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1 Introduction 

Many meshless methods have been developed to resolve the problem of re-meshing in 
conventional numerical methods such as FEM and FDM. The meshless local Petrov– 
Galerkin (MLPG) method seems to be the most successful meshless method among 
them [1]. It is based on a local weak form, and numerical integration is done over 
small local domains. A background mesh is generated locally rather than globally 
which makes the numerical integration relatively easier than by the global weak 
form-based meshless methods. The meshless shape functions in the MLPG method 
can be generated by meshless shape function generation schemes such as moving 
least squares (MLS), radial basis function (RBF), and several other approaches. The 
MLS scheme is mostly used due to its accuracy; however, it has some drawbacks 
such as the absence of Kronecker delta property (KDP) is computationally expensive, 
uses complicated polynomials, and could be instable for particular arrangements of 
nodal points. There is a motivation to further develop the MLPG method as two 
major problems remain: high computational cost and difficulty in the imposition of 
essential boundary conditions.
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2 Literature Review and Objective 

Many researchers have reported a slightly improved versions of the MLS scheme 
which overcome the drawbacks of the original MLS scheme. They have tested these 
MLS variants in element free Galerkin (EFG) method, global boundary node method 
(GBNM), and some other meshless methods [2]. To enable the KDP, modified weight 
functions in the MLS scheme have been proposed [3], which closely satisfy the KDP. 
Another variant, namely interpolating MLS (IMLS) scheme has been proposed in 
[4, 5], where a singular weight function is used in the IMLS scheme. It exactly satis-
fies the KDP, however, on the computational nodes, the value of the singular weight 
function becomes infinite, and thus, the shape functions cannot be calculated. The 
IMLS is successful only if the evaluation points do not coincide with the compu-
tational nodes. This problem is removed in the improved version of IMLS, named 
the improved interpolation moving least squares (IIMLS) scheme [6]. In IMLS and 
IIMLS variants, the inverse of a moment matrix has to be calculated in the proce-
dure of computation of shape functions, which makes the scheme computationally 
expensive. Another variant of the MLS scheme, which is based on the orthogonal 
weight function (OMLS), has been proposed in [6]. In this scheme, the moment 
matrix becomes a diagonal matrix that eliminates the calculation for inversion of 
moment matrix, which saves a substantial part of computational time. 

The objective of this paper is to develop the MLPG method based on the above 
listed improved versions of MLS scheme and test their performance for the poten-
tial flow problem. The tested MLPG methods based on the four improved versions 
of MLS, i.e. MLS_k (MLS with the modified weight function), IIMLS, OMLS, 
and OMLS_k (OMLS with modified weight function) are named here: MLPG_ 
k, IIMLPG, OMLPG, and OMLPG_k, respectively. In the next section, the MLPG 
formulation for the Laplace equation, which governs the potential flow, is introduced 
followed by numerical results, discussion, and conclusion. 

3 Materials and Methods 

In this section, we first present the procedure of MLS and OMLS approaches followed 
by the formulation of the MLPG method for the Laplace equation. Detailed informa-
tion on the procedure of shape function generation by the above listed MLS schemes 
has been discussed in [2]. 

3.1 MLS Approximation 

The MLS approximation for unknown variable u(x) at an evaluation point x can be 
written as
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uh (x) = 
m∑ 

j=1 

p j (x)a j (x) = pT (x)a(x), (1) 

where pT (x) is a row vector containing m basis functions and aj(x) are unknown 
coefficients. The elements of the vector pT (x) in 2D can be written as 

pT (x) = [1, x1, x2, x2 1 , x1x2, x2 2
]
. (2) 

There are six basis functions (m = 6) in 2D. Similarly, the vector can be written 
for 1D and 3D [2]. The coefficient vector a(x) is derived by minimising a weighted 
residual using l2 norm 

ns∑ 

i=1 

w(x, xi )
[
uh (x, xi ) − u(xi )

]2 = 
ns∑ 

i=1 

w(x, xi )
[
pT (xi )a(x) − u(xi )

]2 
, (3) 

where w(x, xi) is a weight function 

w(x, xi ) =
 
1 − 6d2 + 8d3 − 3d4 if 0 ≤ d ≤ 1 
0 if  d > 1 

. (4) 

d = ||x − xi||/rw and rw is the radius of the support domain in which the weight 
function is nonzero. There are ns number of nodes in the support domain, and u(xi) 
is the nodal parameter of the field variable at the discretization node xi. 

