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Preface

Welcome to the proceedings of the 22nd China National Conference on Computational
Linguistics (22nd CCL). The conference and symposium were hosted and co-organized
by Harbin Institute of Technology, China.

CCL is an annual conference (bi-annual before 2013) that started in 1991. It is the
flagship conference of the Chinese Information Processing Society of China (CIPS),
which is the largest NLP academic and industrial community in China. CCL is a pre-
mier nation-wide forum for disseminating new scholarly and technological work in
computational linguistics, with a major emphasis on computer processing of the lan-
guages in China. The Program Committee selected 82 papers (54 Chinese papers and
28 English papers) out of 278 submissions for publication. For each of the submission,
3 reviewers were assigned in double-blind. More reviewers joined when severe contro-
versy appeared, aiding the domain chair to give the final decision. The final acceptance
rate of CCL 2023 was 29.5%. The 28 English papers in this proceedings volume cover
the following topics:

– Fundamental Theory and Methods of Computational Linguistics (1)
– Information Retrieval, Dialogue and Question Answering (4)
– Text Generation, Dialogue and Summarization (3)
– Knowledge Graph and Information Extraction (7)
– Machine Translation and Multilingual Information Processing (1)
– Language Resource and Evaluation (3)
– Social Computing and Sentiment Analysis (3)
– Pre-trained Language Models (3)
– NLP Applications (3)

The final program for the 22nd CCL was the result of intense work by many dedi-
cated colleagues. We want to thank, first of all, the authors who submitted their papers,
contributing to the creation of the high-quality program.We are deeply indebted to all the
Program Committee members for providing high-quality and insightful reviews under
a tight schedule, and extremely grateful to the sponsors of the conference. Finally, we
extend a special word of thanks to all the colleagues of the Organizing Committee and
secretariat for their hard work in organizing the conference, and to Springer for their
assistance in publishing the proceedings.

We thank the staff and faculties of CIPS for helping to make the conference
successful, and we hope all the participants enjoyed the CCL conference in Harbin.

July 2023 Maosong Sun
Bing Qin

Xipeng Qiu
Jing Jiang

Xianpei Han
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The Contextualized Representation
of Collocation

Daohuan Liu and Xuri Tang(B)

Huazhong University of Science and Technology, Wuhan, China
{liudh,xrtang}@hust.edu.cn

Abstract. Collocate list and collocation network are two widely used
representation methods of collocations, but they have significant weak-
nesses in representing contextual information. To solve this problem,
we propose a new representation method, namely the contextualized
representation of collocate (CRC), which highlights the importance of
the position of the collocates and pins a collocate as the interaction of
two dimensions: association strength and co-occurrence position. With a
full image of all the collocates surrounding the node word, CRC carries
the contextual information and makes the representation more informa-
tive and intuitive. Through three case studies, i.e., synonym distinction,
image analysis, and efficiency in lexical use, we demonstrate the advan-
tages of CRC in practical applications. CRC is also a new quantita-
tive tool to measure lexical usage pattern similarities for corpus-based
research. It can provide a new representation framework for language
researchers and learners.

Keywords: Collocation · Representation Methods · Visualization

1 Introduction

Collocation is an important concept in the fields of linguistics and computational
linguistics [1–3], which can be widely used in language teaching, discourse analy-
sis and other fields. Currently, there are two widely used representation methods
of collocation, namely collocate list and collocation network. However, they are
both flawed.

Collocate list takes the list of collocate words as the main form and gener-
ally provides the correlation strength, co-occurrence frequency, etc. between the
node word and the collocate word1. Sometimes a collocate list may also include
information such as the total frequency of collocates, the frequency of appearing
on the left and right sides, etc. Table 1 shows the collocation list of the node
word importance in a small news corpus.

1 We follow the names by [3], and call the focal word in the collocation a “node
word” (Node), and call the word appearing in the other position in the collocation
a “collocate word” (Collocate).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 3–16, 2023.
https://doi.org/10.1007/978-981-99-6207-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6207-5_1&domain=pdf
https://doi.org/10.1007/978-981-99-6207-5_1
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Table 1. Sample Collocate List of importance as a node. Pointwise Mutual Information
is adopted to measure the association strength between two words (measure = PMI);
Only collocates with 2 or more co-occurrences are considered (min freq = 2); Only
collocates with an association strength greater than 7.5 are displayed (thresh = 7.5)

Collocate PMI Co-occur Frequency

attach 11.216 29

underscore 9.223 2

emphasize 8.821 4

stress 8.811 19

aware 8.528 3

awareness 8.386 2

great 7.555 28

The expression capability is very limited through collocate lists, as they could
neither present the interaction between collocates nor be visually friendly to
readers. However, connectivity is an important feature of collocation knowledge
[4]. In order to improve these weaknesses, [5] implemented the representation
method of collocation graph and network2 (see Fig. 1). In a collocation graph,
the collocates are scattered around and connected to the central word (node).
The closer a collocate is linked to the node, the stronger it is associated with
it. Compared to collocate list, collocation graph improves the visualization and
enables the interaction of multiple collocations through node connection and
graph extension. [6] also demonstrates the possible applications of collocation
networks with cases including discourse analysis, language learning, and concep-
tual metaphor research.

However, these two traditional representation methods both have many crit-
ical flaws. The fundamental problem is that they neglect the natural language as
a kind of sequence data. Collocate list regards collocation as a simple juxtapo-
sition of tokens, and collocation graph regards each word as a free discrete data
point in the space. Nevertheless, the context information is not only related to
the semantics of the collocates surrounding a node but also related to the order
and the position of the words.

First of all, they only tell the semantic relations but ignore the syntactic
relations between nodes and collocates. The semantic association between nodes
and collocates is direct and clear. [1] defines collocation as a container for seman-
tic associations between the two words; and the meaning of a word comes not
only from itself, but also from other words that co-occur with it. The association
scores shown in both collocate list and collocation graph are an evaluation of co-
occurrence, in other sense, a reflection of the semantic relationship. Nevertheless,
[8] addresses that the syntactic association between the node and the collocate

2 A collocation network is a connected network of multiple collocation graphs. The
two terms “collocation network” and “collocation graph” are used interchangeably
in this paper, referring to the same representation method.
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Fig. 1. Sample Collocation Graphs of hear and see for image comparison, based on
the corpora of World War I poems [7]

is also an essential part, acknowledging collocation as a complex of syntactic
and semantic knowledge. He also sorts out the key role of syntactic relations in
semantic theories and their applications through related studies [9,10]. The syn-
tactic nature of collocations is mainly reflected in the fact that collocations have
direction and span. For instance, the two semantically related words student
and diligent generally do not appear as “student diligent” in actual language
use, which is syntactically incorrect in most cases; while “diligent student” or
“student is diligent” is much more common and intuitively correct application.
This shows that the collocation knowledge is actually an overall model that is
restricted both by semantic relations and grammatical relations.

Secondly, they fail to reflect the relative position (relative distance) between
nodes and collocates. [11] pointed out that the two components in a collocation
tend to have fixed positions, i.e., one word always appears on the left or right side
of the other word. For example, among the collocates in Table 1, attach mostly
appears on the left side of the node importance. In the case that the positions of
these two words are reversed, the syntactic relationship between the two words
should also change. According to the data samples in the corpus, importance
mostly acts as the object in attach-importance collocations, while importance
often serves as the subject in importance-attach collocations.

Finally, these two representations cannot reflect the freedom of choice of col-
locates, which would restrict the usage of collocation in practice. This is not
conducive to group collocates and find patterns with respect to semantic or syn-
tactic relations. For example, if we want to find other predicates to substitute
attach for the node importance, it is hard to tell from a raw collocate list or col-
location graph. In order to satisfy this requirement, an extra screening operation
such as Part-of-Speech (POS) tagging or syntactic analysis is required.
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To overcome the above-mentioned shortcomings, we propose a new represen-
tation and visualization method to describe collocation, called Contextual Rep-
resentation of Collocations (CRC), which makes improvements in syntactic rep-
resentation and visualization abilities. We will include three case studies of CRC
respectively applied to synonym distinction, image analysis, and language teach-
ing. These practical applications should reveal the advantages of this approach.
In terms of knowledge representation, it can present more detailed grammati-
cal information; in terms of knowledge application, it can achieve an accurate
comparison of collocation distributions. CRC can provide a new representation
framework for language researchers and language learners, as well as facilitate
language research and teaching.

2 Contextualized Representation of Collocation (CRC)

While retaining the dimension of association strength, CRC promotes the rel-
ative position of collocates to another major feature dimension, so that each
collocate can present those two important attributes at the same time. There-
fore, the essence of the CRC is a two-dimensional scatter plot.

Figure 2 is an instance of CRC, which is based on the same data source
as Table 1. The code string in the caption means that the figure is generated
using PMI as the association measure, min freqency of collocates is 2, and the
strength threshold for display is 0.6. The key features of this visualization will
be explained in detail.

Fig. 2. CRC of node importance (measure=PMI, min freq=2, thresh=0.6)
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2.1 Conflated Linear Representation

Compared with the network structure of collocation graph, CRC follows the
linear characteristics of natural language and uses conflated linear representation
in expressing the relations of all the collocate-node pairs. In Fig. 2, collocation
relations are described as parallel horizontal lines, and compressed in a certain
space range. This parallel and linear presentation helps to visually compare
the commonalities and differences of different collocations, which is the basis
of all the other advantages of CRC. In our implementation, we arrange the
longitudinal spatial distribution of all collocate-node pairs according to their
association score3. For the convenience of drawing and reading, the scores are
normalized to [0,1]. The closer to 1, the higher the collocation strength.

2.2 Positional Information

In Fig. 2, the horizontal dimension represents grammatical relations in terms of
direction and distance. In this instance, the distance of each collocate is the
average of the distances of all the collocate-node pair occurrences. Distance=0
is the position of the node word (importance).

Foregrounding positional information is the core contribution of CRC, as well
as the key feature that distinguishes CRC from the other two representation
methods. It is easy to understand that if the positional information is removed
from Fig. 2, all the collocate points will appear on the same vertical line, hence,
it will degenerate into a simple visualization of the collocate list. Instead, if the
Cartesian coordinate system is transformed into a polar coordinate system, it
then becomes a collocation graph with fixed node positions.

Positional information reflects the order of words, and the order of words
further reflects the syntactic relationship. This can benefit CRC users with plenty
of straightforward linguistic knowledge. Taking Fig. 2 as an example, we could
observe at least the following facts:

– The word attach tends to appear on the left of importance (frequency=26,
strength=1.00) rather than on the right (frequency=3, strength=0.72),
which might imply the attach-importance collocation is more likely to be
used in active voice instead of passive voice.

– The word importance has a strong right-leaning tendency [12], which means
it expects to be modified by a modifier prior to it.

– Collocates like attach, underscore, emphasize, stress, and understand might all
play similar grammatical roles in the relationship with the node importance,
because they all appear in the -2 position.

– People tend not to say “attach importance” but to use “attach great impor-
tance”, which can be reckoned from their positions (attach = –2, great = –1,

3 We use various measuring algorithms to calculate association scores and pick the
intuitively best one from all the results. The adopted measuring method for each
case is described in the captions of the figures.



8 D. Liu and X. Tang

importance = 0). This shows that CRC could also be used to recognize con-
tinuous word clusters and phrase patterns, making CRC more prospective
in the application of analyzing and teaching. And it is capturing common
contexts that the node is often used in. And this is also the reason why this
representation of collocation is termed “contextualized”.

2.3 Visualization Strategy

In addition to its advantage in context modelling of the node, as a representation
method, CRC could be easily visualized with many visualization strategies. It
can combine many spatial methods and visual symbols to expand the expression
and presentation of collocation knowledge. As mentioned before, in addition to
implementing the CRC in the plane Cartesian coordinate system, it can also
be realized in the polar coordinate system; the size, color, and grayscale (trans-
parency) of the data points in the figure can all be useful tools to group or
describe collocates.

In general, compared with existing collocation representation methods, i.e.,
collocate list and collocate network, CRC can intuitively present richer context
information and provide convenience for researchers who use collocation analysis.
In the following sections, we will apply CRC in three case studies of recent years
to demonstrate the superiority of the new representation method.

3 Case Study 1: CRC in Synonym Distinction

Many researchers utilize collocation analysis to distinguish synonyms. Liu has
studied the usage differences of many synonym sets in English with the COCA
corpus using a behavioral profile approach [13,14]. He also analyzed the learn-
ers’ misuse of three synonym groups by comparing the use of these words in
a second-language learner corpus [15]. [16] compared the usage patterns and
semantic differences of the two synonyms, absolutely and utterly, with the help
of collocation lists and the Key-Word-In-Context (KWIC) function provided by
the COCA corpus. Their conclusions are largely based on random sampling and
qualitative analysis. Obviously, the above research methods take a large manual
workload in observation and statistics. The use of CRC can not only carry out
descriptive conclusions easily and clearly but also provide quantitative measures
to differentiate synonyms. In this case study, we use CRC to restudy the dif-
ferences among the synonyms Actually, Really, Truly, and Genuinely, and try
to verify some findings reported by [14]. We choose a smaller corpus, BROWN,
instead of COCA as the data source of this case study for its availability. The
frequencies of each adverb in the BROWN corpus are shown in Table 2. It can
be found that these four adverbs have a similar frequency proportion although
the total data amount of BROWN is much smaller than COCA. Since Genuinely
is not found in BROWN, we only study the other three adverbs.

We retrieve the free collocates of actually, really, and truly from the corpus
and generate three CRC instances (Fig. 3). According to the frequency ratio of
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Table 2. Frequencies of the four adverbs respectively in COCA and BROWN

Corpus #actually #really #truly #genuinely

COCA 105,039 263,087 20,504 3,065

BROWN 166 275 57 0

these three words, we set the thresholds of association strength to 0.3, 0.5 and
0.1 respectively for better visualization effects.

Fig. 3. CRCs of node actually, really and truly (measure=PMI, min freq=2, thresh

differs to accommodate to the number of data points for a better visualization)

The usage pattern of really is significantly different from the other two words.
There are much more highly associated collocates to the right of really (especially
at position=1) than actually and truly, suggesting that really is more often
used as verb and adjective modifiers. As for actually, it is hard to find its clear
usage pattern from the distribution of collocates on both sides. However, when
compared to truly, it could be observed that actually is surrounded by more
content words and has many adversative words on the left side (e.g. never, yet,
though, until), indicating that it may be used more as a disjunct. The CRC
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visualization of truly presents few meaningful collocates, but we can also reckon
that truly is prone to occur as an adjective modifier from the limited samples.
Moreover, from its potential context (will/be + truly + fine/great, etc.) we can
infer that it is prone to be used for attitude emphasis and enhancement.

The above inferences are entirely based on CRC figures and are basically con-
sistent with the main findings of [14] (see Fig. 4) who adopted rigorous and sys-
tematic statistical methods (Hierarchical configural frequency analysis, HCFA).
This demonstrates that CRC is a fast and handy tool in certain lexical stud-
ies. Of course, it would also be encouraged that researchers use other corpus
approaches such as concordance and HCFA as auxiliary verification methods.

Fig. 4. The internal semantic structure of the four synonymous adverbs by [14]

The network structure in Fig. 4 is artificially constructed through subjective
analysis. Yet CRC can make this relationship network more objective and accu-
rate by quantifying the differences between the usage patterns of these words.

CRC preserves precise location and strength information of the surrounding
words, thereby it is a collocate distribution of the node. This allows us to com-
pute the degree of difference between distributions, namely the distance between
CRCs. The smaller the distance is, the more similar the usage patterns of the
two words. To compute the distance between two distributions, we are free to
apply any suitable distance algorithm. Here we use a simple processing flow:

(1) For a common collocation word, calculate the Euclidean distance between
the coordinates of the word on the two graphs.

(2) For unique collocations, they are not included in the distance calculation.
(3) Finally, average the Euclidean distance between all points to obtain the

comprehensive distance.

Using the above algorithm, we obtained three distances (Fig. 5, the number
of valid collocation words actually involved in the calculation is indicated in
brackets). Our results show slight divergence from Fig. 4, as Liu and Espino
considers really more similar to truly but CRC distance indicates that really
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is closer to actually (D(really, actually) = 0.1641) rather than truly (D(really,
truly) = 0.1853). This difference might be due to BROWN’s insufficient amount
of data. It is also interesting to see CRC applied to COCA and verify if the
semantic structure in Fig. 4 is accurate.

