
A Generalized Reuse Framework for Systems
Engineering

Gan Wang(B)

Dassault Systèmes, Herndon, VA 20171, USA
gan.wang@3ds.com

Abstract. Reuse in system development is a prevalent phenomenon. However,
how reuse is applied varies widely. The Generalized Reuse Framework is a strate-
gic reuse model for systems engineering management in product development
that addresses both investment and leverage of reuse through two interrelated
and interacting processes: Development with Reuse (DWR) and Development for
Reuse (DFR). This chapter summarizes the latest development of this framework
by providing the taxonomic definition of DWR and DFR and analyzing the deci-
sion processes for reuse as applied to incremental development and product line
engineering. It also describes how the framework is applied to the revision of the
Constructive Systems Engineering Cost Model (COSYSMO), a parametric cost
estimating model for systems engineering. With use case scenarios, it illustrates
the approach to apply the framework and to quantify the economic impact of reuse
vis-à-vis investment strategies.

Keywords: Reuse · Systems Engineering · System Development ·Modeling ·
Parametric Estimating · Cost Estimation and Analysis · Project Planning

1 Introduction

As industry embarks on an accelerated digital engineering (DE) transformation journey
aiming formore efficient and effective capabilities for developing and sustaining systems,
organizations seek to invest in digital infrastructure, model-based business processes,
and a digitally capable workforce. At the same time, they continue to search for ways to
quantify returns on investment.

As widely accepted in the SE community, reuse is essential and sometimes even
imperative for today’s system development (De Weck, et al, 2003; Clements, 2015; Le
Put, 2015). Reuse is fundamentally driven by economic necessities and ever-mounting
pressure to deliver value and profitability to shareholders. A common rationale is cost-
saving through reduced work and improved quality (Nazareth and Rothenberger, 2004;
Selby, 1989, 2005). However, a more recent focus is the speed of delivery and time
to market. In his keynote speech, Jan Bosch (Bosch, 2014) pointed out a relatively
contemporary trend of modern systems from “built to last” to “built to evolve” to adapt
to a faster pace of technology change and user expectations. Reuse, especially when

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Krob et al. (Eds.): CSD&M 2023, LNEE 1085, pp. 9–24, 2023.
https://doi.org/10.1007/978-981-99-6511-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6511-3_2&domain=pdf
https://doi.org/10.1007/978-981-99-6511-3_2

10 G. Wang

strategically planned, can be a fundamental enabler for the evolutionary approach to
system development.

Reuse can be opportunistic in that a designer or developer spends effort searching and
discovering reusable resources when the need arises inside and outside their organization
and then, if successful, attempts to use the artifacts they find. For example, someone can
do a Google search for freeware and lift a code segment that appears to fit a purpose. In
software development, it is sometimes called “code scavenging.” The outcome is almost
inconstant depending upon what is available. In some cases, the reused code has to be
modified. In almost all cases, its behavior has to be tested and verified. If anything fails,
the developer has to debug the issues and fix the defects. This ad hoc reuse approach
involves a process of discovery, assessment, modification, integration, and testing. Its
main effort focuses on leveraging benefits through opportunity. For smaller efforts, this
approach can be successful. But it does not scale well. The reusability is generally low
and uncertainty high, especially for larger and more complex systems.

On the other side of the spectrum, reuse is planned and strategic (Kim and Stohr,
1998; Hillhouse, 2011). In this case, the developer proactively and strategically invests
in reusable resources through explicit reuse processes and standards. A major focus is
the up-front investment effort to make an effort easier when the actual reuse occurs later.
Examples that come to mind include object-oriented software development. An object
class (typically called base class) is defined to instantiate other classes of objects (called
derived classes), which inherit the properties of the base class. Another strategy is to
create libraries that encapsulate particular objects and functionalities that can be used
in multiple applications through a set of application programming interfaces (APIs).
Modern programming languages like Python and MATLAB contain large libraries of
reusable objects and patterns.

