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Abstract The ongoing transition from a linear (produce-use-dispose) to a circu-
lar economy poses significant challenges to current state-of-the-art information and 
communication technologies. In particular, the derivation of integrated, high-level 
views on material, process, and product streams from (real-time) data produced along 
value chains is challenging for several reasons. Most importantly, sufficiently rich 
data is often available yet not shared across company borders because of privacy 
concerns which make it impossible to build integrated process models that capture 
the interrelations between input materials, process parameters, and key performance 
indicators along value chains. In the current contribution, we propose a privacy-
preserving, federated multivariate statistical process control (FedMSPC) framework 
based on Federated Principal Component Analysis (PCA) and Secure Aggregation 
to foster the incentive for closer collaboration of stakeholders along value chains. We 
tested our approach on two industrial benchmark data sets - SECOM and ST-AWFD. 
Our empirical results demonstrate the superior fault detection capability of the pro-
posed approach compared to standard, single-party (Multiway) PCA. Furthermore, 
we showcase the possibility of our framework to provide privacy-preserving fault 
diagnosis to each data holder in the value chain to underpin the benefits of secure 
data sharing and federated process modeling. 
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1 Introduction 

The importance of data exchange along value chains has been broadly recognized for 
mastering the transition from linear to circular economy [ 1, 2]. However, as individu-
als and corporations are increasingly concerned about how their data are being used, 
the emphasis on data privacy and security has become a major global topic. There are 
now data protection obligations that organizations must strictly follow [ 3]. There-
fore, it is challenging, if not impossible, in many situations to transfer data across 
company borders. This landscape poses new challenges that traditional information 
and communication technologies in general, and process modeling approaches in 
particular, cannot handle appropriately. 

More specifically, traditional process modeling workflows usually involve collect-
ing and fusing data into a common site where a data-driven model is built. However, 
this is no longer feasible since data are not owned by a single entity but rather gen-
erated and distributed among different companies along a value chain. On the one 
hand, organizations do not want to share private data because of the fear of trade 
secrets leaks, and on the other hand due to regulations or geographical restrictions. 
As a result, even though sufficiently rich process data is available, they often exist 
in small and fragmented silos and cannot be integrated to enable a broader view of 
the whole value chain. This is a major obstacle in areas where it is well known that 
material properties, process parameters, and KPIs are intercorrelated across company 
borders, for example, in the steel or paper industry [ 4, 5]. 

Afunctionalsolutiontoovercometheproblemofdatafragmentationandisolationis 
FederatedLearning(FL),aconceptfirstproposedbyGoogle in2016[ 6].Themainidea 
behindFListobuildacentralizedmodelbasedondatascatteredamongmultipleparties 
without requiring participants to share sensitive information. In the meantime, FL has 
gained increasing attention, both from research and industry perspectives. However, a 
preliminary literature review shows that most of the current work is focused primarily 
on deep neural networks and their application to computer vision problems [ 7, 8]. 

Multivariate Statistical Process Control (MSPC) is an umbrella term for a set of 
advanced statistical methods for modeling, monitoring, and controlling the operating 
performance of processes that are widely adopted in the process industry. More specif-
ically, MSPC techniques extract features from high-dimensional and highly correlated 
process data by means of latent variable (LV) based modeling techniques. The models 
are then used to monitor processes in real-time, assess their performance, and iden-
tify deviations from normal operating conditions (NOC). Therefore, MSPC provides 
a basis for increasing process security, sustainability, and continuous improvement. 
Although some recent research efforts have been devoted to adopting federated learn-
ing in the field of MSPC, limited progress has been made [ 9, 10]. Previous studies have 
focused on federated PCA [ 11]. However, the application of PCA to MSPC, i.e., for 
online monitoring, fault detection, and fault diagnosis yet to be proposed. In addition, 
Multiway PCA (MPCA), an extension of PCA for modeling batch process data has not 
been investigated, and thus, to the best of our knowledge, the FL paradigm has so far 
notbeenadoptedforbuildingMSPC-typeprocessmodelsacrosscompanyborders that 
preserve the privacy of each contributing party. Moreover, the incentive mechanism,
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an essential aspect of FL, has not been discussed in the existing literature. A fair value-
distribution structure is critical in order to motivate the different parties to actively col-
laborate in the model training and inference process [ 12]. The collaboration might be 
wasteful without meaningful incentives because the participating parties will not carry 
out efficient contributions. 

