
Customizing Arduino LMiC Library
Through LEAN and Scrum to Support
LoRaWAN v1.1 Specification
for Developing IoT Prototypes

Juan M. Sulca, Jhonattan J. Barriga , Sang Guun Yoo ,
and Sebastián Poveda Zavala

Abstract The release of LoRaWAN in 2015 introduced specification v1.0, which
outlined its key features, implementation, and network architecture. However, the
initial version had certain flaws, particularly vulnerabilities to replay attacks due
to encryption keys, counters, and nonce schema. To address these concerns, the
LoRa Alliance subsequently released v1.1 of the LoRaWAN specification. This
updated version aimed to enhance security by introducing new encryption keys, addi-
tional counters, and a revised network architecture. While the original LoRaWAN
v1.0 specification spawned various device library implementations, such as IBM’s
LoRaWAN MAC in C (LMiC) from which Arduini-lmic was derived, none of these
existing implementations adopted the improved security features of the LoRaWAN
v1.1 specification. To address the lack of an open-source implementation for v1.1
end devices on open hardware platforms and to leverage the security enhancements
of v1.1, a solution was devised and implemented to adapt the Arduino-lmic library.
This adaptation process followed the principles of continuous improvement derived
from the LEAN software development methodology, combined with the utilization
of the Scrum framework.

Keywords LoRaWAN · Internet of Things · LoraWAN-MAC-in-C · Low power
wide area network · Arduino · Library

J. M. Sulca · J. J. Barriga · S. G. Yoo (B) · S. P. Zavala
Facultad de Ingeniería de Sistemas, Escuela Politécnica Nacional, Quito 170525, Ecuador
e-mail: sang.yoo@epn.edu.ec

J. M. Sulca
e-mail: juan.sulca@epn.edu.ec

J. J. Barriga
e-mail: jhonattan.barriga@epn.edu.ec

S. P. Zavala
e-mail: sebastian.poveda@epn.edu.ec

Smart Lab, Escuela Politécnica Nacional, Quito 170525, Ecuador

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
P. P. Joby et al. (eds.), IoT Based Control Networks and Intelligent Systems, Lecture
Notes in Networks and Systems 789, https://doi.org/10.1007/978-981-99-6586-1_14

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6586-1_14&domain=pdf
http://orcid.org/0000-0001-7334-9113
http://orcid.org/0000-0003-1376-3843
sang.yoo@epn.edu.ec
 854
47129 a 854 47129 a

mailto:sang.yoo@epn.edu.ec
juan.sulca@epn.edu.ec
 854
50007 a 854 50007 a

mailto:juan.sulca@epn.edu.ec
jhonattan.barriga@epn.edu.ec
 854 52885 a 854 52885 a

mailto:jhonattan.barriga@epn.edu.ec
sebastian.poveda@epn.edu.ec
 854 55763 a 854 55763
a

mailto:sebastian.poveda@epn.edu.ec
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14
https://doi.org/10.1007/978-981-99-6586-1_14

198 J. M. Sulca et al.

1 Introduction

LoRaWAN is a low-power wide area network protocol (LPWAN) focused on Inter-
net of Things applications [1]. LoRaWAN has several benefits compared to other
LPWAN technologies. LoRaWAN uses a free spectrum for transmission which rep-
resents no cost. In terms of development it is opened as it allows to customize solu-
tions based on hardware and software. In 2015, LoRa Alliance published the first
specification of LoRaWAN (v1.0) [2]. From this point onwards, the specification got
revised several times, originating a division in the specification. On one side, the
specification got overhauled with new encryption keys, and algorithms in specifica-
tion v1.1 [3]. On the other side, the revisions of the original specification gave place
to specifications v1.0.2 and v1.0.3 [4]. Although specification v1.1 is compatible
by default with all v1.0.x specification family; most of the implementations of the
specification only focused on v1.0.x [4].

Since the growth of IoT research in recent years, several implementations of
the LoRaWAN specification have been released for the main development plat-
forms like Arduino. In 2016 IBM released LoRaWAN MAC in C (LMiC) as an
open-source implementation for the LoRaWAN v1.0 specification. Based on IBM’s
implementation, the code was ported to work with the Arduino environment giving
birth to the Arduino-lmic which currently supports LoRaWAN v1.0.2 and v1.0.3
[5]. Even though LoRaWAN v1.1 has improved security characteristics compared to
v1.0.x family; there are no open-source end-device implementations that work with
such version, despite the existence of server-side deployments with support for both
LoRaWAN v1.0.x and v1.1.

