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Preface 

The 11th International Conference on Mechatronics and Control Engineering 
(ICMCE 2023) was held as a virtual event during January 29–31, 2023. Researchers 
from all over the world attended the conference from home and saw the live broadcast 
of the invited and contributed speeches. 

Keynote speeches were delivered by Prof. Daniel Quevedo (IEEE Fellow), 
from Queensland University of Technology, Australia; Prof. Graziano Chesi (IEEE 
Fellow), from the University of Hong Kong, Hong Kong, China; Prof. Maciej 
Michalek, from Poznan University of Technology (PUT), Poland; Prof. Konstantinos 
Kyriakopoulos (IEEE Fellow), from National Technical University of Athens, 
Greece; Prof. Elena Zattoni, from Università di Bologna, Italy; and Prof. Sunil K. 
Agrawal, from Columbia University, USA. On behalf of the organizing committee 
of the conference, I would like to thank all the keynote speakers for having accepted 
the invitation. Their talks addressed problems in the area of mechatronics and control 
engineering that have a large impact on the organization of our modern society and 
on the use of resources in industrial production. 

The conference proceedings of ICMCE 2023 included 12 full papers and they 
focused on 4 major topics, which are Mechatronics and Control, Control Theory 
and System Model, Artificial Intelligence Technology in Intelligent Systems, and 
Mechanical System Design and Maintenance. 

The success of the conference is due to the high scientific level of all the contri-
butions as well as to the enthusiasm of all the attendees. The Technical Committee 
members did a precious job in selecting the papers that were accepted for presen-
tation and for inclusion in this book of proceedings among those that were initially 
submitted. 

Besides the authors, the attendees and the TC members, I would like to thank 
the members of the International Advisory Committee Pierre Borne, Graziano Chesi 
and Daniel Quevedo, the Conference Co-Chair Olivier Sename, the Program Chairs 
Elena Zattoni, Ricardo Ambrocio Ramirez-Mendoza and Mohammad Salah, and the 
Publicity Chairs Ke-Lin Du, Sergei Alexandrov and Mark Jackson whose work was 
fundamental for assuring the smooth running of the conference.

v
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Finally, I would like to thank the Conference Organizer for their efforts in assuring 
the success of ICMCE in the last 11 years and for giving me the opportunity to chair 
this conference. We truly hope all the participants have found the discussions fruitful 
and have enjoyed the opportunity for establishing future collaborations. 

Ancona, Italy 
January 2023 

Giuseppe L. Conte 
Conference General Chair
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Three-Dimensional Finite Element 
Analysis and Experiment of Temperature 
Rise of Permanent Magnet Linear 
Synchronous Motor 

Jianjian Fan and Mengjie Shen 

Abstract Permanent magnet linear synchronous motors (PMLSM) are widely used 
in semiconductor processing, laser cutting, inspection and precision positioning 
because of high thrust density, high power density, high acceleration, fast response, 
good reliability and high precision. The torque of the PMLSM is proportional to the 
input current, that is, to output large electromagnetic thrust, the PMLSM needs a 
large input current. The large current will cause large losses, mainly copper loss in 
the winding, which will eventually heat up the winding and other parts and cause 
temperature rise. High temperature rise will reduce the motor’s insulation life or even 
destroy the insulation, which will reduce the performance of the motor or cause the 
motor failure. Thus, by studying and analyzing the temperature rise of PMLSM, it is 
beneficial to achieve rational design or motor operating condition prediction. In this 
paper, finite element modeling analysis of the three-dimensional temperature field 
of the motor is conducted based on a linear motor test rig, which includes a linear 
motor, a sliding table, a linear bearing, a linear module base and a marble platform. 
The finite element analysis results are compared with the experiment results and they 
are consistent. This paper provides a reference method for linear motor temperature 
rise analysis. 

Keywords Permanent magnet linear synchronous motor · Temperature field ·
Finite element · Fluent · Temperature rise experiment
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1 Introduction 

Permanent magnet linear synchronous motors (PMLSM) are widely used in semi-
conductor processing, laser cutting, inspection and precision positioning because of 
high thrust density, high power density, high acceleration, fast response, good reli-
ability and high precision [1, 2]. The torque of the PMLSM is proportional to the 
input current, that is, to output large electromagnetic thrust, the PMLSM needs a 
large input current. The large current will cause large losses, mainly copper loss in 
the winding, which will eventually heat up the winding and other parts and cause 
temperature rise. High temperature rise will reduce the motor’s insulation life or 
even destroy the insulation, which will reduce the performance of the motor or cause 
the motor failure. Thus, by studying and analyzing the temperature rise of PMLSM, 
it is beneficial to achieve rational design or motor operating condition prediction. 
However, the influence of the linear module base and test platform of the linear 
bearing on the temperature rise of the motor has not been taken into account yet. 

Due to the special structure and special operating conditions (such as round-
trip, transient high thrust, intermittent operating mode and etc.) of linear motors, 
the thermal analysis of liner motors by thermal resistance-network analysis (TRA) 
and finite-element analysis (FEA) are significantly different than those conventional 
rotating motors, as a result, the study of linear motor temperature fields are few. 
However, as the linear motors are more and more widely used, the related temperature 
field analysis has been increasingly attention. 

A detailed analysis of the temperature field of a water-cooled large-thrust perma-
nent magnet synchronous motors was carried out by FEA, TRA and experiments in 
[1], and the simulation result and calculated values were consistent with the exper-
iment results. However, this study only performed a two-dimensional analysis, and 
the analysis report was only the motor itself. In [3], the three-dimensional tempera-
ture field of an asynchronous starting permanent magnet motor has been studied. The 
analysis uses fluent, a FEA software, to model the temperature field and considers 
the rotor rotation through the equivalent air gap length, while also considering the 
effect of bearing thermal conduction on the temperature rise. 

The temperature rise of a linear motor was investigated by TRA [4], and compared 
with experiment results the method is proved to be feasible, but TRA requires a lot 
tedious equivalent calculations for each part of the motor thermal circuit. In [5], the 
temperature field analysis of a PMLSM which mounted on a movable substrate base 
plate operating at low speed was carried out by FEA. 

In this paper, finite element modeling analysis of the three-dimensional tempera-
ture field of the motor is conducted based on a linear motor test rig, which includes 
a linear motor, a sliding table, a linear bearing, a linear module base and a marble 
platform. The three-dimensional finite element temperature field model of the motor 
is firstly established, the losses of the motor were analyzed and the boundary condi-
tions of the temperature field are determined to solve the temperature field. Secondly, 
temperature rise experiments were conducted based on the prototype. Finally, the
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simulation and experiment results are compared and they are consistent. This paper 
provides a reference for the linear motor temperature rise analysis. 

2 Motor Temperature Model 

The linear motor test system, as shown in Fig. 1, consists of a marble platform, a 
linear module base, the stator and mover of the PMLSM, the test bench, a connecting 
device for test and a load liner motor. PMLSM is a single-sided flat type with iron core 
structure, the stator consists of back iron, permanent magnets, and permanent magnets 
stainless steel sheath; the mover consists of winding, iron core, slot insulation and 
epoxy resin. The motor parameters are shown in Table 1. The motor is naturally 
cooled and the operating speed is 0.2 m/s. 

Fig. 1 Temperature rise test platform for PMLSM. 1-Marble platform, 2-Linear module base 
(linear bearing, slider and guide rail), 3-Stator of linear motor (include back iron, permanent 
magnets, permanent magnets stainless steel sheath), 4-Mover of the Linear motor, 5-Sliding table, 
6-Connecting device for test, 7-Load linear motor 

Table 1 Parameters of PMLSM and test rig 

Parameters Value Parameters Value 

Mover length (mm) 300 Sliding table length (mm) 360 

Mover width (mm) 55 Sliding table width (mm) 200 

Mover height (mm) 31 Sliding table height (mm) 23.4 

Air-gap length (mm) 0.6 Current (A) 4.5 

Stator height (mm) 8.4 Line resistance (25 °C) (Ω) 4.5 

Module base length (mm) 2500 Marble platform width (mm) 400 

Module base width (mm) 210 Marble platform thickness (mm) 130 

Module base thickness (mm) 36
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Fig. 2 Temperature iteration of PMLSM 

Table 2 Losses of linear 
motor (25 °C) Parameters Value (W) Percent (%) 

Iron loss 0.55 0.39 

Eddy current loss 0.01 0.01 

Mechanical loss 3.08 2.19 

Copper loss 136.68 97.41 

2.1 Motor Loss 

The losses of the PMLSM include copper loss, iron loss, mechanical loss, and eddy 
current loss. Due to the low motor operating speed of 0.2 m/s, the iron loss and eddy 
current loss can be neglected. The mechanical loss is mainly the linear bearing loss, 
which can also be ignored. The friction force of the sliding table is only 15.4 N 
as measured, so the heat generated by it can be ignored too. The main loss of the 
motor is the copper loss, Pcu = 1.5*I2*Rt, I is the motor RMS current, Rt is the 
winding resistance at t°C. When the motor winding temperature is 25 °C, the winding 
resistance is 4.5Ω, and winding copper loss is 137 W at the rated current. The winding 
copper loss at t°C can be expressed as Pcu = 137*(235 + t)/(235 + 25), and the value 
of t can be determined by iterative temperature solution, and the iterative process 
is shown in Fig. 2. The loss value of each part of the motor (mechanical loss is 
determined by measurement) at 25 °C are shown in the following Table 2. Table 2 
illustrates that the other losses in motor can be ignored, so only the copper losses are 
considered in the analysis. 

2.2 Temperature Field Model 

Given by thermodynamics and [6], In the Cartesian coordinate system, the three-
dimensional transient heat conduction equation and its boundary condition is given by
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∂ 
∂x
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∂y

(
ky 
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)
+ ∂ 

∂ z 
(kz) + q = ρc ∂ T 

∂t 

S1 : T = T0 
S2 : k ∂T 

∂t 
= −q0 

S3 : k ∂T 
∂n 

= −h(T − Te) 

(1) 

where T is the object temperature, T0 is the known temperature distribution on the 
boundary; Te is the temperature of the surrounding medium; kx, ky, kz are the thermal 
conductivity of the object in the x, y, z direction, respectively; q is the density of 
the heat source; q0 is the density of heat flow through the boundary surface S2; n  
is the boundary normal vector; h is the heat transfer coefficient; k is the thermal 
conductivity; ρ is the density; c is the specific heat. 

In order to improve the efficiency of the temperature field finite element model 
calculation, the following assumptions are made. 

1. The copper losses are uniformly distributed by volume in the straight and end 
sections of the coil. 

2. The mover is stationary during the analysis, and the air moves at 0.2m/s relative 
to the mover. 

3. Marble platform temperature is 25 °C, ignore the contact thermal resistance 
between the linear module base and marble platform. Linear bearing using heat 
transfer coefficient instead of its actual ball thermal conductivity and lubricant 
convection heat dissipation, ignore the marble platform and module base. 

4. Ignore the temperature conduction between the motor and the load motor. The 
temperature field model is established as a symmetric half model along the 
direction of motion. 

5. Ignore the openings and chamfer on each component, do not consider the influ-
ence of lubrication and thermal radiation on heat transfer, convection heat transfer 
coefficient is a fixed value, only the copper loss varies with temperature to 
simplify the modeling and calculation. 

6. Separation of copper and insulating varnish. 

According to the assumptions and temperature field equations to establish a three-
dimensional finite element analysis model of the linear motor as shown in Fig. 3.

The individual material properties in the model are shown in Table 3.
The key to the temperature field solution is to determine the heat transfer coef-

ficient of each face, such as forced convection heat transfer coefficient of each face 
of the mover, and the natural heat transfer coefficient of each face of the stator. The 
difficulty in solving the temperature field is to determine the thermal conductivity 
of the bearing, which involves fluid convection and solid thermal conductivity. The 
analysis of the heat transfer coefficient involves the following common constants.
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Fig. 3 Finite element analysis model of PMLSM

Table 3 Material thermal parameters 

Materials Density (kg/m3) Specific heat capacity (k/j) Thermal conductivity (W/ 
k.m) 

Silicon steel sheet 7700 434 X: 39, Y: 4.43, Z: 39 

Copper 8890 380 X: 385, Y: 1.5, X: 1.5 

Epoxy resin 1800 900 0.8 

Aluminum 2700 460 385 

Air 1.205 1005 0.026 

Slot insulation 930 1340 0.18

Reynolds number: 

Re = ul 
υ 

(2) 

Rayleigh number: 

Ra = Gr · Pr (3) 

Grashof number: 

Gr = gl
3αΔt 

υ2 
(4)
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Prandtl number: 

Pr = υ 
a 

(5) 

Nusselt number: 

Nu = hl 
λ 

(6) 

For the convective heat transfer coefficient [7] on the air gap surface is calculated as 

For laminar flow (Re < = 5 × 105): 

Nu = 0.644R1/2 
e P1/3 r (7) 

For turbulent flow (5 × 105 < = Re < = 108): 

Nu =
(
0.037R0.8 

e − 870)P1/3 r (8) 

For the convective heat transfer coefficient [8] at the front and rear ends of the movers 
is calculated 

Nu = 0.2R2/3 
e (9) 

For the stator surface, the natural heat transfer coefficient [8] is calculated: 

For the horizontal plane: 

(a) Upper surface of hot plate or lower surface of cold plate 

Nu = 0.54R1/4 
a (104 <= Ra <= 107) (10) 

Nu = 0.15R1/3 
a (107 <= Ra <= 1011) (11) 

(b) The lower surface of the hot plate or the upper surface of the cold plate 

Nu = 0.27R1/4 
a (105 <= Ra <= 1010) (12) 

For vertical surfaces: 

Nu =
{
0.825 + 0.387R1/6 

a 

[1 + (0.492/Pr )9/16]8/27
}2 

(13)
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Fig. 4 Steady temperature cloud map of PMLSM 

The simulation temperature of the core and winding of the motor is recorded and 
the temperature curve is shown in Fig. 7. The steady temperature cloud map of the 
PMLSM is shown in Fig. 4. 

3 Experimental Validation 

In order to verify the simulation result, the temperature rise test were conducted on 
the PMLSM as shown in Fig. 5. The temperature thermocouple probe was inserted 
into the stator core mounting hole and the average temperature rise of the winding 
was measured by the resistance method. During the test, the operating speed was 
0.2 m/s and the distance was 1 m. The motor run in electric mode, while the load 
motor run in braking mode. The currents of the two motors during the operating 
cycle were 4.54 and 4.24 Arms. The current curves of the motor are shown in Fig. 5, 
and the oscilloscope showed a current value of 4.542 Arms during a round trip cycle. 
The temperature rise of the stator core which measured by the temperature probe is 
shown in Fig.  6. The line resistance and ambient temperature before and after the 
test is shown in Table 4.

4 Analysis and Discussion 

The FEA results and temperature rise test data are summarized as shown in Table 5, 
Figs. 7 and 8.

As shown in Table 5, Figs.  7 and 8, it can be seen that the deviation between the 
finite element results and the measured results is small. The reason for the deviation
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Fig. 5 Temperature rise test for PMLSM 

Fig. 6 Current waveform 

Table 4 PMLSM 
temperature rise test winding 
resistance and temperature 

Parameters Value Unit 

Ambient temperature 25 °C 

Line resistance at ambient temperature 4.5 Ω

Line resistance at steady state 5.34 Ω

Average winding temperature at steady state 73.9 °C
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Table 5 Comparison of FEA and temperature rise test of PMLSM 

Parameters FEA Test Deviation 

Winding temperature at steady state (°C) 84.7 73.9 10.8 

Stator core temperature at steady state (°C) 62.3 57.1 5.2 
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Fig. 7 PMLSM winding temperature rise curve 
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Fig. 8 PMLSM stator core temperature rise curve

of the measurement: the simulation winding temperature is the real-time value at 
each place of the winding, while the measured winding temperature is the average 
value [9]. In addition, the measured temperature of the stator core is on the outer 
surface, which is lower than the true temperature of the core. In the simulation, the 
heat transfer coefficient calculation also has deviations [10]. In summary, the finite 
element simulation results higher than the measured temperature, is caused by the 
existence of measurement errors, and is acceptable.
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5 Conclusion 

In this paper, based on the PMLSM test platform, a three-dimensional temperature 
field FEA model of the linear motor is established, and the analysis results are 
consistent with the experiment results, which verifies the feasibility of the 3D FEA 
method to analyse the temperature rise of linear motors. Moreover, through the three-
dimensional finite element analysis method, the temperature of each part of the linear 
motor can be more accurately and comprehensively understood, which will help to 
achieve a more reasonable design. 
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Modeling and Control of BLDC Motor 
for Scaled Autonomous Vehicle 
Application 

Mohamad Hachem, Ariel Medero, Hussam Atoui, and Olivier Sename 

Abstract This paper includes a brief study of a BLDC motor considering it an 
important actuator in new autonomous applications. It can be a sample in treating 
such actuators from a low level till reaching a controlled closed-loop system. The 
BLDC motor with the presence of ESC (Electronic Speed Controller) is modeled as a 
DC motor. Experimental results with gray-box identification techniques were used to 
validate this assumption. Robust .H∞ controller is implemented and compared with 
the conventional PI controller. To improve the controlled system loop an observer is 
designed and implemented in real-time. It works on the fusion of multiple sensors 
available on the platform. The targeted actuator is identified and controlled as a part 
of controlling and developing remote-control (RC) vehicles found in GiPSA-LAB. 
The main contribution of this paper is to propose a strategy that helps treat the BLDC 
motors used in scaled autonomous vehicles and pave the way for designing vehicle 
longitudinal controllers. 

Keywords BLDC motors · .H∞ controller · System identification · Sensor fusion 
observer 
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1 Introduction 

As one of the most important mechatronics components, DC motors come to the 
scene of interest of researchers as it plays an important role in the dynamic system. 
DC motors can be used as main components in applications related to autonomous 
vehicles [ 1, 2], autonomous aerial vehicles [ 3], industrial robotics [ 4], and other 
electro-mechanical applications. These applications consider the motor as the main 
actuator that affects the behavior of the system. Mainly the actuators of the mentioned 
systems are related to BLDC motor types. 

Based on what is mentioned, designing a good controller is a challenge in this field. 
BLDC motors can be affected by measurement noises and manufacturing uncertainty. 
To obtain a closed loop, that can track desired references, it is obvious that we need 
a controller to guarantee system stability and required performances. A fuzzy PID 
controller is presented by [ 5] and compare the results with the conventional PID 
controller. Also [ 6], proposes a self-tuning fuzzy PID controller targeting autonomous 
vehicles application. The aim of it is to control the speed of the tire of an electric 
vehicle based on Pacejka’s model. A state of art on different control techniques is 
presented by [ 7] and presents modeling techniques and all mechanical and electrical 
components of BLDC motors. In [ 3] an adaptive closed-loop controller is used to 
control actuators of aerial vehicles. The supposed algorithm is proved experimentally 
to be robust in the scene of parameter uncertainties. 

The work presented in this paper forms part of a larger project set to build a 
full autonomous scaled vehicle platform. The vehicle contains three main actuators, 
two BLDC motors actuate the longitudinal dynamics of the vehicle while a servo 
motor acts on the lateral dynamics. The angular speed of the motor is transferred to 
the angular speed of the vehicle’s tire, and then it can be translated to transnational 
velocity depending on the radius of the tire. The envisioned full autonomous scheme 
is represented in Fig. 1, shown in green the actuators targeted by this paper. All 
implementation algorithms and experimental tests were done in the ROS2 framework. 

The paper presents a robust controller for the used BLDC motors. The used 
platform is presented in the first section. Then modeling and identification of the 
used BLDC are presented in the second section. In the third section a presentation 
of the theory and development of robust controller based on .H∞ approach. An 
observer is designed and implemented in real-time to reduce measurement noises. 
Experimental results and comparisons between the conventional PI controller and 
the robust controller are presented in the last section. 

2 GiPSA-LAB Platform 

The platform found in GiPSA-LAB consists of having the targeted car, a motion-
capturing system, and a PC where ROS is running and sending the command input to 
the Arduino positioned in the vehicle using wireless connections. The full platform
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Fig. 1 Vehicle control scheme 

Fig. 2 GiPSA-LAB platform 

is shown in Fig. 2. However, it is important to mention that the capturing system 
(vicon tracker) is not used in the objective of this paper. 

The RC car is equipped with two BLDC motors and one servo motor that allow 
both longitudinal and heading motions, respectively Figs. 3 and 4. This vehicle is 
equipped with different sensors (battery voltage and current, wheel encoders). The 
PC runs the control algorithms at specified frequencies and sends PWM signals to the 
Arduino RP, which transmits the signal as the voltage input to the actuator (Table 1).
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Fig. 3 RC car back view 

Fig. 4 RC car front view
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Table 1 RC car components Type Functionality 

.1 Swicth Switching car power 
On/OFF 

.2 8 mm Qualisys 
super-spherical 

Captured by vicon tracker 

.3 Arduino RP 2040 Micro-controller of the 
vehicle 

.4 Spur gears Increase torque given by 
BLDC 

.5 Elastic wheel . 2 Rear wheel of the vehicle 

.6 ACCU NI-MH 3000 Supply power battery 

.7 MG996R servo motor Steering actuator 

.8 Elastic wheel . 2 Front wheels of the 
vehicle 

.9 BLDC-A2212/13T Throttle actuator 

As mentioned before, the ROS2 framework is used to consist of this development. 
It is considered an open source that helps researchers and engineers solving com-
plex problems. ROS contains different nodes that can interact and send messages 
with different structure types using topics. The nodes are running python3 codes at 
different frequencies. One important thing is containing a ROS bag where all the 
measured and sent data are collected. This file is treated on Matlab to be able to get 
clean synchronized data that help in the identification and designing controllers. A 
joystick is connected also to the platform, and it is used to do different test tasks 
either by sending a PWM command directly to the Arduino or by generating the 
desired reference to be tracked by the actuators. 

To convert between the input voltage and the PWM signal commanded (1) is used.  

.V = Vbattery × PWM (1) 

Encoder sensors were used to estimate the shaft position of the motor, knowing the 
time between the signals, it is obvious to estimate the velocity of the output rotor 
using (2) 

.θ̇k = 2π

8 × T s
(t trk − t trk−1) (2) 

where .t trK represents the number of counted ticks at instant . k, .Ts corresponds to 
the working time or frequency of the sensor, and the number. 8 is related to the pulse 
signals read by the sensor at each rotation. It should be mentioned that this velocity 
estimation produces a noisy signal due to the poor resolution from the encoders. To 
solve this issue an observer that can estimate a better signal of motor angular velocity 
is required. 

The key system of the scaled autonomous vehicle involved in this work is the 
actuator component. The BLDC motor used scheme is shown in Fig. 5. We count 
with a voltage and current sensor for the battery, meaning that the independent
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Fig. 5 BLDC schemes 

current that each motor consumes is not known. To control each BLDC motor, we 
count with a dedicated ESC which receives a PWM signal from the Arduino board, 
controlling then the voltage applied to the motor. The last pair of sensors available, 
are a hall-effect encoder sensor which is used to derive the angular velocity for each 
motor. 

3 Physical Modeling and System Identification 

3.1 Physical Modeling 

As mentioned in the previous section, the motor scheme contains an ESC that controls 
the speed of the motor. However, the system can be modeled as a DC motor from 
a perspective point of matching input voltage to the output . θ̇. The assumed DC 
scheme is represented in Fig. 6. DC motors consist of having internal inductance 
coils. L , resistors. R, inertial rotating rotor. J , . b motor viscous friction constant, and a 
stator with magnets to generate an electromagnetic field. Applying Newton’s second 
law and Kirchhoff’s voltage law Eq. (3) is derived where .τ = Kτ i , and .e = Keθ̇, 
with the assumption that.Kτ = Ke = K ..Ke and.Kτ correspond to the emf and motor 
torque constants. 

.

J θ̈ + bθ̇ = Ki

L
di

dt
+ Ri = V − K θ̇

(3)
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Fig. 6 DC scheme [ 8] 

A linear second-order state-space (4) is constructed based on the results given by 
(3).The input of the the system is voltage. V , and the output is the angular speed of the 
rotor of the  motor  . θ̇. Indeed, the voltage input affects the current . i passing through 
the coil in the motor which affects the rotor angular speed. 

.

d

dt

[
θ̇
i

]
=

[− b
J

K
J− K

L − R
L

] [
θ̇
i

]
+

[
0
1
L

]
V

(4) 

The motor used contains four poles that generate an electromagnetic field that forces 
the motor rotor to rotate. The ROS2 master can interact with the used microprocessor 
by sending a PWM signal as a calculated control input. 

3.2 Open Loop Identification 

An important prerequisite for control design is having a good model that can describe 
the behavior of the system. Benefiting from the mathematical model of the BLDC 
motor (4) it is possible to undergo parameter estimation for.b, K , J, R, L parameters 
using Gray-box identification. 

Experimental Setup 
An open loop identification test is done on the motor by giving varying PWM ampli-
tude signals. It is worth mentioning that the generated input PWM is considered to 
be persistently exciting input where it triggers all BLDC targeted frequencies. The 
signals were generated using the connected JOYSTICK. ROS framework connects
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Fig. 7 Motor model identification 

the JOYSTICK with the Arduino RP placed on the vehicle and sends it the PWM 
signals by wireless connection. The measured data can be collected easily as a ‘CSV’ 
file thanks to ROSbag and plotjuggler. Plotjuggler is used to plot the collected data 
after each experiment. It is very important to analyse the collected data set just after 
finishing each experiment. 

Numerical Identification 
After treating and filtering the collected data using MATLAB, an optimization prob-
lem is used to solve Eq. (5) where . y represents the real measured data representing 
the states of the motor, and .ŷ(φ̂) represents the simulated states of the model. It is 
important to mention that while identifying the system constraints on the estimated 
current were included. This constraints can ensure having feasible solutions while 
solving an optimization problem. The results of the identification appear in Fig. 7 
and Table 2. It is shown that the input delay occurs between 9 and 13 sampling times 
in the system. The RMSE is calculated to be .0.268. 

. min
Φ̂

||y − ŷ(φ̂)||2 Where Φ̂ = [J, b, K , L , R] (5) 

3.3 Validation 

Before designing the controller, a validation of the identified model is performed. 
Using the previously estimated parameters, and undergoing a new experiment, Fig. 8 
represents the validation results. The simulated model fits the real data in both current
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Table 2 Motor parameter estimation results 

Parameter Value S.I Units 

J .4.0587e-05 .Kg m. 2

K .0.0073 . V/rad/s

L .1.1201e-04 . H

R .2.3923 . Ω

b .2.6623e-04 . N.m.s

Fig. 8 Motor-estimated model validation 

and angular speed measurements. It is worth mentioning that the validation process 
is done using data sets resulting from different experiments. These sets are collected 
by either triggering the dynamic behavior of the motor or by trying to perform it 
stabilized. The represented results are a sample that verifies the model for different 
objectives. 

4 Observer and Control Design 

4.1 Sensor Fusion Observer 

As seen from Figs. 7 and 8, the available angular speed measurement for the motor 
speed has a quite high noise to signal ratio due to the low resolution on the motor 
encoders. However, given that the identified model matches very well the system 
behaviour, a solution is to use a state observer to filter out the signal noise. One
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possibility is to have an independent pair of observers for each motor. This design 
would impose a direct trade-off between confidence on the measurement and confi-
dence on the motor identified model. Another approach is to use the available current 
measurement coming out from the battery. 

As seen in Fig. 5, this sensor can not distinguish the exact current going to each 
independent motor. However, this measurement can be described mathematically as: 

.ibat (t) = i1(t) + i2(t) (6) 

Were .ibat (t) is the current measured for the battery current sensor and.i1,2(t) are the 
current states of motor 1 and 2 respectively. Using this information we propose an 
extended BLDC Model for the purpose of observer design which fuses the infor-
mation from the two available motors in the scaled vehicle. This extended model is 
given by: 

.
d

dt
x̄ = Āx̄ + B̄ V̄ =

[
A 0
0 A

]
x̄ +

[
B 0
0 B

]
[V1, V2]T (7) 

.ȳ = C̄ x̄ =
⎡
⎣ 1 0 0 0
0 0 1 0
0 1 0 1

⎤
⎦ x̄ (8) 

with the extended state vector given by: 

.x̄ = [θ̇1 i1 θ̇2 i2]T (9) 

Note that the state matrices .A and .B in Eq. 7 are those identified from the DC 
motor model (4). Also note that each motor is assumed to share the same parameter 
values. 

Employing this extended model we make use of a classical Luenberg Observer 
in order to estimate all states from the motors. 

. ˙̂x(t) = Ā ˆ̄x(t) + B̄V̄ (t) + L(ȳ(t) − C̄ ˆ̄x(t)) (10) 

The design of the observer gain .L ∈ R
4×3 is accomplished by means of pole 

placement using Matlab function place and using the observer error closed loop 
dynamics: 

.ė(t) = ( Ā − LC̄)e(t) (11) 

In the rest of the section we describe the control techniques applied for motor 
control using the information computed by the observer. In contrast to the observer, 
however, the control of each motor will be carried out independently.
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Fig. 9 PI BLDC control simulation architecture 

4.2 PI Controller 

Based on the estimated model of the BLDC motor a PI controller is tuned to control 
the input voltage of the motor. According to the tuned terms.Kp = 0.16 and. KI = 1.1
can solve the tracking problem. However, since this controller can go to exceed 
feasible issues, a saturation function is used to bound the input voltage. The used 
control scheme is represented in Fig. 9. 

4.3 .H∞ Controller 

An .H∞ control problem formulation is represented in this part as shown by [ 9]. 
The target system to be controlled is represented in Fig. 10 by.G(s). Two weighting 
functions .We and .Wu act as tuning constraints for the built controller .K (s). The  
scheme in Fig. 10 is converted to the scheme.LFT shown in Fig. 11. 

The generalized plant. P aims to characterize the controlled output with the exter-
nal input and build a controller that minimizes the.L2 induced gain from the external 
input . ω to the controlled output . e. In other words, the controller must minimize the 
impact of the reference and the assumed disturbances and noises with respect to the 
output of the defined weighting functions. Problem.H∞ is formulated by (12). 

.||e||2 ≤ γ||ω||2 , ||Tew||∞ =
|||||||| WeS
WuK S

|||||||| ≤ γ (12) 

.T = GK

1 − GK
, S = 1 − GK

1 − GK
, SG = S × G , K S = K × S (13) 

. S denotes the sensitivity function that indicates the effect of noise on the closed 
loop .Tyr , and .K S designates the controlled sensitivity function that demonstrates 
the consequences of external input on controlled input . u. It is possible to formulate



24 M. Hachem et al.

Fig. 10 .H∞ control architecture 

Fig. 11 Generalized plant. P

a controller giving .γmin regarding the sensitivity functions under defined templates. 
It is solved by operating the algebraic Riccati approach or using the LMI method 
(Zhou, Skogestad, & Postlewaite). The weighting functions are defined as .We and 
.Wu (14) used in designing templates for . S and .K S, respectively. 

.
1

We
= s + ωbϵe

s
Ms

+ ωb
and

1

Wu
= ϵus + ωbc

s + ωbc
Mu

(14) 

The weighting function is tuned according to the required performance, where: 

– .Ms : Robustness required with max module margin. 
– .ωb: Tracking speed and rejecting disturbances. 
– . ϵe: Steady-state tracking error.
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Table 3 BLDC. H∞
weighting parameters 

Parameter Value 

.Ms 3.52 

.ωb .(rad/s) 3.789 

.ϵe 0.00328 

.Mu 7 

.ωbc .(rad/s) . ∞

.ϵu . 10−3

– .Mu : Actuator constraints based on .
Δu
Δr . 