In this work, we propose a general federated multivariate statistical process model-
ingframework(FedMSPC)wheredifferentcompaniesalongavaluechaincantogether 
build a shared process monitoring model in a federated and privacy-preserving man-
ner. To fully protect confidential data, FedMSPC uses a combination of two privacy 
techniques: Data Masking and Secure Aggregation [ 11]. In particular, each partici-
pant unfolds and encrypts data in the local environment using a well-designed masking 
method. Then, all encrypted data are transferred to a third-party server, which securely 
aggregates these data and trains an MPCA model on the concatenated joint (encrypted) 
data matrix. Finally, each participant decrypts the federated output of the model, using 
its private key, and reconstructs the information related to their process. More specifi-
cally, each participant obtains only the portion of the shared loadings matrix that cor-
responds to the variables that they contribute. Thus, this information is not acces-
sible to the other parties. In addition, all participants will share the explained vari-
ance corresponding to the selected principal components (PCs). Using such results, 
all data holders can collaboratively estimate the scores, process-monitoring statistics 
(e.g. Hotelling’s.T 2 and.Q-statistic) as well as variable contributions, thereupon con-
duct fault detection and diagnosis. 

In order to showcase the feasibility of the framework, we propose Federated Princi-
pal Component Analysis (FedPCA), which is based on the idea of Federated Singular 
Value Decomposition (FedSVD) proposed in [ 11], as the modeling method. FedSVD 
basically provides lossless privacy guarantees and is thus ideally suited for building 
federated MSPC models. However, in [ 11], the authors employ FedPCA under a hor-
izontally partitioned scenario, where the data from the contributing parties share the 
samefeatureratherthanthesamplespace(i.e.horizontalFL).However, invaluechains, 
input materials are processed sequentially by different companies and the correspond-
ing data is thus vertically partitioned, i.e., the data share the same sample space but 
different feature spaces. Therefore, we will concentrate on vertical FedPCA instead. 
Inaddition,wewill investigatetheapplicationofFedPCAinmodelingbatchprocesses. 

2 Methodology 

2.1 Multivariate Statistical Process Control 

PCA is among the best-known and most widely adopted MSPC techniques for model-
ing high-dimensional and highly correlated process data, and will be introduced in the 
following. 

PrincipalComponentAnalysis(PCA) isoftenappliedinMSPCtotransformadataset 
with highly correlated variables into an uncorrelated dataset while preserving only the
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systematic variation. There are various techniques for building a PCA model, Singular 
VectorDecomposition(SVD)being themostpopularone.Suppose theoriginaldataset 
denoted by.X ∈ R

m×n contains.m observations and. n process variables. SVD corre-
sponds to the following decomposition: 

.

X = U∑V T

= [
Ur U0

] [
∑r 0
0 ∑0

] [
V r V 0

]T
,

(1) 

where.U ∈ R
m×m is the left singular matrix,.∑ ∈ R

m×n is the diagonal matrix holding 
thesingularvalues,and.V ∈ R

n×n is therightsingularmatrix..V r ∈ R
n×r derivedfrom 

.V is called the loadings matrix. The number of principal components. r can be deter-
mined based on a certain criterion, e.g., the cumulative explained variance, and usually 
it holds that.r ≪ n. The loadings are the coefficients of the variables from which the 
PCs are computed. The sign of the loading shows whether the correlation between the 
PCs and the corresponding variable is positive or negative while its absolute value indi-
cates how strongly the variable influences the PCs. Therefore, they are often used to 
quantify variable importance. 

Projecting .X onto the subspace spanned by the selected PCs reduces the dimen-
sionality of the column space from. n to. r . The result of the transformation is the scores 
matrix. T r ∈ R

m×r

.T r = XV r . (2) 

The reconstruction of. X can be estimated from.T r and.V r : 

.X̂ = T rV T
r (3) 

The residual matrix. E is defined as the errors between. X and. X̂ and can be calculated as 

.E = X − X̂ = X − XV rV T
r . (4) 

Multi-way principal component analysis (MPCA) is an extension of PCA for mon-
itoring batch processes that are broadly seen in industries where batch and semi-batch 
process operations are common, for example, in the chemical or pharmaceutical indus-
try [ 13, 14]. 

Suppose each batch run has. J variables measured at.K time intervals. Similar data 
exist inthesameformforeachofthe. I batchruns.Therefore,all thedatacanbearranged 
in an array.X(I × J × K ). 