The m linear equations are obtained by differentiating Eq. (3) with respect to 
coefficient vector a(x) and equating it to zero 

ns∑ 

i=1 

w(x, xi )
[[
pT (xi )a(x) − u(xi )

]]
p(xi ) = 0, (5) 

which can be written in matrix form as 

A(x)m×ma(x)m×1 = B(x)m×nsuns×1, (6) 

where 

A(x) = 
ns∑ 

i=1 

w(x, xi )p(xi )pT (xi ) (7) 

is defined as the moment matrix, and 

a(x) = [a1(x), a2(x), . . . .am(x)]T
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B(x) = 
ns∑ 

i=1 

w(x, xi )p(xi ), 

u = [u1, u2, . . . .,  uns]T , (8) 

where ui is the value of the field variable at the discretization point xi. The coefficient 
vector a(x) is obtained from Eq. (6) and inserted in Eq. (1) to obtain the final MLS 
approximation 

uh (x) = pT (x)A−1 (x)B(x)u. (9) 

Denoting pT A−1B by φ, we obtain the vector of ns MLS shape functions. 
Using a vector notation, the partial derivatives of φ can be obtained as 

φ'x = pT
'x
(
A−1 B

)+ pT
(
A−1

'x B + A−1 B'x
)
, 

where 

A−1
'x = −A−1 A'xA−1 . 

To enable KDP, the modified weight function used in [2] can be used in MLS. 

w(x, xi ) = w̃(x, xi )∑ns 
k=1 w̃(x, xk) 

, (10) 

where 

w̃(x, xi ) =
 

(d2+ε2)−2−(1+ε)−2 

ε−2−(1+ε)−2 if 0 ≤ d ≤ 1 
0 if  d ≥ 1 

. (11) 

ε is a small constant, e.g. 10–5 [2]. The modified weight function makes the MLS 
approximation very close to having the KDP. 

3.2 OMLS Approximation 

The weighted orthogonal basis functions were proposed in the MLS approximation 
[5], which makes the moment matrix a diagonal matrix. Let, f and g be functions of 
x. The inner product ( f · g) is defined as 

( f · g)x = 
ns∑ 

k=1 

w(x, xk) f (xk)g(xk), (12)
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where w(x, xi) is a weight function. The weighted orthogonal basis function is defined 
as 

p̃i (x) = pi (x) − 
i−1∑ 

k=1 

( pi , p̃k) 
( p̃k, p̃k) 

p̃k, i = 2, 3 . . . .m, (13) 

where p̃i (x) is the new, orthogonal basis function of the OMLS scheme and pi (x) is 
the monomial basis function of MLS from Eq. (2). In the present paper, the notations 
are same as in the MLS procedure, except for p̃. For example, the first and second 
elements of the weighted orthogonal basis function ( p̃i (x)) are  given as  

p̃1(x) = 1 

p̃2(x) = x1 − 
( p2, p̃1) 
( p̃1, p̃1) 

p1 

= x1 − 
ns∑ 

k=1 

w(x, xk )(x1k)/ 
ns∑ 

k=1 

w(x, xk ). (14) 

In the same way, other weighted orthogonal basis functions for the OMLS can 
be obtained. The approach for obtaining the OMLS shape functions is the same as 
in the MLS. The only difference is the diagonal moment matrix (A), which can be 
written as. 

A(x) = 

⎡ 

⎢⎢⎢⎣ 

( p̃1 · p̃1) 
0 
... 
0 

0 
( p̃2 · p̃2) 

... 
0 

. . .  

. . .  

. . . 

. . .  

0 
0 
... 

( p̃m · p̃m) 

⎤ 

⎥⎥⎥⎦. (15) 

To enable the KDP in the OMLS (OMLS_k), a modified weight function of 
Eq. (10) can be used. 

We further use shifted and scaled polynomials to improve the conditioning of the 
moment matrix. Its details can be found in [2]. 

3.3 MLPG Formulation 

The Laplace equation governs the potential flow. The global domain and boundary 
are represented as Ω and Γ , respectively. 

