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Abstract. Accurately learning facial expression recognition (FER) fea-
tures using convolutional neural networks (CNNs) is a non-trivial task
because of the presence of significant intra-class variability and inter-
class similarity as well as the ambiguity of the expressions themselves.
Deep metric learning (DML) methods, such as joint central loss and
softmax loss optimization, have been adopted by many FER methods to
improve the discriminative power of expression recognition models. How-
ever, equal supervision of all features with DML methods may include
irrelevant features, which ultimately reduces the generalization ability
of the learning algorithm. We propose the Attentive Cascaded Network
(ACD) method to enhance the discriminative power by adaptively select-
ing a subset of important feature elements. The proposed ACD integrates
multiple feature extractors with smooth center loss to extract to discrim-
inative features. The estimated weights adapt to the sparse representa-
tion of central loss to selectively achieve intra-class compactness and
inter-class separation of relevant information in the embedding space.
The proposed ACD approach is superior compared to state-of-the-art
methods.

Keywords: Deep Metric Learning · Ambiguous Expressions · Facial
Expression Recognition

1 Introduction

In the past few years, facial expression recognition has attracted increasing atten-
tion in the field of human-computer interaction [5,13,21,25]. Facial expressions
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can be seen as reflecting a person’s mental activity and mental state. With the
rapid growth in the field of human-computer interaction, scientists have con-
ducted a great deal of research to develop systems and robots that can automat-
ically sense human feelings and states [24]. The ultimate goal is to sense human
emotional states and interact with the user in the most natural way possible.
This is a very complex and demanding task, as performing expression recognition
in real-world conditions is not easy and straightforward. Facial expression recog-
nition is significant in human-computer interaction. Although facial expression
recognition has been studied and developed for many years, achieving accurate
facial expression recognition is still challenging.

One of the main challenges of facial expression recognition is the labeling
ambiguity problem. There are two reasons: one is the ambiguity of the expression
itself, where some expressions are similar and difficult to distinguish. The other
is the labeling ambiguity caused by different people, resulting in inconsistent
labeling. For example, “happy” and “surprise” are similar and hard to distin-
guish. Moreover, the model may learn unuseful facial expression features instead
of helpful information resulting in insufficient accuracy. Developing robust facial
recognition systems is still a challenging task. Three elements primarily affect
FER tasks based on deep learning techniques: data, models, and labels [2].
Researchers have made significant advances in models and data, but they need
to pay more attention to labels. Xu et al. [22] suggested a Graph Laplacian
Label Enhancement (GLLE) recover distribution from logical labels. However,
the algorithm’s rigid feature space topology assumptions make it unsuitable for
big field datasets.
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Fig. 1. They have different lateral connections (with or without skip connections),
feature extract methods, and resolution streams (gradually decreasing or staying the
same). Alternative architectures could be able to pick up different functionalities. We
are ensembling these three backbones in the coarse net to get reliable prediction results
and avoid over-fitting.

To solve this problem, we propose a cascade network to obtain more reliable
features in different ways as shown in Fig. 1. Specifically, we train multiple models



Combating Label Ambiguity with Smooth Learning 129

based on various architectures and improve the whole performance using an
ensemble. Finally, Joint optimization using softmax and smooth center loss.

The main contributions of our work can be summarized as follows:

– We propose the cascaded networks to address the label ambiguity problem in
facial expression recognition.

– We propose the smooth center loss selectively achieves intra-class compactness
and inter-class separation for the relevant information in the embedding space.
Smooth center loss is jointly optimized with softmax loss and can be trained.

2 Related Work

Facial expression recognition is an important research topic in the field of com-
puter vision and human-computer interaction. The earliest expression recogni-
tion methods were based on hand-crafted features [1,27]. Recently, deep learning
methods have significantly advanced the development of facial expression recog-
nition [26]. Some works [6,23] regard multi-branch networks to capture global
and local features. A hybrid architecture combining CNN and Transformer has
achieved state-of-the-art performance in several benchmarks to improve recog-
nition generalization. Recently, several researchers [5,21] proposed extracting
discriminative features through an attention mechanism, which was robust to
occlusions.

