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1 Introduction 

Euler equations are frequently solved in the context of many aerospace design prob-
lems. These equations govern the dynamics of inviscid compressible flows. The 
unsteady Euler equations demand the design of a stable, robust and accurate scheme 
that works for a variety of challenging situations. The Euler equations allow discon-
tinuous solutions in the forms of shocks, contact discontinuities, slip surfaces and 
expansion waves with sonic points [1]. The addition of artificial viscosity for the 
purpose of capturing shocks was first pioneered by von Neumann and Richtmyer 
[2]. With further research in this field, it became clear that the addition of explicit 
numerical diffusion is essential for numerical stability in case of central discretization 
of the flux terms. Pure central differencing of the Euler fluxes leads to instabilities 
because the direction of wave propagation is not respected, upwind schemes on the 
other hand are so designed as to respect the direction of signal propagation and hence 
they are generally stable because the strategy itself used to construct the schemes. 
They also provide better nonlinear stability near shocks. The FVS scheme of van 
Leer [3] is known to be highly robust but has high numerical diffusion which leads to 
smearing of discontinuities. Gudonov’s scheme [4] laid the foundation for a variety 
of upwind schemes, the primary drawback of which was that it was computationally 
expensive as it involves an exact Riemann solver. The expansion shock phenomenon 
suffered by the Steger and Warming Scheme [5], the first major FVS scheme, was 
remedied by the dissipative van Leer scheme. Later, the quest for better accuracy 
gave rise to a number of FVS and FDS upwind schemes. A few important ones are 
Roe’s FDS scheme [6], Liou and Steffen’s AUSM scheme [7], Edward’s LDFSS 
Scheme [8], Zha-Bilgen’s scheme [9], Jameson’s CUSP scheme [10], etc. Majority 
of these schemes have relatively low dissipation and the ability to capture shocks
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accurately. However, the question whether these schemes satisfy the entropy condi-
tion has received less attention. Merely not giving an expansion shock in a particular 
test problem is not a definitive proof of satisfying the entropy condition. However, if a 
scheme is seen to give expansion shock in a certain test case, we can justifiably say that 
it violates the entropy condition. In this paper, we experiment with two such schemes, 
namely, Roe’s scheme and Zha-Bilgen scheme. Through a test case designed by Zha 
[11], we first demonstrate that for the quasi-one-dimensional nozzle flow through 
a convergent-divergent nozzle, both these schemes give expansion shocks at the 
throat, thus violating the entropy condition. Roe’s FDS scheme is an important event 
in the development of approximate Riemann solvers as a natural progression to the 
Gudonov’s scheme which involves an exact Riemann solver. Although, it provides 
high accuracy for a range of problems, Roe’s FDS scheme suffers from limitations 
such as computational cost [7], carbuncle phenomenon and expansion shock [12]. 
Being a remarkable scheme with low dissipation, the Roe’s scheme has received 
considerable attention from researchers and several so-called entropy fixes have been 
suggested [13–15]. We also demonstrate that one such entropy fix, namely, Hyman 
and Harten’s [14] entropy fix rids the scheme of its entropy condition violation at the 
throat. It has been widely demonstrated that the entropy fixes cures Roe’s scheme 
also of the strong-shock carbuncle phenomenon. Thus, the Roe’s scheme gives a 
very accurate and powerful method when acting in conjunction with various entropy 
fixes. 

