
Exploring Accurate and Generic Simile
Knowledge from Pre-trained Language

Models

Shuhan Zhou1, Longxuan Ma2, and Yanqiu Shao1(B)

1 School of Information Science, Beijing Language and Culture University, Beijing,
China

yqshao163@163.com
2 Research Center for Social Computing and Information Retrieval,

Faculty of Computing, Harbin Institute of Technology, Harbin, China
lxma@ir.hit.edu.com

Abstract. A simile is an important linguistic phenomenon in daily com-
munication and an important task in natural language processing (NLP).
In recent years, pre-trained language models (PLMs) have achieved great
success in NLP since they learn generic knowledge from a large corpus.
However, PLMs still have hallucination problems that they could gener-
ate unrealistic or context-unrelated information. In this paper, we aim
to explore more accurate simile knowledge from PLMs. To this end, we
first fine-tune a single model to perform three main simile tasks (recogni-
tion, interpretation, and generation). In this way, the model gains a bet-
ter understanding of the simile knowledge. However, this understanding
may be limited by the distribution of the training data. To explore more
generic simile knowledge from PLMs, we further add semantic depen-
dency features in three tasks. The semantic dependency feature serves
as a global signal and helps the model learn simile knowledge that can be
applied to unseen domains. We test with seen and unseen domains after
training. Automatic evaluations demonstrate that our method helps the
PLMs to explore more accurate and generic simile knowledge for down-
stream tasks. Our method of exploring more accurate knowledge is not
only useful for simile study but also useful for other NLP tasks leveraging
knowledge from PLMs. Our code and data will be released on GitHub.
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1 Introduction

A simile is a figure of speech that compares two things from different categories
(called the tenor and the vehicle) via shared properties [17]. A tenor and a vehicle
are usually connected with comparator words such as “like” or “as”. For example,
the sentence “The girl is as pretty as an angel.” is a simile where the tenor is
“The girl”, the vehicle is “an angel”, the comparator is “as ... as” and the shared
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property is “pretty”. Simile plays an important role in human language to make
utterances more vivid, interesting, and graspable [26], comprehending similes is
essential to appreciate the inner connection between different concepts and is
useful for other natural language processing (NLP) tasks [8,20].

In recent years, pre-trained language models (PLMs) have achieved great
success in NLP since they learn generic knowledge from a large corpus and
could serve as a knowledge base [5,18]. Considerable attention has been paid to
exploring simile knowledge from PLMs to solve downstream simile tasks, such
as recognition, interpretation, and generation [4,8]. However, PLMs are known
to suffer from hallucination problems [7,12,19], they could generate unrealistic
or unfaithful information about the provided source content, which will impact
their performance on downstream tasks. For example, when completing the blank
in a simile sentence “Are you feeling ill? You are as __ as a ghost.”, a PLM may
generate “creepy” instead of the expected shared property “pale”.

In this paper, we study how to explore more accurate and generic simile
knowledge from PLMs. Specifically, we first train PLMs with three main simile
tasks (recognition, interpretation, and generation). In this way, the PLMs can
learn the shared semantic feature among different tasks and gain a better under-
standing of the simile knowledge. However, this understanding may be limited
by the distribution of the training data. The performance of the model will drop
when applied to unseen domains. To explore more generic simile knowledge, we
further add semantic dependency features in the fine-tuning process. The seman-
tic dependency feature serves as a global signal, helps the model learn simile
knowledge shared among similar syntax structures, and enhances the model’s
performance on unseen domains. During tests, we conduct experiments on both
seen and unseen test sets to verify the effectiveness of our method. To sum up,
our contributions are:

– We propose a novel method to explore more accurate and generic simile knowl-
edge from PLMs.

– We test our model with both seen and unseen test sets. Experimental results
demonstrate the effectiveness of our method and we give a detailed analysis
of the results.

– Our code and data (including a new manually annotated simile data set) will
be released on GitHub1.

2 Related Work

In this section, we will introduce previous work related to this paper.

2.1 Simile and Metaphor

Metaphor is often used in human language to make speech more vivid and
easy to understand [15]. [2] categorized metaphor into Noun phrases, Adjectives,
1 https://github.com/realZsh/simile-tasks.

https://github.com/realZsh/simile-tasks
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Table 1. Different metaphor categories. For similes, we use underline font to show
tenors and use italic font to show vehicles.