Deep Metric Learning (DML) approaches constrain the embedding space
to obtain well-discriminated deep features. Identity-aware convolutional neural
network can simultaneously distinguish expression-related and identity-related
features [18]. They employed contrast loss on depth features to combine features
with similar labels and separate features with different labels. Similarly, Liu et
al. [15] proposed the (N+M)-tuplet clusters loss function. By constructing a set
of N-positive samples and a set of M-negative samples, the negative samples are
encouraged to move away from the center of positive samples while the posi-
tive samples cluster around their respective centers. This integration improves
intra-class compactness by leveraging the k-nearest neighbor algorithm for the
local clustering of deep features. Furthermore, Farzaneh and Qi [8] proposed the
discriminative distribution uncertainty loss, which in the case of class imbalance
of the forward propagation process, regulates the Euclidean distance between
the classes in the embedding space of the samples.

3 Methodology

This section briefly reviews the necessary preliminaries related to our work.
We then introduce the two building blocks of our proposed Attentive Cascaded
Network (ACN): the smooth center loss and the cascaded network. Finally, we
discuss how ACN is trained and optimized.
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Fig. 2. An illustration of our collaborative methodology. Each backbone network’s
feature logits are extracted independently, and the softmax function generates the per-
class confidential scores. The argmax function is used to generate the ultimate result
after adding the scores.

3.1 Cascaded Network

Prior studies split expressions into seven basic categories to cover emotions com-
mon to humans. However, these seven categories of expressions are very similar,
especially negative ones. Particularly, four negative expressions-anger, contempt,
fear, and sadness-have comparable facial muscle motions. In contrast to posi-
tive sentiments, negative ones are more challenging to accurately forecast. The
majority of in-the-wild facial expression datasets, on the other hand, are gath-
ered from the Internet, where people typically share pleasant life experiences.
Negative emotions are difficult to obtain in real scenarios, making the existing
FER training dataset unbalanced regarding category distribution.

Specifically, we use two branches to predict positive expressions (happy, sur-
prised, normal) and negative labels (anger, disgust, fear, and sadness). In this
way, the low-frequency negative samples are combined in the negative samples,
making the training dataset more balanced.

As shown in Fig. 2. We use the model ensemble strategy to our coarse net
in order to further increase the robustness of our framework. The backbone
networks are specifically HRNet, Swin-S, and IResNet-152. These architectures
differ significantly from one another, as seen in Fig. 3, and each one extracts
distinctive features. Pooling or path merging layers are used by IResNet (a) and
Swin Transformer (b) to reduce the spatial resolution of feature maps, which
lowers processing costs and broadens the perceptual field. To gain rich seman-
tic features, HRNet (c) continues to be the high-resolution representation and
exchanges features across resolutions. Unlike the other models, which employ the
conventional convolution method, model (b) uses the attention mechanism with
shifted windows to study relationships with other locations. (c) uses more con-
nections between different resolutions to extract rich semantic features. These
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different architectural designs can help different models learn different features
and prevent the whole framework from overfitting to some noisy features.

3.2 Smooth Central Loss

Center loss, a widely used Deep Metric Learning technique, assesses how similar
the deep features are to the class centers that correspond to them. The goal
of center loss is to reduce the sum of squares between deep features and their
corresponding class centers within each cluster, mathematically represented as
shown below. Specifically, given a training minibatch of m samples,

LC =
1
2n

n∑

i=1

m∑

j=1

‖xij − cyij‖22 (1)

where the center loss penalizes the Euclidean distance between a depth feature
and its corresponding class center in the embedding space. The depth features
are made to cluster at the class centers.

Not all elements in a feature vector are useful for classification. Therefore, we
select only a subset of elements in the deep feature vector to help discriminate.
Our goal is to filter out irrelevant features during the classification process, and
we assign weights to the Euclidean distance in each dimension in Eq. 3 and
develop a smooth central loss method as follows:

LSC =
1
2n

n∑

i=1

m∑

j=1

αij ⊗ ‖xij − cyij‖22 (2)

where ⊗ indicates element-wise multiplication and denotes the weight of the
deep feature along the dimension in the embedding space. It should be noted
that LSC and LC are the same if αij = 1.

4 Experimental Settings and Results

In this section, we first present two publicly available FER datasets, the in-the-
lab dataset ck+ [16] and the Real World Affective Facial Database (RAF-DB)
[10]. Then, we conducted validation experiments on these two widely used facial
expression recognition (FER) datasets to demonstrate the superior performance
of our proposed Attentive Cascaded Network (ACN). Finally, we evaluated our
method on the publicly available FER dataset compared to two baselines and
various state-of-the-art methods.

