
Design and Experimental Validation
of RL-Based Decision-Making System
for Autonomous Vehicles

Ana María Gómez Ruiz, Hussam Atoui, and Olivier Sename

Abstract In autonomous driving, different Reinforcement Learning (RL) methods
have been implemented to deal with different challenges. One of its advantages is the
capability to deal with unexpected situations after an adequate trained environment.
The inclusion of RL algorithms is considered as a solution for autonomous driving
called “agent” that gathers the environmental information and acts according to
this from one state to the next one. This paper proposes a solution for a specific
environment that is trained with Deep RL and then is tested in simulation and in on
experimental platform.

Keywords Deep reinforcement learning · Decision making · Autonomous
vehicles

1 Introduction

Autonomous driving systems have raised a considerable interest in the last decades
for several reasons. Initially, it can decrease the majority of lethal accidents that are
caused by distracted drivers which will create safer roads. More than 90% of reported
traffic accidents are the outcome of human error and caused by issues related to
the acquisition of visual information as debated in [10]. Nevertheless, sophisticated

A. M. Gómez Ruiz (B) · O. Sename
University Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
e-mail: ana.gomez@univ-grenoble-alpes.fr

O. Sename
e-mail: olivier.sename@gipsa-lab.grenoble-inp.fr

H. Atoui
Valeo, Driving Assistance Research (DAR) Team, 94000 Créteil, France
e-mail: hussam.atoui@valeo.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
G. L. Conte and O. Sename (eds.), Proceedings of the 11th International Conference
on Mechatronics and Control Engineering, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-99-6523-6_8

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6523-6_8&domain=pdf
ana.gomez@univ-grenoble-alpes.fr
 854 49675 a 854 49675 a

mailto:ana.gomez@univ-grenoble-alpes.fr
olivier.sename@gipsa-lab.grenoble-inp.fr
 854
52553 a 854 52553 a

mailto:olivier.sename@gipsa-lab.grenoble-inp.fr
hussam.atoui@valeo.com
 854 56538 a 854 56538 a

mailto:hussam.atoui@valeo.com
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8
https://doi.org/10.1007/978-981-99-6523-6_8

100 A. M. Gómez Ruiz et al.

autonomous driving can decrease accidents caused by human errors, can redirect
driving time into more productive ends and it can lower operating costs per mile
finding optimal paths to destination.

The autonomous driving system have been under fast development in the recent
years and different approaches have been implemented. Common modules to design
autonomous systems include localization, perception, decision making (path plan-
ning) and dynamics control [13]. The main task of the environment localization and
perception module is to extract useful features from the surroundings and locate the
vehicle in the track to establish spatial and temporal relationships among the vehicle
[3]. Identifying objects in the road, pedestrians, bicycles among others is classifica-
tion ability that has raised a great interest with Machine Learning algorithms specially
with supervised learning. To get this information from the vehicle environment, the
module relies on different kinds of perception sensors such as cameras, radar and
lasers [14].

The trajectory planning module aims to plan different longitudinal and lateral
vehicle maneuvers which might include lane changing, braking, lane following and
obstacle avoidance. There are existing methods that rely on traditional classical plan-
ners or machine learning methods. An alternative approach to the classical planners
and supervised learning methods is Reinforcement Learning. This framework works
on the principle of maximizing reward for a particular action at a given state [5].
RL is the theory of an agent that learns optimal behavior through interaction with
its environment. With the aid of Deep RL techniques it is possible to use the ben-
efits of deep learning in conjunction with RL to learn optimal behavior from high
dimensional inputs to action outputs as discussed in [11]. In this paper, Actor-Critic
methods are used to combine value-based and policy-based algorithms to sample
efficiency and stability being effective in high dimensional and stochastic actions.

The general objective of the project is to build, integrate and test different modules
of perception and control for a scaled autonomous vehicle in the Robot Operating
System (ROS) framework. The car is grouped by Engineers at Gipsa-Lab. Previous
work has been made in the vehicle such as identification of the model’s vehicle, and
its actuators along with the main connections on ROS2. In addition, the design and
implementation of robust controllers for the vehicle lateral dynamics using different
approaches has been made.