In this paper, we observe that all these entropy fixes are based on the modification 
of the Roe’s flux function and the strategy cannot be seamlessly extended to other 
schemes that violate the entropy condition. Not denying the effectiveness of these 
entropy fixes for the Roe’s scheme, we ask ourselves—‘Is it possible to adopt a 
general strategy that provides a common cure to all entropy condition violating 
upwind schemes’? The answer seems to be ‘yes’, and that is the problem we address 
in this paper. We first demonstrate that by adopting this general strategy the expansion 
shock given by the Roe’s scheme can be eliminated as effectively as the entropy 
fixes found in literature. We then experiment with the other upwind scheme of Zha-
Bilgen that violates the entropy condition. We first demonstrate that this scheme also 
gives an expansion shock at the nozzle throat and then go to show that the common 
strategy we propose remedies the problem effectively for this scheme as well. This, 
we feel justifies the claim that our strategy is likely to work with all entropy condition 
violating upwind schemes. The cure for entropy condition violation we propose has 
its roots in the dissipation regulation (DR-LLF) of a central scheme proposed in [1]. It 
has already been observed that an upwind flux function can be first cast in the form of 
a central flux function plus some dissipation term. The diffusion regulation strategy 
proposed in the DR scheme can be easily applied to the dissipation term inherently 
associated with an upwind scheme. In the next section, we explain the methodology 
adopted and then substantiate our claims with numerical results. It may be noted 
that we solve the nozzle flow problem using the quasi-one-dimensional (quasi-1D) 
version of the Euler equations using finite volume discretization.
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2 Problem Definition and Numerical Procedure 

2.1 Geometry 

The Sod’s problem [16] is a classic-bench-marking problem often used to test the 
performance of numerical schemes for hyperbolic conservation laws. Figure 1 shows 
a shock tube of length L = 15 m, in the middle there exists a diaphragm separating 
two gases of different pressures and densities into two sections, the driver with higher 
pressure and driven section with lower pressure. Initially, the gases on both sides of 
the diaphragm are at rest. Once the diaphragm is broken at t = 0 it leads to flow 
in the tube; the Mach number variation is studied numerically vs. analytically for 
validation. There are two problems, namely Sod’s first and second problem. For the 
first problem the pressures in the driver and driven section are 1000 and 100 kPa, 
respectively while the densities are 1 and 0.125 kg/m3. For the Sod’s second problem 
the pressures in the driver and driven section are1000 and 10 kPa, respectively while 
the densities are 1 and 0.01 kg/m3. For both the cases the gases are at rest initially. 

The geometry of the nozzle chosen for analysis is a converging–diverging nozzle 
designed and tested at NASA Langley Research Centre namely nozzle A2. The 
geometry is formed to be a converging and diverging section with slope angles of θ 
and β, respectively. The sections are connected via a circular-arc as shown in Fig. 1. 
The geometry is symmetric in nature. The mathematical equations describing the 
geometry [7] are given below: 

y = x tan θ + ht, 0 ≤ x ≤ L1 (1) 

y = −  
/
r2 c − (x − xc)2 + yc, L1 ≤ x ≤ L2 (2) 

y = (x − xt) tan β + yt, L2 ≤ x ≤ L3 (3) 

In the above equations, θ =−22.33°, β = 1.21°, L1 = 4.74 cm, L2 = 5.84 cm, L3 = 
11.56 cm, xc = 5.7814 cm, yc = 4.11 cm, rc = 2.74 cm, xt = 5.84 cm, yt = 1.37 cm. 
The minimum area of the nozzle is located at xc where yt is the throat radius (Fig. 2).

Fig. 1 Schematic of Sod’s shock tube problem 
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Fig. 2 A2 nozzle NASA 

2.2 Governing Equations 

In case of the quasi-1D nozzle problem, the physics is governed by the Euler equation. 
In the Cartesian coordinates it is expressed as: 

∂U 

∂t 
+ 

∂ F 
∂x 

− H = 0, (4) 

where, 

U = AQ, F = AE . 

Here, U is the vector of conserved variables and F is the flux vector. 

Q = 

⎡ 

⎣ 
ρ 
ρu 
e 

⎤ 

⎦, E = 

⎡ 

⎣ 
ρu 

ρu2 + p 
(e + p)u 

⎤ 

⎦, H = 
dA 

dx 

⎡ 

⎣ 
0 
p 
0 

⎤ 

⎦. 

Additionally, as we have three governing equations and four unknown’s density, 
momentum, energy and also the pressure term. To close this system, we use the below 
equation. 

p = (γ − 1)
(
e − 

1 

2 
ρu2

)
(5) 

In the above equation, ρ is the density, u is the velocity in the x-direction, p is the 
static pressure, e is the total energy, i.e. the sum of internal and kinetic energy per 
unit volume and A is the cross-sectional area of the nozzle (Fig. 3).

