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Abstract. Memory safety is a critical concern in software development,
as related issues often lead to program crashes, vulnerabilities, and secu-
rity breaches, leading to severe consequences for applications and sys-
tems. This paper provides a detailed analysis of how Rust effectively
addresses memory safety concerns. The paper first introduces the con-
cepts of ownership, reference and lifetime in Rust, highlighting how they
contribute to ensuring memory safety. It then delves into an examina-
tion of common memory safety issues and how they manifest in popular
programming languages. Rust’s solutions to these issues are compared
to those of other languages, emphasizing the benefits of using Rust for
enhanced memory safety. In conclusion, this paper offers a comprehen-
sive exploration of prevalent memory safety issues in programming and
demonstrates how Rust effectively addresses them. With its encompass-
ing mechanisms and strict rules, Rust proves to be a reliable choice for
developers aiming to achieve enhanced memory safety in their program-
ming endeavors.
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1 Introduction

Memory safety has always been a critical concern in software development [16].
In many programming languages, memory safety issues often result in severe
consequences for applications and systems.

In the 2022 Common Weakness Enumeration (CWE) Top 25 Most Dangerous
Software Weaknesses list, there are four software defects related to memory
safety, including Out-of-bounds Write, Out-of-bounds Read, Use After Free, and
NULL Pointer Dereference. Among these, Out-of-bounds Write holds the top
position in terms of prevalence [9].

In order to address these issues, the Rust programming language emerged [7,
12]. It has garnered significant attention in recent years as a programming lan-
guage known for building efficient and secure system software [3]. It offers a
unique combination of low-level control over system resources, similar to lan-
guages like C and C++, while also ensuring memory and concurrency safety
through mechanisms like ownership and lifetimes [4].
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One of the most distinctive and innovative features of Rust is its ownership
system [5]. To facilitate programming, Rust introduces the concept of borrow-
ing [5]. Ownership can be borrowed by creating references to values, allowing
multiple parts of the code to access and work with the data without transferring
ownership. Besides, Rust uses the concept of lifetimes to track the relationships
between references and ensure they remain valid [5].

In this paper, we aim to explain how Rust addresses issues related to memory
safety. We presents an investigation into various memory safety issues commonly
encountered in programming. By studying these examples, we then proceeded
to showcase how Rust tackles these problems through its innovative ownership
and lifetime mechanisms. Through our analysis and demonstrations, we pro-
vide insights into how Rust effectively mitigates memory safety concerns and
promotes safer programming practices.

The remainder of the paper is organized as follows: Sect. 2 presents the mech-
anisms introduced in Rust to ensure memory safety, including ownership, refer-
ences, and lifetimes. Section 3 analyzes common memory safety issues and their
manifestations in popular programming languages, followed by an exploration of
Rust’s solutions to these issues. Finally, Sect. 4 provides a concise summary of
the article’s findings and highlights Rust as a dependable choice for developers
seeking robust memory safety guarantees.

2 Backgrounds

In this section, we will introduce the concept of ownership and lifetime in Rust.

2.1 Ownership and Reference

Ownership. In Rust language, ownership is a fundamental concept that gov-
erns how memory is handled in Rust programs. While these rules are strictly
checked in the complication, Rust programmers obtain a executable program
with guaranteed memory safety [5].

With Rust’s ownership model, each value has a single owner, typically repre-
sented by a variable, at any given time. The owner is responsible for the lifetime
and deallocation of the value. When the owner goes out of scope, Rust automat-
ically frees the memory associated with the value.

In contrast to many other programming languages, Rust employs move
semantics as the default behavior for assignment operations. This represents
a typical case of ownership transfer in Rust. Ownership transfer also occurs
when variables are passed as function parameters or returned as function results,
adhering to Rust’s ownership principles. The ownership system in Rust ensures
that memory is properly managed throughout the program’s execution, enhanc-
ing memory safety and reducing the likelihood of runtime errors related to mem-
ory management.
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Reference. As previously explained, ownership transfers are not limited to
assignment operations. If the caller needs to retain access to the variable passed
to the callee after the function call, the variable must be returned to the caller
as part of the function’s return value.

Undoubtedly, such code lacks conciseness and elegance for developers. Thank-
fully, Rust has taken this into consideration during its design and offers a feature
known as references [5]. References allow the usage of values without transferring
ownership, providing a more flexible and convenient approach in Rust program-
ming.

