks, 
Class A confirmed uplinks, Class A ABP confirmed downlinks, Key derivation and 
persistence (OTAA and ABP), and ABP for the two versions. To carry out the tests, 
two devices (TTGO LoRa 32) named as A and B were used to deploy the library 
built within this project. Device A was setup to use LoRaWAN V1.0.3. Device B 
used the version developed by us (LoRaWAN V1.1). After session key derivation, 
several messages were sent (10, 50, 100) to measure time taken (in seconds) for the 
whole infrastructure to proccess different messages sent. 

4.1 LoRaWAN v1.1 Class A OTAA Unconfirmed Uplinks 

The first test consisted in setting up a device to join the network using OTAA and 
then sending unconfirmed uplinks to the server. The device could send data messages 
containing the payload “Hello, World!” at an interval of approximately 30 s only 
using sub-band 0 (corresponding to channels 0–7), the only sub-band supported by 
the gateway. The first message sent by the device is the Join-request, followed shortly 
by a downlink containing the Join-accept. 

During the test (Fig. 5), five experiments were conducted, each of them with a cer-
taing number of messages (10, 25, 50, 75, 100), depending on the experiment, there 
was a slight amount of messages that were repeated; however the test successfully 

Fig. 5 Result OTAA Class A unconfirmed uplinks
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received all messages that were sent. The server reported no errors or inconsistencies 
in the messages, meaning the MICs were correctly calculated and the payload cor-
rectly encrypted by the device. The time between messages was measured, having 
an average of 31.2 s, which is 1.2 s higher than the configured time. But this slight 
variation in timing is produced by the duty cycle of the library. As shown in Fig. 5, 
there is a small number of resent messages, it represents approximately 1% per every 
10 messages for this scenario. 

4.2 LoRaWAN v1.1 Class A ABP Confirmed Uplinks 

For this test, the device was configured to join the network using ABP; for this, all 
the keys were generated in the server and configured with the device. In order to send 
confirmed uplinks, the function call in charge of sending the messages was updated 
to set the confirmation flag to 1 instead of 0. 

During this test, no Join-request nor Join-accept messages were sent through the 
network as expected. The device started with the first data message, received by the 
server, and shortly later responded with an unconfirmed downlink sending the ACK 
to the original message. 

On this test, 5 experiments were conducted with different lots of messages (10, 
25, 50, 75, 100), some of the messages have to be resent in order to be delivered. 
Analyzing the logs, the ACK message from the server got lost so the device repeated 
the message until the ACK frame was received as shown in Fig. 6. 

The mean time between messages was 36.3 s. The increase of the time was due 
to the repeated message. Excluding the repeated message, the mean time was 31.1 s, 
similar to the value gathered on the first test. As shown in Fig. 6, the number of resent 
messages approximately represents 2% per every 10 messages on each experiment. 

Fig. 6 Result ABP Class A confirmed uplinks
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4.3 LoRaWAN v1.1 Class A ABP Confirmed Downlinks 

During this test, a device was configured to send uplink messages periodically so 
the device opens the reception windows for downlinks. For this test, we conducted 
five rounds of experiments, each of them with a different amount of downlink mes-
sages (10, 25, 50, 75, 100), these downlink messages were queued on the server 
distributed between ports 1 and 2 of the device. The payload for the message was 
“SGVsbG8sIHdvcmxkIQ==” corresponding to “Hello, world!” encoded in base64. 

The device started sending uplinks and after the server received the uplink message 
it sent the queued downlink with the configured payload of 13 bytes. Different from 
the other tests, the downlinks sent by the server are now all confirmed. This happens 
because the server uses the same frame to send the ACK to the device on the same 
frame data is sent. In the previous test, most of the downlink frames only contained 
the header with no payload or port. 

Reviewing the messages sent by the end device, sometimes it responds imme-
diately to the server with an unconfirmed uplink in order to send the ACK of the 
confirmed downlink. On this test, there was a slight number of messages that need to 
be retransmitted as the device did not acknowledge them. As shown in Fig. 7, there is 
a 100% of accuracy for sending and receiving messages, whilst the number of resent 
messages for this scenario at the last experiment represent at least 10%; however all 
messages were received without errors. 