Fig. 5. The collocation distribution distance of actually, really, and truly in the
BROWN corpus. The number of valid collocation words actually involved in the cal-
culation is indicated in brackets (measure=PMI, min freq=2)

4 Case Study 2: CRC in Image Analysis

As an analytical tool, collocation is also widely used in other fields besides lin-
guistic research. In the area of journalism and information communication, col-
locations are also used in assistance to discourse analysis, image analysis, and
sentiment analysis [17]. For example, [18] inspected the verb collocates on the
right side of we in the interpreting corpus of press conferences, so as to analyze
the image construction strategy of the government. In the field of digital human-
ities, collocation could also facilitate the style analysis of writing and author
[7,19,20], as well as the image analysis of characters in the literary works. We
select an image analysis task in a literary work and use CRC as an analyzing
tool for research and discussion.

We pick the classic fiction “Lord of the Flies” [21] as our research sub-
ject, because the characters in this novel have distinctive characteristics and
the language is simple and straightforward. Its characters and images have been
heatedly discussed through book reviews and literary interpretations [22,23],
yet CRC may reveal the character-building methods from a corpus perspective.
We select three main characters: Ralph, Jack and Simon as research objectives.
Their right-side verb collocates are retrieved and described through CRC (Fig. 6).
Before extracting collocations, the text is lower-cased and POS tagged. Different
thresholds of association strength are applied in order to show a similar amount
of collocates.

By comparing the three CRC figures, it can be found that when describing
different characters, different verbs are used to shape the image of the characters.
From the sentiment of verbs used to describe the character, we can infer the
author’s tendency in the image-building of each character.
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Fig. 6. CRCs of node ralph, jack and simon (measure=PMI, min freq=2, thresh differs
to accommodate to the number of data points for a better visualization)

Ralph is the main positive leader in the fiction, representing civilization and
democracy before and after World War II. Ralph’s CRC shows many clues in
favor of that description. Verbs such as puzzle, sense, and shudder place Ralph
on the opposite side of chaos and violence; others like answer and nod depict
Ralph actively affirming and responding to others’ opinions. These behaviors
together shape Ralph as a “democratic man, the symbol of consent” [23]. Jack
is the representative of brutality and power. His unique behaviors include seize,
snatch, clear, and ignore, which show Jack’s tendency to command and enforce,
in consistent with the evaluation by [23]: “Jack then, is authoritarian man ...
like Hitler and Mussolini”. Simon is regarded as “the Christ-figure, the voice of
revelation” [23]. From his unique behaviors lower, walk, speak, feel, etc., readers
envisage a sanctified image with calm, humility, detachment, and transcendence.

Apart from unique behaviors, similar behaviors are also described with verbs
with different semantic polarities. For example, the author uses smile for Ralph
but sneer and grin for Jack to express laugh; this further consolidates the con-
trasting images of the two characters.
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5 Case Study 3: CRC and Efficiency in Lexical Use

Collocations could also play a role in second language acquisition and language
teaching. The mastery of collocation is considered to be the decisive factor for
the naturalness of a language learner’s expression [24]. One of the cases of collo-
cation network illustrated by [6] is the analysis and evaluation of different-level
second language learners’ expression. The selected corpus is Trinity Lancaster
Corpus (TLC) of spoken L2 English [25], a transcribed corpus of English inter-
view responses. Brezina divided the corpus into three sub-groups according to
the speakers’ language proficiency levels: Pre-intermediate (B1), Intermediate
(B2) and Advanced and Proficiency (C1/C2). The most common collocates of
the three verbs make, take and do used by students at these levels are shown
with collocation graphs. Brezina observed a rise in the richness of collocates as
the proficiency level lifts for make, but found no such “clear relationship between
increasing proficiency and a higher number of collocates” on take and do [6,
p.73]. This implies that the increase in collocate richness is not the decisive factor
in measuring one’s language proficiency.

When talking about the language learner’s communicative language compe-
tencies, a competitive language learner should not only “has a good command of
a very broad lexical repertoire” (vocabulary range) but also masters “idiomatic
expressions and colloquialisms” and use words “correct and appropriate” (vocab-
ulary control) [26, pp.112, 114]. In other words, the collocation network alone
cannot reveal the relationship between the group’s collocation performance and
their language competency, because collocation network cannot tell the above
aspects, i.e., the naturalness and accuracy of the collocations.

While CRC with its quantitative ability (as used in Sect. 3) is a solution
to the above problem. To examine whether the speakers’ language competency
truly matches their labeled level, we select the native speaker sub-group (NS)
as a reference corpus, and respectively compute the CRC distances between NS
with B1, B2, and C1/C2, so as to evaluate the usage patterns between different
levels. Intuitively, we may expect the gap becomes smaller from B1 to C1/C2,
because native speakers usually produce the most natural expressions.

The CRC distances of B1-NS, B2-NS and C1/C2-NS are shown in Table 3,
including those of take and do. It can be seen that the speakers’ usage pattern of
make is approaching that of native speakers from B1 to C1/C2. However, statis-
tics on the other two verbs do not present a similar trend; do even displays a
totally opposite attitude, showing an increasing discrepancy from native speak-
ers as “language level” rises. A possible explanation might be the insufficient
data samples. For instance, only 30 common collocates are used to calculate the
CRC distance between C1/C2 and NS, most of which are trivial words with low
association strength such as not, what, and want.

Nevertheless, the findings are basically in line with that of Brezina [6] but in
a more comprehensive and more precise manner. Besides, the distances on word
pairs disclose the most misused collocates of the node, which might be helpful
in language evaluation and grammar correction. To be specific, CRC could tell
which collocates are most distantly distributed in the usage pattern of language
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Table 3. The collocation distribution distance of make, take and do in the three
bands and NS corpus. The number of valid collocation words actually involved in the
calculation is indicated in brackets (measure=Log-Likelihood, min freq=2)

Distance B1-NS B2-NS C1/C2-NS

make 0.19 (48) 0.1453 (101) 0.1223 (93)

take 0.2349 (32) 0.1743 (49) 0.2077 (45)

do 0.0915 (116) 0.1371 (66) 0.1436 (30)

learners and of native speakers, so as to improve the learners’ worst-acquired
collocation knowledge.

6 Conclusions and Future Work

This paper re-examines two widely used representation methods of collocation,
i.e., collocate list and collocation network. In view of their weakness in express-
ing contextual information, we propose a new representation method, namely
the contextualized representation of collocation (CRC). CRC adopts conflated
linear representation and highlights the importance of the position of the collo-
cates. It pins a collocate as the interaction of two dimensions, i.e., association
strength and co-occurrence position. With a full image of all the collocates sur-
rounding the node word, CRC carries the contextual information and makes the
representation much more informative and intuitive. We did three case stud-
ies to demonstrate the advantages of CRC in practical applications, covering
synonym distinction, image analysis, and efficiency in lexical use. Besides, CRC
provides a new quantitative tool to measure lexical usage pattern similarities for
corpus-based research.

We believe that the potential power of CRC is far beyond the cases we have
discussed. As an auxiliary corpus tool, it may also be used directly in teaching
activities. The importance of corpus tools in language teaching is investigated
by [27], who used some of the searching functions provided by COCA, mainly
the collocation tool, to improve students’ phrasal integrity. Their survey shows
that most students are happy to use corpus tools to test their language intuition,
though the aids are less effective for students with poor performance. CRC can
be used as a good visualized presentation tool for phrase, collocation and idiom
studying, and should intuitively be more friendly to “weaker students” because
it is much more easy-reading and more informative compared with collocate
list and collocation network. Apart from teaching, CRC may also be extended
or adapted to fit more needs and scenarios. For example, CRC is also suitable
for visualizing constructions [28] and collostructions [29] because it follows the
sequential nature of the language.

In summary, we hope that CRC can provide a new representation framework
for language researchers and learners, and will lead them to address the impor-
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tance of contextual information in research and learning. More applications of
CRC in teaching and research are worthy of further empirical study in the future.
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Abstract. Multi-hop Question Answering (QA) requires the machine
to answer complex questions by finding scattering clues and reasoning
from multiple documents. Graph Network (GN) and Question Decom-
position (QD) are two common approaches at present. The former uses
the “black-box” reasoning process to capture the potential relationship
between entities and sentences, thus achieving good performance. At
the same time, the latter provides a clear reasoning logical route by
decomposing multi-hop questions into simple single-hop sub-questions.
In this paper, we propose a novel method to complete multi-hop QA from
the perspective of Question Generation (QG). Specifically, we carefully
design an end-to-end QG module on the basis of a classical QA module,
which could help the model understand the context by asking inherently
logical sub-questions, thus inheriting interpretability from the QD-based
method and showing superior performance. Experiments on the Hot-
potQA dataset demonstrate that the effectiveness of our proposed QG
module, human evaluation further clarifies its interpretability quantita-
tively, and thorough analysis shows that the QG module could generate
better sub-questions than QD methods in terms of fluency, consistency,
and diversity.

1 Introduction

Unlike single-hop QA [19,26,30] where the answers could usually be derived
from a single paragraph or sentence, multi-hop QA [34,39] is a challenging task
that requires soliciting hidden information from scattered documents on different
granularity levels and reasoning over it in an explainable way.

The HotpotQA [39] was published to leverage the research attentions on rea-
soning processing and explainable predictions. Figure 1 shows an example from
HotpotQA, where the question requires first finding the name of the company
(Tata Consultancy Services), and then the address of the company (Mumbai).
While, a popular stream of Graph Network-based (GN) approaches [4,7,11,32]
was proposed due to the structures of scattered evidence could be captured by the
graphs and reflected in the representing vectors. However, the reasoning process

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 19–36, 2023.
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of the GN-based method is entirely different from human thoughts. Specifically,
GN tries to figure out the underlying relations between the key entities or sen-
tences from the context. However, the process is a “black-box”; we do not know
which nodes in the network are involved in reasoning for the final answer, thus
showing relatively poor interpretability.

Inspired by that human solves such questions by following a transparent and
explainable logical route, another popular stream of Question Decomposition-
based (QD) approaches became favored in recent years [12,17,21,22]. The
method mimics human reasoning to decompose complex questions into sim-
pler, single-hop sub-questions; thus, the interpretability is greatly improved by
exposing intermediate evidence generated by each sub-question. Nevertheless,
the general performance is usually much worse than GN-based ones due to error
accumulation that arose by aggregating answers from each single-hop reasoning
process. Furthermore, the sub-questions are generated mainly by extracting text
spans from the original question to fill the template. Hence the sub-questions
are challenging to guarantee in terms of quality, such as fluency, diversity, and
consistency with the original question intention, especially when the original
questions are linguistically complex.

Fig. 1. An example from HotpotQA
dataset. Text in blue is the first-hop infor-
mation and text in red is the second-hop
information. The mixed encoding of the
first-hop information (•) and the second-
hop information (•) will confuse mod-
els with weaker reading comprehension.
(Color figure online)

In this work, we believe that asking
the question is an effective way to elicit
intrinsic information in the text and is
an inherent step towards understand-
ing it [23]. Thus, we propose resolv-
ing these difficulties by introducing an
additional QG task to teach the model
to ask questions. Specifically, we care-
fully design and add one end-to-end
QG module based on the classical GN-
based module. Unlike the traditional
QD-based methods that only rely on
information brought by the question,
our proposed QG module could gener-
ate fluent and inherently logical sub-
questions based on the understanding
of the original context and the question
simultaneously.

Our method enjoys three advan-
tages: First, it achieves better per-
formance. Our approach preserves the
GN module, which could collect infor-
mation scattered throughout the doc-
uments and allows the model to under-
stand the context in depth by ask-
ing questions. Moreover, the end-to-
end training avoids the error accumu-
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lation issue; Second, it brings better interpretability because explainable evi-
dence for its decision making could be provided in the form of sub-questions;
Thirdly, the proposed QG module has better generalization capability. Theoret-
ically, it can be plugged and played on most traditional QA models.

Experimental results on the HotpotQA dataset demonstrate the effectiveness
of our proposed approach. It surpasses the GN-based model and QD-based model
by a large margin. Furthermore, robust performance on the noisy version of
HotpotQA proves that the QG module could alleviate the shortcut issue, and
visualization on sentence-level attention indicates a clear improvement in natural
language understanding capability. Moreover, a human evaluation is innovatively
introduced to quantify improvements in interpretability. Finally, exploration on
generated sub-questions clarifies diversity, fluency, and consistency.

2 Related Work

Multi-hop QA. In multi-hop QA, the evidence for reasoning answers is scattered
across multiple sentences. Initially, researchers still adopted the ideas of single-
hop QA to solve multi-hop QA [5,41]. Then the graph neural network that builds
graphs based on entities was introduced to multi-hop QA tasks and achieved
astonishing performance [4,7,32]. While, some researchers paid much attention
to the interpretability of the coreference reasoning chains [12,17,21,22]. By pro-
viding decomposed single-hop sub-questions, the QD-based method makes the
model decisions explainable.

Interpretability Analysis in NLP. An increasing body of work has been devoted
to interpreting neural network models in NLP in recent years. These efforts could
be roughly divided into structural analyses, behavioral studies, and interactive
visualization [2].

Firstly, the typical way of structural analysis is to design probe classifiers
to analyze model characteristics, such as syntactic structural features [9] and
semantic features [36]. Secondly, the main idea of behavioral studies is that design
experiments that allow researchers to make inferences about computed repre-
sentations based on the model’s behavior, such as proposing various challenge
sets that aim to cover specific, diverse phenomena, like systematicity exhaustiv-
ity [13,27]. Thirdly, for interactive visualization, neuron activation [8], attention
mechanisms [14] and saliency measures [15] are three main standard visualization
methods.

Question Generation. QG is the task of generating a series of questions related
to the given contextual information. Previous works on QG focus on rule-based
approaches. [10] used a template-based approach to complete sentence extrac-
tion and QG in an unsupervised manner. [6] developed Syn-QG using a rule-
based approach. The system consists of serialized rule modules that transform
input documents into QA pairs and use reverse translation counting, resulting
in highly fluent and relevant results. One of the essential applications of QG is
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to construct pseudo-datasets for QA tasks, thereby assisting in improving their
performance [1,20,40].

Our work is most related to [23], which produces a set of questions ask-
ing about all possible semantic roles to bring the benefits of QA-based repre-
sentations to traditional SRL and information extraction tasks. However, we
innovatively leverage QG into complicated multi-hop QA tasks and enrich rep-
resentations by asking questions at each reasoning step.

3 Methods

Fig. 2. Overall model architecture.

Multi-hop QA is challenging because
it requires a model to aggregate scat-
tered evidence across multiple docu-
ments to predict the correct answer.
Probably, the final answer is obtained
conditioned on the first sub-question
is correctly answered. Inspired by
humans who always decompose com-
plex questions into single-hop ques-
tions, our task is to automatically pro-
duce naturally-phrased sub-questions
asking about every reasoning step
given the original question and a pas-
sage. Following the reasoning process-
ing, the generated sub-questions fur-
ther explain why the answer is pre-
dicted. For instance, in Fig. 1, the
answer “Mumbai" is predicted to
answer Question2 which is conditioned
on Question1 ’s answer. More impor-
tantly, we believe that the better questions the model asks, the better it under-
stands the reading passage and boosts the performance of the QA model in
return.

Figure 2 illustrates the overall framework of our proposed model. It consists
of two modules: QA module (Sect. 3.1) and QG module (Sect. 3.2). The QA
module could help model to solve multi-hop QA in a traditional way, and the
QG module allows the model to solve the question in an interpretable manner
by asking questions. These two modules share the same encoder and are trained
end-to-end with multi-task strategy.

3.1 Question Answering Module

Encoder. A key point of the GN-based approach to solving QA problems is
the initial encoding of entity nodes. Prior studies have shown that pre-trained
models are beneficial for increasing the comprehension of the model [24,38],
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which enables better encoding of the input text. In Sect. 3.2 we will mention
that encoder will be shared to the QG module to further increase the model’s
reading comprehension of the input text through the QG task. Here we chose
BERT as the encoder considering its strong performance and simplicity.