We use the finite volume method (FVM) formulations to discretize the above 
governing equations and obtain the following formulation for cell ‘I’ and time level 
‘n’.
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Fig. 3 Computational 1D 
finite volumes with cell 
interface

Qn+1 
i = Qn 

i − ∆t

(
1

∆x Ai

(
Fi+ 1 

2 
− Fi− 1 

2

)
−

(
Hi 

Ai

))n 

(6) 

It is to be noted that the same formulations are applicable to the Sod’s shock tube 
problem with Ai = 1 and Hi = 0. 

2.3 Artificial-Viscosity Form of Central Schemes 

It is known that central discretization of the flux terms for the Euler equations which 
are hyperbolic in nature leads to numerical instabilities. The stabilization is achieved 
by the explicit addition of a numerical diffusion term. Hence, we solve a modified 
Euler’s equation which contains second-order derivatives which exhibit viscous-like 
effects. The presence of excessive numerical diffusion smears out the discontinuities 
and therefore it becomes critical to control the diffusion term by the introduction of 
a diffusion regulation parameter. The flux expression in general can be derived as 
follows: 

∂U 

∂t 
+ c 

∂ F 
∂x 

= 0. (7) 

In the above equation, c is the speed of wave propagation. Since, the direction of 
signal propagation is important for the discretization of the flux terms, we express c 
as the algebraic sum of two parts as shown in Eq. 6. 

c = 
c + |c| 

2
+ 

c − |c| 
2 

(8) 

In the above equation, it is to be noted that if the magnitude of c is positive, the 
second term becomes zero, while in case c is negative, the first term becomes zero. 

∂U 

∂t 
+ 

c + |c| 
2 

∂ F 
∂x 

+ 
c − |c| 

2 

∂ F 
∂x 

= 0 (9)  

Now, the upwind scheme can be applied appropriately to each of the flux term. 
Expressing the flux terms as shown below allows us to apply upwind differencing
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without concern about the direction of wave propagation. 

Un+1 − Un

∆t
+

(
c + |c| 

2

)
Fi − Fi−1

∆x
+

(
c − |c| 

2

)
Fi+1 − Fi

∆x
= 0 

Finally, the flux terms can be collected to express the above as the sum of a central 
scheme and an additional diffusion term. 

Un+1 = Un − ∆t 

2∆x 
{c(Fi+1 − Fi−1)} + D, (10) 

where D is the numerical diffusive flux given by 

D = |c| ∆t 

2∆x 
(Fi+1 − 2Fi + Fi−1). (11) 

In the above equation, the diffusive flux term is regulated by the introduction of 
the diffusion regulation parameter Φ [1], this parameter is set based on the jump 
in Mach number across the cell interface and its magnitude in comparison with a 
parameter δ [1], the recommended value of which is 0.5. 

Un+1 = Un − ∆t 

2∆x 
{c(Fi+1 − Fi−1)} − ΦD (12) 

2.4 Numerical Procedure 

In case of the Sod’s shock tube problem, the pressure, velocities and densities are 
known throughout the domain at the initial condition. The properties in the tube 
are uniform with a single discontinuity, therefore, it can be classified as a Riemann 
problem, the analytical solution to which is well-known [1]. It is to be noted that most 
of the analytical calculations needed are trivial, but numerical techniques need to be 
employed to find the pressure ratios across the shock as there is no straightforward 
way to solve the implicit equation relating the pressures p1 and p2 as shown in Eq. 13. 

p4 
p1 

= 
p2 
p1 

⎡ 

⎢⎢⎣1 + 
γ − 1 
2a4 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 
u4 − u1 − 

a1 
γ 

p2 
p2 

− 1 
/

γ −1 
2γ

(
p2 
p2 

− 1
)

+ 1 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

⎤ 

⎥⎥⎦ 

−2γ 
γ −1 

, (13) 

where a is the speed of sound and the subscripts denote the corresponding region in 
the shock tube in Fig. 1.
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For the nozzle problem, we assume that the inlet of the nozzle is connected to an 
infinite reservoir, for which the pressure and temperature are taken as the reservoir 
conditions of 101,325 Pa and 300 K, respectively. For the entry boundary condition 
for isentropic transonic flow, we apply the method of characteristics for specifying the 
correct number of boundary conditions, i.e. the inlet and outlet boundary conditions 
needed are specified based on the number of characteristics entering and leaving the 
corresponding boundary. The number of variables at the inlet is specified equal to 
the number of characteristics entering through the same, whereas, the number of 
variables to be extrapolated from the interior of the domain is equal to the number 
of characteristics leaving the domain. 