In order to apply PCA, the dataset has to be converted into a two-dimensional 
array. There are multiple ways to unfold a 3D dataset. However, the most meaning-
ful approaches are batch-wise and variable-wise unfolding. In the proposed approach, 
we will employ batch-wise unfolding since variable-wise unfolding is not feasible for 
federatedMSPC.Inbatch-wiseunfolding,the2Darrayisformedbyunfoldingthearray 
.X so that each of its vertical slices contains the observed variables for all batches at a
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1th sample 2nd sample Kth sample... 
Batch 

1 

I J  

K 

Variable 

Time 

1 J  2J  KJ(K-1)J 

I 

Fig. 1 An illustration of the batch-wise unfolding method 

specific time instance. The result is a 2D matrix of the shape.(I × K J ). An illustration 
of this unfolding technique is shown in Fig. 1. 

After the data is unfolded, PCA is performed to retrieve the scores and loadings 
matrices. Hotelling’s .T 2, .Q-statistics, and the corresponding variable contributions 
can then be calculated in a similar manner as for PCA. 

Fromanoperationalpointofview,itispreferabletomonitorthebatchasitprogresses 
in order to anticipate process faults and to take timely actions to prevent out-of-batch-
specification events. However, in this situation, a major obstacle is that the new batch 
is required to have.K J columns such as the NOC data used for training the model. This 
is impossible when the batch has not been completed because at time interval. k < K
the new batch. x only has.k J columns. In [ 14], the authors proposed a simple solution 
to overcome this problem which is to use only the portion of the loadings matrix that 
corresponds to the elapsed time period until the current time interval. k to calculate the 
new scores vector 

.t [k]r = x Ṽ r (Ṽ r
T
Ṽ r )

−1, (5) 

where.Ṽ r = V r [1 : k J ]contains thefirst.k J columnsof.V r . In theproposedapproach, 
we will use this same approach to handle the situation where batches are incomplete. 

Fault detection and diagnosis One of the most popular applications of PCA-based 
MSPC is fault detection and diagnosis. This is often done based on control chart statis-
tics, such as Hotelling’s.T 2 and the so-called.Q-statistic. While a high.Q-statistic indi-
cates a change in covariance structure, a high .T 2 indicates that although the sample 
is described well by the model (i.e. through a linear combination of the loadings) it is 
unusual in terms of the linear combination. Suppose there is a PCA model generated 
from NOC data. When a new sample.x ∈ R

1×n arrives,.T 2 and.Q can be calculated as: 

.T 2 = trɅ
−1
r t Tr , (6) 

where.tr = xV r and.Ʌr = ∑2
r and 

.Q =
n∑

i=1

(xi − x̂i )
2. (7)
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Theupperconfidence limit for the.T 2 statisticcanbecomputedfromthe.F-distribution 

.T 2
α = r(m − 1)

r − m
Fr,m−r,α, (8) 

where. m and. r denote thenumberofNOCsamplesandthenumberofPCs, respectively. 
The upper confidence limit for the.Q-statistic can be computed from the approximate 
distribution 

.

Qα =θ1

⎛

⎝1 − θ2h0(1 − h0)

θ2
1

+
zα

/
2θ2h20

θ1

⎞

⎠

1/h0

θi =
l∑

j=r+1

(Ʌ j, j )
i , i = 1, 2, 3

h0 =1 − 2θ1θ3
3θ2

2

,

(9) 

where.zα is the standard normal deviate corresponding to the upper.(1 − α)percentile, 
.Ʌ j j is the eigenvalue associated with the .. j th loading vector, and . l is the number of 
non-zero eigenvalues calculated from the data. 

Asamplemightbeconsideredfaulty ifeither.T 2 or. Q exceedsthepredefinedcontrol 
limits.T 2

α or.Qα . When a fault is detected, variable contributions to.T 2 and.Q can be 
calculated as [ 14] 

.T 2
cont = xV r∑

−1V T
r = tr∑

−1V T
r (10) 

and 
.Qcont = (x − x̂)2. (11) 

Variables with high contributions are diagnosed as candidates for the cause of the fault. 