Metaphor Category Example Is a simile?

Noun phrase The judge is like an angel. Yes

Adjective The boy has a warm heart. No

Verbal He kills the seeds of peace. No

Adverb-Verb The child speaks France fluidly. No

Verbal phrase Raising little cats is like taking care of
children.

Yes

Sentence The man walks into the crowd like
a fish swims into the ocean.

Yes

Verbs, and Multi-word. [10] defined metaphor as Nominal, Verbal (Subject-Verb-
Object), Adjective-Noun, and Adverb-Verb. Table 1 shows examples of these cat-
egories. The Noun phrase metaphor is usually defined as a simile [4,8,10]. In this
paper, we not only study the Noun phrase metaphor. Meanwhile, to test whether
the trained model performs well on unseen domains, we construct a new test set.
In this new test set, the tenor and vehicle can be verbal phrases/sentences that
perform a similar role to Noun phrases. The examples of verbal phrases and
sentences as simile components are shown in Table 1.

2.2 Tasks in Simile

The current simile study usually focus on recognition [1,11], interpretation [24],
and generation [10]. The recognition task [10,14,22,25] is judging whether a
triplet or a sentence contains a simile. The interpretation [11] assigns an appro-
priate interpretation to a simile expression [2] or infers the shared properties of
the tenor and the vehicle [4,8,20]. The generation task generates a simile sen-
tence [3,10,23,26] or the vehicle [4,20]. In this paper, we follow previous work
and study the simile recognition/interpretation/generation (SR/SI/SG) tasks.
Since there are not enough simile data that can be used for all three simile
tasks. We construct the data we need based on existing SI data.

2.3 Exploring Simile Knowledge in PLMs

Previous simile work usually exploited the simile knowledge from PLMs for
resolving downstream tasks. [20] fine-tune BERT [5] for simile recognition and
simile component (tenor, shared property, and vehicle) extraction. [3] fine-tune
BART [9] on the literal-simile pairs to generate novel similes given a literal sen-
tence. [8] design a simile property probing task to let the PLMs infer the shared
properties of similes for the interpretation task. [4] propose an Adjective-Noun
mask Training method to explore simile knowledge from BERT for simile inter-
pretation and generation tasks. [10] fine-tune a GPT-2 [18] model for simile
generation. In this paper, we also study how to explore simile knowledge from
PLMs. However, different from previous work, we investigate how to leverage
three simile tasks to explore more generic simile knowledge from PLMs.
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Fig. 1. Demonstration of the training method and semantic dependency.

3 Our Proposed Method

In this section, we formalize the simile recognition/simile interpretation/simile
generation (SR/SI/SG) tasks and introduce our method in detail. For a fair
comparison with previous work [4,8], we use BERT-base [5] as the backbone of
our model. Figure 1 shows the model structure of SR/SI/SG tasks.

3.1 Training of Simile Recognition (SR) Task

We follow previous work [10,11] and define SR as a binary classification task.
The SR model needs to distinguish whether an input sequence contains a simile.
The input to the SR model is a sequence and the output is a binary label: True
for simile and False for literal. The only common feature between simile data and
literal data is that they both contains the comparator words [11]. For example,
the sentence “the boy runs like a deer.” is a simile, but the sentence “the girl
looks like her mother.” is literal.

Following the original BERT paper, we use the first output position (a special
token <cls>) to calculate the classification score, such as (a) part in Fig. 1. We
denote the corresponding output vector of <cls> as Ecls. Then the final score
S of the input sequence is calculated as follows:

S = σ(W2 · μ(W1 · Ecls + b1) + b2), (1)

where W1,2 and b1,2 are training parameters; σ/μ is the sigmoid/tanh function,
respectively. The example with S ≥ 0.5 is classified as a simile, otherwise literal.
The training loss is cross-entropy between predicted labels yi and ground-truth
label ȳi:

LSR = − 1
N

N∑

i=1

(ȳilogP (yi)) (2)

where N is the number of training examples. After this fine-tuning, we can test
the model on the SR test sets. We input an example and verify whether the SR
model gives a correct classification for it.
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Table 2. Examples for simile interpretation/generation tasks. We place the correct
answer in the first position in these examples. In real data, the position of the correct
answer is randomly placed. During training, the model learns to recover the [MASK]
word. During the test, the model needs to select one answer from the 4 candidates.