– .ωbc: Actuator Bandwidth. 
– . ϵu : Attenuate noises on controlled input. 

The plant P can be written in another form shown in (15). 

.

ẋ = Ax + B1ω + B2u

e = C1x + D11ω + D12u

y = C2x + D21ω + D22u

(15) 

.x ∈ R
n , the union of the plant states and the weighing function states, .ω ∈ R

nω , the  
defined external inputs to P, .u ∈ R

nu , the controlled input, .e ∈ R
ne , the controlled 

outputs,.y ∈ R
ny , the measured outputs of the system..We is used to obtain a minimum 

overshoot and steady-state error, while.Wu is used to limit controlled input (.Vin) and 
avoid saturation [ 10]. The weighting function is defined as follows and parameters 
are defined and tuned according to Table 3 to obtain the required performances. 

The generalized plant P of order 3 including a second-order and first-order system. 
The architecture used to build the controller is represented in (10). The controller 
.K (s) is designed using the Robust Matlab Toolbox. It is important to mention that 
optimal calculated . γ is increased by .30% to ensure the numerical stability of the 
controller while discretization and implementation. The frequency analysis of the 
closed-loop system using the.H∞ approach is shown in Fig. 12. The system is under 
the defined template in all frequency ranges, has a good steady-state error, and rejects 
noises at high frequencies. 

5 Experimental Implementation 

The developed control algorithms have been implemented on the scaled RC car. 
However, before implementation, different simulation iterations have been done to 
tune the defined controllers as mentioned previously. In the same step, the designed 
observer is implemented so that the closed-loop is defined by the feedback of the 
filtered measured data. It has been implemented with a sampling frequency of 50 Hz.
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Fig. 12 BLDC closed-loop frequency analysis 

As mentioned before the controllers were designed and tuned offline using MATLAB. 
Python3 programming was used to implement the controllers in real time. 

5.1 PI Experimental 

Conventional PI control implementation results are shown in Fig. 13. The controlled 
output appears to follow the reference with a good steady state error thanks to the inte-
grated part of the controller. However, the rising time is large causing slow variation 
in the dynamics of the controller. This slowness in variation can affect the response 
of the longitudinal dynamics of the vehicle causing crashes in some maneuvers. The 
output feedback is filtered using the implemented observer. It is regarded that this 
controller affects the attenuation of the observer being noisier. 

5.2 .H∞ Control Implementation 

Benefiting from the identified model the weighting matrices have been tuned to 
track the reference. Experimental results are shown in Fig. 14. The  .H∞ controller 
appears to track the required reference with a small overshoot and steady-state error.
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Fig. 13 PI BLDC implementation results 

Fig. 14 .H∞ BLDC implementation results 

However, it is obvious that the rising time is small causing fast dynamic variations, 
thanks to the weighing template “. 1

We ”. In addition, the used observer appears to 
be smooth in filtering the noises showing noise attenuation in high frequencies. It 
is worth mentioning that the controller is not saturating while tracking the desired 
reference. 

6 Conclusion 

In this paper, we represent the physical model of a BLDC motor as a DC motor 
with the presence of ESC. The targeted controller is mainly used in electrical RC 
cars used to develop autonomous vehicle algorithms. An identification algorithm 
based on gray-box techniques is used to identify the parameters of the model. The 
identification method is validated by expiremental data. The data were collected from 
noisy sensors due to derivation term, however, the method used was able to give 
a feasible physical value of the motor parameters. PI and .H∞ control algorithms
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were introduced and implemented in real-time. A comparison between these two 
methods shows that the robust .H∞ controller is better at attenuating noises than 
the PI controller. The PI controller is easier in tuning and in implementing in real-
time, however, the performance of the .H∞ controller appears to be better in terms 
of tracking and rising time. Also, the designed observer appears to work greatly in 
attenuating noises when implemented in the closed loop with the robust controller. 
The proposed work is validated experimentally and theoretically to be used in treating 
BLDC motors , specially that used for scaled autonomous vehicle applications. 
Future work may be comparing different control strategies for the motor with the 
presence of the longitudinal controller of the vehicle. A study of sensor fault diagnosis 
can be done in the presence of different type sensors. 
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FedMSPC: A Federated Multivariate 
Statistical Process Control Framework 
For Privacy-Preserving Process Modeling 
Across Company Borders 

Du Nguyen Duy, David Gabauer, and Ramin Nikzad-Langerodi 

Abstract The ongoing transition from a linear (produce-use-dispose) to a circu-
lar economy poses significant challenges to current state-of-the-art information and 
communication technologies. In particular, the derivation of integrated, high-level 
views on material, process, and product streams from (real-time) data produced along 
value chains is challenging for several reasons. Most importantly, sufficiently rich 
data is often available yet not shared across company borders because of privacy 
concerns which make it impossible to build integrated process models that capture 
the interrelations between input materials, process parameters, and key performance 
indicators along value chains. In the current contribution, we propose a privacy-
preserving, federated multivariate statistical process control (FedMSPC) framework 
based on Federated Principal Component Analysis (PCA) and Secure Aggregation 
to foster the incentive for closer collaboration of stakeholders along value chains. We 
tested our approach on two industrial benchmark data sets - SECOM and ST-AWFD. 
Our empirical results demonstrate the superior fault detection capability of the pro-
posed approach compared to standard, single-party (Multiway) PCA. Furthermore, 
we showcase the possibility of our framework to provide privacy-preserving fault 
diagnosis to each data holder in the value chain to underpin the benefits of secure 
data sharing and federated process modeling. 
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1 Introduction 

The importance of data exchange along value chains has been broadly recognized for 
mastering the transition from linear to circular economy [ 1, 2]. However, as individu-
als and corporations are increasingly concerned about how their data are being used, 
the emphasis on data privacy and security has become a major global topic. There are 
now data protection obligations that organizations must strictly follow [ 3]. There-
fore, it is challenging, if not impossible, in many situations to transfer data across 
company borders. This landscape poses new challenges that traditional information 
and communication technologies in general, and process modeling approaches in 
particular, cannot handle appropriately. 

More specifically, traditional process modeling workflows usually involve collect-
ing and fusing data into a common site where a data-driven model is built. However, 
this is no longer feasible since data are not owned by a single entity but rather gen-
erated and distributed among different companies along a value chain. On the one 
hand, organizations do not want to share private data because of the fear of trade 
secrets leaks, and on the other hand due to regulations or geographical restrictions. 
As a result, even though sufficiently rich process data is available, they often exist 
in small and fragmented silos and cannot be integrated to enable a broader view of 
the whole value chain. This is a major obstacle in areas where it is well known that 
material properties, process parameters, and KPIs are intercorrelated across company 
borders, for example, in the steel or paper industry [ 4, 5]. 

Afunctionalsolutiontoovercometheproblemofdatafragmentationandisolationis 
FederatedLearning(FL),aconceptfirstproposedbyGoogle in2016[ 6].Themainidea 
behindFListobuildacentralizedmodelbasedondatascatteredamongmultipleparties 
without requiring participants to share sensitive information. In the meantime, FL has 
gained increasing attention, both from research and industry perspectives. However, a 
preliminary literature review shows that most of the current work is focused primarily 
on deep neural networks and their application to computer vision problems [ 7, 8]. 

Multivariate Statistical Process Control (MSPC) is an umbrella term for a set of 
advanced statistical methods for modeling, monitoring, and controlling the operating 
performance of processes that are widely adopted in the process industry. More specif-
ically, MSPC techniques extract features from high-dimensional and highly correlated 
process data by means of latent variable (LV) based modeling techniques. The models 
are then used to monitor processes in real-time, assess their performance, and iden-
tify deviations from normal operating conditions (NOC). Therefore, MSPC provides 
a basis for increasing process security, sustainability, and continuous improvement. 
Although some recent research efforts have been devoted to adopting federated learn-
ing in the field of MSPC, limited progress has been made [ 9, 10]. Previous studies have 
focused on federated PCA [ 11]. However, the application of PCA to MSPC, i.e., for 
online monitoring, fault detection, and fault diagnosis yet to be proposed. In addition, 
Multiway PCA (MPCA), an extension of PCA for modeling batch process data has not 
been investigated, and thus, to the best of our knowledge, the FL paradigm has so far 
notbeenadoptedforbuildingMSPC-typeprocessmodelsacrosscompanyborders that 
preserve the privacy of each contributing party. Moreover, the incentive mechanism,
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an essential aspect of FL, has not been discussed in the existing literature. A fair value-
distribution structure is critical in order to motivate the different parties to actively col-
laborate in the model training and inference process [ 12]. The collaboration might be 
wasteful without meaningful incentives because the participating parties will not carry 
out efficient contributions. 

In this work, we propose a general federated multivariate statistical process model-
ingframework(FedMSPC)wheredifferentcompaniesalongavaluechaincantogether 
build a shared process monitoring model in a federated and privacy-preserving man-
ner. To fully protect confidential data, FedMSPC uses a combination of two privacy 
techniques: Data Masking and Secure Aggregation [ 11]. In particular, each partici-
pant unfolds and encrypts data in the local environment using a well-designed masking 
method. Then, all encrypted data are transferred to a third-party server, which securely 
aggregates these data and trains an MPCA model on the concatenated joint (encrypted) 
data matrix. Finally, each participant decrypts the federated output of the model, using 
its private key, and reconstructs the information related to their process. More specifi-
cally, each participant obtains only the portion of the shared loadings matrix that cor-
responds to the variables that they contribute. Thus, this information is not acces-
sible to the other parties. In addition, all participants will share the explained vari-
ance corresponding to the selected principal components (PCs). Using such results, 
all data holders can collaboratively estimate the scores, process-monitoring statistics 
(e.g. Hotelling’s.T 2 and.Q-statistic) as well as variable contributions, thereupon con-
duct fault detection and diagnosis. 

In order to showcase the feasibility of the framework, we propose Federated Princi-
pal Component Analysis (FedPCA), which is based on the idea of Federated Singular 
Value Decomposition (FedSVD) proposed in [ 11], as the modeling method. FedSVD 
basically provides lossless privacy guarantees and is thus ideally suited for building 
federated MSPC models. However, in [ 11], the authors employ FedPCA under a hor-
izontally partitioned scenario, where the data from the contributing parties share the 
samefeatureratherthanthesamplespace(i.e.horizontalFL).However, invaluechains, 
input materials are processed sequentially by different companies and the correspond-
ing data is thus vertically partitioned, i.e., the data share the same sample space but 
different feature spaces. Therefore, we will concentrate on vertical FedPCA instead. 
Inaddition,wewill investigatetheapplicationofFedPCAinmodelingbatchprocesses. 

2 Methodology 

2.1 Multivariate Statistical Process Control 

PCA is among the best-known and most widely adopted MSPC techniques for model-
ing high-dimensional and highly correlated process data, and will be introduced in the 
following. 

PrincipalComponentAnalysis(PCA) isoftenappliedinMSPCtotransformadataset 
with highly correlated variables into an uncorrelated dataset while preserving only the
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systematic variation. There are various techniques for building a PCA model, Singular 
VectorDecomposition(SVD)being themostpopularone.Suppose theoriginaldataset 
denoted by.X ∈ R

m×n contains.m observations and. n process variables. SVD corre-
sponds to the following decomposition: 

.

X = U∑V T

= [
Ur U0

] [
∑r 0
0 ∑0

] [
V r V 0

]T
,

(1) 

where.U ∈ R
m×m is the left singular matrix,.∑ ∈ R

m×n is the diagonal matrix holding 
thesingularvalues,and.V ∈ R

n×n is therightsingularmatrix..V r ∈ R
n×r derivedfrom 

.V is called the loadings matrix. The number of principal components. r can be deter-
mined based on a certain criterion, e.g., the cumulative explained variance, and usually 
it holds that.r ≪ n. The loadings are the coefficients of the variables from which the 
PCs are computed. The sign of the loading shows whether the correlation between the 
PCs and the corresponding variable is positive or negative while its absolute value indi-
cates how strongly the variable influences the PCs. Therefore, they are often used to 
quantify variable importance. 

Projecting .X onto the subspace spanned by the selected PCs reduces the dimen-
sionality of the column space from. n to. r . The result of the transformation is the scores 
matrix. T r ∈ R

m×r

.T r = XV r . (2) 

The reconstruction of. X can be estimated from.T r and.V r : 

.X̂ = T rV T
r (3) 

The residual matrix. E is defined as the errors between. X and. X̂ and can be calculated as 

.E = X − X̂ = X − XV rV T
r . (4) 

Multi-way principal component analysis (MPCA) is an extension of PCA for mon-
itoring batch processes that are broadly seen in industries where batch and semi-batch 
process operations are common, for example, in the chemical or pharmaceutical indus-
try [ 13, 14]. 

Suppose each batch run has. J variables measured at.K time intervals. Similar data 
exist inthesameformforeachofthe. I batchruns.Therefore,all thedatacanbearranged 
in an array.X(I × J × K ). 

In order to apply PCA, the dataset has to be converted into a two-dimensional 
array. There are multiple ways to unfold a 3D dataset. However, the most meaning-
ful approaches are batch-wise and variable-wise unfolding. In the proposed approach, 
we will employ batch-wise unfolding since variable-wise unfolding is not feasible for 
federatedMSPC.Inbatch-wiseunfolding,the2Darrayisformedbyunfoldingthearray 
.X so that each of its vertical slices contains the observed variables for all batches at a
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1th sample 2nd sample Kth sample... 
Batch 

1 

I J  

K 

Variable 

Time 

1 J  2J  KJ(K-1)J 

I 

Fig. 1 An illustration of the batch-wise unfolding method 

specific time instance. The result is a 2D matrix of the shape.(I × K J ). An illustration 
of this unfolding technique is shown in Fig. 1. 

After the data is unfolded, PCA is performed to retrieve the scores and loadings 
matrices. Hotelling’s .T 2, .Q-statistics, and the corresponding variable contributions 
can then be calculated in a similar manner as for PCA. 

Fromanoperationalpointofview,itispreferabletomonitorthebatchasitprogresses 
in order to anticipate process faults and to take timely actions to prevent out-of-batch-
specification events. However, in this situation, a major obstacle is that the new batch 
is required to have.K J columns such as the NOC data used for training the model. This 
is impossible when the batch has not been completed because at time interval. k < K
the new batch. x only has.k J columns. In [ 14], the authors proposed a simple solution 
to overcome this problem which is to use only the portion of the loadings matrix that 
corresponds to the elapsed time period until the current time interval. k to calculate the 
new scores vector 

.t [k]r = x Ṽ r (Ṽ r
T
Ṽ r )

−1, (5) 

where.Ṽ r = V r [1 : k J ]contains thefirst.k J columnsof.V r . In theproposedapproach, 
we will use this same approach to handle the situation where batches are incomplete. 

Fault detection and diagnosis One of the most popular applications of PCA-based 
MSPC is fault detection and diagnosis. This is often done based on control chart statis-
tics, such as Hotelling’s.T 2 and the so-called.Q-statistic. While a high.Q-statistic indi-
cates a change in covariance structure, a high .T 2 indicates that although the sample 
is described well by the model (i.e. through a linear combination of the loadings) it is 
unusual in terms of the linear combination. Suppose there is a PCA model generated 
from NOC data. When a new sample.x ∈ R

1×n arrives,.T 2 and.Q can be calculated as: 

.T 2 = trɅ
−1
r t Tr , (6) 

where.tr = xV r and.Ʌr = ∑2
r and 

.Q =
n∑

i=1

(xi − x̂i )
2. (7)
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Theupperconfidence limit for the.T 2 statisticcanbecomputedfromthe.F-distribution 

.T 2
α = r(m − 1)

r − m
Fr,m−r,α, (8) 

where. m and. r denote thenumberofNOCsamplesandthenumberofPCs, respectively. 
The upper confidence limit for the.Q-statistic can be computed from the approximate 
distribution 

.

Qα =θ1

⎛

⎝1 − θ2h0(1 − h0)

θ2
1

+
zα

/
2θ2h20

θ1

⎞

⎠

1/h0

θi =
l∑

j=r+1

(Ʌ j, j )
i , i = 1, 2, 3

h0 =1 − 2θ1θ3
3θ2

2

,

(9) 

where.zα is the standard normal deviate corresponding to the upper.(1 − α)percentile, 
.Ʌ j j is the eigenvalue associated with the .. j th loading vector, and . l is the number of 
non-zero eigenvalues calculated from the data. 

Asamplemightbeconsideredfaulty ifeither.T 2 or. Q exceedsthepredefinedcontrol 
limits.T 2

α or.Qα . When a fault is detected, variable contributions to.T 2 and.Q can be 
calculated as [ 14] 

.T 2
cont = xV r∑

−1V T
r = tr∑

−1V T
r (10) 

and 
.Qcont = (x − x̂)2. (11) 

Variables with high contributions are diagnosed as candidates for the cause of the fault. 

2.2 Federated Multivariate Statistical Process Control 
(FedMSPC) 

Figure 2 illustrates the proposed framework. Assume we have. g data holders with the 
.i-th data holder owning data matrix.X i ∈ R

m×ni and these data holders aim at fitting 
a PCA model on the concatenated matrix .X = [X1, X2, ..., Xg], where . X ∈ R

m×n

and.n = ∑g
i=1 ni . In this case, the full results of PCA include .∑ ∈ R

m×n and. V T =
[V T

1 , ..., V T
g ] ∈ R

n×n , where.V T
i ∈ R

n×ni is the portion of the loadings matrix corre-
sponding to the variables contributed by the.i-th data holder. 

The aim of this contribution is to design a privacy-preserving system that guaran-
tees that (1) during the computation, data is not leaked to any other data holder and (2)
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the loadings matrix.V must be vertically and secretly distributed among data holders. 
While thefirst requirement iscommonlysharedbyallprivacy-preservingapplications, 
the second requirement is more specific to federated MSPC. As explained in the pre-
vious chapter, loadings can reveal sensitive information about how variables interact 
with the principal components and can be used to calculate the contributions of vari-
ables to.T 2 and. Q statistics. Therefore, data holder. i should know only.V i ∈ R

ni×n that 
contains coefficients corresponding to its contributed variables. Furthermore,.V i has 
to be unknown to all other involved parties. In order to realize these goals, we propose 
an approach based on FedSVD [ 11]. 

To apply FedSVD-based PCA as proposed in [ 11], the system requires a Trusted 
Authority (TA) tohandlekeygeneration,andaComputationServiceProvider (CSP) to 
takecareofdataaggregationandmodelbuilding.Algorithm1showstheoverallmodel-
building workflow. Since. ∑, the number of NOC samples, the number of variables, and 
the number of principal components are shared by all data holders, the control limits 
for Hotelling’s.T 2 and.Q-statistic can be estimated using Eqs. 6 and 7 as for standard 
PCA. 

After a FedPCA model is built, suppose a new sample .x = [x1, ..., xg], where 
.xi ∈ R

1×ni , is generated. Algorithm 2 is used to calculate scores, Hotelling’s.T 2 and 
.Q-statistics, and the contribution of each variable to these quantities. Using these mon-
itoring values, all data holders can check whether the sample/batch is faulty or not, i.e. 
if the monitoring statistics lie above their critical limits. However, since.V i is secretly 
ownedbyeachdataholder, thecomputationofHotelling’s.T 2-and.Q-contributionscan 
only be done locally. This might be greatly beneficial since all participating companies 
mightknowthatasample/batchisfaulty,andtheycancheckwhethertheproblemmight 
be associated with their production line. However, each company only sees the contri-

Fig. 2 The architecture of the federated process modeling framework
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Fig. 3 An illustration of how local data is mapped batch-wise in FedMPCA 

bution of its own variables to the fault, which provides feedback on how to improve its 
own process to benefit the entire value chain. 

For batch process data, FedPCA cannot be applied directly. Thus, we propose an 
extension called FedMPCA that includes a data unfolding step before encryption and 
transfer to the CSP. However, unlike the transition from PCA to MPCA, not all unfold-
ing techniques are applicable in the federated scenario. While variable-wise unfolding 
is invalid because local data do not share the same feature space, batch-wise unfolding 
is undertaken as shown in Fig. 3. 

Suppose there are . g participating data holders and data holder . i owns a batch 
data set of shape .I × Ji × Ki where . I , . Ji , and .Ki are the number of batches, the 
number of variables, and the number of time intervals, respectively. When batch-
wise unfolding is employed, the unfolded data of data holder. i is .X i ∈ R

m×ni where 
.m = I and.ni = Ki Ji . Therefore, the joined data.X = [X1, . . . , Xg] ∈ R

m×n , where 
.n = ∑g

i=1 ni = ∑g
i=1 Ki Ji . The full results of MPCA consist of.∑ ∈ R

m×n and. V T =
[V T

1 , . . . , V T
g ] ∈ R

n×n , where.V T
i ∈ R

n×ni is the portion of the loadings matrix corre-
spondingtothe(unfolded)variablescontributedbydataholder. i .Similar toFedPCA,at 
theendofFedMPCAmodeltraining,dataholder. i receives. ∑ and.V T

i andcancooperate 
with the other data holders, the TA, and the CSP to calculate scores and the monitoring 
indexes. 

In an online monitoring scenario, given all the preceding data holders have com-
pleted their processes, suppose the.i-th data holder wants to calculate the monitoring 
indexes and variable contributions for an in-progress batch at time interval.k < K . The  
corresponding data can be expressed as.x = [x1, ..., xi ]. The procedure is described in 
Algorithm 3. Once the scores are obtained, data holders can calculate Hotelling’s.T 2,
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.Q-statistics and contribution of variables to the two indexes in a similar manner as it is 
done for completed batches (described in lines 16-37 of Algorithm 2). 

Algorithm 1: FedPCA Training 
Input: X = [X1, . . . ,  Xg] 
Output: ∑, r and V T = [V T 1 , . . . ,  V T g ] 
Constraint: Data holder i’s data is not leaked, and it receives ∑, r and V T i as results. 

1 Function FedPCA.train([X1, . . . ,  Xg]) 
2 TA do: 
3 Generate orthogonal matrices P ∈ Rm×m , B ∈ Rn×n . 
4 Then split BT into [BT 

1 , . . . ,  BT 
g ] where BT 

i ∈ Rn×ni . 
5 end 
6 Data Holders do: 
7 for i = 1 → g, Data holder i do 
8 Download P , BT 

i from TA and compute 

9 X
,
i = PX i Bi 

10 end 
11 end 
12 CSP do: 
13 Aggregate X

,
: 

14 X
, = ∑g 

i=1 X
,
i

(= ∑g 
i=1 PX i Bi = PX  B

)

15 Perform standard SVD: 

16 X
, = U ,

∑V
,T 

17 end 
18 Data Holders do: 
19 for i = 1 → g, Data holder i do 
20 Download ∑ from CSP. 
21 Determine the number of principal components r based on the cumulative sum of 

explained variance. 
22 Generate a random matrix Ri ∈ Rni×ni 

23 Mask BT 
i through: [BT 

i ]Ri = BT 
i Ri 

24 Send [BT 
i ]Ri to CSP. 

25 end 
26 end 
27 CSP wait to receive data and do: 
28 if Receive [BT 

i ]Ri then then 
29 Compute [V T i ]Ri = V ,T [BT 

i ]Ri (= V ,T BT 
i Ri = V T i Ri ) 

30 Send [V T i ]Ri back to data holder i . 
31 end 
32 end 
33 Data Holders do: 
34 for i = 1 → g, Data holder i do 
35 Receive [V T i ]Ri from CSP. 

36 Recover V T i by V 
T 
i = [V T i ]Ri R−1 

i . 
37 end 
38 end 
39 End
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Algorithm 2: FedPCA Inference 
Input: x = [x1, ..., xg] 
Output: tr , Q-statistics, Hotelling’s T 2, Qcont = [Qcont,1, ..., Qcont,g], 

T 2 cont = [T 2 cont,1, ..., T 2 cont,g] 
Constraint: Data holder i’s data is not leaked, and it receives tr , Q-statistics, Hotelling’s T 2, 

Qcont,i , T 2 cont,i as results. 
1 Function FedPCA.predict([x1, ..., xg]) 
2 TA do: 
3 Generate a random number p. 
4 end 
5 Data Holders do: 
6 for i = 1 → g, Data holder i do 
7 Download the random number p from TA. 
8 Calculate local scores: tr,i = xi V r,i 
9 Encrypt the local scores with p: t ,r,i = ptr,i = pxi V r,i 

10 Send t
,
r,i to CSP. 

11 end 
12 end 
13 CSP do: 
14 Aggregate t

,
r : t

,
r =

∑g 
i=1 t

,
r,i

(= p
∑g 

i=1 xi V r,i = px V r
)

15 end 
16 Data Holders do: 
17 for i = 1 → g, Data holder i do 
18 Download t

,
r from CSP. 

19 Recover the scores tr : tr = t
,
r 
p 

20 Calculate T 2: T 2 = tr∑−2t T r 
21 Calculate T 2 cont,i = tr∑−1V T r,i 
22 Calculate local reconstruction errors ei : ei = xi − tr V T r,i 
23 Calculate Qcont,i : Qcont,i = e2 i 
24 Calculate local Q-statistics: Qi = ei eT i 
25 Encrypt Qi using p: Q

,
i = pQi 

26 Send Q
,
i to CSP. 

27 end 
28 end 
29 CSP do: 
30 Aggregate Q

,
: Q

, = ∑g 
i=1 Q

,
i

(= p
∑g 

i=1 Qi = pQ
)

31 end 
32 Data Holders do: 
33 for i = 1 → g, Data holder i do 
34 Downloads Q

,
from CSP. 

35 Recover Q by Q = Q
,
p 

36 end 
37 end 
38 End
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Algorithm 3: FedMPCA Incomplete Batch 
Input: x = [x1, ..., xi ] 
Output: t [k]r 

Constraint: Data holder i’s data is not leaked, and it receives t [k]r as the result. 
1 Function FedMPCA.predict([x1, ..., xi ]) 
2 TA do: 
3 Generate a random number p and an random matrix W ∈ Rr×r 

4 end 
5 Data Holders do: 
6 for j = 1 → i , Data holder j do 
7 Download the p and W from TA. 

8 Calculate t
,
r, j and F

,
j as follows: 

9 t
,
r, j = px j Ṽ r, j W 

10 F
,
j = Ṽ T r, j Ṽ r, j W 

11 where Ṽ r, j = V r, j for j < i , and  Ṽ r, j = V r, j [1 : k J j ] when j = i . Note that in 
this case, Ṽ 

T 
r = [  ̃V T r,1, ..., Ṽ 

T 
r,i ]. 

12 Send t
,
r, j and F

,
j to CSP. 

13 end 
14 end 
15 CSP do: 
16 Calculates t [k]

,
r : 

t [k],r = 
i∑

j=1 

px j Ṽ r, j W ( 
i∑

j=1 

Ṽ 
T 
r, j Ṽ r, j W )−1 

⎛ 

⎝= p 
i∑

j=1 

x j Ṽ r, j WW−1( 
i∑

j=1 

Ṽ 
T 
r, j Ṽ r, j )

−1 

⎞ 

⎠

(
= px Ṽ r ( Ṽ 

T 
r Ṽ r )

−1
)

(
= pt [k]r

)

Broadcast t [k]
,

r to all data holders. 
17 end 
18 Data Holders do: 
19 for j = 1 → i , Data holder j do 
20 Recover the real scores using p: 

21 t [k]r = t
[k],
r 
p 

22 end 
23 end 
24 End
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3 Experiments 

As proof of concept, we applied FedPCA and FedMPCA to two industrial case studies 
from semiconductor manufacturing. The corresponding datasets SECOM 1 [ 16] and 
ST-AWFD 2 [ 17] have been published previously and are in the public domain. 

3.1 General Settings 

For both case studies, we first divided the data (. X) variable-wise into two subsets (. X1

and.X2) corresponding to different process steps and assigned these to two (hypothet-
ical) data holders. Subsequently, each subset was further split into a training, a valida-
tion, anda test set, i.e..X1 = {X train

1 , Xval
1 , X test

1 }and.X2 = {X train
2 , Xval

2 , X test
2 }.The  

partitionwasdoneinawaythat thetrainingsetonlycontainedNOCbatchesandtheval-
idationandtestsetsconsistedofbothNOCandfaultybatches.Thetrainingsetwasused 
for training the model. The validation set was used to set control limits for Hotelling’s 
.T 2 and.Q-statistic. By means of a grid search, we selected the lowest thresholds with 
the highest F1 score on the validation set as the control limits. The test set was utilized 
to evaluate the model performance. Four models were built to simulate three common 
real-world situations: 

– Situation 1: One company has access to all data.X and can use that data to build a 
fault detection model based on PCA (MPCA). 

– Situation 2: Each company only has access to its data and can use that data to build 
a local fault detection model to detect faults that occurred in their production line. 
In this case, Company 1 owns the PCA1 (MPCA1), and Company 2 owns the PCA2 
(MPCA2) model. If a fault is detected by one of the models, it is considered to be 
detected. 

– Situation 3: Each company only has access to its data; however, the two companies 
cooperate to build a federated fault detection model based on FedPCA (FedMPCA). 

Table 1 shows the training and test set used for each model. The number of principal 
componentswaschosensuchthatthecumulativesumofexplainedvariancewas.. ≥90%. 

We evaluated the models in terms of the effectiveness to detect faulty batches and 
also fault diagnosis on the test set. A batch was considered faulty when either the.T 2 or 
the.Q-statistic exceeded the predefined control limits. The effectiveness was evaluated 
by the F1 score, and the fault diagnosis was assessed based on Hotelling’s.T 2- and.Q-
contribution plots.

1 https://archive.ics.uci.edu/ml/datasets/SECOM. 
2 https://github.com/STMicroelectronics/ST-AWFD. 

https://archive.ics.uci.edu/ml/datasets/SECOM
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Table 1 Training set and test set for each model 

Model Training data Validation data Test data 

PCA1 (MPCA1) .X train  
1 .Xval 

1 . X test  
1 

PCA2 (MPCA2) .X train  
2 .Xval 

2 . X test  
2 

PCA (MPCA) .{X train  
1 , X train  

2 } .{Xval 
1 , Xval 

2 } . {X test  
1 , X test  

2 } 
FedPCA (FedMPCA) .X train  

1 ,.X train  
2 .Xval 

1 ,.Xval 
2 .X test  

1 ,. X test  
2 

Table 2 List of variables that belong to each data holder 

Dataset No. Variables Variable name 

.X1 21 .S15,.S27,.S33,.S36,.S48,.S60,.S62, 
.S64,.S118,.S122,.S124,.S125, 
.S131,.S134,.S145,.S153,.S184, 
.S201,.S206,.S288,. S342 

.X2 17 .S421,.S426,.S427,.S430,.S435, 
.S454,.S461,.S470,.S478,.S492, 
.S511,.S520,.S525,.S560,.S569, 
.S572,. S574 

Table 3 Summary of training and test set 

Dataset No. NOC samples No. faulty samples No. features 

.X train  
1 488 0 21 

.X test  
1 74 48 21 

.X train  
2 488 0 17 

.X test  
2 74 48 17 

3.2 Case Study 1: SECOM Dataset 

Data description. SECOM is a static dataset consisting of 1567 observations, each 
with 590 variables (.S1 to.S590) and one label for the quality test (–1 means the observa-
tion isnormal,and1indicates theobservationis faulty).Aswithanyreal-worlddataset, 
SECOMcontainsmissingvaluesandirrelevantvariables.Asthefocusofthiscasestudy 
is fault detection and diagnosis, we considered the 38 variables recommended by [ 15] 
and dropped all instances that contain missing values. According to [ 15], the selected 
variables can be divided into five workstations based on the property of the semicon-
ductor manufacturing monitoring process. In this experiment, we assumed that.X1 and 
.X2 include all parameters of the first three and the last two workstations, respectively. 
Tables 2 and 3 show a summary of each dataset. 

