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Chapter 1 
Introduction, Objectives 

The different alternatives for managing a contaminated site are based on a cost/benefit 
balance that requires predictive modeling to assess mass depletion and duration of 
contamination source in the subsurface. For instance, the ESPER1 project (Evaluation 
and Sensitivity of models for Predicting the depletion and Remediation of organic 
contamination sources in subsurface) was aimed at developing a methodology and a 
software tool for facilitating the incorporation of uncertainty and sensitivity analyses 
into such subsurface contamination models. 

Let us first clarify from the outset the term “uncertainty propagation.” 
Mathematical methods of uncertainty analyses can be viewed as “uncertainty 

propagation” methods, in the sense that they can “propagate” (or “carry”) the uncer-
tainty from the input parameters to the outputs of the model. The model may be 
analytical: a simple example is the first order decay model C(t) = C0exp(−λt). Or  
it can be a more complex quasi-analytical model containing special functions and 
simple integrals. Or else, it can be a fully discretized space–time numerical model 
such as the Modflow- Surfact™ code. It can also be, possibly, a polynomial 
“meta-model” (“surrogate model”) derived from the initial model. The metamodel 
is essentially an input/output response function, derived from the original model, 
and which can be used to simplify the uncertainty propagation process (as will be 
explained later). 

This book reviews and illustrates various approaches and methods for uncertainty 
analysis, and presents various models (from simple to complex) to illustrate these 
uncertainty analyses, including some model-specific results, and also, site-specific 
results, from the ESPER project in particular. 

This book is organized as follows. After the present introduction, the next chapter 
(Chap. 2) covers different methods for carrying out uncertainty analysis, starting with 
an overview of different approaches and concepts. Chapter 3 develops a comprehen-

1 The ESPER project was funded in part by ADEME, the French environmental protection agency. 
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2 1 Introduction, Objectives

sive setting for probabilistic uncertainty quantification with random input param-
eters (including multivariate vectors of parameters). Chapter 4 focuses the review 
on fuzzy variables, comparing probabilistic vs. fuzzy approaches to uncertainty, 
and also, presents combined random/fuzzy approaches based on possibility theory 
(extension of fuzzy variables theory). The rest of the book is devoted to subsurface 
contamination models, with a view to their implementation with uncertain param-
eters. Thus, we consider in Chap. 5 a variety of equational models of contaminant 
transport, some analytical, others semi-analytical with simple integrals or special 
functions, and yet other fully numerical models (space–time discretized). Finally, 
in Chap. 6, we develop several examples of uncertainty analyses using some of the 
previous models with uncertain parameters. Various techniques and approaches are 
used (fuzzy or probabilistic, Monte-Carlo simulations with or without a meta-model). 
They are applied to a fully 3D semi-analytical model of solute advection–dispersion 
from a dissolving source (this model is used as a test case for our probabilistic 
ESPER-1 Monte Carlo uncertainty package), and finally, to a complex 3D computer 
code (Modflow- Surfact™) tested on a real contaminated site with uncertain 
parameters (based on response function metamodeling).



Chapter 2 
Overview of Uncertainty Propagation 
Methods 

This section presents, first, a summarized overview of approaches and concepts, 
before going into specific methods later in more detail (probabilistic and fuzzy 
approaches to uncertainty in hydrogeology, Monte-Carlo procedures, Metamoding, 
etc.). Let us first quote some general reference texts in the literature. See [1] on  
probability laws and random variables as well as random processes; [2] on random 
spatial fields; [3] on probability and stochastic modeling for risk analysis. Concerning 
hydrogeologic flows and contaminant transport underground, see [4–6]. Many more 
works will be cited along the way when discussing and reviewing topics of uncertainty 
analysis and contaminant transport. 

2.1 Approaches to Uncertainty 

Before tackling the different methods of uncertainty propagation, it should be first 
recognized that there are several ways to characterize and quantify uncertainty (i.e., 
the uncertain parameters and variables). Several approaches, summarized below, will 
be considered: 

• The uncertain input parameters (and the output variables or criteria) are all consid-
ered to be random variables or random vectors following known probability laws; 
or else… 

• The uncertain input parameters (and the output variables or criteria) are all consid-
ered to be fuzzy variables possessing known membership functions, or likelihood 
functions (cf. fuzzy set theory of [7, 8]), or else… 

• The uncertain input parameters follow a combination of probability laws and fuzzy 
membership functions, or “possibility functions” (extension of fuzzy theory such 
as the “Hybrid approach” and the Independent Random Sets IRS approach, as 
will be seen).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
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4 2 Overview of Uncertainty Propagation Methods

2.2 Monte Carlo Simulations (with or Without 
a Metamodel) 

2.2.1 Direct Monte Carlo Simulations 

Essentially two broad classes of procedures can be considered in order to “propagate” 
uncertainty: 

• Monte Carlo simulations of outputs from multiple replicates of uncertain input 
parameters 

• Analytical characterization of outputs uncertainty (outputs probability law and/ 
or moments). 

The most usual method to propagate uncertainty from inputs to outputs is by 
running the model for multiple replicates of the inputs: this is known as “Monte 
Carlo simulations.” This principle of repeated simulations can be applied to different 
approaches of uncertainty (probabilistic, fuzzy, or both), and to any kind of model 
(analytical or numerical). 

However, for some simple models, Monte Carlo simulations may not be required 
at all. A fully analytical uncertainty propagation may be possible. In such cases, it 
is possible to express explicitly the probability law of the model outputs given the 
probability law of the inputs. 

In addition, approximate analytical methods of uncertainty propagation can also 
be implemented without recourse to Monte Carlo simulations (e.g., using first 
order Taylor development around the mean). However, these approximations usually 
neglect the nonlinearity of the model, and they are limited to moderate or small 
uncertainty. 

To sum up, Monte Carlo simulations are required in many cases, especially with 
complex models. The objective is to perform “M” repeated simulations of the model 
for “M” different replicates of the uncertain inputs, in order to analyze the distri-
bution of the uncertain outputs. One of the crucial questions is then: How Many 
Monte Carlo Simulations Are Needed ? (M = 100?M = 1000?M = 10 000?). A  
brief answer is that Monte Carlo simulations converge slowly, with statistical error 
proportional to ∼ 1/ 

√
M . More precisely, statistical theory results indicate that, 

when repeatedly sampling from a population, the precision on the sample mean 

m
/\

X =
(Σm=M 

m=1 X
(m)

)
/M (with respect to the true unknown mean mX ) is propor-

tional to 1/ 
√
M where M is sample size (number of replicates drawn from the 

population). This 1/
√
M behavior can be used as a guide toward answering the 

question.
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2.2.2 Indirect Monte Carlo Simulations via a Metamodel 

Principle of the Metamodel Approach 

As will be seen in more detail later on, given an input/output model (such as Darcy 
flow and advection–diffusion transport), the multiple replicate/Monte Carlo approach 
to uncertainty propagation can be applied in two different ways, either directly to 
the model itself (as suggested earlier), or else indirectly, by applying Monte Carlo 
simulations to a “metamodel.” The metamodel (to be constructed) should provide a 
“response function” that is less costly to compute than the model itself. The goal of 
the response function is to provide a risk criterion (an output of the model) that is 
cheaply calculated as a simple function of the input parameters. 

Metamodel construction techniques (building a response function) 

Quantifying uncertainty via a metamodel implies the preliminary construction of a 
response function. The response function is defined in a P-dimensional space, where 
P is the number of uncertain parameters of the model. 

Response functions have been constructed using a variety of techniques. Some 
techniques are quite basic, like empirical nonlinear regression based on low-degree 
polynomials, applicable in practice to a relatively small or moderate number of 
uncertain parameters P. 

Other metamodel construction techniques are more sophisticated, like Polynomial 
Chaos (see [13] and references therein), or like Kriging estimation implemented in 
parameter space (rather than the usual spatial kriging in 1,2,3-D Euclidian space). 
Concerning kriging as a tool for metamodeling in parameter space, see for instance 
the DICE R-packages presented by [9]. In this specialized field, current efforts are 
geared toward techniques that might be efficient for high-dimensional parameter 
spaces. Thus, [10] developed and tested a stochastic kriging technique (with added 
random noise) using “Tensor Markov” kernels. The kernel is essentially the prior 
covariance matrix of generalized Gauss-Markov processes in the space of the uncer-
tain parameters. Ding and Zhang [10] tested their algorithms for high dimensional 
parameter space with hundreds and up to 10 000 uncertain parameters. 

Both Polynomial Chaos expansions, and Kriging Estimation (viewed as “Gaus-
sian process regression”), are used to construct metamodels within the OpenTURNS 
software (see the section on “Metamodels” in [11]. A remarkable fact with Polyno-
mial Chaos (PC) metamodels is that, once a PC metamodel has been constructed, 
Sobol indices used for sensitivity analyses can be computed analytically from the 
PC coefficients (see details in [12]).
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2.2.3 Summary on Direct Versus Indirect Monte Carlo 
Simulations 

In summary, while the “direct” Monte Carlo approach performs multiple simulations 
by directly implementing the full input/output model for a large number of replicates 
of input parameters, the “indirect” Monte Carlo approach calculates a large number 
of replicates of the prescribed output criterion via repeated application of a cheaper 
“metamodel,” usually with polynomial response function constructed in advance 
for a prescribed criterion. Multiple replicates of the output criterion are computed 
cheaply from the metamodel response function. However, the construction of the 
response function requires running the full model multiple times at least once for 
the given output criterion. A disadvantage of this “indirect” approach is that the 
metamodel “response function” must be constructed for each desired output criterion. 

For more details on theory and algorithms with metamodels, see previously 
mentioned references. For instance, see [13] on polynomial chaos metamodels, and 
[11] on running metamodels and other methods with the OpenTURNS platform. 
Concerning the use of kriging as “Gaussian process regression” in uncertainty anal-
yses, see again [11], and also [10] on using kriging with Tensor Markov kernels 
in high-dimensional parameter space. Examples of various uncertainty propagation 
methods will be presented throughout this book in the review sections below, and in 
the applications Chaps. 5 and 6. 

2.3 Joint Sets of Parameters, Cross-Correlations, Design 
of Experiments 

When generating multiple replicates of input parameters, the case of jointly uncer-
tain sets of parameters should be considered. For instance, the dispersion coefficient 
D(m2/s) and groundwater velocity V (m/s) may be partially correlated through 
dispersivity length scale (m). Or the permeability k(m2) and porosity Φ may be 
partially correlated through the Kozeny-Carman relationship. The joint set of input 
parameters may in fact comprise dozens of partially cross-correlated parameters, 
possibly together with other independent parameters. In such cases, it should be 
decided whether to propagate “jointly” or “one-by-one” the parameters’ uncertainty 
(the latter approach is easier but does not convey the correlation amongst parameters). 
Appropriate “joint” sampling of the parameters can involve generating “equiprob-
able” multivariate samples, and/or other sampling techniques known as “Design of 
Experiments” (DoE).
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2.3.1 Sampling and Uncertainty Propagation for Each Input 
Parameter (One-By-One) 

This case is relatively easy to implement: the same uncertainty propagation procedure 
is implemented by repeatedly sampling each uncertain input parameter while the 
others are fixed to some reference value (one-by-one analysis). There remains the 
question of how to sample the M replicates of the single uncertain parameter. 

Equiprobable sampling for one-by-one uncertainty analysis (univariate case) 

Equiprobable sampling of input parameters can be recommended by default. It is 
such that the number of replicates in each parameter interval is proportional to its 
probability to belong to that interval. For instance, Fig. 2.1 illustrates the equiprobable 
sampling of a Gaussian parameter with zero mean and unit variance. The random 
parameter has the same probability of falling in each interval: therefore, intervals 
widths are non-uniform. In the context of Monte Carlo simulations, the sampling 
strategy will be to draw the same number of replicates in each equiprobable interval. 
This graphic was produced by us in Matlab using random number generators and 
the inverse Gaussian CDF, for only a few tens of replicates (another similar graphic 
can be found in [13]. Note that extreme high and low values are conspicuously absent 
for such small samples: the sampled PDF appears truncated. (“Importance sampling” 
techniques can circumvent this problem by approximating the output probability law 
to enable targeting important extreme regions of input parameter space).

The equiprobable sampling approach can be extended to cross-correlated bivariate 
and multivariate cases (uniform, Gaussian, Log-normal, or other). The equiproba-
bility criterion can be enforced in multivariate cases via the LHS sampling technique 
(LHS: Latin Hypercube Sampling) to be reviewed further below. Before this, let us 
first see how the univariate “one-by-one” uncertainty propagation through a model 
can be performed and then, for instance, used for sensitivity analysis purposes. 

One-by-one uncertainty propagation from inputs to outputs 

Performing uncertainty analysis for a set of N uncertain parameters taken one-by-one 
(separately) provides a somewhat limited characterization of output uncertainty (for 
instance parameters cross-correlations are ignored), but it has a few advantages… 

i. One-by-one analysis is simple to implement repeatedly, in a sequential loop over 
the set of N parameters (P1, . . . ,  Pn, . . . ,  PN ). 

ii. For instance, if the first parameter P1 is considered uncertain (the others being 

fixed), a set of M equiprobable replicates
(
P (1) 
1 , . . . ,  P (m) 

1 , . . . ,  P (M) 
1

)
is gener-

ated, and correspondingly, M replicates of the output variables are obtained— 
such as pollutant concentration at a given space–time point, NAPL source mass 
at the same given time, and/or output criteria “R” inferred from output variables 
(like the time to reach a given concentration level…). 

iii. This is repeated for parameter P2, …, parameter PN . Each execution of the model 
(analytical or numerical) delivers a set of replicates of the output variables, which
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Fig. 2.1 Equiprobable sampling for a single uncertain parameter drawn from a normalized Gaus-
sian distribution (Univariate Gaussian). This graphic representation was programmed in Matlab; 
extreme low/high intervals are truncated due to the relatively small number of replicates in this 
sample

are uncertain. The outer loop (n = 1, ..., N ) over uncertain input parameters 
taken one-by-one is parallelizable. Furthermore, the inner Monte Carlo loop 
over replicates (m = 1, ..., M) is parallelizable too. 

iv. One-by-one analysis can be used to compare the variability of a given output 
criterion “R(P1, P2, . . . ,  PN )” with respect to several different parameters taken 
one-by-one (the others remaining fixed): thus R(P1) is analyzed first, then R(P2), 
etc.…, where R(P1) is defined as R(P1) ≡ R

(
P1, P0 

2 , . . . ,  P0 
N

)
, etc.… Note 

that the fixed parameters labeled P0 
j are considered “certain”; they are frozen 

parameters, to be used as reference values. 

Uncertainty propagation and sensitivity coefficients (one-by-one) 

The above one-by-one technique can be viewed as a way to implement sensitivity 
analysis via uncertainty propagation. For example, the results might show that 
the Output Criterion R is more uncertain (has a larger variance) with respect to 
Parameter 1 than with respect to Parameter 2.
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In the context of groundwater contamination, criterion R could be the time taken 
by the peak of a concentration plume, or by a given threshold concentration isovalue, 
to reach a given distance. It could also be the source “lifetime” (e.g., the time taken 
by NAPL source to decrease to 90% of its initial mass). 

Example: P1 = Permeability; P2 = Porosity; Output Criterion R = 
90% Source Lifetime. 

The sensitivity coefficients “S” of criterion R with respect to P1 and P2 are the 
partial derivatives: 

SP1(R) ≡ ∂ R/∂ P1 ; SP2(R) ≡ ∂ R/∂ P2 

Another analytical way to perform sensitivity analysis is to compute the contri-
bution of each uncertain parameter to the global uncertainty of the output. This can 
be accomplished analytically for simple algebraic models of the form Output = 
f (InputParameters) using Taylor expansion around mean values, or Mean Value 
First Order method (MVFO). See for instance the sensitivity analyses of [14] for  
corrosion pits growth Z (t) on a steel nuclear waste canister. These authors used the 
MVFO method to calculate directly the contribution of each uncertain parameter, Pn , 
to the total variance of the output Z (t), and ranked them accordingly: a large variance 
contribution of Pn implies that the model is very sensitive to that parameter Pn . We  
present later in Sect. 5.3. the corrosion pit problem in nuclear waste canisters with a 
simple geochemical model. 

Other methods can be used for joint (instead of “one-by-one”) sensitivity analysis: 
see the brief presentation of Sobol indices and their relation to Polynomial Chaos 
coefficients, in the next section below (Sect. 2.3.2.). 

2.3.2 Joint Uncertainty Propagation for a Parameter Set 
{P1,P2,…,PK} 

We examine here techniques for jointly sampling the set of uncertain parameters, 
and then propagating uncertainty through a model, for a set of K input parameters 
{P1, P2, . . . ,  PK } with K > 1, where the different parameters may or may not be 
cross-correlated. 

First let us briefly reconsider the univariate case (K = 1). The principle of 
equiprobable sampling was illustrated earlier in this section for a single uncertain 
parameter: see previous Fig. 2.1, where iso-probability intervals of a single Gaussian 
variable were shown. Note that equiprobable sampling does not need to be random 
in this example: one can choose a set of N deterministically distributed values (N 
samples) of the uncertain parameter to be sampled. Another possibility is dividing 
the variable axis into K deterministic “boxes,” and taking N = L × K samples with 
L ≫ 1. Then the same number of samples L can be drawn from each of the iso-
probability boxes of Fig. 2.1, possibly at random within each box. To sum up, the
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sampling schemes just discussed could be considered as basic examples of what is 
known as “Design of Experiment” (DoE). However, this “DoE” topic is more relevant 
for multiple input parameters (“factors”). The Latin Hypercube Sampling scheme, 
introduced below, is a parsimonious sampling scheme for the multivariate case. 

Design of Experiments (DoE) for 2 factors: Latin Hypercube Sampling 

The term “Design of Experiment” (DoE) refers to the design of a sampling scheme, 
especially where several variables or “factors” are involved (probabilistic or not). If 
the variables can be considered probabilistic, the previous “equiprobable” principle 
could be applied again. However, as the number of variables increases, the number 
of samples will increase too. In order to circumvent this problem, a parsimonious 
sampling known as Latin Hypercube Sampling (LHS) is frequently used. Let us 
briefly describe the LHS scheme for the bivariate case of two random parameters (X, 
Y) (correlated or not): 

• First, partition the (X, Y) plane into iso-probability boxes according to the 
joint probability distribution FX,Y (x, y) ≡ Pr{X ≤ x, Y ≤ y}. Usually these 
2D boxes are not of uniform size (except for a joint uniform distribution). 

• Secondly, sample these boxes by marking them in such a way that only one box 
is selected in each row, and one box in each column. The point samples (X,Y) are 
then positioned within the marked boxes, (e.g., at box centers). 

Two examples of Latin Hypercube Sampling are shown in the next figure (Fig. 2.2), 
for a bi-variate uniform distribution (Fig. 2.2 Top), and for a bivariate Gaussian 
distribution (Fig. 2.2 Bottom), where equiprobable regions are shown as 2D cells. 
Note: these graphs were generated by us from our Matlab scripts; similar schematics 
can also be found in [13] and other authors.

Design of Experiments (DoE) with multiple factors: LHS and other schemes 

Here we revisit the DoE issue (Design of Experiments), re-examining Latin Hyper-
cube Sampling (LHS) in comparison with other schemes, and discussing points of 
practical interest (e.g., how to treat cross-correlated parameters having disparate 
probability laws). 

First, here is an overview of classical references on LHS schemes in geosciences, 
where the parameters to be sampled are sometimes called “factors”: see [15] on  
parameter aggregation in hydrological models, [16] on sensitivity analyses and 
uncertainty propagation with the hydrologic model MIKE SHE; [17] on Design  
of Experiments for pesticides, or [18] concerning data assimilation and uncertainty 
in hydrology. 

Several codes for simulating hydro-geological flow-transport incorporate tools 
for solving inverse problems, performing sensitivity analyses, and/or propagating 
uncertainty from inputs to outputs. This is the case of the 3D iTOUGH2 code for 
multiphase flow and transport in porous media. The “i” in “iTOUGH2” stands for 
“inverse”: solving inverse problems by optimization, but also, performing sensi-
tivity analyses and propagating uncertainty. In iTOUGH2, multiple replicates of 
input parameters can be generated by Latin Hypercube Sampling (LHS) according
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Fig. 2.2 Illustration of 2D Latin Hypercube Sampling (LHS) for bi-variate problems, with Uniform 
(X, Y ) and Gaussian (X, Y ) distributions. Top Equiprobable LHS sampling of the Uniform 
Bivariate. Bottom Equiprobable LHS sampling of the Gaussian Bivariate
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to prescribed probability laws. These features are also related to another inverse code 
(PEST, iTOUGH2-PEST). See [19] for an optimization User Guide (after the PEST 
software), and [20] for the iTOUGH2 v7.0 Command Reference. The latter includes 
LHS as a sampling scheme for Monte Carlo simulations with multiple input parame-
ters, for some probability distributions (Uniform, Gaussian, Log-normal), albeit with 
ambiguous description of Log-normal parameters (to be clarified later in this book). 
Concerning iTOUGH2-PEST, see also [21]. 

Several other softwares have incorporated Uncertainty Quantification packages 
(e.g., “SmartUQ” in Comsol Multiphysics). In addition, in this book (Chap. 6), two 
other models of 3D flow transport will be implemented for uncertainty propagation 
analyses: (1) a semi-analytical 3D model of source dissolution and concentration 
migration (developed for Monte Carlo uncertainty analyses within our ESPER-1 
package), and (2) the commercial 3D Modflow- Surfact™ code applied to a real 
site. 

Design of Experiments (DoE) and LHS: special problems 

Latin Hypercube Sampling (LHS) can work for probabilistic Monte Carlo sampling 
of a multivariate set of input parameters {P1, P2, . . . ,  PN }, be they independent or 
dependent. However, dependence between random parameters having different prob-
ability distributions may be hard to characterize. The easiest case is that of a multi-
variate Gaussian set of parameters, where the dependence is entirely characterized 
by their N × N covariance matrix CPP, or the Log-normal multivariate distribution 
which can be handled in different ways through the log-transform (Sect. 3.1.2). Thus, 
if two parameters {P1, P2} follow the bivariate Gaussian distribution, their depen-
dence is completely characterized by their covariance CP1P2 or by their correlation 
coefficient ρ = CP1P2/(σP1σP2). For other multivariate cases, with dependence 
involving mixed distributions (e.g. dependent Gaussian and Uniform variables), it 
may be necessary to specify a complete multivariate joint probability law. The theory 
of “copulas” could help solve this parametrization problem. See “Copula (probability 
theory)” in [22]. To sum up, provided careful specification of the joint probability 
law, Latin Hypercube Sampling (LHS) could be adapted to generate multiple samples 
of non-Gaussian cross-correlated multivariate sets of random parameters. 