Task Example Candidates

SI My client is as [MASK] as a newborn
lamb.

A. innocent. B. delicious.
C. legal. D. guilty.

SG The participant swims like a
[MASK].

A. dolphin. B. plait.
C. depiction. D. pod.

3.2 Training of Simile Interpretation (SI) and Simile Generation
(SG) Tasks

Following the previous simile interpretation (SI) and simile generation (SG) work
[8,20], we define the training of SI and SG as a masked language model task where
the BERT learns to recover the masked words, such as (b) part in Fig. 1. Two
examples are shown in Table 2. In SI, the masked word is the shared property.
In SG, the masked word is the vehicle.

During the test, we also follow the previous work [8,20] and define SI/SG
as a multi-choice task which chooses an answer from 4 candidates. Given an
input simile sentence or dialogue with a masked shared property/vehicle, the
SI/SG model needs to select the correct property/vehicle from the candidates,
respectively. We use the masked-word-prediction heads of BERT to compute the
probability for each candidate. The candidate with the highest probability will
be chosen as the final choice.

3.3 Training with Semantic Dependency Features

Through the training process with SR/SI/SG, the PLM learns to use simile
knowledge for three different simile tasks. However, the distribution of the train-
ing data may restrict the model’s performance when applied to unseen domains.
To this end, we enhance the PLM with global semantic dependency information,
which can help the model learn simile knowledge across different syntax struc-
tures. This more generic simile knowledge can help the model’s performance on
unseen domains.

We adopt the semantic dependency tool2 to get the semantic dependency tree
of each input sequence. One example is shown in (c) part of Fig. 1. The depen-
dency tree for “She was as thin as a toothpick.” is a list of tuples: “[(‘ROOT’, ‘.’,
‘thin’), (‘nsubj’, ‘thin’, ‘She’), (‘cop’, ‘thin’, ‘was’), (‘dep’, ‘thin’, ‘as’), (‘case’,
‘toothpick’, ‘as’), (‘det’, ‘toothpick’, ‘a’), (‘obl’, ‘thin’, ‘toothpick’), (‘punct’,
‘thin’, ‘.’)]”. The word “thin” is the root of this tree and please refer to [13]
for the definition of each semantic dependency relation.

2 https://stanfordnlp.github.io/CoreNLP.

https://stanfordnlp.github.io/CoreNLP
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Table 3. Statistics of datasets.

Dataset Train/Dev/Test Words/Example Data Format

MSP-original (for SI) 4,510/-/1,633 12.2 sentence
MSP-modified for SG 4,510/-/1,633 12.3 sentence
MSP-modified for SR 7,216/902/902 12.3 sentence
New test set -/-/957 30.6 three-turn dialogue

For the SR task, we can directly use the semantic dependency results. How-
ever, in SI or SG task, key simile component such as the vehicle “toothpick” of
the above example is masked. We change the example to “She was as thin as
a UNK.”, where UNK represents the [MASK] vehicle. Then the output seman-
tic dependency tree changes to “[(‘ROOT’, ‘.’, ‘thin’), (‘nsubj’, ‘thin’, ‘She’),
(‘cop’, ‘thin’, ‘was’), (‘dep’, ‘thin’, ‘as’), (‘case’, ‘UNK’, ‘as’), (‘det’, ‘UNK’, ‘a’),
(‘obl’, ‘thin’, ‘UNK’), (‘punct’, ‘thin’, ‘.’)]”. In this way, the model is aware of
the semantic dependency tree of the input sentence but does not see the masked
word.

The final input to BERT is the concatenation of the semantic dependency
tree and the original sentence. We use different segment embedding to distinguish
the data example and its semantic dependency information, such as the (a)/(b)
part of Fig. 1.

After training, we test with two different settings, one is the MSP test set,
and the other is an unseen test set that is newly constructed by us. Next, we
will introduce the data sets.

4 Experimental Setup

4.1 Datasets

We use simile data sets with “as ... as” comparator since the shared property
naturally exists in the comparator, which is suitable for our experiments since
we want conduct all SR/SI/SG tasks with this data. This kind of simile data
can be used for all three simile tasks. The data statistics are shown in Table 3
and we introduce the data details next.