Developed through collaboration with the University of Southern California (USC)
Center for Systems and Software Engineering (CSSE) and based on a series of studies
(Wang, et al, 2014, Wang, 2016), the Generalized Reuse Framework (GFR) defines two
interrelated and interacting reuse processes:

• Development with Reuse (DWR): a set of system development activities that focus on
gaining benefits from utilizing or leveraging previously developed reusable artifacts,
either in a planned process or an ad hoc manner

• Development for Reuse (DFR): a set of system development activities dedicated to
developing reusable artifacts for future usages, generally in a planned manner or
through an investment effort

DFR and DWR represent the two foundational processes that bridge reuse in system
development projects or, in a broader sense, for any efforts that deliver products or ser-
vices. The two processes are distinguished only by intent – production and consumption
of reusable resources. DWR focuses on benefits gained from using reusable resources.
The basic assumption is that DWR saves labor and improves the product quality at the
same time for the system that leverages these resources. DFR, on the other hand, aims to
create reusable products for future usage. Acting as a producer, the DFR process feeds
reusable resources into the DWR process that consumes them in its development effort.
See Fig. 1.

A Generalized Reuse Framework for Systems Engineering 11

Fig. 1. The Generalize Reuse Framework consists of two interactive processes: the DFR process
feeds reusable resources into the DWR process that leverages these resources

The basic premise, however, is that DFR may incur additional upfront costs than
without such a consideration to gain the benefits in DWR. But in the aggregate, it will
save cost from the lifecycle point of view. Table 1 contrasts the major characteristics of
the two processes.

Table 1. Contrasting two reuse processes – “Development with Reuse” and “Development for
Reuse”

Development with Reuse Development for Reuse

Role • Consumer • Producer

Purpose • Consumption of reusable resources • Production of reusable resources

Goal • Improvement of product quality
• Cost savings
• Improved speed of delivery or time to
market

• Investment for future benefits

Challenges • Discovery of what to reuse
• Decisions on how to tailor and integrate

• Plans for how to reuse
• Design for reusability
• Means to verify

Reusability • If ad hoc, then generally low
• If planned, then generally high

• Generally high

This process model addresses reuse as a central consideration for development strat-
egy as applied to agile SE, product line engineering, and the evolution of system capabil-
ity through incremental development. It assumes that a product or product line (whether
it is a vehicle, aircraft, electronics, or software) is developed by a series of projects, each
of which produces several articles or baseline versions. In each article or version release,
there is a mix of the DWR and the DFR contents. With careful planning, the DWR and
DFR content mix changes favorably with an increasing number of articles produced or
release versions deployed, while the total incurred project effort (red line) decreases,
as shown in Fig. 2. As the product line matures, the percentage of the DFR content
decreases while relative DWR content increases. This phenomenon can be viewed as
the investment paying off over time.

12 G. Wang

%
 E

ffo
rt

of Articles in the Product Line
1 2 3 4

DFR

DWR
DWR

DFR

DWR

DFR

DWR

DFR

100

0
Total
Effort

Investments in Development for Reuse (DFR) are leveraged to
reduce Product Line Cost

Fig. 2. A mix of DWR and DFR efforts in a project and the decreasing levels of DFR effort in
the successive article releases of a project line

2 The Generalized Reuse Framework

2.1 Reusable Resources

What can be reused? A simple answer is almost everything. From an engineering per-
spective, however, it is the outputs from the SE processes that can be reusable, which
include elements of the realized system. Then the question is, how do we express them?

We define a reusable resource as a collection of system artifacts that represent certain
attributes of the system. System artifacts are physical and functional components (e.g.,
a piece of hardware, a software module) of a system, along with all the associated
engineering and design data that specify the system at different stages of its life cycle.

A design specification can be considered as a collection of system attributes repre-
sented in requirements and logical, functional, and physical architecture descriptions. It
can be functional or non-functional (performance) based. For example, a system attribute
can be a system interface that is realized with a physical hardware connection or a soft-
ware object that pulls or pushes data. Or it can be a function depicting a behavior in
terms of an input and output relationship and that is realized by a hardware control logic
or implemented by a software algorithm.

Together, these system attributes represent what the end system is and how it func-
tions. As a system attribute is realized through a development life cycle, a set of system
artifacts are produced and, over time, culminate in the actual system built and deployed.
Reversely, a system is simply an integrated collection of system artifacts developed that,
together, satisfy the specified system attributes.