GNN Encode Module. The representation ability of the model will directly affect
the performance of QA. Recent works leverage graphs to represent the rela-
tionship between entities or sentences, which have strong representation abil-
ity [11,31,37]. We believe that the advantage of graph neural networks is essential
for solving multi-hop questions. Thus, we adopt the GN-based model DFGN1 [37]
that has been proven to be effective in HotpotQA.

[37] build graph edges between two entities if they co-exist in one single sen-
tence. After encoding the question Q and context C by the pre-trained encoder,
DFGN extracts the entities’ representation from the encoder output by their
location information. Both mean-pooling and max-pooling are used to repre-
sent the entities’ embeddings. Then, a graph neural network propagates node
information to its neighbors. A soft mask mechanism is used to calculate the
relevance score between each entity and the question in this process. The soft
mask score is used as the weight value of each entity to indicate its importance
in the graph neural network computation. At each step, the query embedding
should be updated by the entities embedding of the current step by a bi-attention
network [28]. The entities embeddings in the t-th reasoning step:

Et = GAT([mt−1
1 et−1

1 ,mt−1
2 et−1

2 , ...,mt−1
n et−1

n ]), (1)

where et−1
i is the i-th entity’s embedding at the (t−1)-th step and e0i is the i-th

entity’s embedding produced both mean-pooling and max-pooling results from
encoder output according to its position. mt−1

i is the relevance score, which is
also called soft mask score in previous, between i-th entity and the question at
the (t − 1)-th step calculated by an attention network. GAT is graph attention
networks proposed by [33].

In each reasoning step, every entity node gains some information from its
neighbors. An LSTM layer is then used to produce the context representation:

Ct = LSTM([Ct−1;MEt�]), (2)

where M is the adjacency matrix which records the location information of the
entities.

The updated context representations are used for different sub-tasks: (i)
answer type prediction; (ii) answer start position and answer end position; (iii)
extract support facts prediction. All three tasks are jointly performed through
multitasking learning.

Lqa = λ1Lstart + λ2Lend + λ3Ltype + λ4Lpara, (3)

where λ1, λ2, λ3, λ4 are hyper-parameters2.
1 QA module is not the main focus of this work, and DFGN is one of the representative

off-the-shelf QA models. In fact, any QA model could be adopted to replace it.
2 In our experiments, we set λ1 = λ2 = λ3 = 1, λ4 = 5.
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3.2 Question Generation Module

Question Generation Training Dataset. A key challenge of training the QG
module is that it is challenging to obtain the annotated sub-questions dataset.
To achieve this, we take the following steps to generate sub-question dataset
automatically:

First of all, according to the annotations provided by the HotpotQA dataset,
the questions in the training set could be classified into the following two types:
Bridge (70%) and Comparison (30%), where the former one requires finding
evidence from first hop reasoning then use it to find second-hop evidence, while
the latter requires comparing the property of two different entities mentioned in
the question.

Then we leverage the methods proposed by [21] to process these two types
respectively. Specifically, we adopt an off-the-shelf span predictor Pointer to
map the question into several points, which could be for segmenting the question
into various text spans.

Finally, we generated sub-questions by considering the type of questions and
index points provided by Pointer. Concretely, for Bridge questions like Kristine
Moore Gebbie is a professor at a university founded in what year?, Pointer could
divided the question into two parts: Kristin Moore Gebbie be a professor at a
university and founded in what year?. Then some question words are inserted into
the first part as the first-hop evidence like Kristin Moore Gebbie be a professor
at which university, denoted as SA. Afterward, an off-the-shelf single QA model
is used to find the answer for the first sub-question, and the answer would be
used to form the second sub-question like Flinders University founded in what
year?, denoted as SB . On the other hand, for Comparison questions like Do The
Importance of Being Icelandic and The Five Obstructions belong to different film
genres?. Pointer would divide it into three parts: first entity(The Importance
of Being Icelandic), second entity (The Five Obstructions), and target property
(film genre). Then two sub-questions could be further generated by inserting
question words to these parts like SA :Do The Importance of Being Icelandic
belong to which film genres? and SB : Do The Five Obstructions belong to which
film genres?

Pre-trained Language Model (LM) as Generator. After automatically cre-
ating the sub-question dataset, the next step is to train the QG module
from scratch. Specifically, the structure of whole QG module is designed as
seq2seq, where it shares the encoder with QA module and adopts GPT-2 [25]
as the decoder. During training stage, the input of decoder is formed as:
[bos, yA

1 , yA
2 , ..., yA

n , [SEP], yB
1 , yB

2 , ..., yB
n , eos], where [SEP] is the separator token,

bos is the start token and eos is the end token. yA
i and yB

i are the i-th token in
constructed sub-questions SA and SB respectively.

Then the training objective of the QG module is to maximize the conditional
probability of the target sub-questions sequence as follows:

Lqg =
n∑

i=1

logP(yt|y<t, h), (4)
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where h is encoder hidden state. Finally, QG module and QA module are trained
together in end-to-end multi-task manner, and the overall loss is defined as:

Lmultitask = Lqa + Lqg. (5)

4 Experiments

4.1 Dataset

We evaluate our approach on HotpotQA [39] under the distraction setting, a
popular multi-hop QA dataset taking the explanation ability of models into
accounts. Expressly, for each question, two gold paragraphs with ground-truth
answers and supporting facts are provided, along with 8 ‘distractor’ paragraphs
that were collected via bi-gram TF-IDF retriever (i.e., 10 paragraphs in total).
Furthermore, HotpotQA contains two types of subtasks: a) Answer prediction;
and b) Supporting facts prediction; both subtasks adopt the same evaluation
metrics: Exact Match (EM) and Partial Match (F1).

4.2 Implementation Details

We implement the model via HuggingFace library [35]. In detail, DFGN is
selected as a QA module by following the details provided by [37]. While,
for the QG module, the pre-trained decoder language model is initialized with
GPT2 [25]. The number of shared encoder layers is set as 12, the number of
decoder layers is 6, the maximum sequence length is 512. We train the model
on four TITAN RTX GPUs for 30 epochs at a batch size of 8, where each epoch
tasks for around 2 h. We select Adam [18] as our optimizer with a learning rate of
5e-5 and a warm-up ratio of 10%. In general, we determine the hyperparameters
by comparing the final EM and F1 scores.

4.3 Comparison Models

Baseline Model. A neural paragraph-level QA model introduced in [39] and
original proposed by [3].

DFGN. The classic GN-based model [37], which is trained in an end-to-end
fashion for multi-hop QA task. We select this as the primary QA module in our
approach, and reproduce the DFGN model by using the BERT-base pre-trained
model under the hyperparameter settings released by [39].

DecompRC. The classic QD-based model that decomposes each question into
several sub-questions [21]. We reproduce the DecompRC model by following the
same QD instruction illustrated in [21].
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Table 1. Performance comparison on the development set of HotpotQA in the distrac-
tor setting. * indicates the results implemented by us.

Model Answer Sup Fact Joint
EM F1 EM F1 EM F1

Baseline Model 44.44 58.28 21.95 66.66 11.56 40.86
DecompRC 55.20 69.63 – – – –
DFGN* (Bridge) 53.38 69.14 47.72 84.44 29.79 58.67
DFGN* (Comparison) 63.75 69.48 70.68 89.98 46.74 63.56
DFGN* (Total) 55.46 69.21 52.33 82.12 33.19 59.66
DFGN (Total) 55.66 69.34 53.10 82.24 33.68 59.86
Ours (Bridge) 56.24 71.67 51.06 81.16 33.61 61.75
Ours (Comparison) 63.08 69.59 73.03 90.36 49.23 64.45
Ours (Total) 57.79 71.36 55.77 83.33 36.99 62.52

5 Analysis

Table 1 shows the performance of various models on the development set of Hot-
potQA. In general, our method attains substantial improvement across all tasks
when compared to either the GN-based method or the QD-based approach. This
demonstrates that the integration of the QG task can effectively augment the
model’s textual understanding capabilities. Additionally, our method exhibits
consistent enhancement in performance for both types of questions. Notably,
the performance on bridge-type questions, which necessitate linear reasoning
chains, experiences a marked improvement, underscoring the efficacy of posing
questions at each reasoning stage. In subsequent sections, we will further explore
the functionality, interpretability, and quality of the sub-questions generated by
the QG module, providing a comprehensive analysis of our proposed method’s
strengths and potential applications.

5.1 Does it Alleviate Shortcut Problem by Adding Question
Generation Module?

In order to validate the capacity of the QG module to concentrate on uncovering
the authentic reasoning process, as opposed to exploiting shortcuts for predict-
ing answers, we further undertake QA tasks using baselines and our model on
Adversarial MultiHopQA. This dataset was initially introduced by [16] and is
designed to challenge the model’s comprehension capabilities. Specifically, mul-
tiple noisy facts, constructed by substituting entities within the reasoning chain,
are incorporated into the original HotpotQA dataset with the intent to confound
the model. For instance, in the example provided in Fig. 3, the noisy facts are
formulated by replacing key entities present in Support Fact2. These noisy facts
retain the same sentence structure as the support facts but convey disparate
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meanings, thereby compelling the model to thoroughly comprehend the con-
text. This additional layer of complexity serves to rigorously test our proposed
QG module, ensuring it remains focused on elucidating the genuine reasoning
process.

Table 2. Performance of DFGN
model and ours on HotpotQA dataset
and its noisy version Adversarial-
MultiHopQA (marked with *).

Model Answer
EM F1

DFGN 55.66 69.34
DFGN* 48.08(–13.62%) 61.28(–11.62%)
Ours 57.79 71.36
Ours* 52.34(-9.43%) 65.12(–8.74%)

Table 2 shows the performance between
the DFGN model and our model on
the Adversarial-MultiHopQA dataset. In
general, DFGN experiences a significant
decline in performance, indicating that the
existing QA model has poor robustness
and is vulnerable to adversarial attacks.
This further indicates that the model
solves questions by mostly remembering
patterns. On the other hand, by adding a
QG module, the performance degradation
of our method is significantly reduced. We
think this is mainly because asking questions is an important strategy for guiding
the model to understand the text.

We further prove this point through a case study shown in Fig. 3. To answer
the original question, the correct reasoning chain is 2014 S S/S → WINNER
→ YG Entertainment. However, when there exists an overlap in the context
between facts (i.e. South Korean boy group), the current main-stream method,
which strengthens representation by solely capturing internal relationships over
entities or documents, usually regards the incorrect entity (i.e. YG Arthur or YG
Republic) as a key node of reasoning chain, where so-called shortcut issue. It does
not understand the reasoning process but remembers certain context patterns.
However, our method mitigates such issues by reinforcing representations by
asking a question at each reasoning step. As such, it could remain robust despite
these disturbances.

5.2 Does Generated Sub-question Provide Better Interpretability?

Past works have proved that interpretability can be improved by exposing evi-
dence from decomposed sub-questions. However, few quantitative analyses have
been carried out on interpretability due to its subjective nature. In this paper, we
use human evaluation to quantify the improvement of interpretability brought
by our QG module.

Specifically, we design human evaluation by following steps: First, we assem-
ble 16 well-educated volunteers and divide them into two groups, A and B;
Second, we randomly sample 8 Bridge type questions from the dev set and man-
ually write out the correct two-hop reasoning chain for solving each question.
Afterward, we replace the entity that appeared in each correct reasoning chain
with other confusing entities selected from context to generate three more wrong
reasoning chains (i.e., each question has 4 reasoning chains.). Then shuffle them
and combine them with the original question to form a four-way multi-choice
QA; Third, for each group, we ask them to figure out the correct reasoning chain
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Fig. 3. An example of the noisy dataset. The red text indicates a reasoning path with
complete reasoning logic. The blue text indicates some other entities which have a sim-
ilar structure with the red texts, but they can be inferred from the logical relationships.
(Color figure online)

and record the time elapsed for finishing all questions. To be noticed, besides
original questions and reasoning chains, we provide different additional informa-
tion for each group to facilitate them, all supporting facts for Group A, and all
sub-questions generated by our QG for Group B. For more details, please refer
to Appendix.

Table 3. Average results for accuracy
and time elapsed of human evaluation.

Group Accuracy Time(s)
A (Support Facts) 65.63% 981
B (Sub-questions) 85.94% 543

Table 3 presents the results of the two
groups. Remarkably, Group B has higher
accuracy and takes less time. Therefore, we
could argue that sub-questions generated
by our QG contain more concise and pre-
cise explanations for problem-solving and
further proves that the QG module can
indeed improve interpretability.

5.3 Does Asking Questions Enhance the Natural Language
Understanding Capability?

In this work, we believe that the ability to exhaustively generate a set of logical
questions according to a complex scenario allows for a comprehensive, inter-
pretable, and flexible way of excavating the information hidden in natural lan-
guage text, thereby enhancing the natural language understanding ability.

The self-attention mechanism in the pre-trained model is crucial for the model
to understand the input information. Generally, the more critical a sentence is in
its context, the greater attention weights it deserves. Thus, to verify whether the
QG module could edify the model to carry out deep understanding intrinsically,
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we compare the sentence-level attention weight of our model with and without
the QG module. In particular, we account for the number of increases in attention
weight of support facts after adding the QG module. As shown in the last row of
Table 4, the attention weight of around 80% of support facts is increased, which
proves that the model is more prone to focus on meaningful information with
the aid of the QG task.

Furthermore, Fig. 4 visualizes the changes in attention weights over support-
ing facts between DFGN and our method. In this case, sentences S1,5,6,7 are
considered as supporting facts. DFGN fails to predict all supporting facts and
focuses on the wrong ones while our method works properly.

Table 4. Comparison between sub-questions generated by QG and template on diver-
sity, LM score and Attention weights.

Indicators Methods Win Tie Loss

Diversity QG vs. QD 57.64% 26.70% 15.66%
LM Score QG vs. QD 60.22% – 39.78%
Attention weight QG vs. w/o QG 79.51% – 20.49%

Fig. 4. Visualization of attention weights at sentence-level between DFGN and our
method. The depth of the color corresponds to the higher attention weights of the
sentence.

5.4 Characteristics of Generated Questions

QG can indeed promote an in-depth understanding of the model, but what are
the characteristics of the generated questions that contribute to this? Specifically,
what are the distinctive features of the sub-questions we generate using the
QG module compared to the previous QD-based methods, which generate sub-
questions using templates. Through case and statistical analysis, we find that the
sub-questions generated by the QG module exhibit the following characteristics:

Consistency. As mentioned in Sect. 3.2, prior QD-based methods necessitate
the implementation of a span predictor to dissect questions into constituent text
spans. During the segmentation process, errors are predisposed to accumulate,
rendering the generated sub-questions susceptible to inconsistencies with the
original question. This issue becomes increasingly prevalent when the original
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Table 5. Results on linguistic fluency and diversity of sub-questions generated by
QG compared to those generated by template. � indicate the method performs better,
ÃŮ indicate performs worse, and - indicate performs competitively.

ID Question/Sub-question Fluency Diversity

1 Question In 1991 Euromarche was bought by a chain that operated
how any hypermarkets at the end of 2016?

QD Q1 Which chain that operated how any hypermarkets? × ×
Q2 In 1991 Euromarche was bought by Euromarche at the end

of 2016?
QG Q1 In 1991 Euromarche was bought by which chain? � �

Q2 Carrefour’s oprated how many hypermarkets at the end of
2016?

2 Question Do The Importance of Being Icelandic and The Five
Obstructions belong to different film genres?

QD Q1 Do the Importance of Being Icelandic and The Five
Obstructions belong to different film genres?

× ×

Q2 Do the importance of?
QG Q1 Does the Importance of Being Icelandic and The Five

Obstructions belong to which film genres?
� �

Q2 Does The Five Obstructions belong to which film genres?
......
7404 Question Who was known by his stage name Aladin and helped

organizations improve their performance as a consultant?
QD Q1 Who was known by his stage name Aladin? � ×

Q2 Who helped organizations improve their performance as a
consultant?