2.2 Federated Multivariate Statistical Process Control 
(FedMSPC) 

Figure 2 illustrates the proposed framework. Assume we have. g data holders with the 
.i-th data holder owning data matrix.X i ∈ R

m×ni and these data holders aim at fitting 
a PCA model on the concatenated matrix .X = [X1, X2, ..., Xg], where . X ∈ R

m×n

and.n = ∑g
i=1 ni . In this case, the full results of PCA include .∑ ∈ R

m×n and. V T =
[V T

1 , ..., V T
g ] ∈ R

n×n , where.V T
i ∈ R

n×ni is the portion of the loadings matrix corre-
sponding to the variables contributed by the.i-th data holder. 

The aim of this contribution is to design a privacy-preserving system that guaran-
tees that (1) during the computation, data is not leaked to any other data holder and (2)
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the loadings matrix.V must be vertically and secretly distributed among data holders. 
While thefirst requirement iscommonlysharedbyallprivacy-preservingapplications, 
the second requirement is more specific to federated MSPC. As explained in the pre-
vious chapter, loadings can reveal sensitive information about how variables interact 
with the principal components and can be used to calculate the contributions of vari-
ables to.T 2 and. Q statistics. Therefore, data holder. i should know only.V i ∈ R

ni×n that 
contains coefficients corresponding to its contributed variables. Furthermore,.V i has 
to be unknown to all other involved parties. In order to realize these goals, we propose 
an approach based on FedSVD [ 11]. 

To apply FedSVD-based PCA as proposed in [ 11], the system requires a Trusted 
Authority (TA) tohandlekeygeneration,andaComputationServiceProvider (CSP) to 
takecareofdataaggregationandmodelbuilding.Algorithm1showstheoverallmodel-
building workflow. Since. ∑, the number of NOC samples, the number of variables, and 
the number of principal components are shared by all data holders, the control limits 
for Hotelling’s.T 2 and.Q-statistic can be estimated using Eqs. 6 and 7 as for standard 
PCA. 

After a FedPCA model is built, suppose a new sample .x = [x1, ..., xg], where 
.xi ∈ R

1×ni , is generated. Algorithm 2 is used to calculate scores, Hotelling’s.T 2 and 
.Q-statistics, and the contribution of each variable to these quantities. Using these mon-
itoring values, all data holders can check whether the sample/batch is faulty or not, i.e. 
if the monitoring statistics lie above their critical limits. However, since.V i is secretly 
ownedbyeachdataholder, thecomputationofHotelling’s.T 2-and.Q-contributionscan 
only be done locally. This might be greatly beneficial since all participating companies 
mightknowthatasample/batchisfaulty,andtheycancheckwhethertheproblemmight 
be associated with their production line. However, each company only sees the contri-

Fig. 2 The architecture of the federated process modeling framework
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Fig. 3 An illustration of how local data is mapped batch-wise in FedMPCA 

bution of its own variables to the fault, which provides feedback on how to improve its 
own process to benefit the entire value chain. 

For batch process data, FedPCA cannot be applied directly. Thus, we propose an 
extension called FedMPCA that includes a data unfolding step before encryption and 
transfer to the CSP. However, unlike the transition from PCA to MPCA, not all unfold-
ing techniques are applicable in the federated scenario. While variable-wise unfolding 
is invalid because local data do not share the same feature space, batch-wise unfolding 
is undertaken as shown in Fig. 3. 

Suppose there are . g participating data holders and data holder . i owns a batch 
data set of shape .I × Ji × Ki where . I , . Ji , and .Ki are the number of batches, the 
number of variables, and the number of time intervals, respectively. When batch-
wise unfolding is employed, the unfolded data of data holder. i is .X i ∈ R

m×ni where 
.m = I and.ni = Ki Ji . Therefore, the joined data.X = [X1, . . . , Xg] ∈ R

m×n , where 
.n = ∑g

i=1 ni = ∑g
i=1 Ki Ji . The full results of MPCA consist of.∑ ∈ R

m×n and. V T =
[V T

1 , . . . , V T
g ] ∈ R

n×n , where.V T
i ∈ R

n×ni is the portion of the loadings matrix corre-
spondingtothe(unfolded)variablescontributedbydataholder. i .Similar toFedPCA,at 
theendofFedMPCAmodeltraining,dataholder. i receives. ∑ and.V T

i andcancooperate 
with the other data holders, the TA, and the CSP to calculate scores and the monitoring 
indexes. 