4.1 Datasets

RAF-DB: The RAF-DB contains 12,271 training images and 3,068 images.
It is a facial image obtained by crowdsourcing techniques and contains happy,
sad, surprised, angry, fearful, disgusted, and neutral expressions. The dataset
are acquired in an unconstrained setting offering a broad diversity across pose,
gender, age, demography, and image quality.
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CK+: A total of 123 individual subjects are represented by 593 video
sequences in the Extended Cohn-Kanade (CK+) dataset. One of the seven
expression classes-anger, contempt, disgust, fear, pleasure, sorrow, and surprise
are assigned to 327 of these movies. Most facial expression classification methods
employ the CK+ database, which is largely recognized as the most frequently
used laboratory-controlled facial expression classification database available.

4.2 Implementation Details

Our experiments use the standard convolutional neural network (CNN) ResNet-
18 as the backbone architecture. Before performing the expression recognition
task, we pre-trained ResNet-18 on Imagenet, a face dataset containing 12 sub-
trees with 5247 synsets and 3.2 million images. We employ a typical Stochastic
Gradient Descent (SGD) optimizer with weight decay of 5×10−4 and momentum
of 0.9. We add new elements to the supplied photographs instantly by removing
arbitrary crops. We utilize the supplied image’s middle crop for testing. Crops
with dimensions of 224× 224 are taken from input photos with dimensions of
256× 256.

We train ResNet-18 on the public dataset for 80 epochs with an initial learn-
ing rate of 0.01, decaying by a factor of 10 every 20 periods. The batch size is
set to 128 for both datasets. The hyper-parameters α and λ are empirically set
to 0.5 and 0.01, respectively. Our experiments use the PyTorch deep learning
framework on an NVIDIA 1080Ti GPU with 8GB of V-RAM.

4.3 Recognition Results

Table 1 displays the results for RAF-DB, while Table 2 presents the results for
CK+. Notably, the test set of RAF-DB is characterized by an unbalanced dis-
tribution. As a result, we provide average accuracy, computed as the mean of
the diagonal values in the confusion matrix, and the standard accuracy, which
encompasses all classes in RAF-DB.

Table 1. Performance of different
methods on RAF-DB

Method Accurancy

Gate-OSA [14] 86.32
gaCNN [12] 85.07
LDL-ALSG [6] 85.53
PAT-ResNet [4] 84.19
NAL [9] 84.22
Center Loss [11] 82.86
PAT-VGG [4] 83.83

ACD 86.42

Table 2. Performance of different
methods on CK+

Method Accurancy

FN2EN [7] 96.80
Center Loss [3] 92.26
DRADAP [17] 90.63
IL-CNN [3] 94.35
IDFERM [15] 98.35
Block-FerNet [20] 98.41
DeepEmotion [19] 90.63

ACD 99.12
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As can be seen from Table 1, our ACN method outperforms the baseline
method and other state-of-the-art methods, achieving 86.42% recognition accu-
racy on RAF-DB. In addition, the improvement of ACN over the two baseline
methods is greater than the improvement of center loss over softmax loss. In
other words, ACN significantly enhances the generalization ability of the model.

Fig. 3. The ACD framework in this paper: the diagonal line is the proportion of cor-
rectly identified and the non-diagonal line is the proportion of confused.

As shown in the Fig. 3 and Fig. 4, the confusion matrices obtained by the
baseline approach and our proposed ACN framework are shown on the two FER
datasets to analyze each category’s recognition accuracy visually. Compared with
softmax loss, ACN improves the recognition accuracy of all categories except
surprise in the RAF-DB test set. The overall performance of ACN on RAF-
DB is better because the recognition accuracy for surprise, fear, and disgust is
significantly higher than that of central loss. We note that ACN outperforms the
baseline approach on CK+ except for the anger category, while the recognition
accuracy for the sadness and disgust categories is significantly higher than both
baselines. Overall, ACN outperformed the baseline method for all classes in both
RAF-DB and CK+.
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Fig. 4. The confusion matrix obtained from the baseline method (softmax loss)

5 Conclusions

This paper proposes an enhanced robustness approach called Attentive Cas-
caded Network (ACN). Our hybrid system uses smoothed central loss to enable
the model to learn discriminative features that can distinguish between similar
expressions. In addition, a cascaded network is proposed to address the label
ambiguity problem. Our experimental results show that ACD outperforms other
state-of-the-art methods on two publicly available FER datasets, namely RAF-
DB and CK+.

ACD can easily be applied to other network models to solve other classifica-
tion tasks and increase feature discrimination. In the future, we can extend the
model to gesture and hand gesture recognition.
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