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Abstract The Ateneo Innovation Center designs and develops a modular approach 
to medical alarm and alert systems for mechanical ventilators that enable clinicians 
to remotely monitor patient conditions and ventilator circuit status in near real-time, 
providing decision support that allows for a better diagnosis. It monitors and tracks 
the alarm events related to the ventilator waveform consisting of pressure, flow, 
and volume curves by using automatic peak detection of the curves and real-time 
recognition of time-series waveforms. The developed system combines the threshold 
alarms with embedded Artificial Intelligence to automatically detect complex alarms 
that need medical expertise such as issue detection on asynchrony, anomalies, and 
mechanical. It also differentiates the critical types of alarms, assisting clinicians via 
alarm prioritization, and remote patient monitoring via a near cloud system. Storing 
data in the near cloud system as a medical database enables building a rich dataset 
for upgrading the predictive model of alarm recognition. 
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1 Introduction 

In 2020, the COVID-19 pandemic disrupted the world by spreading at unprecedented 
rates and causing tens of thousands of fatalities within a few months [1]. Even with 
vaccines, its mutations unpredictably develop into various strains, and the number 
of infections and deaths are still on the rise, especially in regions where the number 
of patients in need of hospital care exceeds the availability of care. According to the 
Office of Inspector General for the U.S. Department of Health and Human Services, 
hospitals have reported a scarcity of skilled physicians needed to meet the anticipated 
patient surge. Many hospitals also stated that they lacked trained personnel who could 
operate ventilators and treat patients requiring that degree of care [2]. 

A mechanical ventilator machine is a life-support device, when the machines 
record measurements outside of normal parameters, it beeps, and alarms ring out 
to alert medical staff to potential problems. The data from the bedside monitor is 
usually lost as the monitor screen refreshes every few seconds. It requires intensive 
monitoring to identify early signs of clinical worsening and to minimize the risk of 
iatrogenic harm [3, 4]. With A-vent [5], the efforts of the Ateneo Innovation Center 
(AIC) to design, develop and operate a modular and low-cost ventilator alarm were 
described. The updated system currently triggers an alarm with the patient-ventilator 
asynchrony (PVA), anomalies, and mechanical problems as the previous system’s 
alert system was limited only to its waveform parameters such as pressure, flow, 
and volume that alerts clinicians when the parameters fall below or above the set 
limits. This development of an alarm system is a design and engineering study with 
no humans involved. 

2 Review of Related Literature 

“Fighting the ventilator” is a common occurrence when the patient’s demand does 
not match the machine’s delivery, one of the reasons users’ training is necessary 
to assure positive patient outcomes [3, 6]. The interaction between the patient and 
the machine is difficult to manage, hence the ventilator should be synced with the 
patient’s normal inhalation and exhalation cycles. 

Different ventilator designs emerged worldwide during this time of the pandemic. 
Corey et al. [7] presented a low-cost and easy-to-produce electronic sensor and alarm 
system for pressure-cycled ventilators that utilized an algorithm inspired by those 
used in hearing aids that required little memory that it can run on a microcon-
troller. The device estimated clinically useful metrics such as pressure and respi-
ratory rate and sounds an alarm when the ventilator malfunctions. The application 
of the Internet of Things (IoT) protocol on medical equipment, as demonstrated by 
Mashoedah et al. [8], was intended to protect medical workers dealing with COVID-
19 patients, particularly while medical personnel is monitoring and setting up such 
devices. Data was collected through testing, observation, and limited field tests using
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their “Define, Design, Develop, and Disseminate (4D)” approach. Rehm et al. [9] 
developed an intelligent decision support system using a Raspberry Pi that collects 
data from the ventilator unit and was able to store the stream of ventilator waveform 
and physiological data and analyzed it using supervised Machine Learning (ML) 
to classify the double triggering, breath stacking asynchronies, and acute respira-
tory distress syndrome (ARDS). It used IoT wireless connectivity to visualize the 
ventilator waveform and relied on a cloud platform to store and process the data. 

The current ventilator system does not have a self-monitoring feature, which is 
critical for ensuring that the ventilator machines are working properly and that the 
settings are appropriate for the patient’s conditions in real-time. This prompted the 
team to spearhead and start this project. 