In this experiment, the optional validation set was not used and the control limits for 
.T 2 and.Q-statistic set according to Eqs. 6 and 7, respectively. 
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Table 4 Model performance on SECOM data 

Model TP TN FP FN F1 score 

PCA 19 55 19 29 0.44 

FedPCA 19 55 19 29 0.44 

PCA1 + PCA2 14 53 21 34 0.33 

Evaluation. The performance of all evaluated models is shown in Table 4. PCA and 
FedPCA show the same performance. This is expected because, in [ 11], the authors 
provethatFedSVDisalosslessmethodthatproducesthesameresultsasstandardSVD. 
Notably, FedPCA outperforms PCA1, PCA2, and their combination by achieving a 
higher F1 score which underpins the benefit of integrated versus local process models. 

To evaluate the capability of our approach to diagnose faults, we used the 
trainedmodelstogeneratecontributionplotsforHotelling’s.T 2 and.Q-statistic.Figures 
4,5,and6showcontributionplotsofsomeselectedfaults. Ineachof thesefigures, there 
are two plots. The upper plot shows the contribution of each input variable calculated 
by PCA1 and PCA2 (i.e. the local models). The lower one shows the variable contri-
butions calculated by FedPCA. In the middle of each plot, there is a vertical dashed 
line representing the (hypothetical) company border. Note that each company can only 
reconstruct the contributions corresponding to the variables that they own using their 
private data (. xi ), private loadings matrix (.V i ), and the shared matrix. ∑. 

Figures 4 and 5 show two examples of faulty products that were detected by both 
FedPCA and the combination PCA1 + PCA2. In Fig. 4, it can be seen that for Sam-
ple 1, the two plots are quite similar and variables of Company 1 show a much higher 
contribution to the fault than those of Company 2 indicating that the fault is caused pre-
dominantly by the latter. Variables #3 and #4 are reasonable candidates for further root 
cause analysis. In contrast, in Fig. 5 FedPCA and the local models disagree in terms of 
the variables that contribute to the fault. Whereas the local models suggest a significant 
contribution from both parties (with variables from company 2 in fact showing higher 
overall contributions), the FedPCA model indicates that the fault is mostly associated 
with company 1. While Variable #14 shows the highest impact according to PCA1 and 
FedPCA, the most contributed variable according to PCA2 is Variable #32. 

Figure 6 demonstrates an example where FedPCA detected a faulty sample that 
passed both PCA1 and PCA2. Even though the.Q-statistic calculated by PCA1 is high, 
it doesn’t surpass the control limit. For PCA2, it is clear that the.Q-statistic is small. 
This example represents cases where the problem is caused by not only the process 
parameters of one data holder but by a combination/interaction of process parameters 
across the (hypothetical) company border. An advantage of FedPCA, in this case, is 
that it can make use of all available data to increase performance, and at the same time, 
the root cause (sensitive information) is known by the corresponding data holder only, 
and hidden to the other parties. While the second company can reliably claim the prob-
lem did not come from their process production and request the first company to do a 
checkup. It won’t know the exact contribution of input variables of the first company. 
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Fig. 4 .Q contribution plots generated for sample 1 

On the other hand, the first company can use the contribution plots together with their 
know-howtooptimizetheirmachinesettingstoreduceout-of-specificationeventslater 
in the value chain. 

3.3 Case study 2: ST-AWFD Dataset 

Datadescription.ST-AWFDisabatchdatasetthatcontainsatotalof1156batcheswith 
20 variables and an average of 100 samples per batch. Each batch is labeled as normal 
or faulty through a temporal reference window. The production process is divided into 
twostepscalledStep1andStep2.Dependingonthebatch, thelengthofeachstepmight 
differ. 

In order to apply batch-wise MPCA and FedMPCA, all the batches must have the 
same length. Therefore, in this experiment, we have only selected batches with lengths 
of 110 consisting of 65 observations for Step 1 and 45 observations for Step 2. After 
the data cleaning phase, there are 966 batches left which include 648 NOC batches and 
318 faulty batches. A summary of the data partition is shown in Table 5. 
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Fig. 5 .Q contribution plots generated for sample 2 

Table 5 A summary of training, validation, and test set used in the experiment 

Dataset No. NOC samples No. faulty 
samples 

No. features No. time intervals 

.X train  
1 482 0 20 65 

.Xval 
1 83 159 20 65 

.X test  
1 83 159 20 65 

.X train  
2 482 0 20 45 

.Xval 
2 83 159 20 45 

.X test  
2 83 159 20 45 

The control limit for the .T 2 statistic was calculated by Eq. 6. For  the .Q-statistic, 
initially, Eq. 7 was used for determining the confidence limit. However, we found that 
the returned threshold was too conservative and led to a high number of false positives 
for all models. Therefore, the control limit for the.Q-statistic was obtained by cross-
validation using the training and validation set (described in 3.1) instead. 
Evaluation The performance of all evaluated models is shown in Table 6. Similar to 
case study 1, MPCA and FedMPCA returned the same performance and outperformed 
the combination of MPCA1 and MPCA2. In this experiment, the contribution plots 
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Fig. 6 .Q contribution plots generated for sample 3 

Table 6 Model performance on ST-AWFD data 

Model TP TN FP FN F1 score 

MPCA 159 83 0 0 1 

FedMPCA 159 83 0 0 1 

MPCA1 + 
MPCA2 

159 74 9 0 0.97 

were also generated for faulty batches. However, because the number of variables is 
large, it is difficult to judge the difference between the plots without further process 
knowledge (results not shown). 

Altogether, our results on the two case studies underpin the benefits of federated, 
PCA-based process modeling in terms of better fault detection performance and more 
informative fault diagnosis that takes into account the interactions between process 
parameters across (hypothetical) company borders. 
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4 Conclusion 

In the present work, we proposed a framework for enabling privacy-preserving, fed-
erated multivariate statistical process control (FedMSPC) of process chains involv-
ing multiple consecutive process steps operated by different companies. In particular, 
we have employed federated PCA following secure aggregation (vertical concatena-
tion)ofbatch-wiseunfolded(andencrypted)datasetsfromtheparticipatingpartiesand 
demonstrated the application of such models for federated fault detection and privacy-
preserving fault diagnosis. To the best of our knowledge, this is the first study that pro-
posesasolutiontothisproblem.Importantly,ourapproachprovidesnewincentivesfor, 
and underpins the benefits of, closer collaboration of stakeholders along value chains. 
In order to exploit the full potential of federated MSPC, future work will be devoted 
to the development of approaches to (i) cope with unequal batch lengths, (ii) derive 
federated MSPC models with dependent variables, and (iii) enable process control. 
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LPV Modeling for Control Scheme 
Design of a Compound Helicopter 

Bowen Nie, Zhiyin Huang, Long He, Liangquan Wang, and Olivier Sename 

Abstract The compound helicopter is able to reach speeds that significantly surpass 
the conventional counterpart. However, the compounding of lift and thrust always 
results in more complicated aerodynamic and control issues than a conventional 
helicopter. Therefore, it is important to model and evaluate the flight dynamics in 
the early design phase of a compound configuration. The aim of this paper is to 
develop a Linear-Parameter-Varying (LPV) model of a compound helicopter and 
investigate the trim, stability and control characteristics. A series of discrete linear 
state-space models and trim data are obtained from the nonlinear mathematic model, 
and then interpolated for construction of a LPV model with respect to two scheduling 
parameters. Lastly, the LPV model is augmented with control scheme to perform 
flight simulation covering the speed envelope. 

Keywords Compound helicopter · LPV modeling · Control scheme · Flight 
simulation 

1 Introduction 

The maximum flight speed of conventional helicopter is restricted by adverse aero-
dynamic effects of stall on the retreating blades and compressibility on the advancing 
blades of the main rotor [1]. Compounding is a promising solution to increase
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the maximum flight speed of the helicopter. In recent years, helicopter manufac-
tures, such as Sikorsky and Airbus Helicopters (AH), are exploring and testing the 
compounding prototypes for future civil and military applications [2]. 

In practice, both lift and thrust compounding are required to increase the maximum 
speed of the helicopter. Take the AH X3 as example, the lift compounding is real-
ized with wings to offload the main rotor at high speed, the thrust compounding is 
equipped with propellers to replace the tail-rotor at low speed and provide propul-
sive force at high speed. Consequently, the compound helicopter encounters inherent 
design and modeling challenges, in terms of complicated rotor dynamics, aerody-
namic interactions, and redundant controls. To improve the design of compounding 
configuration at the initial design phase, it is essential to assess the stability, controlla-
bility and performance with a full flight-envelope high-fidelity flight dynamic model. 
Recent studies have performed various approaches to model the flight dynamics 
of compound helicopter. The practical modeling techniques are composed of low-
fidelity models [3, 4] with limited components or neglected mechanics, comprehen-
sive models [5] with multidisciplinary high-fidelity tool chain, and linearized models 
around the trimmed condition of steady flight [6]. However, the models mentioned 
in the foregoing sentence are either low-fidelity or sophisticated. 

The approach of LPV modeling is adequate to trade off the fidelity and complexity 
of mathematical model for compound helicopter. In this technique, a set of linear 
state-space models are obtained by trimming and linearizing the nonlinear high-
fidelity model at discrete flight conditions, and then meshed together to from a 
continuous and time-varying mathematical model covering the entire flight enve-
lope. Application of the LPV framework to fixed wing aircrafts [7, 8], helicopters 
[9, 10] and tiltrotor aircrafts [11] can be found in literature. However, a rear number 
of studies have been carried out for compound helicopters. The aim of this paper is 
to develop a LPV model for compound helicopter representative of AH X3 with two 
varying parameters: velocity V and rotor speed Ω. The resulting LPV model can be 
utilized not only for the purpose of full-envelope simulation but also for the Stability 
and Control Augmentation System (SCAS) design. 

The paper is organized as follow. First, a brief theoretical background of LPV and 
quasi-Linear-Parameter-Varying (qLPV) is introduced. Second, a nonlinear math-
ematical dynamic model of the studied compound helicopter is presented. Next, a 
LPV model is constructed by scheduling the state-space models and corresponding 
trim values for a set of grid points. Lastly, a SCAS is designed and applied to the g 
LPV model for closed-loop simulation covering the speed envelope. 

2 Theoretical Background 

LPV systems are linear state-space models that depend on a time varying parameter 
vector ρ(t). Namely, a collection of linear state-space models and the corresponding 
trim data, obtained at a set of discrete equilibrium points, can be combined into 
lookup tables and interpolated as function of the scheduling parameters [12]. As a
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result, a LPV system is defined as following: 

Ẋ (t) = A(ρ(t))(X (t) − X0(ρ(t))) + B(ρ(t))(U (t) − U0(ρ(t))) (1) 

Y (t) = C(ρ(t))(X (t) − X0(ρ(t))) + D(ρ(t))(U (t) − U0(ρ(t))) (2) 

where X , U and Y are the state, input and output vectors, X0, U0 and Y0 are the 
operating point state, input and output vectors, respectively. 

A qLPV system is a particular case of LPV system, when a subset of scheduling 
parameter is also state of system. Namely, the state vector X = [Z , W ]T is composed 
of scheduling states Z ⊂ ρ(t) and non-scheduling states W /⊂ ρ(t). Consequently, 
the LPV system of Eq. (1) can be rewritten as:

[
Ż 

Ẇ

]
=

[
A11(ρ) A12(ρ) 
A21(ρ) A22(ρ)

][
Z − Z0(ρ) 
W − W0(ρ)

]
+

[
B1(ρ) 
B2(ρ)

]
[U − U0(ρ)] (3) 

Since Z is used in the scheduling parameter function ρ(t) and also state of the 
system, Z − Z0(ρ) = 0 is always true. Therefore, Eq. (3) can be simplified as 
following:

[
Ż 

Ẇ

]
=

[
A11(ρ) A12(ρ) 
A21(ρ) A22(ρ)

][
0 

W − W0(ρ)

]
+

[
B1(ρ) 
B2(ρ)

]
[U − U0(ρ)] (4) 

However, the contributions of scheduling states to Ż can be reserved implicitly 
through the variation of trim states and inputs as described in reference [13]. 

3 Compound Helicopter Mechanics 

3.1 Hybrid Compounding Configuration 

The studied helicopter employs hybrid compounding with both lift and thrust. Lift is 
generated by the main rotor and a jointed box wing, and thrust is provided simulta-
neously by the main rotor and a pair of lateral propellers mounted on the wing tips. 
Since auxiliary lift and thrust can be obtained at high speed, the hybrid compounding 
configuration is expected to reach a potential flight speed of V = 68 m/s. 

Regarding the control surfaces of the studied compound helicopter, a mean collec-
tive pitch Pa of the propellers is responsible for the thrust, while a differential collec-
tive pitch Pd of the propellers is required to counteracts the anti-torque of the main 
rotor and addresses the yaw damping. In addition, an H-stabilizer helps to provide 
the horizontal, vertical static stability and rudder δr . Besides, there are three control
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surfaces of the main rotor including the collective θ0, , longitudinal cyclic pitch (B1) 
and lateral cyclic pitch (A1). 

3.2 Nonlinear Dynamic Equations 

To develop the nonlinear flight dynamic model, a summarization of the forces F B 

and moments M B with respect to the center of gravity in the body frame is required.

(
mI3 0 
0 J

)⎛ 

⎝ 
⇀̇
v B 

⇀̇
ω B 

⎞ 

⎠ + 

⎛ 

⎝ ⇀
ω B × m

⇀
v B

⇀
ω B × J

⇀
ω B 

⎞ 

⎠ =
(
F B 

M B

)
(5) 

where m is the mass, J is the inertia tensor,
⇀
v B = [u, v, w]T and ⇀

ω B = [p, q, r ]T 
are the translational and angular speed in the body-fixed frame, respectively. 

As the compound helicopter is composed of several subsystems, the forces and 
moments can be decomposed as following:

{
FB = Fg + Fr + Fp + Ff + Fw + Fs + Ft 

MB = Mr+Mp + M f + Mw + Ms + Mt 

(6) 

In Eq. (6), the subscripts of g, r , p, f , w, s and t denote the gravity, rotor, propeller, 
fuselage, wing, stabilizer and vertical tail, respectively. 

To account for the nonlinear aerodynamics and rotor periodicity, an ‘individual 
blade model’ is developed for the main rotor and propellers using the approach 
described in reference [14]. Aerodynamic loads of the fuselage, wing and fins are 
obtained by a series of lookup tables and interpolations with the experimental data. 
Furthermore, dynamic inflow model and a rotor-speed governor model are also inte-
grated to the nonlinear compound helicopter dynamics as described in reference 
[15, 16]. 

From a control point of view, the entire compound helicopter dynamics take the 
nonlinear form as: 

⇀̇
x = f

(
⇀
x ,

⇀
u
)

(7) 

where
⇀
x = [Δu,Δv,Δw,Δp,Δq,Δr,Δφ,Δθ,Δψ]T is the perturbation state 

vector composed of six rigid body speeds and three Euler angles (φ, θ, ψ),
⇀
u = 

[ΔA1,ΔB1,ΔPd ,Δθ0,ΔPa,Δδr ] is the perturbation control vector.
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4 LPV Modelling Step 

4.1 State-Space Point Models for the Compound Helicopter 

In this paper, a LPV model is developed for a compound helicopter using two 
scheduling parameters: velocity V and rotor speed Ω. Velocity is selected as a 
scheduling parameter to capture the changing dynamics, such that the entire speed 
envelope can be covered. Rotor speed is chosen as an additional scheduling param-
eter to account for the dynamics induced by the rotor speed, which should be slow 
down to offload the main rotor as shown in Fig. 1. 

The final choice of the scheduling parameters is given in Table 1. According to 
the two-dimensional scheduling network, there are 16 grid points. A collection of 
linear state-space models and the corresponding trim data is then generated for all 
the grid points. The resulting state-space models take the form of:

∑
i 

= 

⎧⎨ 

⎩ 

⇀̇
x = Ai

⇀
x +Bi

⇀
u

⇀
y = Ci

⇀
x +Di

⇀
u 

i = 1, 2, . . .  16 (8) 

Fig. 1 Variation of rotor speed for the compound helicopter 

Table 1 Scheduling 
parameters Parameter Values Unit 

Velocity V [−10, 0, 15, 20, 40, 50, 60, 68] m/s 

Rotor speed Ω [900, 1000] rpm
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where
⇀
x and

⇀
u are the same state and input vectors as Eq. (7), and

⇀
y = ⇀

x is the 
output vector for sensor feedback. 

4.2 LPV Model Structure for the Compound Helicopter 

A block diagram schematic of the LPV model is shown in Fig. 2. Note that the afore-
mentioned state-space point models are scheduled with ρ = [V ,Ω], and then model 
meshing is implemented through lookup tables and interpolations. First, the lookup 
tables of trim control inputs, trim states and stability & control derivatives are gener-
ated as function of the scheduling parameters. Then, the interpolated trim control and 
trim states are subtracted from the current values to obtain the perturbations. Lastly, 
the control and state perturbations are multiplied with the interpolated control and 
stability matrices to calculate the state accelerations, which will be further integrated 
to obtain the current states. 

Figure 3 presents an example for comparison of the trim values between the LPV 
model and the linear point models in terms of the pitch angle θ , rotor collective θ0 
and differential propeller collective Pd , which are captured off the grid nodes listed in 
Table 1. It is noted that the gain-scheduling LPV trim values show a good match with 
the linear point models across the flight speed envelope. As the flight speed increases, 
the wing offloads the main rotor and the vertical tail offloads the antitorque gradually. 
It is reasonable that the required trim values of θ , θ0 and Pd decrease at high flight 
speed. This validates the LPV model, which captures the nonlinear characteristics 
of the compound helicopter.

Moreover, the modal characteristics of LPV model are calculated over the fight 
speed range −10 to 68 m/s at increments of 1 m/s, and compared with that of the 
linear point models off the grid points. It is observed that modal characteristics of 
the two models agree well with each other. This validates the LPV model, which 
captures the modal characteristics of the compound helicopter.

Fig. 2 LPV model structure for the compound helicopter 
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Fig. 3 Trim results of the nonlinear and LPV model

Figure 4a shows the longitudinal modes of the compound helicopter, including 
the phugoid, short period, pitch subsidence and heave subsidence. As can be seen, 
the pitch and heave subsidence modes combine to form short period mode as the 
flight speed increases. To be mentioned is that the phugoid mode is unstable at low 
speed while the damping of short period mode decreases at high flight speed. The 
lateral and directional modes are demonstrated in Fig. 4b. Similar to a conventional 
helicopter, the dutch roll mode is unstable at hover. As the speed increases, the dutch 
roll mode becomes stable. However, the damping of dutch roll mode decreases at 
high speed.

To conclude, it can be inferred that a SCAS is required to stabilize and control 
the compound helicopter over the speed envelope. 

5 Simulation of LPV Model 

5.1 Stability and Control Augmentation Scheme 

To improve the stability and performance of the compound helicopter, a SCAS is 
designed based on the linear point models and then applied to augment the LPV 
model. The proposed SCAS scheme is presented in Fig. 5, which is composed of the 
longitudinal and lateral & directional channels.
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(a) Longitudinal modal characteristics of the compound helicopter. 

(b) Lateral and directional modal characteristics of the compound heli-

copter. 

Fig. 4 Modal characteristics of the compound helicopter
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Fig. 5 Stability and control scheme for the compound helicopter 

As demonstrated in Fig. 5a, the pitch rate feedback is introduced to improve the 
pitch damping, while the feedback loops of pitch angle, forward speed and heave 
speed are employed to track the references, respectively. Since the forward speed 
can be driven through the mean collective of the propellers, the forward speed is 
decoupled with the pitch attitude, and the trim values of pitch angel are selected as 
the reference. Furthermore, the feedback gains and θtr im are scheduled to the flight 
speed. 

The lateral & directional control scheme is shown in Fig. 5b. The roll rate, roll 
angle and lateral speed are cascaded to track the reference of lateral speed, while the 
yaw damping and yaw angle tracking loops are allocated to the differential propeller 
collective and the rudder, simultaneously. Actually, the commands of Pd and δr are 
scaled with two nondimensional factors, which are scheduled with the flight speed 
in the section of 0–1.



58 B. Nie et al.

5.2 Closed-Loop Flight Simulation 

The SCAS along with the LPV model are implemented for closed-loop simulation of 
the compound helicopter. A flight scenario covering the speed envelope is performed 
to validate the designed LPV model and control scheme. The scenario involves 
vertical take-off, hover, acceleration, high-speed cruise and deceleration as shown in 
Fig. 6.

The longitudinal time history is presented in Fig. 6a. One can see that the forward 
and heave speeds track the references well, and the forward speed covers the range 
from 0 to 68 m/s. Following the variation of forward speed, the reference value of 
pitch angle is automatically scheduled. Though notable tracking error is observed for 
pitch angle, the pitch angle is kept in the acceptable range of about 3°–6°. Moreover, 
clip steps are found in the curve of the mean propeller collective at the time of about 
50, 100, 120 and 170 s. This is caused by the variation of forward speed reference 
for accelerating or decelerating. 

The lateral and directional time history is presented in Fig. 6b. Obviously, the roll 
and yaw attitudes are well damped and always kept around zero, though acceptable 
tracking errors are induced by the nonlinearity and coupling. To verify the feasibility 
of directional surface allocation, the mean and differential collective of the propellers 
are transformed to the collective of the left PL and right PR propeller. As is shown, 
both PL and PR locate in the available section of −15° to +40°. 

In summary, the time history revels that the LPV model is adequate to capture the 
dynamics of the compound helicopter and the designed SCAS is effective to stabilize 
and control the compound helicopter throughout the speed envelope. 

6 Conclusion 

This paper presented the development of LPV model for a compound helicopter to 
trade off the fidelity and complexity. The state-space models and the corresponding 
trim values are scheduled with respect to the varying parameters of velocity and rotor 
speed. The implemented LPV model agrees well with the nonlinear dynamic model 
in terms of trim value and modal characteristics both on and off the scheduling grid 
points. 

A SCAS is designed and applied to the LPV model for closed-loop flight simu-
lation. A scenario involving vertical take-off, hover, acceleration, cruise and decel-
eration is performed to validate the dynamics and control scheme. The time history 
of flight simulation across the flight speed envelope revels that the LPV model is 
adequate to capture the nonlinear dynamic characteristics of the compound heli-
copter, and the designed SCSA is effective to stabilize and control the compound 
helicopter. 

In the future, research focus will be placed on implementing the LPV model and 
SCAS in experimental setup for further validation and improvement.
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Fig. 6 Time history of the flight simulation over the speed envelope
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Piecewise Modeling Algorithms Using 
Numerical Data 

Tadanari Taniguchi and Michio Sugeno 

Abstract In this study, a novel piecewise modeling method was devised using 
numerical data. The piecewise model was represented as a rectangular region divided 
into a state-space. The vertex values of the rectangular region were determined using 
the learning algorithm based on a simplified fuzzy inference model because the piece-
wise model was represented by a fuzzy if-then rule with singleton consequents. The 
proposed algorithm can be used to determine optimal vertex values and positions of 
segmented regions and with minimum modeling errors. Three examples were con-
sidered to demonstrate the effectiveness of the proposed method using numerical 
simulations. 

Keywords Piecewise nonlinear model · Fuzzy if-then rule · Modeling algorithm 

1 Introduction 

In the 1950s, Zadeh proposed system identification [12, 13]. Subsequently, prediction 
error, and subspace identification methods were proposed in 1960s. The maximum 
likelihood estimation method was used for realizing auto regressive moving aver-
age with exogenous (ARMAX) model, which is the basis for the prediction error 
method [ 7]. Until 1980s, Ljung summarized prediction error methods [ 5]. Realiza-
tion theorems of the state-space model, which is the basis of the subspace method, 
was proposed by Ho and Kalman [ 2]. 

Nonlinear system identification methods [ 8] have been widely studied. Many 
system identification methods based on machine learning and data science have 
been studied as data-driven control system design methods [ 8]. Piecewise affine 
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autoregressive exogenous (PWARX) models [ 1, 6] for hybrid systems have been 
proposed as system identification methods. 

In this study, a piecewise multilinear (PML) model [ 9] was used as a control sys-
tem model. The PML system, which is a piecewise nonlinear system, has general 
approximation capability for nonlinear systems and is fully parametric. PML models 
are constructed using hypercubes partitioned in the state space and is the second sim-
plest after the piecewise linear model. The adjacent piecewise regions are continuous 
in PML systems. We derived stabilizing conditions based on feedback linearization 
for continuous-time and discrete-time systems [ 10, 11], respectively. 

This study entailed the development of a piecewise modeling algorithm using 
numerical data. The vertex values of the rectangular region can be determined using 
the learning algorithm based on a simplified fuzzy inference model because the piece-
wise model is represented by a fuzzy if-then rule with singleton consequents. The 
proposed algorithm can be used to determine optimal vertex values and positions of 
segmented regions with minimum modeling errors. Determining the vertex values of 
rectangular regions and the position of the region segmentations is a nonlinear pro-
gramming problem. Therefore, it is very difficult to obtain global minimum solution. 
Because in this method, a piecewise model is used, a model with fewer modeling 
errors can be constructed by increasing the number of piecewise regions. Finally, 
three numerical simulations were performed to demonstrate the effectiveness of the 
proposed method. 

2 Canonical Form of the PML Model 

2.1 State-Space Expression 

An .n-dimensional PML system was considered. The state space in .n-dimensional 
case is categorized into 

.

x1 ∈ {d1(1), . . . , d1(r1), d1(r1 + 1), . . . , d1(m1)},
x2 ∈ {d2(1), . . . , d2(r2), d2(r2 + 1), . . . , d2(m2)},
...

xn ∈ {dn(1), . . . , dn(rn), dn(rn + 1), . . . , dn(mn)},

(1) 

where.d j (i j ) is the vertex of. x j , and.m j is the number of vertices of. x j ,. j = 1, . . . , n. 
.x ∈ S, where . S is the bounded region by (1). 

The number of piecewise regions is.
∏n

i=1(mi − 1). The PML model in the region 

. Rr1...rn = [d1(r1), d1(r1 + 1)] × · · · × [dn(rn), dn(rn + 1)]

is constructed as follows:
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.x+ =
r1+1∑

i1=r1

· · ·
rn+1∑

in=rn

ωi1
1 (x1) · · · ωin

n (xn) f (i1, . . . , in), (2) 

x = 
r1+1∑

i1=r1 

· · ·  
rn+1∑

in=rn 

ωi1 
1 (x1) · · ·  ωin 

n (xn)d(i1, . . . ,  in), 

where .x+ = (
x+
1 , . . . , x

+
n

)T
, .x = (

x1, . . . , xn
)T
, 

. f (r1, . . . , rn) = (
f1(r1, . . . , rn), . . . , fn(r1, . . . , rn)

)T
,

d(r1, . . . , rn) = (
d1(r1), . . . , dn(rn)

)T
.

The triangular membership functions are as follows: 

. ωr1
1 (x1) =

⎧
⎨

⎩

d1(r1 + 1) − x1
d1(r1 + 1) − d1(r1)

d1(r1) ≤ x1 ≤ d1(r1 + 1),

0 otherwise,

ωr1+1
1 (x1) =

⎧
⎨

⎩

x1 − d1(r1)

d1(r1 + 1) − d1(r1)
, d1(r1) ≤ x1 ≤ d1(r1 + 1),

0 otherwise,

...

ωrn
n (xn) =

⎧
⎨

⎩

dn(rn + 1) − xn
dn(rn + 1) − dn(rn)

, dn(rn) ≤ xn ≤ dn(rn + 1),

0 otherwise,

ωrn+1
n (xn) =

⎧
⎨

⎩

xn − dn(rn)

dn(rn + 1) − dn(rn)
, dn(rn) ≤ xn ≤ dn(rn + 1),

0 otherwise.

If PML system (2) has continuous-time dynamics, .x+ is considered as . ẋ ; if it has  
discrete-time dynamics, .x+ is considered to be .x(t + 1). 

2.2 If-Then Rule Expression 

The PML model (2) in  .Rr1...rn can be transformed into an if-then rule expression 
based on a fuzzy reasoning.
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.

Rule 1: If x1 is A
r1
1 and · · · and xn is A

rn
n

then x+ is f (r1, . . . , rn)

...

Rule 2n : If x1 is Ar1+1
1 and · · · and xn is A

rn+1
n

then x+is f (r1 + 1, . . . , rn + 1)

(3) 

where .A
r j
j is the fuzzy set, and the membership function is .ω

r j
j (x j ), . j = 1, . . . , n. 

The degree of the rules is represented as follows: 

. μk(x) =
n∏

j=1

ω
i j
j (x j ) = ωi1

1 (x1) · ωi2
2 (x2) · · · · · ωin

n (xn),

where.i1 = r1, r1 + 1,.i2 = r2, r2 + 1, . . . , in = rn, rn + 1,.k = ∑n
j=1 2

j−1 (
i j − r j + 1

)
. 

Region .Rr1...rn has .2
n if-then rules. The PML model has .

∏n
i=1(mi − 1) regions, 

the entire system has .2n
∏n

i=1(mi − 1) rules. 
The fuzzy inference system.x+ is obtained as follows: 

. x+ =
2n∑

k=1

μk(x) f
k =

r1+1∑

i1=r1

· · ·
rn+1∑

in=rn

ωi1
1 (x1) · · · ωin

n (xn) f (i1, . . . , in),

k =
n∑

i=1

2i−1
(
i j − r j + 1

)
, (4) 

where . f k = f (i1, . . . , in). Therefore, the fuzzy inference system (4) is the same as 
that of the PML system (2). 

3 Piecewise Modeling Algorithms 

This section details the optimal modeling of the PML system (2). Three variables 
should be determined for the modeling method: 

(1) vertex values . f (i1, . . . , in)s of the PML model (2) 
(2) the number of piecewise regions: . 

∏n
i=1(mi − 1)

(3) the divided positions .d j (i j ) in the state-space variable . x j , 

where . j = 1, . . . , n. Because a piecewise model is considered herein, a model with 
fewer modeling errors can be constructed by increasing the number of piecewise 
regions. Therefore, two variables namely . f (i1, . . . , in) were optimized, and the 
positions .d j (i j ) were divided by fixing the number of piecewise regions. However, 
deriving optimal solutions is difficult because the optimization of two variables is a 
nonlinear programming problem.
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3.1 Algorithm for Finding the Optimal Vertex Values 
. f (i1, . . . , in)

We address the optimal solution of . f (i1, . . . , in) by fixing the number of piecewise 
regions and divided positions. Using the PML model (2) with nonlinearities is diffi-
cult. Therefore, the if-then rule expression (3), which is equivalent to the PML model 
(2), is used to optimize . f (i1, . . . , in). 

. f (i1, . . . , in) can be determined using learning algorithm [ 4] based on a simplified 
fuzzy inference model, because the piecewise model is represented by a fuzzy if-
then rule with singleton consequents. Algorithm 1 reveals the optimal values . f k =
f (i1, . . . , in) based on the gradient descent method. 