Some researchers, like [6– 8] do not specify which end device implementation is
being used, so most of these libraries are not released to the general public. Checking
code repositories and IoT related forums like The Things Network [9], a list of end
device implementations was found in [10]. From the listed implementations, only
[11] supported LoRaWAN v1.1, with the limitation of only being able to use class
A devices with OTAA and did not support rejoins. Due to the necessity of testing,
developing, and creating new devices and sensors based on LoRaWAN there is an
opportunity to take advantage of the improved features of v1.1. Taking this into
account, in this work a re-engineered version of Arduino-lmic was developed to
support the v1.1 specification of LoRaWAN. To the best of our knowledge this is the
first available source code that implements LoRaWAN v1.1 for development over
Arduino End-Devices.

The rest of the paper is organized as follows. Section 2 presents the methodology
applied to this project. Section 3 describes the changes done to Arduino-LMIC in
order to comply with the LoRaWAN v1.1 specification. Section 4 presents the results
obtained during several tests to verify its functionality. Lastly, Sect. 5 presents the
conclusions.

Customizing Arduino LMiC Library Through LEAN and Scrum … 199

2 Methodology

The continuous improvement cycle characteristic of LEAN software development
[12] will be the methodological foundation for the present work combined with the
Scrum framework for the adaptation of the code. The project was decomposed into
the following phases: identification, planning, execution, and review as shown in
Fig. 1. The use of LEAN is key to provide a set of phases to carry out our project.
LEAN was chosen as it has a common and generyc cycle that could be widely applied
to software development or project management.

During the identification phase, LoRaWAN v1.0.x and v1.1 specifications were
compared to extract similarities and differences between both them and abstract
this to the Arduino-lmic code. Upon inspecting and understanding the code of the
Arduino-lmic, a list of all the required changes for implementing LoRaWAN v1.1
was specified.

In the planning phase, the changes specified from the identification phase were
organized based on how they are used. Based on activation methods, message types,
and the expected behavior of LoRaWAN v1.1. With the organized changes, the
project backlog was created. Each story takes the library as its user and focuses on
solving the library’s needs, e.g., having the new encryption schema to communicate
with LoRaWAN v1.1 infrastructure.

The development environment was set during the planning phase. During this
process, the main tools and infrastructure needed to adapt the library were installed
and configured. Tools like Visual studio code and Platformio were key to the adapta-
tion of the library. To experiment with the existing implementation and test the new
features of the adapted library, a complete LoRaWAN network was implemented
using AWS, Chirpstack, a raspberry pi 3, and a TTGO LoRa32 device.

Fig. 1 Continuous improvement cycle

200 J. M. Sulca et al.

Fig. 2 Changes to Arduino-lmic to comply with LoRaWAN v1.1

Next, during the execution phase, all the changes found during the first and second
phases were grouped based on the activation method. Figure 2 shows a general view
of the changes implemented to the library based on the comparison done during the
planning phase.

Lastly, in the review phase, a set of validation tests were proposed to check if the
adapted version is capable of communicating with a LoRaWAN v1.1 network seam-
lessly and without a significant loss of performance related to the additional security
measures required by LoRaWAN v1.1. The test suite aims to validate all the possi-
ble scenarios supported by the original implementation in which a LoRaWAN v1.1
device needs to work; these scenarios include, ABP and OTAA activation process,
sending and receiving messages in both classes A and C, confirmed and unconfirmed
messages.

Customizing Arduino LMiC Library Through LEAN and Scrum … 201

3 Proposed Work

This section describes in detail the steps performed to apply the selected methodology
(see Fig. 1) that let us develop the changes into LMiC library to support LoRaWAN
v1.1. The proccess followed is described next.

3.1 Identification

During this phase, a comparison between both LoRaWAN technical specifications
was performed alongside the reverse engineering of the Arduino-lmic implementa-
tion. The base for this comparison was LoRaWAN v1.0.3 [13] and LoRaWAN v1.1
[3]; LoRaWAN v1.0.3 was chosen because it was the latest supported by Arduino-
lmic. The scope of the comparison was limited only to class A devices because class
B have not been tested and class C are not supported at all.

Table 1 provides a list of acronyms used to describe some of the fields of the
LoRaWAN v1.1 specification for LoRaWAN frames structure.

The first notable change between the two versions of LoRaWAN was the MAC
message format. For LoRaWAN v1.0.3 the Message Integrity Code (MIC) of the
join accept is not encrypted and in LoRaWAN v1.1 the MIC is encrypted. Also, a
new message type called Rejoin-request is added in the specification.