In an online monitoring scenario, given all the preceding data holders have com-
pleted their processes, suppose the.i-th data holder wants to calculate the monitoring 
indexes and variable contributions for an in-progress batch at time interval.k < K . The  
corresponding data can be expressed as.x = [x1, ..., xi ]. The procedure is described in 
Algorithm 3. Once the scores are obtained, data holders can calculate Hotelling’s.T 2,
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.Q-statistics and contribution of variables to the two indexes in a similar manner as it is 
done for completed batches (described in lines 16-37 of Algorithm 2). 

Algorithm 1: FedPCA Training 
Input: X = [X1, . . . ,  Xg] 
Output: ∑, r and V T = [V T 1 , . . . ,  V T g ] 
Constraint: Data holder i’s data is not leaked, and it receives ∑, r and V T i as results. 

1 Function FedPCA.train([X1, . . . ,  Xg]) 
2 TA do: 
3 Generate orthogonal matrices P ∈ Rm×m , B ∈ Rn×n . 
4 Then split BT into [BT 

1 , . . . ,  BT 
g ] where BT 

i ∈ Rn×ni . 
5 end 
6 Data Holders do: 
7 for i = 1 → g, Data holder i do 
8 Download P , BT 

i from TA and compute 

9 X
,
i = PX i Bi 

10 end 
11 end 
12 CSP do: 
13 Aggregate X

,
: 

14 X
, = ∑g 

i=1 X
,
i

(= ∑g 
i=1 PX i Bi = PX  B

)

15 Perform standard SVD: 

16 X
, = U ,

∑V
,T 

17 end 
18 Data Holders do: 
19 for i = 1 → g, Data holder i do 
20 Download ∑ from CSP. 
21 Determine the number of principal components r based on the cumulative sum of 

explained variance. 
22 Generate a random matrix Ri ∈ Rni×ni 

23 Mask BT 
i through: [BT 

i ]Ri = BT 
i Ri 

24 Send [BT 
i ]Ri to CSP. 

25 end 
26 end 
27 CSP wait to receive data and do: 
28 if Receive [BT 

i ]Ri then then 
29 Compute [V T i ]Ri = V ,T [BT 

i ]Ri (= V ,T BT 
i Ri = V T i Ri ) 

30 Send [V T i ]Ri back to data holder i . 
31 end 
32 end 
33 Data Holders do: 
34 for i = 1 → g, Data holder i do 
35 Receive [V T i ]Ri from CSP. 

36 Recover V T i by V 
T 
i = [V T i ]Ri R−1 

i . 
37 end 
38 end 
39 End
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Algorithm 2: FedPCA Inference 
Input: x = [x1, ..., xg] 
Output: tr , Q-statistics, Hotelling’s T 2, Qcont = [Qcont,1, ..., Qcont,g], 

T 2 cont = [T 2 cont,1, ..., T 2 cont,g] 
Constraint: Data holder i’s data is not leaked, and it receives tr , Q-statistics, Hotelling’s T 2, 

Qcont,i , T 2 cont,i as results. 
1 Function FedPCA.predict([x1, ..., xg]) 
2 TA do: 
3 Generate a random number p. 
4 end 
5 Data Holders do: 
6 for i = 1 → g, Data holder i do 
7 Download the random number p from TA. 
8 Calculate local scores: tr,i = xi V r,i 
9 Encrypt the local scores with p: t ,r,i = ptr,i = pxi V r,i 

10 Send t
,
r,i to CSP. 

11 end 
12 end 
13 CSP do: 
14 Aggregate t

,
r : t

,
r =

∑g 
i=1 t

,
r,i

(= p
∑g 

i=1 xi V r,i = px V r
)

15 end 
16 Data Holders do: 
17 for i = 1 → g, Data holder i do 
18 Download t

,
r from CSP. 

19 Recover the scores tr : tr = t
,
r 
p 

20 Calculate T 2: T 2 = tr∑−2t T r 
21 Calculate T 2 cont,i = tr∑−1V T r,i 
22 Calculate local reconstruction errors ei : ei = xi − tr V T r,i 
23 Calculate Qcont,i : Qcont,i = e2 i 
24 Calculate local Q-statistics: Qi = ei eT i 
25 Encrypt Qi using p: Q

,
i = pQi 

26 Send Q
,
i to CSP. 

27 end 
28 end 
29 CSP do: 
30 Aggregate Q

,
: Q

, = ∑g 
i=1 Q

,
i

(= p
∑g 

i=1 Qi = pQ
)

31 end 
32 Data Holders do: 
33 for i = 1 → g, Data holder i do 
34 Downloads Q

,
from CSP. 