The following work aims to design the decision making module based on deep
RL approach. The vehicle must avoid collisions, achieve high driving efficiency
by taking an optimal path, and execute smooth maneuvers without veering off the
track while maintaining the center-line of a two-lane race track. The RL model is
trained in simulation with a Deep Q-Network, and is then validated and tested in an
experimental scenario with the scaled RC car.

This paper is organized in five sections. The Sect. 2 aims to explain the theory and
main components of the RL Algorithms that are used and the Actor Critic Approach.
The Sect. 3 explains the implementation and training of the RL model with some
simulation results. The Sect. 2 shows the validation and experimental results, and
the Sect. 5 are the conclusions and final remarks of the work made.

Design and Experimental Validation … 101

2 Reinforcement Learning for Autonomous Driving

For autonomous driving, different Machine Learning (ML) methods have been imple-
mented to deal with different challenges. Some of these algorithms have raised great
interest because of the capability to deal with unexpected situations after an adequate
trained on a large set of sample data. One of the biggest challenges with ML algo-
rithms for autonomous driving is when considering the vehicle in an open context
environment to train the model with all possible scenarios in the real world. The
variety of context that could happen are infinite and the companies leading this field
must solve it by collecting a big amount of data and validating system operation
based on the collected data to ensure that a self-driving car has already learned all
possible scenarios and with safety scenarios for each case [1]. The inclusion of RL
algorithms is being considered as a solution for the car called agent that gathers the
environmental information and acts according to this from one state to the next one.

The general idea for implementing RL algorithms is to take the most important
aspects of a learning agent that is interacting with its environment to reach a goal.
The agent must be capable to perceive the state of the environment described as
observation and it must be able to take actions that affect its state; refer to [17]. This
agent also has a reward according to the state of the environment and the objective
is to obtain the highest value for the sum of rewards over the long run.

The RL algorithms are considered closed-loop because the actions taken by the
agent influence its later inputs. As a difference with ML algorithms, the agent is
not guided to which action to take but instead to discover which actions will yield
to the most reward by exploring them out. In the most complicated cases, actions
may affect not only the immediate reward, but also the next situations and all the
subsequent rewards. Such characteristic of not having a direct instruction on what
action to take, and the consequences of actions are the most important features of
the reinforcement learning problems [12]. The goal is to find a sequence of inputs
that drive a dynamical system to maximize some objective, beginning with minimal
knowledge of how the system responds to inputs.

2.1 Elements of Reinforcement Learning

In order to explain the elements of the RL algorithm some definitions for the inter-
action to achieve a goal will be explained. The learner and decision-maker is called
the agent, the ego vehicle. The agent interacts with what is called the environment
which includes everything outside the agent, i.e., the racetrack, the obstacles and
the surrounding vehicles. The agent takes an action which results in a change in
the environment. This interaction is received by the agent as a state which includes
information about coordinates and/or speed of other vehicles, features of the road,
among others. Refer to Fig. 1 to visualize the connection between these components.

102 A. M. Gómez Ruiz et al.

The main subelements of RL algorithms are:

– Policy: Is a mapping from perceived states of the environment to actions to be
taken in those actions. It is sufficient to determine the behavior, policies may be
stochastic.

– Reward: The objective of the agent is to maximize the cumulative reward received
over the long run. This value depends on the agents current action and the current
state of the agent’s environment at any time. The only way the agent can influence
the reward signal is through its actions, which can have a direct effect on the total
reward, or an indirect effect through changing the environment’s state. The policy
may be changed to select the action that will be followed by a higher reward on
that situation in the future.

– Value function: Specifies what is good in the long run defined as episode. The
value of a state can be described as the total amount of reward an agent can expect
to accumulate over the future, starting from that state. Whereas rewards determine
the immediate, intrinsic desirability of environmental states, values indicate the
long-term desirability of states after taking into account the states that are likely
to follow, and the rewards available in those states.

– Model: Is a representation of the behavior of the environment. When an action
is made given a state the model might predict the resultant next state and reward
due to this action. The model is used for planning and to consider possible future
situations before they actually happen.