QG Q1 His stage name Aladdin? × �
Q2 Who was known by his stage name Aladdin and helped

organizations improve their performance as a consultant?
7405 Question Which American film actor and dancer starred in the 1945

film Johnny Angel?
QD Q1 Which 1945 file Johnny Angel? × -

Q2 Which American film actor and dancer starred in noir?
QG Q1 Which American file actor and dancer? � -

Q2 Which starred in the 1945 film Johnny Angel?

question exhibits linguistic complexity. As illustrated by the second example
in Table 5, the pair of sub-questions generated by template-based approaches
erroneously deconstruct the original question, culminating in a question inten-
tion that deviates significantly from the original intent. Consequently, such sub-
questions characterized by incongruent intent can mislead the model. In contrast,
our proposed QG module is designed to facilitate a comprehensive understanding
of the original question, utilizing abundant contextual information to generate
logically ordered sub-questions. Ultimately, this approach ensures that the inten-
tions of the combined sub-questions remain consistent with the original question,
mitigating the risk of misinterpretation by the model.
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Fluency. The fluidity and grammatical integrity of a sentence play a crucial role
in accurately conveying meaning, particularly in the case of questions. When
a question is plagued by grammatical inaccuracies or incoherence, it becomes
challenging for individuals or computational models to comprehend, potentially
leading to misinterpretation of the intended inquiry. This issue is widespread
and inescapable in numerous datasets, primarily due to the manual construction
of questions, as exemplified by the first instance in Table 5. In the original ques-
tion, a typographical error (how many → how any) causes a shift in the intended
meaning. Nonetheless, it remains feasible to discern the correct response from the
additional information offered by the original question and general knowledge.
Regrettably, the sub-question produced by the QD-based technique incorporates
the typographical error, and the model fails to ascertain the accurate intention
due to the limited information available within the sub-question. Moreover, syn-
tactic errors are prone to accrue since determining the boundaries and attributes
of text spans proves to be a challenging task, leading to subpar readability.

Contrastingly, our QG module is capable of leveraging contextual information
and the embedded knowledge within the language model to rectify typographical
errors. Simultaneously, it can employ the capabilities of the pre-trained language
model to generate coherent sentences, thus alleviating the impact of syntactic
errors. To assess fluency, we utilize the Language Model Score (LMS)3 as a
metric. As demonstrated in Table 4, over 60% of the questions generated by QG
modules exhibit higher scores compared to those produced by the QD method.

Diversity. [29] highlight that the diversity of generated questions can directly
impact QA performance. However, sub-questions produced by QD methods tend
to be monotonous and laborious due to constraints on vocabulary and tem-
plates. In contrast, our proposed QG module can gently mitigate these chal-
lenges and enhance question diversity. Relying on the pretrained LM, the QG
module is capable of incorporating contextually appropriate words into sub-
questions, adapting to various situations. This is exemplified by the inclusion of
Carrefour in the first example provided in Table 5, which results in more diverse
and rational sub-questions. In our analysis, we consider the number of words
in sub-questions that did not appear in the original question as a measure of
diversity. As demonstrated in Table 4, approximately 57% of sub-questions gen-
erated by our method exhibit greater diversity, underlining the advantages of
our proposed QG module.

6 Conclusion

In this paper, drawing inspiration from human cognitive behavior, we posit that
the act of asking questions serves as a crucial indicator for determining whether a
model genuinely comprehends the input text. Consequently, we introduce a QG
module designed to tackle multi-hop QA tasks in an interpretable manner. Build-
ing upon traditional QA modules, the incorporation of the QG module effectively
3 https://github.com/simonepri/lm-scorer.

https://github.com/simonepri/lm-scorer


32 J. Li et al.

enhances natural language understanding capabilities, delivering superior and
robust performance through the process of asking questions. Furthermore, we
conduct a quantitative analysis of interpretability, as provided by sub-questions,
utilizing human evaluation and elucidating interpretability through attention
visualization. Ultimately, we substantiate that the sub-questions derived from
the QG method surpass those obtained via the QD method in terms of linguis-
tic fluency, consistency, and diversity, underscoring the benefits of our proposed
approach.

7 Limitations

Although our research presents numerous advantages, certain limitations persist.
The lack of comparison with extant SOTA methods and validation on alternative
datasets constitute two principal shortcomings. Despite these issues, we maintain
our advocacy for the "ask to understand" concept, positing that the integration
of a QG task can bolster a model’s interpretability and comprehension capabil-
ities.

Primarily, the rationale behind our decision not to utilize top SOTA models
as baselines is that these approaches often entail the application of meticulously
designed, task-specific, and labor-intensive GNN to the encoder segment. Con-
versely, we posit that our method operates in a plug-and-play manner; validating
its efficacy on two rudimentary baselines suggests that it may also be applica-
ble to other models. Consequently, outperforming SOTA methods in terms of
performance is not the central contribution of this paper.Additionally, question
decomposition serves as a vital component of our work, and we employ Decom-
pRC to parse multi-hop questions into single-hop queries. Since DecompRC is
tailored specifically for HotpotQA, adapting it to other multi-hop QA datasets
may not yield the anticipated results; thus, we solely verify our methods on
HotpotQA.

Finally, grounded in our core concept of "asking to understand," the appli-
cability and reliability of the QA model in industrial contexts are significantly
enhanced. Our model delivers answers accompanied by comprehensive multi-hop
questions, enabling agents to evaluate the accuracy of the response. Further-
more, our model aids agents in "understanding by asking," delineating the steps
involved in obtaining the answer and facilitating a more profound comprehension
of the information’s origin.

A Appedix: Human Evaluation Instruction

Specifically, we design human evaluation by following steps:

1. We assemble 16 well-educated volunteers and randomly divide them into two
groups, A and B. Each group contains 8 volunteers and evenly gender.

2. We randomly sample 8 Bridge type4 questions from the dev set, and manually
write out the correct two-hop reasoning chain for solving each question.

4 Because Bride type questions always has deterministic linear reasoning chains.
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3. We replace the entity that appeared in each correct reasoning chain with
other confusing entities selected from context to generate three more wrong
reasoning chains (i.e., each question has 4 reasoning chains.), then shuffle them
and combine them with the original question to form a four-way multi-choice
QA.

4. For group A, except the original question, final answer and four reasoning
chains, we also provide supporting facts. Then volunteers are asked to find
the correct reasoning chain.

5. For group B, except the original question, final answer and four reasoning
chains, we also provide the sub-questions generated by our QG module. Then
volunteers are asked to find the correct reasoning chain.

6. We count the accuracy and time elapsed for solving problem.

Beyond that, some details are worth noting:

• The volunteers participated in the human evaluation test are all well-educated
graduate students with skilled English.

• We use the online questionnaire platform to design the electronic question-
naire.

• The questionnaire system can automatically score according to the pre-set
reference answers, and count the time spent on answering the questions.

• The timer starts when the volunteer clicks “accept" button on the question-
naire, and ends when the volunteer clicks “submit" button.

• Volunteers are required to answer the questionnaire without any interruption,
ensuring that all time spent is for answering questions.

• Before starting filling the questionnaire, we provide a sample example as
instruction to teach the volunteers how to find the answer.

The interface of human evaluation for each group could be found in Fig. 5
and Fig. 6.
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Fig. 5. Interface for human evaluation of
choosing reasoning chain based on support
facts.

Fig. 6. Interface for human evaluation of
choosing reasoning chain based on sub-
questions.s
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Abstract. Conditional question answering (CQA) is an important task in natural
language processing that involves answering questions that depend on specific
conditions. CQA is crucial for domains that require the provision of personalized
advice or making context-dependent analyses, such as legal consulting and med-
ical diagnosis. However, existing CQA models struggle with generating multiple
conditional answers due to two main challenges: (1) the lack of supervised train-
ing data with diverse conditions and corresponding answers, and (2) the difficulty
to output in a complex format that involves multiple conditions and answers. To
address the challenge of limited supervision, we propose LSD (Learning on Struc-
tured Documents), a self-supervised learning method on structured documents for
CQA. LSD involves a conditional question generation method and a contrastive
learning objective. The model is trained with LSD on massive unlabeled struc-
tured documents and is fine-tuned on labeled CQA dataset afterwards. To over-
come the limitation of outputting answers with complex formats in CQA, we pro-
pose a pipeline that enables the generation of multiple answers and conditions.
Experimental results on the ConditionalQA dataset demonstrate that LSD outper-
forms previous CQA models in terms of accuracy both in providing answers and
conditions.

1 Introduction

Recently, question answering (QA) has gained increasing interest in the field of Natural
Language Processing. Various types of question answering tasks, such as knowledge-
based QA (Cui et al. 2017), open domain QA (Kwiatkowski et al., 2019), and multi-
hop QA (Yang et al. 2018), have been extensively studied. Among them, conditional
question answering (CQA) (Sun et al. 2022a) is becoming increasingly important in
various contexts, such as medical diagnosis, legal consultation, financial analysis, and
more. Unlike the traditional question answering problem that only accepts a question
and returns an answer, CQA involves understanding a complex and lengthy document,
finding all possible answers under different conditions, and determining under what
condition the answer is applicable. Figure 1 shows an example for CQA, where the
answer could be different when the questioner is under different conditions. The CQA

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 37–57, 2023.
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Scenario: My partner earn less than £50,000. I also 
earn less than £50,000 but receiving a dividend. 
My pay and dividend when added together will be 
more than £50,000. 
Question: Will I be eligible to apply for child 
benefit ?

Document: 

 Section 1: How it works
      You get Child Benefit if you’re responsible for bringing up a child 
who is:
      a) under 16,
      b) under 20 if they stay in approved education or training.
Section 2: What you’ll get
      · You can get Child Benefit if your (or your partner’s) individual 
income is over £50,000, but you may be taxed on the benefit. 
      · If your partner’s income is also over £50,000 but yours is higher, 
you’re responsible for paying the tax charge. 
      · Once you earn £60,000 you lose all of your benefit through tax.
Section 3: Eligibility
...

Question:

Answer: 
Answer: Yes
Conditions: you’re responsible for bringing up a 
child who is: a) under 16, b) under 20 if they stay 
in approved education ...
Answer: No
Conditions: you earn £60,000

Document: 

Fig. 1. An example for CQA. The right side is a snapshot of a document discussing the policy of
claiming Child Benefits. The green text span is the condition that has been satisfied. The yellow
and blue text spans are the conditions for “Yes” and “No” respectively. (Color figure online)

task includes providing potential answers “yes” and “no” and their corresponding con-
ditions based on the given question and scenario.

Previous studies on CQA can be broadly categorized into two groups: extractive and
generative methods. Extractive methods (Ainslie et al. 2020) (Sun et al. 2021) extract
the most relevant span from a document as answers and conditions. In contrast, gen-
erative methods (Izacard and Grave 2021) (Sun et al. 2022b) use a generative model
to generate answers along with their corresponding conditions directly. However, cur-
rent CQA models face two common challenges. Firstly, the supervised data for CQA is
limited and expensive to obtain. Unlike traditional QA datasets, CQA requires specific
annotations that include scenarios, answers, and conditions, making the data collection
process more extensive and time-consuming. Secondly, current CQAmodels are unable
to provide multiple conditional answers in a coherent and controlled format. Extractive
methods for CQA are mostly only able to provide a single answer or condition for a
question, limiting their ability to produce multiple conditional answers. Conversely, gen-
erative methods may generate inconsistent and incoherent answers and conditions due
to their inherent randomness, especially when generating multiple conditional answers.
These challenges underscore the need for improved approaches to effectively handle
the generation of multiple conditional answers in CQA.

In order to solve the problem of limited supervision, we propose a self-supervised
learning method called LSD (Learning on Structured Documents). LSD consists of two
main components: conditional question generation and contrastive learning. For condi-
tional question generation, our intuition is that if a more precise context that contains
sufficient information to answer a conditional question can be passed to the QA model,
then the conditional answers given through this context will have high accuracy and can
be used for subsequent training. To achieve this goal, we propose a selective extraction
process that extracts parts of a structured document that are likely to be able to answer
a conditional question. For a certain selected part of the document, we use a state gen-
erator to generate a conditional question and user scenario, and use a label generator to
generate highly believed answers. For contrastive learning, we use four methods of doc-
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ument perturbation to perturb the structure of the document, including node reordering,
repetition, masking, and deletion. These methods will change the content of the docu-
ment but have little impact on its semantics. We design a contrastive learning objective
that encourages the model to give similar representations of document corresponding
sentences before and after perturbation, enabling the model to learn effective semantic
representations from complex documents and helping with conditional question answer-
ing.

To solve the problem of complex output formats, we propose a pipeline that can
generate multiple answers and their corresponding conditions. Our pipeline extracts
answer spans from sentences, generating query vectors for each answer and key vectors
for each candidate condition. Afterward, we calculate the query-key matching score
for each answer and condition, and choose the best matches as the final output. Unlike
existing methods, our pipeline utilizes the structure of documents to generate questions
and conditions, and can generate controllable multiple conditional answers.

To verify the effectiveness of our method, we conduct experiments on the condi-
tionalQA dataset (Sun et al. 2022a). The experimental results showed that our method
outperformed all baseline models in terms of answer and condition accuracy, indicating
that our method can provide accurate answers and corresponding conditions to effec-
tively answer conditional questions.

In summary, our contributions are three-fold:

(1) We propose LSD, a self-supervised learning method for structured documents
based on question generation and contrastive learning, which effectively solves
the problem of insufficient supervision for conditional question answering;

(2) We propose a pipeline that generates a query and key vectors for candidate answers
and conditions and matching similarity for them, which can provide controllable
conditional answers;

(3) The experimental results indicate that our method can answer conditional ques-
tions more effectively compared to previous conditional question answering meth-
ods.

2 Related Work

2.1 Conditional Question Answering

Conditional question answering (CQA) has been studied using extractive and generative
methods. Extractive methods, such as ETC (Ainslie et al. 2020) and DocHopper (Sun
et al. 2021), use two separate models to extract answers and conditions. ETC pipeline
uses two separate encoders to extract answers from supporting documents and identify
conditions. DocHopper, on the other hand, iteratively attends to different sentences to
predict evidences, answers and conditions step-by-step. Generative methods such as
FiD (Izacard and Grave 2021) use a single generative model to generate answers with
conditions. FiD splits documents into sentences, encodes the sentences separately, and
jointly decodes all encoded representations to generate answers with conditions. TRea-
soner (Sun et al. 2022b) is a discriminative-generative model that first checks whether
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each sentence could be a condition and then generates the answer with the context. How-
ever, these models suffer from several limitations, including a lack of sufficient super-
vised data, which can lead to overfitting and poor reasoning capabilities. Furthermore,
pipeline designs have a limited ability to generate multiple hybrid-type answers and
conditions. Therefore, improving the performance of CQA through a suitable pipeline
is crucial, and our work aims to address these challenges.

2.2 Self-Supervised Learning

Self-supervised learning methods have gained significant traction in recent years,
as they allow models to learn powerful representations without relying on large
amounts of labeled data. Various language models, such as GPT-3 (Brown et al. 2020),
BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019), BART (Lewis et al. 2020), have
leveraged unsupervised pre-training to achieve remarkable results on extensive natu-
ral language tasks. There have also been multilingual approaches like XLM (Conneau
et al. 2020), unsupervised machine translation (Lample et al. 2018), question genera-
tion techniques such as QA-based multiple-choice question generation (Le Berre et al.
2022), Web-pretraining (Guo et al. 2022), and deep reinforcement learning (Chen et al.
2019). On the other hand, contrastive learning has emerged as a powerful method for
representation learning, with models like SimCSE (Gao et al. 2021), ELECTRA (Clark
et al. 2020), DPR-QA (Karpukhin et al. 2020) and XMOCO (Yang et al. 2021) achiev-
ing state-of-the-art results across various natural language understanding and generation
tasks by learning to distinguish between semantically similar and dissimilar inputs.

3 Preliminaries: Structured Documents

Structured documents contain complex and rich structural information, which is ben-
eficial for learning conditional question answering. In this work, our model is trained
on HTML documents, a widely used type of structured document. HTML documents
are easily accessible and often contain rich semantic information, including tables, lists,
and more. The underlying structure of an HTML document is represented by the Docu-
ment Object Model (DOM) tree, wherein the entire document constitutes the root node,
and individual elements are organized as child nodes within the hierarchy.