MSP Dataset (for SI Task). Since we could not find enough data for all three
simile tasks, we construct the required data based on a recently released simile
benchmark. The multi-choice simile probe (MSP) data [8] is originally proposed
for SI task. It has a total of 5,410 training examples and 1,633 test examples. All
examples in MSP are simile sentences with comparator “as ... as”. Each example
in the MSP test set has three distractors for the shared property. During training,
the model learns to recover the masked property in MSP training data. During
the test, the model needs to choose the correct answer from 4 candidates in the
MSP test set.
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Table 4. Relations in ConceptNet we used to find distractors. “<->” means Symmetric
relation for A and B. “->” means Asymmetric relation that A entails B.

Relation: Definition

RelatedTo: The most general relation. There is some positive relationship between
A and B, but ConceptNet can’t determine what that relationship
is based on the data. Symmetric. exercise <-> fit

IsA: A is a subtype or a specific instance of B; every A is a B. This can
include specific instances; the distinction between subtypes and
instances is often blurry in language. This is the hyponym relation
in WordNet. car -> vehicle; Mexico -> Country

Causes: A and B are events, and it is typical for A to cause B. run -> tired
Desires: A is a conscious entity that typically wants B. Many assertions of

this type use the appropriate language’s word for “person” as A.
person -> respect

DistinctFrom: A and B are distinct member of a set; something that is A is not B.
Symmetric. red <-> blue; June <-> May

SymbolOf: A symbolically represents B. blue -> cold
MannerOf: A is a specific way to do B. Similar to “IsA”, but for verbs. auction

-> sale
LocatedNear: A and B are typically found near each other. Symmetric. computer

<-> table
CausesDesire: A makes someone want B. hungry -> eat food
MadeOf: A is made of B. porcelain -> ceramic

MSP-Modified Data (for SG Task). To perform the SG task, we introduce
a modified version of MSP. During training, we mask the vehicle and train the
model to recover it. During the test, we provide 4 vehicle candidates for the multi-
choice task. Besides the real vehicle, the other 3 distractors are constructed with
ConceptNet [21]. The ConceptNet is a knowledge graph that connects words and
phrases of natural language with labeled relations [21]. We show 10 relations of
ConceptNet in Table 4. They are used to find the related concepts to the vehicle
as the distractors. For the example “She was as thin as a toothpick.”, the vehicle
is the word “toothpick”. We find that “toothpick” is usually located near to
(LocatedNear) “food” and can be made of (MadeOf) “plastic” or “wooden”. So
the three distractors can be “food, plastic, wooden”. When we find more than
three distractors with the relations in Table 4, we randomly choose 3 of them as
the final distractors. Notice that there are a few cases we could not find enough
distractors, we manually construct distractors for these cases.

MSP-Modified Data (for SR Task). Similarly to the SG task, we introduce
another modified version of MSP for the SR task. Since the SR task needs both
simile examples and literal examples [10,11], we use certain relations in Con-
ceptNet to obtain the literal data we need. For example, we replace the tenor
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“his muscle” in the simile example “his muscle is as hard as a rock” with the
phrase “a stone”, the Synonym concept of “a rock”, then we get a literal sen-
tence “a stone is as hard as a rock”. This is different from replacing “his muscle”
with a random word such as “air”. Because the sentence “air is as hard as a
rock” does not have a practical meaning. If we use “air is as hard as a rock”
as a literal sample to train an SR model. The model may classify this sample
as literal by identifying that it is against common sense. Instead, when we use
the literal sentence “a stone is as hard as a rock”, the SR model needs to use
simile knowledge to judge whether this example is a simile. The knowledge is
that simile only exists when comparing things from different categories. “stone”
and “rock” are in the same category so this sentence is literal. Besides the Syn-
onym relation, we can also use other relations of the vehicle including Distinct-
From/IsA/RelatedTo/SimilarTo in ConceptNet to find a concept to replace the
tenor. When we find more than one distractor, we randomly choose one of them
as the literal sentence. By this method, we not only obtain the required training
literal data but also has more difficult literal data. Because the syntax structure
of the literal data is the same as the original simile example but the semantic
information is different. These literal examples will help the model to learn more
accurate simile knowledge. Finally, we obtain 9020 examples. We randomly split
this data into train/dev/test (8:1:1) to train our model. During training, the
model learn to give a higher/lower score for the simile/literal data. During the
test, the model assigns a score for the input. In both training and testing, an
example with a score ≥ 0.5 will be set as simile, <0.5 will be set as literal.