For definitions of the GRF process coming up next, we use the term system attribute
to represent all the reusable resources.

2.2 The Reuse Process

Development with Reuse. The DWR consists of six (6) categories, as shown in Table 2
below.

A Generalized Reuse Framework for Systems Engineering 13

Table 2. Definitions of the DWR categories

New A system attribute that is new or unprecedented, which requires
developing from scratch; or from previously defined system design or
constructed product components but requiring near-complete
changes in system architecture as a result of that requires developing
from scratch; or from previously defined system design or constructed
product components but requiring near-complete changes in system
architecture due to modified or extended system functionalities

Design Modified A system attribute that is designed and developed by leveraging
previously defined system concept, functional and logical reference
architecture; or from previously designed physical architecture or
constructed product components that require significant design and
implementation changes or refactoring but without major changes in
intended system functionality

Design Implemented A system attribute that is implemented from an inherited, completed
system design or a previously constructed product component that
may require only limited design changes in the physical architecture
to the extent that it will not impact or change the basic design, but
that may require reimplementation of the component

Adapted for Integration A system attribute that is integrated by adapting or tailoring (through
limited modification of interfaces) of previously constructed or
deployed product components without changes in the core
architecture, design, or physical implementation (except for those
related to interface), so that the adapted element can be effectively
integrated or form fit into the new system. The change effort required
is less than that of the Design Implemented category. Removing a
system element from a previously developed or deployed system
baseline is also included in this category

Adopted for Integration A system attribute that is incorporated or integrated from previously
developed or deployed product components without modification,
which requires complete integration, assembly, test and checkout
activities, as well as system-level V&V testing. This is also known as
“black-box” reuse or simple integration

Managed A system attribute that is inherited from previously developed and
validated product components without modification or that the
integration of such an element, if required, is through significantly
reduced V&V testing effort by inspection or utilizing provided test
services, procedures, and equipment (so called “plug and play”).
Most of the SE effort incurred is a result of technical management

The terminology for the category names is chosen in such a way that, colloquially,
one can say a system attribute (e.g., requirement, interface, etc.) is “New,” “Design
Modified,” “Design Implemented,” and so forth.

TheDWRcategories capture the amount ofwork required to realize a systemattribute
in the final system by leveraging those system artifacts available for reuse at the time.

14 G. Wang

Fig. 3. Typical entry points for the work required by the DWR categories relative to the system
“V” model, as a reference for different maturity level of the reusable resources

From a lifecycle perspective, this work typically corresponds to the lifecycle stage in
which relevant artifacts are available, as shown in Fig. 3. The arrows indicate the typical
entry point for most of the development work. For example, “Adopted for Integration”
typically commences during the integration, test, and verification phase as it is possible
to leverage artifacts from existing system implementation.

The concept is, in a sense, similar to that of the Technical Readiness Level or TRL.
The use of system “V” model provides a convenient reference for the maturity of the
system attributes under the reuse consideration. In other words, an attribute deemed
“Adopted” must have sufficient maturity to be “Adopted” or integrated without any
modifications. However, the DWR process is not limited to waterfall development and
can apply other development models, such as agile development processes.

Development for Reuse. The DFR process consists of five (5) categories, as shown in
Table 3 below.

Table 3. Definitions of the DFR categories

No DFR No development for reuse within the planned work scope

Conceptualized For Reuse This category includes a set of front-end SE activities that produce conceptual, contextual,
logical and/or functional architecture elements intended for future reuse, that must be further
developed through a series of detailed design, implementation, verification and validation
testing activities to realize the final deployable product

Designed For Reuse This category includes a set of front-end system design activities that produce a complete
system design or physical architecture elements intended for future reuse, that must be
further developed through a series of implementation, integration, and verification and
validation testing activities to realize the final deployable product

Constructed For Reuse This category includes a set of system development activities that produce a physical product
or component intended for future reuse, that has been implemented and independently
verified through verification testing but has not been deployed or used in an end system.
These activities include required efforts at all levels of design and development, just short of
final system-level integration, transition, verification, and validation testing

Validated For Reuse This category includes all system development activities that produce an end physical
product or component intended for future reuse and operationally validated through its use in
an end system

Similarly, as in the case of DWR, Fig. 4 shows the general exit points for the DFR
process relative to the system “V” model for different categories of reusable artifacts.