3 System Description 

3.1 Experimental Setup 

The conventional ventilator machines are threshold-based alarms that are prone to 
frequent false alerts. There are currently no intelligent systems embedded in emer-
gency ventilators to automatically detect cycling asynchrony and generate alerts to 
clinicians. This study presented a new approach in which the patient and ventilator 
interactions characterized by a stream of ventilator waveform data were recognized 
in a real-time and stand-alone manner. Figure 1a describes the simple design of 
the A-vent unit and its experimental setup for emulating the different alarm events, 
including types of PVA, ventilator airway circuit status, anomalies, and high/low 
threshold levels occurrence.

The supplied air goes into the patient’s airway circuit through a 1 L test lung 
that mimics a patient’s lungs. The experimental setup is subject to a constant air 
supply and a one-second inspiratory and expiratory ratio. When the ventilator unit 
delivers pressurized air, the test lung expands and contracts accordingly with the 
given inspiratory and expiratory (I:E) ratio. The alert events are emulated as a proof 
of concept. The methods for emulating the patient and ventilator interactions are 
given in Table 1. Asynchrony and ventilator circuit-related alerts are the two types of 
modeled patient and ventilator interaction alarms. The emulated waveforms consist 
of eight classes, labeled as (1) normal waveform (NW), the common types of PVA 
include (2) delay cycling (DC1), (3) double triggering (DT1), (4) reverse triggering 
(RT1), and (5) ineffective effort (IE1) and alerts related to ventilator airway circuit 
status include (6) disconnected pressure port (DPP2), (7) disconnected tube (DT2), 
and (8) machine failure (MF2).

To create a unique pattern of waveforms, the patient and ventilator interactions are 
modeled by altering the open-close state of the ventilator unit’s manual air release 
valve during the inspiratory period, disconnecting components of the airway circuit, 
and shutting down the ventilator unit. The emulated asynchrony waveforms are
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Fig. 1 Experimental setup a for emulating and capturing ventilator waveform data, and b modular 
intelligent ventilator alarm system prototype

Table 1 Summary of emulated ventilator waveform 

Labels Types of asynchronies Emulation method 

NW Normal waveform Valve is opened a little bit 

DC1 Delay cycling Valve is opened then close 

DT1 Double triggering Valve is closed, opened, then closed 

RT1 Reverse triggering Valve is closed then opened 

IE1 Inefficient effort Valve is fully opened 

DPP2 Disconnected pressure port The pressure sensor is disconnected 

DT2 Disconnected tube Test lung from the tube is removed 

MF2 Machine failure The ventilator unit is shut down 

1Alarms related to common types of PVA 
2Alarms related to ventilator airway circuit status

comparable to actual types of PVA associated with cycling and patient effort criteria 
and have been evaluated by a physician. The rest are machine and airway circuit 
issues such as power failure, air hoses, and circuit tube disconnection. 

3.2 Alarm Algorithm 

We achieved significant improvements to a conventional ventilator alarm system 
in this study by embedding Artificial Intelligence (AI) within a sensor-equipped
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Fig. 2 Data flow for A-vent modular intelligent alarm device 

ventilator machine. We performed built-in testing of the ventilator operation and 
analyzed its waveform for the recognition of time-series alarm events. When devia-
tions from regular operations occur, ML together with data processing and sequencing 
algorithms alert medical staff. 

Figure 2 illustrates the data flow describing the processing and algorithms of the 
alarm module for detecting the critical and important types of alerts. The ventilator 
waveforms comprise three parameters which include (1) pressure, (2) flow and (3) 
volume that was captured by a medical-grade flow meter and pressure sensor. The 
real-time data from the sensors are processed by the microcontroller unit. There are 
three algorithms used to develop the intelligent ventilator alarm module: (1) a couple 
of recursive filter algorithms, (2) K-means clustering, and (3) a deep neural network. 
Each algorithm specializes in detecting different types of alarms. 

We employed the study of Corey et al. [8] to track the peak-to-peak pressure 
cycling (i.e., PIP, and PEEP) and the peak tidal volume. The respiratory rate is 
calculated by measuring the inspiratory period with the number of breaths per minute 
given by the I:E ratio. The PIP, PEEP, peak tidal volume, respiratory rate, and anomaly 
score are the five parameters for the threshold-based alarm. The decisions of these 
alarms are based on whether the current parameter falls above or below the set 
thresholds. 

