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Abstract In autonomous driving, different Reinforcement Learning (RL) methods 
have been implemented to deal with different challenges. One of its advantages is the 
capability to deal with unexpected situations after an adequate trained environment. 
The inclusion of RL algorithms is considered as a solution for autonomous driving 
called “agent” that gathers the environmental information and acts according to 
this from one state to the next one. This paper proposes a solution for a specific 
environment that is trained with Deep RL and then is tested in simulation and in on 
experimental platform. 

Keywords Deep reinforcement learning · Decision making · Autonomous 
vehicles 

1 Introduction 

Autonomous driving systems have raised a considerable interest in the last decades 
for several reasons. Initially, it can decrease the majority of lethal accidents that are 
caused by distracted drivers which will create safer roads. More than 90% of reported 
traffic accidents are the outcome of human error and caused by issues related to 
the acquisition of visual information as debated in [ 10]. Nevertheless, sophisticated 
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autonomous driving can decrease accidents caused by human errors, can redirect 
driving time into more productive ends and it can lower operating costs per mile 
finding optimal paths to destination. 

The autonomous driving system have been under fast development in the recent 
years and different approaches have been implemented. Common modules to design 
autonomous systems include localization, perception, decision making (path plan-
ning) and dynamics control [ 13]. The main task of the environment localization and 
perception module is to extract useful features from the surroundings and locate the 
vehicle in the track to establish spatial and temporal relationships among the vehicle 
[ 3]. Identifying objects in the road, pedestrians, bicycles among others is classifica-
tion ability that has raised a great interest with Machine Learning algorithms specially 
with supervised learning. To get this information from the vehicle environment, the 
module relies on different kinds of perception sensors such as cameras, radar and 
lasers [ 14]. 

The trajectory planning module aims to plan different longitudinal and lateral 
vehicle maneuvers which might include lane changing, braking, lane following and 
obstacle avoidance. There are existing methods that rely on traditional classical plan-
ners or machine learning methods. An alternative approach to the classical planners 
and supervised learning methods is Reinforcement Learning. This framework works 
on the principle of maximizing reward for a particular action at a given state [ 5]. 
RL is the theory of an agent that learns optimal behavior through interaction with 
its environment. With the aid of Deep RL techniques it is possible to use the ben-
efits of deep learning in conjunction with RL to learn optimal behavior from high 
dimensional inputs to action outputs as discussed in [ 11]. In this paper, Actor-Critic 
methods are used to combine value-based and policy-based algorithms to sample 
efficiency and stability being effective in high dimensional and stochastic actions. 

The general objective of the project is to build, integrate and test different modules 
of perception and control for a scaled autonomous vehicle in the Robot Operating 
System (ROS) framework. The car is grouped by Engineers at Gipsa-Lab. Previous 
work has been made in the vehicle such as identification of the model’s vehicle, and 
its actuators along with the main connections on ROS2. In addition, the design and 
implementation of robust controllers for the vehicle lateral dynamics using different 
approaches has been made. 

The following work aims to design the decision making module based on deep 
RL approach. The vehicle must avoid collisions, achieve high driving efficiency 
by taking an optimal path, and execute smooth maneuvers without veering off the 
track while maintaining the center-line of a two-lane race track. The RL model is 
trained in simulation with a Deep Q-Network, and is then validated and tested in an 
experimental scenario with the scaled RC car. 

This paper is organized in five sections. The Sect. 2 aims to explain the theory and 
main components of the RL Algorithms that are used and the Actor Critic Approach. 
The Sect. 3 explains the implementation and training of the RL model with some 
simulation results. The Sect. 2 shows the validation and experimental results, and 
the Sect. 5 are the conclusions and final remarks of the work made.
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2 Reinforcement Learning for Autonomous Driving 

For autonomous driving, different Machine Learning (ML) methods have been imple-
mented to deal with different challenges. Some of these algorithms have raised great 
interest because of the capability to deal with unexpected situations after an adequate 
trained on a large set of sample data. One of the biggest challenges with ML algo-
rithms for autonomous driving is when considering the vehicle in an open context 
environment to train the model with all possible scenarios in the real world. The 
variety of context that could happen are infinite and the companies leading this field 
must solve it by collecting a big amount of data and validating system operation 
based on the collected data to ensure that a self-driving car has already learned all 
possible scenarios and with safety scenarios for each case [ 1]. The inclusion of RL 
algorithms is being considered as a solution for the car called agent that gathers the 
environmental information and acts according to this from one state to the next one. 