Sampling schemes other than LHS have been devised in the literature. Thus, 
“Quasi Random Sequences” or “Low Discrepancy Sequences” are available as a 
sampling scheme in OpenTURNS (see Sects. 5.4.1 and 6.2). Yet other samplings 
may be needed for evaluating the output probability distribution in narrow prob-
ability regions, for reliability analyses (“failure risk,” extreme values, probability 
tails). Several techniques known as “importance sampling,” “adaptive sampling,” 
or “stratified sampling,” have been devised for such purposes. Some of these are 
quite complex, involving iterations and corrections during Monte Carlo simulations. 
See [23, 24] for applications of importance sampling in structural systems. Other 
techniques are simpler to implement semi-analytically, based on approximate Taylor 
expansion of output probability distribution. As shown later in Sect. 5.3 for a simple 
model of corrosion pit growth, first order Taylor expansion can be used to propagate
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uncertainty analytically through an input/output model for performing probabilistic 
failure analysis. 

Finally, we emphasize that LHS and “importance sampling” methods are appli-
cable in two manners: (1) either directly through Monte Carlo simulations of the 
model of interest (e.g., flow-transport code), or else, (2) indirectly via simulations of 
a metamodel (“surrogate model”) which approximates the response of the original 
model. Various sampling strategies can be applied during the construction/calibration 
phase of the metamodel, and during its exploitation via Monte Carlo simulations. 
Picheny et al. [24] considered a class of metamodels based on generalized kriging, and 
devised adaptive procedures for estimating the probability of failure of a structural 
system through the metamodel. They constructed a Design of Experiments such that 
the metamodel accurately approximates the vicinity of a boundary in design space, 
this boundary being defined by a target value of the response function of interest 
(maximum stress in the system minus allowable “failure” stress). 

Joint sensitivity analyses, Sobol indices, and Polynomial Chaos coefficients 

Finally, joint sensitivity analyses can be performed via “Sobol indices.” Briefly, 
the first Sobol index SSO  B  O  L  

P1 quantifies the proportion of output variance that can 
be attributed to the sole parameter P1; SSOBOL P1P2 quantifies the joint effects of both 
parameters (P1, P2); etc. The “total” Sobol index SSOBOL Pi,TOTAL quantifies the total effect 
of parameter Pi including its interactions with all other parameters j /= i . These 
indices have a particular relation to Polynomial Chaos (PC) metamodels: once a PC 
metamodel has been constructed, Sobol indices can be computed analytically from 
the PC coefficients (see details in [12]). 

2.4 Applications to Risk Assessment in Field Pollution 

Mathematical methods of uncertainty propagation allow the quantification of model 
prediction uncertainties, and in fine, they can provide the quantitative elements for 
risk assessment, for instance, by developing cost/benefit balance toward the best 
choices for contaminated site management. In this context, methods of uncertainty 
propagation allow evaluating the uncertainty of costs and gains of remediation, as 
explained below (this is an important topic, even though we will not directly model 
remediation operations in this book). 

Uncertain costs of remediation 

Uncertainty propagation through appropriate remediation models can lead to an 
assessment of the uncertain financial costs linked to containment methods like 
hydraulic barrier, reactive barrier, Monitored Natural Attenuation (“MNA”), etc. 
This is important, as these costs may become prohibitive if the containment methods 
have to be applied on a long period of time.
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Uncertain gains of remediation 

Similarly, the gains resulting from remediation, and their uncertainty, can also be 
evaluated by propagating uncertainty through specific remediation models. The gain 
induced by a source zone remediation solution (such as excavation, or in situ treat-
ment) can be compared to other remediation techniques, keeping in mind that remedi-
ation techniques do not generally treat all the contamination contained in the subsur-
face (due to limited efficiency of these methods, and/or, due to constraints of access 
to the site, etc.). 

To sum up, approaches based on remediation modeling with uncertain parameters 
will allow a quantification of the uncertainty on the lifetime of the contaminant source 
and on its environmental impact, and this for several remediation scenarios. 

2.5 Causes and Sources of Uncertainty 

Methods of uncertainty propagation are applicable to a broader range of risk 
assessment issues related, in particular, to contamination phenomena in subsur-
face hydrology and hydrogeology: soil contamination, groundwater contamination, 
safety of toxic and radioactive waste disposal facilities, etc. In all these cases, uncer-
tainty is due (in part) to poorly known hydrogeologic parameters (such as porosity, 
permeability, adsorption, and dispersivity coefficients), and also, to poorly known 
spatial distributions of parameters (heterogeneity). However, uncertainty in the model 
outputs may also be due to “model errors.” 

Heterogeneity versus Uncertainty 

It is worth noting that heterogeneity has sometimes been treated as if it were equiv-
alent to uncertainty in the literature. Both can be treated probabilistically. However, 
based on random field theory and geostatistics, we argue that the two concepts 
(heterogeneity, uncertainty) should be distinguished. 

(i) Thus, aquifer permeability K (x, y) may be represented as a random 
field, possibly conditioned to honor measured permeabilities at several 
points. Multiple heterogeneous “Monte Carlo” replicates K (x, y)(m) 

{m = 1, 2, . . . ,  M} may then be generated by Bayesian or geostatistical 
methods. 

(ii) At any point (x1, y1) other than a measurement point, the permeability 
K (x1, y1) is indeed uncertain, and its distribution can be analyzed across the 
set of replicates m = 1, . . . ,  M . 

(iii) On the other hand, any given replicate of K (x, y) is spatially variable; thus, 
the first replicate K (x, y)(1) is heterogeneous, the second also, etc. 

(iv) The spatial statistical structure of random field permeability K (x, y) is usually 
not well known: it could be considered uncertain. The mean, variance, and 
variogram structure of K (x, y) could all be considered fuzzy, as illustrated in 
Fig. 2.3. References [25, 26] developed a geostatistical estimation of K (x, y)
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Fig. 2.3 Example of a fuzzy two-point variogram Γ(h), where  h is the distance between the two 
points (meters). The fuzzy variogram structure is based on two fuzzy parameters: the total variance 
(plateau of the variogram), and the range (or autocorrelation length). For instance here, the total 
variance is roughly between 0.20 and 0.75, and the range between 20 and 50 m.  The blue circles  
correspond to calculated values of Γ(h) from experimental data 

based on kriging with a fuzzy variogram. Celmins [27] discussed the related 
topic of nonlinear regression and model calibration using fuzzy logic.

The above considerations indicate the subtle way in which both uncertainty and 
heterogeneity should be combined, ideally, in hydrogeologic field modeling. 

Model errors 

Finally, we have noted that “modeling errors” also contribute to uncertainty in the 
predicted outputs (such as contaminant concentration or flux). This type of uncer-
tainty includes not only numerical errors, but also, conceptual model errors (e.g., 
incorrectly assuming Darcy’s law near wells with high velocities, or incorrectly 
assuming spatially constant coefficients in highly heterogeneous aquifers). For a 
discussion on model complexity, heterogeneity, and model errors, see [28]. 

In summary, the causes of uncertainty are not always clearly identified. Uncer-
tainty can be due to: 

• imperfect knowledge of parameter values (measurement errors, interpola-
tions, …); 

• spatial variability of the geologic medium (imperfectly represented or ignored); 
• model errors due to incorrect or forgotten mechanisms in the equational model. 

Model errors, measurement errors, model validation versus refutation, the “scope” 
of an experiment, model entropy, and degree of freedom, are discussed in Ababou, 
Sagar et al. (1992). In practice, it is often convenient to start with a given equational 
model (i.e., to accept the model), with its predefined set of input parameters (spatially 
constant or not), and then to translate imperfect knowledge of these parameters in 
terms of their “uncertainty” (randomness or fuzziness).
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2.6 Uncertainty Propagation: Output “Criteria” 

The remaining task is then to implement uncertainty propagation from the input 
parameters of the model to its outputs, or to pre-defined criteria (labeled “R”) such 
as: 

• uncertain concentration C(L , t) at a given distance from the source; 
• uncertain contaminant flux ϕ(L , t) at a given point or a given boundary; 
• uncertain time T(L) taken by the contaminant to reach a given point or a given 

boundary located at distance L from the source. 

The latter criterion, essentially, answers the question: “what is the time taken by a 
given iso-concentration to reach distance L?” It may be replaced by other temporal 
criteria such as: “what is the time it takes for the NAPL source mass to reach a given 
percentage p% of the initial mass?”. 

The main tool for uncertainty propagation will be to generate several (many) 
replicates of the inputs and outputs (Monte Carlo simulations), in two possible ways. 

• Direct Monte Carlo: M input replicates are generated, and the model is 
implemented M times to generate M replicates of the outputs; or 

• Indirect Monte Carlo/metamodel approach: a set of M0 inputs replicates is gener-
ated, and the model is executed M0 times to produce M0 output replicates, leading 
to construction of the metamodel; the latter is then used to analyze a larger set of 
M ≫ M0 input/output replicates (in this phase, only the “cheap” metamodel is 
used, not the full model). 

With any of these two methods, direct or indirect, the goal is to characterize 
the distribution of outputs or “criteria,” and to perform uncertainty analysis of the 
contaminated site (with or without remediation plan). Note that, if input parameters 
are random, output criteria are also random and can be analyzed probabilistically. 
Risk assessment methods often rely on probabilistic concepts, like conditional prob-
abilities, loss functions, reliability functions, mean time between failures, etc. See 
[29] in the context of actuarial studies, or [24] for reliability analysis in structural 
safety. 

Thus, the time T(L) taken by the contaminant to reach a given point can be 
analyzed probabilistically through Monte Carlo, e.g., for calculating its Cumulated 
Distribution Function (CDF), defined as: FT(τ ) = Proba{T ≤ τ }. The quality of the 
estimated CDF is improved with an increasing number of replicates (M)…at the 
expense of CPU time costs. The link between uncertainty and reliability analyses 
is the concept of “failure.” In subsurface contamination, a “failure” event could be 
defined as follows: concentration C(

−→x 1, t) at a given point (−→x 1) exceeds a given 
target concentration CTARGET (see field site application in Sect. 6.2). Such “failure” 
events, arising from hydrogeological space–time phenomena, are analogous to those 
defined in reliability analyses for industrial products like lightbulbs, or also, to dam 
break events in hydrology.
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Chapter 3 
Review of Probabilistic Versus Fuzzy 
Approaches to Uncertainty Propagation 
in Geosciences 

In this section, we develop a critical review and assessment of two types of approaches 
to uncertainty, based on probabilistic formulations, and based on fuzzy set theory 
(initiated by [9, 10]). In both approaches, the objective is to quantify and propagate 
uncertainty from model inputs to model outputs for risk assessment purposes. The 
applications targeted here are problems of subsurface contamination in hydrogeology 
and geosciences. As will be seen, the two types of approaches, probabilistic and fuzzy, 
are not necessarily mutually exclusive. 

3.1 Probabilistic Characterization of Uncertainty 

The textbook by [5] is a reference for some of the probabilistic concepts required 
in this book. However, some topics deserve particular attention here, such as multi-
variate Gaussian and Log-normal distributions with two or more variables, relations 
between moments of the Gaussian variable Y and Log-normal variable X = exp(Y ), 
or other issues like high quantiles estimation. For this reason, this section includes 
a summary presentation of probability/statistics results for uncertainty analysis. We 
are concerned with the probabilistic characterization of random parameters, or more 
generally, of a set of jointly random parameters (extending the previous overview 
Chap. 2 and Sect. 2.3), and with related sampling/estimation issues. In what follows, 
uncertain parameters are considered random “variables” named “X” or “Y ”.
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3.1.1 Univariate Probabilistic Characterization (Single 
Parameter) 

This subsection reviews classical probabilistic concepts for characterizing a random 
variable, including CDF and PDF functions, quantiles, and moments, but also, ques-
tions related to their empirical estimations from samples. We will also present, at 
the end of Sect. 3.1.2, several algorithms to generate random variables (uniform, 
Gaussian, and Gaussian pairs). 

PDF, CDF, and their estimation from samples 

Cumulated Distribution Function (CDF). For a single random variable X , the prob-
ability of non-exceedance Pr{X ≤ x} is the so-called Cumulated Distribution Func-
tion (CDF) that characterizes completely the probability law of X . It is often denoted 
FX (x), where X (upper case) designates the random variable itself, while x (lower 
case) designates the deterministic values it can take (see also for instance the quantiles 
defined further below): 

FX (x) = Pr{X ≤ x} ∈ [0, 1] (3.1) 

Probability Density Function (PDF). If the CDF is continuous, the Probability 
Density Function (PDF) can be defined as the function fX (x) = d FX /dx . The  
density fX (x) has units of

[
X−1

]
; thus, if X is hydraulic conductivity K (m/s), its 

PDF fK (k) has units
[
(m/s)−1

]
. On the other hand, for any infinitesimal interval 

[x, x + dx], the quantity d FX (x) = fX (x) · dx can be interpreted as a probability 
increment as follows: 

fX (x) · dx = Pr{x ≤ X ≤ x + dx} (3.2) 

Estimation of the PDF. The PDF of X can be estimated from a sample of N replicates 
of the random variable X by constructing a histogram with a chosen histogram width 
(Δx). Note that the frequency histogram f % is dimensionless, while the PDF is a 
density and has units

[
X−1

]
. Therefore, the frequency histogram f %, estimated at 

the middle of each histogram interval
(
x j−1/2

)
, should be divided by Δx , the width 

of histogram intervals, to obtain the required estimate of the PDF itself
(

f̂
)
: 

f̂
(

x j− 1 
2

)
= 

f %
(
x j−1/2

)

100Δx 
{ j = 1, 2, . . . ,  N } (3.3) 

Estimation of the CDF. Two methods are available for estimating the CDF from 
a sample of N replicates of the random variable X : (i) cumulated histogram, or 
(ii) estimation by points (method of Hazen). The method by points should be 
preferred. It consists simply in taking the following two steps: (a) sort the data
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sample
{

X ( j) , j = 1, . . . ,  N
}
in increasing order, and (b) attribute a constant proba-

bility increment ΔP = 1/N to each new data in increasing order, as follows (we may 
later omit the “sort” superscript, which indicates "sorted data"): 

F̂
(
XSORT 

j

) = 
jSORT − 1/2 

N

{
jSORT = 1, 2, . . . ,  N

}
(3.4) 

Examples of PDF/CDF estimation and fit. Figures 3.1 and 3.2 show an estimated 
PDF histogram and a point estimation of the CDF for a synthetic dataset of size 
N = 100 sampled from a Gaussian distribution. The fitted Gaussian PDF and CDF 
curves are obtained by the method of moments, i.e., by inserting estimated empirical 
moments in the proposed theoretical law. Here the empirical moments were m X = 
9.9273, σX = 0.9536, to be compared to theoretical moments m X = 10, σX = 1. 
A remarkable fact is that the empirical CDF seems better fitted to the theoretical 
Gaussian CDF, compared to the worse fit of the PDF histogram. These results would 
be even much worse if the data did not come from a Gaussian distribution.

Final remarks on empirical probability law estimation: 

(i) The only consistent estimator for the PDF is the histogram with a chosen 
histogram width Δx ; there is no alternative: pointwise estimation of a PDF is 
simply not possible (inconsistent). 

(ii) The CDF can be estimated, like the PDF, using a histogram (cumulated). This is 
less satisfactory than the point estimator of the CDF, which has better resolution 
and depends only on the data (not on histogram width Δx). This estimator is 
consistent and unbiased. 

(iii) The goodness of fit of the CDF to a theoretical CDF can be evaluated by the 
Ki2 or Khi2 test, or by the Kolmogorov–Smirnov test (not detailed here). 

Moments and their estimation from samples 

The random variable X can also be characterized partially through some of its 
moments: (1) the mean, (2) the variance, and (normalized) higher order moments 
like (3) skewness, and (4) kurtosis. Estimators of these quantities are described in 
Papoulis & Pillai (2022). Unbiased estimators of the mean m and variance σ 2 are: 

m̂ = 
1 

N 

j=NΣ

j=1 

X ( j); σ 2
/\

= 1 

N − 1 

j=NΣ

j=1

(
X ( j) − m̂

)2 
(3.5) 

Notice the intentional division by N-1 instead of N for unbiased variance esti-
mation. The standard deviation σ can then be estimated from the square root of 

σ 2
/\

: 

σ̂ ≈
[||
| 1 

N − 1 

j=NΣ

j=1

(
X ( j) − m̂

)2 
(3.6)
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Fig. 3.1 Histogram estimation of the PDF of a sample of size N = 100 generated from a Gaussian 
distribution (m X = 10, σX = 1), showing also the theoretical Gaussian PDF (red curve) fitted to 
the estimated PDF histogram by the method of moments

The standard deviation estimate σ̂ just above is unfortunately biased in general, 
but this should not be a problem except for very small samples. Physically, σ̂ has 
the same units as X ; it is a root-mean square measure of variability of X (unlike the 

variance σ 2
/\

which has units of X squared). 

Probability distributions of interest 

• Uniformly distributed variable X : U[X L , XU ] between a lower bound value X L 

and an upper bound value XU ; the PDF fX (x) is 1/(XU − X L ) inside [X L , XU ], 
and zero outside. Example: porosity (X = Ω) with 0 < XU < X L < 1. 

• Gaussian (“Normal”) random variable X : N {m X , σ  2 X

}
. Its  PDF is:  

Gaussian PDF : fX (x) = 1 
/
2πσ  2 X 

exp

{

− 
1 

2

(
x − m X 

σX

)2
}

(3.7)
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Fig. 3.2 Point estimation of the CDF of the same sample of size N = 100 generated from a 
Gaussian distribution (m X = 10, σX = 1), showing also the theoretical Gaussian CDF (red curve) 
fitted to the estimated CDF curve by the method of moments

The Gaussian CDF can be expressed as: 

Gaussian CDF : FX (x) = 
1 

2

{
1 + erf

(
x − m X 

σX 

√
2

)}
(3.8) 

where er f (x) is the classical special function called “error function”. 

• Log-Normal random variable X ≥ 0: X is such that the Neperian logarithm of X 
is Gaussian, that is: 

X : LogNormal
{
m X , σ  2 X

}⇔ Ln X = Y : N {mY , σ  2 Y

}
. 

The log-normal distribution is important in applications because it allows relating 
positive parameters like hydraulic conductivity K (m/s) or permeability k

(
m2
)
to the 

Gaussian law...by assuming they are log-normally distributed. With this in mind, the
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above description of log-normal variables should be completed with a characteriza-
tion of the relations between Gaussian moments

{
mY , σ  2 Y

}
and log-normal moments{

m X , σ  2 X

}
. 

The relations between moments
{
mY , σ  2 Y

}
of the Gaussian variable Y , and 

moments
{
m X , σ  2 X

}
of the positive log-normal variable X , are well known (see for 

instance Eq. 3.21 further below). Some of these relations can be found in various 
texts, like [7], including a useful product moment formula for all moments of a 
Gaussian variable obtained in 1918 by Isserlis [4]. 

Quantiles from probabilities 

Finally, it should be kept in mind that FX (x) is the dimensionless probability of 
non-exceedance: FX (x) = Proba{X ≤ x}. Therefore, knowledge of FX (x) leads to 
knowledge of quantiles “xP%”. For instance, the 50% quantile is the median, and 
the 95% quantile (x95%) is the value of the uncertain parameter X which has only 
5% chance of being exceeded: FX (x95%) = Proba{X ≤ x95%} = 95%. Assuming 
that the probability law FX (x) is known (or estimated), the value of a quantile can 
be obtained by inverting the CDF FX (x). Let us give an example for a Gaussian 
variable. In that case, the « P%» quantile xP% is obtained from: 

xP% = m X + σX 

√
2erf−1 (2P − 1) (3.9) 

where erf−1 is the inverse error function (called er f inv in matlab). For the 95% 
quantile, this yields: 

x95% = m X + σX 

√
2 erf−1 (2 × 0.95 − 1) (3.10) 

In the normalized Gaussian case, with m X = 0 and σX = 1, this yields x95% = 
1.645. Applying the same formula with F = 0.50 to compute the 50% quantile 
(median) yields x50% = 0 as expected. 

The difficult estimation of high quantiles. The direct estimation of a quantile X P% 

based on a finite size data sample
{

X ( j) , j = 1, . . . ,  N
}
has inherent limitations. 

The quantile X P% can be estimated by direct interpolation between sample data{
X (k) , X (k+1)

}
, but  only if sample size N is larger than a critical sample size: 

N > NCRIT(P%) = 0.5/(1 − P%/100), (3.11) 

…or equivalently, only if the quantile probability (P%) is no higher than a critical 
probability value: 

P% < P%CRIT(N ) = 100(1 − 0.5/N ), (3.12) 

…where the factor 100 is due to percentages. For a “high” quantile (P% > 
100(1 − 0.5/N )) it is  impossible to estimate X P% directly. In that case, X P% can 
only be estimated indirectly as follows: (i) estimate the CDF function FX

/\

(x), (ii) fit
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a theoretical model FFIT 
X (x) to FX

/\

(x), and (iii) interpolate or extrapolate FFIT 
X (x) to 

obtain finally an indirect estimate of the quantile X P%. This limitation regarding “high 
quantiles” should be kept in mind in the context of uncertainty analysis. Possibly, 
resampling methods related to Jackkife or Bootstrap could be used to overcome this 
problem (but this is not treated here). Let us now give a simple example related to 
subsurface contaminant migration modeling with uncertain parameters. 

Example: high quantile of concentration. Consider the problem of estimating the 
concentration quantile C99.90% corresponding to uncertain concentration C([x, t) 
calculated at a given space–time point, from “M” Monte Carlo simulations of the 
contaminant migration model, corresponding to “M” replicates of the uncertain 
model inputs. From the previous considerations on critical sample size, we have 
NCRIT = 0.5/(1 − P%/100), and taking P% = 99.90%, we find that we need 
M > 500 Monte Carlo simulations of the model in order to estimate the concentration 
quantile C99.90%. 

3.1.2 Multivariate Probabilistic Characterization (Two 
or More Uncertain Parameters) 

The previous concepts are here briefly extended to multivariate collections of random 
parameters, for example, uncertain probabilistic parameters that might be statistically 
dependent (cross-correlated). We also present, at the end of this section, some algo-
rithms to generate random variables (uniformly distributed variables, Gaussian vari-
ables, Gaussian pairs of correlated variables). We also treat the topic of characterizing 
Log-Normal variables [3, 8]. 