The next changes are present in the physical payload format, where the mini-
mum MAC payload size is increased from 1 byte in LoRaWAN v1.0.3 to 7 bytes in

Table 1 LoRaWAN acronyms list

Acronym Description

MHDR MAC header

MACPayload MAC payload

MIC Message integrity code

FHDR Frame header

FPort Frame port

FRMPayload Frame payload

DevAddr Device address

FCtrl Frame control

FCnt Frame counter

FOpts Frame options

DevEUI Device EUI

AppEUI Application EUI

AppKey Application key

202 J. M. Sulca et al.

Table 2 Differences between LoRaWAN specifications

Element LoRaWAN v1.0.3 LoRaWAN v1.1

Rejoin-request N/A New message type

Join-accept MIC not encrypted MIC encrypted

MAC payload size 1 byte–M 7 bytes–M

MHDR Mtype N/A Rejoin-Request: 110

Frame counter (FCnt) 2-counter schema 2-counter and 3-counter schema,
persisted in non-volatile memory

Frame options (FOpts) Not encrypted Encrypted with NwkSEncKey

MIC Single algorithm for uplinks
and downlinks

Separate algorithms for uplink and
downlink

MAC commands No MAC commands for ABP
or OTAA

New MAC commands for OTAA and
ABP

AES keys 2 6

OTAA Requires DevEUI, AppEUI,
AppKey

Require DevEUI, JoinEUI, AppKey,
NwkKey

ABP NwkSKey, AppSKey FNwkSIntKey, SNwkSIntKey,
NwkSEncKey, AppSKey

JoinNonce AppNonce Name changed and persisted in
non-volatile memory

LoRaWAN v1.1. In addition, a new value for the MType of the MHDR is added to
accommodate the new message type (Rejoin-request).

Another difference is in the frame counter (FCnt) schema which uses two counters
in LoRaWAN v1.0.3. In addition to implementing the two-counter schema, V1.1 adds
a second counter schema which uses 3 counters and is used only when the device
interacts with a LoRaWAN v1.1 network. Also, all counters must be persisted in
non-volatile memory of LoRaWAN v1.1 devices.

Other changes found between the two versions of LoRaWAN are the encryption
of some fields of the message; e.g., the FOpts field is not encrypted in v1.0.3 but
encrypted in v1.1. Likewise, the key derivation algorithms vary due to the additional
encryption keys added to v1.1 changing from 2 session keys in v1.0.3 to 6 session
keys. Also, the MIC calculation algorithm uses the new counter schema and keys.

Equally important new MAC commands are added in LoRaWAN v1.1 to adjust
network parameters after the device joined a network either using OTAA or ABP; as
well as new commands to adjust session parameters during the device execution.

Besides, the activation procedures have slight variations to support new encryption
keys. Mainly key derivation algorithms and MAC commands sent after activation are
changes introduced in v1.1. Table 2 summarizes the changes done to the Arduino-
lmic implementation.

Customizing Arduino LMiC Library Through LEAN and Scrum … 203

Table 3 User stories for the adaptation

As I want So that Story points

End-device To store the new encryption
keys

I can implement the algorithms
of LoRaWAN v1.1

13

End-device To implement the new frame
counter schema

I am able to communicate with
a LoRaWAN v1.1 network

8

End-device To implement the OTAA
process

I interact with a LoRaWAN
network securely

13

End-device To implement the ABP process I interact with a LoRaWAN
network securely

13

End-device To calculate the MIC of
messages using the LoRaWAN
v1.1 specification

I can guarantee the integrity of
the messages

8

End-device to store in non-volatile memory
the nonces and counters

I am able to reconnect to the
network and restore the session
context after a restart

5

3.2 Planning

To create the project backlog, all the identified changes were written in form of user
stories for feeding product backlog. To create user stories, the device assumed the
user role; because Arduino-lmic exposes a low-level API oriented to other developers
and should be completely transparent to the final user. The Table 3 shows the initial
product backlog.

The operation of LoRaWAN v1.1 was divided into 5 parts: End-device activation,
messages, MAC commands, encryption/decryption, and MIC calculation. After the
activation of any device using either OTAA or ABP; the end device has all the session
context to send messages including the encryption keys, counter values, and nonces.

Then, set up the development environment to adapt and test the library. For this,
ChirpStack; an open-source LoRaWAN network server stack, was used to deploy the
Network Server, Application Server, Join Server, and gateway firmware. When using
ChirpStack it is not mandatory to use a Join Server because the Network Server can
be configured to filter the join-request messages by JoinEUI or by connecting to an
external Join Server.