In Rust, references do not own the value they point to, which ensures compli-
ance with the ownership rules. Within Rust’s ownership mechanism, the process
of creating a reference is commonly known as borrowing.

Just like variables, references in Rust can be categorized into two types:
immutable references and mutable references.

1. Immutable references, also referred to as shared references, provide read-only
access to the referenced value.
Rust enables multiple immutable references to coexist for the same value
concurrently, promoting a shared and concurrent access model.

2. By using &mut, we can create mutable references that allow both reading and
modifying values. However, Rust enforces a strict rule that only one valid
mutable reference can exist for a particular value at any given time.

2.2 Lifetimes

To manage references, Rust introduces the concept of lifetimes [5]. In Rust,
every reference has its own lifetime, which can be either explicitly specified by
the developer or implicitly inferred by the compiler. The purpose of lifetimes is
to ensure that references are valid for as long as we need them to be.

Lifetime annotations in Rust are denoted by an apostrophe (’) followed by an
identifier, such as ’a, ’b, ’c, and so on. These annotations describe the scope of
a reference, indicating how long the reference remains valid within the program.

When writing code, it is typically necessary to follow certain rules regarding
lifetimes, which include:

1. References must not outlive the values they refer to.
2. If you store a reference in a variable, the reference must remain valid for the

entire duration of the variable’s lifetime.
3. If there are multiple references, their lifetimes must intersect properly to

satisfy validity requirements.

Developers can utilize explicit lifetime annotations or rely on the compiler’s
inference to ensure the validity and safety of references.

3 Common Memory Safety Issues and Solutions of Rust

In this section, we will discuss common memory safety issues and how they
manifest in existing programming languages.
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3.1 NULL Pointer Dereference

Description. In computing, a NULL pointer is a special value assigned to a
pointer or reference to indicate that it does not point to a valid object or memory
location. A NULL pointer dereference happens when an application attempts to
access or manipulate data through a pointer that is expected to point to a valid
memory address, but is NULL [11].

Manifestations. Below are some examples of NULL Pointer Dereference in
common languages from CWE [11].

1 void host_lookup(char *user_supplied_addr){
2 struct hostent *hp;
3 in_addr_t *addr;
4 char hostname[64];
5 in_addr_t inet_addr(const char *cp);
6 validate_addr_form(user_supplied_addr);
7 addr = inet_addr(user_supplied_addr);
8 hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
9 strcpy(hostname, hp->h_name);

10 }

In this example, the program accepts an IP address input from the user,
validates its format, and proceeds to perform a hostname lookup. The hostname
is then copied into a buffer. If an attacker supplies an apparently valid address
that fails to resolve to a hostname, the gethostbyaddr() function would return
NULL. Since the code does not verify the return value of gethostbyaddr(), a
null pointer dereference would subsequently occur in the strcpy() function call.

This Android application has registered to handle a URL when sent an intent:

1 IntentFilter filter = new IntentFilter("com.example.URL");
2 MyReceiver receiver = new MyReceiver();
3 registerReceiver(receiver, filter);
4 public class UrlHandlerReceiver extends BroadcastReceiver {
5 @Override
6 public void onReceive(Context context, Intent intent) {
7 if("com.example.URL".equals(intent.getAction())) {
8 String URL = intent.getStringExtra("URLToOpen");
9 int length = URL.length();

10 }
11 }
12 }

The application assumes that the URL will always be included in the intent.
However, when the URL is not present, the call to getStringExtra() will return
null, thus causing a null pointer exception when length() is called.

Solution of Rust. In order to address the issue of NULL pointer dereference,
a different approach is taken in Rust, compared to traditional programming
languages. In safe Rust, there is no concept of a null pointer (NULL). Instead,
it uses the Option type to represent values that may be absent.

The Option type is an enumeration with two variants: Some and None. Some
wraps a concrete value, indicating its presence, while None represents the absence
of a value.
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In Rust, when attempting to dereference an Option type, it must be pattern
matched first to determine whether it is Some or None. Only when the Option
type is Some, can its value be safely dereferenced.