A New Test Data (for SR/SI/SG Task). After the above data set con-
struction, we now have the training/testing MSP sets for SR/SI/SG tasks. We
denote the MSP test sets as a seen set because the training and testing data are
in a similar domain and similar range of length. To test whether our method can
help to explore more generic simile knowledge, we provide unseen test sets for
SR/SI/SG tasks.

The new test data is collected from Reddit-dialogue corpus [6] which has
∼15 million English dialogues. The dialogues are comments from the Reddit
forum and each dialogue has three turns. We extract 1,000 dialogue examples
from the Reddit dataset with three rules. First, the dialogue length is around 30
tokens so it is informative and not too long. Second, the last turn must contain
a comparator “as ... as” with an adjective word in the comparator. Third, we
use the semantic dependency tool to ensure that the tenor and vehicle are in the
response. Then we manually annotate whether they are similes or literal. For the
simile sentences, we further check whether the tenor and vehicle labeled by the
semantic dependency tool are correct. Notice that we do not make any change
to the data. Therefore, for dialogue examples that tenor or vehicle is missing, we
withdraw this example even it contains a simile. We make sure that all simile
components are in the example so that we can use it for all simile tasks. We
finally have 486 simile examples and 471 literal examples, total 957 examples.
When testing on SI/SG, we construct the distractors using the same method as
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we construct MSP-modified data. For the examples in this new test set that we
could not find enough vehicle distractors, we randomly choose the vehicles from
other dialogues as the distractors.

The new test set is different from the training data (MSP) in the following
respects: 1) the data format is dialogue and the length is much longer than data
in MSP; 2) the tenor and vehicle in dialogue can be verbal phrase or sentence,
which is different from the noun phrase in MSP. We use the new test set to
verify whether our method can perform well on a different simile distribution
compared to MSP.

4.2 Baselines

We introduce the baselines we used in this section.

Baselines for SR. BERT-base is fine-tuned on the MSP modified SR train-
ing set. The checkpoint for test is selected based on the performance on the
corresponding dev set.

Baselines for SI/SG. The first baseline is a BERT-base model without fine-
tuning with the data sets in this paper. It takes the input with key simile compo-
nent masked and predicts the masked words. The second baseline is BERT-ANT
[4] which is trained with masked word prediction with a number of metaphor
data. It is based on a BERT-large-uncased model and can solve the SI and SG
tasks in a unified framework of simile triple completion. For example, when giv-
ing tenor= fireman and vehicle = bull, BERT-ANT can generate a list of words
including the shared property like “strong” or “brave”. When performing our
SI/SG tasks, we match the candidates of each example with the output list
of BERT-ANT. An example is counted correct if the ground truth answer is
listed before the other three distractors. The BERT-Probe baseline is from [8]
that fine-tuned BERT with MSP-original data for simile interpretation task.
To compare both SI and SG tasks with this baseline, we further fine-tuned the
BERT-Probe model with MSP-modified SG training data and report its results
on the MSP-modified SG test data.

Our Models. Besides the fully fine-tuned model, we also provide several set-
tings for our model. (- SR training) means we remove the simile recognition
data in the unified training process. Similarly, (- SI training) and (- SG train-
ing) means we remove the SI and SG data in training, respectively. (- Semantic
Dependency) means we do not use syntax features. These settings can reflect
the contribution of the removing part.

4.3 Evaluation Metrics

Following previous work [11], we use macro Precision/Recall/F1 and Accuracy
to measure the simile recognition results. Following previous work on simile
interpretation and generation [4], we use Hit@1 to measure the multi-choice
accuracy.
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Table 5. Simile recognition results. The BERT-base (fine-tuned with MSP-modified
SR train set) is the base model to do the significant test for our models (* means
statistically significant with p < 0.01).

Model Precision Recall F1 Accuracy

MSP-modified SR Test set
BERT-base 0.7127 0.6981 0.6939 0.6996
Ours 0.7904* 0.7905* 0.7905* 0.7905*

(- SR training) 0.5000* 0.5000* 0.3768* 0.5000*
(- SI training) 0.7712* 0.7725* 0.7718* 0.7717*
(- SG training) 0.7774* 0.7801* 0.7781* 0.7779*
(- Semantic Dependency) 0.7822* 0.7805* 0.7836* 0.7821*

Our Proposed Test set
BERT-base 0.4949 0.4963 0.4559 0.4922
Ours 0.5419* 0.5393* 0.5332* 0.5413*