2.2 Reinforcement Learning theory

The interaction between the agent and the environment occurs at a sequence of dis-
crete time steps t in which it receives some representation of the environment’s state
.St ∈ S in the. S set of possible states, and it selects an action.At ∈ A(St)where. A(St)
is the set of actions available in state. St . One time step later, in part as consequence of
its action, the agent receives a numerical reward .Rt+1 ∈ R ⊂ R and finds itself in a
new state.St+1. The Fig. 1 represents the agent-environment interaction. At each time
step, the agent implements a mapping from states to probabilities of selecting each
possible action. This mapping is called the agent’s policy and is denoted . πt , where
.πt (a | s) is the probability that .At = a if .St = s. Reinforcement learning methods
specify how the agent changes its policy as a result of its experience. The agent’s
goal, roughly speaking, is to maximize the total amount of reward it receives over
the long run [12].

An agent can increase the long-term reward by exploiting knowledge learned
about the discounted sum of expected future rewards of different state-action pairs.
The learning agent has to exploit what it already knows in order to obtain rewards,
but it also has to explore the unknown in order to make better action selections in
the future [2].

Design and Experimental Validation … 103

Fig. 1 The agent-environment interaction in RL. Image taken from [12]

For some stochastic control problems when the models for sequential decision
making outcomes are uncertain, Markov Decision Processes (MDP) are used. The
MDP model consists of decision epochs, states S, actions A, rewards R, and transition
probabilities T; a tuple .< S, A, T, R >. Choosing an action a in a state s generates
a reward .R(s,a) and determines the state at the next decision epoch s’ through a
transition probability function .T (s, a, s '). Policies are instructions of which action
to choose under any occurrence at every future decision. The agent look for policies
which are optimal [7]. The mathematical representation of the policy which is a
mapping from the state space to a probability over the set of actions, and . πt (a | s)
represents the probability of choosing action . a at state . s. The goal is to find the
optimal policy .π∗ at time . k, defined as:

.π∗ = argmax
π

Eπ{
H−1∑

k=0

γk R(sk, ak) | s0 = s} := argmax
π

Vπ(s) (1)

where . γ is the discount factor that controls how an agent consider future rewards.
When . γ is low the agent will maximize short term rewards, on the contrary with
high values of . γ the agent will try to maximize rewards over a longer time frame.
The Eq. (1) represents the highest expected sum of discounted rewards ([16]) in a
time horizon .H in the MDP. From the models directly, RL agents may learn value
function estimates, policies and/or environment. Finding a policy . π that maximizes
the expected discounted sum of rewards over trajectories in the state space is what
solving a RL task means.

2.3 Reinforcement Learning Components for Autonomous
Driving

Some of the most important elements of the RL model are the actions, the state, the
observations and rewards.

104 A. M. Gómez Ruiz et al.

Actions The actions that the vehicle can perform are driven by the acceleration and
the steering control of the vehicle. The actions are considered discrete for the agent
to decide which distinct action to perform from a finite action set.

The DiscreteMetaAction type adds a layer of speed and steering controllers on top
of the continuous low-level control, so that the ego-vehicle can automatically follow
the road at a desired velocity. Then, the available meta-actions consist in changing
the target lane and speed that are used as set points for the low-level controllers. The
actions are listed as:

– 0: Lane left
– 1: IDLE
– 2: Lane right
– 3: Faster
– 4: Slower.

State The state of the vehicle, also named as observations, contains information of
the agent and the vehicles around it. The KinematicObservation is the default of the
library, this is an array of size.nObs x nF where. n is the number of nearby vehicles
and .F is a set of features such as curvature, . x , . y, . vx , . vy . The number of vehicles . n
is constant and configured initially by the environment, so that the observation has
a fixed size. The curvature of the track has been included as a the inverse of the
lookahead radius (. 1r) after several attempts of training the model. Its inclusion is an
improvement to consider the approaching curve so that the agent can decrease the
speed when getting into a pronounced curve that is 3m in front so it can keep the
lane center trajectory.