The general idea for implementing RL algorithms is to take the most important 
aspects of a learning agent that is interacting with its environment to reach a goal. 
The agent must be capable to perceive the state of the environment described as 
observation and it must be able to take actions that affect its state; refer to [ 17]. This 
agent also has a reward according to the state of the environment and the objective 
is to obtain the highest value for the sum of rewards over the long run. 

The RL algorithms are considered closed-loop because the actions taken by the 
agent influence its later inputs. As a difference with ML algorithms, the agent is 
not guided to which action to take but instead to discover which actions will yield 
to the most reward by exploring them out. In the most complicated cases, actions 
may affect not only the immediate reward, but also the next situations and all the 
subsequent rewards. Such characteristic of not having a direct instruction on what 
action to take, and the consequences of actions are the most important features of 
the reinforcement learning problems [ 12]. The goal is to find a sequence of inputs 
that drive a dynamical system to maximize some objective, beginning with minimal 
knowledge of how the system responds to inputs. 

2.1 Elements of Reinforcement Learning 

In order to explain the elements of the RL algorithm some definitions for the inter-
action to achieve a goal will be explained. The learner and decision-maker is called 
the agent, the ego vehicle. The agent interacts with what is called the environment 
which includes everything outside the agent, i.e., the racetrack, the obstacles and 
the surrounding vehicles. The agent takes an action which results in a change in 
the environment. This interaction is received by the agent as a state which includes 
information about coordinates and/or speed of other vehicles, features of the road, 
among others. Refer to Fig. 1 to visualize the connection between these components.
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The main subelements of RL algorithms are: 

– Policy: Is a mapping from perceived states of the environment to actions to be 
taken in those actions. It is sufficient to determine the behavior, policies may be 
stochastic. 

– Reward: The objective of the agent is to maximize the cumulative reward received 
over the long run. This value depends on the agents current action and the current 
state of the agent’s environment at any time. The only way the agent can influence 
the reward signal is through its actions, which can have a direct effect on the total 
reward, or an indirect effect through changing the environment’s state. The policy 
may be changed to select the action that will be followed by a higher reward on 
that situation in the future. 

– Value function: Specifies what is good in the long run defined as episode. The 
value of a state can be described as the total amount of reward an agent can expect 
to accumulate over the future, starting from that state. Whereas rewards determine 
the immediate, intrinsic desirability of environmental states, values indicate the 
long-term desirability of states after taking into account the states that are likely 
to follow, and the rewards available in those states. 

– Model: Is a representation of the behavior of the environment. When an action 
is made given a state the model might predict the resultant next state and reward 
due to this action. The model is used for planning and to consider possible future 
situations before they actually happen. 

2.2 Reinforcement Learning theory 

The interaction between the agent and the environment occurs at a sequence of dis-
crete time steps t in which it receives some representation of the environment’s state 
.St ∈ S in the. S set of possible states, and it selects an action.At ∈ A(St )where. A(St )
is the set of actions available in state. St . One time step later, in part as consequence of 
its action, the agent receives a numerical reward .Rt+1 ∈ R ⊂ R and finds itself in a 
new state.St+1. The Fig. 1 represents the agent-environment interaction. At each time 
step, the agent implements a mapping from states to probabilities of selecting each 
possible action. This mapping is called the agent’s policy and is denoted . πt , where 
.πt (a | s) is the probability that .At = a if .St = s. Reinforcement learning methods 
specify how the agent changes its policy as a result of its experience. The agent’s 
goal, roughly speaking, is to maximize the total amount of reward it receives over 
the long  run [  12]. 

An agent can increase the long-term reward by exploiting knowledge learned 
about the discounted sum of expected future rewards of different state-action pairs. 
The learning agent has to exploit what it already knows in order to obtain rewards, 
but it also has to explore the unknown in order to make better action selections in 
the future [ 2].
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Fig. 1 The agent-environment interaction in RL. Image taken from [ 12] 

For some stochastic control problems when the models for sequential decision 
making outcomes are uncertain, Markov Decision Processes (MDP) are used. The 
MDP model consists of decision epochs, states S, actions A, rewards R, and transition 
probabilities T; a tuple .< S, A, T, R >. Choosing an action a in a state s generates 
a reward  .R(s,a) and determines the state at the next decision epoch s’ through a 
transition probability function .T (s, a, s '). Policies are instructions of which action 
to choose under any occurrence at every future decision. The agent look for policies 
which are optimal [ 7]. The mathematical representation of the policy which is a 
mapping from the state space to a probability over the set of actions, and . πt (a | s)
represents the probability of choosing action . a at state . s. The goal is to find the 
optimal policy .π∗ at time . k, defined as: 