A diagram of a DOM tree is shown in Fig. 2. Since HTML does not always demon-
strate a clear hierarchy among elements, we adopt a tag precedence order to convert
HTML documents into trees, thus making the relationships between elements explicit.
We order commonly used tags as: 〈title〉 - 〈h〉 - 〈p〉 - 〈li〉/〈tr〉. Each node’s parent is the
closest preceding higher-level node. For example, the 〈h1〉 tag is a section title and is
the parent of 〈h2〉 subsection titles. The 〈h2〉 tag is a subheading and is the parent of
〈p〉 text elements. We omit tags that do not contain important information, such as 〈b〉
(bold),〈i〉 (italic), and 〈a〉 (hyperlink) tags. With our approach, each sentence within the
HTML document can be clearly represented as a node in the document tree.
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Claiming child benefit

<h1>How it works</h1>
      <p>You get Child Benefit if you’re ... </p>
            <li> under 16 </li>
            <li> under 20 if they stay in approved education or training.</li>
<h1> What you’ll get </h1>
      <p> You can get Child Benefit if your (or your partner’s) individual income is 
over £50,000, but you may be taxed on the benefit. </p>
      <p> If your partner’s income is also over £50,000 but yours is higher, you’re 
responsible for paying the tax charge. </p> 
      <p> Once you earn £60,000 you lose all of your benefit through tax. </p>
<h1> Eligibility </h1>
...

 Tl

 h1

 h1

 h1

  p

  p

  li

  li

Eligibiltiy

How it works

  p

  p

Fig. 2. An example of the schematic diagram of a DOM tree. HTML tags can be used to create
a hierarchy of sentences in a document, with some tags considered more senior than others. The
nearest former superior tag of a node is its parent node.

Fig. 3. An overall illustration of our approach.

To compile a corpus of structured documents for the CQA task, we consider the
following criteria:

• Logical Structure: Documents should possess clear logical structures, including spe-
cific conditions and provisions, to facilitate conditional reasoning in the CQA task

• Standardized Format: Documents should adhere to a standardized HTML format
with minimal noise, such as advertisements.

• Data Quality: The corpus should comprise formal, authoritative, and reviewed doc-
uments to ensure data reliability and accuracy.

Based on these criteria, we propose to train our model to learn on national govern-
ment websites, which are known for their formal and authoritative nature. We conduct
web scraping to gather documents, filtering for policy documents, laws and regulations,
and administrative guidelines, as they tend to exhibit clear logical structures and contain
specific conditions relevant to the CQA task. For additional details regarding the con-
struction of the corpus, which is referred to as DATASET, please refer to Appendix A.

4 Our Approach

In this section, we will introduce our proposed method LSD, which includes a condi-
tional question generation module and a contrastive learning method for self-supervised
learning on structured documents. After that, we will illustrate our pipeline that gener-
ates multiple conditional answers by calculating the matching score of answers and
candidate conditions with query and key vectors. The overall process of our method is
shown in Fig. 3.
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Algorithm 1. Conditional Question Generation
Require: Structured doc set DATASET
Ensure: Cond. question q, scenario sc, answer a, condition c
1: procedure QUESTIONGEN(DATASET)
2: Init: state gen. GS , label gen. GL

3: Sample doc D from DATASET
4: Select non-leaf text node s ∈ D as potential answer
5: Construct extracted D by selecting anc., child., sibl., and sibl. child. of s
6: Gen. question q, scenario sc using GS(D)
7: Gen. cond. answers A = (ai, ci) using GL(q, sc,D)
8: end procedure

4.1 Decomposed Conditional Question Generation with Document Extraction

Let the conditional question generator be G and the conditional question answering
model be M . Recall that the intuition of our approach is that if we can provide G with
a more precise context with sufficient information for a conditional question, then G
can answer the question correctly, and the obtained question-answer data can be used to
trainM . To achieve this, we adopt a two-step method: selective extraction and question
generation. A specific overview of conditional question generation is in Algorithm 1.

Table 1. Statistics of the ConditionalQA train dataset for guiding selective extraction.

answers conditions

leaf node 86.93% 92.53%

text node 92.49% 98.33%

(a) Features of answers and condition nodes:
whether they are leaf nodes or text nodes.

a-a pairs c-c pairs a-c pairs

sibling-sibling 66.55% 53.67% –

parent-child – – 39.59%

(b) Features of answer and condition pairs: answer
pairs (a-a), condition pairs (c-c), and
answer-condition pairs (a-c).

4.1.1 Selective Extraction

Selective extraction aims for precise context to generate conditional questions. The
main requirement for the selected context is to contain sufficient information to answer
a conditional question. To guide our extraction strategy, we analyzed the ConditionalQA
dataset, which also leverages structural documents for the CQA task. (Table 1). We ana-
lyzed the occurrence and correlations between answers and conditions, and observed
several features: (1) answers and conditions are mainly located in leaf text nodes, such
as 〈p〉 and 〈li〉 nodes; (2) answers are usually siblings; (3) conditions for extractive
answers may be their child nodes; (4) sibling nodes with the same parent node can
serve as parallel answers.

Guided by these insights, our extraction method involves the following steps. Firstly,
we randomly select a non-leaf text node as a potential answer, because conditional
answers are most likely to be such nodes. Then, we then extract its ancestors, children,
siblings, and their children from the document tree, because: (1) ancestor nodes pro-
vide the macro context of higher-level topics; (2) child nodes offer potential conditions;
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Table 2. Basic operations for Contrastive Learning.

Operation Description Advantages

Node masking Mask node with [MASK] of same length Focus on structure & context

Node deletion Delete non-root node & descendants Learn node dependencies & importance

Node cloning Clone node & descendants as another child Identify semantically similar elements

Node shuffling Shuffle child nodes within parent Understand impact of node order

(3) siblings, along with their children, provide parallel answers. Afterward, we obtain
an extracted document that enables generating conditional questions aligned with the
original text and answerable with accuracy.

4.1.2 Question Generation

The question generation approach are decomposed into two tasks: state generation
and label generation. The first task is to generate question q and scenario sc given
the extracted structured document D, and the second task is to generate highly accu-
rate conditional answers A = {(a1, c1), (a2, c2), . . .}, where ai is an answer and ci
denotes the corresponding conditions. We leverage a state generator GS , a sequence-
to-sequence (Sutskever et al. 2014) generative model to provide diverse content, and
a conditional answer extraction model GL, an extractive model to provide accurate
answers. More information on the network structure and training process of G can be
found in Appendix C.

In general, by leveraging structured documents for precise document extraction and
supervised generator training, we ensure that we can identify the locations of potential
answers and conditions within structured documents, thereby achieving the generation
of high-quality conditional questions and ensuring the correct answering of questions
for subsequent training.

4.2 Purturbation-Based Document Contrastive Learning

Our contrastive learning approach on structured documents involves the following steps:
document perturbation, positive sample generation, and contrastive loss computation.
At the training stage, the computed loss is added to the total training loss for optimiza-
tion.

4.3 Document Perturbation

To perturb the original documentD and obtain a perturbed document D̂, we introduce a
set of basic operations T that can be applied to the document structure. These operations,
detailed in Table 2, include node masking, node deletion, node cloning, and node shuf-
fling. Assume the original documentD has a title s0 andm nodes (n1, n2, ..., nm). Start-
ing with the original documentD0, we apply k random operations from the set T to gen-
erate the perturbed document D̂ = Dk. Each operation Ti is applied as Ti(Dj) = Dj+1

for any Ti selected from T .
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4.3.1 Positive Pair Generation

We get positive pairs from D and D̂ for loss calculation. For the ith node n′
i in the

perturbed document D̂, there is a corresponding source node nki
in the original doc-

ument D. We form positive pairs using tags t′i and tki
that serves as global tokens of

the nodes, which effectively convey node type and semantics despite structural changes
during document perturbation.

4.3.2 Contrastive Loss Computation

We use the InfoNCE loss LCL(D, D̂) for contrastive learning, defined as:

LCL(D, D̂) =
m′∑

i=1

esim(t′
i,tki

)

esim(t′
i,tki

) +
∑

t−
ki

e
sim(t′

i,t
−
ki

)
, (1)

where m′ is the total number of nodes in D̂, t′i and tki
represents a positive pair,

and t−ki
represents tags of any nodes other than nki

in D. sim computes the similar-
ity between tags using the dot product of their hidden states from a neural document
encoder, detailed in Sect. 4.3. The loss encourages high similarity between each t′i and
tki

while minimizing similarity with negative tags t−ki
.

In general, our contrastive learning approach enables self-supervised training by
perturbing structured documents to construct contrastive pairs. By reinforcing node
correspondence in structured documents, the method supports conditional question
answering models in accurately capturing semantic connections between conditions and
answers in complex contexts.

4.4 Pipeline for Answering Conditional Questions

Our proposed pipeline, illustrated in Fig. 4, comprises three steps: (1) document encod-
ing, (2) multiple answer extraction, (3) condition determination. An auxiliary task Evi-
dence Node Finding is added when necessary (Appendix D).

4.4.1 Document Encoding

In the document encoding process, we first construct the input sequence, which consists
of special tokens “[yes]” and “[no]” document content, question, and scenario. The
special tokens are used to represent affirmative/negative answers. We represent the input
sequence as follows:

Input = “[yes][no]document : ” +D

+ “question : ” + q + “Scenario : ” + sc,

where [yes] and [no] are special tokens for yes/no answers. It is passed to E returning
hidden states:

Output = Transformer(Input)
= h[yes], h[no], ...hti , haij

, ...,
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...

Transformer Encoder

Condition Classification Layer

Qi Qk Kj

+ Evidence 
Classifier

<yes> ...<no> document: <h1> How it ... question:

...<yes> ...<no> document: <h1> How it <p>... ... question: ...

...

<p> If ...

<p> ... <p>You If ...

- Span 
Classifier

-Node         
Classifier

You

-

Condition
Matching

Fig. 4. Our pipeline to answer conditional questions.

where h[yes], h[no] are hidden states of special tokens, hti represents hidden state of
the tag of the ith node in the document, and haij

represents hidden state of the ith

node’s jth token. These hidden states are used by the multi-layer perceptron (MLP)
classifiers PS , PN , PV to calculate probabilities for answer extraction and condition
determination.

4.4.2 Multiple Answer Extraction

To simplify the answer extraction process, we assume that a node has no more than
one answer, and we retain only one answer if multiple exist. Since it’s rare that a node
has multiple answers, this process simplifies extraction by identifying potential answer
nodes and determining the answer’s start and end positions within the node.

We use two classifiers: a node classifier PN to identify answer-containing nodes (or
yes/no tokens) and an answer span classifier PS to locate the answer’s position within
selected nodes.

For node classification, we set:

pNyes/no = PN (h[yes]/[no]),

pNi = PN (hti),
(2)

where p represents probabilities given by these classifiers. From the above, we can
obtain yes/no answers and sentences containing extractive answers from node classifi-
cation results. At training, We set a Binary Cross Entropy (BCE) loss for node classifi-
cation:

Lbool =
BCE(pNyes, I

N
yes) + BCE(pNno, I

N
no)

2
, (3)

Lextractive =
1
m

m∑

i=1

BCE(pNi , INi ), (4)

LN = Lbool + Lextractive, (5)
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where I represents boolean labels to indicate whether the given element satisfies some
requirements, e.g., INi represents whether the ith node is a potential answer node, assum-
ing totallym nodes.

For answer span localization, we adopt a span locator PS for any positive nodes of
the above process by:

pSi
j1 , p

Si
j2 , ... = PSi

(aAj1), PSi
(aAj2), ...,

(i ∈ (1, 2), j ∈ (1, 2, ..., k)),
(6)

where PS1 , PS2 predict start/end of the answer, aAju denotes the uth token of the jth

predicted node nA
j to have an answer, and pSi

ju are the predicted probabilities. At training,
we adopt a span loss:

LS =
1
2kr

2∑

i=1

kr∑

j=1

l
nA
j∑

u=1

1
lnA

j

BCE(pSi
ju, I

Si
ju), (7)

where kr represents the real count of answers and lnA
j
represents the number of tokens

of nA
j .

4.4.3 Condition Determination

To align with the document structure, we define that a potential condition must be a
node in the document. Therefore, the condition determination process is to predict the
probability of a node being the condition of an answer. To model this, we assign query
vectors to answers, and key vectors to nodes:

hQ
i = WQ ReLU(WHhi),

hK
j = WK ReLU(WHhj),

(8)

where hi, hj denotes the hidden state of ith answer and jth sentence. WH ,WQ,WK

are transformation matrices, hQ
i , h

K
j denotes the query vector of ith answer and the key

vector of jth sentence.
Then, we calculate on conditions:

pCij = sigmoid(hQ
i · hK

j ), (9)

where pCij denotes the probability of jth node to be the condition of the ith answer. We
adopt the following loss for training:

LC =
1

krm

kr∑

i=1

m∑

j=1

BCE(pCij , I
C
ij). (10)

From the above process, we can fuse the representations of answers and conditions
to model the condition determination process. Therefore, our pipeline has resolved the
conditional question answering task. At training, we linearly mix up all losses men-
tioned:

Ltrain = LN + LS + LC + LCL. (11)
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5 Experiments

5.1 Datasets and Evaluation Metrics

To construct a dataset of structured documents, we scrape web pages from English web-
sites. Our data collection process is detailed in Appendix A. To evaluate LSD’s effec-
tiveness on CQA, we conduct experiments on ConditionalQA (Sun et al. 2022a) dataset.
It consists of extractive questions, yes/no questions, and not-answerable questions. The
task is to find all answers with corresponding conditions on a structured document based
on the given questions and scenarios.

Evaluation.

To evaluate model performance, we adopt the metrics of EM/F1 and EM/F1 with con-
ditions, which are introduced in the ConditionalQA (Sun et al., 2022a) dataset. EM/F1
are conventional metrics, and EM/F1 with conditions jointly measures the correctness
of the answer and the predicted conditions. For not answerable questions, EM and F1
are 1.0 if and only if no answer is predicted.

5.2 Results

We compared the LSD model with all of the baseline models for CQA. To evaluate the
model’s performance in both answering questions and providing conditions, we present
results for the entire ConditionalQA dataset and its subset of conditional questions.

Table 3. The results of our experiments on the ConditionalQA dataset. “EM/F1” shows the stan-
dard EM/F1 metrics based on the answer span only. “w/ conds” shows the conditional EM/F1
metrics introduced in (Sun et al. 2022a). The results for the baseline models are taken from (Sun
et al. 2022a) (Sun et al. 2022b)

Yes/No Extractive Conditional Overall

EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

ETC-pipeline 63.1/63.1 47.5/47.5 8.9/17.3 6.9/14.6 39.4/41.8 2.5/3.4 35.6/39.8 26.9/30.8

DocHopper 64.9/64.9 49.1/49.1 17.8/26.7 15.5/23.6 42.0/46.4 3.1/3.8 40.6/45.2 31.9/36.0

FiD 64.2/64.2 48.0/48.0 25.2/37.8 22.5/33.4 45.2/49.7 4.7/5.8 44.4/50.8 35.0/40.6

TReasoner 73.2/73.2 54.7/54.7 34.4/48.6 30.3/43.1 51.6/56.0 12.5/14.4 57.2/63.5 46.1/51.9

LSD (ours) 71.6/71.6 51.6/51.6 39.9/56.4 31.6/43.8 57.3/61.8 21.4/25.1 58.7/66.2 45.0/50.5

5.2.1 Main Result

Table 3 shows the results on the entire conditionalQA dataset. The result indicates that:

(1) LSD outperforms all baselines in EM/F1 and conditional EM/F1 for extractive and
conditional questions, demonstrating the effectiveness of our conditional question
generation and contrastive learning.
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Table 4. Experimental results on the subset of questions in ConditionalQA (dev) with conditional
answers. Results of the baseline models are obtained from (Sun et al. 2022a) (Sun et al. 2022b).
The first two models “do not provide any conditions when they achieved the best performance on
the overall dataset”.