A Generalized Reuse Framework for Systems Engineering 15

For example, if the development activity stops after the Detailed Design phase, the
reusable artifacts generated would be at the level of “Designed for Reuse.” On the other
hand, if a system component has been built and united tested, it should be categorized
as “Constructed for Reuse”, ready to be integrated into a future DWR process.

As in the case of DWR, the use of “V” model is only a reference for reuse matu-
rity. The DFR process is not limited to waterfall development and can apply other
development models, such as agile develop processes.

Fig. 4. The exit points of the DFR categories relative to the “System V” model, as an indication
for different levels of reuse maturity

TheDFR categories capture thework required to develop reusable artifacts at varying
maturity levels. The DFR process can be a separate investment effort or occur in the
same project as the DWR process. In the latter case, the same system attribute should be
classified twice – once for DFR and second for DWR in an appropriate category.

2.3 GRF Usage Scenarios

We consider four basic scenarios of reuse strategy: reuse of 1) concept definition; 2) sys-
tem design; 3) system implementation; and 4) valided system component. This achieved
by managing different system artifacts between the DWR and the DFR processes.
Figure 5 shows the four classifications in the DFR space and the logical paths to the
respective DWR categories, depending on the reusability the system attributes or the
amount of modifications required when applied to the DWR space. For example, if the
system design is completely for a system attribute and it is classified as a “Designed
for Reuse” in the DFR space, it can classified as “Design Implemented” for the DWR
effort and we can directly proceed to implementation, if no additional design changes are
needed. Otherwise, if design changes are needed, we must fall back to Conceptualized
for Reuse and follow the logical path accordingly.

Importantly, the question should be asked in the reversed direction. If certain reusabil-
ity is desirable in the DWR process, what level of investment is required for a DFR
process? This thought process is critically important for systems engineers and product
managers in planning strategic reuse.

The decision process associated with each case can serve as a guideline for a product
line manager to consider in planning the work scope and estimating the development
effort, both from an investment angle and leveraging that investment. This thought pro-
cess is critically important for systems engineers and product managers in planning
strategic reuse.

16 G. Wang

Fig. 5. Relationships of the DFR and DWR categories

3 An Illustrative Example – Application of the Generalized Reuse
Framework to Cost Estimating and Analysis

Cost estimating and analysis is crucial to all modern systems engineering practices. It
is an integral part of system development and acquisition. As a fundamental pillar for
economic analysis and business decision-making, cost estimation is critical in evaluating
the merit of system architecture and provides the essential criteria for design trade space.

Parametric estimating is based on statistical analysis of historical data. In essence,
it uses parametric equations between cost (and effort) and one or more parameters.
These parameters are derived from the characteristics of the system under estimation
and may be physical, performance, operational, programmatic, or cost in nature. They
are the independent variables into the equation and commonly known as cost drivers.
The parametric equation is commonly known as Cost Estimating Relationship (CER). It
is based on the statistical inferences of multiple similar systems or development efforts.
Its output is cost or effort required for development of the system.

Parametric estimating is commonly recognized as one of the most effective and
the most trusted cost estimating methods. It is often preferred by the source selection
authorities for system acquisition.

3.1 COSYSMO

COSYSMO or theConstructive Systems Engineering Cost Model (Valerdi, 2005) devel-
oped at the University of Southern California, is a parametric model for estimating the
end-to-end systems engineering and integration (SE&I) effort required in developing and
deploying a system. Evolved from COCOMO, or the Constructive Cost Model (Boehm,
1981, Boehm et al., 2000), COSYSMO defines a CER that estimates the SE&I effort in
a development project using four sizing parameters, also known as size drivers:

• System requirements (REQ)
• System interfaces (INT)

A Generalized Reuse Framework for Systems Engineering 17

• Critical system algorithms (ALG)
• Operational scenarios (SCN)

The nominal effort is further adjusted by fourteen effort multipliers, also known as
cost drivers, representing the product and project environment and complexity factors.