.π∗ = argmax
π

Eπ{
H−1∑

k=0

γk R(sk, ak) | s0 = s} := argmax
π

Vπ(s) (1) 

where . γ is the discount factor that controls how an agent consider future rewards. 
When . γ is low the agent will maximize short term rewards, on the contrary with 
high values of . γ the agent will try to maximize rewards over a longer time frame. 
The Eq. (1) represents the highest expected sum of discounted rewards ([ 16]) in a 
time horizon .H in the MDP. From the models directly, RL agents may learn value 
function estimates, policies and/or environment. Finding a policy . π that maximizes 
the expected discounted sum of rewards over trajectories in the state space is what 
solving a RL task means. 

2.3 Reinforcement Learning Components for Autonomous 
Driving 

Some of the most important elements of the RL model are the actions, the state, the 
observations and rewards.
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Actions The actions that the vehicle can perform are driven by the acceleration and 
the steering control of the vehicle. The actions are considered discrete for the agent 
to decide which distinct action to perform from a finite action set. 

The DiscreteMetaAction type adds a layer of speed and steering controllers on top 
of the continuous low-level control, so that the ego-vehicle can automatically follow 
the road at a desired velocity. Then, the available meta-actions consist in changing 
the target lane and speed that are used as set points for the low-level controllers. The 
actions are listed as: 

– 0: Lane left 
– 1: IDLE 
– 2: Lane right 
– 3: Faster 
– 4: Slower. 

State The state of the vehicle, also named as observations, contains information of 
the agent and the vehicles around it. The KinematicObservation is the default of the 
library, this is an array of size.nObs x nF where. n is the number of nearby vehicles 
and .F is a set of features such as curvature, . x , . y, . vx , . vy . The number of vehicles . n
is constant and configured initially by the environment, so that the observation has 
a fixed size. The curvature of the track has been included as a the inverse of the 
lookahead radius (. 1r ) after several attempts of training the model. Its inclusion is an 
improvement to consider the approaching curve so that the agent can decrease the 
speed when getting into a pronounced curve that is 3m in front so it can keep the 
lane center trajectory. 

.
[
1
r x y vx vy

]T
(2) 

Rewards The final element to be defined are the rewards, the choice of an appropriate 
reward function yields realistic optimal driving behavior. A reward for collision, zero 
speed, lane centering and high speed has been defined. The total reward in every step 
will be determined by the sum of each condition. .Rcoll is the reward if it collides 
being –10 if it does and 0 if it does not. .Rstop is the reward given if the vehicle stops, 
is 0 if the vehicle has some speed and –10 if it stops. .Rlc is the reward given for lane 
centering, is maximum when the vehicle is in the center of the lane and it decreases 
proportionally when it moves away from the center lane as in Eq. (4). Finally, .Rhs is 
the high speed reward and its value is a function of the speed of the vehicle as in 4. 
The total reward .Rtotal is given by Eq. (3) and the final tuning of the rewards which 
resulted on the best simulation results is given in Table 1 

.Rtotal = Rcoll + Rstop + Rlc + Rhs (3) 

.Rlc = 1

1 + rlc ∗ lat error2
− 0.5 (4)
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Table 1 Values of rewards of 
the RL model 

Reward Value 

Collision.rc –10 

Zero speed.rv0 –10 

Lane centering.rlc 1 

High speed.rhs 0.7 

.rlc is the weight of the lane centering, and .lat error is the difference between the 
reference trajectory and the position of the vehicle, the second term of Eq. (4) is  
also tuned. The values of speed are also discrete and could take 6 different values 
between 0 and.1.3m/s as shown in Eq. (5), when the speed is at the maximum, then 
the reward will be.rhs , if it decreases then the reward will decrease proportionally as 
the range of speed of the vehicle. 

.Rhs = rhs
indexv

indexv max
(5) 

After the .Rtotal is obtained it is normalized between 0 and 1, and it becomes an 
input of the RL model. 

2.4 Actor Critic Approach 

Actor-critic methods are hybrid methods that combine value-based and policy-based 
algorithms. One actor is the one that selects the actions and this is the policy-structure. 
After an action is made by the ‘actor’, the estimated value function evaluates the 
action and this is known as the ‘critic’. The value-based methods are model-free 
Temporal Difference (TD), are methods that can learn directly from raw experience 
without a model of the environment’s dynamics and learn estimates of the utility of 
individual state-action pairs represented in Eq. (6) [  15]. This scalar signal is the sole 
output of the critic and drives all learning in both actor and critic, as shown in Fig. 2. 