Algorithm 1 Optimization of values f ks 
Step 1 Generate training data (x∗(t), x+∗ (t)), t = 1, . . . ,  N . 
Step 2 Set the  initial data  f k , training rate  τ , and number of iterations i = 1 to  M 
Step 3 Apply the training data x∗(t) to the system 

x+(t) = 
2n∑

k=1 

μk (x∗(t)) f k (5) 

Step 4 Calculate the error δ(t) between x+(t) and x+∗ (t) 

δ(t) =x+(t) − x+∗ (t). 

Step 5 Solve f k from the equations 

f k (t + 1) = f k (t) + τμk (x∗(t))δ(t) 

using the gradient descent method. 
Step 6 Set t ← +1. If t ≤ N , return to Step 3.  
Step 7 Set i ← +1. If i ≤ M , return to Step 3. Otherwise, then the algorithm is terminated. 

The system.x+ in (5) is linear with respect to. f k . Therefore, this algorithm realizes 
optimal solutions. f ks using the aforementioned iterative calculations. The following 
equation is used as an evaluation function to measure modeling performance: 

.E = 1

2N

N∑

t=1

(x+(t) − x+
∗ (t))

2, (6) 

where .N denotes the number of training data.
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3.2 Algorithm for Determining the Optimal Solutions 
of Vertex Values and Divided Positions 

A novel algorithm was proposed to determine the optimal solutions of. f (i1, . . . , in), 
and the position .d j (i j ) was divided by fixing the number of piecewise regions. 
This algorithm is based on the spline-function minimization algorithm proposed 
in [ 3], which is a fusion of Algorithm 1. Algorithm 2 determines optimal values 
. f (i1, . . . , in)s and positions of region segmentation with minimum modeling errors. 
Determining the vertex values of rectangular regions and their position of the region 
segmentations is a nonlinear programming problem. Therefore, this algorithm can 
determine a local optimal solution. Because in this method, a piecewise model is used 
a model with fewer modeling errors can be constructed by increasing the number 
of piecewise regions. In this algorithm, . α and . β are the training data intervals. The 
squared errors are represented as follows: 

. E j
i =

∑

x∈S\{x j }
d j (i)≤x j≤d j (i+1)

1

2

(
x+ − x+

∗
)2
, Ē j =

m j−1∑

i=1

Ē j
i ,

Ē j
i =

∑

x∈S\{x j },{x̄ j }

1

2

(
x+ − x+

∗
)2
,

where . S is the bounded region by (1). 

Algorithm 2 Optimization of values f ks and divided positions d j (i j )s 
Step 1 Set the vertices x j ∈ {d j (2),  . . . ,  d j (m j − 1)} in (1). 
Step 2 Set j ← 1. 
Step 3 Set i ← 1. 
Step 4 Calculate the squared errors E j i under optimal solution f k using Algorithm 1 

If E j i > E j i+1, d
'
j (i + 1) = d j (i + 1) − α. 

If E j i < E j i+1, d
'
j (i + 1) = d j (i + 1) + β. 

Calculate the squared error Ē j under optimal solution f k using Algorithm 1 in the following 
case: x̄ j ∈ {d j (1),  . . . ,  d j (i ), d '

j (i + 1), d j (i + 2) . . . ,  d j (m j − 1)}. 
If Ē j <

∑m j−1 
i=1 E j i , then  d j (i + 1) = d '

j (i + 1). 
Step 5 Set i ← +1. If i = m1 − 1 and the vertices d are not updated, proceed to the next step. 

Otherwise, return to Step 4. 
Step 6 Set j ← +1. If j = n and the vertices d are not updated, terminate the algorithm. Other-

wise, return to Step 3.
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4 Simulation Results 

In these simulations, we used MATLAB R2022b, which is one of a numerical sim-
ulation software on a Windows PC with Intel Xeon W-2225. 

4.1 One Dimensional System 

A PML model was constructed from numerical data (.N = 61) using the proposed 
algorithm. Table 1 lists the numerical data obtained using 

.y = sin3 x . (7) 

The learning parameters.τ = 1,.α = 0.1, and.β = 0.1 are used as simulation param-
eters. The upper and lower tables of in Table 2 detail the initial and optimized vertex 
points, respectively. The initial vertex points, designated as . y, were generated by 
substituting the initial values, . x , into (7). 

The dotted points in Fig. 1 represent the data in Table 1. The solid and dashed 
lines indicate PML models using the optimal and initial vertex points in Table 2. The  
computational time was.7.121 × 10−2 s. The modeling error of the PML model with 
the optimized vertex points is 0.0033. However, the error when using the initial vertex 
point is 0.0136. Therefore, the PML model using the proposed algorithm exhibits an 
excellent modeling performance for the training data. 

Table 1 Data of example 1 (.N = 61) 

.x –3 –2.9 –2.8 –2.7 –2.6 .· · · 2.9 3 

.y –0.0028 –0.0137 –0.0376 –0.0781 –0.1370 .· · · 0.0137 0.0028 

Table 2 Initial and optimized vertex values of example 1 

Initial vertex values 

.x –3 –2 –1 0 1 2 3 

.y –0.0028 –0.7518 –0.5958 0 0.5958 0.7518 0.0028 

Optimized vertex values 

.x –3 –2 –1.4 –0.5 0.5 1.5 3 

.y 0.2939 –0.8818 –0.9569 –0.1321 0.1519 0.9982 0.0028
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Fig. 1 Modeling result of example 1 

4.2 Two-Dimensional System 

Next, we consider numerical data (.N = 121 × 121) generated by the following equa-
tion: 

.

(
y1
y2

)

=
(

x2
−x1 + (1 − x21 )x2

)

(8) 

Because .y1 = x2 is a simple linear system, the PML model of .y2 is constructed 
from numerical data using the proposed algorithm. The learning parameters . τ =
1, .α = 0.05, and .β = 0.05 are used as simulation parameters. Tables 3 and 4 list 
the initial and optimized vertex values. The initial vertex values, . y2, are generated 
by substituting initial values, .(x1, x2), into (8). The computational time was . 1.139
second. The modeling error of the PML model with the optimized vertex values is 
0.0672. However, the error when using the initial vertex values is 0.2552. 

.x+ in the PML model (2) is replaced with. ẋ to evaluate the modeling performance 
based on trajectories. In Fig. 2, the solid line indicates the original system (8). The 
dashed and dash-dotted lines are PML models using optimal and initial values of 
Table 2. Therefore, PML model using the proposed algorithm exhibits an excellent 
modeling performance for the training data.
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Table 3 Initial vertex values of example 2 

. x2
.y2 –3 –1.5 0 1.5 3 

.x1 –3 27 15 3 –9 –21 

–1.5 5.25 3.375 1.5 –0.375 –2.25 

0 –3 –1.5 0 1.5 3 

1.5 2.25 0.375 –1.5 –3.375 –5.25 

3 21 9 –3 –15 –27 

Table 4 Optimal vertex values of example 2 

. x2
.y2 –3 –1.5 0 1.5 3 

.x1 –3 25.8536 13.6964 3.2180 –8.1266 –19.4731 

–1.45 3.1118 3.2044 1.1958 0.2065 –0.6858 

0 –4.3844 –2.0840 0 2.2832 4.1775 

1.65 1.9419 –0.1220 –1.4748 –3.5351 –4.8852 

3 20.8179 9.0390 –3.0907 –14.8556 –27 

Fig. 2 Modeling results of example 2
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Fig. 3 MATLAB logo model 

4.3 MATLAB Logo Model 

We considered the numerical data of the MATLAB logo model. This model includes 
.201 × 201 training data and Fig. 3 reveals the three-dimensional graph using train-
ing data. Three PML models were constructed with .11 × 11, .21 × 21, and . 41 × 41
vertices and the calculation times were .41.53, .124.9, and .268.4 seconds, respec-
tively. Figures 3, 4, 5 and 6 show the modeling results. The modeling error decreases 
as the number of divided regions increases. In the cases of .11 × 11, .21 × 21, and 
.41 × 41, the errors are 0.9502, 0.056, and 0.0039, respectively. However, the model-
ing errors for the initial values of.11 × 11,.21 × 21, and.41 × 41 are 3.0711, 0.2045, 
and 0.0147. Therefore, PML models using the proposed algorithm exhibit excellent 
modeling performance for the data.
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Fig. 4 PML model (.11 × 11 vertices) using MATLAB logo data 

Fig. 5 PML model (.21 × 21 vertices) using MATLAB logo data
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Fig. 6 PML model (.41 × 41 vertices) using MATLAB logo data 

5 Conclusion 

This study entailed the development of a piecewise modeling method by numerical 
data. The piecewise model is represented as a rectangular region divided into state-
space. The proposed algorithm finds simultaneously optimized vertex values and 
positions of segmented regions with minimum modeling errors. Three examples 
demonstrated the effectiveness of the proposed method using numerical simulations. 
In the future, we intend to consider noisy numerical data and apply the proposed 
modeling method to a nonlinear control system. 

Acknowledgements This study was supported by KAKENHI Grant Number JP21K12051 of Japan 
Society for the Promotion of Science. 

References 

1. Bemporad A, Garulli A, Paoletti S, Vicino A (2005) A bounded-error approach to piecewise 
affine system identification. IEEE Trans Autom Control 50(10):1567–1580. https://doi.org/10. 
1109/TAC.2005.856667 

2. Ho B, Kalman R (1996) Efficient construction of linear state variable models from input/output 
functions. At—Automatisierungstechnik 14:545–548 (1966). https://doi.org/10.1524/auto. 
1966.14.112.545

https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545
https://doi.org/10.1524/auto.1966.14.112.545


Piecewise Modeling Algorithms Using Numerical Data 73

3. Ichida K, Yoshimoto F (1979) Spline functions and their applications. Kyoiku-shuppan. (in 
Japanese) 

4. Ichihashi H, Watanabe T (1990) Learning control by fuzzy models using a simplified fuzzy 
reasoning. J Jpn Soc Fuzzy Theory Syst 2:429–437 (in Japanese) 

5. Ljung L (1999) System identification: theory for the user. Prentice Hall information and system 
sciences series, Prentice Hall PTR 

6. Nakada H, Takaba K, Katayama T (2005) Identification of piecewise affine systems based 
on statistical clustering technique. Automatica 41(5):905–913. https://doi.org/10.1016/j. 
automatica.2004.12.005 

7. Åström KJ, Torsten B (1965) Numerical identification of linear dynamic systems from 
normal operating records. IFAC Proc Volum 2(2):96–111. https://doi.org/10.1016/S1474-
6670(17)69024-4 

8. Schoukens J, Ljung L (2019) Nonlinear system identification: a user-oriented road map. IEEE 
Control Syst Mag 39(6):28–99. https://doi.org/10.1109/MCS.2019.2938121 

9. Sugeno M, Taniguchi T (2004) On improvement of stability conditions for continuous 
mamdani-like fuzzy systems. IEEE Trans Syst Man Cybern Part B (Cybernetics) 34(1):120– 
131. https://doi.org/10.1109/TSMCB.2003.809226 

10. Taniguchi T, Sugeno M (2010) Stabilization of nonlinear systems with piecewise bilinear 
models derived from fuzzy if-then rules with singletons. In: International conference on fuzzy 
systems, pp 1–6. https://doi.org/10.1109/FUZZY.2010.5584807 

11. Taniguchi T, Sugeno M (2019) Stabilization of discrete-time nonlinear systems using piecewise 
multi-linear control based on input-output feedback linearization. In: 2019 IEEE international 
conference on systems, man and cybernetics (SMC), pp 1582–1587. https://doi.org/10.1109/ 
SMC.2019.8914016 

12. Zadeh L (1956) On the identification problem. IRE Trans Circ Theory 3(4):277–281. https:// 
doi.org/10.1109/TCT.1956.1086328 

13. Zadeh LA (1962) From circuit theory to system theory. Proc IRE 50(5):856–865. https://doi. 
org/10.1109/JRPROC.1962.288302

https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/j.automatica.2004.12.005
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1016/S1474-6670(17)69024-4
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/MCS.2019.2938121
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/TSMCB.2003.809226
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/FUZZY.2010.5584807
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/SMC.2019.8914016
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302
https://doi.org/10.1109/JRPROC.1962.288302


Scaling of a Modular Production System 
(MPS) with Manufacturing Execution 
System (MES) and Multiple Agents 

Paola Jéssica Llumiquinga , Manuel Alberto Armijos , 
William Paul Oñate , and Gustavo Javier Caiza 

Abstract The digital transition currently taking place involves the existence of 
various studies to deliver solutions to digital industrial processes, and a system-
atic review of such studies has made evident a limitation with respect to those 
papers about implementation in the academy and confidential pilot tests developed 
by large industrial companies; all this situation decelerates the joint implementation 
of operation and information technologies (OT and IT) that enable scaling industrial 
automation and control systems (IACS). This paper implemented a manufacturing 
execution system (MES) to a Festo MPS-500 modular production system under the 
cores of the ISA-95 standard as a guide in data collection, production scheduling 
and product traceability; the stages of the production process are executed through 
multiple agents, in response to a mini batches order placed by a user through the 
internet, and the system also watches power consumption in case of no request, gener-
ating administrative and maintenance reports. The average latency metrics from the 
instant in which the user requests a mini-batch until the moment in which the plant 
starts the execution is 1.59% of the duration of the manufacturing process, indicating 
that the MES is not critical during the communication time with the server of the 
M2M (Machine to Machine) database. 
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1 Introduction 

The manufacturing digital transformation requires that industrial automation and 
control systems (IACS) have available the technologies necessary for the adapta-
tion of the manufacturing requirements [1] regarding customized products, smaller 
batches, unexpected events in the supply chain and interruptions; this situation gives 
rise to the optimization of manufacturing processes to achieve efficiency, flexibility, 
interoperability and savings [2]. 

To achieve competitiveness in the industrial manufacturing sector domestically 
and internationally it is necessary to implement smart manufacturing [3, 4], which 
requires cyber-physical systems (CPS) that enable information exchange between 
machines of industrial processes [5] and the company with the user; this makes 
possible to fulfill the request at any time and from any place, executing it in real-time 
from a manufacturing execution system (MES) [6]; however, this interaction requires 
resource management and planning through an enterprise resource planning (ERP) 
system [7]. 

As a consequence of the paradigm and the digital transition currently taking place, 
there are various studies about industrial IoT that have been implemented which, 
according to [8], corresponding to less than 10% of the total number of documents 
reviewed, indicating that most of the studies within this percentage are simulations 
and only 24% have been implemented. This indicates that there is classified infor-
mation in the current literature [9–11], and the one found is limited; this is the case 
of [12], which designed an MES/MOM data model under the ISA-95 standard and 
its implementation in a smart production laboratory; however, the document does 
not show specific information about its development thus giving more emphasis to 
the design, whereby it intends to be a guide for future case studies. Similarly [13], 
shows how to develop a multiagent MES for a modular production system, with the 
use learning (ML) algorithm to analyze the trends in the behavior of the actuators 
and the number of parts produced; although this paper seems to include the imple-
mentation, from the literature it is seen a clear contribution in the design and not 
in the implementation, which represents a research niche for future works. On the 
other hand [14], proposes the use of the Industry 4.0 (I4.0) technology for a fric-
tion stir welding manufacturing process in the assembly of car parts at the level of 
a Computer Numerical Control (CNC) through a cloud-based MES, with real-time 
information exchange between the MES using a database and ERP, where the latter 
is the graphical interface for the user to place batch orders; as in the previous studies, 
it was observed that the document seems to contain coarse scientific dissemination; 
however, its information postulate regarding the practical execution of the system 
was not addressed in this study. 

Based on the above, this paper intends to delve deeper into the case studies that 
have been implemented for MES with multiagent features, and develop an archi-
tecture for the communication between the manufacturing industry and the user, to 
place small batch orders in a modular production plant (MPS).
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This document consists of Sect. 1 Introduction, Sect. 2 Methodology, Sect. 3 
Analysis of Results and finally conclusions in Sect. 4. 

2 Methodology 

To scale an MPS to a system with I4.0 technology, it is necessary to construct a 
design of the communication architecture from the production plant to the user, for 
which it was decided to develop an MES based on the ISA 95 standard, which also 
consists of multiple agents, a database for processing production orders of small 
batches and a system that enables the user to place his/her order. In other words, 
this system is designed under a bidirectional communication architecture model in 
three levels [15]. The processing level is constituted by three stations of the MPS 
(conveyor, distribution and machining), that are responsible for producing two types 
of products; the first is a perforated red cylindrical part and the second is a silver cylin-
drical part without perforation. At this level, bilateral communication is carried out 
through the Message Queue Telemetry Transport (MQTT) protocol [16, 17]. Level 
two communicates with the lower level and with the upper level for controlling orders 
and information processing, respectively; this task is executed in a Raspberry (Node 
Red). Finally, the third level manages batch orders, corporate processes and manu-
facturing, through a platform constituted by a database (Firebase) and an interface 
for the final user, see Fig. 1.

2.1 Architecture System 

As it has been specified in the knowledge of terms, a smart factory requires its func-
tional archival operation to enable the interconnection, decentralization and interop-
erability of the systems, devices, online services and web platforms. For this purpose, 
it is appropriate to implement an MES that enables the execution of the production 
process in case of a request order; thus, it is required an architecture that enables 
the communication between the process, execution and product demand stages, for 
which it is necessary to have OT and IT. 

Production Process. This stage has a modular production system (MPS) that for our 
case study was operated at the distribution, machining and conveyor stations, which 
are controlled by S7-300 S PLCs, as seen in Fig. 2.

Continuing with the manufacturing process in the MPS, the pallet moves forward 
through the conveyor to the machining station where, depending on the type of 
the product, one or two actions will be performed (verification and/or perforation); 
then, the stages that constitute this station are accomplished and thus the production 
process is finalized.
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Fig. 1 MES architecture

As mentioned above, this station has a perforation module that consists of a 
permanent magnet DC motor, whose operating magnetic behavior is monitored in 
real-time. This information is sent to a database to generate an integrated report that 
facilitates maintenance access and planning by the operator. 

On the other hand, the MPS stations described above are controlled using S7-300 
PLCs, and they are in turn activated from the corresponding multiagent (ESP 32) 
through point-to-point communication. 

Execution. A description of the ascending process within the communication archi-
tecture for a smart factory is now continued. This stage starts from the multiagent 
system where each of these devices (clients) executes the control command coming 
from the Raspberry Pi 3b (broker), with an MQTT light communication protocol 
[18] between these devices. For this case study and in this stage, the digital control
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Fig. 2 Modular production system

by batches is in an administrative process that includes data collection, production 
scheduling and product traceability; however, there are other functionalities covered 
under the regulations and standards for a smart and flexible factory [2, 19]. To give 
way to what was mentioned above, a Node Red development tool was used for 
the connection between hardware devices and online services through application 
programming interfaces (API) with a bandwidth of 70 Mbps. 

The block diagram of Fig. 3 shows that a user interacts in a digital environment 
(dashboard) to place a mini-batch order; this visual interface, which was developed 
in Node Red, also enables sending data in real time to a database (Google Fire-
base). Afterward, the MES schedules the production requesting the orders that were 
stored in the database, to execute them through the multiple agents, which are part 
of the production process. The 1880 port enables the Node-Red navigator for the 
communication between the MES and the database; likewise, the 1883 logical port 
is enabled from the raspberry for the communication with the multiple agents, with 
an established static IP address (172.17.140.9), as shown in Fig. 3.

From the process described above, it was developed programming using class 
diagrams, as shown in Fig. 4; starting from a logical sequence of specific actions 
by blocks, the flow initiates with the acquisition of information from the database 
in msg.payload type as simple JavaScript objects, considering attributes such as 
several parts ordered, their color and the date in which the order was placed, which 
will be distinguished using production rules configured from the Switch specialized 
node. In this manner, the numerical part of the msg.payload is extracted and the new 
message is resent through the corresponding outputs of this node to the inputs of 
other consecutive nodes, thus facilitating the recognition of the messages (A, B, D, 
and E) to group them in a vector of a Join node, which will be transmitted to a Q-gate
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Fig. 3 Execution stage

specific node that adds the messages received to a queue, and places them in a list 
where they wait to be activated for the execution in a production chain. 

Fig. 4 Class architecture of the execution stage
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Continuing to the shipping, an example is made of two orders in mini-batch 
placed from the dashboard, clicking on Start to activate the Q-gate node; in this 
manner, the message passes through two functions that determine the position of the 
orders (vector P1 and vector P2), which are worked individually and through a global 
function labeled by topics (Topic H and Topic R). 

These features enable the multiple agents to execute the first order in an organized 
and instantaneous manner through the publication of an MQTT message from the 
broker. For the execution of the parts of the second order it is required the activation of 
a signal from the last production stage to the MES, indicates that the manufacturing 
of the first part has been completed; in this way, using a counter with Topic A and 
a comparator it is known the number of parts of the order that have been already 
shipped. Once the mini-batch has been shipped and finalized, the system is designed 
to zero nodes and execute the orders in the queue, and simultaneously it is placed 
in waiting time for a new batch; otherwise, if there is no order after this time has 
elapsed, the system stops feeding the Conveyor to save energy. 

On the other hand, the MES also monitors the behavior of a traction machine, 
which through the subscription of a multiagent to the broker indicates the magnetic 
field status through MQTT. In addition, the system and using a status function it 
is evaluated the appropriate operating of the variable of interest, indicating the 
machining station status and also acting as a gateway for this information to be 
collected in the database. 

The data generated and processed in the Execution stage Sect. 3.1.2 (mini-batches, 
orders, parts, monitoring of the machine status, date and time) are shown in a down-
loadable online report linked to the Google Sheets platform, thus enabling to visualize 
in real-time the number and color in the mini-batch orders, as well as the date and 
time of the status of an actuator of the machining station when an error has occurred. 

The Demand for Products. While the Process Production and Execution stages are 
operational, it is executed the Demand of Products stage corresponds to the Firebase-
Google database, where it is stored the data generated from the previous stages 
regarding the administrative process, which for this case study are data collection, 
production scheduling and plant status; it can be accessed from any place and at any 
instant [19]. The library Node-Red-Contrib-Firebase and the nodes corresponding 
to this action, firebase modify and firebase auth, respectively, were used to make it 
possible to send and request information, as observed in Fig. 5.

In the market there are available SQL databases (such as MySQL, Oracle and 
Access among the most popular ones) and no SQL databases (such as Redis, 
MongoDB, CouchDB, Cassandra, etc.). A real-time database provided by Firebase 
was used for this case study; due to its features, this platform offers a wide range 
of services for handling massive amounts of data, the synchronization of the infor-
mation with different external applications, and simple design due to its JSON tree 
storage structure, and consequently its construction is not limited to a predetermined 
sheet but it enables that the developer customizes it according to the interests of the 
project.
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Fig. 5 Architecture of the communication between user—Database—MES

Taking into account what was previously mentioned, Fig. 6 presents a structural 
design of the database, which starts with the main collection (MAIN) that stores 3 
documents (silver, red and sensor), the first two for production and the third for the 
plant status. In this manner, it is possible to define in each document attributes that 
would be desired to obtain in the future, such as number, date, status and value.

Taking into account the latency problems when using the cloud, Real Time 
Database was selected as the data storage alternative, because the MES is not regional 
with the location of the server nam-5 central (Iowa-USA). 

Since the MES is bidirectional in its communication concerning the database, the 
tree storage structure was implemented at the first instance in Node Red, using the 
libraries and nodes for this case; in this manner it is reflected in a Firebase MAIN 
project. In this project, the rules for using a service limited in time and space, the 
authentication credentials for the account and the use of a URL were considered; 
the latter will be interpreted by the nodes that send and request information for the 
link between Firebase and Node Red. This process is repeated for the entire tree, i.e., 
collection, documents and attributes, as indicated in Fig. 6. 

To generate the reports of production (administration) and plant status (mainte-
nance), it is necessary to develop, in the MES visual development tool, a structural 
function for a data presentation sheet in Excel online, and also generate an access link 
from the Google Drive Google Forms service for the linkage, in which the attributes 
are modified at convenience for the automatic generation of a document that contains 
information of interest, visualized and downloadable from Google Sheets.
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Fig. 6 Tree storage structure in firebase

3 Analysis and/or Interpretation of Results 

Since the Festo MPS-500 has I3.0, it does not allow the user to interact with the 
production orders through the internet. Therefore, this study implemented OT and 
IT for scaling such plant to I4.0 improving production, energy consumption and 
competitiveness, through MES and multiple agents that execute the action of the 
S7-300 PLCs within the production line. Through a web interface, the user selects 
the product and executes the order, and in this manner the MES plans the production 
in conjunction with a database. 

It should be known that the network infrastructure where the architecture shown 
in Fig. 1 was installed is not dedicated, and it is also mentioned that the production 
plant is located in the Universidad Politécnica Salesiana in Quito—Ecuador, and the 
database is in Iowa—USA; as a consequence, for analyzing the performance of the 
manufacturing plant scaled to I4.0, it is considered time metrics such as the plant 
response to an order by the user and the monitoring of the status of the motor magnetic 
field to the database, through Node Exporter, and therefore a test of mini-batch orders 
products and numbers was conducted, as it is observed in Fig. 7.

From a such figure it was evident that from a total of 20 orders, 17 orders were 
fulfilled successfully and without any problem. Nevertheless, the network was lost 3 
times, causing a momentaneous production pause; despite this, the system resumed
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Fig. 7 Production performance of the plant

the production line where it was left, completing the process successfully; in contrast, 
it was not possible to complete the process on one occasion. 

Figures 8 and 9 show the results of the plant response times to an order by the 
user and the monitoring of the status of the motor magnetic field in the database. 
To interpret the increase in Dashboard-Production time, it is important to remark 
that the system has a bidirectional MES-Database/Database-MES architecture for 
this process, as opposed to the Production-Dashboard where the information is sent 
unidirectionally from the MES to the database. 

Regarding the plant operating status, the MES monitors every 500 [ms] the 
magnetic field of a permanent magnet motor that is in the machining station. To this 
magnetic field intentionally and randomly, a magnet was manually approached, and 
the values were scaled to 1 to identify certain anomalies; in other words, a comparison

Fig. 8 Production response times
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Fig. 9 Monitoring of the magnetic field of a DC motor (perforation of tokens)

was made concerning predetermined values when such field shows good behavior 
(values below 0.795) as indicated in Fig. 9. 

Consequently, the data compared are stored in the database so that an operator 
analyzes the trends that involve the status of this actuator. Similarly, an administrative 
report was obtained which shows the product most demanded by the user, and the 
economic income and total sales per product; this test involved a total of 100 orders 
with values established: a cost of 0.90 USD for the red part and a cost of 0.75 USD 
for the silver part, as it is observed in Fig. 10. It is also mentioned that having all 
this information stored in a database, facilitates the analysis of the future behavior of 
the devices of interest through probabilistic and AI tools to prevent production stops 
due to maintenance; similarly, the production and sales information may be sent to 
the suppliers, so they have raw material in stock.

4 Conclusions 

From the results obtained related to the scaling from I3.0 to I4.0, it was evident that the 
system operates acceptable manner even though there were limitations in the network 
infrastructure, which were specified in Sect. 4. This means that the MES successfully 
executed the manufacturing process 95% of the time, despite interruptions in the 
network infrastructure, thus demonstrating the need and importance of operating on 
a database typical of the characteristic cores of the ISA-95 standard, facilitating the 
interaction of the user with the production process. 

The mean production time of a part (red or silver) is about 48 s, and the average 
latency metric from the instant when the user requests a mini-batch until the instant 
in which the plant starts the execution is 1.59% of the duration of the manufacturing 
process, indicating that this M2M (Machine to Machine) communication time is not
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Fig. 10 Production and sales administrative report

critical. During the experimental tests to monitor the plant status, information relevant 
to the administration and operation activities was stored, and this data contributes 
to the manufacturing corporate decision making; however, the MES implemented 
in a Festo MPS-500 still poses already known but not yet implemented challenges 
that require the OT/IT synergy for managing stocks, computer systems, redundant 
systems such as databases in MES, virtual reality, digital twins, industrial commu-
nication networks that are time sensitive at the production level, etc.; under this 
situation, this study also intends to motivate with niches of systems implemented 
that have not been simulated, typical a manufacturing industry. 
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An Effective Methodology 
for Imbalanced Data Handling 
in Predictive Maintenance for Offset 
Printing 

Alexandros S. Kalafatelis, Nikolaos Nomikos, Angelos Angelopoulos, 
Chris Trochoutsos, and Panagiotis Trakadas 

Abstract The printing industry is one of the largest manufacturing industries in the 
world, being characterized by high production volumes, where continuous mainte-
nance of machine performance is key. Predictive Maintenance (PdM) enables the 
use of a maintenance policy based on novel Machine Learning (ML) algorithms, in 
or-der to provide valuable insights for both diagnostics and prognostics. However, 
real-world data used for PdM model training are characterized by great class im-
balances, as failure events have a significant lower rate of happening compared to 
the normal no failure operations. Furthermore, ML models that are subjected to 
imbalanced datasets, are prone to be highly biased while having misleading accu-
racy scores. This can prohibit systems to accurately predict machine failure, leading 
to excessive costs while affecting the safety of the workers. This work proposes a data 
sampling methodology for predictive maintenance algorithms used mainly in Offset 
Printing environments, aiming to improve model performance. Based on a historical 
dataset extracted by an Offset Printing manufacturer, a methodology consisting of 
multiple classification algorithms utilizing different sampling techniques (SMOTE,
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ADASYN, and RUS), was trained and evaluated using cross-validation. The eval-
uation outcomes demonstrated the ability of the proposed methodology to effec-
tively handle data imbalances while significantly enhancing model performance, 
outperforming other state-of-the-art techniques. 

Keywords Predictive maintenance ·Machine learning · Industry 4.0 · Offset 
printing 

1 Introduction 

Predictive maintenance (PdM) has been gaining prominence recently in multidisci-
plinary sectors, enabling the use of a maintenance policy based on novel Machine 
Learning (ML) algorithms. In essence, PdM works by estimating and foreseeing 
failures in deteriorating systems around manufacturing environments, in order to 
optimize maintenance efforts [1]. 

The printing industry is one of the largest manufacturing industries in the world, 
having high production volumes, where continuous maintenance of machine perfor-
mance is key. Possible breakdown events will automatically result in production stop, 
disturbing thus not only the production process, but also burdening financially the 
manufacturers. Offset Printing enables the production of large quantities, as the vari-
able production costs are deemed small compared to the setup costs, thus having a 
greater risk in case of machine breakdown. Possible failures found in Offset Printing, 
include but are not limited to: (i) defective offset rubbers, (ii) wear of ink rollers, 
(iii) incorrect bending or damaged printing plates, (iv) insufficient pressures on the 
printing machines, (v) non-conformity issues in the sheet delivery unit, and (vi) 
random failures, which are found at every manufacturing environment [2]. 

According to Haarman et al. [3], maintenance procedures are shown to represent 
a total of 15–60% out of the total costs of operating of all manufacturing, thus 
showcasing the importance of a PdM solution. In detail, a PdM solution aims to 
not only prevent possible failures but to also optimize operations, affecting thus 
different aspects of manufacturing, including safety, product quality, reliability, and 
minimization of operational costs. 

PdM data provide valuable insights for both diagnostics and prognostics informa-
tion, enabling maintenance work to become proactive. ML assumes that data used 
for training and testing purposes are under the same feature space, having similar 
distribution and comparable proportion of training instances belonging to each class. 
However, this is not always the case in real world applications, where ML have to 
face complex challenges in which these assumptions are not always satisfied [4]. 