In order for the ChirpStack infrastructure to work, some additional components
need to be deployed. A Mosquitto Broker, Redis Cache, and two PostgreSQL
databases need to be provisioned to ChirpStack to communicate and persist data
and configurations. To host all the network infrastructure AWS was chosen due to
its low cost, and experience with the platform. See Fig. 3

To implement the infrastructure, an AWS Lightsail instance was provisioned to
host the Mosquitto Server, ChirpStack Application Server, Network Server, and Redis
Cache. For the database, a PostgreSQL instance was provisioned using AWS RDS;
a specialized service to host relational databases. The communication between the

204 J. M. Sulca et al.

Fig. 3 LoRaWAN network deployed in AWS

Lightsail instance and the database was configured inside the same subnet and VPC
in AWS to be secure and completely isolated from the Internet. Only the Mosquitto
Broker and the administration web page from the network server were exposed to
the internet. Figure 3 shows the full architecture in AWS.

A Raspberry Pi 3 with a RAK 2245 LoRaWAN shield and ChirpStack gateway
OS was configured and deployed as gateway. It was configured to move messages
from the end device to the cloud using MQTT; MQTT is a messaging protocol used
to collect data under publisher/subscriber schema. The gateway was connected to
the Internet through Ethernet.

Finally, for the end device, a TTGO LoRa32 which is supported by the original
implementation of the Arduino-lmic library and because it relies on ESP32 platform
which is widely documented and supported.

3.3 Execution

The existing implementation of Arduino-lmic is based on a single function called
engineUpdate_inner which determines the current state of the library using a series
of flags, and values on a structure called lmic_t, and callbacks to mutate the flags
and the lmic_t structure.

For the library to work some functions need to be implemented by the client in
order to set the encryption keys and EUIs in the case of OTAA devices or use the
LMIC_setSession in the case of ABP devices. To configure other parameters like
region and frequency, this needs to be done by setting constants during compilation.
This makes it impossible to dynamically change the region during the execution of
the device.

Customizing Arduino LMiC Library Through LEAN and Scrum … 205

During the modification of the library, not only the functionality was changed,
but the semantic of the implementation in order to use the same semantic as the
technical specification. For example, the library used ArtKey for the (Application
Key); which was changed to AppKey (as in the specification). Also, new function
parameters were named using more descriptive names to help with the readability
and maintainability of the codebase. The first step of the implementation was to
store the counters and keys required by LoRaWAN v1.1 in the lmic_t data structure.
All keys used by LoRaWAN are AES keys of 16 bytes length; in v1.1 the follow-
ing keys were added: NwkSEncKey, SNwkSIntKey, FNwkSIntKey, and AppSKey
which are needed for both ABP and OTAA. For OTAA operation, the JSIntKey
and JSEncKey were also added to be used during the join process. The next step
was to implement two flags on the lmic_t structure to handle sending and receiv-
ing ResetInd, RekeyInd, ResetConf, and RekeyConf MAC commands belonging
to ABP and OTAA join procedures. These commands need to be sent after setting
a session between the device with the server, and then the server has to respond
with the corresponding Conf MAC command in order to acknowledge the join
procedure.

The structure of the messages was updated with the MAC Header (MHDR) to
adapt the new message types and length calculation of the messages which is needed
for the MIC and message encryption.

Later, the MAC Payload was updated with the structure presented in LoRaWAN
v1.1, FHDR (1 byte), FPort (1 byte), and FRMPayload (1–M byte). Under v1.1, a
valid payload needs to have FHDR but can omit FPort, and FRMPayload.

Another change was an update to the FHDR with the following information
DevAddr (4 bytes), FCtrl (1 byte), FCnt (2 bytes), FOpts (0–15 bytes), where the
FOpts were encrypted using the NwkSEncKey. FCnt field was updated to include
new counter schema presented in v1.1. The algorithms used to encrypt this field
includes a specific block that needs to be generated using the device address, the
frame counter, and the direction of the message.

Another key difference is the frame counter schema. In LoRaWAN v1.0.x, there
are two counters for the messages, i.e., FCntUp for uplink messages and FCntDown
for downlink messages. On the other hand, the v1.1 specification uses a three-counter
schema where FCntUp increases with every uplink, NFCntDown for all messages
with no port or targeted to port 0, and AFCntDown for messages with destination to
all other ports. In addition, for updating the frame counter schema, two new counters
were added in the OTAA join procedure. RJcount0 for rejoins of type 0 or 2 and
RJcount1 for rejoins of type 1. The updated OTAA join procedure adds a new type
of message called rejoin request with three different types to adjust the parameters
of the device on the fly.