.Qπ(s, a) = Eπ

{
H−1∑

k=0

γk R(sk, ak) | s0 = s, a0 = a

}
(6) 

Q-learning will learn (near) optimal state-action values provided a big number of 
samples are obtained for each pair. Agents implementing Q-learning update their Q 
values according to the update rule of Eq. (7): 

.Q(s, a) ←− Q(s, a) + α

[
r + γ max

α'∈A
Q(s ', a') − Q(s, a)

]
(7)
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Fig. 2 The actor-critic 
architecture. Image taken 
from [ 12] 

where .Q(s, a) is an estimate of the utility of selecting action . a in state . s; . α is the 
learning rate which controls the degree to which Q values are updated at each time 
step [ 15]. 

The policy-based methods aim to estimate the optimal policy directly, and the 
value is a secondary. Typically, a policy .πθ is parameterized as a neural network. 
Policy gradient methods use gradient descent to estimate the parameters of the policy 
that maximize the expected reward. The result can be a stochastic policy where 
actions are selected by sampling, or a deterministic policy. When selecting actions, 
exploration is performed by adding noise to the actor policy. To stabilize learning 
a replay buffer is used to minimize data correlation. A separate actor-critic specific 
target network is also used. Normal Q-learning is adapted with a restricted number 
of discrete actions the optimal Q-value and optimal action as .Q∗ and . a∗. 

.Q∗(s, a) = max
π

Qπ(s, a) , a∗ = argmax aQ∗(s, a) (8) 

By correcting the Q-values towards the optimal values using the chosen action, the 
policy is updated towards the optimal action proposition. Thus two separate networks 
work at estimating .Q∗ and .π∗.
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3 Training and Testing of the Model 

The aim of the project is to drive a scaled vehicle on a racetrack without veering off 
track or crashing, and reaching an optimal speed to finish a loop as fast as possible. 
Initially, the implemented solution has been developed in an existing framework 
named highway-env (github library), which is an open source Python library with a 
collection of different environments for autonomous driving and tactical decision-
making tasks. This tool has been modified to create a new environment with specific 
dimensions of the track and the car for the particular environment of the vehicle 
and available space of the experimental room at GIPSA-Lab, in the next chapter 
the details of the scaled vehicle will be discussed. After setting the vehicle behavior 
and the environment, a RL model is used to estimate the action in every step of the 
trajectory given to the agent. 

3.1 Vehicle Behavior 

Some of the vehicle parameters of the vehicle are presented in Table 2 with the 
dimensions of the scaled vehicle. The motion of the vehicle is represented by the 
modified bicycle model shown in Fig. 3. The vehicle kinematics are presented by the 
following Eq. [ 6]: 

.ẋ = v cos(ψ + β) (9) 

.ẏ = v sin(ψ + β) (10) 

.v̇ = a (11) 

.ψ̇ = v

l
sin(β) (12) 

.β = tan−1

(
1

2
tan δ

)
(13) 

where .(x, y) is the vehicle position; . v is the forward speed; . ψ is heading angle; . a is 
the acceleration command; . β is the slip angle at the center of gravity; and . δ is the 
front wheel angle used as a steering command. Its state is propagated depending on 

Table 2 Car parameters of the scaled vehicle 

Parameter Unit Value 

Mass kg 1.34 

Length m 0.174 

Width m 0.0870 

Wheel radius m 0.0650

github library
 7465
6504 a 7465 6504 a
 
https://github.com/eleurent/highway-env


108 A. M. Gómez Ruiz et al.

Fig. 3 Lateral vehicle dynamics. Image taken from [ 4] 

the steering and acceleration actions. For the vehicle dynamics, the two degrees of 
freedom are represented by the vehicle lateral position . y and the vehicle yaw angle 
. ψ. The vehicle lateral position is measured along the lateral axis of the vehicle to 
the point C which is the center of rotation of the vehicle. The vehicle yaw angle 
.ψ is measured with respect to the global .X axis. The longitudinal velocity of the 
vehicle at the center of gravity is denoted by .Vx . The  Eq. (14) represents the lateral 
translational motion of the vehicle and Eq. (15) represents the moment balance about 
the . z axis. 

.m(ÿ + ψ̇Vx ) = Fy f + Fyr (14) 

where .Fy f and .Fyr are lateral tire force of the front and rear wheels, respectively. 