Furthermore, ML models that are subjected to imbalanced datasets, are prone to 
be highly biased while having misleading accuracy scores. This phenomenon can be 
attributed due to the lack of information coming from the minority class of a given 
dataset and to ML models in general, as they tend to classify every test sample into 
the majority class, in order to improve the accuracy metric [5, 6].
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This phenomenon is predominated in cases where anomaly detection is of prime 
importance, such as in PdM, prohibiting the systems to accurately predict machine 
failure, leading not only to excessive costs for the manufacturers, but also possibly 
affecting the safety of the workers. 

To mitigate this issue, sampling techniques such as under-sampling and oversam-
pling are used either to create more instances of the minority class to increase its 
population or to minimize the data instances found on the majority class. 

In this paper, the occurrence of machine failure is determined on a predic-
tive maintenance dataset, implementing SMOTE, ADASYN and RUS methods to 
generate balanced datasets of machine failure instanced found in Offset Printing. 
The efficiency of the proposed oversampling and undersampling methodologies are 
analyzed with the help of various machine learning classifiers, with the aim to improve 
predictive maintenance accuracy scores. 

This paper is structured as follows. In Sect. 2, we suggest the details of the utilized 
dataset and of the proposed methodology of handling imbalanced datasets, alongside 
with the classification algorithms. In Sect. 3, the experimental results used to assess 
the performance of the different sampling methods and of the classification models, 
are presented. Finally, in Sect. 4 the results are summarized and discussed. 

2 Materials and Methods 

2.1 Dataset Description 

The original dataset consisted of features and labels based on historical measurements 
collected during a 4-month trial period (03/07/2022–31/10/2022) from Pressious 
Arvanitidis, an Offset Printing manufacturer based in Greece. Each of the collected 
parameters and features, follows the process of a particular printing order (i.e., from 
the sales department to the quality assessment department). The order and factory 
related characteristics used in this paper are presented in Table 1.

Table 2 summarized the descriptive statistics of the independent and dependent 
variables of the complete dataset.

2.2 Data Processing Methodology 

Due to the high-class imbalance in the initial raw dataset regarding the failure events 
(containing only 145 events of some type of machine failure out of the 4205 total 
printing runs), data preprocessing was performed to facilitate the training and testing 
processes of the ML models with high-quality data. 

Particularly, to avoid a scenario where a particular variance dominates the objec-
tive function of the learning algorithms (making it unable to learn from other features
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Table 1 Parameters used for the training and testing procedures for the ML models 

Parameter Description 

Unique order 
ID 

Unique identifier varying from 1 to 10000 

Quality The requested end product paper type in a particular order. It is a categorical 
variable that takes values ‘Velvet’, ‘Uncoated’ and ‘Illustration’ 

Quantity The number of printing pieces requested in a particular order 

Type The outcome type of a particular order, taking values of ‘Book’, ‘Poster’ and 
‘Journal’ 

Color The specific color requirements of an order. Categorical variable taking values 
between ‘typical’ 4-color printing, ‘4 + 1’ color printing or ‘grayscale’ printing 

Machine The specific ID of the machine that a particular order was forwarded for 
printing, ranging from 1 to 5 

Humidity Water vapor relative to air temperature 

Temperature Air temperature at the factory ranging from 292 to 298 (K) 

Tool Wear The time required and used by a machine for each printing run 

Failure Indicates whether the machine has failed or not

Table 2 Parameters and attributes of the input and target variables 

Parameter Mean Standard deviation Minimum Maximum 

Unique Order ID 2969 1214.02327 867 5071 

Quality 1.600238 0.761683 1 3 

Quantity 2331.809750 1319.670624 206 9956 

Color 3.680856 0.947442 1 5 

Machine 2.676100 1.337525 1 5 

Humidity 55.007498 3.391050 45.070 69.940000 

Temperature 294.327795 1.041168 292 300.010 

Tool wear 7.772699 4.398902 0.686667 33.186667 

Failure 0.034483 0.182487 0 1

correctly as expected), data scaling was performed initially, using the Log Trans-
formation methodology. The method was used as it enables data measurements to 
become more symmetric to a normal distribution. After the scaling the dataset was 
divided into a training set (80%) and test set (20%) (Step 1). 

Furthermore, high data dimensionality has shown to have a direct effect on clas-
sification accuracy, increasing the rate of misclassification and thus reducing the 
overall accuracy of a classification algorithm. Therefore, dimensionality reduction 
was also performed using Principal Component Analysis (PCA). Specifically, the 
dataset PCA enables the conversion of correlated features found in the high dimen-
sional space into a series of uncorrelated features in the low dimensional space, that
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depict the linear combination of existing variables, and for that reason it has become 
a necessity before applying any data sampling approach [7] (Step 2). 

To effectively deal with the class imbalance, three different sampling techniques 
were employed, namely, Random UnderSampling (RUS) [8], Synthetic Minority 
Oversampling Technique (SMOTE) [9] and the Adaptive Synthetic sampling 
approach (ADASYN) [10] (Step 3). 

These techniques operate in a feature space aiming either to under-sample the 
majority class data or oversample the minority one. On the one hand, under-sampling 
techniques such as RUS, are used to improve imbalance levels of the classes to the 
desired target, by reducing the number of majority instances. However, the removal 
of instances from the majority class is performed without replacement, meaning that 
useful information might be permanently lost. In addition, due to the randomized 
nature of RUS, an unclear decision boundary may be resulted, affecting classifiers 
performance [11]. 

On the other hand, over-sampling approaches intent to improve imbalance levels of 
the classes to the desired target, by generating synthetic instances and adding them to 
the minority class. Unlike approaches such as random oversampling, SMOTE gener-
ates artificial instances in the minority class, based on the feature space, rather than 
the data space, considering linear combinations between existing minority samples. 
Moreover, derived from SMOTE, the ADASYN approach gives different weights to 
different minority samples of a given dataset, while it automatically determines the 
number of samples required to produce in order to achieve data balance. 

The aforementioned methodology is depicted in Fig. 1. 

Fig. 1 Proposed methodology for imbalanced data handling in predictive maintenance
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2.3 Machine Learning Models 

To create the proposed framework, stratified 5-fold cross validation was used for all 
the experiments in this study. The base ML models were trained, using the scikit 
learn package [12], including:

• Logistic regression (LR) is a standard probabilistic statistical classification model 
that has been extensively used for classification problems across disciplines. 
Different from linear regression, logistic regression analyzes the relationship 
between multiple independent features and estimates the probability of occur-
rence of an event, by fitting the data onto a logistic curve. LR is affected by 
outliers, which greatly skews parameter estimation, reducing classification 
performance [13].

• k-Nearest Neighbors (kNN) [14] enables a low-power computational classifica-
tion through the identification of the nearest neighbors given by a query example 
and using those neighbors to determine the class of the query [15].

• Decision Tree (DT) is a learner which repeatedly splits the dataset according to 
a cost criterion that maximizes the separation of the data, resulting in tree-like 
branches. In detail, the algorithm attempts to select the most important features 
to split branches and iterate through a given feature space. Compared with the 
other machine learning methods, decision trees have the key advantage, that are 
not characterized as black-box models and can be easily expressed as rules [16].

• Random Forest (RF) algorithms fall under the broad umbrella of ensemble 
learning methods. The key principle underlying the algorithm is the decision 
tree. Specifically, every data instance is initially classified by every individual 
DT, and then classified by a consensus among the individual DTs. The diversity 
among these individual DTs can thus further improve the overall classification 
performance, and so bagging is introduced to promote diversity. The advantages 
of using RF include its robustness to overfitting and its stability in the presence 
of outliers [17]. 

2.4 Evaluation 

To compare the performance of the candidate models, the most frequently used 
metrics for classification are utilized, including accuracy (ACC), precision (P), recall 
(R), and F1-score values, calculated as [18]: 

ACC = (TP + TN)/(TP + FN + TN + FP) (1) 

P = TP/(TP + FP) (2) 

R = TP/(TP + FN) (3)
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F1 = (2 · Precision · Recall)/(Precision + Recall) (4) 

3 Results 

Table 3 showcases the overall performance comparison between the different classi-
fication algorithms, each utilizing different sampling methodologies with the aim of 
achieving higher accuracy and f1-scores, for more accurate classification of machine 
failures in the field of Offset Printing. 

In detail, the experiment results demonstrate that both Random Forest and Deci-
sion Trees algorithms performed significantly better than the rest of the base models, 
while Logistic Regression performed the least accurate scores. Moreover, both 
SMOTE and ADASYN sampling methods, showed to improve classification accu-
racy throughout the models, while Under-sampling had the least effect on improving 
classification accuracy. 

Furthermore, as showcased in Fig. 2, the implementation of SMOTE and 
ADASYN indicated similar results, with models under SMOTE slightly outper-
forming the rest of the methods using ADASYN.

Table 3 Overall performance evaluation of classification algorithms under different sampling 
methodologies 

Model Data sampling 
method 

Accuracy Precision Recall F1-score 

Logistic 
regression 

Under sampling 0.468304 0.924963 0.468304 0.609441 

SMOTE 0.563391 0.929364 0.563391 0.692212 

ADASYN 0.543582 0.928011 0.543582 0.675927 

k-nearest 
neighbors 

Under sampling 0.541204 0.933273 0.541204 0.673145 

SMOTE 0.751189 0.925741 0.751189 0.827805 

ADASYN 0.755151 0.924929 0.755151 0.830226 

Decision trees Under sampling 0.496830 0.939275 0.496830 0.633158 

SMOTE 0.841521 0.930260 0.841521 0.882692 

ADASYN 0.828051 0.929606 0.828051 0.874811 

Random 
forest 

Under sampling 0.516640 0.931664 0.516640 0.652170 

SMOTE 0.882726 0.930196 0.882726 0.905511 

ADASYN 0.874802 0.928736 0.874802 0.900716 



96 A. S. Kalafatelis et al.

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
U

nd
er

 S
am

pl
in

g 

SM
O

TE
 

AD
AS

YN
 

U
nd

er
 S

am
pl

in
g 

SM
O

TE
 

AD
AS

YN
 

U
nd

er
 S

am
pl

in
g 

SM
O

TE
 

AD
AS

YN
 

U
nd

er
 S

am
pl

in
g 

SM
O

TE
 

AD
AS

YN
 

Logistic Regression k-Nearest Neighbors Decision Trees Random Forest 

Accuracy Precision Recall F1-score 

Fig. 2 Performance comparison of the proposed algorithms 

4 Conclusions 

Predictive Maintenance systems are utilized to predict trends, behavior patterns, and 
correlations by ML models in order to anticipate pending machine failures in a proac-
tive manner, thus avoiding downtime and production stop. Machine maintenance has 
therefore attained critical importance for manufacturing industries such as the ones 
found in Offset Printing, due to the current growth in complexity of the manufacturing 
ecosystems. 

In this study, we proposed a data sampling methodology for predictive mainte-
nance algorithms for Offset Printing environments, which aims to effectively balance 
data classes and improve the performance of PdM models to accurately identify 
the minority classes using binary classification. The methodology consisting by the 
SMOTE, ADASYN, and RUS techniques, and the classification algorithms (DT, LR, 
KNN, RF), was generated based on a dataset from an Offset Printing company. 

Overall, the results of this study indicate that the proposed methodology effec-
tively handles data imbalances while enhancing model performance in classification 
accuracy, by outperforming other state-of-the-art techniques. Moreover, to the best 
of our knowledge, ours is the first study to explore PdM systems and data handling 
approaches for the Offset Printing domain.
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Finally, in future work, the proposed methodology can be further extended for 
multi-class classifications, as well as the evaluation of further ML and DL techniques. 
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Design and Experimental Validation 
of RL-Based Decision-Making System 
for Autonomous Vehicles 

Ana María Gómez Ruiz, Hussam Atoui, and Olivier Sename 

Abstract In autonomous driving, different Reinforcement Learning (RL) methods 
have been implemented to deal with different challenges. One of its advantages is the 
capability to deal with unexpected situations after an adequate trained environment. 
The inclusion of RL algorithms is considered as a solution for autonomous driving 
called “agent” that gathers the environmental information and acts according to 
this from one state to the next one. This paper proposes a solution for a specific 
environment that is trained with Deep RL and then is tested in simulation and in on 
experimental platform. 

Keywords Deep reinforcement learning · Decision making · Autonomous 
vehicles 

1 Introduction 

Autonomous driving systems have raised a considerable interest in the last decades 
for several reasons. Initially, it can decrease the majority of lethal accidents that are 
caused by distracted drivers which will create safer roads. More than 90% of reported 
traffic accidents are the outcome of human error and caused by issues related to 
the acquisition of visual information as debated in [ 10]. Nevertheless, sophisticated 
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autonomous driving can decrease accidents caused by human errors, can redirect 
driving time into more productive ends and it can lower operating costs per mile 
finding optimal paths to destination. 

The autonomous driving system have been under fast development in the recent 
years and different approaches have been implemented. Common modules to design 
autonomous systems include localization, perception, decision making (path plan-
ning) and dynamics control [ 13]. The main task of the environment localization and 
perception module is to extract useful features from the surroundings and locate the 
vehicle in the track to establish spatial and temporal relationships among the vehicle 
[ 3]. Identifying objects in the road, pedestrians, bicycles among others is classifica-
tion ability that has raised a great interest with Machine Learning algorithms specially 
with supervised learning. To get this information from the vehicle environment, the 
module relies on different kinds of perception sensors such as cameras, radar and 
lasers [ 14]. 

The trajectory planning module aims to plan different longitudinal and lateral 
vehicle maneuvers which might include lane changing, braking, lane following and 
obstacle avoidance. There are existing methods that rely on traditional classical plan-
ners or machine learning methods. An alternative approach to the classical planners 
and supervised learning methods is Reinforcement Learning. This framework works 
on the principle of maximizing reward for a particular action at a given state [ 5]. 
RL is the theory of an agent that learns optimal behavior through interaction with 
its environment. With the aid of Deep RL techniques it is possible to use the ben-
efits of deep learning in conjunction with RL to learn optimal behavior from high 
dimensional inputs to action outputs as discussed in [ 11]. In this paper, Actor-Critic 
methods are used to combine value-based and policy-based algorithms to sample 
efficiency and stability being effective in high dimensional and stochastic actions. 

The general objective of the project is to build, integrate and test different modules 
of perception and control for a scaled autonomous vehicle in the Robot Operating 
System (ROS) framework. The car is grouped by Engineers at Gipsa-Lab. Previous 
work has been made in the vehicle such as identification of the model’s vehicle, and 
its actuators along with the main connections on ROS2. In addition, the design and 
implementation of robust controllers for the vehicle lateral dynamics using different 
approaches has been made. 

The following work aims to design the decision making module based on deep 
RL approach. The vehicle must avoid collisions, achieve high driving efficiency 
by taking an optimal path, and execute smooth maneuvers without veering off the 
track while maintaining the center-line of a two-lane race track. The RL model is 
trained in simulation with a Deep Q-Network, and is then validated and tested in an 
experimental scenario with the scaled RC car. 

This paper is organized in five sections. The Sect. 2 aims to explain the theory and 
main components of the RL Algorithms that are used and the Actor Critic Approach. 
The Sect. 3 explains the implementation and training of the RL model with some 
simulation results. The Sect. 2 shows the validation and experimental results, and 
the Sect. 5 are the conclusions and final remarks of the work made.
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2 Reinforcement Learning for Autonomous Driving 

For autonomous driving, different Machine Learning (ML) methods have been imple-
mented to deal with different challenges. Some of these algorithms have raised great 
interest because of the capability to deal with unexpected situations after an adequate 
trained on a large set of sample data. One of the biggest challenges with ML algo-
rithms for autonomous driving is when considering the vehicle in an open context 
environment to train the model with all possible scenarios in the real world. The 
variety of context that could happen are infinite and the companies leading this field 
must solve it by collecting a big amount of data and validating system operation 
based on the collected data to ensure that a self-driving car has already learned all 
possible scenarios and with safety scenarios for each case [ 1]. The inclusion of RL 
algorithms is being considered as a solution for the car called agent that gathers the 
environmental information and acts according to this from one state to the next one. 

The general idea for implementing RL algorithms is to take the most important 
aspects of a learning agent that is interacting with its environment to reach a goal. 
The agent must be capable to perceive the state of the environment described as 
observation and it must be able to take actions that affect its state; refer to [ 17]. This 
agent also has a reward according to the state of the environment and the objective 
is to obtain the highest value for the sum of rewards over the long run. 

The RL algorithms are considered closed-loop because the actions taken by the 
agent influence its later inputs. As a difference with ML algorithms, the agent is 
not guided to which action to take but instead to discover which actions will yield 
to the most reward by exploring them out. In the most complicated cases, actions 
may affect not only the immediate reward, but also the next situations and all the 
subsequent rewards. Such characteristic of not having a direct instruction on what 
action to take, and the consequences of actions are the most important features of 
the reinforcement learning problems [ 12]. The goal is to find a sequence of inputs 
that drive a dynamical system to maximize some objective, beginning with minimal 
knowledge of how the system responds to inputs. 

2.1 Elements of Reinforcement Learning 

In order to explain the elements of the RL algorithm some definitions for the inter-
action to achieve a goal will be explained. The learner and decision-maker is called 
the agent, the ego vehicle. The agent interacts with what is called the environment 
which includes everything outside the agent, i.e., the racetrack, the obstacles and 
the surrounding vehicles. The agent takes an action which results in a change in 
the environment. This interaction is received by the agent as a state which includes 
information about coordinates and/or speed of other vehicles, features of the road, 
among others. Refer to Fig. 1 to visualize the connection between these components.
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The main subelements of RL algorithms are: 

– Policy: Is a mapping from perceived states of the environment to actions to be 
taken in those actions. It is sufficient to determine the behavior, policies may be 
stochastic. 

– Reward: The objective of the agent is to maximize the cumulative reward received 
over the long run. This value depends on the agents current action and the current 
state of the agent’s environment at any time. The only way the agent can influence 
the reward signal is through its actions, which can have a direct effect on the total 
reward, or an indirect effect through changing the environment’s state. The policy 
may be changed to select the action that will be followed by a higher reward on 
that situation in the future. 

– Value function: Specifies what is good in the long run defined as episode. The 
value of a state can be described as the total amount of reward an agent can expect 
to accumulate over the future, starting from that state. Whereas rewards determine 
the immediate, intrinsic desirability of environmental states, values indicate the 
long-term desirability of states after taking into account the states that are likely 
to follow, and the rewards available in those states. 

– Model: Is a representation of the behavior of the environment. When an action 
is made given a state the model might predict the resultant next state and reward 
due to this action. The model is used for planning and to consider possible future 
situations before they actually happen. 

2.2 Reinforcement Learning theory 

The interaction between the agent and the environment occurs at a sequence of dis-
crete time steps t in which it receives some representation of the environment’s state 
.St ∈ S in the. S set of possible states, and it selects an action.At ∈ A(St )where. A(St )
is the set of actions available in state. St . One time step later, in part as consequence of 
its action, the agent receives a numerical reward .Rt+1 ∈ R ⊂ R and finds itself in a 
new state.St+1. The Fig. 1 represents the agent-environment interaction. At each time 
step, the agent implements a mapping from states to probabilities of selecting each 
possible action. This mapping is called the agent’s policy and is denoted . πt , where 
.πt (a | s) is the probability that .At = a if .St = s. Reinforcement learning methods 
specify how the agent changes its policy as a result of its experience. The agent’s 
goal, roughly speaking, is to maximize the total amount of reward it receives over 
the long  run [  12]. 

An agent can increase the long-term reward by exploiting knowledge learned 
about the discounted sum of expected future rewards of different state-action pairs. 
The learning agent has to exploit what it already knows in order to obtain rewards, 
but it also has to explore the unknown in order to make better action selections in 
the future [ 2].
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Fig. 1 The agent-environment interaction in RL. Image taken from [ 12] 

For some stochastic control problems when the models for sequential decision 
making outcomes are uncertain, Markov Decision Processes (MDP) are used. The 
MDP model consists of decision epochs, states S, actions A, rewards R, and transition 
probabilities T; a tuple .< S, A, T, R >. Choosing an action a in a state s generates 
a reward  .R(s,a) and determines the state at the next decision epoch s’ through a 
transition probability function .T (s, a, s '). Policies are instructions of which action 
to choose under any occurrence at every future decision. The agent look for policies 
which are optimal [ 7]. The mathematical representation of the policy which is a 
mapping from the state space to a probability over the set of actions, and . πt (a | s)
represents the probability of choosing action . a at state . s. The goal is to find the 
optimal policy .π∗ at time . k, defined as: 

.π∗ = argmax
π

Eπ{
H−1∑

k=0

γk R(sk, ak) | s0 = s} := argmax
π

Vπ(s) (1) 

where . γ is the discount factor that controls how an agent consider future rewards. 
When . γ is low the agent will maximize short term rewards, on the contrary with 
high values of . γ the agent will try to maximize rewards over a longer time frame. 
The Eq. (1) represents the highest expected sum of discounted rewards ([ 16]) in a 
time horizon .H in the MDP. From the models directly, RL agents may learn value 
function estimates, policies and/or environment. Finding a policy . π that maximizes 
the expected discounted sum of rewards over trajectories in the state space is what 
solving a RL task means. 

2.3 Reinforcement Learning Components for Autonomous 
Driving 

Some of the most important elements of the RL model are the actions, the state, the 
observations and rewards.
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Actions The actions that the vehicle can perform are driven by the acceleration and 
the steering control of the vehicle. The actions are considered discrete for the agent 
to decide which distinct action to perform from a finite action set. 

The DiscreteMetaAction type adds a layer of speed and steering controllers on top 
of the continuous low-level control, so that the ego-vehicle can automatically follow 
the road at a desired velocity. Then, the available meta-actions consist in changing 
the target lane and speed that are used as set points for the low-level controllers. The 
actions are listed as: 

– 0: Lane left 
– 1: IDLE 
– 2: Lane right 
– 3: Faster 
– 4: Slower. 

State The state of the vehicle, also named as observations, contains information of 
the agent and the vehicles around it. The KinematicObservation is the default of the 
library, this is an array of size.nObs x nF where. n is the number of nearby vehicles 
and .F is a set of features such as curvature, . x , . y, . vx , . vy . The number of vehicles . n
is constant and configured initially by the environment, so that the observation has 
a fixed size. The curvature of the track has been included as a the inverse of the 
lookahead radius (. 1r ) after several attempts of training the model. Its inclusion is an 
improvement to consider the approaching curve so that the agent can decrease the 
speed when getting into a pronounced curve that is 3m in front so it can keep the 
lane center trajectory. 

.
[
1
r x y vx vy

]T
(2) 

Rewards The final element to be defined are the rewards, the choice of an appropriate 
reward function yields realistic optimal driving behavior. A reward for collision, zero 
speed, lane centering and high speed has been defined. The total reward in every step 
will be determined by the sum of each condition. .Rcoll is the reward if it collides 
being –10 if it does and 0 if it does not. .Rstop is the reward given if the vehicle stops, 
is 0 if the vehicle has some speed and –10 if it stops. .Rlc is the reward given for lane 
centering, is maximum when the vehicle is in the center of the lane and it decreases 
proportionally when it moves away from the center lane as in Eq. (4). Finally, .Rhs is 
the high speed reward and its value is a function of the speed of the vehicle as in 4. 
The total reward .Rtotal is given by Eq. (3) and the final tuning of the rewards which 
resulted on the best simulation results is given in Table 1 

.Rtotal = Rcoll + Rstop + Rlc + Rhs (3) 

.Rlc = 1

1 + rlc ∗ lat error2
− 0.5 (4)
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Table 1 Values of rewards of 
the RL model 

Reward Value 

Collision.rc –10 

Zero speed.rv0 –10 

Lane centering.rlc 1 

High speed.rhs 0.7 

.rlc is the weight of the lane centering, and .lat error is the difference between the 
reference trajectory and the position of the vehicle, the second term of Eq. (4) is  
also tuned. The values of speed are also discrete and could take 6 different values 
between 0 and.1.3m/s as shown in Eq. (5), when the speed is at the maximum, then 
the reward will be.rhs , if it decreases then the reward will decrease proportionally as 
the range of speed of the vehicle. 

.Rhs = rhs
indexv

indexv max
(5) 

After the .Rtotal is obtained it is normalized between 0 and 1, and it becomes an 
input of the RL model. 

2.4 Actor Critic Approach 

Actor-critic methods are hybrid methods that combine value-based and policy-based 
algorithms. One actor is the one that selects the actions and this is the policy-structure. 
After an action is made by the ‘actor’, the estimated value function evaluates the 
action and this is known as the ‘critic’. The value-based methods are model-free 
Temporal Difference (TD), are methods that can learn directly from raw experience 
without a model of the environment’s dynamics and learn estimates of the utility of 
individual state-action pairs represented in Eq. (6) [  15]. This scalar signal is the sole 
output of the critic and drives all learning in both actor and critic, as shown in Fig. 2. 

.Qπ(s, a) = Eπ

{
H−1∑

k=0

γk R(sk, ak) | s0 = s, a0 = a

}
(6) 

Q-learning will learn (near) optimal state-action values provided a big number of 
samples are obtained for each pair. Agents implementing Q-learning update their Q 
values according to the update rule of Eq. (7): 

.Q(s, a) ←− Q(s, a) + α

[
r + γ max

α'∈A
Q(s ', a') − Q(s, a)

]
(7)
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Fig. 2 The actor-critic 
architecture. Image taken 
from [ 12] 

where .Q(s, a) is an estimate of the utility of selecting action . a in state . s; . α is the 
learning rate which controls the degree to which Q values are updated at each time 
step [ 15]. 

The policy-based methods aim to estimate the optimal policy directly, and the 
value is a secondary. Typically, a policy .πθ is parameterized as a neural network. 
Policy gradient methods use gradient descent to estimate the parameters of the policy 
that maximize the expected reward. The result can be a stochastic policy where 
actions are selected by sampling, or a deterministic policy. When selecting actions, 
exploration is performed by adding noise to the actor policy. To stabilize learning 
a replay buffer is used to minimize data correlation. A separate actor-critic specific 
target network is also used. Normal Q-learning is adapted with a restricted number 
of discrete actions the optimal Q-value and optimal action as .Q∗ and . a∗. 

.Q∗(s, a) = max
π

Qπ(s, a) , a∗ = argmax aQ∗(s, a) (8) 

By correcting the Q-values towards the optimal values using the chosen action, the 
policy is updated towards the optimal action proposition. Thus two separate networks 
work at estimating .Q∗ and .π∗.
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3 Training and Testing of the Model 

The aim of the project is to drive a scaled vehicle on a racetrack without veering off 
track or crashing, and reaching an optimal speed to finish a loop as fast as possible. 
Initially, the implemented solution has been developed in an existing framework 
named highway-env (github library), which is an open source Python library with a 
collection of different environments for autonomous driving and tactical decision-
making tasks. This tool has been modified to create a new environment with specific 
dimensions of the track and the car for the particular environment of the vehicle 
and available space of the experimental room at GIPSA-Lab, in the next chapter 
the details of the scaled vehicle will be discussed. After setting the vehicle behavior 
and the environment, a RL model is used to estimate the action in every step of the 
trajectory given to the agent. 

3.1 Vehicle Behavior 

Some of the vehicle parameters of the vehicle are presented in Table 2 with the 
dimensions of the scaled vehicle. The motion of the vehicle is represented by the 
modified bicycle model shown in Fig. 3. The vehicle kinematics are presented by the 
following Eq. [ 6]: 

.ẋ = v cos(ψ + β) (9) 

.ẏ = v sin(ψ + β) (10) 

.v̇ = a (11) 

.ψ̇ = v

l
sin(β) (12) 

.β = tan−1

(
1

2
tan δ

)
(13) 

where .(x, y) is the vehicle position; . v is the forward speed; . ψ is heading angle; . a is 
the acceleration command; . β is the slip angle at the center of gravity; and . δ is the 
front wheel angle used as a steering command. Its state is propagated depending on 

Table 2 Car parameters of the scaled vehicle 

Parameter Unit Value 

Mass kg 1.34 

Length m 0.174 

Width m 0.0870 

Wheel radius m 0.0650

github library
 7465
6504 a 7465 6504 a
 
https://github.com/eleurent/highway-env
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Fig. 3 Lateral vehicle dynamics. Image taken from [ 4] 

the steering and acceleration actions. For the vehicle dynamics, the two degrees of 
freedom are represented by the vehicle lateral position . y and the vehicle yaw angle 
. ψ. The vehicle lateral position is measured along the lateral axis of the vehicle to 
the point C which is the center of rotation of the vehicle. The vehicle yaw angle 
.ψ is measured with respect to the global .X axis. The longitudinal velocity of the 
vehicle at the center of gravity is denoted by .Vx . The  Eq. (14) represents the lateral 
translational motion of the vehicle and Eq. (15) represents the moment balance about 
the . z axis. 

.m(ÿ + ψ̇Vx ) = Fy f + Fyr (14) 

where .Fy f and .Fyr are lateral tire force of the front and rear wheels, respectively. 

.Izψ̈ = l f Fy f − lr Fyr (15) 

where .l f and . lr are the distances of the front tire and the rear tire respectively from 
the center of gravity of the vehicle [ 8]. 

The controlled vehicle is a low-level controller, allowing to track a given target 
speed and follow a target lane. The longitudinal controller is a simple proportional 
controller as shown in the Eq. (16). 

.a = Kp (vr − v) (16) 

The lateral controller is a simple proportional-derivative controller, combined 
with some non-linearities that invert those of the kinematics model. The position and 
heading control are shown in Eqs. (18)–(21), respectively.
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.vlat,r = −Kp,latΔlat (17) 

.Δψr = arcsin
(vlat,r

v

)
(18) 

where .Δlat is the lateral position of the vehicle with respect to the lane center-line; 
.vlat,r is the lateral velocity command and .Δψr is a heading variation to apply the 
lateral velocity command. 

.ψr = ψL + Δψr (19) 

.ψ̇r = Kp,ψ (ψr − ψ) (20) 

.δ = arcsin

(
1

2

l

v
ψ̇r

)
(21) 

where .ψL is the lane heading (at some lookahead position to anticipate turns); . ψr

is the target heading to follow the lane heading and position; .ψ̇r is the yaw rate 
command; . δ is the front wheels angle control; and .Kp,lat and .Kp,ψ are the position 
and heading control gains. 

3.2 Environment Setup 

The Fig. 4 shows the racetrack that has been used to train the model. Several fac-
tors are considered to build the environment, such as two lanes, straight segments, 
pronounced curves and obstacles in the road, which increase the complexity of the 
vehicle performance. 

Obstacles The ego-vehicle, in green, is surrounded by other vehicles that have speed 
zero, which can be considered as objects or obstacles for this scenario to decrease the 
implementation complexity but for future works it is expected to threat as vehicles 
with different speeds. 

Road The dimensions of the track are constrained by the experimental room in 
GIPSA-Lab with an available space of 4 m .× 4 m. The maximum distance in the 
horizontal axis is 3.6 and 2.8 m in the vertical one. Finally, the track has been built 
with the union of 11 segments as union of straight lines and segments of differ-
ent radius circles, the radius of each segment is an important characteristic that is 
included in the RL model and will be explained in the next section. 