.
[
1
r x y vx vy

]T
(2)

Rewards The final element to be defined are the rewards, the choice of an appropriate
reward function yields realistic optimal driving behavior. A reward for collision, zero
speed, lane centering and high speed has been defined. The total reward in every step
will be determined by the sum of each condition. .Rcoll is the reward if it collides
being –10 if it does and 0 if it does not. .Rstop is the reward given if the vehicle stops,
is 0 if the vehicle has some speed and –10 if it stops. .Rlc is the reward given for lane
centering, is maximum when the vehicle is in the center of the lane and it decreases
proportionally when it moves away from the center lane as in Eq. (4). Finally, .Rhs is
the high speed reward and its value is a function of the speed of the vehicle as in 4.
The total reward .Rtotal is given by Eq. (3) and the final tuning of the rewards which
resulted on the best simulation results is given in Table 1

.Rtotal = Rcoll + Rstop + Rlc + Rhs (3)

.Rlc = 1

1 + rlc ∗ lat error2
− 0.5 (4)

Design and Experimental Validation … 105

Table 1 Values of rewards of
the RL model

Reward Value

Collision.rc –10

Zero speed.rv0 –10

Lane centering.rlc 1

High speed.rhs 0.7

.rlc is the weight of the lane centering, and .lat error is the difference between the
reference trajectory and the position of the vehicle, the second term of Eq. (4) is
also tuned. The values of speed are also discrete and could take 6 different values
between 0 and.1.3m/s as shown in Eq. (5), when the speed is at the maximum, then
the reward will be.rhs , if it decreases then the reward will decrease proportionally as
the range of speed of the vehicle.

.Rhs = rhs
indexv

indexv max
(5)

After the .Rtotal is obtained it is normalized between 0 and 1, and it becomes an
input of the RL model.

2.4 Actor Critic Approach

Actor-critic methods are hybrid methods that combine value-based and policy-based
algorithms. One actor is the one that selects the actions and this is the policy-structure.
After an action is made by the ‘actor’, the estimated value function evaluates the
action and this is known as the ‘critic’. The value-based methods are model-free
Temporal Difference (TD), are methods that can learn directly from raw experience
without a model of the environment’s dynamics and learn estimates of the utility of
individual state-action pairs represented in Eq. (6) [15]. This scalar signal is the sole
output of the critic and drives all learning in both actor and critic, as shown in Fig. 2.

.Qπ(s, a) = Eπ

{
H−1∑

k=0

γk R(sk, ak) | s0 = s, a0 = a

}
(6)

Q-learning will learn (near) optimal state-action values provided a big number of
samples are obtained for each pair. Agents implementing Q-learning update their Q
values according to the update rule of Eq. (7):

.Q(s, a) ←− Q(s, a) + α

[
r + γ max

α'∈A
Q(s ', a') − Q(s, a)

]
(7)

106 A. M. Gómez Ruiz et al.

Fig. 2 The actor-critic
architecture. Image taken
from [12]

where .Q(s, a) is an estimate of the utility of selecting action . a in state . s; . α is the
learning rate which controls the degree to which Q values are updated at each time
step [15].

The policy-based methods aim to estimate the optimal policy directly, and the
value is a secondary. Typically, a policy .πθ is parameterized as a neural network.
Policy gradient methods use gradient descent to estimate the parameters of the policy
that maximize the expected reward. The result can be a stochastic policy where
actions are selected by sampling, or a deterministic policy. When selecting actions,
exploration is performed by adding noise to the actor policy. To stabilize learning
a replay buffer is used to minimize data correlation. A separate actor-critic specific
target network is also used. Normal Q-learning is adapted with a restricted number
of discrete actions the optimal Q-value and optimal action as .Q∗ and . a∗.

.Q∗(s, a) = max
π

Qπ(s, a) , a∗ = argmax aQ∗(s, a) (8)

By correcting the Q-values towards the optimal values using the chosen action, the
policy is updated towards the optimal action proposition. Thus two separate networks
work at estimating .Q∗ and .π∗.