The next step was updating the format and implementation of the Join-request,
Join-accept, and Rejoin-request messages. One of the key differences is that, in v1.1,
some values like the DevNonce and JoinNonce need to be persistent in the device to
successfully join a network and validate the Join-accept message from the network
server. The DevNonce starts at 0 when the device is initialized and increases in

206 J. M. Sulca et al.

Table 4 LoRaWAN v1.1 frame header format

FPort Frame type Key

0 Uplink/downlink NwkSEncKey

1–255 Uplink/downlink AppSKey

– Join-accept NwkKey/JSEncKey

one with each Join-request. On the other hand, the JoinNonce will always need to be
greater than the last valid received JoinNonce as it is used to calculate the End-device
session keys.

Considering that the key derivation algorithms are almost the same between
LoRaWAN v1.0.3 and v1.1; but with some variations, v1.1 utilizes 6 encryption
keys instead of the 2 keys present in v1.1. Taking this into account, the original
implementation was only used as a guide for the implementation of the derivation of
the new keys.

Additionally, the OTAA join procedure was adjusted to incorporate the new keys,
counters and message formats described in the LoRaWAN v1.1 specification. One
specific aspect that needed to be adjusted is the MIC calculation since it depends
on message length, the use of the newly added integrity keys, and the new counter
schema. At the same time, the keys used to encrypt the FRMPayload before the MIC
calculation were adjusted to follow the schema described in the new specification.
The used encryption key depends on the frame type (Uplink, Downlink, or Join-
accept) and the port where message is directed to (see Table 4).

In general, the session keys are used to encrypt and decrypt the messages except
when the message is a Join-accept one. In case of the Join-accept responds to a
Join-request, the key used is the NwkKey since the session keys are not yet derived.
On the other hand, if the Join-accept responds to a Rejoin-request, the key used for
encryption is the JSEncKey which corresponds to the Join Session Encryption Key.

Once the device has joined the network either using OTAA or ABP, the device
can send frames to sever. These frames can be empty frames, frames with MAC
commands, with application data, or with MAC commands and application data.
Every payload sent through the network needs to be encrypted using AES with
128-bit keys.

Since the original implementation of the library already included an implemen-
tation of the AES algorithm, there was no need for implementing it or making any
adjustments. The main changes made were the structure of the payloads, the keys
used for encryption, and the A blocks for the encryption process

Then, refactor the ABP process, which uses the same keys as OTAA when the
device has joined the network but needs the keys to be set before, so there is no
key derivation procedure. One last difference between these two procedures is that
a MAC command is sent to the server once the session is established, and a MAC
command is used to acknowledge successful communication.

Customizing Arduino LMiC Library Through LEAN and Scrum … 207

Four MAC commands were added to the library implementation, ResetInd and
ResetConf for ABP devices, and RekeyInd and RekeyConf) for OTAA devices. The
ResetInd and RekeyInd commands need to be sent on every frame after the device
joins the network until the corresponding ResetConf or RekeyConf are sent as part
of the server response.

In order to set all root keys, the original implementation of the library uses func-
tions that need to be implemented by the client. Using this as a template, similar
function declarations were created not only to set the keys of the device but also to
persist counters, nonces, and data to know if the device has been restarted or not.

3.4 Review

In order to validate the adaptation of the library according to the requirements spec-
ified during the identification phase, a set of validation tests were proposed. Each
test was performed on a real network deployed on AWS using ChirpStack (an open-
source LoRaWAN server implementation), a Raspberry Pi 3 working as a gateway,
and a TTGO LoRa32 as the end device.

The following test suite (Table 5) was proposed in order to test the correct exe-
cution of different join procedures, communication of different types of Uplinks or
Downlink messages, and other possible use cases of the library.

Figure 4, details a summary of the outcomes obtained on every stage of the applied
methodology.

Table 5 describes the way to test that our proposed solution complies with
LoRaWAN v1.1 specification. We extracted the feautes from the specification that
need to be present in the library code. The features to test are related to LoRaWAN
v1.1 activation processess, for each feature we have described the type of the test
that need to be performed. These tests aim to show that our implementation has
not changed the activation process, also that the activation process complies to the
new requirements of the specification and that uplink and downlink messages are
able to be delivered included new security features as described in LoRaWAN v1.1
specification.

Table 5 LoRaWAN v1.1 validation test suite

Test Feature to test

Class A OTAA unconfirmed uplinks OTAA, unconfirmed uplink MIC

Class A ABP confirmed uplinks ABP procedure, confirmed uplinkns MIC

Class A ABP confirmed downlinks Downlink MIC

Key persistence and device restart using ABP Restore ABP session

Key persistence and device restart using OTAA Restore OTAA session params and join

LoRaWAN v1.0 Class A ABP versus
LoRaWAN v1.1 Class A ABP

Performance test compared to the original
implementation

208 J. M. Sulca et al.

Fig. 4 Methodology and outcomes generated

Our solution was deployed in a Proof of Concept (PoC) where we used open
hardware (Arduino) to validate that changes are not tied to a specific hardware plat-
form. In contrast to other implementations, our solution is free to access and use, it
uses open software libraries that can be deployed over any Arduino-based platform.
To validate that LoRaWAN is working, we used an older version of LMiC library
(supports LoRaWAN 1.0.x) and our proposed version to perform tests that validate
ABP process and any performance changes within the used device.