Mathematically, the effort, under a nominal schedule, is described as a function of
weighted counts of the four size drivers Eq. (1):

PMNS = A ·
(∑

k

(we,k�e,k + wn,k�n,k + wd ,k�d ,k)

)E

·
14∏
j=1

EMj (1)

where,

PMNS = effort in Person Months (Nominal Schedule)
A = calibration constant derived from historical project data
k = {REQ, IF, ALG, SCN}
wx = weight for “easy,” “nominal,” or “difficult” size driver
Fx = quantity of “k” size driver
E = represents (dis)economies of scale
EMj = effort multiplier for the jth cost driver; the geometric product results in an overall
effort adjustment factor to the nominal effort.

On an intuitive level, the weighted sum term in the equation above describes how
“big” a system is and represents the “size” of the job for the development effort. We call
it the “system size,” which aggregates the effect of four size drivers into a single quantify,
with a unit of measure called “eReq” or equivalent requirements. The size drivers are
each counted at three levels of difficulty.

For a detailed description of the model, including the definitions of the size and cost
drivers, as well as the quantitative aspects of its CER, please refer to (Valerdi, 2005).
The remaining discussion in this section assumes the reader is familiar with the basic
model definition.

This model definition, known as COSYSMO version 1.0, does not consider reuse.
As represented in Eq. (1), the CER implicitly assumes that all system developments start
from scratch – not a very realistic and practical situation in today’s world.

The lack of reuse semantics proved to be problematic in practical applications. It
severely affects the estimating accuracy and cost realism (Wang, et al, 2008). An ini-
tial effort was to provide a formal construct for reuse similar to the DWR definition
today (Wang, et al, 2010) and to augment the COSYSMO model definition. Practical
applications of this extended COSYSMO proved effective and significantly improved
the estimating accuracy. Figure 6 compares a set of historical project data, collected
and validated in COSYSMO (Wang, et al, 2008), with two scatter plots showing the
same set of projects captured before and after the reuse extension. Figure 6(a) shows the
projects captured in COSYSMO version 1.0, without consideration of reuse and there is
no distinctive trend observed. Figure 6(b) shows the same data set, now captured with
an application of GRF, and the data converges and displays a distinct trend.

Additional studies (Wang, et al., 2011, 2013–14) expanded the model to account for
the entire scope of reuse – both the investment and the leverage of reusable resources –
leading to the GRF today.

18 G. Wang

(a) Without consideration of reuse and all size drivers are effectively counted as new

(b) With consideration of reuse and size drivers are classified according to respective reuse categories

Fig. 6. Scatter plots of the same dataset representing a group of historical system development
projects, before (a) and after (b) implementing a reuse extension in COSYSMO

3.2 The GRF-Based Cost Estimating Relationship

The Generalized Reuse Framework extends the COSYSMOmodel definition to account
for both the efforts of DWR and DFR. Thus, better characterizes the modern system
development process and as a result, significantly improves the fidelity of the estimated
cost.

The generalized reuse framework inherently implies two parallel efforts in a devel-
opment project, each driven by the DWR andDFR processes. Therefore, the total project
effort is the sum of the two, as below:

PHTotal = PHDWR + PHDFR (2)

where,

PHTotal = total SE effort in person-hours for the entire project
PHDWR = total SE effort in person-hours spent on the DWR process

A Generalized Reuse Framework for Systems Engineering 19

PHDFR = total SE effort in person-hours spent on the DFR process

In essence, PHDWR is the total effort dedicated to developing the end system with
benefit of reuse. It is less than what it would be if it started from a “clean slate”. PHDFR

is the effort devoted to developing reusable artifacts that could be reused either within
the same project or in future projects.