(- SR training) 0.4927 0.4968 0.4179 0.5026
(- SI training) 0.5030* 0.5020* 0.4532* 0.4974*
(- SG training) 0.5152* 0.5136* 0.4985* 0.5110*
(- Semantic Dependency) 0.5325* 0.5284* 0.5114* 0.5256*

4.4 Implementation Details

Our model is implemented by PyTorch [16]. The implementations of the pre-
trained models in this paper are all based on the public Pytorch implementation
(https://github.com/huggingface/transformers). During the training, the maxi-
mum input length is set to 512. We use a single Tesla v100s GPU with 32 gb mem-
ory for experiments. The batch size is all set to 24. The model is optimized using
the Adam optimizer with a learning rate of 5e−6. The learning rate is scheduled
by a warm-up and linear decay. A dropout rate of 0.1 is applied for all linear
transformation layers. The gradient clipping threshold is set as 10.0. Early stop-
ping on the corresponding validation data is adopted as a regularization strat-
egy. The training epochs are ∼3. For SI/SG testing on the new unseen set, if the
masked position is a single word, we select the answer with the highest probabil-
ity of the masked position; if there are multiple masked words, we encode the pre-
dicted words and the candidates into dense vectors with a sentence-transformer
(https://www.huggingface.co/sentence_transformers/all-MiniLM-L6-v2). Then
we compute the cosine similarity between the predicted words and each of the
candidates. The candidate with the highest similarity is chosen as the answer.

5 Results and Analysis

In this section, we introduce the experimental results and provide our analysis
of the results.

https://github.com/huggingface/transformers
https://www.huggingface.co/sentence_transformers/all-MiniLM-L6-v2
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5.1 Simile Recognition

Table 5 shows the simile recognition results. The experiments are conducted on
the MSP-modified SR test set and our new unseen test set.

Comparing with Baseline. The BERT-base model is fine-tuned with the
MSP-modified SR train set and is tested with two test sets. One is the MSP-
modified SR test set and the other is our new test set. We can see that on both
test sets, our model performs better than the baselines. On the MSP-modified
SR test set, our model surpasses BERT-base by around 7.8% on accuracy. On
our proposed test set, our model outperforms BERT-base by around 4.9% on
accuracy. On Macro Precision/Recall/F1, our model also outperforms the BERT-
base model. The results show that our method not only can help PLM to use
a more accurate simile knowledge but also perform better on a more difficult
unseen test set. The results on the new test set are much lower than the MSP-
modified SR test set, which indicates the new test set is much harder. Although
our method helps the PLM to obtain a better performance on this new test set,
there is still a lot of room to improve.

Ablation Study on SR. We also report the ablation study in Table 5. We
can see that on both the MSP test set and the new test set, removing the key
component of our model will cause declines. On the MSP test set, (- SR training)
is exactly 50% because the model does not understand the SR task without the
SR training. On the new test set, similar results are observed. The results are
also around 50% and are not statistically significant.

On both test sets, (- SI training) performs worse than (- SG training). The
results indicate that the SI fine-tuning task (recovering the masked property) is
more useful than the SG fine-tuning task (recovering the masked vehicle) for the
model to learn SR knowledge. It is because the shared property usually serves as
the root of the semantic dependency tree. As shown in the (c) part of Fig. 1, the
shared property connects most words in a simile sentence and the vehicle only
connects a few words. When training with SI, the model learns more semantic
relations between words than training with SG, so that the model can better
leverage this semantic dependency knowledge for the SR task.

(- Semantic Dependency) causes more declines on the new test set (from 0.9–
2.2% on all metrics) than on the MSP test set (from 0.7–1.0% on all metrics).
It means the semantic dependency information helps the PLM to learn a more
generic simile knowledge. This generic simile knowledge brings more gains in an
unseen domain.

To sum up, experimental results on SR verify that 1) our method can explore
more accurate and generic simile knowledge; 2) each fine-tuning task and the
semantic dependency signal contributes to the performance.
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Table 6. Simile interpretation and generation results (Hit@1) on MSD-En. The BERT-
Probe is the base model to do the significant test for other models (* means statistically
significant with p < 0.01).