Design and Experimental Validation … 107

3 Training and Testing of the Model

The aim of the project is to drive a scaled vehicle on a racetrack without veering off
track or crashing, and reaching an optimal speed to finish a loop as fast as possible.
Initially, the implemented solution has been developed in an existing framework
named highway-env (github library), which is an open source Python library with a
collection of different environments for autonomous driving and tactical decision-
making tasks. This tool has been modified to create a new environment with specific
dimensions of the track and the car for the particular environment of the vehicle
and available space of the experimental room at GIPSA-Lab, in the next chapter
the details of the scaled vehicle will be discussed. After setting the vehicle behavior
and the environment, a RL model is used to estimate the action in every step of the
trajectory given to the agent.

3.1 Vehicle Behavior

Some of the vehicle parameters of the vehicle are presented in Table 2 with the
dimensions of the scaled vehicle. The motion of the vehicle is represented by the
modified bicycle model shown in Fig. 3. The vehicle kinematics are presented by the
following Eq. [6]:

.ẋ = v cos(ψ + β) (9)

.ẏ = v sin(ψ + β) (10)

.v̇ = a (11)

.ψ̇ = v

l
sin(β) (12)

.β = tan−1

(
1

2
tan δ

)
(13)

where .(x, y) is the vehicle position; . v is the forward speed; . ψ is heading angle; . a is
the acceleration command; . β is the slip angle at the center of gravity; and . δ is the
front wheel angle used as a steering command. Its state is propagated depending on

Table 2 Car parameters of the scaled vehicle

Parameter Unit Value

Mass kg 1.34

Length m 0.174

Width m 0.0870

Wheel radius m 0.0650

github library
 7465
6504 a 7465 6504 a

https://github.com/eleurent/highway-env

108 A. M. Gómez Ruiz et al.

Fig. 3 Lateral vehicle dynamics. Image taken from [4]

the steering and acceleration actions. For the vehicle dynamics, the two degrees of
freedom are represented by the vehicle lateral position . y and the vehicle yaw angle
. ψ. The vehicle lateral position is measured along the lateral axis of the vehicle to
the point C which is the center of rotation of the vehicle. The vehicle yaw angle
.ψ is measured with respect to the global .X axis. The longitudinal velocity of the
vehicle at the center of gravity is denoted by .Vx . The Eq. (14) represents the lateral
translational motion of the vehicle and Eq. (15) represents the moment balance about
the . z axis.

.m(ÿ + ψ̇Vx) = Fy f + Fyr (14)

where .Fy f and .Fyr are lateral tire force of the front and rear wheels, respectively.

.Izψ̈ = l f Fy f − lr Fyr (15)

where .l f and . lr are the distances of the front tire and the rear tire respectively from
the center of gravity of the vehicle [8].

The controlled vehicle is a low-level controller, allowing to track a given target
speed and follow a target lane. The longitudinal controller is a simple proportional
controller as shown in the Eq. (16).

.a = Kp (vr − v) (16)

The lateral controller is a simple proportional-derivative controller, combined
with some non-linearities that invert those of the kinematics model. The position and
heading control are shown in Eqs. (18)–(21), respectively.

Design and Experimental Validation … 109

.vlat,r = −Kp,latΔlat (17)

.Δψr = arcsin
(vlat,r

v

)
(18)

where .Δlat is the lateral position of the vehicle with respect to the lane center-line;
.vlat,r is the lateral velocity command and .Δψr is a heading variation to apply the
lateral velocity command.

.ψr = ψL + Δψr (19)

.ψ̇r = Kp,ψ (ψr − ψ) (20)

.δ = arcsin

(
1

2

l

v
ψ̇r

)
(21)

where .ψL is the lane heading (at some lookahead position to anticipate turns); . ψr

is the target heading to follow the lane heading and position; .ψ̇r is the yaw rate
command; . δ is the front wheels angle control; and .Kp,lat and .Kp,ψ are the position
and heading control gains.

3.2 Environment Setup

The Fig. 4 shows the racetrack that has been used to train the model. Several fac-
tors are considered to build the environment, such as two lanes, straight segments,
pronounced curves and obstacles in the road, which increase the complexity of the
vehicle performance.