4 Result Analysis

The use of LEAN allowed us to establish guidelines to carry out and to conti-
nously improve this project. Scrum, has allowed us to build during the execution
phase of LEAN, a minimum viable product (MVP) by developing and implementing
LoRaWAN v1.1 over a Proof of Concept scenario (PoC). User stories, were key to
identify and prioritize the scope of this solution.

Customizing Arduino LMiC Library Through LEAN and Scrum … 209

All the tests proposed during the review phase were executed successfully with
promising results. For each of the tests, a new device was created on the server. Each
device was started with all of the counters in the initial value and no established
session. It means that devices are started out as “brand new” to derive all session
keys in the case of OTAA or correctly beginning communication in the case of
ABP. Each test consisted on a set of messages being sent (10, 25, 50, 75, 100),
depending on the number of messages, each stage lasted 5–35 min approximately.
The tests were performed for the following types of messages: Unconfirmed uplinks,
Class A confirmed uplinks, Class A ABP confirmed downlinks, Key derivation and
persistence (OTAA and ABP), and ABP for the two versions. To carry out the tests,
two devices (TTGO LoRa 32) named as A and B were used to deploy the library
built within this project. Device A was setup to use LoRaWAN V1.0.3. Device B
used the version developed by us (LoRaWAN V1.1). After session key derivation,
several messages were sent (10, 50, 100) to measure time taken (in seconds) for the
whole infrastructure to proccess different messages sent.

4.1 LoRaWAN v1.1 Class A OTAA Unconfirmed Uplinks

The first test consisted in setting up a device to join the network using OTAA and
then sending unconfirmed uplinks to the server. The device could send data messages
containing the payload “Hello, World!” at an interval of approximately 30 s only
using sub-band 0 (corresponding to channels 0–7), the only sub-band supported by
the gateway. The first message sent by the device is the Join-request, followed shortly
by a downlink containing the Join-accept.

During the test (Fig. 5), five experiments were conducted, each of them with a cer-
taing number of messages (10, 25, 50, 75, 100), depending on the experiment, there
was a slight amount of messages that were repeated; however the test successfully

Fig. 5 Result OTAA Class A unconfirmed uplinks

210 J. M. Sulca et al.

received all messages that were sent. The server reported no errors or inconsistencies
in the messages, meaning the MICs were correctly calculated and the payload cor-
rectly encrypted by the device. The time between messages was measured, having
an average of 31.2 s, which is 1.2 s higher than the configured time. But this slight
variation in timing is produced by the duty cycle of the library. As shown in Fig. 5,
there is a small number of resent messages, it represents approximately 1% per every
10 messages for this scenario.

4.2 LoRaWAN v1.1 Class A ABP Confirmed Uplinks

For this test, the device was configured to join the network using ABP; for this, all
the keys were generated in the server and configured with the device. In order to send
confirmed uplinks, the function call in charge of sending the messages was updated
to set the confirmation flag to 1 instead of 0.

During this test, no Join-request nor Join-accept messages were sent through the
network as expected. The device started with the first data message, received by the
server, and shortly later responded with an unconfirmed downlink sending the ACK
to the original message.

On this test, 5 experiments were conducted with different lots of messages (10,
25, 50, 75, 100), some of the messages have to be resent in order to be delivered.
Analyzing the logs, the ACK message from the server got lost so the device repeated
the message until the ACK frame was received as shown in Fig. 6.

The mean time between messages was 36.3 s. The increase of the time was due
to the repeated message. Excluding the repeated message, the mean time was 31.1 s,
similar to the value gathered on the first test. As shown in Fig. 6, the number of resent
messages approximately represents 2% per every 10 messages on each experiment.

Fig. 6 Result ABP Class A confirmed uplinks

Customizing Arduino LMiC Library Through LEAN and Scrum … 211

4.3 LoRaWAN v1.1 Class A ABP Confirmed Downlinks

During this test, a device was configured to send uplink messages periodically so
the device opens the reception windows for downlinks. For this test, we conducted
five rounds of experiments, each of them with a different amount of downlink mes-
sages (10, 25, 50, 75, 100), these downlink messages were queued on the server
distributed between ports 1 and 2 of the device. The payload for the message was
“SGVsbG8sIHdvcmxkIQ==” corresponding to “Hello, world!” encoded in base64.