∇2 u = 0 inΩ

u(x) = u(x) for x ∈  e 

∂u(x)/∂n = q(x) for x ∈  n, (16)
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u is the potential function, u is the specified value of potential function on the global 
Essential boundary  e, q is the specified value on the global Natural boundary  n, 
where  e ∪  n =  . The weighted residual statement for the above equation can be 
written as

 

ΩQ 

∇2 uνdΩ = 0, (17) 

where ΩQ is a local quadrature domain and ν is the test function. The above equation 
can be written in the weak form by applying the divergence theorem to reduce the 
continuity requirement. The equation in the vector notation can be written as

 

 Q 

u 'xnx νd −
 

ΩQ 

u 'x ν'xdΩ = 0, (18) 

where  Q denotes the boundary of ΩQ. We use vector notation, subscript, x denotes 
derivative with respect to the spatial coordinate. In the first term, the weak MLPG 
form can be written for three possible types of  Q

 

 Qe 

u 'xnx ν d +
 

 Qn 

u 'xnx νd +
 

 Qin 

u 'xnx ν d −
 

ΩQ 

u 'x ν'xdΩ = 0, (19) 

where  Qe is a part of  Q that intersects  e,  Qn is a part of the local domain 
boundary that intersects  n, and  Qin is a part of the local domain boundary that 
does not intersect  . The test function in the MLPG method is chosen so that it 
vanishes at  Qin, then the line integral term for  Qin from Eq. (19) becomes zero. A 
discretization of the MLPG form leads to the system of algebraic equations given by 

Ku  = F, (20) 

where K is the global system matrix (traditionally named the stiffness matrix), u is 
the vector of unknown field variable, and F is the force vector. The elements of the 
matrix K and the vector F are as follows: 

Ki j  = 

⎧ 
⎨ 

⎩ 

φ j (xi ) xi ∈  e 

 Qe 

φ j,x (x)nx ν(x, xi )d −  
ΩQ 

φ j,x (x)ν,x (x, xi )dΩ xi /∈  , (21) 

Fi = 

⎧ 
⎨ 

⎩ 

u(xi ) xi ∈  e 

−  
 Qn 

qν(x, xi )d xi /∈  . (22)
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The indices i and j represent computational node number and number of nodes in 
the support domain of the node i, respectively. In the MLPG method based on MLS 
and OMLS, the direct interpolation method is used to impose essential boundary 
condition, and in the MLPG method based on IIMLS, MLS_k and OMLS_k, the  
EBC can be directly imposed, in the same way as in the FEM. 

Test Function 

The MLPG test function is a quadratic function proposed in [7] 

ν(x, xi ) =
 (

1 −
(

x1−x1i 
aQ (xi )/2

))2 ·
(
1 −
(

x2−x2i 
aQ (xi )/2

))2 
if (x1, x2) ∈ ΩQi 

0 if  (x1, x2) /∈ ΩQi , 
(23) 

where aQ(xi ) = βQrs(xi ), aQ(xi ) is the edge of the local quadrature domain, βQ is 
the proportionality parameter, and rs(xi) is the radius of the support domain of point 
xi. 

4 Results and Discussion 

Four improved MLPG methods have been developed, namely, MLPG_k, IIMLPG, 
OMLPG, and OMLPG_k based on MLS scheme with modified weight function 
(MLS_k), improved interpolating MLS (IIMLS), MLS based on orthogonal basis 
function (OMLS) and OMLS with modified weight function (OMLS_k), respec-
tively. Their performance is analysed and compared with the original MLPG method, 
based on a standard MLS scheme, regarding accuracy level, convergence behaviour, 
and computational speed for the potential flow problem. The MLPG computer 
code is developed on the C/C++ platform. The Laplace equation has been solved 
on two-dimensional non-rectangular domain with both EBC and Natural boundary 
conditions as shown in Fig. 1.

Results of the MLPG code have been verified with the exact analytical solution 
of the problem which is 

u = x2
[
1.0 − 1.0/

{
(x2)

2 − (x1 − L)2
}]
, (24) 

where u is the potential function, L is the length of the domain, x1 and x2 are spatial 
coordinates. Two error norms have been used in the current work, absolute l1 norm 
is defined as 

Err_ l1 =
||ui − ue i

||, (25) 

where ui and ue i are approximate and exact values at the evaluation point i, 
respectively, and l2 norm is defined as
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Fig. 1 Schematic diagram of the 2D non-rectangular domain with boundary conditions [8]

Rerr_ l2 = 100 × 

    
N∑ 

i=1

(
ui − ue i

)2 
/ 

    
N∑ 

i=1

(
ue i
)2 
, (26) 

where N is the number of discretization nodes. 
Often, there are two types of grid, discretisation grid, and evaluation grid. The 

MLPG solution is obtained on discretised grid points and further re-evaluated on 
evaluation grid points. In Fig. 2, the distribution of 30 discretised and 114 evaluation 
grid points in the domain are shown. 