.Izψ̈ = l f Fy f − lr Fyr (15) 

where .l f and . lr are the distances of the front tire and the rear tire respectively from 
the center of gravity of the vehicle [ 8]. 

The controlled vehicle is a low-level controller, allowing to track a given target 
speed and follow a target lane. The longitudinal controller is a simple proportional 
controller as shown in the Eq. (16). 

.a = Kp (vr − v) (16) 

The lateral controller is a simple proportional-derivative controller, combined 
with some non-linearities that invert those of the kinematics model. The position and 
heading control are shown in Eqs. (18)–(21), respectively.
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.vlat,r = −Kp,latΔlat (17) 

.Δψr = arcsin
(vlat,r

v

)
(18) 

where .Δlat is the lateral position of the vehicle with respect to the lane center-line; 
.vlat,r is the lateral velocity command and .Δψr is a heading variation to apply the 
lateral velocity command. 

.ψr = ψL + Δψr (19) 

.ψ̇r = Kp,ψ (ψr − ψ) (20) 

.δ = arcsin

(
1

2

l

v
ψ̇r

)
(21) 

where .ψL is the lane heading (at some lookahead position to anticipate turns); . ψr

is the target heading to follow the lane heading and position; .ψ̇r is the yaw rate 
command; . δ is the front wheels angle control; and .Kp,lat and .Kp,ψ are the position 
and heading control gains. 

3.2 Environment Setup 

The Fig. 4 shows the racetrack that has been used to train the model. Several fac-
tors are considered to build the environment, such as two lanes, straight segments, 
pronounced curves and obstacles in the road, which increase the complexity of the 
vehicle performance. 

Obstacles The ego-vehicle, in green, is surrounded by other vehicles that have speed 
zero, which can be considered as objects or obstacles for this scenario to decrease the 
implementation complexity but for future works it is expected to threat as vehicles 
with different speeds. 

Road The dimensions of the track are constrained by the experimental room in 
GIPSA-Lab with an available space of 4 m .× 4 m. The maximum distance in the 
horizontal axis is 3.6 and 2.8 m in the vertical one. Finally, the track has been built 
with the union of 11 segments as union of straight lines and segments of differ-
ent radius circles, the radius of each segment is an important characteristic that is 
included in the RL model and will be explained in the next section. 

Training Procedure The components mentioned in the previous section enter a 
deep neural network which will estimate the action of the car in every step of the 
trajectory and can be trained from a Stable Baselines3 (SB3) github library that is a 
set of reliable implementations of reinforcement learning algorithms in PyTorch.

github library
 25037 55872
a 25037 55872 a
 
https://stable-baselines3.readthedocs.io/en/master/index.html
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Fig. 4 Racetrack based on the highway-env library 

Table 3 Parameters for 
training 

Parameter Value 

Learning rate 0.0005 

Discount factor 0.8 

Exploration fraction 0.8 

Total timesteps 60.000 

This RL model is considered as an episodic domain that may terminate after a 
fixed number of time steps, or when an agent reaches a specified goal state. Also, the 
implemented policy is a Multilayer Perceptron (MLP) that consist of biased neurons 
arranged in layers, connected by weighted connections. 2 layers of 64 nodes have 
been used. Their effectiveness depends on finding the optimal weights and biases 
that reduce the classification error [ 9]. Some parameters of the training are displayed 
in the Table 3. 

3.3 Training Results 

After the combination of the vehicle behavior, the environment and the RL compo-
nents, the training model has been performed on a Google Colab service that requires 
no setup to use, while providing access free of charge to computing resources includ-
ing GPUs. The total training time is 5.5 h and the model output is obtained as a .zip 
extension for later use in the experimental results. 

After training, the results can be reproduced for one episode by the states, obser-
vations, actions and rewards at every step. The duration of one episode is 140 s and
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Fig. 5 Speed behavior of the vehicle in one episode 

Fig. 6 Control variables of the vehicle in one episode 

the frequency is of 2 actions per second. On the other hand, about the behavior of the 
vehicle, the available speed values are [0 , 0.26, 0.52, 0.78, 1.04, 1.3 ] .m/s, and the 
speed profile is presented in Fig. 5for the magnitude, lateral and longitudinal values. 
Here the lateral speed is lower than .0.1m/s and the magnitude is very similar to 
the longitudinal speed. The vehicle tried to complete a loop closer to the maximum 
available speed, here the functionality of the high speed reward is shown. 