Below is a simple Rust code snippet demonstrating how to handle Option
types:

1 fn main() {
2 let number: Option<i32> = Some(35);
3 match number {
4 Some(num) => {
5 println!("The number is: {}", num);
6 }
7 None => {
8 println!("There is no number.");
9 }

10 }
11 }

Number is an Option<i32> type assigned the value Some(42). By pattern
matching, we can safely dereference the value and perform corresponding actions
based on its type.

3.2 Wild Pointer

Description. Wild pointers are pointers that have not been properly initialized
before their first use. Strictly speaking, in programming languages that do not
enforce initialization, every pointer is considered a wild pointer initially [17]. The
key issue lies in whether the pointer is initialized before its first usage.

Manifestations
1 int main() {
2 int *p; /* wild pointer */
3 *p = 32;
4 }

This is a very simple example of wild pointer in C language. We declare a
pointer variable, p, without specifying its address. In this case, p becomes a wild
pointer. Since p can potentially point to any address, the assignment in line 3
has a high chance of corrupting important and protected memory space, leading
to program crashes.

1 #include <iostream>
2 int main() {
3 int *arr;
4 for(int i = 0; i < 5; i++)
5 std::cout << arr[i] << " ";
6 return 0;
7 }

Here is another example of wild pointers in C++ language. In the above
program, a pointer arr is declared but not initialized. As a result, it is displaying
the contents of random memory locations. If we compile and run this program,
depending on the compiler and compilation options, it may output five numbers
or result in a segmentation fault.
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Solution of Rust. Due to Rust’s enforcement of RAII (Resource Acquisition
Is Initialization), the compiler in Rust checks whether pointers and references
are initialized before their first usage.

It is worth noting that in safe Rust, dereferencing raw pointers is not allowed.
Therefore, the error message mentioned above is only a part of the story.

3.3 Dangling Pointer

Description. Dangling pointers occur when an object is deleted or deallocated
without modifying the value of a pointer that still points to the memory location
of the deallocated object [1]. This can lead to unpredictable behavior when the
dangling pointer is dereferenced, as the memory may now contain different data.

Manifestations. In many languages, when an object is deleted from memory
explicitly or when the stack frame is destroyed upon return, the associated point-
ers are not automatically modified [17]. As a result, the pointers still point to
the same memory location, even though that memory may now be used for other
purposes.

1 {
2 char *dp = NULL;
3 {
4 char c;
5 dp = &c;
6 }
7 }

For example, in the above code, we declare a variable c within an inner scope
and assign the address of c to the pointer dp. However, once c goes out of its
scope, the memory it occupied is deallocated, leaving dp as a dangling pointer.

Another common source of dangling pointers arises from improper usage of
memory allocation and deallocation functions, such as new and delete in C++,
as demonstrated below.

1 void func() {
2 char *dp = new char[SIZE];
3 delete[] dp;
4 }

One frequently encountered error is returning the addresses of stack-allocated
local variables. When a called function returns, the memory space for these
variables is deallocated, resulting in technically undefined values or ‘garbage
values’.

Solution of Rust. Rust solves the problem of dangling pointers through its
ownership and borrowing mechanisms. When a value is bound to a variable in
Rust, the variable takes ownership of the value, and when the variable goes out
of scope, Rust automatically releases the owned value.

Next comes the difference between Rust and other languages. In languages
like C/C++, when we use a pointer or reference to a variable after it has gone
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out of scope, also known as a dangling pointer or reference, those languages do
not prevent us from doing so. However, Rust performs compile-time checks and
throws an error.

Rust can perform such checks because it manages references through life-
times. As mentioned in the context, there are two crucial constraints for lifetimes.
During compilation, the Rust compiler attempts to select appropriate lifetimes
for references based on these constraints.

Clearly, these two constraints result in conflicting lifetime ranges. Therefore,
the Rust compiler detects such situations and throws an error.

3.4 Double Free

Description. Double free errors occur when the memory deallocation function
is invoked multiple times with the same memory address as an argument [1,10].
This can result in the corruption of the program’s memory management data
structures, potentially allowing a malicious user to write values in arbitrary
memory locations.

Manifestations

1 char* ptr = (char*)malloc(SIZE);
2 if (abrt) {
3 free(ptr);
4 }
5 free(ptr);

While some double free vulnerabilities may be as straightforward as the exam-
ple provided, many are scattered across hundreds of lines of code or even different
files.