Joint PDFs, joint CDFs, conditional probabilities 

The joint probability law of a set of two dependent variables (X, Y ) is characterized 
by a joint CDF, a joint PDF, and Bayes conditional PDF, as outlined below: 

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) 

fX,Y (x, y) = 
∂2FX,Y 

∂ x∂y 
⇔ fX,Y (x, y)dxdy = d FX,Y (x, y) 

= Pr(x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy) 

fY |X (y|x ) = 
fX,Y (x, y) 

fX (x) 
(3.13) 

Multivariate Gaussian distribution, correlations, and covariance matrix 

Bivariate Gaussian distribution (two cross-correlated random variables) 

If (X, Y ) are jointly Gaussian, and cross-correlated, then we have the 
following bivariate Gaussian PDF:
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fX,Y (x, y) = 1 

2πσX σY 
exp

{

− 
1 

2

(
1 

1 − ρ2

)[(
x − m X 

σX

)2 
− 2ρ

(
x − m X 

σX

)(
y − mY 

σY

)
+
(

y − mY 
σY

)2]}

(3.14) 

Note that the covariance between the two variables is Cov(X, Y ) = ρ σX σY , 
where ρ is the correlation coefficient between X and Y. This covariance appears 
more explicitly as an N × N covariance matrix in the more general multivariate 
case for N Gaussian random variables (shown further below). Equation 3.15 below 
summarizes covariance-correlation properties for 2 random variables, regardless of 
their joint probability law (Gaussian or not): 

Covariance : Cov(X, Y ) = ⟨(X − m X )(Y − mY )⟩ Correlation coefficient: ρ = ρXY = Cov(X,Y ) 
σX σY 

Symmetric covariance matrix of size 2 × 2 : Symmetric covariance matrix of size 2 × 2 :  

C
XY 

=
[

σ 2 X Cov(X, Y ) 
Cov(X, Y ) σ 2 Y

]

R
XY 

=
[
1 ρ 
ρ 1

]

(3.15) 

Multivariate Gaussian distribution (N cross-correlated Gaussian random vari-
ables) 

The bivariate Gaussian distribution, defined earlier for 2 dependent Gaussian random 
variables (X, Y ), can be generalized for N > 2 dependent (cross-correlated) random 
variables, named here {X1, X2, . . . ,  X N }, and represented as the random vector [X = 
[X1, X2, . . . ,  X N ]. The joint multivariate Gaussian PDF of [X is: 

f [X ([x) = 1 
/

(2π )N det(C XX  ) 
exp

{
− 
1 

2 
([x − [m X )

T C−1 
XX  ([x − [m X )

}
(3.16) 

…where C XX  is the N × N symmetric covariance matrix of the N variables, 
containing the covariances Ci j  = Cov

(
Xi , X j

)
in row i and column j /= i , and the 

variances Var(Xi ) in the diagonal positions (i, i ). Indeed, note that C11 = Var(X1) = 
σ 2 X1, C22 = Var(X2) = σ 2 X2, etc. The joint PDF given above in Eq. 3.16 entirely 
describes the probability law of the multivariate Gaussian vector. It is remarkable 
that its joint probability law depends only on the N means m Xi , the N variances 
σ 2 Xi , and the N (N − 1)/2 symmetric cross-covariances Cov

(
Xi , X j

)
, and not on 

any higher order moments. 

Uni- and multi-variate Log-normal distribution (and covariance matrix) 

Recall that the support of a Gaussian variable is ]−∞, +∞[: it can take negative 
values. Therefore, a set of positive parameters {X1, . . . ,  X K } with support ]0, +∞[ 
cannot be Gaussian, but they could be Log-Normal. It will be seen how the cross-
correlations of Log-normals variables Xi ’s can be honored in the generation process, 
using moment relations between Xi and Yi = Ln Xi . 

Univariate Log-normal law. Let us start by specifying the PDF for a single Log-
normal variable, X > 0. First, recall that X (Log-normal) can be analyzed as the
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exponential of a Gaussian variable Y : X = exp(Y ). One should be careful in clearly 
distinguishing the moments of the Log-normal variable X : LogN (m X , σ  2 X

)
and 

those of the Gaussian variableY : N (mY , σ  2 Y

)
. They are related as shown for instance 

in Eq. 3.21 further below. 
Let us first express the PDF of X in terms of moments of X (the positive variable): 

fX (x) = 1 

x 
/
2π Ln

(
1 + σ 2 X /m2 

X

)exp 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 
− 
1 

2

[
Ln(x) − Ln

(
m X / 

/
1 + σ 2 X /m2 

X

)]2 

Ln
(
1 + σ 2 X /m2 

X

)

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

(3.17) 

The PDF of X can alternatively be expressed using moments of the Gaussian 
Y = Ln(X), as follows. 

The Log-normal PDF of X > 0, in terms of moments of the Gaussian Y = Ln(X ) : 

fX (x) = 1 

x 
/
2π σ  2 Y 

exp

{
− 
1 

2 

[Ln(x) − mY ]
2 

σ 2 Y

}
(3.18) 

The two expressions above are equivalent. For instance, the coefficient of vari-

ation of X , CX ≡ σX /m X , verifies CX =
/
exp
(
σ 2 Y

)− 1, which yields σ 2 Y = 
Ln
(
1 + σ 2 X /m2 

X

)
. Thus, the term Ln

(
1 + σ 2 X /m2 

X

)
in Eq. 3.17 is identical to the 

term σ 2 Y in Eq. 3.18. 
Finally, the Log-normal CDF can be deduced from the Gaussian CDF using the 

monotonic transformation X = exp(Y ). We have indeed: 

FX (x) = Proba{X ≤ x} = Proba{exp(Y ) ≤ x} = Proba{Y ≤ Ln(x)} 
⇒ FX (x) = FY (Ln(x)) 

…where FY is the CDF of the Gaussian Y , expressed in terms of the erf function. 
Thus, we have finally obtained an explicit description of the Log-normal CDF of 
X (here, in terms of moments of Y = LnX ): 

Log-normal CDF : FX (x) = 
1 

2

{
1 + erf

(
Ln(x) − mY 

σY 

√
2

)}
(3.19) 

The reader may obtain another equivalent formulation of FX (x) in terms of 
moments of X , by using the relations between moments of X and moments of 
Y = Ln X (see below, Eq. 3.21).
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Multivariate log-normal law 

We now briefly characterize the joint PDF of a multivariate Log-normal vector 
of positive random variables, or random parameters. This is useful for Monte 
Carlo uncertainty analyses, where one needs to generate replicates of several cross-
correlated positive parameters. Indeed, positive parameters cannot be Gaussian, but 
they can be assumed Log-Normal. It is therefore necessary to clarify how cross-
correlations of Log-Normal parameters can be honored in the Monte Carlo simula-
tion process. For instance, consider Log-normal input parameters X1: permeability, 
X2: dispersivity (transverse), X3: dispersivity (longitudinal), X4: initial concen-
tration (X1 > 0; X2 > 0; X3 > 0; X4 > 0). At least the first three can be cross-
correlated. Their joint PDF can be expressed, as before, either in terms of moments 
of Xi ’s, or in terms of moments of the Gaussian Yi ’s {Yi = Ln(Xi ) ∈ R}. The latter 
formulation is easier. 

Let us consider for instance the bivariate case with 2 correlated Log-normals 
{X1; X2}: 

Bi-variate Log-normal PDF of {X1, X2}, . . .  in terms of 

moments of the Gaussians Y j = Ln
(
X j
){ j = 1, 2} : 

fX1,X2 (x1, x2) 

= 1 

2πσY1σY 2 

1 

x1x2 
exp

{
− 
1 

2

[−−−→
Ln(x) − −→mY

]T 
C−1 

YY

[−−−→
Ln(x) − −→mY

]}
(3.20) 

. . .  with the vector notation : −−−→
Ln(x) =

[
Ln(x1) 
Ln(x2)

]
and −→mY =

[
mY 1 

mY2

]
. 

The first term in the denominator can also be expressed as: 2π σY1 σY2 = /
(2π )2 det(CYY  ). 
The moments of the Log-normals {X1; X2} can be related as follows to those of 

the Gaussians {Y1; Y2}: 

Means : m X1 = exp
{

mY1 + 
1 

2 
CY1Y 1

}
= exp

{
mY1 + 

1 

2 
σ 2 Y1

}
; 

m X2 = similarly ... 

Variances−Covariances (i = 1, 2; j = 1, 2) : 
Cov

(
Xi , X j

) = exp
{

mY i  + mY j  + 
1 

2

(
CY iY i  + CY jY j

)}[
exp
(
CY iY j

)− 1
]

⇒ Cov
(
Xi , X j

) = m Xi m X j
[
exp
(
CY iY j

)− 1
]

⇒ V ar  (Xi ) = σ 2 Xi = m2 
Xi

[
exp
(
σ 2 Y i

)− 1
]

(3.21) 

For verification, the moment relation for the univariate case is known to be σ 2 X = 
m2 

X

[
exp
{
σ 2 Y

}− 1
]
with Y = Ln X . This confirms the more general bivariate relation
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in Eq. 3.21 above. In fact, Eq. 3.21 provides the moment relations between Gaussian 
and Log-Normal for both the univariate case (take i = j = 1) and the bivariate case 
(take i = 1, 2; j = 1, 2). 

In practice, with Monte Carlo simulations, where multiple replicates must be 
generated, one may avoid dealing with multivariate Log-normal

{
X ,

i s
}
, by gener-

ating instead multivariate Gaussian
{
Y ,

i s
}
. Taking the exponential of the

{
Y ,

i s
}
repli-

cates yields the Log-normal
{

X ,
i s
}
replicates with Xi = exp(Yi ). The disadvantage, 

perhaps, is that moments of the transformed Yi = Ln(Xi ) must first be inferred from 
moments of the natural positive variables Xi (this is cumbersome but feasible using 
previous relations). 

Finally, it remains to be seen, technically, what algorithms can be used to 
generate multiple replicates of a cross-correlated multivariate vector for Monte 
Carlo simulations. For simplicity, we indicate below generation algorithms for two 
cross-correlated Gaussian parameters (Y1, Y2). 

Algorithm to generate bivariate replicates of 2 cross-correlated parameters 

Let {Y1; Y2} be two Gaussian parameters with means, variances, and cross-covariance 
defined by: 

Y1 = N (mY1, σ  2 Y 1

); Y2 = N (mY2, σ  2 Y2

); Cov(Y1, Y2) = ρ σY1σY2 

…where ρ is the correlation coefficient (−1 ≤ ρ ≤ +1). The algorithm to generate 
a set of M replicates {m = 1, 2, . . . ,  M} of these bivariate Gaussian parameters is as 
follows. 

Two cross-correlated Gaussians 

First, let us assume that we have at our disposal an algorithm to generate, indepen-
dently, M replicates of a univariate Gaussian variable G1 = N (0, 1), and indepen-
dently, M other replicates of a univariate Gaussian variable G2 = N (0, 1), where 
G1 and G2 are independent, and both are normalized with zero mean and unit vari-
ance. Then we obtain M replicates of the pair of cross-correlated Gaussian variables 
{Y1, Y2} using: 

m = 1, 2, . . . ,  M :
{

Y (m) 
1 = mY 1 + σY 1G(m) 

1 

Y (m) 
2 = mY2 + σY2

{
ρ G(m) 

1 +/1 − ρ2 G(m) 
2

} (3.22) 

Equation 3.22 requires generating normal variates such as G = N (0, 1). For  
this purpose, one can either use available software functions, like RANDN in 
matlab, or else, one can apply the Box-Muller method. Briefly, let G1 = R cos θ 
and G2 = R sin θ where θ ∈ [0, 2π ] is uniformly distributed in [0, 2π ], and 
R > 0 has a Rayleigh distribution with PDF fR(r ) = r × exp

(−r2/2
)
and CDF 

FR(r) = 1 − exp
(−r2/2

)
. Then it can be shown that {G1, G2} are two N (0, 1) 

independent normalized Gaussian variables. The following Box-Muller algorithm 
generates 2M independent replicates of G = N (0, 1):
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m = 1, 2, . . . ,  M :
{

G(m) 
1 = R(m) cos θ (m) 

G(m) 
2 = R(m) sin θ (m)

(3.23) 

…to be inserted into Eq. 3.22 to obtain the 2 cross-correlated Gaussian replicates{
Y (m) 
1 , Y (m) 

2

}
. 

This algorithm (Eq. 3.23) also requires (i) generating replicates of the uniform 
θ : U [0, 2π ], and (ii) generating replicates of the Rayleigh variable R. 

Rayleigh replicates for the Box-Muller generator 

The Rayleigh variable R can be generated by the Inverse CDF method. Briefly, 
replicates R(m) {m = 1, 2, . . . ,  M} are obtained from the inverse CDF F−1 

R (r ) using 
a sequence of uniform U [0, 1] random numbers U (m) as follows (e.g., [5: Sect. 5.15]: 
“The inverse problem”): 

R(m) = F−1 
R

(
U (m)

)
or equivalently FR

(
R(m)

) = U (m) 

With FR(r ) = 1 − exp
(−r2/2

)
, this yields the Rayleigh generation algorithm: 

R(m) = 
/

−2Ln
(
1 − U (m)

)
where U (m) ∈ [0, 1] 

From statistical theory, the above sequence provides an unbiased sample of 
replicates R(m) having the required Rayleigh distribution. 

Generation of uniform replicates U with multiplicative congruential random 
number generator 

Finally, the uniform replicates U (m) could be generated from intrinsic functions like 
RAND available in Fortran, Matlab, etc. However, for a completely autonomous 
algorithm, independent of any software function, we indicate one possible method 
for generating uniform random numbers based on a congruential generator of random 
integers, which is then converted to uniform real numbers in [0, 1]. The algorithm is 
as follows: 

(i) A pseudo-random integer NRAND(k) is generated at the kth iteration: 

NRAND(k) = (L × NRAND(k − 1) + c)(modulo M) 

…where: 

“c” is a constant number (integer) 
“M” is called the modulus (integer), 
“L” is called the multiplier (integer), 
“NRAND(0)” is the initial integer or “seed”, also denoted N0. 

(b) A real uniform random variable U ∈ [0.0, 1.0] is then obtained at each 
iteration as follows:
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U (k) = NRAND(k)/M 

…where U(k) is the real-valued floating point result of division by two integers. 
Thus, in Fortran, the correct result is obtained by the instruction: 

U (k) = Float(NRAND(k))/ Float(M) 

Some generators can be computed in 32-bit arithmetic, like the one proposed in 
[6] but they have a short cycle (Cycle : 218 = 262144). We propose here another 
“equidistributed” generator studied by [2], and used for random field generation in 
[1], which needs 64-bit arithmetic (INTEGERS**8) and whose cycle is longer, more 
than two billion replicates (Cycle = M − 1 = 231 − 2 = 2.147483646 × 109): 

Modulus : M = 231 − 1 = 2 147 483 647; Multiplier : L = 950 706 376; 
Constant : c = 0; Seed : any integer from 1 to M − 1, for instance N0 = 1 
Cycle Length = 231 − 2 = 2 147 483 646 ≈ 2 × 109 

Other multipliers L were judged satisfactory too; here is the list furnished by [2]: 

L = 950706376; 742938285; 1226874159; 62089911; and 1343714438 

…with a preference for the first multiplier L = 950706376. 

Example: equiprobable generation of 2 Gaussian correlated parameters 

The idea of equiprobable sampling of a set of two cross-correlated random param-
eters is illustrated in Fig. 3.3. A set of 1000 replicates of two correlated Gaussian 
variables was generated. The resulting cloud of points

(
X (m) , Y (m)

)
is shown for 

m = 1, 2, . . . ,  250 points. The red lines are the two regression lines Y |X and X |Y, 
with the smallest absolute slope for Y |X, and the largest one for X |Y . From Bayesian 
estimation theory, Y |X is the Best Linear Unbiased Estimator (BLUE) of Y condi-
tioned by X, and X |Y is the BLUE estimator of X conditioned by Y. This plot shows  
that the regression models Y = aY |X X + bY |X and X = aX |Y Y + bX |Y are not 
equivalent, because conditioning Y by X is not the same as conditioning X by Y. 
Iso-probability contours having the shape of ellipses are also shown in the plot of 
Fig. 3.3.

3.1.3 Estimating a Covariance or Correlation from a Data 
Sample 

The previously defined covariances Ci j  = Cov
(
Xi , X j

)
described the statistical 

relation between N random variables (N uncertain input parameters) taken two
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Fig. 3.3 A sample of 1000 
points (X, Y ) was drawn 
from a negatively 
cross-correlated bivariate 
Gaussian distribution (only 
250 points shown here). The 
red lines are the two 
regression lines Y |X and 
X |Y. The orthogonal blue 
lines are the two principal 
diameters of iso-probability 
ellipses, computed from the 
joint probability law using 
empirical moments. For 
N = 1000, these were close 
to the theoretical moments: 
{m X = 0, σX = 1}, 
{mY = 0, σY = 2}, 
ρXY = −1/2

by two. These covariances characterize the dependence between the N variables 
regardless of their probability law (multivariate Gaussian or not). They can be used in 
fact to describe not only the dependence between several uncertain input parameters 
(e.g., based on field data), but also between several outputs of the model such as the 
pollutant concentrations obtained at different target points in space. 

Covariance and correlation coefficient 

Let us look briefly at the problem of estimating a covariance Cov(X, Y ) from a 
finite data sample of the two variables. The following «statistic» is a consistent and 
unbiased estimator of the covariance Cov(X, Y ) between two random variables X
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and Y (two examples in our context: porosity Ω
(
m3/m3

)
and permeability k

(
m2
)
; 

transverse and longitudinal dispersivities αT and αL (m)):

◠

C XY = 1 

N − 1 

i=NΣ

i=1

(
X (i) − ◠

m X

)(
Y (i) − ◠

mY

)
(3.24) 

The following «statistic» can then be proposed as a reasonable estimator (consis-
tent but generally biased) of the cross-correlation coefficient ρXY between X and 
Y:

◠
ρ XY = 

1 
N−1

Σi=N 
i=1

(
X (i) − ◠

m X

)(
Y (i) − ◠

mY

)

/(
1 

N−1

Σi=N 
i=1

(
X (i) − ◠

m X

)2)(
1 

N−1

Σi=N 
i=1

(
Y (i ) − ◠

mY

)2)
(3.25) 

Linear regression and correlation coefficient 

The correlation coefficient also plays a crucial role in linear regression models Y |X, 
where Y is estimated (explained) from given X values (explanatory variable). The 
linear regression model yields: 

Y (X ) = aX  + b + ε, 

where the slope a = ρXY σY /σX minimizes error variance Var(ε), and b = mY − 
a m X is obtained from the unbiasedness condition E(ε) = 0. In practice, parameters 
a and b are estimated by replacing all quantities by their estimates ◼

/\

(estimators 
were defined earlier). An important result in practice is the minimal error variance, 
which can be used to obtain a scaled measure of root-mean-square error: 

σ 2 ε = σ 2 Y

(
1 − ρ2 

XY

)→ eRMS = σε/σY = 
/
1 − ρ2 

XY (between 0 and 100%). 

Examples : ρXY = 0.70 → eRMS ≈ 71% ; ρXY = 0.95 → eRMS ≈ 31% 

This shows (perhaps surprisingly to some readers) that even with a "good" corre-
lation coefficient 0.95, the root-mean square error is still 31%: thus, in this case, only 
69% of the variability of Y is “explained” by the linear regression model Y (X ).
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Chapter 4 
Fuzzy Set Characterization 
of Uncertainty (Fuzzy Variables) 

Fuzzy set theory (fuzzy variables & fuzzy logic) emerged in 1965 with L. A. Zadeh’s 
article on “Fuzzy Sets,” followed by another article [1]. There have been precursors 
before these initial works, and further extensions of fuzzy set theory afterwards and 
up to the recent years. In particular, the initial concepts of fuzzy logic were extended 
(or refined) based on the theory of “possibilities” [2]. More recently, the theory of 
possibilities was used to combine probabilistic and fuzzy logic representations of 
uncertain variables, and to propagate fuzzy uncertainty by various methods such 
as the technique of Independent Random Sets (e.g., [3]), to be presented further 
below. Let us first present an overview of various concepts from fuzzy set theory, 
and probabilistic extensions of it like the theory of possibilities combining fuzziness 
and randomness. We will then review a few applications, algorithms, and softwares 
based on fuzzy variables. 

4.1 Fuzzy Sets, Fuzzy Numbers, Fuzzy Logic 
and Arithmetic 

4.1.1 Fuzzy Sets, Fuzzy Numbers, Membership 
Functions, and α-Cuts 

Briefly, a variable X ∈ A ⊂ R is fuzzy, or belongs to the fuzzy set A, if the  value  
taken by X in this set is only defined to some degree μ(X ) comprised between zero 
(0) and one (100%). That is, for instance, we may have X = 3.14 with degree 
μ(3.14) = 0.75 = 75%. We have in this case X = 3.14 with a truth degree of 75%, 
and X /= 3.14 with a truth degree of 25%. 

Considering now the whole set A ⊂ R on which X is defined, the degree function 
μ(X) can be specified for all values X ∈ A. This function μ(X ) is also called

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
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SpringerBriefs in Applied Sciences and Technology, 
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the membership function of the fuzzy variable X , because μ(X ) is the degree of 
membership of X ∈ A. The membership function μ(X ) can also be described in 
terms of its α-cuts, set of intervals such that μ(X ) = α with α ∈ [0, 1]. For a concave 
membership functions, there is a unique α-cut interval Aα = [XLEFT(α), XRIGHT(α)] 
for each value of α; examples: triangular, trapezoidal, Gaussian, or also, the trivial 
box-shaped membership function. The α-cut interval A0 corresponding to α = 0 
is the set of all values X for which it is possible that X satisfies this value (or this 
property). Indeed, for values outside this α-cut, we have μ(x) = 0, which means that 
these values cannot satisfy the desired property (the desired value of X ). 

Here are three examples of membership functions, taking for example X = Φ

(porosity) and A = [0, 1]. Note: the three shapes below (box, triangle, trapeze) could 
all be described as generalized trapezoidal functions, since the box and the triangle 
are just special cases of the trapeze. For theoretical indications on the practical interest 
of these membership functions, see [4]. 

• Box-shaped membership function: μ(Φ) = 1 on X ∈ [ΦLOW,ΦUP] ⊂ [0, 1], 
and μ(Φ) = 0 outside. Practical meaning: we only know, or we think we know 
from expert judgment, that Φ cannot be less than ΦLOW and cannot be greater 
than ΦUP. 

• Triangular-shaped membership function: μ(Φ) = 1 at Φ = ΦRE F , the apex 
or “core” of μ(Φ); μ(Φ) is zero for Φ ≤ ΦLOW (at left) and for Φ ≥ ΦUP at 
right. This membership function is formalized by the triplet {ΦLOW;ΦREF;ΦUP}. 
Practical meaning: porosity is a fuzzy number having an apex ΦREF (reference 
value) and a support interval [ΦLOW,ΦUP] (bounds). 

• Trapezoïdal shaped membership function taking the value μ(Φ) = 1 within 
an inner interval

[
ΦLowRef;ΦUpRef

]
, and vanishing at the left of ΦLow and at 

the right of ΦU p; this trapezoïdal function can be represented as the quadruplet{
ΦLow;ΦLowRef;ΦUpRef;ΦUp

}
. 