Answer Conditions

(w/conds) (P/R/F1)

ETC-pipeline / /

DocHopper / /

FiD 3.2/4.6 98.3/2.6/2.7

FiD (cond) 6.8/7.4 12.8/63.0/21.3

TReasoner 10.6/12.2 34.4/40.4/37.8

LSD (ours) 21.4/25.1 69.3/39.4/50.2

(2) LSD performs not as well as TReasoner in Yes/No questions. We speculate that its
attributed to LSD inclination to provide conditional answers due to training with
our question generation system (Appendix B), which is penalized by the evalua-
tion metric in (Sun et al. 2022a).

(3) In “w/ conds” overall results, LSD performs less well than TReasoner, potentially
due to TReasoner’s specialized multi-hop reasoning for condition determination,
which may warrant further enhancement in LSD.

5.2.2 Conditional Accuracy

To further evaluate our model’s ability to provide conditions for answers, we addition-
ally report results on the subset of conditional questions in Table 4. We evaluate the
results using the “w/ conds” metric, as well as precision, recall, and F1 of retrieved
conditions for conditional answers. The result shows that our method significantly out-
performs the current model in providing conditions.

6 Analysis

In this section, we conduct an ablation study to investigate the impact of our document
modeling designs and contrastive learning. We further analyze the question generation
process by evaluating the quality of generated questions and the accuracy of generated
labels.

6.1 Ablation Study

We conduct an ablation study on the dataset to investigate the impact of conditional
question generation and contrastive learning. Results on the dev set of ConditionalQA
in Table 5 show that both conditional question generation and contrastive learning are
of importance, as removing either of them causes a significant performance drop in the
final results.



Learning on Structured Documents for Conditional Question Answering 49

Table 5. Ablation study of our model on the dev set of ConditionalQA.

Yes/No Extractive Conditional Overall

EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

LSD (ours) 71.6/71.6 51.6 / 51.6 39.9 / 56.4 31.6/43.8 57.3/61.8 21.4/25.1 58.7 / 66.2 45.0/50.5

w/o CL 69.6/69.6 49.9/49.9 38.0/55.7 29.8/43.2 54.6/59.1 19.4/23.2 56.9/64.8 43.3/49.4

w/o QG 67.9/67.9 47.1/47.1 37.2/54.9 29.0/42.5 54.0/58.6 17.8/21.6 55.7/63.7 41.6/47.6

Table 6. Evaluation on our question generation method.

ROUGE (%) BLEU (%)

question 42.07 38.19

scenario 39.57 41.65

(a) Evaluation on state generator’s output quality.

Yes/No Extractive Conditional Overall

EM/F1 (%) 79.6/79.6 51.2/67.2 69.9/73.8 67.8/75.0

w/conds (%) 50.8/50.8 38.9/51.3 33.4/35.5 47.9/53.4

(b) Evaluation on accuracy of generated labels.

6.2 State Generator’s Output Quality

We use BLEU and ROUGE-L to measure the state generator’s generated questions and
scenarios’ similarity to questions and scenarios from the evaluation dataset for question
generation, QG-dev (detailed in Appendix C). The results are shown in Table 6a. Some
examples are shown in Appendix E.

6.3 Label Generator’s Output Accuracy

We evaluate our label generator’s capability in providing accurate answers for ques-
tions given the extracted documents from QG-dev, shown in Table 6b. The result shows
that the label generator can provide accurate answers given a selected context from the
document.

7 Conclusion and Limitations

In this paper, we present Learning on Structured Documents (LSD), a self-supervised
learning method for conditional question answering. LSD uses a conditional question
generation method to leverage massive structured documents while improving concise-
ness, and applies contrastive learning to learn effective semantic representations from
complex documents. We further propose a pipeline that could generate multiple answers
and conditions to better handle the CQA task. We verify the effectiveness of the pro-
posed method on the ConditionalQA dataset. For future work, we plan to investigate
how to better generate conditional questions and improve our model’s performance in
providing correct answers.

Despite the effectiveness of LSD in utilizing the structure of massive unsupervised
data, there are still some potential points for improvement. One issue is that the state
generator is only trained on answerable questions, leading to a distribution bias that
there might be unanswerable questions. In addition, our pipeline can still not handle
the position where a sentence has more than one answer, which limits our model’s
performance for broader scenarios. We will resolve these issues in future work.



50 Z. Wang et al.

Acknowledgements. This work was supported by National Natural Science Founda-
tion of China No. 62272467, Beijing Outstanding Young Scientist Program No. BJJWZYJH012
019100020098, and Public Computing Cloud, Renmin University of China. The work was par-
tially done at Beijing Key Laboratory of Big Data Management and Analysis Methods.

Appendix

A DATASET Curation Details

Table 7. Statistics of our scraped dataset. We present document count, average document length
measured by word (Avg. w) and sentences (Avg. s), average sentence length (Avg w/s) and tag
distribution (h:p:li/tr).

UK US CA Overall

count 17,881 577 12,115 30,573

Avg. w 709 179 2,538 1423

Avg. s 54 26 128 83

Avg. w/s 12.9 6.9 19.8 17.0

Tag dist. 14:45:41 38:40:22 10:40:50 12:41:57

DATASET contains a total of 30,573 documents, approximately 362MB in size (1×
108 tokens). The statistics of our scraped dataset are shown in Table 7. The data curation
process are detailed below.

A.1 Data Acquisition

To build DATASET, we scrape web pages from government websites: https://www.gov.
uk, https://www.ca.gov, and https://www.usa.gov, as they have professional English
material and have a massive number of well-structured documents, such as policies,
regulations, and proposals.

A.2 Data Filtering

Page Category Filtering. We use automated web scraping to categorize pages on the
selected government websites based on URL. We retaine only pages related to policy
documents, regulatory provisions, administrative guidelines, etc.

Content Validity Check. We further examined the retained pages to exclude invalid,
redundant, or duplicate documents.

https://www.gov.uk
https://www.gov.uk
https://www.ca.gov
https://www.usa.gov
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A.3 Data Cleaning

Tag Normalization. We use automated cleaning and standardization tools to fix irreg-
ular HTML tags and attributes in documents, close unclosed tags, and standardize
attribute values.

Irrelevant Content Removal. We remove nodes without text, advertisements, hyper-
links, images, videos, and other irrelevant information, retaining textual content for
better model understanding of document structure and content.

Node Filtering. We filtere nodes containing document content, i.e., < h1 > to < h6 >
(headings), < p > (paragraphs), < li > (list items), < tr > (table rows), etc.

DOM Tree Construction. We use an HTML parser to parse the filtered nodes and
construct the Document Object Model (DOM) tree following the method proposed in
Sect. 3.

A.4 Dataset Splitting

We split the processed dataset into training and validation sets for model training and
performance evaluation with a ratio of 4:1.

B Question Generation Details

Table 8. Statistics of our generated dataset and ConditionalQA dataset in comparison. We present
the percentage of every type of questions, average answer count, condition count, condition count,
context length and document length (by word) if applicable.

Our Dataset Yes/No Extractive Conditional

Percentage 52.4 47.5 45.1

Avg. answer 1.36 1.46 1.86

Avg. condition 0.89 1.04 2.14

Avg. context 292 350 413

Avg. document 1,467 1,260 1,525

ConditionalQA Yes/No Extractive Conditional

Percentage 51.1 44.6 23.4

Avg. document 1358

We present the statistics to show our question generation module’s behavior on
the scraped augmentation corpus. We randomly generate 1,000 samples with the QG
module and present results in Table 8.
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C Implementation Details

C.1 Network Structure and Setup

For the conditional question generator G: we adopt BART1 (Lewis et al. 2020), a seq-
to-seq transformer for state generator GS ; for label generator GL, we adopt the same
setting of M , as detailed below.

For conditional question answering model M : We adopt Longformer2 (Beltagy
et al. 2020), a Transformer designed for long complex context, for the neural doc-
ument encoder E; for MLP classifiers PN , PS , PV , we set num_layers=2 and
dim_hidden_states=768; for transformation matrices, we set dim(WH) = (3072, 768)
and dim(WQ) = Dim(WK) = (768, 3072).

To setup Longformer, we set the HTML tags as its global tokens. For extremely long
documents beyond length limit, we chunk them into pieces with overlap and aggregate
predicted answers from these pieces.

C.2 Training Conditional Question Generator

To train conditional question generator G, we use 80% data of the ConditionalQA train
set, named QG-train, and the rest for evaluation, named QG-dev. We take the descen-
dants and ancestors of all given evidence sentences from the document for extraction.
We train G on QG-train for 10 epochs, adopting the Adam (Kingma and Ba 2015) opti-
mizer, setting learning rate to 3e-5 and batch size to 32.

C.3 Training Conditional Question Answerer

Training conditional question answering model M consists of two stages. In the self-
supervised stage, we train M on our scraped dataset for 20 epochs, with a newly gen-
erated question and answer data for every epoch. We use the LAMB (You et al. 2020)
optimizer for this stage, with the learning rate set to 1e-4 and the batch size set to 256.
In the supervised stage, we adopt the Adam (Kingma and Ba 2015) optimizer, setting
the learning rate to 3e-5 and batch size to 32, and trained on ConditionalQA train set
for 50 epochs. For both stages of training, we adopt a warm-up episode of 10% propor-
tion with linear learning rate decay. For document chunking, We set the maximum of
document length to 2000 to fit into the GPU memory, with an overlap of 100 tokens.
For contrastive learning, we adopt k=5.

D Auxiliary Task: Evidence Node Finding

To improve model reasoning for yes/no questions, we introduce an auxiliary task to
identify evidence nodes supporting the answer. The task is jointly trained with others
and is active when datasets provide evidence information. We use an evidence classifier
PV for this task and define:

1 https://huggingface.co/facebook/bart-large.
2 https://huggingface.co/allenai/longformer-large-4096.

https://huggingface.co/facebook/bart-large
https://huggingface.co/allenai/longformer-large-4096
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pVi = PV (hti), (12)

LE =
1
m

m∑

i=1

BCE(pVi , I
V
i ), (13)

When the evidence node finding task is activated, the training loss turns to:

Ltrain = LN + LS + LC + LCL + LE. (14)

E Case Studies for Question Generation

In this section, we provide 3 generated questions and the model-generated questions
and conditional answers.
Example 1
Context:
〈title〉Funding Opportunities〈/title〉
〈h1〉Funding Opportunities〈/h1〉
〈h2〉Current Opportunities〈/h2〉
〈p〉Winter Collaborative Networks〈/p〉
〈li〉GC Key access〈/li〉
〈li〉SecureKey Concierge (Banking Credential) access〈/li〉
〈li〉Personal Access Code (PAC) problems or EI Access Code (AC) problems〈/li〉
〈li〉Social Insurance Number (SIN) validation problems〈/li〉
〈li〉Other login error not in this list〈/li〉

Generated Contents:
Question:

What type of access is required for the Winter Collaborative Networks funding
opportunity?

Scenario:
I am interested in applying for the Winter Collaborative Networks funding opportu-

nity, but I am unsure of what type of access is required.

Answers and Conditions:
[GC Key access, None],
[SecureKey Concierge (Banking Credential) access, None],
[Personal Access Code (PAC) problems or EI Access Code (AC) problems, None],
[Social Insurance Number (SIN) validation problems, None],
[Other login error not in this list, None]

Example 2, 3
Context:
〈title〉Claim Capital Allownces〈/title〉
〈h1〉What you can claim on〈/h1〉
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〈p〉You can claim capital allowances on items that you keep to use in your business -
these are known as ‘plant and machinery’.〈/p〉
〈p〉In most cases you can deduct the full cost of these items from your profits before tax
using annual investment allowance (AIA).〈/p〉
〈p〉If youâĂŹre a sole trader or partnership and have an income of £150,000 or less a
year, you may be able to use a simpler system called cash basis instead.〈/p〉
〈h2〉What does not count as plant and machinery〈/h2〉
〈p〉You cannot claim plant and machinery allowances on:〈/p〉
〈li〉things you lease (unless you have a hire purchase contract or long funding lease) -
you must own them〈/li〉
〈li〉items used only for business entertainment, for example a yacht or karaoke
machine〈/li〉
〈li〉land〈/li〉
〈li〉structures, for example bridges, roads, docks〈/li〉
〈li〉buildings, including doors, gates, shutters, mains water and gas systems〈/li〉
〈p〉You may be able to claim structures and buildings allowance on structures and
buildings.〈/p〉
〈h2〉What counts as plant and machinery〈/h2〉
〈p〉Plant and machinery includes:〈/p〉
〈li〉items that you keep to use in your business, including cars〈/li〉
〈li〉costs of demolishing plant and machinery〈/li〉
〈li〉parts of a building considered integral, known as ‘integral features’〈/li〉
〈li〉some fixtures, for example, fitted kitchens or bathroom suites〈/li〉
〈li〉alterations to a building to install plant and machinery - this does not include
repairs〈/li〉
〈p〉Claim repairs as business expenses if youâĂŹre a sole trader or partnership - deduct
from your profits as a business cost if youâĂŹre a limited company.〈/p〉
〈h3〉Integral features〈/h3〉
〈p〉Integral features are:〈/p〉
〈li〉lifts, escalators and moving walkways〈/li〉
〈li〉space and water heating systems〈/li〉
〈li〉air-conditioning and air cooling systems〈/li〉
〈li〉hot and cold water systems (but not toilet and kitchen facilities)〈/li〉
〈li〉electrical systems, including lighting systems〈/li〉
〈li〉external solar shading〈/li〉
〈h3〉Fixtures〈/h3〉
〈p〉You can claim for fixtures, for example:〈/p〉
〈li〉fitted kitchens〈/li〉
〈li〉bathroom suites〈/li〉
〈li〉fire alarm and CCTV systems〈/li〉
〈p〉You can claim if you rent or own the building, but only the person who bought the
item can claim.〈/p〉
〈p〉When you buy a building from a previous business owner you can only claim for
integral features and fixtures that they claimed for.〈/p〉
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〈p〉You must agree on the value of the fixtures with the seller. If you do not you cannot
claim for them. Agreeing the value also means the person selling the assets can account
correctly for them.〈/p〉
〈h2〉If you let residential property〈/h2〉
〈p〉You can only claim for items to be used in a residential property if either:〈/p〉
〈li〉you run a furnished holiday lettings business〈/li〉
〈li〉the item is to be used in the common parts of a residential building, for example, a
table in the hallway of a block of flats〈/li〉
〈h2〉Care workers〈/h2〉
〈p〉There are special rules if you run a care business.〈/p〉

Generated Contents:
Question:

Can I claim capital allowances on a yacht used for entertaining clients?

Scenario:
I am a business owner and I want to purchase a yacht to entertain clients. I want to

know if they can claim capital allowances on it.

Answers and Conditions:
[No, None]

Question:
Can I claim capital allowances on the commercial building I purchased for my busi-

ness?

Scenario:
I am a business owner and I recently purchased a commercial building to use as a

location for my business.