On the other hand, the raw data needed to be buffered for the processing which 
converts the time-series data to data suitable for ML algorithms. The spectral analysis 
used the extracted features of the raw data to model the PVA and mechanical state 
and then feed it to the deep neural network classifier. The basis of the decision for 
alarms was the predictions of the model represented by labels and accuracy. 

The K-means clustering algorithm was used to find the natural pattern of the data 
and to detect anomaly data from the dataset. If the ventilator waveform data samples
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do not belong to any data clusters, the observation is categorized as anomalous [10]. 
The K-means anomaly returns a value called anomaly score if the observation score 
is greater than the threshold score, which it identifies as anomalous. The K-means 
clustering complements the classifier detection model, which detects the observation 
outside the dataset also known as an anomaly. 

The false alarm triggering was avoided by utilizing the positive alarm sequence 
function. However, it provides an alarm delay for investigating the alarm sequence 
before triggering the alarm indicators. The delay varies with the data processing 
latency and the number of occurrences determines a positive alarm. The positive 
alarm sequence function ensures the series of alarm events occurred. If the series of 
alarms exceeds the set number of occurrences, it is characterized as a positive alarm 
and the alert indicator may trigger. 

3.3 Data Gathering and Dataset 

The ventilator waveform is captured using a medical-grade Sensirion flow meter 
(SFM3300) and differential pressure sensor (MPX5010DP) are shown in Fig. 1b. 
Figure 3 shows the ventilator waveforms comprising three parameters which include 
(1) pressure, (2) flow and (3) volume, which are captured by the sensors interfaced 
to a microcontroller.

The MPX5010DP is a differential pressure sensor designed to interface with a 
microcontroller or microprocessor that has an analog to digital (A/D) converter. It 
is an analog device with a high-resolution analog voltage signal ranging from 0 to 
5 V that are proportional to the applied pressure of 0 to 10 kPa. The pressure is 
proportional to the output voltage, the measured pressure PcmH2O in centimeter of 
water (cm-H2O) can be described as: 

Pcm H 2 O =
((
Vout − Vof  f  set

))
/Sensi tivi t y/10 (1) 

where the V out is the output voltage of the pressure sensor in millivolts which is 
fed to a 16-bit A/D converter. The parameters offset voltage, V offset, and Sensitivity 
which values can be seen in the operating characteristic section in the datasheet is 
0.2V and 4.413 mV/mmH2O respectively. The Sensirion SFM3300 is a digital and 
bidirectional flow sensor for proximal flow measurement in respiratory applications 
that can measure a flow range of ±250 standard liters per minute (SLM). Based on 
the product technical specification the flow FSLM measured in SLM is described as: 

FSL  M  =
(
valueI 2C − valueof  f  set

)
/scale f  actor (2) 

where the valueI2C is the integer return value by the flow meter from the I2C commu-
nication interface. The parameter valueoffset and scale factor (1/SLM) can be seen 
in the electrical characteristic section of the product specification, where the given 
values are 32,768, and 120 respectively. The calculation of tidal volume was derived
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Fig. 3 The pressure, flow, and volume emulated ventilator waveforms as captured by the sensors; 
a normal waveform, b delay cycling, c double triggering, d reverse triggering, e inefficient effort, 
f disconnected pressure port, g disconnected tube, and h machine failure

from flow measurements. Given that the A-vent unit delivers pressurized air at the 
rate of a one-second I:E ratio, the tidal volume TVmL measured in millimeters (mL) 
is described as: 

T VML  =
∑

FSL  M  /60 ∗ Δt (3) 

where the FSLM is the flow rate expressed in standard liters per minute, and Δt is  
the sampling interval obtained from the sampling rate. The continuous time-series 
waveform data are stored as comma-separated values (CSV) files with the timestamp 
in millisecond intervals given by the sampling rate to create a dataset. The emulated 
waveform was sampled at the rate of 50 Hz and captured continuously for 10 min for 
each class. The dataset was randomly divided into training, validation, and testing 
set. Before training the PVA and machine state recognition model, the dataset was 
processed to reduce its samples represented by its features as inputs to ML algorithms. 