The device started sending uplinks and after the server received the uplink message
it sent the queued downlink with the configured payload of 13 bytes. Different from
the other tests, the downlinks sent by the server are now all confirmed. This happens
because the server uses the same frame to send the ACK to the device on the same
frame data is sent. In the previous test, most of the downlink frames only contained
the header with no payload or port.

Reviewing the messages sent by the end device, sometimes it responds imme-
diately to the server with an unconfirmed uplink in order to send the ACK of the
confirmed downlink. On this test, there was a slight number of messages that need to
be retransmitted as the device did not acknowledge them. As shown in Fig. 7, there is
a 100% of accuracy for sending and receiving messages, whilst the number of resent
messages for this scenario at the last experiment represent at least 10%; however all
messages were received without errors.

4.4 LoRaWAN v1.1 Key Persistence and Device Restart

The purpose of this test was to check if the device was capable of storing the session
data in order to continue the communication after the device was restarted. Since

Fig. 7 Result ABP Class A confirmed downlinks

212 J. M. Sulca et al.

each activation procedure, i.e., OTAA and ABP needs to store different parameters,
this test was divided into two parts.

ABP For this test, one of the devices from the previous test was reused but imple-
mented the functions to restore the counters and the device restart indicator. The
counters were incremented by one compared to the server since the library always
stores the counters increased by one except if the counter is in 0. On this test, the
device could resume communications with the server sending a frame where the
counter FCnt was equal to 13. Similar to the other test, the device was capable of
communicating with the server and sending a frame with FCnt set to 13 as expected.

OTAA Different from ABP, in this test, the device only needed to store the DevNonce
and JoinNonce in order to start the Join-procedure again, derive the keys and restart all
the counters back to zero. For the test, a device was configured to send ten messages.
After the values for the DevNonce and JoinNonce were stored on the device and
restarted again. The DevNonce starts at value 1 and the JoinNonce starts at value 0.
The device is turned on again and it is now capable of joining the network again and
sending messages again.

4.5 LoRaWAN v1.0 Class A ABP Versus LoRaWAN v1.1
Class A ABP

A final test was performed to compare the performance of the original implementation
of the library compared to the adapted version for detecting any possible losses of
performance. For both tests, ABP with unconfirmed Uplinks was used with the only
difference of using different versions of LoRaWAN.

For the LoRaWAN v1.0.3 device, Table 6 was obtained. After the 10 messages,
the average time of each message was 32.5 s with a standard deviation of 1.96 s.

The LoRaWAN v1.1 device produced the following results shown in Table 7. By
conducting a test for blocks of 5, 10, 50, and 100 messages, the average time, standard
deviation, minimum, and maximum values are shown in the following table.

Comparing the values of each device, the average time for the LoRaWAN v1.1
device was increased by 0.5 s compared to the LoRaWAN v1.0.3 which used the
original implementation of the library. Comparing the average time increment to
the standard deviation obtained on the original implementation (LoRaWAN v1.0.3
device) it can be concluded that the adapted version is having an insignificant perfor-

Table 6 Message times for LoRaWAN v1.0.3

Msg 0 1 2 3 4 5 6 7 8 9 Avg. Std.
dev.

Time
(Seg)

30 38 32 32 32 33 32 32 32 32 32.5 1.96

Customizing Arduino LMiC Library Through LEAN and Scrum … 213

Table 7 Min, Max, std. dev., avg. for 5, 10 50 and 100 messages scenarios

5 messages 10 messages 50 messages 100 messages

Avg. 32.8 32.9 31.8 32.7

Std. dev. 1.73 1.34 2.71 1.93

Min 30 30 28 29

Max 34 34 25 33

Fig. 8 Messages generated versus time (s) in LoRaWAN V1.1

mance loss of 1.53%, due to the modified algorithms to support the extra encryption
keys and algorithms. In addition, Fig. 8 shows the times obtained for ten, fifty, and
one hundred messages generated by Device B using LoRaWAN v1.1.

5 Conclusions

• The Arduino-lmic library was successfully adapted to work with LoRaWAN v1.1
specification limited to OTAA and ABP support for Class A devices.

• The comparison between LoRaWAN v1.0.3 and v1.1 specifications served as a
theoretical base for the adaptation of the library.

214 J. M. Sulca et al.

• It was possible to incorporate v1.1 specification features into Arduino-lmic imple-
mentation as well as modify its behavior to communicate with LoRaWAN v1.1
network; without significatively impacting its performance.

• The operation of the adapted library was verified using a test suite described in
Sect. 3.4. The tests were performed using an Arduino compatible device (TTGO
LoRa 32) as well as a production-ready deployment of a LoRaWAN network using
Chirpstack and hosted on AWS.