Answers and Conditions:
[No, [〈p〉You cannot claim plant and machinery allowances on:〈/p〉, 〈li〉buildings,

including doors, gates, shutters, mains water, and gas systems〈/li〉]]
[Yes, 〈p〉You may be able to claim structures and buildings allowance on structures

and buildings.〈/p〉]

References

Ainslie, J., et al.: ETC: encoding long and structured inputs in transformers. In: Webber, B.,
Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 268–284.
Association for Computational Linguistics (2020)

Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer (2020). CoRR,
abs/2004.05150



56 Z. Wang et al.

Brown, T.B., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M.A.,
Hadsell, R., Balcan, M.F., Lin, H.T. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12
December 2020, virtual (2020)

Chen, Y., Wu, L., Zaki, M.J.: Natural question generation with reinforcement learning based
graph-to-sequence model (2019). CoRR, abs/1910.08832

Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders as dis-
criminators rather than generators. In: ICLR (2020)

Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Jurafsky, D.,
Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 8440–
8451. Association for Computational Linguistics (2020)

Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S., Wang, W.: KBQA: learning question answering
over QA corpora and knowledge bases. Proc. VLDB Endow. 10(5), 565–576 (2017)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–
7 June 2019, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics (2019)

Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embeddings. In:
Moens, M.F., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana,
Dominican Republic, 7–11 November 2021, pp. 6894–6910. Association for Computational
Linguistics (2021)

Guo, Y., et al.: Webformer: pre-training with web pages for information retrieval. In: Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2022, New York, NY, USA, pp. 1502–1512. Association for Computing
Machinery (2022)

Izacard, G., Grave, E.: Leveraging passage retrieval with generative models for open domain
question answering. In: Merlo, P., Tiedemann, J., Tsarfaty, R. (eds.) Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, EACL 2021, Online, 19–23 April 2021, pp. 874–880. Association for Computational
Linguistics (2021)

Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Webber,
B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 6769–
6781. Association for Computational Linguistics (2020)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.)
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

Kwiatkowski, T., et al.: Natural questions: a benchmark for question answering research. Trans.
Assoc. Comput. Linguist. 7, 452–466 (2019)

Lample, G., Conneau, A., Denoyer, L., Ranzato, M.: Unsupervised machine translation using
monolingual corpora only. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings.
OpenReview.net (2018)

Le Berre, G., Cerisara, C., Langlais, P., Lapalme, G.: Unsupervised multiple-choice question
generation for out-of-domain Q&A fine-tuning. In: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics, Dublin, Ireland, May 2022, vol. 2: Short
Papers, pp. 732–738. Association for Computational Linguistics (2022)



Learning on Structured Documents for Conditional Question Answering 57

Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language gen-
eration, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R.
(eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2020, Online, 5–10 July 2020, pp. 7871–7880. Association for Computational Lin-
guistics (2020)

Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach (2019). CoRR,
abs/1907.11692

Sun, H., Cohen, W.W., Salakhutdinov, R.: End-to-end multihop retrieval for compositional ques-
tion answering over long documents (2021). CoRR, abs/2106.00200

Sun, H., Cohen, W.W., Salakhutdinov, R.: Conditionalqa: a complex reading comprehension
dataset with conditional answers. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022,
Dublin, Ireland, 22–27 May 2022, vol. 1: Long Papers, pp. 3627–3637. Association for Com-
putational Linguistics (2022a)

Sun, H., Cohen, W.W., Salakhutdinov, R.: Reasoning over logically interacted conditions for
question answering (2022b). CoRR, abs/2205.12898

Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances
in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 3104–3112
(2014)

Yang, Z., et al.: Hotpotqa: a dataset for diverse, explainable multi-hop question answering. In:
Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 Novem-
ber 2018, pp. 2369–2380. Association for Computational Linguistics (2018)

Yang, N., Wei, F., Jiao, B., Jiang, D., Yang, L.: xMoCo: cross momentum contrastive learning
for open-domain question answering. In: Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, Online, August, vol. 1: Long Papers), pp. 6120–6129. Association for
Computational Linguistics (2021)

You, Y., et al.: Large batch optimization for deep learning: training BERT in 76 minutes. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
26–30 April 2020. OpenReview.net (2020)



Overcoming Language Priors
with Counterfactual Inference for Visual

Question Answering

Zhibo Ren, Huizhen Wang(B), Muhua Zhu, Yichao Wang, Tong Xiao,
and Jingbo Zhu

NLP Lab, School of Computer Science and Engineering,
Northeastern University, Shenyang, China

rzb1998@qq.com, wanghuizhen@mail.neu.edu.cn

Abstract. Recent years have seen a lot of efforts in attacking the issue
of language priors in the field of Visual Question Answering (VQA).
Among the extensive efforts, causal inference is regarded as a promising
direction to mitigate language bias by weakening the direct causal effect
of questions on answers. In this paper, we follow the same direction and
attack the issue of language priors by incorporating counterfactual data.
Moreover, we propose a two-stage training strategy which is deemed to
make better use of counterfactual data. Experiments on the widely used
benchmark VQA-CP v2 demonstrate the effectiveness of the proposed
approach, which improves the baseline by 21.21% and outperforms most
of the previous systems.

Keywords: Visual Question Answering · Language Priors ·
Counterfactual Inference

1 Introduction

As an AI-complete task to answer questions about visual content, Visual Ques-
tion Answering (VQA) has seen surging interest in recent years. The task is
thought to be extremely challenging since a VQA system requires the capability
of visual and language understanding and the capability of multi-modal reason-
ing. Recent researches in this field have paid increasing attention to the issue
of language priors, aka language bias [2]. The issue of language priors is caused
by spurious correlation between the question pattern and the answer. See the
example in Fig. 1, “yellow” is the most likely answer to the question “what color
are the bananas” in the training data. So a simple solution to answering the
question is to give the answer “yellow” with no reference to visual content. Such
a short cut can achieve an accuracy of 54.5% for the question.

To overcome language priors in VQA, previous works generally resort to data
augmentation. In this direction, visual and textual explanations can be used as
the data for augmentation [10,20]. Besides, counterfactual training samples are
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also regarded as a valuable source for the purpose [8,12,17,28]. In the direction
of causal effect for VQA, more recent work is counterfactual VQA that focuses
on the inference instead of training phase [18], though, we still think of counter-
factual data augmentation as an efficient and effective way to solve the issue of
language priors. So in this paper we first design novel causal graphs specifically
for the task of VQA, and then use the causal graphs to guide the generation
of counterfactual data. Finally, to make better use of counterfactual data, we
propose a two-stage training strategy. We evaluate the proposed approach on
the widely used benchmark VQA-CP v2. Extensive experiments demonstrate
the effectiveness of the approach, which improves over the baseline by 21.21%
and outperforms most of previous systems. Moreover, to evaluate the general-
ization ability of the approach, we also experiment with VQA v2 and find that
our approach achieves the best performance on the dataset.

The contributions of the paper are as follows.

– For the task of counterfactual VQA, we design a novel causal graph and meth-
ods to construct counterfactual data.

– Our approach achieves significant improvements over the baseline and is one
of the best-performing systems on the benchmarks.

Fig. 1. An example from VQA v2 which is used to illustrate 1) the task of visual
question answering, and 2) the issue of language priors. (Color figure online)
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Fig. 2. Illustration of our approach, where the upper half presents the process of coun-
terfactual data generation and the bottom half represents the process of two-stage
training.

2 Methodology

In this section, we first describe the implementation of our baseline system. Then
we introduce the design of VQA causal graphs which inspire us to come up with
the proposed methods. Finally we describe the methods in detail. The system
framework is presented in Fig. 2.

2.1 The Baseline System

Following the conventional paradigm of VQA systems, we formalize the task
as a multi-class classification problem. In general, a VQA dataset consists of N
instances which are tuples of an image, a textual question, and the corresponding
answer, denoted as D = {Ii, Qi, Ai}Ni=1. VQA models take an image-question
pair (I,Q) as input, and predict an answer A by following

A∗ = argmax
A∈A

P (A|Ii, Qi), (1)
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where P (A|Ii, Qi) can be any model-based functions that map (I,Q) to produce
a distribution over the answer space A. Conventional VQA systems are generally
composed of three components:

– Feature Extraction, which extracts the features of images and question as
visual representation and text representation, respectively.

– Multimodal Feature Fusion, which fuses image and text features into the
same vector space.

– Answer Prediction, which produces the answer prediction through a clas-
sifier.

We follow [4] to implement our baseline system. The baseline system pays special
attention to feature extraction by integrating a combined bottom-up and top-
down attention mechanism to enable attention calculation at the fine-grained
level of objects. Within the approach, the bottom-up attention proposes image
regions while the top-down mechanism determines feature weightings.

2.2 Causal Graph for VQA

To better understand the casual graphs we propose for the VQA task, we need
to revisit the procedure of VQA data annotation. Specifically, when curating a
dataset, annotators are required to produce a question regarding visual content
of a presented image and give a correct answer. Therefore, we can construct a
casual graph to exhibit the relationship between three variables: the image I, the
question Q, and the answer A. Figure 3(a) illustrates the casual graph, where I
indirectly and directly affects A through I → Q → A and I → A, respectively.
In the chain of I → Q → A, the question Q acts as a mediator to influence A. If
we control the mediator Q, the causal association between I and A in the chain
I → Q → A will be blocked, that is, when the association between I and A is
not well learned through I → A (the middle and right graph in Fig. 3(a)), the
model will give the answer based on the question only but ignore the content of
the image. This phenomenon corresponds exactly to the language prior problem
in VQA. Therefore, we propose to introduce counterfactual data to weaken the
effect that comes from the chain I → Q → A, which is shown in Fig. 3(b).

2.3 Automatic Generation of Counterfactual Data

We propose two methods to construct counterfactual data, corresponding to
multimodal counterfactual data and unimodal counterfactual data, respectively.

Multimodal Counterfactual Data. First of all, we realize that the issue of
language priors is caused by the chain I → Q → A, so we need to mitigate the
influence of this branch on the selection of the answer. Inspired by [28], for each
pair(Ii, Qi) in factual data, we construct counterfactual data (I ′

i, Qi) by shuf-
fling image Ii in the same mini-batch, such that the image and the question in
counterfactual data are mismatched. The causal graph of counterfactual image
data is shown in Fig. 4(a). Following the same idea, we also propose to construct
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Fig. 4. Causal graph demonstrating the methods for generating counterfactual data.

counterfactual question data by shuffling questions in the same mini-batch. The
corresponding causal graph is illustrated in Fig. 4(b). Subsequent experiments
show that incorporation of multimodal counterfactual question data is also ben-
eficial to the performance, which demonstrates the presence of vision bias in the
VQA task, a phenomenon not often mentioned before.

It is worth noting that we do not resort to any extra human annotations dur-
ing the construction of the multimodal counterfactual data, but simply make use
of the factual data itself. The underlying idea is quite different from the methods
proposed in previous works for the construction of counterfactual data [8,12,17].

Unimodal Counterfactual Data. We further consider to construct unimodal
counterfactual data. We hope the model to accept information from only one
modality as input. Concretely, we construct unimodal counterfactual data by
passing only images(Ii, ∅) or questions(∅, Qi) into the model, which the causal
graph is illustrated in Fig. 4(c)(d). However, the model cannot handle the case
where the input is empty during implementation, so we choose to use a learnable
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Table 1. Comparison with the state-of-the-art methods on the VQA-CP v2 test set
and VQA v2 validation set. The evaluation metric is accuracy, and the backbone of
all models is UpDn. Overall best scores are bold and the second best of scores are
underlined.

Systems VQA-CP v2 test(%) VQA v2 val(%)
All Y/N Num Other All Y/N Num Other

UpDn 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66
GVQA 31.3 57.99 13.68 22.14 48.24 72.03 31.17 34.65
SAN 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
Systems without counterfactual inference
DLR 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
VGQE 48.75 – – – 64.04 – – –
AdvReg 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
RUBi 44.23 67.05 17.48 39.61 – – – –
LMH 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69
CVL 42.12 45.72 12.45 48.34 – – – –
Unshuffling 42.39 47.72 14.43 47.24 61.08 78.32 42.16 52.81
RandImg 55.37 83.89 41.6 44.2 57.24 76.53 33.87 48.57
SSL 57.59 86.53 29.87 50.03 63.73 – – –
Systems with counterfactual inference
CSS 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11
CSS+CL 59.18 86.99 49.89 47.16 57.29 67.29 38.40 54.71
CF-VQA 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30
MUTANT 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28
This Paper 60.95 87.95 50.41 49.70 64.11 82.23 44.09 56.75

parameter c multiplied by a matrix whose elements are all ones and the shape
is same as image representation or text representation as the null modal infor-
mation. Finally, the unimodal counterfactual data can be represented as (Ii, cq)
and (ci, Qi).

2.4 Two-Stage Training Strategy

In the real world, we can only give the right answer when we see the right factual
image-question pair. Conversely, we often cannot give the correct answer when
we see a counterfactual image-question pair. But usually in this case the correct
answer will change and the previously correct answer will often become the wrong
answer, which is the only thing we know for sure. We hope to solve language
prior problems by using counterfactual image data in the manner shown in Fig.
3(b). Specifically, when the VQA model takes the counterfactual image data as
input, we construct the loss function by minimizing the probability of the ground
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truth answer:
P (A′|I ′

i, Qi) = softmax(F (I ′
i, Qi))

Lmm_cf_i = P (A′|I ′
i, Qi)[k]

(2)

where k denotes the index of the ground truth in the answer set A. For the
counterfactual question data, the corresponding loss function is similar to Eq.
(2): , which can be defined as:

P (A′|Ii, Q′
i) = softmax(F (Ii, Q′

i))
Lmm_cf_q = P (A′|Ii, Q′

i)[k]
(3)

Finally, the loss of the multimodal counterfactual data is defined as:

Lmm_cf = λmm
i Lmm_cf_i + λmm

q Lmm_cf_q, (4)

where λi and λq are hyperparameters.
Similar to multimodal counterfactual data, the unimodal counterfactual loss

function can be defined as:

P (A′|ci, Qi) = softmax(F (ci, Qi))
Lum_cf_i = P (A′|ci, Qi)[k]

(5)

P (A′|Ii, cq) = softmax(F (Ii, cq))
Lum_cf_q = P (A′|Ii, cq)[k]

(6)

The total loss of unimodal counterfactual data is defined as:

Lum_cf = λum
i Lum_cf_i + λum

q Lum_cf_q (7)

Simply combining counterfactual and factual data together as training data may
render these two types of data interfere with each other. For this reason, we adopt
a two-stage training strategy, which utilize factual data and the normal VQA
loss function for training in the first stage and utilize counterfactual data and
counterfactual loss functions in the second stage. are introduced on top of the
first stage to alleviate the problem of the language priors of the VQA model:

Ltotal = Lvqa + λmmLmm_cf + λumLum_cf (8)

3 Experiments

3.1 Datasets and Comparative Systems

Datasets. We conducted extensive experiments on the most widely used bench-
mark VQA-CP v2 [2] adopting the standard evaluation metric. Because the
dataset of VQA v2 [13] has the language prior problem, [2] reorganized the data
splitting of VQA v2 to construct VQA-CP v2 where answers have different dis-
tributions in the training and validation set. Thus, VQA-CP v2 is an appropriate
benchmark for evaluating the generalization ability of VQA models. Briefly, the
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training set of VQA-CP v2 contains approximately 121k images and 245k ques-
tions, and the test set consists of approximately 98k images and 220k questions.

Comparative Systems. System participating in the comparison against our
approach can be categorized into two groups: 1) systems without counterfactual
inference, including DLR [14], VGQE [16], AdvReg [21], RUBi [7], LMH [9],
Unshuffling [23], RandImg [24], SSL [28], and 2) systems with counterfactual
inference, including CF-VQA [18], CSS [8], CL [17], and MUTANT [12].

3.2 Implementation Details

As mentioned above, our VQA system builds on the base of UpDn [4]. Following
previous researches, we use the Faster-RCNN [22] model previously trained by [4]
to extract image features. We extract 36 region features for each image and
the dimension of each region feature is set to 2048. Moreover, each question is
padded so as to have the same length of 14 tokens, and each token in questions is
encoded by the pretrained language model BERT [11] with a dimension of 768.
Then word embeddings are fed into GRUs to obtain the question representation
with a dimension of 1280. Inspired by SSL [28], we also add a BatchNorm layer
before the MLP classifier of UpDn. We train our model for 25 epochs every time.
We adopt the Adam optimizer to update model parameters, whose learning rate
is set to 0.001 and the learning rate decreases by half every 5 epochs after 10
epochs. The batch size is set to 256. We implement our system using PyTorch,
and we train our model with one Nvidia 2080Ti card.

3.3 Main Experimental Results

Table 1 presents the comparison results between our approach and previous sys-
tems on both VQA-CP v2. From the results, we can see that our approach signif-
icantly improves the baseline UpDn by +21.21% on VQA-CP v2. The improve-
ment demonstrates the effectiveness of our approach on mitigating the issue of
language prior. Moreover, our approach outperforms all the comparative systems
on VQA-CP v2 except for MUTANT which requires additional human annota-
tions of key objects in images. Moreover, we can see our approach achieves stable
performance on VQA v2 with the best performance over all the previous sys-
tems. To demonstrate the generality of our approach, we also experiment with
VQA v2, and the results show that our approach achieves the best performance
among all the participating systems.

3.4 Experiment Analysis

Impact of Counterfactual Data Combination
We proposed several types of counterfactual data, so we conducted a study on
the effect of each type of counterfactual data and the effect of their combinations.
From the results shown in Table 2, we have the following observations:
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– Both counterfactual image data (I ′
i, Qi) and counterfactual question data

(Ii, Q′
i) are able to improve the performance. The use of counterfactual image

data achieves significant improvements, while the counterfactual question data
achieves relatively limited improvements. This suggests that the main cause
of the language prior problem is the superficial correlation between questions
and answers, but there are also some vision bias that cannot be ignored.