3.4 Features Extraction 

Embedded devices such as microcontrollers have limited computational power and 
memory, making it vital to optimize the processing of large amounts of data. Feature
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Fig. 4 3D graph of features extracted from the raw data of the emulated ventilator waveforms 

extraction is a dimensionality reduction technique that reduces a large set of raw data 
into smaller groups for processing while retaining the information in the original data 
set [11, 12]. Analyzing time-series signals such as sensor data from the ventilator, 
this study employed spectral analysis as a features extraction algorithm. It processes 
the ventilator time-series signal to convert it into a frequency domain that extracts its 
spectrum characteristics. Figure 4 shows a 3D graph of RMS features extracted from 
the raw data of the emulated ventilator waveforms. The spectral analysis was able 
to group each class, making it easier for the ML algorithm to generalize the data. 
The algorithm extracted 11 spectral features of the raw data per axis; there were 33 
features as input to the Neural Network classifier. 

3.5 Ventilator Asynchrony Recognition Model and Near 
Cloud System 

This study employed the optimized deep neural network enough to run on micro-
controllers that classify the deviation of time-series waveform signal from the 
normal operation in real-time and standalone. Microcontrollers have limited memory 
and processing power, which places constraints on the sizes of machine learning 
models. The model was trained through the TensorFlow-based AutoML platform and 
converted the final model into the TensorFlow Lite version which allowed running
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the model on a microcontroller. The researchers chose ESP32-based processors (e.g., 
DOIT DevKit V1) to combine AI/ML capability with its IoT applications. 

The researchers developed a data caching system, a wireless mesh network called 
AIC Near/Mobile Cloud, a private cloud infrastructure that was also included in some 
projects i.e., the A-vent, and a phototherapy light system for jaundice treatment that 
allows IoT devices to communicate [5, 13, 14]. The local data caching system can 
collect real-time data from sensor-equipped medical machines and perform real-time 
data analysis for hospital medical staff on multiple machines. The device’s server 
connects the IoT medical machines to the time-series database that can store real-
time data and analysis performed by AI/ML. It automatically stores the data in Unix 
timestamp format that allows graphing the historical clinical data with descriptive 
analytics in the remote monitoring dashboard for clinician reference. 

4 Results and Discussions 

4.1 Ventilator Asynchrony Recognition Alarms 

The team employed the TinyML approach to classifying various types of asynchrony 
beyond the normal waveform that generates an alert. The results were obtained from 
30 to 50 s of breath cycling, where the asynchronies and ventilator circuit status 
were emulated after 3 normal breath cycling. Figure 5 shows the alarms for emulated 
PVA. The breath cycling consists of pressure, flow, and volume represented by blue, 
orange, and green lines, respectively. The alarm signal is represented by a red line, if 
its amplitude is high, the sequence of positive alarms is detected to generate an alert 
signal.

It shows the delay cycling (DC), double triggering (DT), ineffective effort (IE), 
and reverse triggering (RT) asynchronies. The embedded neural network was able to 
recognize the asynchronies from normal waveforms in near real-time. The basis of 
alarm is the prediction accuracy and its labels. The positive alarm event is described 
if the predicted breath cycling is other than the normal waveform, and when the 
prediction accuracy surpasses the confidence level threshold of 0.80. The waveforms 
are sampled at 50 Hz with 5 sequence samples of positive alarm to avoid triggering 
of false alarm. The alarm algorithm took ~6–15 s (3–7 breath cycles) to trigger the 
alarm signal. It only took 1–2 normal breath cycles to reset the alert signal. 

Figure 6 shows the machine, ventilator circuit, and anomaly alarms that include 
the disconnected pressure port (DPP), disconnected tube (DT), machine failure (MF), 
and emulated anomalous asynchrony. The alarm algorithm took ~10–25 s to generate 
an alert signal, which is somehow longer for asynchrony alarms. Furthermore, it took 
~2–12 s (1–6 breath cycle) to reset the alert signal. The anomalous waveform was 
taken by rapidly turning around the air release valve from side to side. The anomaly 
detection took ~4 s (2 anomalous breath cycles) to trigger the alarm signal when the 
anomaly score exceeds the normal threshold. It took ~10 s (5 normal breath cycles) to
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Fig. 5 Ventilator asynchrony alarms: a delay cycling, b double triggering, c ineffective effort, 
d reverse triggering

reset the alarm signal. Hence, this study proves that the future mechanical ventilator 
device can detect time-series types of alarms in near real-time, which assists the 
healthcare workers to reduce their workload and sustain the critical services of the 
healthcare system.