Training Procedure The components mentioned in the previous section enter a 
deep neural network which will estimate the action of the car in every step of the 
trajectory and can be trained from a Stable Baselines3 (SB3) github library that is a 
set of reliable implementations of reinforcement learning algorithms in PyTorch.

github library
 25037 55872
a 25037 55872 a
 
https://stable-baselines3.readthedocs.io/en/master/index.html
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Fig. 4 Racetrack based on the highway-env library 

Table 3 Parameters for 
training 

Parameter Value 

Learning rate 0.0005 

Discount factor 0.8 

Exploration fraction 0.8 

Total timesteps 60.000 

This RL model is considered as an episodic domain that may terminate after a 
fixed number of time steps, or when an agent reaches a specified goal state. Also, the 
implemented policy is a Multilayer Perceptron (MLP) that consist of biased neurons 
arranged in layers, connected by weighted connections. 2 layers of 64 nodes have 
been used. Their effectiveness depends on finding the optimal weights and biases 
that reduce the classification error [ 9]. Some parameters of the training are displayed 
in the Table 3. 

3.3 Training Results 

After the combination of the vehicle behavior, the environment and the RL compo-
nents, the training model has been performed on a Google Colab service that requires 
no setup to use, while providing access free of charge to computing resources includ-
ing GPUs. The total training time is 5.5 h and the model output is obtained as a .zip 
extension for later use in the experimental results. 

After training, the results can be reproduced for one episode by the states, obser-
vations, actions and rewards at every step. The duration of one episode is 140 s and
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Fig. 5 Speed behavior of the vehicle in one episode 

Fig. 6 Control variables of the vehicle in one episode 

the frequency is of 2 actions per second. On the other hand, about the behavior of the 
vehicle, the available speed values are [0 , 0.26, 0.52, 0.78, 1.04, 1.3 ] .m/s, and the 
speed profile is presented in Fig. 5for the magnitude, lateral and longitudinal values. 
Here the lateral speed is lower than .0.1m/s and the magnitude is very similar to 
the longitudinal speed. The vehicle tried to complete a loop closer to the maximum 
available speed, here the functionality of the high speed reward is shown. 

Additionally, the control variables are the steering angle and the acceleration. The 
steering angle that is limited between .[–15 , 15]. ◦. This limit affected the model and 
restricted the vehicle to behave more conservatively. The longitudinal acceleration is 
also restricted between [–2, 2] .m/s. 2 to avoid aggressive speed changes. The results 
are shown in Fig. 6. 

Lastly, the actions and the output of the RL model is shown in Fig. 7. The pre-
dominant action is to accelerate but it also changes lane when facing obstacles and
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Fig. 7 Actions taken by the agent in one episode 

in some pronounced curves. Because the behavior is predominant by the controllers, 
if the action would be to accelerate and if the speed limit is reached, the action can 
be ‘ignored’ and the vehicle kept an IDLE action, which for future works it would 
be preferable for the vehicle to take the available actions and not all of them. 

4 Experimental Validation 

A new environment is created with specific dimensions within the space of the 
experimental room, likewise, applied on the scaled vehicle in GIPSA-Lab. Figure 8 
shows the experimental scenario where the validation of the results have been carried 
out, a two-lanes track is displayed as a reference. Table 4 shows the sensors and 
actuators of the vehicle enumerated in Fig. 9. In addition to the car components, 
there are high resolution cameras from which the position of the vehicle is measured 
with high accuracy. This sensor information of the road and the car is required to 
build the ROS2 architecture, that includes the perception, planning, decision making, 
and control nodes. 

In the ROS2 decision making node, the observations have been programmed with 
the WiFi communication between the sensors and the computer. The RL model is 
trained in a track with a higher complexity than the one tested in this experiment. 
The decision making node includes the file model.zip containing the model, in which 

Fig. 8 Experimental scenario setup at GIPSA-Lab
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Table 4 RC car components 

N Type Functionality 

.1 Switch Switching car on-off 

.2 8 mm qualisys super-spherical Captured by vicon tracker 

.3 Arduino RP 2040 Micro-controller of the vehicle 

.4 Spur gears Increase torque given by 
BLDC 

.5 Elastic wheel . 2 Rear wheel of the vehicle 

.6 ACCU NI-MH 3000 Supply power battery 

.7 MG996R servo motor Steering actuator 

.8 Elastic wheel . 2 Front wheels of the vehicle 

.9 BLDC-A2212/13T Throttle actuator 

Fig. 9 Front and side pictures of the car 

given the observation of the environment to predict the next discrete action to perform. 
Several scenarios have been tested with different obstacle positions. The first scenario 
with no obstacles is shown in Fig. 10, the vehicle can maintain the lane where it 
started. In this figure two loops are displayed with a different starting point of the 
vehicle in a direction counter clockwise. 

The second scenario with one obstacle, the vehicle changes the lane before the 
curvature of the obstacle to avoid the crash, as shown in Fig. 11. The obstacle is 
displayed as the black square. The lane change is occurred between 4000 and 4200 ms, 
shown in orange in the figure. 

The third scenario includes two obstacles, see Fig. 12, in which the vehicle changes 
the lane in advance to avoid collision. The times where the change lane action is 
performed are between 2000–2200 and 3200–3500 ms. One interesting observation 
is when the obstacle is located at the end of the curvature, the vehicle has the tendency
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Fig. 10 Experimental results with no obstacles 

Fig. 11 Experimental results with one obstacle 

Fig. 12 Experimental results with two obstacles 

to change lane in advance earlier than when the obstacle is on the straight path. This 
behavior has been observed in more scenarios that might be explained after the 
inclusion of the curvature as one attribute of the state in the training.
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5 Conclusion 

The performance validation of the RL model has been presented in simulation and in 
experimental tests. The results showed that scaled vehicle avoided obstacles, achieved 
high driving efficiency by taking an optimal path and executing maneuvers without 
veering off the track while maintaining the center-line of the two lane racetrack. 
Some remarks about the training model are improvement of the results obtained by 
including the curvature of the next segment in the track and also the influence of 
the rewards affect drastically the results, here one solution has been presented but 
infinite options could be implemented. 

Finally, there are many scopes for improvement, such as modify the available 
actions according to the vehicle state so it can choose the feasible actions or it 
also would be interesting to try to train the model in the experimental scenarios 
and include some physical constrains that are not considered or neglected in the 
vehicle’s behavior. Also, a longitudinal controller can be implemented to create a 
speed reference. Some improvements of the low-level controllers can be made to 
have straighter paths on the track and also while training the model it would be better 
to include large heading errors for sharp curvatures and replicate this for other tracks. 
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Abstract Merging Modular Arrangement of Predetermined Time Standard 
(MODAPTS) and techniques used in the fourth industrial revolution (4IR) such as 
Machine Learning (ML) can start to improve the user experience of time standards. 
This study used Artificial Neural Networks (ANN) applied as chatbots to see whether 
ML could indeed improve MODAPTS in terms of ease, pace, and accessibility. The 
conventional and ANN methods were compared with assistance from logistics engi-
neers, and the ANN approach. A chatbot using ANN was created and packaged on 
an html page presented to the research participants making use of a mobile device. 
The experiment used five material handling written scenarios to emulate the obser-
vation process, looking at the traditional approach when conducting a MODAPTS 
time study then followed by the ANN solution making use of the chatbot. ANN was 
found to be 0.25 min faster at a prediction rate of over 90% when the chatbot was in 
use. The result showed that machine learning could indeed be used with MODAPTS 
to equal performance and potentially improve the use of the time standard. The 
neural network was able to accurately predict the MODAPTS code of 94.7% of the 
262 activities entered by the research participants. The potential to add other ML 
learning techniques and time study methods exists, the template is flexible enough 
to be moulded into a tool that all engineers can adapt in their different working 
environment. 
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1 Introduction 

Conducting a MODAPTS analysis usually involves several components that would 
allow for a successful feasibility study, this includes but not limited to understanding 
an activity by video analysis or continuous observation, analysing possible effi-
ciencies from that observation, and most importantly an in-depth knowledge of the 
MODAPTS time standard and its principles to prove those efficiencies. Mastering 
the MODAPTS time standard can be a bit challenging and rather complicated for 
the engineer [1]. The total time it takes to conduct a MODAPTS study may take too 
long due the nature of the observed activity and converting those activity tasks to 
MODAPTS code. MODAPTS is rather an old-fashioned time standard when looking 
at its inception and application, but efforts were made to simplify the time standard 
in multiple environments. Applications such as clerical, transit, janitorial and sewing 
are some of the options an engineer may explore. These applications are dated and 
too wordy, specifically when looking to solve a problem as an engineer today, in this 
era of 4IR. Suffice to say the world has changed drastically today from the 1960’s 
era to the era of the 4IR. Furthermore, the adoption of Artificial Intelligence (AI) has 
made it easier to solve difficult problems experienced in the past [2–4]. 

Merging the MODAPTS time standard with solutions birthed from 4IR such 
as machine learning, can help reduce the complexity and improve efficiency when 
conducting feasibility studies. A notable example is research conducted by Wu et al. 
[5], who proposed incorporating motion analysis to the MODAPTS time standard 
by adding an extensive ergonomics template called Principle Components Analysis 
(PCA). The study found that the PCA-based approach was rated 80.08% amongst 
its participants and was more efficient at three minutes as opposed to the one hour 
that it took using the traditional MODAPTS approach. Another notable inclusion 
was a wearable sensory glove proposed by Mallembakam [1], the research focused 
on using a Bluetooth module mounted onto a glove that translated hand movements 
into MODAPTS code, this was compared to the traditional MODAPTS approach 
and it was found that the glove showed reliable and reputable results with that of 
using MODAPTS the conventional way. 

An untapped field that would be an impactful inclusion is the merger of 
MODAPTS and machine learning. Today machine learning is more prevalent making 
it easier to solve difficult problems and improve livelihoods [6–8]. A massive advan-
tage to researching machine learning techniques is that they are largely open sourced 
when looking at big data [9], and can be applied to the MODAPTS time standard. 

The significance of this study is that a consolidation of multiple MODAPTS 
process keywords was collected for continual neural network training. Furthermore, 
a potential pattern recondition system to assist the engineer during observations may 
emerge through continues use of the ANN research template. Hence, the research 
looks at a form of Machine Learning called Artificial Neural Networks (ANN) as 
an application to MODAPTS with the aim to improve the activities involved during 
time study observations whilst making use of the MODAPTS time standard. Hence,
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this research will look to solve the issue of rapidity and the ease of use in conducting 
a MODAPTS study making use of machine learning. 

2 Methodology 

A chatbot using ANN was created and packaged on an html page presented to the 
research participants making use of a mobile device. The experiment used five mate-
rial handling written scenarios to emulate the observation process, looking at the 
traditional approach when conducting a MODAPTS time study then followed by the 
ANN solution making use of the chatbot. 

The chatbot measured each research participant against several key attributes that 
defined the user experience toward the chatbot application. The experiment used a 
simple NN chatbot to employ a MODAPTS conversation with the research partic-
ipants. The focus was on the predicted MODAPTS code produced by the chatbot, 
each time a research participant presented an activity. Primary data was collected 
from MODAPTS time studies produced by DSV and was used to train the chatbot. 
This was mostly dialect in the form of keywords showing how DSV described their 
process activities. 

The chatbot was build making use of the python programming language, it used 
a ML module called Keras to train and implement the NN. The python code was 
executed using an integrated development environment called PyCharm. 

2.1 The Chatbot Intent File 

Constructing a chatbot consisted of several programming files working together to 
create the application. The chatbot was first initialised with a JavaScript Object 
Notation file called “intents.js”. This file defined the possible intentions that could 
take place during interactions with the chatbot [9–13]. Figure 1 shows a snippet of 
the “intents.js” file.

The intents file consisted of a tag element i.e., a subcategory that a user query 
might fall into. Each terminal class “get” and “put” were paired with a movement 
class element and the degree of difficulty to form the tag. Any query for example 
that used the “hand” movement to “get” (terminal) an object with an “easy” degree 
of difficulty would fall under the “hand_get_easy” tag or subcategory. 

The next element in the intens.js file was the patterns, a group of keywords that 
a user query must contain to fall under a specific tag or subcategory. The patterns 
keywords were created using synonyms of the terminal class (get, put) paired up 
with the movement class and the degree of difficulty. A user query “Pick box using 
your hand at an easy stance” will fall under the “hand_get_easy” category as the 
keywords “pick”,” hand” and “easy” are present in the query.
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Fig. 1 Code snippet of the “intents.js” file

Once a user query falls under a tag, then the chatbot will issue a response found 
under the responses keyword. The response of the user query was the MODAPTS 
code designated for the tag [14]. 

Table 1 shows an example of a general query made to the chatbot NN. 
The chatbot was able to break down sentences if the user was able to split activ-

ities of the sentence using a period, comma or the “And” keyword. Each research 
participant was given this example including a list of rules and conversion table to 
use when querying the chatbot. 

Table 2 shows the MODAPTS symbol conversion when querying the Chatbot 
NN.

Table 1 Example of a chatbot query 

WALK 4 STEPS TO THE TROLLEY AND WALK 5 METRES TO THE 
PICKING LIGHT. 

EXAMPLE 

OBTAIN PEN FROM POCKET WITH HAND EASY AND ASIDE WITH 
ARM TO TABLE AT SPECIFIC AREA 

TERMINAL 

MOVEMENT 

ACTIVITY NEW MOVEMENT 

PACE NUMBER 

PACE KEY 

DISTANCE KEY 

TERMINALDIFFICULTY 
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Table 2 Conversion table 

SYMBOL DESCRIPTION 

M1 Fingers 

M2 Hand 

M3 Arm 

M4 Shoulder 

M5 Extended Shoulder 

M7 Trunk 

G1 Easy 

G3 Difficult 

P0 General 

P2 Specific 

P5 Exact 

W5 Steps 

W7.75 Metres 

DI
FF

IC
U

LT
Y 

2.2 Deployment of the Experiment 

The chatbot was deployed to the research participants making use of a webpage using 
a mobile device. The code for the chatbot was packaged and stored on a server and 
accessed on request by the web page using the flask micro web framework. A user 
request would be captured on webpage, then sent to the server to query the chatbot 
NN, then perform some MODAPTS calculations and then finally returns the results 
to the user on the webpage. 

The front-end used a styling toolkit called Bootstrap to position and place the 
elements onto the webpage. The backend contained a database to hold user actions, 
MODAPTS data and user information while the application was being used. 

Each research participant was first given a questionnaire asking basic experiential 
questions relating to MODAPTS. Once the questionnaire had been completed then
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the participants were given the five scenarios to read and conduct a MODAPTS 
study with the acquired information. A stopwatch was used to measure the total 
duration that each research participant took to complete the MODAPTS study for 
each scenario and was recorded. 

The next step involved giving each participant an android device with the machine 
learning webpage. They each were required to sign up to use the application which 
was helpful as their tracked user data could be stored and accessed anytime and 
anywhere with aid of a local database. They each assessed the MODAPTS scenarios 
again this time making use of the ML App. The scenarios were built into the appli-
cation and were accessed through a touch of a button. The application was able to 
record MODAPTS durations from the time each research participant logged onto the 
application until the time they had signed off. 

The data generated from the application by the participants were collected and 
simultaneously sent to a database preparing them for analytical studies. 

Acquiring this information required building an ANN chatbot to interact with the 
user, developing a web interface for that chatbot and finally, employing elements in 
the application that would keep record of the statistics needed to define that potential 
improvement. 

There were setbacks in acquiring some primary data but ultimately scenarios 
were created to facilitate that shortfall. The prerequisites of the experiment took 
time to compile but was necessary to extract crucial information about the research 
participants. All these elements individually contributed to finding the total time to 
compare MODAPTS and the ML approach. 

2.3 Testing the Chatbot Neural Network 

Testing the chatbot involved creating a python file that would access the saved model, 
submit the user query, and give the prediction. Each prediction was assessed based 
on the intents file, if an error occurred then the intents file was adjusted, and the 
model was re-trained. This repeated action was done on the terminal of the IDE and 
then applied to the UI once the testing was completed and chatbot acceptable for use. 
Figure 2 shows the testing code snippet.

3 Results and Discussion 

The section is divided into two parts, first part focused on the results and analysis 
of the Machine Learning App approach of conducting the same MODAPTS study 
while the last part compared the two approaches in relation to the final duration with 
aid of a t-test analysis.



Performance Evaluation of Machine Learning App Approach … 123

Fig. 2 Code snippet for testing the NN chatbot

3.1 Error Accumulation 

Error accumulation monitors all errors generated by the research participants while 
making use of the application. The frequency of each error correlates to a difficulty 
in use of the application or a particular deficiency in understanding the MODAPTS 
language from the research participant. Errors monitored included: editing an activity, 
deleting an activity, input length error and MODAPTS code error. 

Table 3 depicts the error entries made by each research participant throughout all 
scenarios. 

There was a total of thirty-two errors done by the research participants. None 
of these errors contributed significantly to the functionality of the application but 
impacted the total time. The error for “description length” was encountered the 
most, a total of nineteen times appearing in four of the five scenarios. The error was 
a timestamp recorded each time the prediction button was pressed with no activity 
added. This mistake was expected as the prediction button needed to be pressed to 
activate the chatbot. Figure 3 shows a clustered column graph of the accumulated 
application errors.

Table 3 Error entities by scenario 

Activity SC1 SC2 SC3 SC4 SC5 TTL 

Code 3 1 4 

Delete 2 1 2 5 

Description length 5 7 2 5 19 

Activity 2 1 1 4 

Total 5 9 8 7 3 32 
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Fig. 3 Application errors 

3.2 Total Duration 

The total duration is a measure that analyses the total time it takes to conduct a 
MODAPTS study using the NN application. A timestamp is added each time the 
research participant log’s in or sign’s up into the NN application. Another times-
tamp is added each time a research participant logs out of the application. The two 
timestamps are the subtracted from each other to gain the total duration through by 
scenario. 

Table 4 shows a snippet of the entries entered each time a user log’s in, sign’s in 
and log’s out of the application. 

The total average time each research participant took to perform a study using the 
chatbot NN was 11.2 min. Scenario 5 displayed longest time, but this was caused 
by an outlier from research participant 4 with the higher duration of 21 min. The 
lowest recorded total average and duration was scenario 1, this was expected as the 
scenario had the least number of activities, and its aim was to gently introduce the 
participants to the chatbot application.

Table 4 Activity durations 

Participant SC1 SC2 SC3 SC4 SC5 TTA TTD 

1 6 9 10 19 11 11 55 

2 6 9 7 13 10 9 45 

3 7 9 6 6 11 7,8 39 

4 9 22 20 13 21 17 85 

Total AVR 7 12,25 10,75 12,75 13,25 11,2 

Total duration 28 49 43 51 53 224 
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3.3 Discussion of the Traditional and ML Approach Results 

The research participants reacted well to conducting a MODAPTS study under tradi-
tional means, this was expected as it is the norm. Introducing the ML application 
was at first a learning curve but gradually became easier through each scenario as 
shown by a 41.2% decrease in App navigation time from each participant. Hence, 
the notion mentioned by Wu et al. [5] with regards to a learning deficiency that new 
engineers face when presented with MODAPTS becomes less challenging and more 
manageable during study creation. A novice engineer can focus on describing the 
activity rather than the complex steps involved in MODAPTS code formulation. 

The neural network was able to accurately predict the MODAPTS code of 94.7% 
of the 262 activities entered by the research participants. This is in line with the 
findings of existing studies that have indicated the suitability of the neural network 
for predictive purpose [15–17] This aspect saved a considerable amount of time 
that the research participants would have used to formulate the MODAPTS code. 
The total average time each research participant took to perform a study using the 
chatbot NN was 11.2 min. Furthermore, when looking at phase 3 of the framework 
developed by Kumar et al. [18], activity formulation becomes simpler due to the 
library of keywords that initially and consistently get added through the continuous 
use of the ANN. 

The App alternative proved to be 0.25 min faster than the traditional approach 
when used under the same conditions. The difference may be small, but the ML 
approach performed well to produce equal results under first time users as compared 
to the already establish excel template used by an adept participant. This was echoed 
by the approach followed by Mallembakam [1] and Wu et al. [5] who implemented 
innovative tools along with the MODAPTS time standard to match and even reduce 
the duration of conducting MODAPTS time studies. This proves that MODAPTS 
can be paired external solutions to better the performance of the time standard. 

The ML chatbot however had challenges understanding some activities as it had 
a deficiency when deciphering a particular group of MODAPTS code. The group 
consisted of the element’s “R”, “E” and the finger movement, which caused the 
application to record an error or forced the research participant to manually input the 
code forfeiting the prediction. 

Furthermore, the application had no method of handling repetition when inputting 
an activity. This drastically increased the time that each research participant spent 
when using the ML alternative during the experiment. All code related errors have 
been fixed and the potential of decreasing the final ANN time is evident when the 
consistent repetition is removed from the application.
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4 Conclusion 

The objective of this study was to test the neural network using operational scenarios 
against the traditional MODAPTS observation approach. This was achieved by pack-
aging the created ANN chatbot template into an html page and handing that to the 
research participants to use and test. Five written scenarios were also used to tradi-
tionally create the MODAPTS time study using four activities. These two approaches 
were compared with each other to find the most effective and fastest method. 

Furthermore a user-friendly and workable ANN MODAPTS template was devel-
oped. This was achieved as the chatbot was packaged onto an HTML page and 
deployed onto a mobile device. The template was built to be user friendly geared 
for the research participant as it made use of a styling framework called bootstrap. 
The results obtained indicated that the ANN was found to be 0.25 min faster at a 
prediction rate of over 90% when the chatbot was in use. The result also showed 
that machine learning could indeed be used with MODAPTS to equal performance 
and potentially improve the use of the time standard. The neural network was able 
to accurately predict the MODAPTS code of 94.7% of the 262 activities entered by 
the research participants. This saved a considerable amount of time that the research 
participants would have used to formulate the MODAPTS code. The total average 
time each research participant took to perform a study using the chatbot NN was 
11.2 min. The activity formulation becomes simpler due to the library of keywords 
that initially and consistently get added through the continuous use of the ANN. 

The time difference may be small, but the ML approach performed well to produce 
equal results under first time users as compared to the already establish excel template 
used by an adept participant. 

The ANN approach makes it far easier to implement MODAPTS in multiple 
industries due to the chatbots customisable keywords and dialect recognition. A 
wealth of MODAPTS data is far more easily reachable as the template would be 
online to be used. The results show that MODAPTS ML template replaces tedious 
MODAPTS analysis done on the computer with a mobile alternative that consistently 
records user and study analytics for the betterment of overall analysis. The template 
has great potential for improvement and refinement when looking at efficiency, it 
makes data sharing amongst engineers easy due to its descriptive database. 

The potential to add other ML learning techniques and time study methods exists, 
the template is flexible enough to be moulded into a tool that all engineers can adapt in 
their different working environment not just only automotive. Future works can test 
the neural network against the traditional MODAPTS observation approach using 
other operational scenarios for more performance evaluation. 
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Abstract The Ateneo Innovation Center designs and develops a modular approach 
to medical alarm and alert systems for mechanical ventilators that enable clinicians 
to remotely monitor patient conditions and ventilator circuit status in near real-time, 
providing decision support that allows for a better diagnosis. It monitors and tracks 
the alarm events related to the ventilator waveform consisting of pressure, flow, 
and volume curves by using automatic peak detection of the curves and real-time 
recognition of time-series waveforms. The developed system combines the threshold 
alarms with embedded Artificial Intelligence to automatically detect complex alarms 
that need medical expertise such as issue detection on asynchrony, anomalies, and 
mechanical. It also differentiates the critical types of alarms, assisting clinicians via 
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1 Introduction 

In 2020, the COVID-19 pandemic disrupted the world by spreading at unprecedented 
rates and causing tens of thousands of fatalities within a few months [1]. Even with 
vaccines, its mutations unpredictably develop into various strains, and the number 
of infections and deaths are still on the rise, especially in regions where the number 
of patients in need of hospital care exceeds the availability of care. According to the 
Office of Inspector General for the U.S. Department of Health and Human Services, 
hospitals have reported a scarcity of skilled physicians needed to meet the anticipated 
patient surge. Many hospitals also stated that they lacked trained personnel who could 
operate ventilators and treat patients requiring that degree of care [2]. 

A mechanical ventilator machine is a life-support device, when the machines 
record measurements outside of normal parameters, it beeps, and alarms ring out 
to alert medical staff to potential problems. The data from the bedside monitor is 
usually lost as the monitor screen refreshes every few seconds. It requires intensive 
monitoring to identify early signs of clinical worsening and to minimize the risk of 
iatrogenic harm [3, 4]. With A-vent [5], the efforts of the Ateneo Innovation Center 
(AIC) to design, develop and operate a modular and low-cost ventilator alarm were 
described. The updated system currently triggers an alarm with the patient-ventilator 
asynchrony (PVA), anomalies, and mechanical problems as the previous system’s 
alert system was limited only to its waveform parameters such as pressure, flow, 
and volume that alerts clinicians when the parameters fall below or above the set 
limits. This development of an alarm system is a design and engineering study with 
no humans involved. 

2 Review of Related Literature 

“Fighting the ventilator” is a common occurrence when the patient’s demand does 
not match the machine’s delivery, one of the reasons users’ training is necessary 
to assure positive patient outcomes [3, 6]. The interaction between the patient and 
the machine is difficult to manage, hence the ventilator should be synced with the 
patient’s normal inhalation and exhalation cycles. 

Different ventilator designs emerged worldwide during this time of the pandemic. 
Corey et al. [7] presented a low-cost and easy-to-produce electronic sensor and alarm 
system for pressure-cycled ventilators that utilized an algorithm inspired by those 
used in hearing aids that required little memory that it can run on a microcon-
troller. The device estimated clinically useful metrics such as pressure and respi-
ratory rate and sounds an alarm when the ventilator malfunctions. The application 
of the Internet of Things (IoT) protocol on medical equipment, as demonstrated by 
Mashoedah et al. [8], was intended to protect medical workers dealing with COVID-
19 patients, particularly while medical personnel is monitoring and setting up such 
devices. Data was collected through testing, observation, and limited field tests using
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their “Define, Design, Develop, and Disseminate (4D)” approach. Rehm et al. [9] 
developed an intelligent decision support system using a Raspberry Pi that collects 
data from the ventilator unit and was able to store the stream of ventilator waveform 
and physiological data and analyzed it using supervised Machine Learning (ML) 
to classify the double triggering, breath stacking asynchronies, and acute respira-
tory distress syndrome (ARDS). It used IoT wireless connectivity to visualize the 
ventilator waveform and relied on a cloud platform to store and process the data. 

The current ventilator system does not have a self-monitoring feature, which is 
critical for ensuring that the ventilator machines are working properly and that the 
settings are appropriate for the patient’s conditions in real-time. This prompted the 
team to spearhead and start this project. 

3 System Description 

3.1 Experimental Setup 

The conventional ventilator machines are threshold-based alarms that are prone to 
frequent false alerts. There are currently no intelligent systems embedded in emer-
gency ventilators to automatically detect cycling asynchrony and generate alerts to 
clinicians. This study presented a new approach in which the patient and ventilator 
interactions characterized by a stream of ventilator waveform data were recognized 
in a real-time and stand-alone manner. Figure 1a describes the simple design of 
the A-vent unit and its experimental setup for emulating the different alarm events, 
including types of PVA, ventilator airway circuit status, anomalies, and high/low 
threshold levels occurrence.

The supplied air goes into the patient’s airway circuit through a 1 L test lung 
that mimics a patient’s lungs. The experimental setup is subject to a constant air 
supply and a one-second inspiratory and expiratory ratio. When the ventilator unit 
delivers pressurized air, the test lung expands and contracts accordingly with the 
given inspiratory and expiratory (I:E) ratio. The alert events are emulated as a proof 
of concept. The methods for emulating the patient and ventilator interactions are 
given in Table 1. Asynchrony and ventilator circuit-related alerts are the two types of 
modeled patient and ventilator interaction alarms. The emulated waveforms consist 
of eight classes, labeled as (1) normal waveform (NW), the common types of PVA 
include (2) delay cycling (DC1), (3) double triggering (DT1), (4) reverse triggering 
(RT1), and (5) ineffective effort (IE1) and alerts related to ventilator airway circuit 
status include (6) disconnected pressure port (DPP2), (7) disconnected tube (DT2), 
and (8) machine failure (MF2).

To create a unique pattern of waveforms, the patient and ventilator interactions are 
modeled by altering the open-close state of the ventilator unit’s manual air release 
valve during the inspiratory period, disconnecting components of the airway circuit, 
and shutting down the ventilator unit. The emulated asynchrony waveforms are
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Fig. 1 Experimental setup a for emulating and capturing ventilator waveform data, and b modular 
intelligent ventilator alarm system prototype

Table 1 Summary of emulated ventilator waveform 

Labels Types of asynchronies Emulation method 

NW Normal waveform Valve is opened a little bit 

DC1 Delay cycling Valve is opened then close 

DT1 Double triggering Valve is closed, opened, then closed 

RT1 Reverse triggering Valve is closed then opened 

IE1 Inefficient effort Valve is fully opened 

DPP2 Disconnected pressure port The pressure sensor is disconnected 

DT2 Disconnected tube Test lung from the tube is removed 

MF2 Machine failure The ventilator unit is shut down 

1Alarms related to common types of PVA 
2Alarms related to ventilator airway circuit status

comparable to actual types of PVA associated with cycling and patient effort criteria 
and have been evaluated by a physician. The rest are machine and airway circuit 
issues such as power failure, air hoses, and circuit tube disconnection. 

3.2 Alarm Algorithm 

We achieved significant improvements to a conventional ventilator alarm system 
in this study by embedding Artificial Intelligence (AI) within a sensor-equipped
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Fig. 2 Data flow for A-vent modular intelligent alarm device 

ventilator machine. We performed built-in testing of the ventilator operation and 
analyzed its waveform for the recognition of time-series alarm events. When devia-
tions from regular operations occur, ML together with data processing and sequencing 
algorithms alert medical staff. 

Figure 2 illustrates the data flow describing the processing and algorithms of the 
alarm module for detecting the critical and important types of alerts. The ventilator 
waveforms comprise three parameters which include (1) pressure, (2) flow and (3) 
volume that was captured by a medical-grade flow meter and pressure sensor. The 
real-time data from the sensors are processed by the microcontroller unit. There are 
three algorithms used to develop the intelligent ventilator alarm module: (1) a couple 
of recursive filter algorithms, (2) K-means clustering, and (3) a deep neural network. 
Each algorithm specializes in detecting different types of alarms. 

We employed the study of Corey et al. [8] to track the peak-to-peak pressure 
cycling (i.e., PIP, and PEEP) and the peak tidal volume. The respiratory rate is 
calculated by measuring the inspiratory period with the number of breaths per minute 
given by the I:E ratio. The PIP, PEEP, peak tidal volume, respiratory rate, and anomaly 
score are the five parameters for the threshold-based alarm. The decisions of these 
alarms are based on whether the current parameter falls above or below the set 
thresholds. 

On the other hand, the raw data needed to be buffered for the processing which 
converts the time-series data to data suitable for ML algorithms. The spectral analysis 
used the extracted features of the raw data to model the PVA and mechanical state 
and then feed it to the deep neural network classifier. The basis of the decision for 
alarms was the predictions of the model represented by labels and accuracy. 

The K-means clustering algorithm was used to find the natural pattern of the data 
and to detect anomaly data from the dataset. If the ventilator waveform data samples
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do not belong to any data clusters, the observation is categorized as anomalous [10]. 
The K-means anomaly returns a value called anomaly score if the observation score 
is greater than the threshold score, which it identifies as anomalous. The K-means 
clustering complements the classifier detection model, which detects the observation 
outside the dataset also known as an anomaly. 

The false alarm triggering was avoided by utilizing the positive alarm sequence 
function. However, it provides an alarm delay for investigating the alarm sequence 
before triggering the alarm indicators. The delay varies with the data processing 
latency and the number of occurrences determines a positive alarm. The positive 
alarm sequence function ensures the series of alarm events occurred. If the series of 
alarms exceeds the set number of occurrences, it is characterized as a positive alarm 
and the alert indicator may trigger. 