Obstacles The ego-vehicle, in green, is surrounded by other vehicles that have speed
zero, which can be considered as objects or obstacles for this scenario to decrease the
implementation complexity but for future works it is expected to threat as vehicles
with different speeds.

Road The dimensions of the track are constrained by the experimental room in
GIPSA-Lab with an available space of 4 m .× 4 m. The maximum distance in the
horizontal axis is 3.6 and 2.8 m in the vertical one. Finally, the track has been built
with the union of 11 segments as union of straight lines and segments of differ-
ent radius circles, the radius of each segment is an important characteristic that is
included in the RL model and will be explained in the next section.

Training Procedure The components mentioned in the previous section enter a
deep neural network which will estimate the action of the car in every step of the
trajectory and can be trained from a Stable Baselines3 (SB3) github library that is a
set of reliable implementations of reinforcement learning algorithms in PyTorch.

github library
 25037 55872
a 25037 55872 a

https://stable-baselines3.readthedocs.io/en/master/index.html

110 A. M. Gómez Ruiz et al.

Fig. 4 Racetrack based on the highway-env library

Table 3 Parameters for
training

Parameter Value

Learning rate 0.0005

Discount factor 0.8

Exploration fraction 0.8

Total timesteps 60.000

This RL model is considered as an episodic domain that may terminate after a
fixed number of time steps, or when an agent reaches a specified goal state. Also, the
implemented policy is a Multilayer Perceptron (MLP) that consist of biased neurons
arranged in layers, connected by weighted connections. 2 layers of 64 nodes have
been used. Their effectiveness depends on finding the optimal weights and biases
that reduce the classification error [9]. Some parameters of the training are displayed
in the Table 3.

3.3 Training Results

After the combination of the vehicle behavior, the environment and the RL compo-
nents, the training model has been performed on a Google Colab service that requires
no setup to use, while providing access free of charge to computing resources includ-
ing GPUs. The total training time is 5.5 h and the model output is obtained as a .zip
extension for later use in the experimental results.

After training, the results can be reproduced for one episode by the states, obser-
vations, actions and rewards at every step. The duration of one episode is 140 s and

Design and Experimental Validation … 111

Fig. 5 Speed behavior of the vehicle in one episode

Fig. 6 Control variables of the vehicle in one episode

the frequency is of 2 actions per second. On the other hand, about the behavior of the
vehicle, the available speed values are [0 , 0.26, 0.52, 0.78, 1.04, 1.3] .m/s, and the
speed profile is presented in Fig. 5for the magnitude, lateral and longitudinal values.
Here the lateral speed is lower than .0.1m/s and the magnitude is very similar to
the longitudinal speed. The vehicle tried to complete a loop closer to the maximum
available speed, here the functionality of the high speed reward is shown.

Additionally, the control variables are the steering angle and the acceleration. The
steering angle that is limited between .[–15 , 15]. ◦. This limit affected the model and
restricted the vehicle to behave more conservatively. The longitudinal acceleration is
also restricted between [–2, 2] .m/s. 2 to avoid aggressive speed changes. The results
are shown in Fig. 6.

Lastly, the actions and the output of the RL model is shown in Fig. 7. The pre-
dominant action is to accelerate but it also changes lane when facing obstacles and

112 A. M. Gómez Ruiz et al.

Fig. 7 Actions taken by the agent in one episode

in some pronounced curves. Because the behavior is predominant by the controllers,
if the action would be to accelerate and if the speed limit is reached, the action can
be ‘ignored’ and the vehicle kept an IDLE action, which for future works it would
be preferable for the vehicle to take the available actions and not all of them.

4 Experimental Validation

A new environment is created with specific dimensions within the space of the
experimental room, likewise, applied on the scaled vehicle in GIPSA-Lab. Figure 8
shows the experimental scenario where the validation of the results have been carried
out, a two-lanes track is displayed as a reference. Table 4 shows the sensors and
actuators of the vehicle enumerated in Fig. 9. In addition to the car components,
there are high resolution cameras from which the position of the vehicle is measured
with high accuracy. This sensor information of the road and the car is required to
build the ROS2 architecture, that includes the perception, planning, decision making,
and control nodes.