In particular, the triangular function with μ(XREF) = 1 defines a so-called “fuzzy 
number”, XREF, which is “crisp” (the opposite of fuzzy), while neighboring values 
around X = XREF are fuzzy (μ <  1). More generally, membership functions can 
have different shapes, and they could be strictly “fuzzy” (non-crisp) everywhere, that 
is, with μ(X ) < 1, ∀X ∈ A. 

4.1.2 Fuzzy Logic and Fuzzy Arithmetic Rules in Models 

One possible way to implement input/output model calculations with fuzzy input 
parameters in subsurface flow and transport simulations is to use fuzzy logic rules 
(∪, ∩, ⇒, ⇔, ~), that is (Or, And, Imply, Equivalent, Not), and also, fuzzy arithmetic 
rules (+, −, ×, /). 

For simplicity, consider for instance two fuzzy sets A and B with symmetrical 
triangular membership functions μA(X ) and μB (X ). Because of their symmetry, they 
can be defined by doublets {aLOW; aUP} and {bLOW; bUP}, or better, by the intervals
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[aLOW, aUP] and [bLOW, bUP]. Arithmetic rules and logical rules are then as shown 
below, at least for fuzzy sets with symmetric triangular membership functions. 

These rules were implemented for instance in the Fuzzy Logic groundwater flow 
code FLO2SIM of [5]: see Sect. 4.2.4 further below. The subtraction rule could 
serve for instance to calculate the fuzzy hydraulic head difference ΔH between 
spatial cells. More extended versions of fuzzy differential and integral calculus have 
been developed in the literature, but they were not used in FLO2SIM and they are 
beyond the scope of the present work. 

Arithmetic rules of fuzzy calculus 

Addition of fuzzy sets: A ⊕ B = [aLOW + bLOW, aUP + bUP]. 
Subtraction of fuzzy sets: A ⦵ B = [aLOW − bUP, aUP − bLOW]. 
Multiplication of fuzzy sets: A ⊗ B =

[
Min{aLOWbLOW; aLOWbUP}, 

Max{aUPbLOW; aUPbUP}
]
. 

Division of fuzzy sets: A ⦸ B =
[
Min{aLOW/bLOW; aLOW/bUP}, 

Max{aUP/bLOW; aUP/bUP}
]
. 

Inverse of a fuzzy set: A−1 = [1/aU P  , 1/aL OW  ]. 

These rules are not entirely obvious: note that A ⦵ A /= [0, 0] and that A ⦸
A /= [1, 1]. 

Logical rules of fuzzy calculus 

Union of fuzzy sets: A or B = A ∪ B = Max{A; B}. 
Intersection of fuzzy sets: A and B = A ∩ B = Min{A; B}. 

The intersection of 2 non-overlapping triangular membership functions is empty 
(the resulting membership function is null everywhere): for instance, with symmetric 
triangular functions “μ”, we have μ[0.5,3.5] ∩ μ[7.0,9.5] = ∅. 

Figure 4.1 illustrates the fuzzy logic “union” rule, which calculates the member-
ship function μA∪B(X) of the union of two fuzzy sets A and B having triangular 
memberhip functions μA(X ) and μB (X ). In this example, each membership func-
tion is triangular symmetric. The union rule can be extended more generally to any 
proper membership functions other than triangular.

The union ∪ (“or”) of 2 triangular fuzzy sets can yield a non-triangular fuzzy set. 
Thus, in Fig. 4.1, it can be seen that the union of 2 overlapping triangles can yield 
an M-shaped membership function (not triangular). In fact, the fuzzy outputs of a 
model can have complicated membership functions even if the fuzzy inputs are all 
triangular: see example from the FLO2SIM model, shown further below in Fig. 4.7 
in Sect. 4.2.4. 

Remark. Even if the model is based on linear PDE’s, it can be nonlinear in 
terms of input/output dependence, whence nonlinear fuzzy logic and arithmetic
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Fig. 4.1 Illustration of the fuzzy logic rule to calculate the membership function μA∪B (X ) of the 
union of 2 fuzzy sets A and B having triangular memberhip functions μA(X ) and μB (X ). The  
black dashed curve represents the function μA∪B (X ) of the union A ∪ B

rules. Example: the FLO2SIM model discussed in Sect. 4.2.4 which implements 
nonlinear fuzzy rules to quantify fuzzy outputs from fuzzy inputs. The model is 
based on a linear PDE combining mass conservation and the linear law of Darcy
[q = −K (x, y)

−−→
grad(H ) where the gradient is approximated by finite differences. 

4.2 From Fuzzyness to “Possibility” (Fuzzy + Probabilistic) 

This subsection is a brief description of a relatively recent extension of fuzzy set 
theory to include uncertainty on the membership function of the fuzzy variables. 
The earliest reference on this extension is [2] (the same article bears two different
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dates in the literature), we also follow the more recent presentations of [3, 6, 7]. The 
theory of “possibilities” was developed by [2], under the title «Fuzzy sets as a basis 
for a theory of possibility». That work extended and refined the previously developed 
theory of fuzzy variables (or fuzzy sets). It clarified formally the relation between 
fuzzyness and probability, which can be summed up as follows: 

Necessi t y < Probabili t y < Possibili t y. 

4.2.1 Fuzzy Probability Bounds: Possibility (Upper CDF), 
Necessity (Lower CDF) 

A probability distribution, that is, a Cumulated Distribution Function (CDF), is used 
to represent a quantity whose value depends on chance (random variability). Simi-
larly, a distribution of “possibilities” can represent, for a given variable, an informa-
tion that is incomplete or imprecise (i.e., a situation of partial knowledge, or partial 
ignorance). In fact, it appears that the notion of “possibility” can be interpreted as 
a “degree of possibility” for the given variable, which is analogous to the notion of 
“likelihood” in the classical fuzzy set theory. Note also that the likelihood function 
is another name for the membership function μ(X ) of the fuzzy variable X , which is 
shown for instance further below in Fig. 4.2. Note also that the membership function 
characterizes the degree of “crispness” of X . Thus μ(X ) = 0 is associated to total 
“fuzziness,” while μ(X ) = 1 is associated to total “crispness.”

More recently, in their article on the «Joint propagation and exploitation of prob-
abilistic and possibilistic information in risk assessment models», [3] introduced 
the technique of Independent Random Sets (IRS), which combines probability and 
fuzzy logic via the theory of possibilities (among other similar approaches). Such 
techniques can be viewed as a means of representing incomplete or imperfect knowl-
edge of the probabilistic distribution of one or several random variables. Furthermore, 
in some theoretical works, where likelihood functions are studied in a probabilistic 
& possibilistic setting, membership functions of fuzzy variables can be interpreted 
as (“coherent”) conditional possibilities: see for instance [8], and references therein. 

To sum up, the theory of “possibilities” (and “necessities”) appears as a hybrid 
probabilistic extension of fuzzy logic. A practical presentation of it was provided 
in the report by [6], who considered for simplicity the “pH” as a fuzzy possibilistic 
variable “X” (e.g., in a geochemistry or water chemistry model). Their interpretation 
of the likelihood function of the fuzzy variable X , based on “possibility” theory, is 
expressed in terms of probability functions (CFDs). This type of interpretation is 
indicated in Fig. 4.2, taking the example of porosity: X = Φ, with Φ ∈ [0, 1]. We  
start with a trapezoïdal membership function for the fuzzy or imprecise variable X 
(porosity); this function is bounded by two CDFs, interpreted as follows within the 
theory of “possibilities”:
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Fig. 4.2 Theory of “possibilities”: trapezoïdal membership function μ(X ) of a fuzzy (imprecise) 
variable, represented with two bounding Cumulated Distribution Functions (CDFs). The ordinate 
between 0 and 1 represents the degree of membership (blue curve) and the two CDFs (thick dashed 
curves). The upper bound CDF at left (short red dashes) is the “Possibility” function. The lower 
bound CDF at right (long magenta dashes) is the “Necessity” function. The abscissa represents the 
imprecise or fuzzy variable X , for example X = Φ (porosity)

The upper bound CDF at left (red dashes) is interpreted as a measure of 
“Possibility” «Π(X )». 
The lower bound CDF at right (magenta dashes) is viewed as a measure of 
“Necessity” «N (X )». 

Each of these two Cumulated Distribution Functions (Π(X ) and N (X)) expresses 
the probability that the porosity variable (Φ) be less or equal than the given value 
X . Indeed, classically, a CDF is a probability of non-exceedance. Thus, if we label 
FΦ(X ) the CDF of porosity Φ, we have classically for a probabilistic porosity: 
FΦ(X ) ≡ Proba{Φ ≤ X}. However, for a fuzzy porosity, as shown in Fig. 4.2, there 
is a fuzzy membership function μ(Φ) characterizing the “crispness” of Φ and, in 
addition, there are two distinct CDFs characterizing bounds regarding the knowledge 
(or lack of knowledge) concerning Φ. 

In summary, it can be seen from this example that the probabilistic CDF char-
acterizing the porosity variable Φ is itself imprecise; the CDF of Φ is bound at left
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by the possibility measure «Π(X )» (upper bound), and at right, by the necessity 
measure «N (X )» (lower bound). Observe that: 

• The “true” probability measure of Φ (its true CDF) remains unknown. We only 
know that the true CDF is located between these two bounds, «Π(X )» and «N (X )» 
shown in Fig. 4.2. 

• The discrepancy between «Π(X )» and «N (X )» is a measure of our ignorance: 
the larger the discrepancy N (X )−Π(X ), the larger our ignorance concerning the 
porosity variable X = Φ. 

A final remark is in order concerning the CDF’s denominations “lower bound” 
and “upper bound”, which is correct but may sound counter-intuitive. Consider 
the left CDF, named Possibility measure Π(x). Recall that this CDF, Π(x) = 
Proba(X ≤ x), is the probability of non-exceedance of the variable X . Similarly, 
the right CDF, named Necessity measure N (X ), is the non exceedance probability 
N (X ) = Proba{X ≤ x} with a different probability law than the previous one. 
Comparing the two functions in the porosity example of Fig. 4.2, it can be seen that 
we always have N (x) ≤ Π(x) for any fixed value x of the variable X . 

Looking at Fig. 4.2, we have for instance: 

x = 0 : N (x) = 0 ≤ Π(x) = 0 

x ≈ 0.2 : N (x) = 0 ≤ Π(x) ≈ 0.5 

x = 0.4 : N (x) = 0 ≤ Π(x) = 1 

x ≈ 0.7 : N (x) ≈ 0.7 ≤ Π(x) = 1 

x = 0.8 : N (x) = 1 ≤ Π(x) = 1 

More generally, for a possibilistic variable X , it can be shown [3] that its proba-
bility of non-exceedance of a given threshold value x can be bounded by the necessity 
function N (x) as lower bound CDF, and the possibility functionΠ(x) as upper bound 
CDF: 

N (x) ≤ Proba{X ≤ x} ≤ Π(x). (4.1)
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4.2.2 Intermediate CDF’s via α-Cuts (Confidence Levels 
and Intervals) 

The earlier discussion around Fig. 4.2 on possibility measure as an upper bound prob-
ability CDF, and necessity measure as a lower bound probability, deserves further 
remarks: 

(1) The description around Fig. 4.2 of the upper and lower bound CDFs (possibility 
and necessity) can be further refined by introducing one or several intermediate 
probability curves (intermediate CDFs), each associated to a given confidence 
level α (more on this later). 

(2) IRS theory (Independent random Sets) is a technique to calculate the propagation 
of uncertainty through an input/output model based on the theory of possibilities. 

(3) In IRS theory, the 2 bounding CDFs, PossibilityΠ(X ) at left (upper bound), and 
Necessity N (X ) at right (lower bound), are also named respectively «Plausi-
bility function» (at left) and «Belief Function (at right), although we will rather 
name them Possibility and Necessity here. 

Accordingly, to complete the previous description, let us focus briefly on the 
concept of α-cuts. 

Let A be the set of values of the variable X , for instance A = [0, 1] ⊂ R, and let 
μA(X ) be the triangular membership function of X defined on A. Let us take as an 
example the triangular membership function: 

μA(X ) =
||||
(X − ℓ)/(m − ℓ) if ℓ ≤ X ≤ m 
(r − X )/(r − m) if m ≤ X ≤ r 

(4.2) 

…where the triangle [ℓ, m, r ] is defined by its left, middle, and right points. The 
following equation can then be used to define a set of α-cuts levels and intervals on 
the triangular membership function: 

Cutα( A) = {X |μA(X ) ≥ α}; X (α) = [ℓ + α(m − ℓ), r − α(r − m)] (4.3) 

…for any confidence level αε[0, 1]. 
A similar definition of α-cuts levels and intervals can be formulated for trapezoidal 

membership functions, as shown graphically in Fig. 4.3. In total, L + 1 cuts can 
be defined with α j { j = 0, 1, . . .  ,  L − 1, L}, comprising the two extreme cuts plus 
(L − 1) intermediate α-cuts α j { j = 1, . . . ,  L − 1}.

Thus, Fig. 4.3 depicts a “possibilistic” representation of a fuzzy variable with a 
trapezoïdal membership function and three α-cuts (comprising just one intermediate 
cut). The graph can be interpreted as a distribution of possibilities for the imprecise 
parameter X = C , where “C” could be for instance a solute concentration at some 
boundary. The left ordinate axis in Fig. 4.3 represents a degree of possibility Π(X ) 
(which generalizes the usual membership function of classical fuzzy variables). The
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Fig. 4.3 “Possibilistic” representation of a fuzzy or “imprecise” variable X = C with α-cuts. 
It illustrates a distribution of possibilities for C (e.g., solute concentration at a boundary). The left 
ordinate is the degree of possibility Π(X ), and the right ordinate is the degree of necessity N (X ). 
Three α-cuts are shown, with embedded confidence intervals (intermediate interval: [3.2, 6.8])

right ordinate represents the “complementary” degree of certainty, or degree of neces-
sity N (X ). The  three  α-cuts define three embedded confidence intervals comprising 
the two left and right CDF’s shown in the previous figure, plus one intermediate CDF 
not shown here. 

Figure 4.3 illustrates the following expert opinion: “The expert is sure that the 
uncertain parameter C (e.g. boundary concentration) is between 2 and 8, but values 
lying between 4 and 6 are the most likely.” 

4.2.3 Random + Fuzzy Uncertainty: IRS Algorithm 
for Propagating Possibilistic CDFs 

The goal of “possibilistic” uncertainty analysis is to propagate, through an 
input/output model, the collection of probability CDFs associated with α-cuts 
α j { j = 0, 1, 2, . . .  ,  L}. One way to implement this combined random/fuzzy uncer-
tainty propagation is the IRS technique (Independent Random Sets), which we
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summarize below. For more details, see the paper on“Joint propagation and exploita-
tion of probabilistic and possibilistic information in risk assessment models” by 
[3]. 

Note that another somewhat related variant of combined random + fuzzy propa-
gation algorithm, the so-called “Hybrid approach for addressing uncertainty in risk 
assessments,” is described by [7], and also by [9]. 

In fact, the “hybrid propagation technique” and the “Independent Ransom Sets 
(IRS)” techniques are essentially two variants from a class of methods that seek to 
propagate random + fuzzy uncertainty through a model. The two variants (Hybrid 
and IRS) are presented in [9] in  their sections [4-1] and [4-2]. Four variants are 
reviewed and compared in [10]: the  IRS method, the “Hybrid” approach, plus two 
other methods: “Conservative Random Sets,” and “Dependency Bounds Convolu-
tion.” The "Hybrid" method processes random variability and fuzziness (imprecision) 
separately, combining Monte Carlo sampling with extended fuzzy set theory. The 
R-Project package HYRISK [11] implements this “Hybrid Approach.” 

The “Independent Random Sets” (IRS) method processes variability and fuzziness 
(imprecision) in the framework of Belief functions and Plausibility functions—or 
equivalently—Possibility functionsΠ(X ) (upper bound CDF’s) and Necessity func-
tions N (X ) (lower bound CDF’s). In IRS, Monte Carlo sampling is applied both to 
the random probabilistic parameters (according to their probability distribution) and 
to the fuzzy possibilistic parameters (according to their membership or possibility 
function). The qualifier “Independent” stems from the fact that the method assumes 
independence between all sources of uncertainty, whether random (“aleatoric”) or 
fuzzy/possibilistic (“epistemic”). Technically, the IRS algorithm selects replicates of 
the different random parameters independently from each other, and it also selects 
the α-cuts of the fuzzy variables independently of each other and independently 
of the random replicates. (The other variant, called “Hybrid method” or “Fuzzy 
Monte Carlo,” is based on a similar procedure but the details of the sampling differ 
from IRS). 

Let us now focus on the IRS method in more detail. We first define the following 
uncertain input variables or parameters of the model: 

{X1, X2, . . . ,  X N , X N+1, . . . ,  X N+K }: set of N + K uncertain variables (model 
inputs). 

We now separate them in order to distinguish between the random parameters and 
the fuzzy ones (it will also be useful to rename them, as indicated below): 

{X1, X2, . . . ,  X N } = {P1, P2, . . . ,  PN }: sub-set of N random parameters “Pn” 
(purely probabilistic). 
{X N+1, . . . ,  X N+K } = {Φ1, . . . , ΦK }: sub-set of K fuzzy parameters “Φk” 
(imprecise, possibilistic). 

Therefore, with this notation, the set of uncertain input parameters is: 

{P1, P2, . . . ,  PN ;Φ1, . . . , ΦK }
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The N random parameters {P1, P2, . . . ,  PN } are characterized by their N prob-
ability CDFs {FP1, . . . ,  FP N } or, if they are dependent, by their N-dimensional 
joint probability CDF (FP1,...,P N  ). On the other hand, the K imprecise or fuzzy 
parameters {Φ1, . . . , ΦK } are represented by their K possibility distributions 
{Π1(Φ1), . . . ,ΠK (ΦK )}. These will be sampled discretely by α-cuts leading to 
fuzzy intervals labeled “Aα 

k {. . .}”. The chosen α-cuts are performed on triangular 
or trapezoïdal membership functions (these functions are also considered as degrees 
of possibility). 

For any set of parameters and fuzzy variables {P1, P2, . . . ,  PN ;Φ1, . . . , ΦK }, the  
model outputs are a function of these inputs. For simplicity, consider a single output 
of interest, and call M{. . .} the model functional that yields the output response “R” 
of interest; we express this input/output relation as: 

R = M{P1, P2, . . . ,  PN ;Φ1, . . . , ΦK } (4.4) 

In the IRS technique, the key point is that both types of uncertainties, random 
(probabilistic) and fuzzy (possibilistic), are propagated through the model. The tech-
nique is to first randomly sample the CDFs of the random parameters “Pn” repeatedly 
(Monte Carlo simulation), and to select (also repeatedly) the α-cuts (intervals) of the 
fuzzy possibilistic variables Φk from their possibility measure Πk(Φk). The final 
step consists in finding optimally the upper and lower bounds of the model output, 
based on the response of the model for the entire set of sampled uncertain variables 
{P1, P2, . . . ,  PN ;Φ1, . . . , ΦK } (replicated M times with M Monte Carlo samples). 

The IRS propagation algorithm is detailed in Fig. 4.4, and illustrated graphically 
in Fig. 4.5.

Note that there are two model responses, RLOW and RUP. Because of the random 
Monte Carlo sampling of both the probabilistic parameters {Pn} and the α-cut inter-
vals {Ak}, both RLOW and RUP are random. They are characterized by lower and upper 
probability distributions. The final results, after stopping the Monte Carlo loop in 
the algorithm of Fig. 4.4, are the constructed lower and upper CDFs, FLOW 

R (r ) and 
FUP 

R (r ), of the model response. These two CDF’s are different due to the fuzzy param-
eters {Φk}. If these were absent, with only the random parameters {Pn} remaining, 
the result would be a single CDF FR(r ) of the model response R. 

Application of IRS uncertainty analysis. We will present later in Sect. 5.4.2 an 
example application of the IRS technique using a simplified 1D concentration migra-
tion model, based on the theory of possibilities combining fuzzy and probabilistic 
variables as reviewed here. 

Remark on possibilistic Monte Carlo simulations versus Fuzzy Logic. In the IRS 
technique, Monte Carlo simulations are implemented. That is, random sampling is 
performed. Consequently, low probability values are missed if the sample is small. 
This is different from classical fuzzy logic, which does not necessarily require 
Monte Carlo sampling for uncertainty propagation, as observed by [12]. Applications 
of fuzzy logic are reviewed later in Sect. 4.2.4.



46 4 Fuzzy Set Characterization of Uncertainty (Fuzzy Variables)

Fig. 4.4 (Plate): IRS algorithm for uncertainty propagation (Independent Random Sets)
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Fig. 4.5 Schematic of the IRS algorithm (Independent Random Sets) for propagating random + 
fuzzy (possibilistic) uncertainty. Here, the model response function is called “ f ”, the model output 
is named “C” for “Concentration”, and there are two uncertain parameters: X1 (probabilistic), 
and X2 (possibilistic), the latter represented by its α-cuts interval “I2”. Because of Monte Carlo 
sampling of the uniform random numbers α1 and α2, the lower and upper concentrations C and C 
are both random, characterized by lower & upper probability CDF’s FLOW 

C (c) and FUP 
C 

(c)

4.2.4 Comparative Review: Softwares and Uncertainty 
Propagation 

This section presents a comparative review on software packages and some appli-
cations of fuzzy or probabilistic uncertainty analyses in the literature. Note first that 
several authors have developed comparisons of fuzzy-based approaches versus prob-
abilistic Monte Carlo methods for uncertainty analyses (some of these comparative 
works are mentioned below). 

Applications of fuzzy logic versus random Monte Carlo sampling 

In the classical implementations of fuzzy logic, authors typically use triangular 
membership functions for each input parameter, and they obtain the output member-
ship function through fuzzy logic operations of multiplication, addition, division, 
without employing repeated Monte Carlo simulations: see for instance [5]. In their
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work, based on fuzzy logic, Monte Carlo simulations were only used as an auxiliary 
tool for generating random conductivity fields and for comparing fuzzy logic results 
with hydraulic head moments obtained from Monte Carlo simulations. 

Guyonnet et al. [12] applied a fuzzy “possibilistic” approach (without 
Monte Carlo), and compared it with probabilistic Monte Carlo simulations, for a 
very simple analytical model of vertical infiltration and dispersive transport solved 
explicitly in closed form. In their definition, fuzzy “possibilistic” analysis consists in 
propagating α-cuts through fuzzy logic operations, while probabilistic Monte Carlo 
involves multiple random sampling of input parameters leading to the constructed 
CDF/PDF of the output criterion. In their fuzzy logic implementation, they used 
triangular membership functions for each input parameter, and they obtained the 
output membership function through fuzzy logic operations (multiplication, etc.). 
Their output criterion was a measure of “excess cancer” (deduced from concentration 
and dose). In their final comparison, they graphically superimposed the membership 
function of excess cancer, and its PDF or frequency histogram constructed from 
the Monte Carlo simulations. The two results, as shown in the example of Fig. 4.6, 
are qualitatively similar, but differ significantly at large values; the probabilistic 
Monte Carlo approach underestimates the probability of excess cancer compared to 
the fuzzy logic result. 