1 public final class AssetManager {
2 @Override
3 protected void finalize() throws Throwable {
4 if (mObject != 0) {
5 nativeDestroy(mObject);
6 }
7 }
8 void xmlBlockGone(int id) {
9 if (mNumRefs == 0 && mObject != 0) {

10 nativeDestroy(mObject);
11 mObject = 0;
12 }
13 }
14 }
15 final class XmlBlock {
16 private @Nullable final AssetManager mAssets;
17 private void finalize() throws Throwable {
18 if (mAssets != null) {
19 mAssets.xmlBlockGone(hashCode());
20 }
21 }
22 }

The above code demonstrates an example of a double free in Java [8].
Assuming we have a XmlBlock X created by a AssetManager A. After calling
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A.close and both X and A are ready to be garbage collected, if A.finalize is
called first (nativeDestroy), the subsequent invocation of X.finalize will trig-
ger A.xmlBlockGone, causing the second nativeDestroy of A and resulting in a
crash.

Solution of Rust. Rust addresses the issue of double free through its ownership
mechanism. In Rust, when an owner goes out of scope, the value is automatically
released, eliminating the need for manual resource deallocation by the developer.
Rust also enforces the rule, checked at compile time, that each value has only
one owner, ensuring that double free does not occur.

Rust achieves automatic resource deallocation through the use of the Drop
trait, which is automatically implemented for almost all types in Rust. The Drop
trait defines the behavior when a value is dropped, allowing Rust to perform
necessary cleanup operations.

In the following code, we define a struct named S and implement a custom
Drop trait for it. When running this code, we observe that the program outputs
“Drop for S.”, which demonstrates that Rust automatically invokes the drop
method.

1 struct S;
2 impl Drop for S {
3 fn drop(&mut self) {
4 println!("Drop for S.")
5 }
6 }
7 fn main() {
8 let s = S;
9 }

What if we manually invoke the drop method of the struct to release the
resources ahead of time? If we add the line the compiler will provide the following
error message:

error[E0040]: explicit use of destructor method
--> src/main.rs:9:7
|

9 | s.drop();
| --^^^^--
| | |
| | explicit destructor calls not allowed
| help: consider using `drop` function: `drop(s)`

This indicates that Rust does not allow us to explicitly call the Drop::drop
method.

3.5 Buffer Overflow

Description. A buffer overflow condition occurs when a program tries to store
more data in a buffer than its capacity allows or when it attempts to write data
beyond the boundaries of a buffer. In this context, a buffer refers to a consecutive
section of memory allocated to hold various types of data, ranging from character
strings to arrays of integers [6].
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Manifestations

1 #define BUFSIZE 256
2 int main(int argc, char **argv) {
3 char buf[BUFSIZE];
4 strcpy(buf, argv[1]);
5 }

In the above example, the buffer size is fixed, but there is no guarantee
that the string in argv[1] will not exceed this size, potentially causing a buffer
overflow.

1 #define SIZE 8
2 int main() {
3 int id[SIZE];
4 for (int i = 0; i <= SIZE; ++i) {
5 id[i] = i * 2;
6 }
7 }

The above code attempts to store a series of integers in an array. However,
the size of the array is SIZE, so its indices range from 0 to SIZE - 1. The final
assignment statement, id[SIZE] = SIZE * 2;, causes a buffer overflow issue.

Solution of Rust. Rust addresses the issue of buffer overflow by perform-
ing checks on buffer indices during both compile-time and runtime. For regular
arrays, Rust requires specifying the size at declaration or infers it based on the
code. For dynamic arrays like Vec, Rust stores their length and capacity on the
stack.

In Rust, there are two ways to access arrays: one is the common method using
the [] operator, and the other is through the get method. When using [], Rust
performs compile-time checks to ensure that the index does not exceed the array
bounds if both are known. If the size or index is unknown at compile time,
Rust inserts runtime checks. If an out-of-bounds access is detected at runtime,
it triggers a panic. When accessing arrays using the get method, it returns an
Option value, and it is the responsibility of the developer to manually verify its
validity.

3.6 Use of Uninitialized Memory

Description. Use of uninitialized memory means reading data from a previously
allocated memory region that has not been filled with initial values.