35 Recover Q by Q = Q
,
p 

36 end 
37 end 
38 End
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Algorithm 3: FedMPCA Incomplete Batch 
Input: x = [x1, ..., xi ] 
Output: t [k]r 

Constraint: Data holder i’s data is not leaked, and it receives t [k]r as the result. 
1 Function FedMPCA.predict([x1, ..., xi ]) 
2 TA do: 
3 Generate a random number p and an random matrix W ∈ Rr×r 

4 end 
5 Data Holders do: 
6 for j = 1 → i , Data holder j do 
7 Download the p and W from TA. 

8 Calculate t
,
r, j and F

,
j as follows: 

9 t
,
r, j = px j Ṽ r, j W 

10 F
,
j = Ṽ T r, j Ṽ r, j W 

11 where Ṽ r, j = V r, j for j < i , and  Ṽ r, j = V r, j [1 : k J j ] when j = i . Note that in 
this case, Ṽ 

T 
r = [  ̃V T r,1, ..., Ṽ 

T 
r,i ]. 

12 Send t
,
r, j and F

,
j to CSP. 

13 end 
14 end 
15 CSP do: 
16 Calculates t [k]

,
r : 

t [k],r = 
i∑

j=1 

px j Ṽ r, j W ( 
i∑

j=1 

Ṽ 
T 
r, j Ṽ r, j W )−1 

⎛ 

⎝= p 
i∑

j=1 

x j Ṽ r, j WW−1( 
i∑

j=1 

Ṽ 
T 
r, j Ṽ r, j )

−1 

⎞ 

⎠

(
= px Ṽ r ( Ṽ 

T 
r Ṽ r )

−1
)

(
= pt [k]r

)

Broadcast t [k]
,

r to all data holders. 
17 end 
18 Data Holders do: 
19 for j = 1 → i , Data holder j do 
20 Recover the real scores using p: 

21 t [k]r = t
[k],
r 
p 

22 end 
23 end 
24 End
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3 Experiments 

As proof of concept, we applied FedPCA and FedMPCA to two industrial case studies 
from semiconductor manufacturing. The corresponding datasets SECOM 1 [ 16] and 
ST-AWFD 2 [ 17] have been published previously and are in the public domain. 

3.1 General Settings 

For both case studies, we first divided the data (. X) variable-wise into two subsets (. X1

and.X2) corresponding to different process steps and assigned these to two (hypothet-
ical) data holders. Subsequently, each subset was further split into a training, a valida-
tion, anda test set, i.e..X1 = {X train

1 , Xval
1 , X test

1 }and.X2 = {X train
2 , Xval

2 , X test
2 }.The  

partitionwasdoneinawaythat thetrainingsetonlycontainedNOCbatchesandtheval-
idationandtestsetsconsistedofbothNOCandfaultybatches.Thetrainingsetwasused 
for training the model. The validation set was used to set control limits for Hotelling’s 
.T 2 and.Q-statistic. By means of a grid search, we selected the lowest thresholds with 
the highest F1 score on the validation set as the control limits. The test set was utilized 
to evaluate the model performance. Four models were built to simulate three common 
real-world situations: 

– Situation 1: One company has access to all data.X and can use that data to build a 
fault detection model based on PCA (MPCA). 

– Situation 2: Each company only has access to its data and can use that data to build 
a local fault detection model to detect faults that occurred in their production line. 
In this case, Company 1 owns the PCA1 (MPCA1), and Company 2 owns the PCA2 
(MPCA2) model. If a fault is detected by one of the models, it is considered to be 
detected. 

– Situation 3: Each company only has access to its data; however, the two companies 
cooperate to build a federated fault detection model based on FedPCA (FedMPCA). 

Table 1 shows the training and test set used for each model. The number of principal 
componentswaschosensuchthatthecumulativesumofexplainedvariancewas.. ≥90%. 

We evaluated the models in terms of the effectiveness to detect faulty batches and 
also fault diagnosis on the test set. A batch was considered faulty when either the.T 2 or 
the.Q-statistic exceeded the predefined control limits. The effectiveness was evaluated 
by the F1 score, and the fault diagnosis was assessed based on Hotelling’s.T 2- and.Q-
contribution plots.