4.4 LoRaWAN v1.1 Key Persistence and Device Restart 

The purpose of this test was to check if the device was capable of storing the session 
data in order to continue the communication after the device was restarted. Since 

Fig. 7 Result ABP Class A confirmed downlinks
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each activation procedure, i.e., OTAA and ABP needs to store different parameters, 
this test was divided into two parts. 

ABP For this test, one of the devices from the previous test was reused but imple-
mented the functions to restore the counters and the device restart indicator. The 
counters were incremented by one compared to the server since the library always 
stores the counters increased by one except if the counter is in 0. On this test, the 
device could resume communications with the server sending a frame where the 
counter FCnt was equal to 13. Similar to the other test, the device was capable of 
communicating with the server and sending a frame with FCnt set to 13 as expected. 

OTAA Different from ABP, in this test, the device only needed to store the DevNonce 
and JoinNonce in order to start the Join-procedure again, derive the keys and restart all 
the counters back to zero. For the test, a device was configured to send ten messages. 
After the values for the DevNonce and JoinNonce were stored on the device and 
restarted again. The DevNonce starts at value 1 and the JoinNonce starts at value 0. 
The device is turned on again and it is now capable of joining the network again and 
sending messages again. 

4.5 LoRaWAN v1.0 Class A ABP Versus LoRaWAN v1.1 
Class A ABP 

A final test was performed to compare the performance of the original implementation 
of the library compared to the adapted version for detecting any possible losses of 
performance. For both tests, ABP with unconfirmed Uplinks was used with the only 
difference of using different versions of LoRaWAN. 

For the LoRaWAN v1.0.3 device, Table 6 was obtained. After the 10 messages, 
the average time of each message was 32.5 s with a standard deviation of 1.96 s. 

The LoRaWAN v1.1 device produced the following results shown in Table 7. By  
conducting a test for blocks of 5, 10, 50, and 100 messages, the average time, standard 
deviation, minimum, and maximum values are shown in the following table. 

Comparing the values of each device, the average time for the LoRaWAN v1.1 
device was increased by 0.5 s compared to the LoRaWAN v1.0.3 which used the 
original implementation of the library. Comparing the average time increment to 
the standard deviation obtained on the original implementation (LoRaWAN v1.0.3 
device) it can be concluded that the adapted version is having an insignificant perfor-

Table 6 Message times for LoRaWAN v1.0.3 

Msg 0 1 2 3 4 5 6 7 8 9 Avg. Std. 
dev. 

Time 
(Seg) 

30 38 32 32 32 33 32 32 32 32 32.5 1.96
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Table 7 Min, Max, std. dev., avg. for 5, 10 50 and 100 messages scenarios 

5 messages 10 messages 50 messages 100 messages 

Avg. 32.8 32.9 31.8 32.7 

Std. dev. 1.73 1.34 2.71 1.93 

Min 30 30 28 29 

Max 34 34 25 33 

Fig. 8 Messages generated versus time (s) in LoRaWAN V1.1 

mance loss of 1.53%, due to the modified algorithms to support the extra encryption 
keys and algorithms. In addition, Fig. 8 shows the times obtained for ten, fifty, and 
one hundred messages generated by Device B using LoRaWAN v1.1. 

5 Conclusions

• The Arduino-lmic library was successfully adapted to work with LoRaWAN v1.1 
specification limited to OTAA and ABP support for Class A devices.

• The comparison between LoRaWAN v1.0.3 and v1.1 specifications served as a 
theoretical base for the adaptation of the library.
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• It was possible to incorporate v1.1 specification features into Arduino-lmic imple-
mentation as well as modify its behavior to communicate with LoRaWAN v1.1 
network; without significatively impacting its performance.

• The operation of the adapted library was verified using a test suite described in 
Sect. 3.4. The tests were performed using an Arduino compatible device (TTGO 
LoRa 32) as well as a production-ready deployment of a LoRaWAN network using 
Chirpstack and hosted on AWS. 
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