Model Interpretation Generation

MSP-original SI Test set and MSP-modified SG Test set
BERT-base (without fine-tuning) 0.7436 0.8155
BERT-Probe [8] 0.8015 0.8667
BERT-ANT [4] 0.8020 0.8675
Ours 0.8101* 0.8986*

(- SR training) 0.8006* 0.8819*
(- SI training) 0.7273* 0.8608*
(- SG training) 0.7832* 0.8113*
(- Semantic Dependency) 0.8089* 0.8799*

Our proposed Test set (the simile data)
BERT-base (without fine-tuning) 0.5905 0.4510
BERT-Probe [8] 0.6454 0.5031
BERT-ANT [4] 0.5921 0.5094
Ours 0.6142* 0.5232*

(- SR training) 0.6084* 0.5189*
(- SI training) 0.5801* 0.4976*
(- SG training) 0.6025* 0.4888*
(- Semantic Dependency) 0.6031* 0.5022*

5.2 Simile Interpretation and Generation

Table 6 shows the simile interpretation and simile generation results. The SI task
uses the MSP-original SI test set and our new test set. The SG task uses the
MSP-modified SG test set and our new test set.

Comparing with Baselines. The first baseline is the BERT-base model with-
out any fine-tuning. We can see that BERT-Probe performs better than BERT-
base on both SI/SG tasks. The results are reasonable since BERT-Probe ben-
efits from the fine-tuning of MSP-original/MSP-modified data on SI/SG tasks,
respectively.

Different from the above two baselines, BERT-ANT is based on BERT-large
and trained with a large corpus through Adjective-Noun mask Training. Bene-
fiting from both a larger parameter size and the training process, BERT-ANT
outperforms the BERT-Probe on both SI/SG tasks.

On the other hand, our model surpasses the strong BERT-ANT on both
SI/SG even though our model uses BERT-base as the backbone. The results
again verify that our method can enhance PLM with more accurate and generic
simile knowledge.
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The results on the new test set are still lower than the MSP test sets. One
notable result is that the gap between results on the SG task is much larger
than the gap on the SI task. The results show that the MSP-modified SG test
set is easier than the MSP-original SI test set. The Hit@1 results are 89.86%
and 81.01%, respectively. This may also be one of the reasons why SI training
contributes more than SG training in Table 5. We can try constructing more
difficult SG training data to improve the learning efficiency of our model.

Ablation Study on SI/SG. We also report the ablation study in Table 6. We
can see that on both MSP test sets and the new test set, removing the training
component of our model will cause declines.

On the MSP-original SI test set, (- SI training) causes ∼8.3% declines. On the
new test set, (- SI training) only has ∼2.4% declines. The results are reasonable
since the unseen test set is not as sensitive to the training data as the seen test
set. A similar trend can be observed with the SG task. On the MSP-modified
SG test set, (-SG training) causes ∼8.7% declines. On the new test set, (- SG
training) only entails ∼3.4% declines.

On all test sets, (- SR training) only causes a little decline, which indicates
that the SR fine-tuning contributes little to SI/SG tasks. This is different from
the experimental results in Table 5, where SI/SG training contribute more to
the SR task. How to leverage SR training to improve the SI/SG tasks requires
further study.

Similar to the SR experiments, (- Semantic Dependency) causes more declines
on the new test set (∼1.1% on SI and ∼2.1% on SG) than on MSP test sets
(∼0.1% on SI and ∼1.9% on SG). The results mean the semantic dependency
information helps more on an unseen set than the seen set, which is consistent
with the results of the SR task.

To sum up, experimental results on SI/SG again verify that 1) our method
can explore more accurate and generic simile knowledge; 2) each fine-tuning task
and the semantic dependency signal have positive effects on the performance.

6 Conclusion

We propose a novel method to explore more accurate and generic simile knowl-
edge from PLMs. We fine-tune PLM with three simile tasks (recognition, inter-
pretation, and generation) to explore local simile knowledge between key simile
components (tenor, shared property, vehicle). Then we use the semantic depen-
dency feature for global simile knowledge among different examples. This global
simile knowledge can help our model perform well across domains. Experiments
with seen and unseen test sets verify the effectiveness of our method. Our explor-
ing method may be useful for other NLP tasks that leverage knowledge from
PLMs. Since our method does not need an expensive pre-training process, it may
also be useful for leveraging more large-scaled PLMs. Future works include but
are not limited to 1) testing our method on other knowledge-intensive tasks; 2)
verifying whether our method can be transferred to auto-regressive-based PLMs.
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