In some languages such as C and C++, stack variables are not initialized by
default. They often contain random or junk data before the function was invoked
[15]. In this case, the behavior of the program is unpredictable, and detecting
such issues can be challenging. This type of problem is commonly referred to as
a “heisenbug” [2].
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Manifestations
1 if (isset($_POST['names'])) {
2 $nameArray = $_POST['names'];
3 }
4 echo "Hello " . $nameArray['first'];

The above PHP code checks if the names array in the POST request is set
before assigning it to the variable $nameArray. However, if the array is not
present in the POST request, $nameArray will remain uninitialized. This can
result in an error when accessing the array to print the greeting message, poten-
tially creating an opportunity for further exploitation.

The following code snippet represents a Use of Uninitialized Memory issue
in the C programming language.

1 char *str;
2 if (i != err) {
3 str = "Hello World!";
4 }
5 printf("

If the value of the variable i is equal to err, then the string str in the
above code will be in an uninitialized and unknown state. In such a scenario,
the printf function may print junk strings.

Solution of Rust. Similar to C language, in Rust, stack variables are unini-
tialized by default and need to be explicitly assigned a value. However, unlike C,
Rust prevents you from using variables before initializing them. Rust performs
branch analysis to ensure that variables are initialized before they are used on
each branch [13].

It is important to note that this check does not consider the specific values of
conditions; rather, it takes into account the program’s dependencies and control
flow.

3.7 Data Race

Description. Data race occurs when multiple threads access and modify a
shared memory region simultaneously without proper synchronization [14].

Manifestations
1 var counter int
2 func incrementCounter(wg *sync.WaitGroup) {
3 defer wg.Done()
4 counter++
5 }
6 func main() {
7 var wg sync.WaitGroup
8 for i := 0; i < 10; i++ {
9 wg.Add(1)

10 go incrementCounter(&wg)
11 }
12 wg.Wait()
13 fmt.Println("Counter value:", counter)
14 }
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In this example, multiple goroutines are simultaneously modifying a shared
variable called counter. Since there is no synchronization mechanism, such as a
mutex or a semaphore, in place to coordinate access to the variable, a data race
occurs. Data races can lead to inconsistent and unpredictable final values of the
counter variable.

1 #include <pthread.h>
2 #include <stdio.h>
3 int counter = 0;
4 void* increment(void* arg) {
5 for (int i = 0; i < 1000000; i++) {
6 counter++;
7 }
8 return NULL;
9 }

10 int main() {
11 pthread_t thread1, thread2;
12 pthread_create(&thread1, NULL, increment, NULL);
13 pthread_create(&thread2, NULL, increment, NULL);
14 pthread_join(thread1, NULL);
15 pthread_join(thread2, NULL);
16 printf("Final value of counter:
17 return 0;
18 }

In this example, two threads are created, and each thread increments the
shared variable counter in a loop. Since there is no synchronization mechanism,
a data race occurs where both threads are accessing and modifying the variable
simultaneously. As a result, the final value of counter becomes unpredictable
and may vary between different runs of the program.

Solution of Rust. Rust addresses most data race issues through its owner-
ship mechanism. As mentioned earlier, Rust distinguishes between two types of
references and imposes corresponding restrictions.

Rust’s distinction and restrictions on references serve the purpose of pre-
venting data races during compile time. This concept can be likened to the rules
governing readers and writers in concurrent operations. That means it is not pos-
sible to have multiple mutable references aliasing the same data simultaneously
in Rust.

However, not all types adhere to inherited mutability. Certain types in Rust
allow multiple aliases of a memory location while still allowing mutation. Rust
addresses this by utilizing the Send and Sync traits to enforce safe concurrent
behavior [13].

4 Conclusion

This article provides a comprehensive exploration of prevalent memory safety
issues encountered in programming and delves into their manifestations in pop-
ular programming languages. It further elucidates how Rust effectively tackles
these issues by leveraging the power of ownership, references, and other inno-
vative mechanisms. By enforcing strict rules and guarantees, Rust empowers
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developers with robust memory safety, ensuring their programs are protected
from a range of potential vulnerabilities. With a holistic approach encompass-
ing various mechanisms, Rust stands as a reliable choice for developers seeking
enhanced memory safety in their programming endeavors.
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