Tests have been performed for different sets of parameters such as the different 
number of nodes in the support domain ns, different sizes of the local support domain 
by varying the proportionality parameter and the different number of Gaussian points 
in the local integration domain. The quadratic basis has been chosen in the MLS vari-
ants as it appears to be an optimum. Results obtained with optimised parameters are 
shown here, i.e. 3× 3 Gaussian points in the local integration domain, proportionality

Fig. 2 Schematic diagram of the 2D non-rectangular domain with boundary conditions [2] 
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parameter βQ = 0.7 and ns = 13. First, the MLPG solution is obtained on the discre-
tised grid, and then it is re-evaluated on the evaluation grid. Numerical experiments 
have been performed for different sizes of grids. 

In Fig. 3, a comparison of analytical solution (top) with numerical MLPG solution 
(bottom) for 168 discretised and 717 evaluation points respectively is shown. Contour 
plots of constant potential lines are shown in the domain. Satisfactory result is found 
even for the coarser grid. The solution contour plots of other MLPG variants are 
visually similar to the MLPG method; thus, they are not shown. 

The computational efficiency, of all the selected MLS variants in the MLPG 
method, relative to the original MLS, has been tested (Fig. 4). The IIMLS method 
is the most computationally expensive due to its complicated shape function gener-
ation procedure. The OMLS method is the fastest and almost 10% more efficient 
as the original MLS method. As it does not possess KDP, the use of the modified 
weight function in the OMLS enables KDP, and based on it, the OMLS_k method is

Fig. 3 Comparison of analytical solution (top) with numerical MLPG solution (bottom) 
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Fig. 4 Computational efficiency of MLPG with different MLS variants relative to MLS [2] 

approximately 8% more efficient than the original MLS method. There is the little 
trade-off between possessing KDP and computational efficiency. 

The results of MLPG and OMLPG are identical, and similarly, the results of 
MLPG_k and OMLPG_k are identical. The OMLPG_k seems to be optimum, and 
thus, we show only its convergence with the original MLPG method in Fig. 5; 
however, the IIMLPG method exhibits similar convergence behaviour. The x-axis 
shows the number of discretised grid points, and the y-axis shows the error. The 
convergence behaviour of both methods based on the l2 norm (top) and l1 norm 
(bottom) is shown in Fig. 5. Slight waviness in convergence can be seen, neverthe-
less, good and almost similar convergence behaviour and good accuracy level are 
found.

The accuracy level and convergence behaviour of all the selected methods are 
found almost similar and satisfactory. The IIMLPG possesses KDP; however, it 
is more computationally expensive than MLPG and MLPG_k. The  OMLPG is  
almost 10% faster than the MLPG method; however, it does not possess KDP. 
The use of modified weight function in the OMLPG method enables KDP at the 
cost slight decrease in computational speed. Hence, OMLPG_k seems to be the 
optimum method which resolves both the problems, imposition of essential boundary 
conditions and moderate computational speed.
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Fig. 5 Convergence of MLPG and OMLPG_k methods based on l2 norm (top) and l1 norm (bottom)

5 Conclusions 

Four improved MLPG methods have been developed, i.e. MLPG_k, IIMLPG,  
OMLPG, and OMLPG_k based on MLS scheme with modified weight function 
(MLS_k), improved interpolating MLS (IIMLS), MLS based on orthogonal basis 
function (OMLS) and OMLS with modified weight function (OMLS_k), respec-
tively. Their performance is analysed and compared with the original MLPG method 
based on accuracy level, convergence behaviour, and computational speed for poten-
tial flow problem. The accuracy level and convergence behaviour of all the selected
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methods are found almost similar and satisfactory. The IIMLPG possesses KDP; 
however, it is more computationally expensive than MLPG and MLPG_k. The  
OMLPG is almost 10% faster than the MLPG method; however, it does not possess 
KDP. The use of the modified weight function in the OMLPG method enables KDP 
at the cost of slight decrease in the computational speed. Hence, OMLPG_k seems 
to be the optimum method which resolves both the problems, imposition of essential 
boundary condition and increase of computational speed. 
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Nomenclature 

αQ Edge of the local quadrature domain 
βQ Proportionality parameter 
φ Shape function
 Global boundary
 e Global boundary on which essential boundary condition is applied
 n Global boundary on which natural boundary condition is applied 
ΩQ Local quadrature domain 
ν Test function 
ns Number of nodes in support domain 
rs Radius of support domain 
m Basis function 
u Potential function 
x Spatial coordinate 
KDP Kronecker delta property 
IIMLS Improved interpolating moving least squares 
MLS Moving least squares 
MLPG Mehsless local Petrov Galerkin 
OMLS Moving least squares with orthogonal basis function 
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