3.3 Data Gathering and Dataset 

The ventilator waveform is captured using a medical-grade Sensirion flow meter 
(SFM3300) and differential pressure sensor (MPX5010DP) are shown in Fig. 1b. 
Figure 3 shows the ventilator waveforms comprising three parameters which include 
(1) pressure, (2) flow and (3) volume, which are captured by the sensors interfaced 
to a microcontroller.

The MPX5010DP is a differential pressure sensor designed to interface with a 
microcontroller or microprocessor that has an analog to digital (A/D) converter. It 
is an analog device with a high-resolution analog voltage signal ranging from 0 to 
5 V that are proportional to the applied pressure of 0 to 10 kPa. The pressure is 
proportional to the output voltage, the measured pressure PcmH2O in centimeter of 
water (cm-H2O) can be described as: 

Pcm H 2 O =
((
Vout − Vof  f  set

))
/Sensi tivi t y/10 (1) 

where the V out is the output voltage of the pressure sensor in millivolts which is 
fed to a 16-bit A/D converter. The parameters offset voltage, V offset, and Sensitivity 
which values can be seen in the operating characteristic section in the datasheet is 
0.2V and 4.413 mV/mmH2O respectively. The Sensirion SFM3300 is a digital and 
bidirectional flow sensor for proximal flow measurement in respiratory applications 
that can measure a flow range of ±250 standard liters per minute (SLM). Based on 
the product technical specification the flow FSLM measured in SLM is described as: 

FSL  M  =
(
valueI 2C − valueof  f  set

)
/scale f  actor (2) 

where the valueI2C is the integer return value by the flow meter from the I2C commu-
nication interface. The parameter valueoffset and scale factor (1/SLM) can be seen 
in the electrical characteristic section of the product specification, where the given 
values are 32,768, and 120 respectively. The calculation of tidal volume was derived
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Fig. 3 The pressure, flow, and volume emulated ventilator waveforms as captured by the sensors; 
a normal waveform, b delay cycling, c double triggering, d reverse triggering, e inefficient effort, 
f disconnected pressure port, g disconnected tube, and h machine failure

from flow measurements. Given that the A-vent unit delivers pressurized air at the 
rate of a one-second I:E ratio, the tidal volume TVmL measured in millimeters (mL) 
is described as: 

T VML  =
∑

FSL  M  /60 ∗ Δt (3) 

where the FSLM is the flow rate expressed in standard liters per minute, and Δt is  
the sampling interval obtained from the sampling rate. The continuous time-series 
waveform data are stored as comma-separated values (CSV) files with the timestamp 
in millisecond intervals given by the sampling rate to create a dataset. The emulated 
waveform was sampled at the rate of 50 Hz and captured continuously for 10 min for 
each class. The dataset was randomly divided into training, validation, and testing 
set. Before training the PVA and machine state recognition model, the dataset was 
processed to reduce its samples represented by its features as inputs to ML algorithms. 

3.4 Features Extraction 

Embedded devices such as microcontrollers have limited computational power and 
memory, making it vital to optimize the processing of large amounts of data. Feature
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Fig. 4 3D graph of features extracted from the raw data of the emulated ventilator waveforms 

extraction is a dimensionality reduction technique that reduces a large set of raw data 
into smaller groups for processing while retaining the information in the original data 
set [11, 12]. Analyzing time-series signals such as sensor data from the ventilator, 
this study employed spectral analysis as a features extraction algorithm. It processes 
the ventilator time-series signal to convert it into a frequency domain that extracts its 
spectrum characteristics. Figure 4 shows a 3D graph of RMS features extracted from 
the raw data of the emulated ventilator waveforms. The spectral analysis was able 
to group each class, making it easier for the ML algorithm to generalize the data. 
The algorithm extracted 11 spectral features of the raw data per axis; there were 33 
features as input to the Neural Network classifier. 

3.5 Ventilator Asynchrony Recognition Model and Near 
Cloud System 

This study employed the optimized deep neural network enough to run on micro-
controllers that classify the deviation of time-series waveform signal from the 
normal operation in real-time and standalone. Microcontrollers have limited memory 
and processing power, which places constraints on the sizes of machine learning 
models. The model was trained through the TensorFlow-based AutoML platform and 
converted the final model into the TensorFlow Lite version which allowed running
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the model on a microcontroller. The researchers chose ESP32-based processors (e.g., 
DOIT DevKit V1) to combine AI/ML capability with its IoT applications. 

The researchers developed a data caching system, a wireless mesh network called 
AIC Near/Mobile Cloud, a private cloud infrastructure that was also included in some 
projects i.e., the A-vent, and a phototherapy light system for jaundice treatment that 
allows IoT devices to communicate [5, 13, 14]. The local data caching system can 
collect real-time data from sensor-equipped medical machines and perform real-time 
data analysis for hospital medical staff on multiple machines. The device’s server 
connects the IoT medical machines to the time-series database that can store real-
time data and analysis performed by AI/ML. It automatically stores the data in Unix 
timestamp format that allows graphing the historical clinical data with descriptive 
analytics in the remote monitoring dashboard for clinician reference. 

4 Results and Discussions 

4.1 Ventilator Asynchrony Recognition Alarms 

The team employed the TinyML approach to classifying various types of asynchrony 
beyond the normal waveform that generates an alert. The results were obtained from 
30 to 50 s of breath cycling, where the asynchronies and ventilator circuit status 
were emulated after 3 normal breath cycling. Figure 5 shows the alarms for emulated 
PVA. The breath cycling consists of pressure, flow, and volume represented by blue, 
orange, and green lines, respectively. The alarm signal is represented by a red line, if 
its amplitude is high, the sequence of positive alarms is detected to generate an alert 
signal.

It shows the delay cycling (DC), double triggering (DT), ineffective effort (IE), 
and reverse triggering (RT) asynchronies. The embedded neural network was able to 
recognize the asynchronies from normal waveforms in near real-time. The basis of 
alarm is the prediction accuracy and its labels. The positive alarm event is described 
if the predicted breath cycling is other than the normal waveform, and when the 
prediction accuracy surpasses the confidence level threshold of 0.80. The waveforms 
are sampled at 50 Hz with 5 sequence samples of positive alarm to avoid triggering 
of false alarm. The alarm algorithm took ~6–15 s (3–7 breath cycles) to trigger the 
alarm signal. It only took 1–2 normal breath cycles to reset the alert signal. 

Figure 6 shows the machine, ventilator circuit, and anomaly alarms that include 
the disconnected pressure port (DPP), disconnected tube (DT), machine failure (MF), 
and emulated anomalous asynchrony. The alarm algorithm took ~10–25 s to generate 
an alert signal, which is somehow longer for asynchrony alarms. Furthermore, it took 
~2–12 s (1–6 breath cycle) to reset the alert signal. The anomalous waveform was 
taken by rapidly turning around the air release valve from side to side. The anomaly 
detection took ~4 s (2 anomalous breath cycles) to trigger the alarm signal when the 
anomaly score exceeds the normal threshold. It took ~10 s (5 normal breath cycles) to
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Fig. 5 Ventilator asynchrony alarms: a delay cycling, b double triggering, c ineffective effort, 
d reverse triggering

reset the alarm signal. Hence, this study proves that the future mechanical ventilator 
device can detect time-series types of alarms in near real-time, which assists the 
healthcare workers to reduce their workload and sustain the critical services of the 
healthcare system.

4.2 Ventilator Asynchrony Recognition Model Performance 

To evaluate the model, the researchers randomly divided the dataset into (a) training, 
(b) validation, and (c) testing sets with 60%, 20%, and 20% partitions respectively. 
The model was evaluated using 10 k-fold cross-validations. The model performance 
for validation and testing sets was summarized using a confusion matrix as provided 
in Tables 2 and 3. It consists of m rows and n columns, where m is the actual 
emulated asynchrony and n is the asynchrony predicted by the algorithm. The diag-
onal elements show the accuracy of the predicted breath cycling matched with the 
actual emulated waveforms.

The weighted model accuracy resulted from validation and test sets are 97.8% 
and 98.01%, respectively. Both accuracies are relative to each other, thus the PVA 
and mechanical state recognition model can well generalize the emulated ventilator 
waveforms. The performance of the classifier model reflects how the features were
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Fig. 6 Machine, patient airway circuit, and anomaly-related alarms: a disconnected pressure port, 
b disconnected tube, c machine failure, d anomalous asynchrony

Table 2 Model performance from validation set 

DC1 DPP2 DT2 DT1 IE1 MF2 N RT1 

DC1 0.93 0 0 0.04 0 0 0.01 0.02 

DPP2 0 1.0 0 0 0 0 0 0 

DT2 0 0.01 0.99 0 0 0 0 0 

DT1 0.08 0 0 0.91 0 0 0.01 0 

IE1 0 0 0 0 1.0 0 0 0 

MF2 0 0 0 0 0 1.0 0 0 

N 0 0 0 0.1 0 0 0.99 0 

RT1 0 0 0 0 0 0 0 1.0

grouped as shown in Fig. 4. The delay cycling and double triggering overlapped 
each other causing confusion between them. The features for normal waveform and 
reverse triggering are concentrated. However, the data points were plotted near delay 
cycling and double triggering which has an insignificant effect on its performance. 
The rest of the classes were clustered independently which enabled the ML algorithm 
to be able to generalize data easily.
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Table 3 Model performance from test set 

DC1 DPP2 DT2 DT1 IE1 MF2 N RT1 

DC1 0.90 0 0 0.02 0 0 0.01 0 

DPP2 0 1.0 0 0 0 0 0 0 

DT2 0 0 1.0 0 0 0 0 0 

DT1 0.04 0 0 0.95 0 0 0 0 

IE1 0 0 0 0 1.0 0 0 0 

MF2 0 0 0 0 0 1.0 0 0 

N 0 0 0 0 0 0 0.99 0 

RT1 0 0 0 0 0 0 0 0.99

The ESP32 was able to process the stream of ventilator waveform data with 
19 ms and 1 ms latency for the features extraction and inferencing, respectively. The 
features were buffed within 2000 ms given by its window length; thus, the inferencing 
results were printed after the data had been processed. This result proves that future 
ventilator machines can be embedded with AI/ML to detect time-series alarms in 
near real-time and stand-alone assist clinicians in monitoring critical patients. 

5 Conclusion 

As we embrace a circular economy for the development of biomedical devices, 
this study demonstrated a low-cost solution to upgrading medical machines such as 
ventilators with new AI/ML analysis and real-time data storage in the Near Cloud 
network. We modeled the patient-ventilator interaction by varying the airflow within 
the ventilator unit. The captured ventilator waveform was validated by the physi-
cian, as a proof of concept. The AIC team further improved the functionalities of 
the previous minimum viable ventilator by integrating a standalone alarm system 
utilizing embedded deep learning for near real-time detection of ventilator asyn-
chrony and machine status, and clustering for detecting anomalies to assist clinicians 
in monitoring patients who require respiratory support. This development demon-
strates how a conventional ventilator can be improved and linked to a new generation 
of medical machines/devices. 

This study proved that the future mechanical ventilator machine can detect time-
series types of alarms in near real-time, which assists the healthcare workers to 
reduce their workload and sustain the critical services of the healthcare system. Its 
AI predictive capabilities are supposed to support physicians in decision-making, not 
replace their expertise. The team also presented how the system can be integrated into 
the AIC Near/Mobile Cloud with the multiple sensor-equipped medical machines as 
part of the IoMT system initiatives.
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Effect of Fluid Visco-Temperature 
Properties on Pilot-Operated Relief Valve 
Stability 

Dong Wang, Yaobao Yin, Jiayang Yuan, Junyong Fu, and Wending Li 

Abstract The viscosity of fluid varies with temperature, and the dynamic behavior 
of the relief valve may be impacted in this situation. After obtaining the oil visco-
temperature properties, the dynamic mathematical model of a pilot-operated relief 
valve is derived. To obtain the effect of the visco-temperature properties on the 
stability of pilot-operated relief valves, the system transfer function block diagram is 
constructed. The frequency-domain analysis method was then utilised to investigate 
its dynamic behavior. The results suggest that the viscosity of the oil is thin at high 
temperatures, resulting in low flow resistance in the dynamic feedback orifice. In this 
case, the mass-spring vibration system composed of the main poppet and mechanical 
spring has a natural frequency close to the relief valve’s operating frequency, which 
is not conducive to the stability of the relief valve. The oil inside the main valve 
spring chamber, however, is equivalent to a liquid spring with an extraordinarily 
high stiffness since the viscosity of the fluid is thicker at low temperatures, which 
decreases the flow capacity of the orifice. The main valve’s mass spring vibration 
system has a natural frequency in this instance that is significantly higher than the 
valve’s operating frequency, enhancing the stability of the relief valve. Finally, the 
numerical simulation results demonstrate the rationality of the theoretical analysis. 
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1 Introduction 

The relief valve is a basic pressure control component in hydraulic circuits and is 
widely used to hold a preset pressure range in the system or to protect circuits from 
overloading [1]. The pilot-operated relief valve is a two-stage structure that was 
invented by Vickers in 1931 [2]. Because of their excellent pressure-flow charac-
teristics, pilot-operated relief valves are frequently employed in high-pressure and 
large-flow conditions. Inevitably, the relief valve always encounters the problem 
of switching between extremely high and extremely low temperatures. It is worth 
noting that the viscosity of oil changes with temperature, which in turn affects the 
dynamic characteristics of the hydraulic system. Scholars have carried out a lot of 
research on the viscosity-temperature characteristics of fluids. Reynolds equation, 
Slotte equation, Erying equation, Walther equation, and others have been proposed 
[3, 4]. In addition, the researchers studied the influence of fluid visco-temperature 
properties on the stability of hydraulic systems, and several improving methods were 
put forward. The most efficient of these is the method of thickening low-viscosity oils 
using high-polymer additives [5]. The vibration phenomenon of the relief valve has 
also attracted great interest from researchers. Hayashi demonstrated that a variety of 
factors, including the impact of the spool and seat, the hysteresis of transient hydrody-
namic force, the piping system, and the coupling phenomenon between components, 
can induce poppet valve instability [6]. Besides, many studies show that the spool 
motion damping coefficient, orifice size, spool half cone angle, pre-compression of 
the adjusting spring, and valve chamber volume all affect relief valve stability [7– 
18]. Merritt analyzed the stability of a relief valve and concluded that a good match 
between fixed throttle and sensitive chamber volume can improve the stability of the 
relief valve [19]. 

However, there is no convincing explanation for the instability of the pilot relief 
valve caused by the visco-temperature properties of the oil. In this research, the effect 
of visco-temperature properties on pilot-operated relief valve stability is investigated. 
This article is organized as follows: After describing the operating principle of the 
studied valve, a detailed mathematical model is proposed. The effect of viscosity 
changes on the stability of a pilot-operated relief valve is further investigated by a 
frequency domain analysis method. Ultimately, numerical simulation was used to 
validate the theoretical conclusions. 

2 Description of the Pilot-Operated Relief Valve 

Typically, the pilot-operated relief valve consists of a main valve and a pilot valve. 
Figure 1 illustrates the structure of a pilot-operated relief valve, and the corresponding 
schematic diagram is shown in Fig. 2.

As  shown in Fig.  2, The supply pressure from chamber A is transmitted to chamber 
C via the sharp-edged orifice R1 and acts on the pilot valve, then to chamber B via
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Fig. 1 Structure diagram of a pilot-operated relief valve: 1. Valve block; 2. Valve sleeve; 3. Main 
poppet; 4. Mainspring; 5. Dynamic pressure feedback orifice R2; 6. Pilot valve seat (mainspring 
seat); 7. Sharp-edged orifice R1; 8. Pilot poppet; 9. Pilot spring; 10. Pilot spring seat; 11. Adjustment 
bolt; A. Pressure controlled chamber; B. Pressure sensing chamber; C. Pressure sensitive chamber 

Fig. 2 Schematic diagram of a pilot-operated relief valve: 1. Hydraulic pump; 2. Main valve; 3. 
Pilot valve; 4. Tank

the dynamic pressure feedback orifice R2. The pilot valve remains closed by preload 
spring force as long as the pressure pc does not exceed the value preset at the pilot 
stage. Meanwhile, Pascal’s Law holds that ps = pb = pc. The main poppet is in a 
hydraulically balanced state, but it is also seated on the valve seat by preloaded spring 
force. Once the system pressure ps reaches the so-called cracking pressure, the pilot 
valve opens to release pressure in chambers C and B. The pressure loss caused by the
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Fig. 3 Visco-temperature 
characteristics of the 46# 
hydraulic oil 

orifice R1 results in a pressure difference between the two sides of the main poppet, 
and the main stage opens, dumping excess fluid from chamber A into the tank to 
achieve system pressure regulation. 

3 Visco-Temperature Properties of the Fluid 

The Walther Equation can be utilized to express the visco-temperature properties of 
the mineral oil type medium used in this study (46# hydraulic oil). 

lg lg(ν + N ) = L + M lg(273 + t) (1) 

where ν is the kinematic viscosity, ν = μ/ρ, μ is the dynamic viscosity, L and M 
are characteristic constants, t is the temperature, and N is a general constant that 
applies to all fluids except low viscosity fluids, N = 0.7. As shown in Fig. 3, the oil’s 
viscosity becomes thinner as the temperature increases. 

4 Mathematical Model 

The following assumptions were made in the formulation of the relief valve mathe-
matical model: 1. The effective bulk modulus of the fluid is assumed to be constant. 
2. The pressure at the relief valve outlet is assumed to be equal to the tank pressure. 
3. Perturbations are assumed to be minimal so that the orifice characteristics can 
be linearized around the operating point. 4. Leakage around the main poppet is 
negligible.
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4.1 Nonlinear Dynamic Mathematical Model 

The dynamic mathematical model of the pilot-operated relief valve is as follows: 
The flow passing through the relief valve is given by 

Qp − QL = Qx + Qy (2) 

where Qp is the supply flow rate, QL is the flow rate to load, Qx is the flow rate at 
the pilot port, and Qy is the flow rate at the main port. 

As shown in Fig. 1, when the flow continuity equation is applied to the chamber 
A of volume VA, yields 

Qp − QL − Qr1 − Qy − 
VA 

E 

d ps 
dt 

− A1 
dy 

dt 
= 0 (3)  

where Qr1 is the flow rate passing through the sharp-edged orifice R1, E is the bulk 
stiffness of fluid, ps is the pressure in chamber A, A1 is the cross-sectional area of 
the main poppet, y is the main valve displacement. 

The flow rate passing through the main exit port can be represented by the well-
known relation 

Qy = Cd1 Ay 

/
2 ps 
ρ 

(4) 

where Cd1 is the discharge coefficient of the main exit port, Ay is the flow area of 
the main port, Ay = πd1ysinα(1−ysin2α/(2d1)), d1 is the diameter of the main exit 
port, α is the half-angle of the main valve. 

The flow rate passing through the sharp-edged orifice R1 is given by 

Qr1 = Cr1 
πd2 

r1 

4 

/
2(ps − pc) 

ρ 
(5) 

where Cr1 is the discharge coefficient of orifice R1, dr1 is the diameter of orifice R1, 
and pc is the pressure in chamber C. 

The force equilibrium equation of the main poppet is expressed as 

m1 
d2 y 

dt2 
= A1(ps − pb) − k1(y + y0) − Cd1Cv1π d1 sin(2α)yps − f1 

dy 

dt 
(6) 

where m1 is the effective main poppet mass (including 1/3 spring mass), pb is the pres-
sure in chamber B, k1 is the mainspring stiffness, y0 is the constant pre-compression 
of the mainspring, Cv1 is main port velocity coefficient, and f 1 is the viscous damping 
coefficient of the main poppet, f 1 = μAv1/δ1, Av1 is the equivalent wetting area of 
the main poppet, and δ1 is the clearance between the main poppet and valve body.
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The continuity equation as applied to chamber C, of volume VC, yields 

Qr1 + Qr2 − Qx − A2 
dx 

dt 
− 

VC 

E 

d pc 
dt 

= 0 (7)  

where Qx is the flow rate through the pilot stage, A2 is the cross-sectional area of the 
pilot poppet, and x is the pilot valve displacement. 

The flow rate passing through the pilot exit port can be represented by 

Qx = Cd2 Ax 

/
2 pc 
ρ 

(8) 

where Cd2 is the discharge coefficient of the pilot exit port, Ax is the flow area of the 
main port. Ax = πd2xsinβ(1−xsin2β/(2d2)), d2 is the diameter of the pilot exit port, 
and β is the half-angle of the pilot valve. 

The force equilibrium equation of the pilot spool is expressed as: 

m2 
d2x 

dt2 
= A2 pc − k2(x + x0) − Cd2Cv2πd2 sin(2β)xpc − f2 

dx 

dt 
(9) 

where m2 is the effective pilot poppet mass, k2 is pilot spring stiffness, x0 is the pilot 
spring pre-compression, Cv2 is pilot port velocity coefficient and f 2 is the viscous 
damping coefficient of the pilot spool, f 2 = μAv2/δ2, Av2 is the equivalent wetting 
area of the pilot poppet, δ2 is the clearance between the pilot poppet and valve body. 

The flow rate passing through the dynamic pressure feedback orifice R2 is given 
by: 

Qr2 = 
πd4 

r2 

128μlr2 
(pb − pc) (10) 

where dr2 is the diameter of orifice R2, lr2 is the length of orifice R2. 
The continuity equation as applied to the chamber B, of volume VB, yields 

A1 
dy 

dt 
− Qr2 − 

VB 

E 

d pb 
dt 

= 0 (11) 

4.2 Linearization Model and System Block Diagram 

Considering small perturbations for Eqs. (3, 4, 5, 6, 7, 8, 9, 10, and 11) near the 
operating point under rated flow, and taking Laplace transforms, a linearized model 
of the dynamic behavior of the valve was developed, as the following equations.
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Qp − QL − Qy − Qr1 − 
VA 

E 
pss − A1ys = 0 (12)  

Qy = KA ps + KBy (13) 

Qr1 = KC(ps − pc) (14) 

(A1 − KDyx)ps − A1 pb =
(
m1s

2 + f1s + k1 + KD psx
)
y (15) 

Qr1 + Qr2 − Qx − A2xs  − 
VC 

E 
pcs = 0 (16) 

Qx = KE pc + KFx (17) 

(A2 − KGxx)pc =
(
m2s

2 + f2s + k2 + KG pcx
)
x (18) 

Qr2 = Gr(pb − pc) (19) 

A1ys − Qr2 − 
VB 

E 
pbs = 0 (20)  

The physical meanings and expressions of Kn are shown in Table 1. 
The system block diagram of the pilot-operated relief valve may be developed 

based on the above linearization model, by taking the flow rate at the inlet as input 
and the pressure of chamber A as output, as shown in Fig. 4. The physical meanings 
and calculation formulas of ωn in Fig. 4 are shown in Table 2. From Fig.  4, viscosity 
affects the dynamic behavior of circuits 1, 2, 3, and 4, which are marked in the 
figure. Circuits 1 and 4 among them contain the same components, indicating the 
transfer function of the main valve mass-spring vibration system. Circuit 2 depicts 
the pilot valve pressure control chamber’s transfer function. The transfer function

Table 1 Physical meanings and expressions of Kn 

Sign Physical meaning Expressions 

KA Flow pressure coefficient of main exit port KA = Cd1πd1 sin αyx 
√
1/2ρpsx 

KB Flow gain of main exit port KB = Cd1πd1 sin α 
√
2 psx/ρ 

KC Hydraulic conductivity of orifice R1 KC = Cr1πd2 r1 
√
1/2ρ( psx − pcx)/4 

KD Equivalent stiffness of steady hydrodynamic 
force of the main valve 

KD = Cd1Cv1πd1 sin(2α) 

KE Flow pressure coefficient of pilot port KE = Cd2π d2xx sin β 
√
1/2ρpcx 

KF Flow gain of pilot port KF = Cd2πd2 sin β 
√
2 pcx/ρ 

Gr Fluid conduit of orifice R2 Gr = πd4 r2/(128μlr2) 
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Fig. 4 The system block diagram of the pilot-operated relief valve

of the pilot valve spring-mass vibration system is represented by Circuit 3. The 
dynamic characteristics of both the main valve system and the pilot valve system 
will be impacted by the change in fluid viscosity, which can be demonstrated by the 
analysis above. 

5 Frequency Domain Analysis of Valve Subsystems 
Stability 

In this section, the frequency domain analysis method was used to study the valve’s 
dynamic behavior. The following Table 3 lists the complete parameters utilized in 
the investigation. The steady-state operating point of the relief valve, under a flow 
rate of 220 L/min, 40 °C, can be determined by solving Eqs. (3, 4, 5, 6, 7, 8, 9, 10, 
and 11) through a simple analytical method, as listed in following Table 4.
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Table 2 Physical meanings and expressions of ωn 

Sign ωn Physical meaning Expressions 

ω1 Natural frequency of main spring-mass vibration system ω1 = √
(k1 + KD psx)/m1 

ω2 Natural frequency of pilot spring-mass vibration system ω2 = √
(k2 + KG pcx)/m2 

ω3 Break-frequency of the chamber A ω3 = E(KA + KC)/VA 

ω4 Break-frequency of the chamber C ω4 = E(KC + KE)/VC 

ω5 Break-frequency of the differential link of main port ω5 = KB/A1 

ω6 Break-frequency of the differential link of pilot port ω6 = KF/A2 

ω7 Break-frequency of the chamber B ω7 = EGr/VB 

ω8 Break-frequency of the orifice R2 ω8 = Gr/A2 
1 

ω9 Break-frequency of the chamber B ω9 = VB/E

Table 3 Main parameters utilized in the investigation 

Parameter Value Parameter Value Parameter Value 

m1 (g) 30 α (°) 30 VA (mL) 1000 

m2 (g) 5 β (°) 15 VB (mL) 0.5 

k1 (N/mm) 20 Av1 (mm2) 220 VC (mL) 0.7 

k2 (N/mm) 50 Av2 (mm2) 94.2 l1 (mm) 25 

x0 (mm) 3.5 δ1 (µm) 10 l2 (mm) 10 

y0 (mm) 10.8 δ2 (µm) 20 dr1 (mm) 1.0 

d1 (mm) 20 Cd1, Cd2 0.65 dr2 (mm) 1.4 

d2 (mm) 3 Cr1 0.61 lr2 (mm) 10 

E (MPa) 800 ρ (kg/m3) 889 μ (Pa·s) 0.041 (40 °C) 

Table 4 Steady-state operating point 

Parameter Value Parameter Value 

Chamber A pressure psx(MPa) 30.0 Pilot valve displacement xx (mm) 0.11 

Chamber C pressure pcx(MPa) 27.1 Main valve displacement yx (mm) 0.68 

5.1 Stability of Pilot Valve Subsystem 

The system transfer function of the pilot valve subsystem is 

Gpilot(s) = 
KF( A2−KGxx) 

(KC+KE)(k2+KG pcx)

(
s 
ω7 

+ 1
)(

s 
ω6 

+ 1
)

{
s2 

ω4ω7 
+

[
1 
ω4 

+ 1 
ω7 

+ 1 
(KC+KE)ω9

]
s + 1

}(
s2 
ω2 

+ 2ζ2 
ω2 
s + 1

) (21)
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high similarity 

Fig. 5 The Bode diagram of pilot valve subsystem Gpilot(s) at various viscosities 

Figure 5 depicts the Bode diagrams of the pilot valve subsystem at various viscosi-
ties. There is not much variation in the dynamic characteristics because the pilot valve 
subsystem’s dynamic characteristics are virtually unaffected by changes in viscosity. 

5.2 Stability of Main Valve Subsystem 

The system transfer function of the main valve subsystem is 

Gmain(s) = 
KB( A1−KD yx) 
(KA+KC)Km1

(
s 
ω5 

+ 1
)(

s 
ω7 

+ 1
)

[
s3 

ω2 
1 ω7 

+
(

2ζ1 
ω1ω7 

+ 1 
ω1

)
s2 +

(
1 
ω7 

+ 2ζ1 
ω1 

+ 1 
Km1ω8

)
s + 1

](
s 
ω3 

+ 1
) (22) 

where Km1 is the main valve equivalent mechanical spring stiffness, Km1 = k1+KDpsx. 
Figure 6 depicts the Bode diagrams of the main valve subsystem at various 

viscosities.
The main valve displays various dynamic behaviors depending on the viscosity 

grade. The higher the viscosity, the better the stability margin of the main valve. But 
it’s also clear that there are two situations. In the case of low viscosity, an oscillation 
element and a first-order inertial element constitute the characteristic equation of the 
main valve system. The low viscosity resulting in low flow resistance in the orifice 
R2. In this case, the mass-spring vibration system composed of the main poppet and 
mechanical spring has a natural frequency close to the operating frequency of the 
relief valve, which is not conducive to the stability of the relief valve. However, the 
through-flow capacity of the orifice R2 is severely decreased if the viscosity reaches 
a particular level (μ = 0.0558 Pa·s). The oil inside chamber B is equivalent to a
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oscillation link resonance frequency 

Fig. 6 The Bode diagram of main valve subsystem Gmain(s) at various viscosities

liquid spring with an extraordinarily high stiffness. The resonance frequency of the 
oscillation element in the main valve control system is significantly higher than the 
natural frequency of the main spring mass vibration system and considerably farther 
away from the operating frequency of the relief valve, and may improves the stability 
of the main valve subsystem. 

Based on the above analysis, it can be concluded that: if the temperature of the 
fluid is low enough, a larger viscosity value may effectively enhance the stability of 
the main valve subsystem. And local stability like this may have a positive effect on 
the global stability of the pilot-operated relief valve. 

6 Nonlinear Simulation of the Valve Under Study 

The pilot-operated relief valve has 3 operational states. 

I. As oil injection, ps and pc gradually rise, but the system pressure ps is too low to 
open the main valve and pilot valve at this time. There is no flow at both the main 
and pilot ports, Qy = 0, Qx = 0. The mathematical model of this state is 

Qp − QL − Qr1 − 
VA 

E 

d ps 
dt 

= 0 (23) 

A1(ps − pb) − k1(y + y0) + Ft1 = 0 (24)  

Qr1 + Qr2 − 
VC 

E 

d pc 
dt 

= 0 (25)
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Qr2 + 
VB 

E 

d pb 
dt 

= 0 (26) 

A2 pc − k2(x + x0) + Ft2 = 0 (27) 

where F t1 and F t2 are the reaction forces of the valve seat to the main poppet and 
pilot poppet, respectively. 

II. ps and pc rise further as a result of the continuous oil inflow, and the pilot valve is 
opened. However, the pressure differential between chambers A and B is insufficient 
to open the main valve by overcoming the main valve’s spring force. Currently, the 
pilot-operated relief valve’s mathematical model is 

Qp − QL − Qr1 − 
VA 

E 

d ps 
dt 

= 0 (28) 

0 = A1(ps − pb) − k1(y + y0) + Ft1 (29) 

Qr1 + Qr2 − Qx − A2 
dx 

dt 
− 

VC 

E 

d pc 
dt 

= 0 (30)  

Qr2 + 
VB 

E 

d pb 
dt 

= 0 (31) 

m2 
d2x 

dt2 
= A2 pc − k2(x + x0) − Cd2Cv2πd2 sin(2β)xpc − f2 

dx 

dt 
(32) 

III. Once the ps increases to the pre-set value, both the pilot valve and the main valve 
are open. In this case, the mathematical model of the pilot-operated relief valve is 
consistent with Sect. 3.1 (Eqs. 3, 4, 5, 6, 7, 8, 9, 10, and 11). 