In the ROS2 decision making node, the observations have been programmed with
the WiFi communication between the sensors and the computer. The RL model is
trained in a track with a higher complexity than the one tested in this experiment.
The decision making node includes the file model.zip containing the model, in which

Fig. 8 Experimental scenario setup at GIPSA-Lab

Design and Experimental Validation … 113

Table 4 RC car components

N Type Functionality

.1 Switch Switching car on-off

.2 8 mm qualisys super-spherical Captured by vicon tracker

.3 Arduino RP 2040 Micro-controller of the vehicle

.4 Spur gears Increase torque given by
BLDC

.5 Elastic wheel . 2 Rear wheel of the vehicle

.6 ACCU NI-MH 3000 Supply power battery

.7 MG996R servo motor Steering actuator

.8 Elastic wheel . 2 Front wheels of the vehicle

.9 BLDC-A2212/13T Throttle actuator

Fig. 9 Front and side pictures of the car

given the observation of the environment to predict the next discrete action to perform.
Several scenarios have been tested with different obstacle positions. The first scenario
with no obstacles is shown in Fig. 10, the vehicle can maintain the lane where it
started. In this figure two loops are displayed with a different starting point of the
vehicle in a direction counter clockwise.

The second scenario with one obstacle, the vehicle changes the lane before the
curvature of the obstacle to avoid the crash, as shown in Fig. 11. The obstacle is
displayed as the black square. The lane change is occurred between 4000 and 4200 ms,
shown in orange in the figure.

The third scenario includes two obstacles, see Fig. 12, in which the vehicle changes
the lane in advance to avoid collision. The times where the change lane action is
performed are between 2000–2200 and 3200–3500 ms. One interesting observation
is when the obstacle is located at the end of the curvature, the vehicle has the tendency

114 A. M. Gómez Ruiz et al.

Fig. 10 Experimental results with no obstacles

Fig. 11 Experimental results with one obstacle

Fig. 12 Experimental results with two obstacles

to change lane in advance earlier than when the obstacle is on the straight path. This
behavior has been observed in more scenarios that might be explained after the
inclusion of the curvature as one attribute of the state in the training.

Design and Experimental Validation … 115

5 Conclusion

The performance validation of the RL model has been presented in simulation and in
experimental tests. The results showed that scaled vehicle avoided obstacles, achieved
high driving efficiency by taking an optimal path and executing maneuvers without
veering off the track while maintaining the center-line of the two lane racetrack.
Some remarks about the training model are improvement of the results obtained by
including the curvature of the next segment in the track and also the influence of
the rewards affect drastically the results, here one solution has been presented but
infinite options could be implemented.

Finally, there are many scopes for improvement, such as modify the available
actions according to the vehicle state so it can choose the feasible actions or it
also would be interesting to try to train the model in the experimental scenarios
and include some physical constrains that are not considered or neglected in the
vehicle’s behavior. Also, a longitudinal controller can be implemented to create a
speed reference. Some improvements of the low-level controllers can be made to
have straighter paths on the track and also while training the model it would be better
to include large heading errors for sharp curvatures and replicate this for other tracks.

References

1. Emuna R, Borowsky A, Biess A (2020) Deep reinforcement learning for human-like driving
policies in collision avoidance tasks of self-driving cars. arxiv:2006.04218

2. Kiran BR, Sobh I, Talpaert V, Mannion P, Sallab S, Yogamani K, Pérez P (2020) Deep rein-
forcement learning for autonomous driving: a survey. arxiv:2002.00444

3. Li D, Zhao D, Zhang Q, Chen Y (2018) Reinforcement learning and deep learning based lateral
control for autonomous driving. arxiv:1810.12778

4. Matute J, Marcano M, Diaz S, Pérez J (2019) Experimental validation of a kinematic bicycle
model predictive control with lateral acceleration consideration. 52:07. https://doi.org/10.1016/
j.ifacol.2019.08.085

5. Naveed KB, Qiao Z, Dolan JM (2020) Trajectory planning for autonomous vehicles using
hierarchical reinforcement learning. arxiv:2011.04752