In the quasi-1D nozzle problem, there are three characteristic waves crossing any 
point in the domain simultaneously. For the case considered, two characteristics enter 
and one leaves the computational domain. Therefore, we fix two variables at the inlet 
and extrapolate one from the interior. In the outlet for the supersonic case, three 
characteristics leave the domain. So, all the variables are extrapolated from within 
the computational domain. 

The numerical formulation is done using FVM, while the two schemes chosen for 
study are the Roe and Zha-Bilgen scheme. For the purposes of comparison with the 
analytical case, the area-Mach number relation [17] mentioned in Eq. 14 is solved 
using Newton–Raphson method.

(
A 

At

)2 

= 
1 

M2

[
2 

γ + 1

(
1 + 

γ − 1 
2 

M2

)] (γ +1) 
(γ −1) 

, (14) 

where At is the area at the throat of the nozzle. 
For the numerical solutions, we use a uniform structured 1D grid. The Roe’s 

scheme involves solving the approximate Riemann problem for every grid point. The 
Zha-Bilgen scheme on the other hand involves splitting the fluxes into a convective 
and pressure parts. 

2.5 Grid Independence Test 

The grid independence test is performed on the Sod’s second problem for a variety 
of grid sizes. We observe that the numerical results for N = 200 has reasonable 
accuracy. Here, for the purpose of resolving the entropy violation we choose lesser 
number of grid points. Although, choosing a large number of points may give better 
agreement with the analytical results, it also reduces the jump at the sonic point thus 
making it more difficult to identify and resolve the same (Fig. 4).
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Fig. 4 Comparison of results for various grid sizes 

2.6 Code Validation 

The FVM formulations of the Zha-Bilgen and Roe’s schemes are validated by 
comparing with the well-known Sod’s shock tube problem [16] along with its analyt-
ical solution. For the shock tube problem, the time step at which the plots were verified 
is t = 0.005 s and the chosen value of Courant–Friedrichs–Lewy (CFL) number is 
0.1. Additionally, it is also demonstrated that the analytical solution of the quasi-1D 
nozzle problem is in good agreement with the Roe’s scheme when the well-known 
Hyman and Harten Fix is applied to the same as shown in Fig. 6. 

We observe in the Fig. 5 that the numerical results are in good agreement with the 
analytical solution. Next, the code of the quasi-1D nozzle problem is also validated 
by plotting the analytical results along with the Roe’s scheme with the incorporation 
of a well-known entropy fix name.

In the Fig. 6 for the plot without the fix, we observe that the Roe scheme exhibits 
a strong-shock at the throat of the nozzle. We choose one of the many well-known 
existing entropy fixes for the Roe scheme, namely Hyman and Harten Fix [14]. As 
expected this rids the scheme of its entropy violation condition and no jump is visible 
in the throat region.
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Fig. 5 Comparison with analytical results of Sod’s first shock tube problem 

Fig. 6 Demonstration of Hyman and Harten’s entropy fix for Roe’s scheme

3 Results and Discussion 

The numerical computations are performed on a structured 1D mesh using the FVM 
formulations using an in-house code written in C language. Firstly, Sod’s second 
shock tube problem is implemented as it is expected that both the Zha-Bilgen as well 
as the Roe’s scheme will produce a jump near the sonic region.
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Fig. 7 Entropy violation for Roe and Zha-Bilgen schemes: shock tube problem 

It can be observed from Fig. 7 that there is a jump in the expansion front near the 
sonic region where Mach number is equal to one. The results of the same is shown 
in Fig. 7. 

It can be seen in the Fig. 7 that the violation of the entropy condition which caused 
a jump has been resolved upon incorporating the diffusion regulation parameter 
and setting the value optimally so as to minimize smearing, while simultaneously 
resolving the jump near the sonic point. It is also worth noting that reducing the 
dissipation regulation parameter any further would cause the schemes to become 
unstable (Fig. 8).