In this section, the dynamic numerical simulation model for such a valve was 
produced in the software Matlab/Simulink using solver ode45, which implements 
a Runge–Kutta method with a fixed time step(1 × 10–6) for accurate computation. 
The supply flow (Qp−QL), which steps from 0 to 220 L/min at 0.1 s, is taken as the 
input signal, and with the chamber A pressure ps as an output signal, the dynamic 
characteristics of the relief valve can be derived. Figure 7 depicts the relief valve’s 
three operational modes.

The system pressure ps produced from numerical simulation with varied viscosi-
ties are shown in Fig. 8. The spool motion damping may be relatively modest if 
the fluid viscosity is low (μ = 0.0096 Pa·s), which might lead to instability of the 
relief valve. However, if the viscosity increases to a certain value (μ ≥ 0.041 Pa·s), 
the relief valve’s stability showed a good state. Considering that the highly viscous 
fluid will significantly dampen the movement of the valve core. Moreover, it is worth 
noting that the system pressure will vibrate strongly for a while when the viscosity 
μ = 0.0018 Pa·s, and then the amplitude will gradually diminish (Fig. 8b). This is
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Fig. 7 Dynamic parameters of the pilot-operated relief valve obtained by simulation

because the pilot valve will impact the valve seat during the opening adjustment 
process as a result of the under-damping situation. As the system pressure vibration 
amplitude decreases, so does the pilot spool and main poppet vibration amplitude. 
The system pressure ps won’t fluctuation greatly once the pilot spool no longer hits 
the valve seat. Based on the above analysis, the simulation results are in agreement 
with the previous theoretical analysis. This means that the conclusion derived in 
Sect. 4 is reasonable (Fig. 9). 

(a) (b)  (c) 

Fig. 8 System pressure ps produced from numerical simulation with varied viscosities. a μ = 
0.0096 Pa·s b μ = 0.0018 Pa·s c μ = 0.041 Pa·s
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(a) (b) 

Fig. 9 System pressure ps produced from numerical simulation with varied viscosities. a μ = 
0.0123 Pa·s b μ = 0.558 Pa·s 

7 Conclusions 

The effect of visco-temperature properties on pilot-operated relief valve stability 
has been investigated through frequency domain analysis method and numerical 
simulation. The analysis results show that, the pilot valve subsystem stability is 
virtually unaffected by changes in viscosity. However, the stability of the main valve 
system varies with viscosity. The fluid has a thin viscosity at high temperatures, 
resulting in a low flow resistance in the dynamic feedback orifice. In this case, the 
mass-spring vibration system has a natural frequency close to the valve’s operating 
frequency, which is not conducive to the relief valve stability. The oil inside the main 
valve spring chamber, however, is equivalent to a liquid spring with an extraordinarily 
high stiffness since the viscosity of the fluid is thicker at low temperatures, which 
decreases the orifice flow capacity. The main valve’s mass spring vibration system 
has a natural frequency in this instance that is significantly higher than the valve’s 
operating frequency, enhancing the stability of the relief valve. Numerical simulations 
were produced to validate the above theoretical analysis, and excellent agreement 
between the simulation and the theoretical analysis was obtained. Simulation results 
show that the stability of the pilot-operated relief valve is poor at thin viscosity and 
better at high viscosity. 
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Using Wheel Slippage for Improved 
Maneuverability of 4 Wheel Steering 
Vehicles 

Erdem Ata and A. Bugra Koku 

Abstract In the domain of land vehicles, the researches which focus on the subject 
of slippage mostly develop methods for detecting and avoiding slippage or com-
pensating for slippage. Even when slippage is considered as a potential advantage, 
this is mostly researched for high speeds. This paper proposes a method that uses 
slippage as an advantage even at low speeds. This is achieved by using the nonholo-
nomic properties of a 4WS (4 wheel steering) vehicle with independent front and 
rear drives. It is experimentally shown that controlled low speed slippage can be 
advantegous for certain tasks by comparing the vehicle behavior to a similar 2WS 
(2 wheel steering) vehicle which cannot leverage slippage. 

Keywords 4WS · 2WS · AWS · Ackerman steering · Wheel slip · Drift ·
Maneuverability 

1 Introduction 

Autonomous ground vehicles (AGVs) can be used in crowded spaces such as offices 
and homes, or on challenging terrains. They can be used for carrying items in an 
office or in a warehouse and carrying out rescue missions on challenging terrains. 
Uneven terrains or unpaved off-road scenarios may require high maneuverability to 
carry out certain tasks. 

There are different vehicle structures to achieve different amounts of maneuver-
ability. The most common vehicle structure used in daily life is 2WS (2 wheel steering) 
cars. While adding more complexity to the vehicle structure, 4WS (4 wheel steering) 
cars provide higher maneuverability by allowing a smaller turning radius [ 8]. Both of 
these structures are designed to mostly avoid slippage and some researches assume 
no-slip conditions while modeling these vehicles [ 7]. Some outdoor vehicles such as 
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Fig. 1 An example case where the vehicle can move sideways using wheel slippage 

tanksmayutilizedifferentialdriveswithnosteeringtoprovidearbitrarilysmall turning 
radii. However, all the movements that can be executed by differential drive vehicles 
involve slippage. The maneuverabilities of these vehicle structures have been exten-
sively studied so far [ 5, 6, 10, 13, 14]. 

Wheel slippage is not desired for various reasons. On one hand slippage accu-
mulates error in dead reckoning, on the other hand, it decreases controllability of 
vehicles. Hence, slippage in general is not a desired state. However, it may be useful 
to force these vehicles to slip for certain tasks. While vehicles with 4WS-4WD with 
independent front and rear drives and differential drives can start slippage at low 
speeds, a 2WS vehicle with Ackerman steering cannot. 

In this paper, it is hypothesized and later shown that using 4WS with independent 
drives for front and rear wheels, one can control the vehicle to slip in an arbitrary 
direction without requiring prior maneuvers. As an example, consider the case shown 
in Fig. 1 where a 4WS vehicle steers at the opposite directions with the front and 
rear wheels while driving the front and rear wheels in the opposite directions. This 
actuation may cause the vehicle to drift sideways if controlled properly. 

Although the results of excessive slippage may have adverse effects on wheels 
in everyday usage, using slippage only when it is completely necessary may allow 
cars to execute maneuvers that are otherwise harder or impossible such as fitting in 
tight parking spots or making very sharp maneuvers in crowded places. Since most 
4WD electric cars already use independent electric motors for front and rear drives, 
the proposed structure is somehow similar to existing cars. However, controlling 4 
inputs, 2 steering angles and 2 drive speeds, manually is a considerably more difficult 
task compared to driving a regular car. Therefore, the control of slippage needs to 
be automated for such applications in order to get the maximum benefit from wheel 
slippage. 

In order to automate the controlled slippage to enhance maneuverability, we 
present a proper mathematical model for the proposed vehicle structure in the next 
section. While the starting point is the commonly used bicycle model, many additions 
and modifications are added to the model in order to make it more suitable for the 
case where the vehicle slips. The nonlinear model of the vehicle is then linearized to 
utilize linear state space methods.
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Fig. 2 Small scale prototype 

In the third section, two different control methods are discussed. The first one is 
a relatively naive approach that allows the user to directly use the coordinates of the 
vehicle as reference states using LQR. The second control method allows the user to 
control the vehicle to follow a certain path to reach to a given coordinate. In order to 
enable the vehicle to follow a certain path, a linear transformation is applied to the 
states of the system using the output matrix. Then, the controller’s parameters are 
tuned in order to prioritize staying on the given line. 

Finally, the proposed method is applied to the real life small scale prototype shown 
in Fig. 2. The feedback for the controller is provided using a Vicon optical motion 
tracking system. Using the same controller structure, a 2WS and a 4WS vehicle with 
independent drives (proposed structure) is compared. In order to compare the perfor-
mances of different vehicles, their performance on following a relatively challenging 
trajectory is considered. 

2 Mathematical Model 

The mathematical model can be inspected in three parts: wheel forces, friction 
moment and input limits. After considering those points, a non-linear dynamic model 
is created using Kane’s method and sympy mechanics module on Python. To utilize 
linear state space methods, the model is linearized around the instantaneous state 
at any time step using the Jacobian method. This requires the evaluation of system 
matrix and input matrix at each time step while keeping the linear approximation 
fairly accurate at any time. 

Plant inputs are selected as steering angles (. θ f , . θr ) and angular velocities of 
the wheels (.ω f , .ωr ). The states are selected as the position of the vehicle (. x , . y),
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Fig. 3 Mathematical model 

orientation of the vehicle with respect to the x axis (. θ ), the velocity of the vehicle 
(. vx , . vy) and the angular velocity of the vehicle (. ω) respectively as shown in (1) and 
Fig. 3. 

.x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x
y
θ

vx
vy

ω

⎤
⎥⎥⎥⎥⎥⎥⎦

(1) 

2.1 Wheel Forces 

For the mathematical model, the vehicle is considered to be a rigid body in a planar 
space with 2 wheels (front and rear) attached as shown in Fig. 3. The friction between 
the wheels and the ground is assumed to be viscous. Although this assumption is 
clearly counter-intuitive, it results in a simple (i.e. less non-linear) mathematical 
model. It is hypothesized and observed in the experiments that the inaccuracy is not 
significant at tested speeds.
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Under the viscous friction assumption, the force that is applied on the vehicle by 
a single wheel can be expressed with the following equation. 

. →Fw,i = ci (→vw,i − →vc,i ), i = f, r (2) 

where .ci is the viscous friction coefficient between the wheel and the ground, .→vw is 
the velocity which is dictated by the wheel and.→vc is the velocity of the wheel center 
with respect to the ground. 

For a given wheel, .→vw can be expressed in terms of the inputs . θi and . ωi . 

.→vw,i = rωi (cos(θi + θ)ı̂ + sin(θi + θ)ĵ), i = f, r (3) 

where .θi is the steering angle and .ωi is the angular velocity by which the wheel is 
driven. The subscript . i is used to denote whether the wheel is front or rear. 

2.2 Friction Moment 

When the rotation of the vehicle around the front wheel alone is considered, the 
assumption of no friction due to the rotation can be acceptable. However, when there 
are 2 front wheels, in order to account for the friction caused by the rotation of the 
vehicle around the center of the front wheels, one has to introduce an extra moment 
to the bicycle model. This moment is assumed to be proportional to the angular 
velocity of the vehicle and the friction coefficient. It is also affected by the distance 
between the front wheels. Then the additional friction moment can be represented 
by the following expression. 

. →M f r = −d →ω(cr + c f ) (4) 

where . →M f r is the additional friction moment, . d is the distance between the front 
wheels and . →ω is the angular velocity of the vehicle. 

2.3 Input Limits 

Both the steering angle and the angular velocity of the wheels are limited to certain 
ranges. Due to the non-linearity of the system, simply clipping the controller outputs 
before feeding them into the plant would not work. The limits of these variables 
should be represented in the mathematical model. 

In order to achieve that, 2 variables which are expressed with the following equa-
tions are introduced. 

.ωi = lωtanh(ω
ini tial
i ), i = f, r (5)
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.θi = lθ tanh(θ
ini tial
i ), i = f, r (6) 

If the plant inputs are selected as .ωini tial
i and .θ ini tial

i , then the absolute values of 
steering angle and the angular velocity of the wheels will be limited to .lω and . lθ
respectively. 

3 Control Method 

Using the linear quadratic regulator (LQR) method, the states can be directly con-
trolled to achieve a desired state. For a linear system, LQR method optimizes the 
expression given in (7). However, that does not put any constraint on the path that 
will be followed. For most tasks that require the vehicle to move to a certain location, 
a specific path should be followed. Using a proper output matrix, the vehicle can be 
controlled to follow a line with a specific speed. For more complicated paths, it is 
possible to approximate the path with line segments. 

.

∞∫

0

xTQx + uTRu dt (7) 

For both methods, two important tricks are used. Firstly, since the controller is 
allowed to instantly change the steering angles in the mathematical model, this causes 
a discrepancy between the model and reality. Similarly, the driving angular velocity 
of the wheels cannot be instantly changed. To resolve this issue, the controller’s 
steering output is forced to be pseudo-continuous by limiting the change between 
time steps. Secondly, when the controller decides to suddenly change the steering 
angles and apply a certain angular velocity to the wheels, before the new steering 
angle is applied, the wheels may start to turn. This causes an unintended action to be 
executed. In order to overcome this problem, the angular velocities are significantly 
reduced when a sudden steering angle change is detected. 

3.1 State Control 

While using LQR directly on the states (with unit output matrix) allows one to move 
the vehicle from a given position and orientation to another, the priorities cannot be 
properly defined for the controller. An example path is shown in Fig. 4. 

As the example suggests, the vehicle is controlled from the origin to the desired 
arbitrary position, .(0.3, 0.07) m, successfully. However, the optimum decision of 
the LQR does not enable one to control the path. The .Q matrix of the LQR for this 
example is given in (8).
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Fig. 4 The resultant path of controlling with unit output matrix in a mathematical simulation 

.Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8) 

3.2 Output Control 

To overcome the issue of not being able to control the path, a suitable output matrix 
can be defined. The purpose is to define a line that connects the initial and reference 
positions of the vehicle and use one of the states as the deviation from this line. The 
same transformation can be applied to the velocities. 

Let the line that connects the initial position and the reference position be defined 
by the equation .ax + by = c. Choosing the output matrix and reference state as 

.C =

⎡
⎢⎢⎢⎢⎢⎢⎣

a b 0 0 0 0
a' b' 0 0 0 0
0 0 1 0 0 0
0 0 0 a b 0
0 0 0 a' b' 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)
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.r =

⎡
⎢⎢⎢⎢⎢⎢⎣

c
c'

θre f
0
cvel

ωre f

⎤
⎥⎥⎥⎥⎥⎥⎦

(10) 

enables one to prioritize the error in a new coordinate system. To make the trans-
formed coordinate system an orthogonal coordinate system with the reference posi-
tion as the origin and the new y axis as the line to be followed,.a', b', c' can be chosen 
as follows. 

.a' = b (11) 

.b' = −a (12) 

.c' = bxr − ayr (13) 

Let the goal position be. →pr = xr ı̂ + yr ĵ , and the initial position be. →pi = xi ı̂ + yi ĵ . 
The desired velocity can be calculated using the expression 

.cvel = b→g · ı̂ − a→g · ĵ (14) 

where . →g is the unit vector in the direction of the desired movement. 

.→g = ( →pr − →pi )/| →pr − →pi | (15) 

Using the described output matrix, the first two error components represent . e1
and .e2 in Fig. 5. 

Using the output matrix . C and reference input . r, the path given in Fig. 6 can be 
obtained. 

The vehicle is controlled between the same initial and final positions. However, 
in this example, the errors are properly prioritized to control the vehicle on a line. 
The .Q matrix of the LQR for this example is given in (16). 

.Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 0.1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)
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Fig. 5 The transformed coordinate system and the error components 

Fig. 6 The resultant path of controlling with the described output matrix in a mathematical simu-
lation
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4 Experimental Results 

4.1 Setup 

The proposed 4WS, 4WD vehicle structure is tested on a prototype vehicle with state 
feedback from a Vicon optical motion capture system. The structure is compared to 
a commonly used 2WS vehicle structure in terms of trajectory tracking performance. 
Equation (17) describes the cost metric. 

.C =
t f∫

0

|→xt (t) − →xv(t)| dt (17) 

where .t f is the time when the end point is reached, .→xt (t) is the position the vehicle 
has to be on at the time . t and .→xv(t) is the position of the vehicle at the time t. 

As a test case, the vehicles are initially positioned at the origin with.0◦ angle (i.e. 
facing east). Then, the vehicles are controlled to the position .(0, 0.4) m targeting 
approximately .3.33 cm/s in the direction of the target. 

Since the control of a 2WS vehicle requires long term planning, the movement 
is divided into several parts. For each part, a similar controller is used and different 
controller parameters are selected. 

For the 2WS vehicle, three long term strategies are used. The first one involves 
the vehicle to make a smooth movement towards the end of the trajectory but this 
requires the vehicle to considerably deviate from the line. For the second strategy, 
the vehicle executes 2 maneuvers to change its angle before moving towards the end 
point. The last strategy involves 4 maneuvers however, this causes the vehicle to 
delay and increases the trajectory tracking cost. 

The maneuvers simply involve the vehicle being controlled to a specific angle 
until a certain deviation from the desired path is reached. This corresponds to a case 
where the vehicle has to move in a narrow hallway since deviating too much from 
the middle of the hallway is not possible. 

For the 4WS vehicle, 2 different reference input, priority pairs are used. The first 
one involves the vehicle to be controlled at .0◦ while tracking the trajectory. In the 
given figures, this mode is called “Full Slip” since the vehicle has to always slip 
during the motion. The second mode involves the vehicle to be controlled to 1.37 
radians during the motion. Once the angle target is reached, the vehicle does not 
have to slip for the rest of the motion. Since movement towards the target without 
slippage can be achieved in a relatively wide angle range, the angle priority of the 
controller is selected to be somehow lower compared to the first mode.
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Fig. 7 Paths and trajectory errors 

4.2 Results 

The paths that are followed by the vehicles and the deviation from the trajectory in 
the best trial for each are given in Fig. 7a, b respectively. 

Using (17) for the given trials, the costs of different structures and modes are 
given in Table 1. This result shows that making more than 2 maneuvers only causes 
the 2WS vehicle to delay further. This means that it is not necessary to increase the 
number of maneuvers any further. 

The trajectory tracking errors defined by the metric given in (17) are  given in  
Table 1. 

The maximum error in terms of the angle was less then.12◦ when the 4WS vehicle 
was controlled to .0◦ during the motion. 

An animation of the movements of different structures in the experiment are given 
in this video. 

Table 1 Costs of different 
structures and modes 

Mode Cost 

2WS (No maneuvers) 0.767 

2WS (4 maneuvers) 0.386 

2WS (2 maneuvers) 0.319 

4WS (Full slip) 0.260 

4WS 0.103

this video
 -909
44284 a -909 44284 a
 
https://www.youtube.com/watch?v=94vEuCYD3ss
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Two videos of simulations are given in video 1 where the vehicle follows a narrow 
hall while maintaining a desired orientation and video 2 where the vehicle parks in 
a difficult spot. 

A recording of a real life experiment is given in this video. 

4.3 Discussion 

Figure 7a suggests that the proposed vehicle model can maintain a velocity towards 
the target with a relatively smaller deviation from the shortest path. However, the 
baseline 2WS vehicle has to either considerably deviate from the desired path or 
make multiple maneuvers causing it to lag. 

The results given in Table 1 demonstrate that the proposed structure can perform 
significantly better even when it is forced to stay at angle which requires slippage. 
When the angle requirement is relaxed, a further significant improvement can be 
obtained for the proposed structure. 

5 Conclusion 

In this work, it is shown that slippage at low speed can be advantageous while tracking 
a challenging trajectory. A warehouse robot which has to make sharp maneuvers in a 
crowded space or a regular car which is trying to parallel park in a tight spot may need 
to follow a challenging trajectory which may might be possible to follow without 
slippage. 

It is shown that using the proposed structure and the controller, the vehicle can be 
forced to slip in a desired direction without prior maneuvers. It is also important to 
note that the proposed structure can avoid slippage unless it is necessary. Therefore 
the adverse effects of excessive slippage can be avoided when it is not necessary to 
slip. 

Even though a similar amount of maneuverability may be reached by complex 
wheel structures such as omni wheels, the proposed method demonstrates that it can 
be done with simpler wheels. 

Acknowledgements METU-ROMER supported this work by providing access several to manu-
facturing methods, electronic components and the motion tracking system Vicon. This work would 
not have been possible without the support of METU-ROMER.

video 1
 16209 -581 a 16209 -581 a
 
https://www.youtube.com/watch?v=Iyc3Gt-Y2T8
video 2
 19518 748 a 19518
748 a
 
https://www.youtube.com/watch?v=vbIbk8KtYpY
this video
 20617 3404 a 20617 3404
a
 
https://www.youtube.com/watch?v=eblMVYiLIXk
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Design and Construction of a Prototype 
for the Lyophilization Process 

Erick Coronel M., Jessenia López O., Patricia Constante P., 
Cristina Sánchez L., Andres Ortega C., Andrea Tobar, Jines David E., 
and Andrea Lescano 

Abstract This study describes the design, construction and prototype control of a 
lyophilizer based on parameters of freezing temperature, heating and vacuum pres-
sure, seeking the conservation of organoleptic properties of fruits and vegetables in 
the region. The prototype is designed with a drying chamber insulated with expanded 
polyurethane and is hermetically sealed with an ap-proximate capacity of 10 lbm of 
fresh product distributed in 3 AISI 304 1 mm stainless steel trays. The prototype 
consists of 3 subsystems such as: the freezing subsystem that works at temperatures 
below −35 °C, the heating sub-system that adds energy in the form of heat to the 
food, raising its temperature to 50 °C, and the vacuum subsystem in which it is gener-
ates a pressure of −24 in Hg. Finally, the organoleptic properties of the freeze-dried 
beet were evaluated by duo trio analytical sensory tests and magnitude estimation, 
concluding that the color, flavor and smell were not modified; however, the texture 
of the fruit was altered, acquiring a crunchy composition.
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Keywords Prototype · Lyophilization · Design · Control 

1 Introduction 

Ecuador, being a tropical country, produces various fruits and vegetables; therefore, 
a method is sought to preserve its quality for long periods of time; due to its rapid 
deterioration, it is difficult to store the products. One of the methods used to solve 
this problem is freezing, but this can damage the organoleptic properties of the food 
due to the formation of crystals inside the membranes [1]. 

The use of new technologies is the right way to preserve food and one of them 
is freeze-drying; for this reason, this research describes the design of a dehydrator 
prototype with up to 3 trays of 1250 cm2 area for fruit minced, which consists of the 
phases of freezing, primary drying and secondary drying inside a hermetic cabin that 
is subjected to vacuum in the second and third stages of the process; In addition, the 
prototype has an automatic work cycle. 

2 Prototype Design 

Lyophilization is a dehydration process by sublimation [2]. The process consists of 
freezing the product at very low temperatures, eliminating water to reach humidity 
levels of less than 5% of its initial content [3]. Initially the process this at environ-
mental conditions, then the temperature is reduced to change the liquid to solid state, 
later is to freeze the food and when the pressure inside the chamber decreases and 
is reached to sublimation ice into vapor below the triple point of water; finally, the 
vacuum be maintained and the temperature of the food raised, which provides it with 
the energy necessary for the sublimation of the greater water amount [4]. For the 
design of the prototype, the freezing of the food below its freezing point was consid-
ered approximately −40 °C, then the pressure is lowered below the triple point of 
the water and creates a vacuum with a temperature of −35 to −40 °C; finally, is 
maintains the generated vacuum and raises the temperature of the product to 60 °C 
to remove the partially bound water of the product. 

2.1 Mechanical Design 

For the mechanical design of the prototype a rectangular and simple chamber config-
uration was selected (see Fig. 1). For respect the sanitary and hygienic standards in 
the environment, materials must be selected that do not rust and that withstand the 
external load within the allowed range of deformation, without altering the work-
ability of the machine [5], so AISI 304 1 mm stainless steel was selected, then an
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analysis was carried out to verify the safety of the design, as can be seen in Table 1, 
the values of deformations and stresses that were generated inside the chamber do not 
exceed the established limits. Once the structure was designed, it was analyzed by 
CAE with finite element analysis with which the displacements, unitary deformations 
and stresses in the structure (see Table 1). 

The factor of safety for average materials operating in ordinary environments, 
subjected to loads and stresses that can be determined with relative precision should 
be 2–2.5 [6]; based on the analysis, the Von Mises stress was obtained and the safety 
coefficient was calculated at the point of maximum stress of 6.5 indicates great safety 
in the face of failure.

Fig. 1 Prototype in CAD 
software 

Table 1 Von Mises stresses, displacements and unit strains 

Name Type Mín Máx 

Stresses1 VON: Von Mises stress 2.883e + 03 N/m2 

Node: 14865 
6.379e + 07 N/m2 

Node: 4957 

Displacments1 URES: Resulting 
Displacements 

0.000e + 00 mm 
Node: 5493 

4.755e−01 mm 
Node: 5527 

Unit strains1 ESTRN: Equivalent 
Unit strain 

5.884e−07 
Item: 2034 

6.810e−04 
Item: 3089 
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2.2 Sizing of the Freezing System 

For the calculation of the thermal load of the product, the data of the average latent 
heat, specific heats and speed factor of “Heat and mass transfer fundamentals and 
applications” book [7], giving a cooling heat value of 456.327 [Btu], the latent heat 
of freezing point of 1097.67 [Btu] and the sensible heat below freezing point of 
306.56 [Btu]. The cooling of the food inside the lyophilization chamber is carried 
out by circulating the cold air through a small fan that generates a power consumption 
of 27.5 [W]. The total sum of all the loads inside the lyophilization chamber is of 
0.26 HP, the real value suffers losses due to factors unrelated to the design such as 
compressor efficiency or leaks, for which we add 30% of safety power, obtaining 
an approximate value of 0.35 HP. After the freezing process, the pressure must be 
lowered to −610 Pa in the center of the chamber; for this reason, the volume of the 
lyophilization chamber was calculated, obtaining a value of 4.65 ft3, for which the 
QVP-900 pump was selected. 

2.3 Control System 

The TC-900E electronic controller was selected for the refrigeration system, for 
controls temperature from −50 to 105 °C. The relay out-put directly controls the 
compressor up to 1 HP and the defrost output is up to 10 A. Activation of the 
refrigeration contactor occurs through the control relay output and is connected in 
series with a programmed timer to add freeze and preheat times. After this time, the 
chiller stops working for the final stage of production. When the freezing phase is 
complete to the temperature is reached, the vacuum system and the heating system 
are activated. The heating system activates or deactivates the resistances based on 
the readings of the sensors in the food at the desired temperature during the primary 
drying process. An Arduino Uno microcontroller was chosen to control these two 
systems, we also have a sensor (DS18B20) in contact with the food as input and a 
resistor and a vacuum circuit as output. For chamber cooling unit, the refrigeration 
unit through its TC-900 E controller drives the compressor nominal load amperage 
of 9.6 A with a voltage of 115 V and the condenser fan of 0.48 A with a voltage of 
115 V at 60 Hz. With which the current that the conductor obtaining a value a current 
of the condenser of 12.48 A and of the fan of 24.48 A. 

After sizing the electrical components, a force and control diagram was made in 
which we can see all the components (Fig. 2).

In the Fig. 3 shows the connection of the two solenoid valves considered, they will 
operate in parallel with each vacuum pump, the connection of the electrical control 
is also detailed of the refrigeration unit in series with a timer which allows us to 
deactivate the refrigeration system. The control scheme also includes a two-position 
ignition selector, the display shows the temperature of the chamber and the time that
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Fig. 2 Power circuit diagram

has elapsed in the process, an emergency stop button, the controller also activates 
resistance contactors, switching relays for pump 1 and 2. 

For the power system in Fig. 4, the outputs of the Arduino Uno microcontroller 
are observed, they activate the coils with high or low pulses at 5 V dc of the relays, 
which allow the passage of the phase line at 110 V towards coil A1 of the contactors 
on the power side.

Fig. 3 Control circuit diagram 
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Fig. 4 P&ID piping and instrumentation diagram 

3 Testing and Analysis of Results 

3.1 Testing the System as a Whole 

After calibrating the sensors and checking the operation of each subsystem, the proto-
type was tested in vacuum to verify the correct operation of the code implemented 
in the microcontroller, a screen is displayed to indicate whether the processes it 
is in freezing, pre-drying or secondary drying. The temperature measurement was 
recorded in an Excel file through the serial port of the controller and the vacuum 
level as a function of time through the analog reading of the vacuum gauge, the data 
obtained were plotted and it was verified that they comply with the curve of lyophiliza-
tion. In the Fig. 5, the curve of the temperature of the food during the lyophilization 
process can be observed, the freezing reaches−35 °C (blue) and passes to the primary 
desiccation or sublimation in which heat is added and its temperature is maintained 
between −20 and −25 °C (red), in the secondary desiccation the refrigeration system 
is turned off and the temperature is raised between 45 and 50 °C (green) (Fig. 5).
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Fig. 5 Temperature versus real time of the process
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3.2 Organoleptic Tests 

Sensory tests were carried out with 10 judges to verify the conservation of 
organoleptic properties of freeze-dried beets (color, smell, flavor and texture), each 
judge was assigned a reference sample of fresh fruit and a freeze-dried fruit [8]. Once 
all the tests were finished, the ANOVA test was tabulated. 

According to the results of Table 2, 3 and 4 we can observe that the critical value 
for F is greater than the value of F calculated, for which the null hypothesis (H0) is  
not rejected, another factor to analyze is the value of P (probability), which confirms 
the hypothesis that the freeze-dried sample is the same as the fresh sample in terms 
of taste, smell and color; however, in Table 5 we can see that the critical value for F 
is less than the value of F calculated, for which the null hypothesis (H0) is rejected. 
Another factor to analyze is the value of P (probability); therefore, the lyophilized 
sample is not the same as the fresh sample in terms of texture, this is due to process. 

Table 2 Analysis of variance of flavor 

Origin of variations Average of the squares F Probability Critical value for F 

Between groups 0.002631281 0.2397 0.7884 2.5106 

Within groups 0.010973524 

Total 

Table 3 Analysis of variance of odor 

Origin of variations Average of the squares F Probability Critical value for F 

Between groups 0.004581604 0.6355 0.53737 3.3541 

Within groups 0.0072086 

Total 

Table 4 Analysis of variance of color 

Origin of variations Average of the 
squares 

F Probability Critical value for F 

Between groups 0.00951 3.36721 0.04947 4.004 

Within groups 0.00282 

Total
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Table 5 Analysis of variance of texture 

Origin of variations Average of the 
squares 

F Probability Critical value for F 

Between groups 0.0660 9.42475 0.000785 3.354130 

Within groups 0.0070 

Total 

4 Conclusions 

The modeling of the prototype was carried out in a CAD software to establish the 
dimensions chamber of 60 cm wide, 50 cm high, 50 cm of deep and 3 trays with 
capacity of 10 lbm of fresh product. The design analysis using CAE verify that the 
prototype is safe; therefore, a dehydration system was designed of lyophilization, 
with three stages: freezing to −35 °C and atmospheric pressure, primary desiccation 
at −10 °C and a vacuum pressure of less than 610 Pa must be maintained and 
secondary desiccation to 60 °C at a vacuum pressure of less than 610 Pa. 

The electrical system was dimensioned, a Full Gauge TC-900E temperature 
controller was used, an Arduino Uno microcontroller was used for the vacuum and 
heating subsystems according to the programming for each of the freeze- drying 
stages. On the other hand, the result of the lyophilization process was evaluated by 
duo-trio analytical sensory tests and by estimation of magnitude with 10 judges and 
with three samples to evaluate one of fresh product and two of lyophilized product, 
in the beet the flavor, smell and color while the texture did change. 

5 Future Works 

For future projects, it is recommended to implement a steam trap, also called a 
condensation chamber, which prevents damage to the vacuum pump and prevents the 
product from being rehydrated by the circulation of steam and condensation inside 
the work chamber. In addition, the implementation of an HMI (Human Machine 
Interface) for the management of recipes and easy change of parameters should be 
taken as a new research work for the improvement of the prototype. 
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