4.2 Ventilator Asynchrony Recognition Model Performance 

To evaluate the model, the researchers randomly divided the dataset into (a) training, 
(b) validation, and (c) testing sets with 60%, 20%, and 20% partitions respectively. 
The model was evaluated using 10 k-fold cross-validations. The model performance 
for validation and testing sets was summarized using a confusion matrix as provided 
in Tables 2 and 3. It consists of m rows and n columns, where m is the actual 
emulated asynchrony and n is the asynchrony predicted by the algorithm. The diag-
onal elements show the accuracy of the predicted breath cycling matched with the 
actual emulated waveforms.

The weighted model accuracy resulted from validation and test sets are 97.8% 
and 98.01%, respectively. Both accuracies are relative to each other, thus the PVA 
and mechanical state recognition model can well generalize the emulated ventilator 
waveforms. The performance of the classifier model reflects how the features were
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Fig. 6 Machine, patient airway circuit, and anomaly-related alarms: a disconnected pressure port, 
b disconnected tube, c machine failure, d anomalous asynchrony

Table 2 Model performance from validation set 

DC1 DPP2 DT2 DT1 IE1 MF2 N RT1 

DC1 0.93 0 0 0.04 0 0 0.01 0.02 

DPP2 0 1.0 0 0 0 0 0 0 

DT2 0 0.01 0.99 0 0 0 0 0 

DT1 0.08 0 0 0.91 0 0 0.01 0 

IE1 0 0 0 0 1.0 0 0 0 

MF2 0 0 0 0 0 1.0 0 0 

N 0 0 0 0.1 0 0 0.99 0 

RT1 0 0 0 0 0 0 0 1.0

grouped as shown in Fig. 4. The delay cycling and double triggering overlapped 
each other causing confusion between them. The features for normal waveform and 
reverse triggering are concentrated. However, the data points were plotted near delay 
cycling and double triggering which has an insignificant effect on its performance. 
The rest of the classes were clustered independently which enabled the ML algorithm 
to be able to generalize data easily.
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Table 3 Model performance from test set 

DC1 DPP2 DT2 DT1 IE1 MF2 N RT1 

DC1 0.90 0 0 0.02 0 0 0.01 0 

DPP2 0 1.0 0 0 0 0 0 0 

DT2 0 0 1.0 0 0 0 0 0 

DT1 0.04 0 0 0.95 0 0 0 0 

IE1 0 0 0 0 1.0 0 0 0 

MF2 0 0 0 0 0 1.0 0 0 

N 0 0 0 0 0 0 0.99 0 

RT1 0 0 0 0 0 0 0 0.99

The ESP32 was able to process the stream of ventilator waveform data with 
19 ms and 1 ms latency for the features extraction and inferencing, respectively. The 
features were buffed within 2000 ms given by its window length; thus, the inferencing 
results were printed after the data had been processed. This result proves that future 
ventilator machines can be embedded with AI/ML to detect time-series alarms in 
near real-time and stand-alone assist clinicians in monitoring critical patients. 

5 Conclusion 

As we embrace a circular economy for the development of biomedical devices, 
this study demonstrated a low-cost solution to upgrading medical machines such as 
ventilators with new AI/ML analysis and real-time data storage in the Near Cloud 
network. We modeled the patient-ventilator interaction by varying the airflow within 
the ventilator unit. The captured ventilator waveform was validated by the physi-
cian, as a proof of concept. The AIC team further improved the functionalities of 
the previous minimum viable ventilator by integrating a standalone alarm system 
utilizing embedded deep learning for near real-time detection of ventilator asyn-
chrony and machine status, and clustering for detecting anomalies to assist clinicians 
in monitoring patients who require respiratory support. This development demon-
strates how a conventional ventilator can be improved and linked to a new generation 
of medical machines/devices. 

This study proved that the future mechanical ventilator machine can detect time-
series types of alarms in near real-time, which assists the healthcare workers to 
reduce their workload and sustain the critical services of the healthcare system. Its 
AI predictive capabilities are supposed to support physicians in decision-making, not 
replace their expertise. The team also presented how the system can be integrated into 
the AIC Near/Mobile Cloud with the multiple sensor-equipped medical machines as 
part of the IoMT system initiatives.
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