The conclusions of [12] is that fuzzy logic is “conservative,” because it considers 
all possible combinations of uncertain parameter values, while in contrast, the prob-
abilistic Monte Carlo approach under-represents parameter values having low prob-
ability of exceedance, because those have less chance of being randomly sampled

Fig. 4.6 Example comparison between probabilistic Monte Carlo results (empirical PDF of output 
response) and fuzzy logic results (membership function of output response) [After an example in 
[12]]
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Fig. 4.7 Examples of fuzzy membership functions obtained in several 2D cells with the Fuzzy 
Logic code FLO2SIM, for the output variable Δh (hydraulic head difference) [Modified after [5]]

(they might even not be sampled at all). They conclude that Monte Carlo essen-
tially eliminates worst case scenarios, while fuzzy logic preserves “low probability” 
scenarios, which is important for risk assessment. 

Bagtzoglou et al. [5] also applied (non-possibilistic) fuzzy logic and arithmetic 
rules, to propagate uncertainty in two models: (1) a dedicated model of 1D unsaturated 
flow with fuzzy parameters, and (2) a fuzzy logic model of 2D saturated groundwater 
flow with fuzzy permeabilities (spatially homogeneous or not). The groundwater 
flow tests involved both synthetic problems, and a real test case from the WIPP 
waste disposal site (southeastern New Mexico, USA). The results of their dedicated 
Fuzzy Logic code (FLO2SIM) were analyzed in terms of membership functions of 
the output hydraulic heads in each numerical cell, as shown for example in Fig. 4.7. 
The output membership function was calculated according to the fuzzy logic and 
arithmetic rules summarized earlier in Sect. 4.1.2. The results of FLO2SIM were also 
compared with probabilistic Monte Carlo simulations performed with a conventional 
finite-difference code. 

Remark. As can be seen from Fig. 4.7, membership functions of fuzzy outputs (like 
hydraulic head differences) are more complex than the triangular or trapezoïdal 
memberships of the fuzzy inputs (like permeabilities). Thus, fuzzy output functions 
μ(X ) can have several maxima, and also, their highest value often remains less than 
100%, that is Max{μ} < 1, implying that all values of X are strictly fuzzy, none is 
“crisp.”
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Codes and packages on uncertainty propagation (summary overview) 

In addition to FLO2SIM discussed above [5], several packages on uncertainty prop-
agation have been devised since the 2000s and during the last decade. Uncertainty 
propagation capabilities have been implemented within specialized computer codes 
such as PEST and iTOUGH2 (to be reviewed further below). Uncertainty propagation 
packages are also available within open source software platforms like OpenTURNS 
and the R-Project: 

• OpenTURNS software project for the “Treatment of Uncertainties, Risks, aNd 
Statistics” (https://openturns.github.io/www/), which is documented in [13], and 

• Open source R-Project for Statistical Computing (https://www.r-project.org/). 

For completeness, here are just a few examples of specific uncertainty packages 
related to uncertain propagation and risk analyses by various methods: 

• HYRISK: “An R package for hybrid uncertainty analysis using probability, impre-
cise probability and possibility distributions,” described in [11]. (See also discus-
sion of the IRS algorithm in Sect. 4.2.3 comparing briefly the IRS with the “Hybrid 
approach”: the purpose of both methods is to propagate probabilistic + fuzzy 
uncertainty). 

• R-Project: [14]’s book documents several methods implemented within the 
“R” project, pertaining to probabilistic Uncertainty Quantification and Sensi-
tivity Analyses for models with multiple input parameters, either directly or via 
metamodels. 

• SmartUQ: Uncertainty Quantification package, incorporated in Comsol Multi-
physics. 

• UQlab (https://www.uqlab.com/): The Framework for Uncertainty Quantifica-
tion: a Matlab ToolBox developed at the Chair of Risk, Safety and Uncertainty 
Quantification of ETH Zurich under the supervision of Prof. B. Sudret and Dr. S. 
Marelli. 

• ESPER-1 package (by the authors of this book): this package is reviewed further 
below in Sect. 6.1. It was documented earlier in the ESPER public report by [15], 
under the name “ESPER software v.1.0”. The report describes (i) the 3D semi-
analytical model of concentration C(x, y, z, t ) and Mass(t); and (ii): the proba-
bilistic input/output Monte Carlo analysis of uncertainty propagation through this 
3D model. 

References 

1. L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision 
processes. IEEE Trans. Syst. Man Cybern. SMC-3, 28–44 (1973) 

2. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978) 
[originally: Memo UCB/ERL M77/12 University of California, Berkeley (1977)]

https://openturns.github.io/www/
https://www.r-project.org/
https://www.uqlab.com/


References 51

3. C. Baudrit, D. Dubois, D. Guyonnet, Joint propagation and exploitation of probabilistic and 
possibilistic information in risk assessment models. IEEE Trans. Fuzzy Syst. 14, 593–608 
(2006) 

4. A. Barua, L.S. Mudunuri, O. Kosheleva, Why trapezoidal and triangular membership functions 
work so well: towards a theoretical explanation. J. Uncertain Syst. 8 (2014), www.jus.org.uk 

5. A.C. Bagtzoglou, R. Ababou, A. Nedungadi, B. Sagar, Fuzzy rule-based hydrologic models 
for performance assessment of nuclear waste disposal sites. ASCE J. Hydrol. Eng. 14(11), 
1240–1248 (2009) 

6. D. Guyonnet, Y. Ménard, C. Baudrit, D. Dubois, HyRisk—Traitement des Incertitudes en 
Evaluation des Risques. Rapport BRGM/RP 53714, September 2005, Rapport public (2005), 
42pp. 

7. D. Guyonnet, B. Bourgine, D. Dubois, H. Fargier, B. Côme, J. Chilès, Hybrid approach for 
addressing uncertainty in risk assessments. ASCE J. Environ. Eng. 129(1), 68–78 (2003) 

8. G. Coletti, D. Petturiti, B. Vantaggi, Fuzzy memberships as likelihood functions in a possibilistic 
framework. Int. J. Approx. Reason. 88, 547–566 (2017). ISSN 0888–613X, https://doi.org/10. 
1016/j.ijar.2016.11.017 

9. D. Dubois, D. Guyonnet, Risk-informed decision-making in the presence of epistemic uncer-
tainty. Int. J. Gen. Syst.  40(2), 145–167 (2011). https://doi.org/10.1080/03081079.2010. 
506179 

10. C. Baudrit, D. Dubois, Comparing methods for joint objective and subjective uncertainty prop-
agation with an example in a risk assessment, in Paper in the 4th International Symposium on 
Imprecise Probabilities Application, Pittsburgh, Pennsylvania (2005), 10p. 

11. J. Rohmer, J.-C. Manceau, D. Guyonnet, F. Boulahya, D. Dubois, An R package for hybrid 
uncertainty analysis using probability, imprecise probability and possibility distributions 
(2018), 20p, https://eartharxiv.org/repository/view/1236/ (Non-peer reviewed paper preprint) 
[First author Institution: BRGM, France] 

12. D. Guyonnet, B. Côme, P. Perrochet, A. Parriaux, Comparing two methods for adressing 
uncertainty in risk assessments. ASCE J. Environ. Eng. 125(7) (1999) 

13. M. Baudin, A. Dutfoy, B. Iooss, A.-L. Popelin, OpenTURNS: An industrial software for 
uncertainty quantification in simulation, in Handbook of Uncertainty Quantification, ed. by 
R. Ghanem, D. Higdon, H. Owhadi (Springer, 2017), 46p. HAL-01107849v2 

14. S. Da Veiga, F. Gamboa, B. Iooss, C. Prieur, Basics and Trends in Sensitivity Analysis (Theory 
and Practice in “R”). SIAM—Society for Industrial and Applied Mathematics, Philadelphia 
PA (2021), xvi+291pp. https://doi.org/10.1137/1.9781611976694, https://epubs.siam.org/doi/ 
abs/10.1137/1.9781611976694 

15. J. Chastanet, J.-M. Côme, R. Ababou, M. Quintard, M. Marcoux, N. Tribouillard, Project 
ESPER Evaluation of the sensitivity of prediction models for NAPL sources extinction and reme-
diation: deterministic and probabilistic approaches to secure management decision (ESPER 
software Version 1.0—User’s Guide). Public Report, ADEME, France, May 2019 (2019), 26pp. 
[in English]

http://www.jus.org.uk
https://doi.org/10.1016/j.ijar.2016.11.017
https://doi.org/10.1016/j.ijar.2016.11.017
https://doi.org/10.1080/03081079.2010.506179
https://doi.org/10.1080/03081079.2010.506179
https://eartharxiv.org/repository/view/1236/
https://doi.org/10.1137/1.9781611976694,
https://epubs.siam.org/doi/abs/10.1137/1.9781611976694
https://epubs.siam.org/doi/abs/10.1137/1.9781611976694


Chapter 5 
Applications of Uncertainty Analyses 
on Simplified Models 

This chapter implements various simplified models of subsurface pollutant transport, 
and other related phenomena (e.g. geochemical corrosion of nuclear waste canisters). 
The goal is to illustrate specific applications of uncertainty analysis methods, prob-
abilistic or fuzzy, reviewed earlier. Note: applications of uncertainty analyses for 
more complex 3D hydrogeological models of subsurface pollution are reserved for 
the next chapter (Chap. 6). 

5.1 Introduction: Models with Uncertain Parameters 
(Classification) 

We use the term “Input–Output” to emphasize the fact that models can be considered 
as operators M{. . .  } relating input parameters to output variables: 

Outputs = M{I nputs} (5.1) 

The models can be implemented deterministically, with known inputs, or they 
can be implemented in a non-deterministic fashion for uncertainty analyses with 
imperfectly known parameters (random or fuzzy). In hydrogeology, most models are 
based on Partial Differential Equations (PDEs) or Ordinary Differential Equations 
(ODEs). One may distinguish, broadly: 

(i) fully analytical models (not discretized); 
(ii) quasi-analytical models (containing special functions or single integrals); and 
(iii) numerically solved models based on spatial or space–time discretizations 

(Finite Volumes, Finite Elements, other Variational or Weighted Residual 
methods).
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Outputs can be expressed more or less explicitly in terms of inputs in analytical 
models (i) and (ii), but not in numerical models (iii). However, even with analytical 
models (i) or (ii), it may be difficult to express explicitly theuncertainty distribution of 
outputs in terms of the uncertain inputs. Explicit quantification of output uncertainty 
(e.g., via probability law) may be feasible only for the simplest analytical models. 
An example is the linear additive input/output models Y = c1X1 + c2X2. If both X1 

and X2 are uniformly distributed, classical probability arguments lead to a triangular 
PDF of output Y . The second example is less trivial: it is the familiar temporal 
differential equation of first order kinetics. The integrated form of this model is 
Y (t) = Y0 exp(−λt). The decay constant λ is considered random, so the output Y (t) 
is also random at any fixed time t . Depending on the probability law of λ, it may  
be feasible to express the probability law of Y (t) analytically [1]. A fully analytical 
probabilistic study of Y (t) is presented below for a uniform λ distribution (Sect. 5.2). 

In the remainder of this section, we illustrate various methods of uncertainty anal-
ysis using simplified models of phenomena like temporal decay kinetics, growth of 
corrosion pits on a nuclear waste canister, or 1D (x, t) NAPL dissolution and solute 
transport in groundwater, all with uncertain parameters. More complex 3D hydroge-
logical models of subsurface contamination will be used later in the “applications” 
Chap. 6. 

5.2 Decay Kinetics with Uncertain Decay Parameter 

5.2.1 Introduction to the First Order Decay Kinetics Model 

We consider here the temporal input/output differential model of first order decay 

CR AN D(t) = C0 exp(−λR AN Dt) (5.2) 

where C is solute concentration, λ is the decay constant (inverse time), and the 
subscript “ R AN D” indicates a random (probabilistic) quantity. Thus, given the random 
input parameter λR AN D , the output concentration CR AN D(t) is also random for each 
fixed time t . 

This model (Eq. 5.2) was previously analyzed probabilistically for several prob-
ability distributions of λ [1]. In their work, C(t) represented a pressure difference 
and λ an uncertain matrix-fractures exchange parameter (fractured porous medium). 
The exchange parameter λ >  0 was taken random, and several probability laws were 
tested. The probability law of C(t) was obtained explicitly without Monte Carlo 
simulations. Equation 5.2 can also serve as a model of fluid and heat exchange in 
matrix/fracture geothermal reservoirs, or radioactive decay with C(t) standing for 
radionuclide mass, or 1rst order decay kinetics of solute concentration C(t). Here  
we adopt the latter viewpoint.
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5.2.2 Exact Explicit Analytical Expression of C(t)’s 
Probability Law 

The method used by Kfoury et al. [1] can be used to express the probability law of 
the decaying concentration curve C(t), as follows: 

• First, note that for any fixed time t , the concentration C is a monotonic function 
of the random constant λ and of the deterministic time t . Also recall that the 
initial concentration C0 is assumed to be deterministic. Rescaling C(t), the model 
equation Eq. 5.2 can be written asC∗ = exp(−Λ∗), so that the input/output model 
is of the form:

Λ∗ → C∗ = exp(−Λ∗); C∗ = C(t)/C0;Λ∗ = λt (5.3) 

Note that Λ∗ is the random constant Λ∗ = λt for each fixed time t . 
• The exact probability distribution (CDF or PDF) can now be obtained by using the 

fact that the input/output model Λ∗ → C∗ = exp(−Λ∗) of Eq. 5.3 is monotonic. 
That is, the random output C∗ is a monotonic decreasing function of the random 
input Λ∗ for each fixed time t . The  CDF of  C∗ can be obtained by probability 
arguments, or equivalently, the PDF of C∗ can be obtained from the PDF of input
Λ∗ divided by the derived transformation C∗(Λ∗), which is exponential. 

Let us express the output PDF in terms of input PDF, using the exponential 
transform between input and output in this model. We obtain, from a well known 
probability result (e.g., [2]): 

fC∗(c∗) = fΛ∗ (λ∗)/
|
|g,(λ∗)

|
|

where g(λ∗) = exp{−λ∗} →
|
|g,(λ∗)

|
| = exp{−λ∗} 

Now, since we are interested in the probability law of C∗, we must express the 
inverse relation g−1(c∗) = λ∗(c∗) between input and output. This inverse relation is 
λ∗(c∗) = −Ln{c∗}, so the previous relation between the two PDFs becomes: 

fC∗(c∗) = fΛ∗ (−Ln{c∗})/c∗ 

Finally, going back to unscaled quantities, re-introducing time t and initial 
concentration c0, we obtain: 

fC(t)(c(t)) = fΛ

(

−Ln

}
c(t) 
c0

{)

/(t × c(t)) (5.4) 

The mathematical expectation of C(t), or its mean C(t), also denoted mC (t), is  
then deduced from its PDF with the change of variable c → b = −Ln{c/c0}; this  
yields the mean concentration curve:
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mC (t) = C(t) = C0 

+∞{

−∞ 

fΛ(b) exp{−bt}db (5.5) 

The concentration CDF FC (c(t)) = Proba{C(t) ≤ c(t)} is deduced directly for 
each fixed time t from the monotonous transformation λ → C(t) = C0 exp(−λt) 
by probability arguments, whence (renaming c(t) as C(t) in this final result): 

FC (C(t)) = 1 − FΛ

(

−Ln

}
C(t) 
C0

{

/t

)

(5.6) 

Based on this result, the exact analytical probability law of C(t) was then obtained 
explicitly for some distributions of the input λ, and the time-dependent moments of 
C(t) could be deduced from its probability law. 

5.2.3 The Mean Concentration Curve C(t) 

For instance, focusing on the mean curve C(t), we provide here explicitly the exact 
analytical result for the case of uniformly distributed decay constant λ in the interval 
[λM I N  , λM AX  ]: 

• Mean Concentration: mC (t) = C(t) = C0 
exp{−λM I N t}−exp{−λM AX t} 

(λM AX −λM I N  )×t 

Furthermore, the concentration PDF given just above can also be used to infer the 
exact concentration variance and its square root, the standard deviation σC(t), which 
is a measure of the uncertainty of concentration at each fixed time t (this is left as an 
exercise for the interested reader). 

Figure 5.1 shows the mean concentration curve C(t) for two probability laws of 
the random decay constant λ (uniformly and exponentially distributed, respectively), 
and this for various calculation methods: (1) the exact mean (the exact result given 
analytically), but also (2) the “naïve mean” where the random parameter λ is simply 
replaced by its mean (λM I N  + λM AX  )/2 (which is incorrect), and finally (3) an 
approximate mean obtained by a perturbation method (not detailed here). The figure 
is adapted from [1].
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Fig. 5.1 Temporal relaxation of mean concentration C(t), for 2 probability laws of the random 
decay constant λ (uniform or exponential), and for various moment calculation methods: exact 
analytical, naïve mean (incorrect), and approximate perturbation. (Adapted from [1]) 

5.3 Taylor Expansion Around the Mean: MVFO Method 
and Application to Corrosion Pits 

We now illustrate an approximate analytical method to evaluate the variability of 
a random output “Z(t)” using as an example a simple (but nonlinear) input/output 
model describing the growth of corrosion pits in a nuclear waste canister (to be 
explained below). 

The method is usually named “MVFO” (Mean Value First Order); it consists 
essentially in a first order Taylor expansion of the output Z (t) around its mean, 
which allows typically to calculate second order moments (variance) of the output, 
and also to calculate output probability law (if all the inputs are Gaussian, the approx-
imate output obtained by MVFO is also Gaussian). This type of method based on 
Taylor expansion has several variants and bears several names. It is sometimes called 
“FOSM” for “First Order Second Moments.” It is also known as “First Order Differ-
ential Analysis,” for sensitivity analyses as well as uncertainty propagation [3, 4]. 
The MVFO method can be extended to higher order Taylor expansions. In practice, 
MVFO is often used in reliability analyses (e.g., with more or less simplified models 
of structural failure, corrosion failure, and other probabilistic industrial or environ-
mental events). It can also be used as a “fast” method for locating probability regions 
when running importance sampling schemes in Monte Carlo procedures. 

Geochemical model of corrosion pit growth Z(t) on a nuclear waste canister
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Introductory review of the corrosion pits model in the literature 

To illustrate the first order Taylor expansion approach, or “MVFO” method, we 
use the following empirical, non-differential geochemical model of corrosion pit 
growth Z (t) = g(Parameters; t). The model output, corrosion pit depth Z(t), 
is an algebraic function of both deterministic and uncertain parameters, as well 
as a function of time [5]. Physically, corrosion pits on the steel wall of nuclear 
waste canisters are due to oxidation and other mechanisms. We will implement in 
this section uncertainty analysis of this empirical model, distinguishing the different 
types of variables involved: the uncertain output Z(t), the uncertain input parameters, 
the known deterministic input parameters, and the «time parameter». This problem 
is amenable to reliability analysis. For instance, “failure” can be defined as the event 
Z(t) ≥ ZC RI T  , where ZC RI T  is critical pit depth (say 2 or  3  mm). 

The MVFO method was initially adapted to corrosion pit modeling by the first 
author circa 2008, based on the corrosion pit model of Sutcliffe [5] and the unpub-
lished report by Wu and Nair [6]. A similar corrosion pit model, also adapted from 
Sutcliffe, was analyzed with the MVFO method by Shih and Lin [7]. They used MVFO 
for sensitivity analyses, calculating the contribution of each uncertain parameter to 
the total variance of output Z(t). In their work, the ratio of contributed variance of a 
given parameter to total variance yields a measure of sensitivity with respect to the 
given parameter (although the degree of sensitivity of each parameter is better “mea-
sured” using the root-mean-square norm, i.e., square root of contributed variance 
divided by square root of total variance). 

The model of corrosion pit growth with uncertain parameters 

The proposed probabilistic geochemical model predicts the depth Z (t) of a corrosion 
pit as a function of time and other factors, for a spent fuel canister at 100 °C, as 
follows: 

Z(t) = K p × K × exp
} a 
H

}

× (O)b × (Cl)c × tn (5.7) 

Table 5.1 defines the variables and parameters of this model. The first four quan-
tities (underlined in Eq. 5.7) are  random variables, namely, the uncertain output 
Z(t) and three uncertain input parameters. Their probability laws are specified (Log-
normal or Gaussian), as well as their mean “m” and standard deviation “σ ”. The 
remaining seven quantities are deterministic variables: they are perfectly known, 
including the time coordinate “t”. Note that the time exponent “n” is itself a random 
parameter (positive and real valued), and that, remarkably, in this form of the model, 
the units of tn and of a few other parameters depend on the random value of “n”. Thus, 
in the original model of [5], Z (t) has n—dependent units…which were expressed 
using the mean of “n” (instead of the random “n” itself). The first author of the 
present book has produced a rescaled version of this model by scaling the temporal 
term as (t/tRE F )

n , such that temporal units do not depend on the random value of 
“n”. However, for convenience, we continue here with the original unscaled model.
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Table 5.1 Table of variables in the probabilistic model of corrosion pit depth Z(t) 

Z(t) Random… Corrosion depth mm − 
K P Random Lognormal Pitting factor (empirical) mm/(year)n/2 m = 4; 

σ = 1.0 

Cl Random Gaussian Chlorine concentration [μg/g] or [ppm] m = 6.5; 
σ = 0.65 

n Random Lognormal Empirical time exponent 
(real) 

[dimensionless] m = 0.47; 
σ = 0.0329 

K Deterministic Corrosion factor 
(empirical) 

mm/(year)n/2 0.1706 

O Deterministic Oxygen concentration [μg/g] or [ppm] 7 

H Deterministic Absolute temperature [◦K ] 373 

a Deterministic Temperature factor [◦K ] −1402 

b Deterministic Exponent (real-valued) [dimensionless] 0.2 

c Deterministic Exponent (real-valued) [dimensionless] 0.543 

t Deterministic Time coordinate [years] 

Interpretation of the probabilistic pit depth Z(t) in the context of reliability analyses 

Corrosion pit depth Z (t) intervenes among several other mechanisms requiring more 
complex models of spent fuel container lifetime. In terms of probabilistic reliability 
analysis, the PDF of Time-to-Failure (TTF) of a container, or a system of containers, 
is related to the PDF of corrosion depth among other factors. The time horizon of 
interest may be 300 years, 1000 years, or thousands of years typically, but actually, 
the time horizon is a result of the calculation. For instance the question asked may be: 
what is the TTF (in years) if failure is defined as Proba{Z (t) > ZC RI T } = 0.01 ? 
In reliability theory, the reliability function is defined as: 

R(t) = Proba{Z (t) ≤ ZC RI T }. (5.8) 

The 99% TTF would then be solution of 

R(t) = 0.990 ⇒ t99% (the 99% Time-to-Failure). 