1 https://archive.ics.uci.edu/ml/datasets/SECOM. 
2 https://github.com/STMicroelectronics/ST-AWFD. 

https://archive.ics.uci.edu/ml/datasets/SECOM
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Table 1 Training set and test set for each model 

Model Training data Validation data Test data 

PCA1 (MPCA1) .X train  
1 .Xval 

1 . X test  
1 

PCA2 (MPCA2) .X train  
2 .Xval 

2 . X test  
2 

PCA (MPCA) .{X train  
1 , X train  

2 } .{Xval 
1 , Xval 

2 } . {X test  
1 , X test  

2 } 
FedPCA (FedMPCA) .X train  

1 ,.X train  
2 .Xval 

1 ,.Xval 
2 .X test  

1 ,. X test  
2 

Table 2 List of variables that belong to each data holder 

Dataset No. Variables Variable name 

.X1 21 .S15,.S27,.S33,.S36,.S48,.S60,.S62, 
.S64,.S118,.S122,.S124,.S125, 
.S131,.S134,.S145,.S153,.S184, 
.S201,.S206,.S288,. S342 

.X2 17 .S421,.S426,.S427,.S430,.S435, 
.S454,.S461,.S470,.S478,.S492, 
.S511,.S520,.S525,.S560,.S569, 
.S572,. S574 

Table 3 Summary of training and test set 

Dataset No. NOC samples No. faulty samples No. features 

.X train  
1 488 0 21 

.X test  
1 74 48 21 

.X train  
2 488 0 17 

.X test  
2 74 48 17 

3.2 Case Study 1: SECOM Dataset 

Data description. SECOM is a static dataset consisting of 1567 observations, each 
with 590 variables (.S1 to.S590) and one label for the quality test (–1 means the observa-
tion isnormal,and1indicates theobservationis faulty).Aswithanyreal-worlddataset, 
SECOMcontainsmissingvaluesandirrelevantvariables.Asthefocusofthiscasestudy 
is fault detection and diagnosis, we considered the 38 variables recommended by [ 15] 
and dropped all instances that contain missing values. According to [ 15], the selected 
variables can be divided into five workstations based on the property of the semicon-
ductor manufacturing monitoring process. In this experiment, we assumed that.X1 and 
.X2 include all parameters of the first three and the last two workstations, respectively. 
Tables 2 and 3 show a summary of each dataset. 

In this experiment, the optional validation set was not used and the control limits for 
.T 2 and.Q-statistic set according to Eqs. 6 and 7, respectively. 
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Table 4 Model performance on SECOM data 

Model TP TN FP FN F1 score 

PCA 19 55 19 29 0.44 

FedPCA 19 55 19 29 0.44 

PCA1 + PCA2 14 53 21 34 0.33 

Evaluation. The performance of all evaluated models is shown in Table 4. PCA and 
FedPCA show the same performance. This is expected because, in [ 11], the authors 
provethatFedSVDisalosslessmethodthatproducesthesameresultsasstandardSVD. 
Notably, FedPCA outperforms PCA1, PCA2, and their combination by achieving a 
higher F1 score which underpins the benefit of integrated versus local process models. 

To evaluate the capability of our approach to diagnose faults, we used the 
trainedmodelstogeneratecontributionplotsforHotelling’s.T 2 and.Q-statistic.Figures 
4,5,and6showcontributionplotsofsomeselectedfaults. Ineachof thesefigures, there 
are two plots. The upper plot shows the contribution of each input variable calculated 
by PCA1 and PCA2 (i.e. the local models). The lower one shows the variable contri-
butions calculated by FedPCA. In the middle of each plot, there is a vertical dashed 
line representing the (hypothetical) company border. Note that each company can only 
reconstruct the contributions corresponding to the variables that they own using their 
private data (. xi ), private loadings matrix (.V i ), and the shared matrix. ∑. 

Figures 4 and 5 show two examples of faulty products that were detected by both 
FedPCA and the combination PCA1 + PCA2. In Fig. 4, it can be seen that for Sam-
ple 1, the two plots are quite similar and variables of Company 1 show a much higher 
contribution to the fault than those of Company 2 indicating that the fault is caused pre-
dominantly by the latter. Variables #3 and #4 are reasonable candidates for further root 
cause analysis. In contrast, in Fig. 5 FedPCA and the local models disagree in terms of 
the variables that contribute to the fault. Whereas the local models suggest a significant 
contribution from both parties (with variables from company 2 in fact showing higher 
overall contributions), the FedPCA model indicates that the fault is mostly associated 
with company 1. While Variable #14 shows the highest impact according to PCA1 and 
FedPCA, the most contributed variable according to PCA2 is Variable #32. 