6. Polack P, Altché F, d’Andréa Novel B, de La Fortelle A (2017) The kinematic bicycle model:
a consistent model for planning feasible trajectories for autonomous vehicles. In: 2017 IEEE
intelligent vehicles symposium (IV), pp 812–818. https://doi.org/10.1109/IVS.2017.7995816

7. Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming.
Wiley

8. Rajamani R (2006) Vehicle dynamics and control. ISBN 0-387-26396-9. https://doi.org/10.
1007/0-387-28823-6

9. Rojas MG, Olivera AC, Vidal PJ (2022) Optimising multilayer perceptron weights
and biases through a cellular genetic algorithm for medical data classification. Array
14:100173. ISSN 2590-0056. https://doi.org/10.1016/j.array.2022.100173. URL https://www.
sciencedirect.com/science/article/pii/S2590005622000339

10. Singh S (2015) Critical reasons for crashes investigated in the national motor vehicle crash
causation survey

11. Stang M, Grimm D, Gaiser M, Sax E (2020) Evaluation of deep reinforcement learning algo-
rithms for autonomous driving. In: 2020 IEEE intelligent vehicles symposium (IV), pp 1576–
1582. https://doi.org/10.1109/IV47402.2020.9304792

arxiv:2006.04218
 21024 31300 a 21024 31300 a

http://arxiv.org/abs/2006.04218
arxiv:2002.00444
 19953 33403 a 19953 33403
a

http://arxiv.org/abs/2002.00444
arxiv:1810.12778
 11916 35506 a 11916
35506 a

http://arxiv.org/abs/1810.12778
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/10.1016/j.ifacol.2019.08.085
arxiv:2011.04752

13425 40819 a 13425 40819 a

http://arxiv.org/abs/2011.04752
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1007/0-387-28823-6
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://doi.org/10.1016/j.array.2022.100173
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://www.sciencedirect.com/science/article/pii/S2590005622000339
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792
https://doi.org/10.1109/IV47402.2020.9304792

116 A. M. Gómez Ruiz et al.

12. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. a bradford book. Cam-
bridge, MA, USA, p 0262039249

13. Szoke L, Aradi S, Becsi T, Gaspar P (2020) Vehicle control in highway traffic by using reinforce-
ment learning and microscopic traffic simulation. In: 2020 IEEE 18th international symposium
on intelligent systems and informatics (SISY), pp 21–26. https://doi.org/10.1109/SISY50555.
2020.9217076

14. Vu T-D (2009) Vehicle perception: localization, mapping with detection, classification and
tracking of moving objects. Theses, Institut National Polytechnique de Grenoble—INPG. URL
https://tel.archives-ouvertes.fr/tel-00454238

15. Watkins C, Dayan P (1992) Technical note: Q-learning. Mach Learn 8:279–292. https://doi.
org/10.1007/BF00992698

16. Wiering M, van Otterlo M (2014) Reinforcement learning: state-of-the-art. Springer Publishing
Company, Incorporated, p 364244685X

17. William F, Milliken D-LM (1995) Race car vehicle dynamics. Society of Automotive Engineers.
Warrendale, Pa

https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://doi.org/10.1109/SISY50555.2020.9217076
https://tel.archives-ouvertes.fr/tel-00454238
https://tel.archives-ouvertes.fr/tel-00454238
https://tel.archives-ouvertes.fr/tel-00454238
https://tel.archives-ouvertes.fr/tel-00454238
https://tel.archives-ouvertes.fr/tel-00454238
https://tel.archives-ouvertes.fr/tel-00454238
https://tel.archives-ouvertes.fr/tel-00454238
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

	 Design and Experimental Validation of RL-Based Decision-Making System for Autonomous Vehicles
	1 Introduction
	2 Reinforcement Learning for Autonomous Driving
	2.1 Elements of Reinforcement Learning
	2.2 Reinforcement Learning theory
	2.3 Reinforcement Learning Components for Autonomous Driving
	2.4 Actor Critic Approach

	3 Training and Testing of the Model
	3.1 Vehicle Behavior
	3.2 Environment Setup
	3.3 Training Results

	4 Experimental Validation
	5 Conclusion
	References