In practice, the Time-to-Failure t99% might be typically hundreds or thousands of 
years, with ZC RI T  on the order of millimeters (e.g. 2 or 3 mm). In order to obtain 
the TTF, the probability distribution of Z(t), or at least the moments of Z(t), must be 
known. This is the objective of the MVFO method based on Taylor expansion. 

Moments and probability law of corrosion pit depth Z(t) by the MVFO method 

First note that our corrosion model can be expressed as:
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Z(t) = g(t; X1, X2, X3) 

where Xi are the input random variables, Z(t) is the output random variable, and 
g(. . . )  is the nonlinear model function. In the case of the corrosion model above, the 
Xi variables are: 

X1 = K P ; X2 = Cl; X3 = n 

It is difficult to compute analytically the exact probability law of Z (t), due to 
non linearity of the model input/output function g(. . .  ). TheMVFO is an approximate 
method to obtain the probability law and moments of Z(t) using a linearized version 
of the original random model. Linearization is obtained via a Taylor expansion of 
g(X1, X2, X3) around mean values: 

Z(t) = g(t; X l , X2, X3) 

≈ g(t; m1, m2, m3) + 
i=3
Σ

i=1 

∂ g 
∂ Xi 

(t; m1, m2, m3) × (Xi − mi ) (5.9) 

…or: 

Z(t) ≈ a0(t) + 
i=3
Σ

i=1 

ai (t) × (Xi − mi ) with : a0(t) = g(t; m1, m2, m3); 

and: ai (t) = 
∂ g 
∂ Xi 

(t; m1, m2, m3). 

The ai (t) coefficients can be viewed as “mean sensitivities”. For the corrosion 
model, they are: 

a0(t) ≈ a0 × (t)0.47; a1(t) ≈ a1 × (t)0.47; 
a2(t) ≈ a2 × (t)0.47; a3(t) ≈ a0 × ln(t) × (t)0.47 . 

To sum up, at this point, we have obtained for any fixed time t , an explicit 
expression of the random Z (t) as a linear combination of random input parame-
ters {X1, X2, X3}. The mean and variance of Z(t) are easily computed from above 
relations, {X1, X2, X3} being uncorrelated. Thus, the mean of Z (t) is simply given 
by the 0-order coefficient: 

E{Z (t)} ≡ Z (t) ≈ a0(t) = α0 × (t)0.47 (here in millimeters). 

…and the variance of Z (t) is given by:
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V ar{Z(t)} ≡ σ 2 Z (t) ≈ 
i=3
Σ

i=1 

a2 
i (t)σ 2 Xi 

= {

α2 
1σ 2 X1 + α2 

2σ 2 X2 + α2 
3σ 2 X3[Ln(t)]2

} × (t)2m X3 

…where X1 = K P ; X2 = Cl; X3 = n. For instance m X3 = 0.47 is the mean value 
of parameter n. Taking the square root of σ 2 Z (t) yields the root-mean-square measure 
of uncertainty σZ (t). 

It is less straightforward to determine the probability distribution of Z(t). Recall 
that {X1, X2, X3} are respectively Lognormal, Gaussian, and Log-normal. The 
resulting linear combination Z (t) is a priori neither Gaussian nor Lognormal. This 
complicates the task of determining probabilities such as Time-to-Failure of Z (t) in 
the context of reliability analysis. 

We circumvent this problem, below, by accepting a Gaussian approximation of 
Z(t). 

Time-to-Failure for the corrosion pit depth model Z(t) from the MVFO method 

To simplify calculations of the probability distribution of Z(t), we admit a Gaussian 
approximation for the two Log-normal variables X1 = K P andX3 = n. This is  
admissible because their coefficient of variation is much less than one, as can be 
seen in the right column of Table 5.1 (see moments relations earlier in Sect. 3.1.1). 
With this approximation, all three input parameters {X1, X2, X3} are now Gaussian 
and independent, N (m Xi , σ  2 Xi ), and it is now easier to compute the probability law of 
Z(t) as a linear combination of Gaussian’s with known means (m Xi ) and variances 
(σ 2 Xi ). The resulting Z (t) is itself Gaussian: 

Z (t) = N
(

m Z (t), σ 2 Z (t)
)

with: m Z (t) ≈ a0(t) = α0 × (t)0.47 and: σ 2 Z (t) ≈
Σi=3 

i=1a
2 
i (t)σ 2 Xi (see just above). 

The Gaussian CDF of Z (t), that is FG AU SS  
Z (t) (z) ≡ Proba{Z (t) ≤ z}, can now be 

calculated analytically using the er f (. . . ) function, as explained in the probability 
Sect. 3.1. We provide below some results deduced from this analytical characteri-
zation of Z (t): (1) evaluation of the 99% Time-to-Failure t99%, and (2) plot of the 
reliability function R(t). 

(1) Evaluation of the 99% Time-To-Failure. 
With the linearized First Order and Gaussian approximation of Z(t), the required 
probability relation to evaluate the 99% Time-to-Failure (t99%) is:  

FG AU SS  
Z(t99%) (ZC RI T  ) = Proba{Z (t99%) ≤ ZC RI T } = 0.990 = R(t99%). 

Since the CDF FG AU SS  
Z(t) involves the error function er f (. . . ), inverting this 

relation to obtain t99% requires the inverse error function er f inv(. . . ). With 
the available data on the moments of uncertain input parameters (Table 5.1), 
and given their approximation as Gaussian input variables, we obtain after
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Fig. 5.2 Evolution of the reliability function R(t) versus time in years, for a critical corrosion pit 
depth ZC RI T  ≈ 2mm. Note that R(t) = 0.990 = 99% at time t99% ≈ 440 years (see text) 

calculation: 

Time-to-Failure for ZC RI T  ≈ 2 mm  : t99% ≈ 440 years. 

At that time, t ≈ 440 years, the previous moment calculations indicate that the 
standard deviation of Z (t) is about 0.37 mm (measure of uncertainty of Z (t)). 

(2) Reliability function R(t). Figure 5.2 shows a plot of the reliability function R(t) 
defined in Eq. 5.8, taking ZC RI T  ≈ 2mm. 

5.4 Coupled 1D Model of Contaminant Migration 
and Source Dissolution 

The prototype 1D transport model used in this section is an advection–dispersion 
model for solute concentration C(x, t), coupled to “oil” saturation S(x, t) in the 
presence of a dissolving trapped NAPL source (DNAPL in this case). With constant 
porosity, water velocity, and dispersion coefficient, all independent of space and time, 
the model takes the form: 

⎧ 
⎨ 

⎩ 

∂ 
∂t {Φ(1 − S)C} + ∂ 

∂x {V C} − ∂ 
∂ x

{

Φ(1 − S)D ∂C 
∂ x

} = 
−α∗ Φ(1 − S)

{

C − CE Q
}

∂ 
∂t {ρN AP LΦS} = +α∗ Φ(1 − S)

{

C − CE Q
}

(5.10) 

Remarks:
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• The first equation in Eq. 5.10 is a balance equation for solute mass per m3 of 
porous medium. 

• The second of Eq. 5.10 is a balance equation for the trapped NAPL mass per m3 

of porous medium. 
• The linear dissolution model with constant α∗ is an approximation; α∗ should in 

fact decrease with saturation; letting α∗ = 0 when saturation reaches some low 
residual value can improve the model: this was implemented in the application by 
letting α∗ = 0 for S < SRE SI DU AL = 0.01 (a smaller value could also be used). 

• For our applications of uncertainty analyses, the 1D model defined by Eq. 5.10 
will be essentially reduced to purely advective transport without dispersion (take 
D = 0 in the first equation). This advective model retains the coupling with NAPL 
dissolution via the exchange coefficient. 

The two space–time variables of the model are: 

• C(x, t): solute concentration, kg 
m3water or

g 
m3water (NAPL constituent dissolved in 

the water phase) 
• S(x, t): NAPL phase saturation (also named SO for “oil saturation”) in

[
m3N AP L  
m3 Pores

]

The parameters of the model may be either deterministic or uncertain; they are: 

• Φ : aquifer porosity in m3/m3 (also denoted ε) 
• V : Darcy velocity in m/s or m/day (NB: pore water velocity is VP O RE  = V /Φ) 
• D: dispersion coefficient in [m2/s] or [m2/day]; it can also be interpreted as a 

1D diffusion–dispersion coefficient D = D0 + a.V where a[m] is a longitudinal 
dispersivity length scale. 

• ρN AP L : density of the trapped NAPL, in
[

kg N AP L/m3 N AP L
]

. 
• CE Q : equilibrium concentration of the solute (concentration at which NAPL 

dissolution stops) 
• α∗: mass exchange coefficient [day−1] in the NAPL dissolution process, to be 

understood as the exchange coefficient in
(

Kg Solute 
m3 domain

)

/
(

Kg N AP L  
m3 domain

)

per day. 

Initial conditions for the 1D advective transport problem, with D ≈ 0, will be 
typically as follows (boundary conditions are not needed for advective transport): 

Domain : Semi-infinite domain x ≥ 0 with a NAPL Source zone within 
x ∈ [0, L S], taking for instance L S = 1 

Ini t i al Condi t i ons : C(x, 0) ≈ 0 or CE Q, and: 
S(x, 0) ≈ 0.10 for x ∈ [0, L S] (source zone); 
C(x, 0) = S(x, 0) = 0 for  x > L S (outside the source). 

(5.11) 

Finally, in order to simplify the forthcoming uncertainty analyses, we simplify 
the formulation of Eq. 5.10 by capturing the exchange coefficient in the new form: 

α = α∗Φ(1 − S)
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The meaning of the two mass balance equations in Eq. 5.10 remains unchanged. 
It appears that the new coefficient α depends on saturation, but if S < 0.10, say,  
then the new exchange coefficient α does not vary much with saturation during 
the dissolution/migration process. On the other hand, as stated before, we apply a 
threshold α = 0 when saturation reaches some low residual value SRE SI DU AL . 

Typical reference values of the parameters are: 

• Darcy velocity: V ≈ 0.5 to 1.0 m/day 
• Porosity: θ ≈ 0.04 
• Dispersion coefficient: D ≈ 2.5 m/day2 or... D = 0 here 
• Exchange coefficient: α ≈ 0.01 day−1 (dissolution time scale 1/α ≈ 100 days) 
• NAPL density: ρN AP L  ≈ 1.6 10+6 g/m3 (this is a Dense NAPL) 
• Equilibrium concentration: CE Q  ≈ 150 g/m3 

• Typical initial saturation: SI N I T  ≈ 0.10 

5.4.1 Monte Carlo Analysis of 1D Dissolution/Transport 
via a Metamodel 

We now present an example application of probabilistic uncertainty analysis based 
on the metamodel approach for the 1D concentration-saturation transport defined by 
Eqs. 5.10 and 5.11, where we consider here for simplicity the case D = 0 (results with 
or without dispersion were indistinguishable given the parameters values). The advec-
tive transport/dissolution model was solved with a classical discretization scheme 
using COMSOL Multiphysics, and the metamodel approach was implemented with 
the OpenTURNS software (https://openturns.github.io/www/; [8]). 

Deterministic solution 

Before proceeding with uncertainty analyses, the model solution with determin-
istic parameters should be examined briefly (see typical values in the previous sub-
section). The following quantities are of interest: average saturation over the source 
zone S(t) (which is directly related to the remaining NAPL mass in the source 
zone); and the concentration C(xS P OT  , t) at a given point x = x S P OT  downstream 
the source zone. These two quantities are represented in Fig. 5.3.

In Fig. 5.3, the concentration C(xS P OT  ) increases suddenly then remains constant 
till about 400 days. The subsequent decrease of concentration C(xS P OT  ) after 400 
days is due to the dissolution of the source. Note that S has decreased to less than 
20% of its initial value at 400 days. Eventually the source will be entirely spent. 

Output “criteria” of interest 

Output criteria should be defined for purposes of uncertainty analyses. For this 1D 
dissolution/transport problem, the following output criteria are of interest: 

(1) Source depletion time tDE P L ET I O N such that S(tDE P L ET I O N ) = SDE P L ET I O N . 
We define here tDE P L ET I O N as the time taken to deplete the NAPL source to 1%

https://openturns.github.io/www/
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Fig. 5.3 Time evolution of S(t) and C(xS P OT  , t) for deterministic parameters. Here S(t) is the 
average saturation over the source zone, related to the remaining NAPL mass in the source zone, 
and C(xS P OT  , t) is solute concentration at a point xS P OT  downstream the source zone

of its initial value. With initial saturation in the source zone equal to 0.10, for 
instance, this would yield SDE P L ET I O N = 0.001. Note this is only a selected 
output criterion, not an input parameter of the model. 

(2) Maximum concentration CM AX  corresponding to the plateau of C(xS P OT  , t) 
visible in Fig. 5.3. 

(3) Critical time tC RI T  such thatC(xS P OT  , tC RI T  ) = CC RI T  whereCC RI T  is a small 
critical concentration (for instance CC RI T  = 0.1 g/cm3). 

The first criterion tDE P L ET I O N provides a measure of the source lifetime. It is 
useful to calculate its lower bound or minimal value, by considering the case where 
dissolution occurs entirely at local equilibrium, that is instantaneously (α → ∞). 
The corresponding dissolution front velocity VF RO N T  is then maximal; it is given 
by: 

VF RO N T  = V C E Q/(ρN AP LΦSI N I T  ) 

and the minimal depletion time is given by: 

t M I N  
DE P L ET I O N = (L SOU RC E /VF RO N T  ) × (1 − SDE P L ET I O N /SI N I T  ). 

Metamodel construction: sampling random inputs and building a response 
function 

As explained earlier (Sect. 2.2.2), the metamodel approach consists first in 
constructing a response function for a given output criterion, this being accomplished 
by sampling the uncertain inputs and running the model repeatedly (Monte Carlo).
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Then, finally, the resulting response function is used instead of the model itself to 
propagate uncertainty from input parameters to the output criterion. 

In the present case, our 1D dissolution/transport model is numerical; its ouputs 
are the space–time discretized solutions C(x, t) and S(x, t), from which the output 
criteria defined above can be computed. We will choose here two uncertain input 
parameters, the Darcy velocity V and the exchange coefficient α. A parsimonious 
sampling plan (Design of Experiments) called “Quasi Random Sequences” or “Low 
Discrepancy Sequences” was selected in OpenTURNS for sampling the random 
{V , α} parameters: it is shown in Fig. 5.4. The vertical and horizontal profiles indicate 
the density of points in each direction of the {V , α} plane. It can be seen that the 
density of points is fairly uniform in each direction. Note that other parsimonious 
sampling schemes are available, like LHS (Latin Hypercube Sampling), which was 
reviewed earlier in Sect. 2.3.2. 

An output criterion is then defined, for example, the source depletion time 
tDE P L ET I O N defined above. Given this output criterion, the response function to 
be constructed is therefore: 

tDE P L ET I O N = f (V, α) 

Finally, a family of response functions f
/\

(. . .  ) must be selected to approximate the 
response of the model. Our choice for f

/\

(. . .  ) was a second order Polynomial Chaos 
function of 2 variables, available in OpenTURNS. The discrete response surface is 
constructed by computing the output criterion for each discrete sample of {V , α}. 
The second order Polynomial Chaos surface is then fitted by nonlinear regression to

Fig. 5.4 Sampling of the 
two uncertain variables 
{V, α} with V as abscissa and 
α as ordinate. The variables 
are sampled in OpenTURNS 
according to a parsimonious 
sampling plan (“Quasi 
Random Sequences”). The 
vertical and horizontal 
histogram profiles (light blue 
shading) indicate the density 
of points in each direction in 
the {V , α} plane. NB: the 
parameter plane is 
normalized here to 
[0.0, 1.0] × [0.0, 1.0] 
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Fig. 5.5 Metamodel response surface for the output “tDE P L ET I O N ” (denoted here “r1”, in days), 
for two uncertain parameters, Darcy velocity (m/day) and exchange coefficient (1/day). The response 
surface (colored) was obtained by nonlinear regression fit of a second order Polynomial Chaos to 
the sample points {tDE P L ET I O N , V , α}( j ) shown as vertical bars 

the points {tDE P L ET I O N , V , α}( j) , as shown in Fig. 5.5. The criterion tDE P L ET I O N is 
denoted «r1» in the figure. The nonlinear regression coefficient was 0.97616, which 
is a fair fit. 

Uncertainty propagation via the metamodel 

Finally, the constructed metamodel was used for probabilistic Monte Carlo analyses 
of the uncertain ouput criterion tDE P L ET I O N [denoted «r1» in the figures]. 

The effect of uncertain Darcy velocity V (denoted “U0” in the figures) is first 
examined for a fixed deterministic α = 1.74 10−6 s−1 = 0.150336 days−1 , that is 
1/α ≈ 6.65 days. The metamodel response function was then sampled repeatedly for 
N = 1000 values of the uncertain velocity V (“U0”), assuming a Gaussian velocity 
distribution. 

Figure 5.6 shows the PDF of the input velocity and the PDF of the resulting output 
tDE P L ET I O N [«r1»], which was obtained by sampling the metamodel’s response 
function. The output result is shown as a PDF histogram, together with a smoothed 
version of it. Note that the PDF of tDE P L ET I O N [«r1»] is clearly non-Gaussian, 
positively skewed, with a somewhat “fat” tail toward large values of the depletion 
time. The most probable depletion time (mode of the PDF) is about 354 days, and 
the highest sampled values are less than 388 days.

Similarly, the effect of uncertain exchange coefficient α was then analyzed, for 
a Gaussian distribution of α, keeping the Darcy velocity fixed. The results were 
qualitatively similar: the resulting PDF of the random output tDE P L ET I O N [denoted
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Fig. 5.6 Top: Gaussian PDF 
of the random input 
parameter denoted “U0” 
(Darcy velocity V ). Bottom: 
empirical PDF of the random 
output criterion denoted 
«r1» (depletion time 
tDE P L ET I O N in days), 
obtained by Monte Carlo 
sampling of the 
metamodel response function

«r1»] obtained by sampling the metamodel’s response function, showed that the PDF 
histogram of tDE P L ET I O N [denoted «r1»] was non-Gaussian, positively skewed, with 
a “fat” tail towards large values of the depletion time. The most probable depletion 
time (mode of the PDF) was about 157 days and the highest sampled values are 
about 205 days.
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5.4.2 Possibilistic Analysis of 1D Contaminant Migration 
with IRS 

Here, we use a 1D transport model similar to the one described above (Eq. 5.10 
without dispersion) to illustrate another technique of uncertainty propagation: the 
IRS method (Independent Random Sets), based on the “possibilistic” approach 
combining fuzziness and probabilistic uncertainty. This approach specifies a “pos-
sibilistic” distribution for each uncertain parameter, combining fuzzy membership 
function and probabilistic CDF, as explained earlier in Sect. 4.2. 

The goal here is to show the type of result that can be obtained this way, without 
detailing much the underlying model. Briefly, the solute concentration is governed 
by a 1D space–time transport model coupled to NAPL dissolution, as in Eq. 5.10. In  
the uncertainty analyses below, C(t) will represent the concentration output C(x1; t) 
at a given point in space (x1 = 5 m). 

Figure 5.7 shows two examples of input/output uncertainty propagation for the 
1D concentration transport model, based on the theory of possibilities combining 
fuzzy variables and probabilities (CDFs). The ordinate axis shows the resulting CDF 
(Cumulated Distribution Function) of concentration C(t40 days) at the fixed time t = 
40 days. It is a probability of non-exceedance: C DF(c) = Proba{C ≤ c}. The  
abscissa represents concentration c = C(t40 days), or a normalized version of it.

In Fig. 5.7, in each sub-figure, several CDFs are shown because the output concen-
tration is both probabilistic and fuzzy. In each case, four different CDFs are being 
displayed, corresponding to four confidence levels: α = 100% for the upper bound 
CDF at left (red color); α = 66% for the grey CDF; α = 33% for the green CDF; 
and α = 0 for the lower bound CDF at right (dark blue color). The two sub-figures 
differ in terms of the uncertain inputs: 

• In the top sub-figure, the transport velocity V is a possibilistic parameter repre-
sented by a trapezoïdal membership function, or more accurately, a trapezoïdal 
possibility distribution μV {0.5, 0.6, 0.8, 1.0}, also characterized by its associated 
upper and lower bound CDFs (as explained earlier in Sect. 4.2). This is a case of 
so-called “pure epistemic uncertainty.” 

• In the bottom sub-figure, velocity V is a log-normal probabilistic parameter, that is 
a random variable, having a fuzzy probability distribution (fuzzy moments). The 
mean velocity mV , and its standard deviation σV , are both fuzzy within intervals 
[mV 0 ± 30%mV 0] and [σV 0 ± 30% σV 0]. This is a case of so-called “imprecise 
aleatory uncertainty.” 

The latter case (bottom sub-figure) illustrates one way in which uncertainty can 
arise from a combination of randomness and fuzziness. Here, concentration (which is 
the output of the model) has a probabilistic uncertainty because the input parameter 
V is random (Log-normal), but has also uncertainty in terms of its fuzziness because 
the moments of the Log-Normal velocity V are not known precisely (they are not 
“crisp” but fuzzy, or “imprecise”).
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Fig. 5.7 Applications of the theory of “possibilities” combining fuzzy variables and probabilities 
(CDFs), implemented with the IRS technique. Solute concentration is governed by a simplified 1D 
advective transport model with uncertain velocity V . Here  C(t) represents C(x1; t) at a given point 
in space. Top figure: input velocity V is a “possibilistic” variable with trapezoidal membership 
function (and its associated CDFs). Bottom figure: velocity  V is a log-normal random variable 
with fuzzy moments. In both cases the ordinate axis shows the resulting CDF of concentration 
C(t40 days). Four CDFs are displayed, corresponding to confidence levels α = 100% (upper bound 
CDF at left in red color); α = 66% (grey CDF); α = 33% (green CDF); and α = 0 (lower bound 
CDF at right in dark blue). The abscissa represents the concentration variable c = C(t40 days), 
normalized
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Fig. 5.8 Temporal evolution of two isoprobability concentrations c(t), satisfying 
Proba(C(x, t) ≤ c(t)) = PM I N  = 0.5 (lower blue curve c(t)) and  Proba(C(x, t) ≤ c(t)) = 
PM AX  = 1.0 (upper red curve c(t)), in the case of a possibilistic input parameter V with trapezoidal 
membership function μV {0.5, 0.6, 0.8, 1.0}. 