Thus, the total effort can be expressed as

PHTotal = ADWR · SSEDWR
DWR · CEMDWR + ADFR · SSEDFRDFR · CEMDFR (3)

where, SS represents the system size under development in the DWR and the DFR
processes, respectively. It is with the same unit of measure of “eReq” or equivalent
requirements, as in Eq. (1). The respective system size is expressed mathematically as

SSDWR =
∑
k

(∑
r

wr(we,k�e,k + wn,k�n,k + wd ,k�d ,k)

)
(4)

and

SSDFR =
∑
k

⎛
⎝∑

q

wq(we,k�e,k + wn,k�n,k + wd ,k�d ,k)

⎞
⎠ (5)

where,

Fx = quantity of “k” size driver, accounted for in the DWR process
Ψ x = quantity of “k” size driver, accounted for in the DFR process
k = {REQ, IF, ALG, SCN}
e = {Easy, Nominal, Difficult}
r = {New, Design Modified, Design Implemented, Adapted for Integration, Adopted for
Integration, Managed}
q = {No DFR, Conceptualized for Reuse, Designed for Reuse, Constructed for Reuse,
Validated for Reuse}
wx = weight for “easy,” “nominal,” or “difficult,” for the respective size driver
wr = weight for defined DWR levels of the respective size driver
wq = weight for defined DFR levels of the respective size driver
ADWR = calibration constant for DWR, typically derived from historical project data
ADFR = calibration constant for DFR, typically derived from historical project data
EDWR = nonlinearity for the DWR productivity curve, representing a diseconomy of
scale
EDFR = nonlinearity for the DFR productivity curve, representing a diseconomy of scale
CEMDWR = composite effort multiplier for DWR
CEMDFR = composite effort multiplier for DFR

20 G. Wang

Putting it all together, we can express the CER for the total project effort, including
both the DWR and DFR efforts, as

PHTotal = ADWR ·
[∑

k

(∑
r

wr(we,k�e,k + wn,k�n,k + wd ,k�d ,k)

)]EDWR

· CEMDWR

+ADFR ·
⎡
⎣∑

k

⎛
⎝∑

q

wq(we,k�e,k + wn,k�n,k + wd ,k�d ,k)

⎞
⎠

⎤
⎦
EDFR

· CEMDFR

(6)

This cost estimating relationship captures the total project effort, including the part
for investment and the part with the benefit of reuse. It shows that a development project
may contain both theDFR andDWRefforts, in different proportions. Reversely, a system
attribute may purposefully be developed in both the DFR and the DWR processes.When
counting the size drivers for a system or a project, we classify them in the corresponding
DWR and DFR categories, respectively, to accurately account for the collective effort.

For example, a critical system algorithm may be implemented as part of a standard
library and it would be classified as Constructed for Reuse in the DFR process. It can
then be used in the same project and would be classified as Adopted in the DWR process,
if it can be directly integrated into the end system.

As any experienced systems engineer would say, “Not all requirements are created
equal!” COSYSMO extended by the GRF is a powerful proof of that statement.

3.3 The DWR and DFR Weights

The reuse weight values in Eq. (6) were obtained through a series of wide-band Delphi
Analyses and further validated with the dataset shown in Fig. 6. They are elaborated
next.

3.3.1 The DWRWeights

Table 4 provides the derived values for the DWR category weights. The percentage
values in the first row are the relative weights for the six DWR categories, with New at
100% and other categories at an incrementally lower level. Mathematically, they are the
numerical values for the coefficients, wr , in Eq. (6). At an intuitive level, they represent
the partial set of SE activities required to realize a size driver (REQ, IF, ALG, or SCN)
in the end system due to leveraging reuse, relative to the complete set of end-to-end
activities corresponding to New. The rest of the 24 (4x6) decimal values in the table
correspond to the individual DWRweights for each of the four size drivers, in respective
rows, at the nominal level of difficulties.

A graphical representation is provided in Fig. 7 that gives an intuitive impression
of the relative weight distributions for the four size drivers in each of the six reuse
categories. The height of the bars corresponds to the decimal values in the table above in
the respective reuse categories. The downward trend for each of the size drivers (shown in
a different color) represents a decreasing level of required development effort due to the
benefit of increasing levels of reuse (from New to Managed), as previously elaborated.