Figure 6 demonstrates an example where FedPCA detected a faulty sample that 
passed both PCA1 and PCA2. Even though the.Q-statistic calculated by PCA1 is high, 
it doesn’t surpass the control limit. For PCA2, it is clear that the.Q-statistic is small. 
This example represents cases where the problem is caused by not only the process 
parameters of one data holder but by a combination/interaction of process parameters 
across the (hypothetical) company border. An advantage of FedPCA, in this case, is 
that it can make use of all available data to increase performance, and at the same time, 
the root cause (sensitive information) is known by the corresponding data holder only, 
and hidden to the other parties. While the second company can reliably claim the prob-
lem did not come from their process production and request the first company to do a 
checkup. It won’t know the exact contribution of input variables of the first company. 
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Fig. 4 .Q contribution plots generated for sample 1 

On the other hand, the first company can use the contribution plots together with their 
know-howtooptimizetheirmachinesettingstoreduceout-of-specificationeventslater 
in the value chain. 

3.3 Case study 2: ST-AWFD Dataset 

Datadescription.ST-AWFDisabatchdatasetthatcontainsatotalof1156batcheswith 
20 variables and an average of 100 samples per batch. Each batch is labeled as normal 
or faulty through a temporal reference window. The production process is divided into 
twostepscalledStep1andStep2.Dependingonthebatch, thelengthofeachstepmight 
differ. 

In order to apply batch-wise MPCA and FedMPCA, all the batches must have the 
same length. Therefore, in this experiment, we have only selected batches with lengths 
of 110 consisting of 65 observations for Step 1 and 45 observations for Step 2. After 
the data cleaning phase, there are 966 batches left which include 648 NOC batches and 
318 faulty batches. A summary of the data partition is shown in Table 5. 
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Fig. 5 .Q contribution plots generated for sample 2 

Table 5 A summary of training, validation, and test set used in the experiment 

Dataset No. NOC samples No. faulty 
samples 

No. features No. time intervals 

.X train  
1 482 0 20 65 

.Xval 
1 83 159 20 65 

.X test  
1 83 159 20 65 

.X train  
2 482 0 20 45 

.Xval 
2 83 159 20 45 

.X test  
2 83 159 20 45 

The control limit for the .T 2 statistic was calculated by Eq. 6. For  the .Q-statistic, 
initially, Eq. 7 was used for determining the confidence limit. However, we found that 
the returned threshold was too conservative and led to a high number of false positives 
for all models. Therefore, the control limit for the.Q-statistic was obtained by cross-
validation using the training and validation set (described in 3.1) instead. 
Evaluation The performance of all evaluated models is shown in Table 6. Similar to 
case study 1, MPCA and FedMPCA returned the same performance and outperformed 
the combination of MPCA1 and MPCA2. In this experiment, the contribution plots 
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Fig. 6 .Q contribution plots generated for sample 3 

Table 6 Model performance on ST-AWFD data 

Model TP TN FP FN F1 score 

MPCA 159 83 0 0 1 

FedMPCA 159 83 0 0 1 

MPCA1 + 
MPCA2 

159 74 9 0 0.97 

were also generated for faulty batches. However, because the number of variables is 
large, it is difficult to judge the difference between the plots without further process 
knowledge (results not shown). 

Altogether, our results on the two case studies underpin the benefits of federated, 
PCA-based process modeling in terms of better fault detection performance and more 
informative fault diagnosis that takes into account the interactions between process 
parameters across (hypothetical) company borders. 
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4 Conclusion 

In the present work, we proposed a framework for enabling privacy-preserving, fed-
erated multivariate statistical process control (FedMSPC) of process chains involv-
ing multiple consecutive process steps operated by different companies. In particular, 
we have employed federated PCA following secure aggregation (vertical concatena-
tion)ofbatch-wiseunfolded(andencrypted)datasetsfromtheparticipatingpartiesand 
demonstrated the application of such models for federated fault detection and privacy-
preserving fault diagnosis. To the best of our knowledge, this is the first study that pro-
posesasolutiontothisproblem.Importantly,ourapproachprovidesnewincentivesfor, 
and underpins the benefits of, closer collaboration of stakeholders along value chains. 
In order to exploit the full potential of federated MSPC, future work will be devoted 
to the development of approaches to (i) cope with unequal batch lengths, (ii) derive 
federated MSPC models with dependent variables, and (iii) enable process control. 
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