Other types of results can be obtained in this possibilistic framework. Thus, for 
the first case above, with possibilistic velocity parameter V having “trapezoidal 
distribution” μV {0.5, 0.6, 0.8, 1.0}, we show in Fig.  5.8 the time evolution of two 
iso-probability concentrations c(t), where c(t) satisfies, respectively: 

Proba(C(x1, t) ≤ c(t)) = PM I N  = 0.5 ; 
Proba(C(x1, t) ≤ c(t)) = PM AX  = 1 ; (both at x1 = 5 m). 

Note, as expected, that the two iso-probability concentrations c(t) in Fig. 5.8 drop 
to zero as the concentration front arrives and passes beyond the fixed position x1. 
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Chapter 6 
Applications of Uncertainty Analysis 
to 3D Subsurface Contamination 
Problems 

In this section, we present two applications of uncertainty propagation for more 
complex 3D subsurface contamination problems, the first one modeled quasi-
analytically with special functions and single integrals, and the second one modeled 
numerically with a complex computer code. 

(1) Model 1. 3D transient advection–diffusion-dispersion of a contaminant, 
migrating in an aquifer, from a decaying rectangular patch source of NAPL. 
This mathematical model is quasi-analytical; it was obtained by us by extending 
previous solutions. It may be of interest not only for uncertainty analyses, as we 
do here, but also for benchmark tests in contaminant migration modeling. 

(2) Model 2. 3D flow and transient advection–dispersion coupled to NAPL source 
dissolution, occurring in an actual polluted site. This problem is modeled 
numerically with the commercial Modflow-Surfact™ code. 

To sum up, the models used in this section are both 3D, and they are more complex 
than those already used for illustration in previous sections of this work. 

The uncertainty analysis methods employed in this section are probabilistic but 
they differ technically for Model 1 (quasi-analytical) and Model 2 (numerical code) 
as follows: 

(1) Monte Carlo simulations are applied directly to Model 1, with random input 
parameters taken one-by-one; whereas… 

(2) Monte Carlo simulations are performed only indirectly in Model 2, using a pre-
constructed metamodel approximation of the original model; this is justified by 
the costly computational nature of Model 2 (compared to the quasi-analytical 
Model 1).
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6.1 Application of Uncertainty Analysis to 3D Contaminant 
Advection–Dispersion from a Decaying Source 
(Quasi-Analytical ESPER-1 Model) 

We present here an application of uncertainty propagation for subsurface contaminant 
transport using a quasi-analytical model of 3D advection–dispersion of a dissolved 
contaminant, migrating as a concentration plume in an aquifer, and originating from 
a decaying rectangular patch source of trapped DNAPL (Dense Non Aqueous Phase 
Liquid). The source dissolution mechanism is simplified, but the migration process 
itself accounts for 3D advection, diffusion, and dispersion (with transverse and 
longitudinal dispersivities), retardation due to adsorption, and first order decay. 

Before proceeding with uncertainty analyses, we describe first the 3D semi-
analytical contaminant transport model equations and solution., which has not been 
published before except for a report by Chastanet et al. [1]. This model is an enhanced 
version of previous semi-analytical models. Uncertainty propagation analyses based 
on probabilistic Monte Carlo simulations with random input parameters will then be 
described in further subsections. 

6.1.1 Model Equations: PDE, Geometry, Boundary 
and Initial Conditions 

The proposed quasi-analytical model describes the 3D migration of solute concen-
tration C(x, y, z, t) by advection and dispersion, and the corresponding decaying 
mass of the dissolving NAPL source M(t) which feeds the dissolved contaminant 
plume. Our solution is essentially a modified and extended version of the previous 
3D solution of [2], which was itself preceded by the 3D solution of [3], and by 
another approximate 3D solution initially proposed by Domenico [4]. The [4] solu-
tion is fast to compute, but can produce errors, which were analyzed by West et al. 
[5], such as 80% underprediction of concentration along the centerline of the plume 
for some cases. Compared to these solutions, our 3D solution remains relatively 
simple (see below) and does not make any approximations. Furthermore, unlike its 
predecessors, our solution is applicable generally to a decaying NAPL source of 
finite duration (rather than infinite duration in the previous solutions). To be fair, 
there are other quasi-analytical solutions for advective–dispersive transport, some of 
them computationally complex, such as that of [6] which relies on Laplace Trans-
forms, and incorporates a broad set of time-dependent boundary conditions (but not 
specifically a decaying NAPL source). Our solution does not involve Laplace Trans-
form, and remains relatively simple to compute. It was implemented under the name 
“Modèle 1.1 ESPER” in the ESPER 1 package for uncertainty analyses [1]. This 3D
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solution, described below, may also be of interest for modelers running benchmark 
tests in contaminant hydrogeology. 

Equational model: governing PDE 
The 3D advective–dispersive migration of the concentration plume in groundwater 
is governed by the following constant coefficients PDE: 

R 
∂C 

∂t 
+ VX 

∂C 

∂x 
= DX X  

∂2C 

∂ x2 
+ DY Y  

∂2C 

∂y2 
+ DZ Z  

∂2C 

∂z2 
− RλC (6.1) 

The groundwater pore velocity VX , the diffusion/dispersion coefficients 
DX X  , DY Y  , DZ Z  , the retardation coefficient R, and the first order decay coefficient 
λ, are all assumed constant in space–time. This PDE can also be expressed using 
Einstein’s rule, of implicit summation on repeated indices: 

R 
∂C 

∂t 
+ V1 

∂C 

∂x1 
= V1αi 

∂2C 

∂xi ∂xi 
− RλC (6.2) 

…where the pore velocity vector is aligned with axis Ox1: 

−→
V = 

⎡ 

⎣ 
VX 

0 
0 

⎤ 

⎦ = 

⎡ 

⎣ 
V1 

0 
0 

⎤ 

⎦ ⇔ Vi = V1 × δ1i (6.3) 

and the diagonal tensor coefficient Di j  incorporates both local isotropic diffusion 
D0δi j  and diagonal anisotropic dispersion as follows: 

Di j  = D0δi j  + αi V1δi j (6.4) 

Three dispersivity length scales intervene here: the longitudinal dispersivity α1 

and the transverse dispersivities α2 = α3, all in meters. Coefficients (α1, α2, α3) are 
also named (αX , αY , αZ ), or  (αL , αT , αT ). Accordingly, the 3 diagonal coefficients 
in Di j  can be named (D11, D22, D33) or (DX , DY , DZ ) or (DL , DT , DT ); they are  
in m2/day. 

Parameter R ≥ 1 is the dimensionless Retardation Coefficient, due to adsorption 
of the solute on the solids (minerals): R > 1 if adsorption is present (retardation), 
else R = 1 (no retardation). 

Coefficient λ is a decay coefficient λ
[
days−1

]
, which represents a linear first order 

decay kinetic for the solute concentration (e.g., biodegradation). A complication 
occurs if both retardation and decay are present (R > 1 and λ /= 0): in that case, it 
must be decided whether the decay kinetic is applicable not only to the solute but 
also to the adsorbed species: if yes, there is nothing to be changed in the PDE model 
(if not, then λ should be replaced by λ/R in the PDE).
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Geometry, initial-boundary conditions, NAPL source model 
The PDE problem of Eq. 6.1 will now be solved for specific initial and boundary 
conditions, involving also an auxiliary model of NAPL contaminant source. These 
conditions include several parameters in addition to the coefficients of the PDE 
Eq. 6.1. 

The spatial domain for the PDE of Eq. 6.1 is the half-space Ω : [x ∈ R3(x ≥ 0). 
Furthermore, due to reflection symmetries with respect to the xz-plane and xy-plane, 
only the positive regions y ≥ 0 and z ≥ 0 need be calculated. In practice, therefore, 
only the 8th-fraction of space x ≥ 0, y ≥ 0, z ≥ 0 need be considered. Still, in what 
follows, we still consider that the domain Ω is defined by x ≥ 0. 

• Initial condition (t = 0): 
The spatial distribution of initial concentration is prescribed throughout the 
domain: 

t = 0; C
(−→x , 0

) = 0, ∀−→x εΩ

• Boundary conditions at infinity: 

x → +∞;  lim 
x→+∞C(x, y, z, t) = 0 and lim 

x→+∞ 

∂C 

∂x 
(x, y, z, t ) = 0 (∀t ≥ 0) 

y → ±∞;  lim 
y→±∞C(x, y, z, t) = 0 and lim 

y→±∞ 

∂C 

∂x 
(x, y, z, t ) = 0 (∀t ≥ 0) 

z → ±∞;  lim 
z→±∞C(x, y, z, t ) = 0 and lim 

z→±∞ 

∂C 

∂x 
(x, y, z, t) = 0 (∀t ≥ 0) 

• Boundary conditions in the vertical rectangular source patch at x = 0 (Fig. 6.1) 
A prescribed distribution of concentration C0 in a rectangular part of the boundary 
plane x = 0 (see Fig. 6.1) serves as a way to model, indirectly, the presence of 
a trapped NAPL pollutant of given initial mass M0. The effect of the NAPL is 
represented by imposing a fixed concentration C0 within the rectangular patch, 
and this only during a finite duration tS related to the loss of mass M(t) of the 
NAPL source (this mass M(t) is modeled separately in a simple manner, see 
below). 

Within the rectangular source patch (in the plane x = 0): 

x = 0; yε[−Ls/2;+Ls/2]; z ε[−Es/2;+Es/2]{
0 < t < tS : C(x, y, z, t) = C0 

t ≥ tS : C(x, y, z, t) = 0 
(6.5)
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Fig. 6.1 Geometry of the DNAPL source in the 3D analytical model. The transport domain is the 
half-space x ≥ 0. The rectangular source patch is located upstream, within the plane x = 0, having  
planar dimensions LySOU RC E × LzSOU RC E , and small width Lx SOU RC E . To emulate DNAPL 
dissolution, a concentration boundary condition C = C0

[
mg/l

]
is prescribed within the patch as 

long as DNAPL mass M(t) remains positive (t < tS). After M(t) reaches zero, for times t ≥ tS , 
the condition within the patch becomes C = 0

Outside the rectangular source patch (in the plane x = 0): 

x = 0; y /∈ [−Ls/2;+Ls/2]; z /∈ [−Es/2;+Es/2] : 
C(x, y, z, t ) = 0 (∀t ≥ 0) 

(6.6) 

Note, in the ESPER 1 code, the total width of the rectangular source along 
Oy is denoted LYsource or LY S , and its total height along Oz is denoted LZsource 

or L Z S . (Here we also use the notation or Es instead of Lzs for the height of the 
patch source). 

• Model of decaying source mass M(t) and source duration t S 
The decaying mass of the NAPL source M(t), and the duration of the source 
tS , are obtained by solving separately a simplified auxiliary problem of coupled 
exchange, at equilibrium, between the DNAPL source and the advection of the 
dissolved contaminant (concentration C) through the source. The result of this 
auxiliary model is that the mass of the trapped DNAPL decreases linearly with 
time, until it vanishes at a finite time tS (the duration of the NAPL source): 

M(t) = M0 − Q0 × t; wi th  : Q0 = C0Es Ls V ∗ 
0 θkin (6.7)
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…where C0 is the imposed concentration in the rectangular source patch, (Es, Ls) 
are vertical and horizontal side lengths of the rectangular patch, V ∗

0 is the 
groundwater pore velocity scaled by the retardation coefficient (V ∗

0 =V0/R0 or 
V ∗
0 =VX /R), and θkin is kinematic porosity. The parameter Q0 represents the rate 

of decay of the DNAPL mass: d M  
dt = −Q0

[
kg/day

]
. 

Now, the above model of decaying mass yields immediately the extinction 
time, or duration of the source tS . It is obtained by letting M(tS) = 0. This yields 
tS as a function of the other parameters: 

tS = M0/
(
C0Es Ls V ∗ 

0 θkin
)

(6.8) 

Note that the DNAPL mass M(t) starts by decreasing linearly, then reaches 
zero at t = t S , and then remains zero thereafter for t > tS . As a consequence, the 
concentration boundary condition on the source patch is C = C0 for 0 < t < tS , 
then C = 0 for t ≥ tS (see earlier boundary conditions).

6.1.2 The Quasi-analytical Solution C(x, y, z, t) and M(t) 

The solution is constructed in several steps. 
The first step is the solution C∗(x, y, z, t − t ,) for an instantaneous patch source 

release at time t = t,, corresponding formally to a source concentrationC0×δ
(
t − t ,), 

where δ
(
t − t ,) is the Dirac delta “function” (distribution) centered at time t = t,. 

C∗(x, y, z, t − t ,) = C0x 

8
√

π DX (t−t ,)3 
exp

[
V 2 (t−t ,) 

4DX 
− λ

(
t − t ,) + Vx 

2DX 
− x2 

4DX (t−t ,)

]

×
{
erfc

[
Y1−y 

2 
√

DY (t−t ,)

]
− erfc

[
Y2−y 

2 
√

DY (t−t ,)

]}
×

{
erfc

[
Z1−z 

2 
√

DZ (t−t ,)

]
− erfc

[
Z2−z 

2 
√

DZ (t−t ,)

]}

(6.9) 

…where the coordinates of the rectangular patch were denoted [Y 1, Y 2] and [Z1, Z2] 
for convenience. Thus, the patch source is defined by the rectangle y ∈ [Y 1, Y 2] and 
z ∈ [Z1, Z2]. In our case, the patch is centered at the origin, and we have: [Y 1, Y 2] = 
[±LYsource] and [Z1, Z2] = [±LZsource]. 

The second step is to deduce the solution for a time continuous patch source of infi-
nite duration, by integrating the previous instantaneous solution C∗(x, y, z, t − t ,)
from t, = 0 to  t, = t, whence: 

C(x, y, z, t) = 
τ =t{

τ =0 

C∗(x, y, z, τ  )dτ (6.10) 

The third step consists in obtaining the solution for a finite duration NAPL source 
patch. Let “tS” designate the finite duration of the source, which can be represented
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as a jump function, constant until t = tS , then null for t > t S . The jump can be repre-
sented by the classical Heaviside function H (τ ) such that H (τ ) = 0 for τ <  0 and 
H (τ ) = 1 for τ ≥ 0. The solution is obtained by convolution of C∗(x, y, z, t − t ,)
with H (tS − t ,) taking into account the finite duration tS of the source: 

C(x, y, z, t ) = 
t ,=t{

t ,=0 

C∗(x, y, z, t − t ,)H
(
ts − t ,)dt ,

Taking into account the Heaviside function, this expression can be manipu-
lated to obtain finally the required finite duration source solution C in terms of 
the instantaneous source solution C∗: 

C(x, y, z, t) = 
τ =t{

τ =Max(0,t−ts ) 

C∗(x, y, z, τ  )dτ (6.11) 

Finally, this solution can be adapted to take into account a retardation coefficient 
R > 1 (we have R = 1 in the previous solution). For the case R > 1, it suffices to 
rescale the groundwater velocity V and the dispersion coefficients DX X  , DY Y  , DZ Z  , 
by dividing each of them by R. Since the dispersion coefficients incorporate both 
local isotropic diffusion D0 and dispersion αX X VX , αY Y  VX , αZ Z VX , the required 
scaling is: D0 

R + αX X  
VX 
R , 

D0 
R + αY Y  

VX 
R , 

D0 
R + αZ Z  

VX 
R . Thus, to obtain the “retarded” 

solution, it suffices to let DX X  = D0 
R + αX X  

VX 
R instead of DX X  = D0 + αX X VX , and 

similarly for DY Y  and for DY Y  , in the expression of the instantaneous solution C* 
obtained at the first step above (6.9). 

6.1.3 Visualizations of the Solution C(x, y, z, t) and M(t) 

This section presents visualizations of the quasi-analytical solution for the concen-
tration plume C(x, y, z, t), and also the decaying NAPL source mass M(t), for  
deterministic reference parameters. 

First, recall that the 3D domain of the solution is the half-space x ≥ 0, so the  
half-region x < 0 cannot be shown. Furthermore, only the region y ≥ 0 needs to be 
shown due to reflection symmetry with respect to the XZ-plane, and only the region 
z ≥ 0 needs to be shown due to reflection symmetry with respect to the XY-plane. 
Thus, in total, only an 8th-fraction of space is shown (x ≥ 0, y ≥ 0, z ≥ 0). 

The next few plots show deterministic snapshots of the advective–dispersive 
concentration plume C(x, y, z, t) either as iso-concentration surfaces, or as axial 
concentration profiles, based on the semi-analytical solution presented in the previous 
section. A set of reference parameters is used, corresponding to the mean values of the 
uncertain parameters. The concentration in the source patch is C0 = 32 mg/l, and the
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Fig. 6.2 Example solution from the 3D quasi-analytical model, showing a snapshot of the plume 
at time t = 900 days in the form of iso-concentration surfaces, from C = 0.1mg/l (outer yellow 
surface) up to roughly 20 mg/l (inner dark green surface). The initial patch concentration is 
C0 = 32 mg/l, and the source extinction time is tS = 600 days. Parameters: V = 0.5m/day; 
(αX X  , αY Y  , αZ Z  ) = α = 1.25 m; solute decay rate λ = 0; retardation coefficient R = 3 

geometric parameters of the patch source are Y s  = Lo = 40 m, Zs = Eo = 20 m. 
All spatial coordinates X, Y, Z are in meters, and times are in days. 

• First, Fig. 6.2 shows a 3D snapshot of the plume C(x, y, z, t) at time t = 
900 days, in the form of iso-concentration surfaces. The source extinction time 
is tS = 600 days, therefore the plume is shown here 300 days after extinction of 
the source. The parameters were chosen as follows: groundwater pore velocity 
V = 0.5m/day; isotropic dispersivities (αX X  , αY Y  , αZ Z  ) = α = 1.25 m in 
all directions; first order decay of the solute was ignored (λ = 0); but solute 
adsorption was represented by a retardation coefficient R = 3. 

• Secondly, Fig. 6.3 depicts axial concentration profiles at different times along the 
centerline (y = 0, z = 0). The selected times are comprised between 600 and 
1200 days, while the source extinction time is tS = 600 days. Therefore, all the 
axial profiles in this figure depict the axial evolution of concentration since the 
extinction of the NAPL source (times t ≥ 600 days). The parameters are the same 
as in the previous 3D vizualization of Fig. 6.3.

6.1.4 Monte Carlo Analyses of 3D Analytical Model 
(ESPER1 Package) 

This 3D model was implemented in the ESPER-1 package, which included some 
of the probabilistic uncertainty analyses developed within the ESPER project.
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Fig. 6.3 Axial plots of the quasi-analytical 3D concentration plume for finite duration source. Axial 
concentration profiles C(x, t) are shown on the centerline (y = 0, z = 0). Top: successive profiles 
C(x, tn ) at different times tn since the extinction of the source (t ≥ tS = 600 days), until time 
t = 1200 days. Bottom: zoom on the last concentration profile at time t = 1200 days. All input 
parameters are the same as in the previous 3D vizualization
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ESPER-1 included, first, the 3D quasi-analytical model of concentration C(x, y, z, t) 
and Mass(t), and secondly, the probabilistic input/output Monte Carlo procedure 
to propagate uncertainty through this 3D model. More details on both aspects are 
provided in the ESPER public report by Chastanet et al. [1], describing this ESPER-1 
package under the name ESPER software v.1.0. 

Monte Carlo uncertainty analysis set up for the 3D quasi-analytical model 

In this application, uncertainty analysis was developed by running direct Monte 
Carlo simulations on the model for probabilistic input parameters (random input 
parameters, treated one by one). 

The empirical distribution of the output criterion (e.g., concentration at some point 
downstream from the source), was constructed directly from the multiple simula-
tions via the quasi-analytical model (without a meta-model). A Matlab script was 
programmed to calculate and plot this quasi-analytical solutionC(x, y, z, t) (Eqs. 6.9 
and 6.11) on any 3D space–time grid, and to manage the multiple simulations required 
by the Monte Carlo procedure. The decaying mass M(t) of the NAPL source, and its 
extinction time tS , are also modeled as a simple but nonlinear function of the input 
parameters (Eqs. 6.7 and 6.8). 

The uncertain inputs and the uncertain outputs, or criteria used for this problem 
are listed in Table 6.1.

Construction of the empirical concentration CDF: Proba(C(x1, t) <  c) versus 
time 

Starting with multiple replicates of random input parameters, the Monte Carlo 
approach leads to multiple replicates of the model output. For instance, with M = 200 
replicates of an input parameter like permeability or initial concentration, the 3D 
model at hand delivers M = 200 replicates of the 3D space–time concentration field 
C

(−→x ; t
)
, which must then be analyzed probabilistically. 

Figure 6.6 shows an example with the 3D semi-analytical transport model, where 
the uncertainty analysis focuses on the temporal evolution of the output concentration 
C at a given point −→x1 . The empirical CDF of concentration C

(−→x 1; tn
)
is constructed 

at each different time tn , using  the  M replicates of C
(−→x 1; tn

)
, based on the CDF 

point estimation method of Hazen (Eq. 3.4). 
In the case shown in Fig. 6.6, a single uncertain input parameter was consid-

ered, namely, the initial concentration C0 in the rectangular source patch. About 200 
Monte Carlo simulations of the 3D quasi-analytical model were executed (M ≈ 200). 
The chosen target point was (x1, y1, z1) = (30 m, 0, 0). As can be seen, the “post-
processing” of these Monte Carlo simulations yields the temporal evolution of the 
CDF of concentration at the target point versus time. By definition, the concentration 
CDF is the function FC(t)(c) defined as the probability of non-exceedance, that is: 

FC(t)(c) = Proba
{
C

(−→x1 ; t
)

< c
}

(6.12)
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…where “c” is any given concentration level. The following type of information 
can be gathered from the results shown in Fig. 6.4: given a threshold concentration 
cT H RE SH O L D  = 5 (red vertical line), and a probability of non-exceedance F = 
0.90 = 90% (blue horizontal line), one may obtain the time such that concentration 
“c” remains less than 5mg/l with at least 90% probability beyond that time (that 
time is roughly 165 days from the figure).

Figure 6.5 shows a result similar to Fig. 6.4, with uncertain initial concentration 
in the source patch, but at a more remote target position, (x1, y1, z1) = (100 m, 0, 0), 
and at larger time scales (up to 1200 days instead of 200 days). Also, a smaller number 
of Monte Carlo replicates were implemented here (M ≈ 50 instead of 200 at each 
discrete time); for this reason, the Monte Carlo samples are now clearly visible in 
the concentration CDFs (circle symbols). Another difference in Fig. 6.5 compared 
with the previous figure is that, here, the time range is 600 days < t < 1200 days, 
where tS = 600 days is the time of total extinction of the NAPL source (zero mass). In 
other words, in Fig. 6.5, we are looking at the uncertainty of the migrating advective– 
dispersive concentration plume after the total extinction of the NAPL source (the 
NAPL source mass has vanished and is null at times t ≥ 600 days).