A Generalized Reuse Framework for Systems Engineering 21

Table 4. The numerical weights of the six DWR categories for each of the four COSYSMO size
drivers at the nominal level of difficulty

New Modified Impl’ted Adapted Adopted Managed

100.00% 66.73% 56.27% 43.34% 38.80% 21.70%

System
Requirements

1.00 0.67 0.56 0.43 0.39 0.22

System
Interfaces

2.80 1.87 1.58 1.21 1.09 0.61

Critical
Algorithms

4.10 2.74 2.31 1.78 1.59 0.89

Operational
Scenarios

14.40 9.61 8.10 6.24 5.59 3.13

When resolving the weight values for the three-dimensional weighted sum term in
Eq. (6), we get four sets of 18 (3× 6) weight values, one for each of the four size drivers,
or 72 values in total. This is the result of expanding the six DWR categories to consider
all three levels of difficulties at the same time.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

New Design
Modified

Design
Implemented

Adapted for
Integration

Adopted for
Integration

Managed

DWR Category Weights

Nominal Requirements Nominal Interfaces
Nominal Algorithms Nominal Scenarios

Fig. 7. The graphical representation of the six DWR category weights for each of the four
COSYSMO size drivers at the nominal level of difficulty

3.3.2 The DFR Weights

Similarly, the values for the DFR weights are listed in Table 5. Mathematically, these
values define the numerical values for the coefficients wq in Eq. (6). At an intuitive level,
however, they indicate an increasing level of SE effort required to realize a size driver
(REQ, IF, ALG, or SCN) to a higher level of reusability. In particular, the percentage

22 G. Wang

values in the first row represent the derived DFR category weights, with 0% for No DFR
and other categories at increasing levels up to 94.7% for Validated for Reuse.

Table 5. The numerical weights of the five DFR categories for each of the four COSYSMO size
drivers at the nominal level of difficulty

Nom.
Weights

No
DFR

Conceptualized
for Reuse

Designed
for Reuse

Constructed
for Reuse

Validated
for Reuse

0.00% 36.98% 58.02% 79.15% 94.74%

System
Requirements

1.00 0.00 0.37 0.58 0.79 0.95

System
Interfaces

2.80 0.00 1.04 1.62 2.22 2.65

Critical
Algorithms

4.10 0.00 1.52 2.38 3.25 3.88

Operational
Scenarios

14.40 0.00 5.33 8.36 11.40 13.64

Figure 8 represents the DFR category weights for the four size drivers (No-DFR
not represented). Each of the four groups represents the weights of a category for the
four size drivers, each shown by different color bars. Once again, the height of the bars
corresponds to the decimal values in the table above, in the respective reuse categories
for all the drivers. Contrary to DWR, the upward trend in the graph, fromConceptualized
for Reuse to Validated for Reuse, represents an increasing level of SE effort for all four
size drivers.

0

2

4

6

8

10

12

14

16

Conceptualized for
Reuse

Designed for Reuse Constructed for
Reuse

Validated for Reuse

DFR Category Weights

System Requirements System Interfaces
Critical Algorithms Operational Scenarios

Fig. 8. The graphical representation of the five DFR category weights for each of the four
COSYSMO size drivers at the nominal level of difficulty

A Generalized Reuse Framework for Systems Engineering 23

After fully resolving the weight values for the three-dimensional weighted sum term
in (2–2), we get four sets of 15 (3× 5) weight values, one for each of the four size drivers,
or 60 values in total. These values are the result of expanding the five DFR categories
to consider all three levels of difficulties at the same time.

4 Conclusion

Reuse is a fundamental feature of SE. However, only planned reuse with a proactive
product strategy likely yields economic benefits. The Generalized Reuse Framework
provides an effective tool for product-line managers and systems engineers to manage
reuse in a system development effort. We provided the definitions of the DWR and DFR
processes and showed how they can be applied to tradeoffs of incremental develop-
ment strategies and reuse planning in product-line engineering for large-scale system
development projects.

We also described an application of this framework to cost estimating. Specifically,
we describe an extension ofCOSYSMOmodel definition by applying theGRF, including
themodified cost es-timating relationshipwith a set of coefficients calibrated by the reuse
weights. The extended COSYSMO more closely captures actual system development
processes, cost and efforts, and significantly increases the fidelity of the cost model and
the accuracy of its estimates.