Secondly, the quasi-1D nozzle problem is addressed. For transonic flow, we 
observe a jump near the throat, i.e. the sonic point. For the isentropic transonic 
case, it is expected that the velocity or Mach number will gradually increase from 
subsonic to supersonic speeds without any jumps. However, at the sonic point the 
Zha-Bilgen and Roe’s scheme is expected to show a jump in the throat near the sonic 
region due to the violation of the entropy condition as shown below in Fig. 9.

Finally, the present problem which involves the control of the diffusion regulation 
parameter to resolve the entropy violation is explored. 

In the Fig. 10, a minimal amount of dissipation is added so as to handle the 
existing issues with minimal smearing of the results as diffusion inherently smooths 
out discontinuities and imparts stability to the numerical calculations.
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Fig. 8 Entropy violation fix for Roe and Zha-Bilgen schemes using dissipation regulation

Fig. 9 Entropy violation for Roe and Zha-Bilgen schemes: nozzle problem

4 Conclusions 

A number of upwind schemes are seen to give expansion shocks in some flow situa-
tions involving the Euler equations, which is a direct violation of physical laws. As 
the Euler equations are frequently used in the aerodynamic design of various objects 
such as wings, eliminating these nonphysical solutions is an extremely important
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Fig. 10 Entropy violation fix for Roe and Zha-Bilgen schemes using dissipation regulation

CFD activity. This work proposes a general remedy to the problem of expansion 
shock demonstrated by some upwind schemes. To substantiate our claim, we take 
two well-known schemes that are known to violate the entropy condition, namely the 
Roe’s scheme and the Zha-Bilgen scheme. We use these schemes to solve the quasi-
1D Euler equations that govern the transonic flow in a convergent-divergent nozzle. 
As expected both these schemes give expansion shocks at the nozzle throat, where the 
flow turns supersonic from subsonic, thus violating the entropy condition. A number 
of entropy fixes have been proposed for the Roe’s scheme, we use one of these to 
show that it remedies the problem of expansion shock at the throat. However, we 
observe that this remedy is not general in nature and is largely scheme-dependent. 
This motivates us to find a general cure for all upwind schemes that violate the 
entropy condition. This general strategy consists in first casting the upwind scheme 
in the form of a central-plus-dissipation scheme, and then regulating the diffusion 
proposed in a scheme named DR-LLF [1] scheme. Our numerical results clearly 
demonstrate that the expansion shock given by both Roe’s and Zha-Bilgen schemes 
are completely eliminated by suitably adjusting the diffusion regulation parameter. 
In the case of Roe’s scheme, the entropy fix proposed earlier and our diffusion regu-
lation strategy are seen to be equally effective. In the case of Zha-Bilgen scheme our 
diffusion regulation strategy is highly effective in eliminating the expansion shock 
at the throat. As the method proposed in this work is likely to remedy the problem of 
entropy condition violation exhibited by any upwind scheme, the framework is very 
general. In this paper, we present case studies involving only two upwind schemes. 
Work is in progress to determine which other upwind schemes violate the entropy 
condition and then examine how our general cure remedies the problem.
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Nomenclature 

A Cross-sectional area (cm2) 
At Cross-sectional area of throat (cm2) 
D Numerical diffusion (–) 
F Flux vector in the x-direction (–) 
ht Throat radius (cm) 
I Cell number (–) 
J Flux Jacobian matrix (–) 
L Left side of cell interface (–) 
SSSL1 Length of converging section (cm) 
L2 Length of converging and curved throat region (cm) 
L3 Length of nozzle (cm) 
M Mach number (–) 
Po Stagnation pressure (Pa) 
rc Radius of curvature of the throat (cm) 
R Right side of cell interface (–) 
T o Stagnation temperature (K) 
U Vector of conserved variables (–) 
β Angle of diverging section (°) 
θ Angle of converging section (°) 
γ Ratio of specific heats (–) 
ρ Density of fluid (kg/m3) 
Φ Diffusion regulation parameter (–) 
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