Table 6.1 Uncertain input parameters and output criteria for the 3D semi-analytical model 

Input parameters Notation Units Probability distribution 

Initial concentration C0 mg/l Uniform 
∼ [16, 48] mg/l 
Mean:∼ 32 mg/l 
Coeff. of variation: 
∼ 100% 

Groundwater velocity V m/day Uniform or Log-normal 
Mean: 1m/day 
typically 

Initial mass of NAPL source M0 kg Uniform or Log-normal 
Mean: 320 kg typically 

Output criteria 

Concentration at target point −→x1 , such as  
−→x1 = (x1, 0, 0), downstream on the centerline 

C(
−→x1 , t) mg/l Empirical probability 

law of C(
−→x1 , t): 

FC(t)(c) = 
Proba

{
C

(−→x1 ; t
)

< c
}

Mass of the NAPL source M(t) kg Empirical probability 
law of M(t): 
FM(t)(m) = 
Proba{M(t) < m} 

Duration of the NAPL source (extinction time 
tS) 

tS days Empirical probability 
law of tS : 
FtS (τ ) = 
Proba{tS < τ }
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Fig. 6.4 Temporal evolution of empirical CDF of concentration, “FC(t)(c)”, at a given target point−→x 1 = (30 m, 0, 0). Uncertainty on C
(−→x 1, t

)
is due to random initial concentration C0 of the 

DNAPL patch source (C0 is uniformly distributed). Uncertainty was propagated via M ≈ 200 
Monte Carlo runs of the model. The CDF, FC(t)(c) ≡ Proba

{
C

(−→x 1, tn
) ≤ c

}
, is shown at discrete 

times tn = 0, 10, 20, . . . ,  190, 200 days. The abscissa is concentration “c”, ranging from c = 0 to 
c = 9 mg/l

6.2 Uncertainty Analysis of 3D Solute Migration 
and Source Attenuation in a Polluted Site 
(MODFLOW-SURFACT) 

We present here finally an application of some previously reviewed techniques of 
uncertainty analyses to a 3D problem of advection–dispersion coupled with DNAPL 
source attenuation in an actual polluted site, modeled with the Modflow-Surfact™ 
computer code. We have focused on HVOC components (Halogenated Volatile 
Organic Compounds) released by the DNAPL source, like PCE, TCE, DCE, etc. We 
have then developed uncertainty analyses using the meta-model approach imple-
mented with the OpenTURNS software. For a brief initial account of these field site 
analyses, see ([7], in French). Concerning OpenTURNS, see [8].
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Fig. 6.5 Temporal evolution of concentration CDF at target position x1 = 100 m (instead of 30 m 
in Fig. 6.6), and larger time scale (up to 1200 days instead of 200 days in Fig. 6.6). The time range 
here is 600 days < t < 1200 days, where  tS = 600 days marks the total extinction of the NAPL 
source. Compared to Fig. 6.6, a smaller number of Monte Carlo replicates were used: M ≈ 50 at 
each discrete time (instead of M ≈ 200). Monte Carlo samples are fewer on each CDF curve, so 
they are more clearly visible (circle symbols). The abscissa shows log-concentrations (log10c), with 
c in the range ∼ 0.5 to 15mg/l

6.2.1 The Modflow-Surfact Code and Model Equations 

The commercial code Modflow-Surfact™ (version 2011) is also named 
Modhms/Modflow-Surfact (Hydrogeologic Inc.). The code and the model 
equations used here are briefly described below. 

MODHMS™ is an integrated surface/groundwater flow code developed by 
HydroGeoLogic Inc., and Modflow-Surfact™ is the groundwater flow module 
of MODHMS™, based on enhancements of the U.S. Geological Survey modular 3D 
groundwater flow code MODFLOW [9, 10], which later evolved into MODFLOW-
2000 [11]. Modflow-Surfact™ is written in FORTRAN. It simulates subsurface 
flow and contaminant transport. It can accommodate 3D subsurface flow based on 
Darcy’s law, and various modalities of species transport. It can solve 3D saturated/ 
unsaturated flow equations or alternatively, saturated flow equations for unconfined 
aquifers (it can also include both confined and unconfined layers). 

Concerning subsurface transport, Modflow-Surfact™ has the following capa-
bilities (some but not all of these were used in this study): NAPL (Non-Aqueous 
Phase Liquid) source release in groundwater and in the unsaturated zone; vapor flow
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Fig. 6.6 Plane view of the  
DCE concentration plume 
(DiChloroEthene) obtained 
with the post-excavation 
calibrated parameters at the 
polluted field site, simulated 
with the 
Modflow-Surfact™ 
computer code

extraction and air sparging; multi-phase and multi-component contaminant trans-
port with biodegradation; and (in the Reaction Module) various reactions of mobile 
and immobile chemical species for dissolution or biodegradation. The flow-transport 
system can be density-dependent. 

Numerically, Modflow-Surfact™ is based on block-centered finite-difference 
discretization in space (for the flow solver), and it contains an iterative Newton– 
Raphson package for linearization, a Preconditioned Conjugate Gradient (PCG) 
package for solving linear systems, a special adaptive Total Variation Diminishing 
scheme for the transport solver, and various options for adaptive time-stepping. 

In this study, the Modflow-Surfact™ computer code was implemented for 
simulating subsurface flow and coupled contaminant transport in a 3D domain 
with several curvilinear layers. The full 3D equational model is complex; it 
includes a broad set of phenomena both in the NAPL pollution source, and in the 
resulting concentration plume, such as: NAPL dissolution in groundwater, adsorp-
tion/desorption mechanisms, advective–dispersive transport, and a biodegradation 
sequence specific to chloro-ethenes. This study is part of a broader framework on 
depollution and remediation of French sites polluted by Dense Non Aqueous Phase
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Liquids (DNAPL) and by the subsequent migration of Halogenated Volatile Organic 
Compounds (HVOCs). 

For convenience, let us present here a simplified version of the 3D model, to 
illustrate the flow and transport properties and the NAPL dissolution mechanism to 
be solved by Modflow-Surfact™: 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

C∂ H/∂t = di v
{

K
−−→
grad H

}
and [V = −K ([x)

−−→
grad H 

∂ 
∂t {Φ(1 − S)C} + di v

{ [V C
}

− di v
{
Φ(1 − S)D

−−→
gradC

}
= 

−α∗Φ(1 − S)
{
C − CE Q

}
∂ 
∂t {ρN AP LΦS} = +α∗ Φ(1 − S)

{
C − CE Q

} − λ ρN AP LΦS 

(6.13) 

This equational system, to be solved numerically with Modflow-Surfact™, 
governs solute concentration C(x, y, z, t), coupled to trapped “oil” saturation 
S(x, y, z, t). In this study, we refer to the steady state flow situation, with steady 
hydraulic head H (−→x ) and velocity field−→

V (−→x ). NAPL dissolution and solute migra-
tion are transient processes. The migrating concentration plume C(

−→x , t) is due to 
dissolution of the trapped DNAPL (Dense Non Aqueous Phase Liquid), which is the 
contaminant “source”. Concentration is advected by the Darcy groundwater velocity 
field 

−→
V or Vi (i = 1, 2, 3)

[
m/day

]
, and is dispersed according to the anisotropic 

dispersion tensor Di j  (i, j = 1, 2, 3)
[
m2/day

]
. 

The 2nd line of Eq. 6.13 is a balance equation for solute mass per m3 of porous 
medium (it is the dissolved contaminant present in the liquid phase), and the 3rd line 
of Eq. 6.13 is a balance equation for the trapped DNAPL mass per m3 of porous 
medium. The dissolution model is assumed linear, with constant mass exchange 
coefficient α∗ (in fact α∗ should decrease with saturation, and the model is improved 
by letting α∗ = 0 when saturation reaches some low residual value SRE SI DU AL ). 
The exchange model can be reformulated by introducing another mass exchange 
coefficient defined as α = α∗Φ(1 − S) instead of α∗. Both  α∗ and α have units of 
[day−1]. Overall, the variables and parameters in Eq. 6.13 are similar to those defined 
previously in the 1D transport model of Eq. 5.2. 

To sum up, the variables of Eq. 6.13 are defined as follows: 

• C([x, t): solute concentration, kg 
m3water or

g 
m3water (NAPL constituent dissolved in 

the water phase) 
• S([x, t): NAPL phase saturation (also named SO for “oil saturation”) in

[
m3 N AP L  
m3 Pores

]

…with either deterministic or uncertain parameters, defined as follows: 

• Φ : aquifer porosity in m3/m3 (also denoted ε) 
• [V : Darcy velocity vector Vi (i = 1, 2, 3) in m/day (NB: pore water velocity is

[VP O RE  = [V /Φ) 
• D: dispersion coefficient Di j  (i = 1, 2, 3; j = 1, 2, 3) in m2/day; it can be 

interpreted as local isotropic diffusion + tensorial dispersion; its simplest form in 
the reference frame aligned with horizontal velocity [V = (V1, 0, 0) is a diagonal 
matrix given by: D11 = D0+a11.|V1|, D22 = D0+a22.|V1|, D33 = D0+a33.|V1|,
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where a11 = aL [m] is the longitudinal dispersivity (horizontal), and a22 = a33 = 
aT [m] are transverse dispersivities (horizontal and vertical). 

• ρN AP L : density of the trapped NAPL, in
[
kg N AP L/m3 N AP L

]
. 

• CE Q : equilibrium concentration of the solute (concentration at which NAPL 
dissolution stops) 

• α∗[day−1]: Mass exchange coefficient for NAPL dissolution, in[(
kg Solute 
m3 domain

)
/
(

kg N AP L  
m3 domain

)]
per day. Another version of this coefficient can 

also be defined as follows: α = α∗Φ(1 − S), which has the same units, [day−1]. 
• λ: biodegradation decay parameter [day−1] of the NAPL pollutant (λ−1 is related 

to half-life). 

6.2.2 Main Hydrogeologic Characteristics of the Polluted 
Test Site 

The polluted test site is a 9 ha maintenance center for vehicles, which has been 
closed for decades. It is polluted with chlorinated solvents. It is located over a loam 
and gravel aquifer, resting on a marn substratum at 7–8 m depth. There is a stream 
nearby. During the years 2010–2020, several DNAPL sources were identified at 
depth, and they were monitored. This study focuses on one DNAPL source which 
was distributed vertically in a rather heterogeneous fashion down to the substratum 
(total mass ~ 1.5 ton). Excavation works, aiming at remediation of the site, reduced 
the pollution by about 80%. The pollution that remained was present essentially in 
a sorbed state. 

As a preliminary procedure, before uncertainty analyses, the Modflow-
Surfact™ model described in the previous subsection was calibrated on 
the pre-excavation and post-excavation states. The DCE concentration plume 
(DiChloroEthene) obtained with the post-excavation calibrated parameters is shown 
in Fig. 6.6. 

6.2.3 Uncertainty Analysis: Metamodeling Procedure 
for the Field Site 

In this study of uncertainty propagation, themetamodel approach will be used. As was 
seen in previous sections (Sects. 2.2.2 and 5.4.1), this approach requires constructing 
a response function for a pre-defined output criterion. The response criterion could 
be the time it takes for the NAPL source to decrease to less than 5% of its initial 
mass. The response criterion chosen in this study is the time (tC RI T  ) taken for DCE 
concentration to reach an acceptable target value less than or at most equal to 400 µg/l 
at a target piezometer located immediately downstream from the NAPL source. This 
“critical time” criterion is therefore such that:
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Fig. 6.7 Schematic illustrating the relative positions of the NAPL source zone, the solute concen-
tration plume, the mean flow direction (left to right), and the downstream “target piezometer” which 
is used to define the critical time criterion. This target piezometer can be a pumping well 

C(xT ARG ET  , tC RI T  ) ≤ CT ARG ET  = 400 µg/l (6.14) 

Empirically, the target concentration of 400 µg per liter is the concentration that 
can be expected after the treated NAPL source has been completely dissolved. The 
typical value of critical time is tC RI T  ≈ 6 years based on the post-excavation cali-
brated model (not based on uncertainty analysis). The typical position of the target 
piezometer is illustrated in Fig. 6.7. 

To sum up, we are interested in assessing the uncertainty of the critical time tC RI T  

defined by Eq. 6.14. For this purpose, the uncertain input parameters must first be 
selected. After a preliminary screening of the most sensitive parameters based on 
a number of simulations with Modflow-Surfact™, several uncertain parameters 
were retained, along with some output criteria to be analyzed, as shown in Table 6.2. 
Note: several of the uncertain input parameters that have been considered at different 
steps of the study are listed in the table, but detailed results are only presented for 
the first, hydraulic conductivity.

Then, the following steps were then implemented for a systematic uncertainty 
analysis of model results, based essentially on the metamodel approach (reviewed 
earlier in this work): 

• Step 1. Defining the range of variation of the uncertain parameters. 

Note: this step could also involve defining the cross-correlations between 
the different parameters, although in this work, we did not consider such 
cross-correlations. 

• Step 2. Creation of a sampling plan for generating multiple replicates of input 
parameters 

This step consists of selecting a limited number of replicates of the parameter set, 
judiciously distributed in the space of uncertain parameters (e.g., not necessarily 
uniformly but proportionally to their probability of occurrence). A simulation of
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Table 6.2 Some uncertain input parameters and output criteria used for the 3D field site model in 
Modflow-Surfact™ (details are given only for the first parameter, hydraulic conductivity) 

Input parameters Reference value Probability 
law 

Moments 

Hydraulic conductivity K
[
m/day

]
or 

[m/s] 

K = 1.1 10−4 m/s Log-normal Mean: mK = 
1.1 10−4 m/s 
Standard 
deviation: σK = 
1.6 10−4 m/s 

NAPL biodegradation decay 

parameter λ [day−1] or half-life 
τ50%

[
days

]

τ50%(TCE) ∼ 100 
days, 
τ50%(DCE) ∼ 200 
days 

Dispersivities, longitudinal and 
transverse: aL [m] and aT [m] 

Range: 
aL ∈ [0, 50 m] 
Choice: aT ≈ aL /3 

Initial NAPL saturation SN AP L  (0) 
and/or initial mass of NAPL source 
M(0)[kg] 
Output criteria 

Critical time tC RI T  (Eq. 6.14) tC RI T  ∼ 6 years (See probabilistic results on 
tC RI T  )

the 3D numerical model is then launched for each replicate of the parameter set. 
The «response» of each of these simulations is then collected and represented by 
points in the space of the uncertain parameters. 

Observe that the output «response» is calculated only for the predefined crite-
rion (it must be recalculated if the criterion is changed). This criterion could be 
some measure of “source lifetime”, like the time it takes for the NAPL mass M(t) 
to decrease to 5% of its initial mass M(0), or it could be the previously defined 
critical time tC RI T  taken to reach a target concentration. We focus on the latter 
criterion. 

Here, M = 30 replicates were selected for the multiparameter set, each 
replicate comprising 5 input parameters. They were sampled optimally in the 
5-dimensional space of the parameters according to the “quasi random” sampling 
plan available in the Design of Experiments packages of OpenTURNS (see 
sampling plan shown previously in Sect. 5.4.1, Fig.  5.4, for the 1D model with 
2 parameters). The response of the 3D numerical model was calculated point by 
point for each replicate, and finally, a 5-dimensional second order polynomial 
metamodel was fitted to the 30 points. The results indicate that the uncertain 
response criterion (tC RI T  ) was distributed between −4 years and +14 years. The  
negative values are obviously an artefact due to the approximate nature of the 
metamodel. In spite of this, the nonlinear regression correlation “R” was fair 
(R ≈ 0.94). The corresponding root-mean-square error (scaled) is evaluated as
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√
1 − R2 ≈ 0.24 = 24%. This implies that the fitted polynomial response (the 

metamodel) explains about 76% of the “true” response of the computer model. 
• Step 3. Construction of a metamodel. 

From the sample points selected in the previous step, as stated above, we have 
constructed a continuous response function (response surface) which passes near 
the points (polynomial best fit). This construction required running the Modflow-
Surfact™ model a number of times for different values of the set of input 
parameters. But once the response surface is described analytically, it constitutes 
the metamodel, which can now be used repeatedly for Monte Carlo analyses 
instead of the original model. That is, the analytical response function is used 
for Monte Carlo uncertainty analyses instead of complex and costly Modflow-
Surfact™ simulations. 

In this application, note that we considered only a few uncertain parameters 
(rather than, say, several hundreds of uncertain parameters). We chose a simple 
nonlinear polynomial regression to obtain the response function from a moderate 
number of sample points (on the order of one hundred typically), where each 
sample point corresponds to running the complete model (Modflow-Surfact™) 
for a given replicate of the set of uncertain parameters. Note also that our uncer-
tainty analysis is a priori multivariate: two or more uncertain input parameters 
were considered simultaneously when plotting the resulting response function (at 
least in the initial phase of this study). 

• Step 4. Sensitivity analysis of model outputs with respect to input parameters. 

First, recall that sensitivity analysis is an integral part of Uncertainty Quantifica-
tion. We have noted earlier that propagating uncertainty from inputs to outputs 
in a model can serve sensitivity analysis purposes, for instance by taking the 
uncertain inputs one-by-one (Sect. 2.3.1). In fact, sensitivity analysis is a topic in 
itself. The book by Da Veiga et al. [12] treats various approaches to uncertainty 
quantification via the «R» project, with a focus on Sensitivity Analyses in their 
Chaps. 5 and 6 based on Sobol Indices. These are not detailed in the present work, 
except briefly in Sects. 2.2.2 and 2.2.3. The reader is referred to [13] concerning 
Sobol indices and their particular relation to Polynomial Chaos metamodels. 

Here, in the 3D field site study, we have calculated indicators to quantify 
the sensitivity of the metamodel response with respect to the uncertain param-
eters taken one-by-one (instead of simultaneously). Based on the constructed 
metamodel, several types of indices (such as Sobol indices) were calculated in 
order to assess model sensitivity with respect to input parameters. The results 
indicate that the most sensitive parameters were (1) hydraulic conductivity K , 
and (2) NAPL (TCE) biodegradation half-life (or decay parameter λ). However, 
overall, the sensitivities of other parameters were on the same order, and no clear 
hierarchy could be inferred. 

• Step 5. Uncertainty propagation via Monte Carlo simulations through the 
meta-model.
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This step consists in applying the Monte Carlo technique to the meta-model. It 
consists here in generating multiple replicates of the probabilistic inputs (sets 
of parameters with given probability distributions), and then, obtaining for each 
replicate the response given by the pre-constructed metamodel. The metamodel 
itself is not costly to implement: it is therefore applied to a large number of repli-
cates. The response of the metamodel is then characterized in probabilistic terms; 
for instance the “source lifetime”, or else the critical time tC RI T  corresponding 
to a target concentration, is analyzed in terms of its mean, its standard devia-
tion, its Probability Density Function (PDF), and most importantly, its Cumulated 
Distribution Function (CDF). 

In this last step, the metamodel serves as a surrogate for the full numerical 
model. It should be emphasized that the metamodel furnishes a response that 
depends on the proposed criterion to be analyzed (such as tC RI T  ). The metamodel 
needs to be entirely reconstructed if a new output criterion is defined (there is a 
different metamodel for each different output criterion). 

6.2.4 Results: Probabilistic Characterization of Output 
Criterion (Critical Time) 

The Monte Carlo simulations to be performed on the metamodel could be carried 
out in principle with all 5 input parameters jointly. However, given the results of 
preliminary sensitivity analyses, it was decided to propagate uncertainty by consid-
ering solely the uncertainty of hydraulic conductivity K , which was considered log-
normally distributed, and is very variable, with a coefficient of variation of 145% (see 
Table 6.2). The Monte Carlo simulations, performed on the metamodel, finally lead 
to probabilistic characterization of a single uncertain variable: the output criterion 
tC RI T  (Eq. 6.14). 

Thus, an empirical PDF histogram and a pointwise CDF are estimated for tC RI T  , 
using the probability estimators explained earlier in Sect. 3.1.1. The resulting PDF 
and CDF of tC RI T  are shown in Fig. 6.8. The CDF of the response criterion (tC RI T  ) 
can be used to make probabilistic statements concerning the uncertain response. 
Thus, a probabilistic answer can be given to a question like this:

What is the critical time tC RI T95% which has a 95% probability of not being 
exceeded? 

Proba{tC RI T  ≤ tC RI T  95%} = 0.95 → f ind tC RI T  95% (6.15) 

Graphically, the empirical CDF of Fig. 6.8 shows that the 95% critical time is 
about 6.5 years: 

Proba{tC RI T  ≤ tC RI T95%} = 0.95 → tC RI T 95% ≈ 6.5 years
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Fig. 6.8 Empirical probability distribution of the response criterion tC RI T  obtained from the 3D 
computer code via metamodeling: Probability Density Function histogram (at left) and Cumulated 
Distribution Function (at right). The uncertain input parameter (hydraulic conductivity K ) is log-
normally distributed and has a large coefficient of variation (145%)

It can also be seen that there is an 80% probability that the critical time be 
comprised between 2 and 6 years. The median value of the critical time, having 
50% chances of being exceeded, is: 

t M E DI AN  
C RI T ≈ 4.5 years 

Finally, the most frequent value of tC RI T  can be obtained roughly from the mode 
of the PDF histogram: 

t M O DE  
C RI T  ≈ 5 years 
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Chapter 7 
Discussion and Conclusions 

In this book, we have presented several concepts and methods for propagating uncer-
tainty through models, especially environmental geoscience models and hydrogeo-
logical models. One of the examples involves a probabilistic model of corrosion pit 
growth on nuclear waste canister, but most other examples involve solute concentra-
tion migration or decay: 0-dimensional first order decay kinetics, 1D concentration 
transport, and fully 3D concentration transport models (analytical and computa-
tional) in the presence of a trapped NAPL “source”. The novel 3D quasi-analytical 
model of advective–dispersive contaminant migration from a decaying rectangular 
patch of NAPL source may be of interest not only for uncertainty analyses, as we do 
here, but also for benchmark tests in contaminant hydrogeology. The final sub-section 
dealing with the 3D numerical modeling of a real polluted site with the MODFLOW-
SURFACT code illustrates how uncertainty analysis methods can be employed in 
practice, with what objectives, what output criteria, and what kinds of results. 

A broad range of uncertainty propagation methods is covered in the theoretical 
sections, and then illustrated with the example models. Conceptually, the methods 
investigated here are based on probabilistic concepts, on fuzzy variable concepts, or 
both in the case of the “possibilistic” approach. Technically, our discussion covers 
several aspects: sampling plans such as LHS and other plans (“Design of Experi-
ments”); different ways of implementing Monte Carlo simulations (directly on the 
model itself, or indirectly via a “metamodel” or “surrogate model”); various ways 
of propagating uncertainty analytically (exactly or approximately through Taylor 
expansions); and other issues of interest like multivariate probabilities to deal with 
joint sets of uncertain parameters, and sensitivity analyses performed via uncertainty 
propagation.
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