With the competitive market environment and continuous drive for improved pro-
ductivity and efficiency, reuse has become a primary consideration by business enter-
prises, not just a cost-saving measure but a strategic approach that can positively impact
various aspects of system development, ultimately contributing to their success in the
market. Systematically integrating reuse into the end-to-end systems engineering pro-
cess is essential for maximizing the advantages it offers and realizing the promises of
improved architecture understanding, better development de-cisions, increased agility
and collapsed cycle time, and reduced lifecycle cost for the complex systems we develop
today and tomorrow.

References

Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR (1981)
Boehm, B., et al.: Software Cost Estimation with COCOMO II. Upper Saddle River, NJ, Prentice-

Hall (2000)
Bosch, J.: Examining the need for change in strategy, innovation methods and R&D practices. In:

Keynote, the 24th INCOSE International Symposium, Las Vegas, NV (2014)
Clements, P.C.: Product line engineering comes to the industrial mainstream. In: Proceedings of

the 25th Annual INCOSE International Symposium. Seattle, WA (2015)
De Weck, O., Suh, E.S., Chang, D.: Product family and platform portfolio optimization. In:

Proceedings of the ASME Design Engineering Technical Conferences – Design Automation
(2003)

Hillhouse, B., Ishigaki, D.T.: Strategic Reuse: A Fundamental Approach for Success in E/E
Engineering. IBM Rational webinar (2011)

Kim, Y., Stohr, E.A.: Software reuse: survey and research directions. J. Manag. Inform. Syst.
14(4), 113–147 (2015)

24 G. Wang

Le Put, A.: Systems Product Line Engineering Handbook. Association Francaise d’Ingenierie
Systeme (2015)

Nazareth, D.L., Rothenberger, M.A.: Assessing the cost-effectiveness of software reuse: a model
for planned reuse. J. Syst. Softw. 73(2), 245–255 (2004)

Selby,R.W.:Quantitative studies of software reuse. In: Biggerstaff, T.J., Perlis, A.J. (eds.) Software
reusability: vol. 2, applications and experience, pp. 213–233. ACM, New York, NY, USA
(1989). https://doi.org/10.1145/75722.75733

Selby, R.W.: Enabling reuse-based software development of large-scale systems. IEEE Trans.
Softw. Eng. 31(6), 495–510 (2005)

Valerdi, R.: The Constructive Systems Engineering Cost Model (COSYSMO), PhD Dissertation,
University of Southern California (2005)

Wang, G., et al. COSYSMO reuse extension. In: Proceedings of the 18th INCOSE International
Symposium. Utrecht, the Netherlands (2008)

Wang, G., Valerdi, R., Fortune, J.: Reuse in systems engineering. IEEE Syst. J. 4(3), 376–384
(2010)

Wang, G., Rice, J.: Considerations for a generalized reuse framework for system development. In:
Proceedings of the 21st INCOSE International Symposium. Denver, CO (2011)

Wang, G., Valerdi, R., Roedler, G., Pena, M.: Quantifying systems engineering reuse – a gen-
eralized reuse framework in COSYSMO. In: Proceedings of the 23rd INCOSE International
Symposium, Philadelphia, PA (2013)

Wang, G., Valerdi, R., Roedler, G., Pena, M.: A generalized systems engineering reuse frame-
work and its cost estimating relationship. In: Proceedings of the 24th INCOSE International
Symposium. Las Vegas, NV (2014)

Wang, G.: The generalized reuse framework – strategies and the decision process for planned
reuse. INCOSE Int. Symp. 26(1), 175–189 (2016)

https://doi.org/10.1145/75722.75733

	A Generalized Reuse Framework for Systems Engineering
	1 Introduction
	2 The Generalized Reuse Framework
	2.1 Reusable Resources
	2.2 The Reuse Process
	2.3 GRF Usage Scenarios

	3 An Illustrative Example – Application of the Generalized Reuse Framework to Cost Estimating and Analysis
	3.1 COSYSMO
	3.2 The GRF-Based Cost Estimating Relationship
	3.3 The DWR and DFR Weights

	4 Conclusion
	References