Additionally, the control variables are the steering angle and the acceleration. The 
steering angle that is limited between .[–15 , 15]. ◦. This limit affected the model and 
restricted the vehicle to behave more conservatively. The longitudinal acceleration is 
also restricted between [–2, 2] .m/s. 2 to avoid aggressive speed changes. The results 
are shown in Fig. 6. 

Lastly, the actions and the output of the RL model is shown in Fig. 7. The pre-
dominant action is to accelerate but it also changes lane when facing obstacles and
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Fig. 7 Actions taken by the agent in one episode 

in some pronounced curves. Because the behavior is predominant by the controllers, 
if the action would be to accelerate and if the speed limit is reached, the action can 
be ‘ignored’ and the vehicle kept an IDLE action, which for future works it would 
be preferable for the vehicle to take the available actions and not all of them. 

4 Experimental Validation 

A new environment is created with specific dimensions within the space of the 
experimental room, likewise, applied on the scaled vehicle in GIPSA-Lab. Figure 8 
shows the experimental scenario where the validation of the results have been carried 
out, a two-lanes track is displayed as a reference. Table 4 shows the sensors and 
actuators of the vehicle enumerated in Fig. 9. In addition to the car components, 
there are high resolution cameras from which the position of the vehicle is measured 
with high accuracy. This sensor information of the road and the car is required to 
build the ROS2 architecture, that includes the perception, planning, decision making, 
and control nodes. 

In the ROS2 decision making node, the observations have been programmed with 
the WiFi communication between the sensors and the computer. The RL model is 
trained in a track with a higher complexity than the one tested in this experiment. 
The decision making node includes the file model.zip containing the model, in which 

Fig. 8 Experimental scenario setup at GIPSA-Lab
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Table 4 RC car components 

N Type Functionality 

.1 Switch Switching car on-off 

.2 8 mm qualisys super-spherical Captured by vicon tracker 

.3 Arduino RP 2040 Micro-controller of the vehicle 

.4 Spur gears Increase torque given by 
BLDC 

.5 Elastic wheel . 2 Rear wheel of the vehicle 

.6 ACCU NI-MH 3000 Supply power battery 

.7 MG996R servo motor Steering actuator 

.8 Elastic wheel . 2 Front wheels of the vehicle 

.9 BLDC-A2212/13T Throttle actuator 

Fig. 9 Front and side pictures of the car 

given the observation of the environment to predict the next discrete action to perform. 
Several scenarios have been tested with different obstacle positions. The first scenario 
with no obstacles is shown in Fig. 10, the vehicle can maintain the lane where it 
started. In this figure two loops are displayed with a different starting point of the 
vehicle in a direction counter clockwise. 

The second scenario with one obstacle, the vehicle changes the lane before the 
curvature of the obstacle to avoid the crash, as shown in Fig. 11. The obstacle is 
displayed as the black square. The lane change is occurred between 4000 and 4200 ms, 
shown in orange in the figure. 

The third scenario includes two obstacles, see Fig. 12, in which the vehicle changes 
the lane in advance to avoid collision. The times where the change lane action is 
performed are between 2000–2200 and 3200–3500 ms. One interesting observation 
is when the obstacle is located at the end of the curvature, the vehicle has the tendency



114 A. M. Gómez Ruiz et al.

Fig. 10 Experimental results with no obstacles 

Fig. 11 Experimental results with one obstacle 

Fig. 12 Experimental results with two obstacles 

to change lane in advance earlier than when the obstacle is on the straight path. This 
behavior has been observed in more scenarios that might be explained after the 
inclusion of the curvature as one attribute of the state in the training.
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5 Conclusion 

The performance validation of the RL model has been presented in simulation and in 
experimental tests. The results showed that scaled vehicle avoided obstacles, achieved 
high driving efficiency by taking an optimal path and executing maneuvers without 
veering off the track while maintaining the center-line of the two lane racetrack. 
Some remarks about the training model are improvement of the results obtained by 
including the curvature of the next segment in the track and also the influence of 
the rewards affect drastically the results, here one solution has been presented but 
infinite options could be implemented. 

Finally, there are many scopes for improvement, such as modify the available 
actions according to the vehicle state so it can choose the feasible actions or it 
also would be interesting to try to train the model in the experimental scenarios 
and include some physical constrains that are not considered or neglected in the 
vehicle’s behavior. Also, a longitudinal controller can be implemented to create a 
speed reference. Some improvements of the low-level controllers can be made to 
have straighter paths on the track and also while training the model it would be better 
to include large heading errors for sharp curvatures and replicate this for other tracks. 
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