References

1. LoRa Alliance (2020) About LoRaWAN® LoRa Alliance®. Accessed 22 Jan 2020 [online].
Available https://lora-alliance.org/about-lorawan

2. LoRa Alliance (2019) LoRaWAN® back-end interfaces v1.0 LoRa AllianceTM (2017).
Accessed 10 Nov 2019 [online]. Available https://lora-alliance.org/resource-hub/lorawanr-
back-end-interfaces-v10

3. LoRa Alliance (2017) LoRaWAN® specification v1.1—LoRa Alliance®
4. Hunt D (2020) Selecting a LoRaWAN® specification. Accessed 22 Jan 2020 [online]. Available

https://tech-journal.semtech.com/selecting-a-lorawan-specification
5. Terry M (2020) LMIC-v3.0.99. GitHub. Accessed 22 Jan 2020 [online]. Available https://

github.com/mcci-catena/arduino-lmic
6. Maziero L et al (2019) Monitoring of electric parameters in the Federal University of Santa

Maria using LoRaWAN Technology. In: 2019 IEEE PES innovative smart grid technologies
conference—Latin America (ISGT Latin America), Sept 2019, pp 1–6. https://doi.org/10.1109/
ISGT-LA.2019.8895425

7. Jeon Y, Kang Y (2019) Implementation of a LoRaWAN protocol processing module on an
embedded device using secure element. In: 2019 34th international technical conference on
circuits/systems, computers and communications (ITC-CSCC), June 2019, pp 1–3. https://doi.
org/10.1109/ITC-CSCC.2019.8793333

8. Wang S-Y, Chen T-Y (2018) Increasing LoRaWAN application-layer message delivery success
rates. In: 2018 IEEE symposium on computers and communications (ISCC), June 2018, pp
148-1-53. https://doi.org/10.1109/ISCC.2018.8538457

9. The things network—we are building a global open free crowdsourced long range low power
IoT data network. https://www.thethingsnetwork.org/docs/. Accessed 10 Nov 2019

10. The Things Network (2020) Overview of LoRaWAN libraries [HowTo]. The Things Network.
Apr 2019. Accessed 28 Jan 2020 [online]. Available https://www.thethingsnetwork.org/forum/
t/overview-of-lorawan-libraries-howto/24692

11. Harper C (2020) cjhdev/lora_device_lib. Jan 2020. Accessed 28 Jan 2020 [online]. Available
https://github.com/cjhdev/lora_device_lib

12. Poppendieck M, Cusumano MA (2012) Lean software development: a tutorial. IEEE Softw
29(5):26–32. https://doi.org/10.1109/MS.2012.107

13. LoRa Alliance (2015) LoRaWAN® specification v1.0—LoRa Alliance®

https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://lora-alliance.org/resource-hub/lorawanr-back-end-interfaces-v10
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://tech-journal.semtech.com/selecting-a-lorawan-specification
https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ISGT-LA.2019.8895425
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ITC-CSCC.2019.8793333
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://doi.org/10.1109/ISCC.2018.8538457
https://www.thethingsnetwork.org/docs/
https://www.thethingsnetwork.org/docs/
https://www.thethingsnetwork.org/docs/
https://www.thethingsnetwork.org/docs/
https://www.thethingsnetwork.org/docs/
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://www.thethingsnetwork.org/forum/t/overview-of-lorawan-libraries-howto/24692
https://github.com/cjhdev/lora_device_lib
https://github.com/cjhdev/lora_device_lib
https://github.com/cjhdev/lora_device_lib
https://github.com/cjhdev/lora_device_lib
https://github.com/cjhdev/lora_device_lib
https://github.com/cjhdev/lora_device_lib
https://github.com/cjhdev/lora_device_lib
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1109/MS.2012.107

	 Customizing Arduino LMiC Library Through LEAN and Scrum to Support LoRaWAN v1.1 Specification for Developing IoT Prototypes
	1 Introduction
	2 Methodology
	3 Proposed Work
	3.1 Identification
	3.2 Planning
	3.3 Execution
	3.4 Review

	4 Result Analysis
	4.1 LoRaWAN v1.1 Class A OTAA Unconfirmed Uplinks
	4.2 LoRaWAN v1.1 Class A ABP Confirmed Uplinks
	4.3 LoRaWAN v1.1 Class A ABP Confirmed Downlinks
	4.4 LoRaWAN v1.1 Key Persistence and Device Restart
	4.5 LoRaWAN v1.0 Class A ABP Versus LoRaWAN v1.1 Class A ABP

	5 Conclusions
	References