– Both multimodal counterfactual data and unimodal counterfactual data can
improve the model performance, which demonstrates that these data can
prompt the generalization ability of model.

Table 2. Impact of different types of counterfactual data, evaluated on VQA-CP v2
test set. MM refers to multimodal counterfactual data and UM refers to unimodal
counterfactual data, respectively

Counterfactual Data Acc.
(I ′

i, Qi) (Ii, Q
′
i) (ci, Qi) (Ii, cq)

- 41.52
MM ✔ – – – 57.59

– ✔ – – 41.87
✔ ✔ – – 59.05

UM – – ✔ – 41.83
– – – ✔ 41.70
– – ✔ ✔ 41.88

Total ✔ ✔ ✔ ✔ 60.95

In summary, the above experimental results verify the validity of the counter-
factual data.

Impact of Varying Settings of λ
As we can see from the results in Table 2, different types of counterfactual data
have diverse effect on the performance. So we need to evaluate the effect of
varying settings of the hyperparameters λ in the loss functions. We divide λ into
three groups for comparison and conducted extensive experiments with different
λ values. From results in Table 3, we can observe that the model gets the best
performance when λmm

i : λmm
q is 1:0.7, λum

i : λum
q is 1:1, and λmm : λum is 1:1.

Impact of Varying Starting Points of the Second Stage Training
In the process of two-stage training, different starting points of the second stage
tend to achieve different results. So we conducted an experiment to show the
effect of varying starting points. As can be seen in Fig. 5, starting the training
on counterfactual data too early or too late will bring negative effect on the
performance. Empirically, we find the second stage can start its training at the
12th epoch.
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Impact of Different Backbones
We also conducted experiments on another backbones SAN [26] to verify that
our approach is model agnostic. From the results in Table 4, we can observe that
our approach can achieve significant improvements no matter what backbone is
used.

4 Related Work

Visual Question Answering Visual Question Answering aims to answer the
question according to the given image, which involves both natural language
processing and computer vision techniques. At present, the dominant meth-
ods are attention-based models. [4,26,27] use attentions mechanisms to cap-
ture the alignment between images and natural language in order to learn the

Table 3. Impact of different ratio between λ. We divide λ into three groups(λmm
i :

λmm
q ), (λum

i : λum
q ),(λmm : λum) according to the counterfactual data used, with

the latter group realized on the best results of the previous group’s experiment. The
evaluation metric is accuracy(%).

λ Ratio VQA-CP v2 test(%)

λmm
i :λmm

q 1:0.5 58.06
1:0.7 59.46
1:1 59.32
1:2 59.15
1:3 58.76

λum
i :λum

q 1:0.5 60.03
1:0.7 60.29
1:1 60.34
1:2 59.51
1:3 58.07

λmm:λum 1:0.5 60.17
1:0.7 60.53
1:1 60.95
1:2 58.21
1:3 60.29

Table 4. Performance of different backbones on VQA-CP v2 test set.

Methods Overall(%) Gap Δ ↑
UpDn 39.74 +21.21
UpDn + counterfactual data 60.95
SAN 24.96 +27.46
SAN + counterfactual data 52.42
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intrinsic interactions between image regions and words. [6] maps two modal fea-
tures(visual and textual features) into a common feature space and then passes
the joint embedding into the classifier to obtain the answer of the question.
Another methods including that compositional models that [5] applies neural
module network to the VQA task, which is a combination of several modular
networks. The neural module network is dynamically generated according to the
linguistic structure of the question. [25] introduces external knowledge to help
model with answering the questions.

Attacking Language Priors in VQA
Despite the progress made in the field of VQA, recent researches have found that
VQA systems tend to exploit superficial correlations between question patterns
and answers to achieve state-of-the-art performance [1,15]. To help build a robust
VQA system, [2] propose a new benchmark named VQA-CP whose training and
testing data have vast distributions. Recent solutions to overcome the language
priors can be grouped into two categories as without counterfactual inference [9,
23,28] and with counterfactual inference [3,8,12,17,19].

Fig. 5. Impact of different starting points of the second stage training, evaluated on
the VQA-CP v2 test set.

For the methods that without counterfactual inference, RUBi [7] proposes to
dynamically adjust the weights of samples according to the effect of the bias,
LMH [9] ensembles a question-only branch to discriminates which questions can
be answered without utilizing image and then penalizes these questions. Unshuf-
fling [23] describes a training procedure to capture the patterns that are stable
across environments while discarding spurious ones. SSL [28] proposes a self-
supervised framework that generates labeled data to balance the biased data.

For the methods that with counterfactual inference, One solution is to modify
model architecture that implement counterfactual inference to reduce the lan-
guage bias [18]. The other one is to synthesize counterfactual samples to improve
the robustness of VQA systems [3,8,12,17,19]. CSS [8] generates the counterfac-
tual samples by masking objects in the image or some keywords in the question.
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Based on CSS, CL [17] introduces a contrastive learning mechanism to force the
model to learn the relationship between original samples, factual samples and
counterfactual samples. MUTANT [12] utilizes the extra object-name annota-
tions to locates critical objects in the image and critical words in the question
and then mutates these critical elements to generate counterfactual samples.

5 Conclusion and Future Work

To mitigate the effect of language priors in the VQA task, we proposed a causal
inference approach that automatically generates counterfactual data and utilize
the data in a two-stage training strategy. We also designed several causal graphs
to guide the generation of counterfactual data. Extensive experiments on the
benchmark VQA-CP v2 shows that our system achieves significant improvements
over the baselines and outperforms most of previous works. Moreover, our system
achieves the best performance on VQA v2 which demonstrates the capability of
generalization.

The starting point of the second stage training is critical to the performance,
in our future work, we would like to determine the starting point in an automatic
way. Moreover, it is interesting to evaluate the performance when other networks
such as SAN are used as the backbone. We will also study this problem in our
future work.
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Abstract. Multi-Hop Question Answering (MHQA) is a significant area in ques-
tion answering, requiring multiple reasoning components, including document
retrieval, supporting sentence prediction, and answer span extraction. In this
work, we present the first application of label smoothing to the MHQA task,
aiming to enhance generalization capabilities in MHQA systems while mitigating
overfitting of answer spans and reasoning paths in the training set. We introduce a
novel label smoothing technique, F1 Smoothing, which incorporates uncertainty
into the learning process and is specifically tailored for Machine Reading Com-
prehension (MRC) tasks. Moreover, we employ a Linear Decay Label Smooth-
ing Algorithm (LDLA) in conjunction with curriculum learning to progressively
reduce uncertainty throughout the training process. Experiment on the HotpotQA
dataset confirms the effectiveness of our approach in improving generalization
and achieving significant improvements, leading to new state-of-the-art perfor-
mance on the HotpotQA leaderboard.

Keywords: Multi-Hop Question Answering · Label Smoothing

1 Introduction

Multi-Hop Question Answering (MHQA) is a rapidly evolving research area within
question answering that involves answering complex questions by gathering informa-
tion from multiple sources. This requires a model capable of performing several rea-
soning steps and handling diverse information structures. In recent years, MHQA has
attracted significant interest from researchers due to its potential for addressing real-
world problems. The mainstream approach to MHQA typically incorporates several
components, including a document retriever, a supporting sentence selector, and a read-
ing comprehension module [11,25,28]. These components collaborate to accurately
retrieve and integrate relevant information from multiple sources, ultimately providing
a precise answer to the given question.
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(a) Different Answer Span

Training set:
Gold Doc1: Love or Leave
"Love or Leave" was the Lithuanian entry in the Eurovision Song Contest 2007,
performed in English by 4FUN.
Gold Doc2: Lithuania in the Eurovision Song Contest
Lithuania has participated in the Eurovision Song Contest (known in Lithuania
as "Eurovizija") 18 times since its debut in 1994, where Ovidijus Vyšniauskas
finished last, receiving nul points.
Question: How many times does the song writer of "Love or Leave" have
participated in the Eurovision Song Contest?
Answer: 18 times

Validation set:
Gold Doc1: Binocular (horse)
"Love or Leave" was the Lithuanian entry in the Eurovision Song Contest
2007, performed in English by 4FUN.
Gold Doc2: Tony McCoy
Based in Ireland and the UK, McCoy rode a record 4,358 winners, and was
Champion Jockey a record 20 consecutive times, every year he was a
professional.
Question: The primary jockey of Binocular was Champion Jockey how many
consecutive times?
Answer: 20

(b) Multiple Feasible Reasoning Paths

Gold Doc1: Woolworth Building
(1) The Woolworth Building, at 233 Broadway, Manhattan, New York 

City, designed by architect Cass Gilbert and constructed between 
1910 and 1912, is an early US skyscraper.

Non-Gold Doc: F. W. Woolworth Building (Watertown, New York)
(1) The Woolworth Building is an historic building in Watertown, New 

York.
(2) It is a contributing building in the Public Square Historic District.
(3) Plans for the Woolworth Building were begun in 1916 by Frank W. 

Woolworth, the founder of the Woolworth's chain of department 
stores.

Question: Which was built first Woolworth Building or 1 New York 
Plaza?
Answer: Woolworth Building
Evidence Sentences: ["Woolworth Building", 0], ["1 New York 
Plaza",0]

Gold Doc2: 1 New York Plaza
(1) 1 New York Plaza is an office building in New York City's Financial 

District, built in 1969 at the intersection of South and Whitehall 
Streets.

(2) It is the southernmost of all Manhattan skyscrapers.

Fig. 1. Causes of errors in answer span and multi-hop reasoning within the HotpotQA dataset.
In Figure (a), the answer from the training set contains a quantifier, while the answer from the
validation set does not. Figure (b) demonstrates that the correct answer can be inferred using a
non-gold document without requiring information from gold doc1.

Despite the remarkable performance of modern MHQA models in multi-hop rea-
soning, they continue to face challenges with answer span errors and multi-hop reason-
ing errors. A study by S2G [28] reveals that the primary error source is answer span
errors, constituting 74.55%, followed by multi-hop reasoning errors. This issue arises
from discrepancies in answer span annotations between the training and validation sets.
As illustrated in Fig. 1(a), the training set answer includes the quantifier “times”, while
the validation set answer does not. Upon examining 200 samples, we found that around
13.7% of answer spans in the HotpotQA validation set deviate from those in the training
set.

Concerning multi-hop reasoning, we identified the presence of unannotated, viable
multi-hop reasoning paths in the training set. As depicted in Fig. 1(b), the non-gold
document contains the necessary information to answer the question, similar to gold
doc1, yet is labeled as an irrelevant document. During training, the model can only dis-
card this reasoning path and adhere to the annotated reasoning path. Given that current
MHQA approaches primarily use cross-entropy loss for training multiple components,
they tend to overfit annotated answer spans and multi-hop reasoning paths in the train-
ing set. Consequently, we naturally pose the research question for this paper: How can
we prevent MHQA models from overfitting answer spans and reasoning paths in the
training set?

Label smoothing is an effective method for preventing overfitting, widely utilized
in computer vision [24]. In this study, we introduce label smoothing to multi-hop rea-
soning tasks for the first time to mitigate overfitting. We propose a simple yet efficient
MHQA model, denoted as R3, comprising Retrieval, Refinement, and Reading Com-
prehension modules. Inspired by the F1 score, a commonly used metric for evaluating
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MRC task performance, we develop F1 Smoothing, a novel technique that calculates
the significance of each token within the smooth distribution. Moreover, we incorpo-
rate curriculum learning [1] and devise the Linear Decay Label Smoothing Algorithm
(LDLA), which gradually reduces the smoothing weight, allowing the model to focus
on more challenging samples during training. Experimental results on the HotpotQA
dataset [30] demonstrate that incorporating F1 smoothing and LDLA into theR3 model
significantly enhances performance in document retrieval, supporting sentence predic-
tion, and answer span selection, achieving state-of-the-art results among all published
works.

Our main contributions are summarized as follows:

– We introduce label smoothing to multi-hop reasoning tasks and propose a baseline
model, R3, with retrieval, refinement, and reading comprehension modules.

– We present F1 smoothing, a novel label smoothing method tailored for MRC tasks,
which alleviates errors caused by answer span discrepancies.

– We propose LDLA, a progressive label smoothing algorithm integrating curriculum
learning.

– Our experiments on the HotpotQA dataset demonstrate that label smoothing effec-
tively enhances the MHQA model’s performance, with our proposed LDLA and F1
smoothing achieving state-of-the-art results.

2 Related Work

Label Smoothing. Label smoothing is a regularization technique first introduced in
computer vision to improve classification accuracy on ImageNet [24]. The basic idea
of label smoothing is to soften the distribution of true labels by replacing their one-hot
encoding with a smoother version. This approach encourages the model to be less confi-
dent in its predictions and consider a broader range of possibilities, reducing overfitting
and enhancing generalization [14,16,19]. Label smoothing has been widely adopted
across various natural language processing tasks, including speech recognition [2], doc-
ument retrieval [18], dialogue generation [21], and neural machine translation [5,6,15].

In addition to traditional label smoothing, several alternative techniques have been
proposed in recent research. For example, Xu et al. [29] suggested the Two-Stage
LAbel smoothing (TSLA) algorithm, which employs a smoothing distribution in the
first stage and the original distribution in the second stage. Experimental results demon-
strated that TSLA effectively promotes model convergence and enhances performance.
Penha and Hauff [18] introduced label smoothing for retrieval tasks and proposed using
BM25 to compute the label smoothing distribution, which outperforms the uniform dis-
tribution. Zhao et al. [31] proposedWord Overlapping, which uses maximum likelihood
estimation [23] to optimally estimate the model’s training distribution.

Multi-Hop Question Answering. Multi-hop reading comprehension (MHRC) is a
demanding task in the field of machine reading comprehension (MRC) that closely
resembles the human thought process in real-world scenarios. Consequently, it has
gained significant attention in the field of natural language understanding in recent
years. Several datasets have been developed to foster research in this area, including
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Fig. 2. Overview of ourR3 model, which consists of three main modules: Retrieval, Refinement,
and Reading Comprehension.

HotpotQA [30], WikiHop [26], and NarrativeQA [9]. Among these, HotpotQA [30] is
particularly representative and challenging, as it requires the model to not only extract
the correct answer span from the context but also identify a series of supporting sen-
tences as evidence for MHRC.

Recent advances in MHRC have led to the development of several graph-free mod-
els, such as QUARK [7], C2FReader [22], and S2G [28], which have challenged
the dominance of previous graph-based approaches like DFGN [20], SAE [25], and
HGN [4]. C2FReader [22] suggests that the performance difference between graph
attention and self-attention is minimal, while S2G’s [28] strong performance demon-
strates the potential of graph-free modeling in MHRC. FE2H [11], which uses a two-
stage selector and a multi-task reader, currently achieves the best performance on Hot-
potQA, indicating that pre-trained language models alone may be sufficient for mod-
eling multi-hop reasoning. Motivated by the design of S2G [28] and FE2H [11], we
introduce a our model R3.

3 Framework

Figure 2 depicts the overall architecture of R3. The retrieval module serves as the first
step, where our system selects the most relevant documents, which is essential for fil-
tering out irrelevant information. In this example, document1, document3, and doc-
ument4 are chosen due to their higher relevance scores, while other documents are
filtered out. Once the question and related documents are given, the refinement mod-
ule further selects documents based on their combined relevance. In this instance, the
refinement module opts for document1 and document4. Following this, the question
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and document1, document4 are concatenated and used as input for the reading com-
prehension module. Within the reading comprehension module, we concurrently train
supporting sentence prediction, answer span extraction, and answer type selection using
a multi-task approach.

3.1 Retrieval Module

In the retrieval module, each question Q is typically accompanied by a set of M doc-
uments D1,D2 . . . , DM , but only C, |C| << M (two in HotpotQA) are genuinely
relevant to question Q. We model the retrieval process as a binary classification task.
Specifically, for each question-document pair, we generate an input by concatenating
[CLS], question, [SEP], document, and [SEP] in sequence. We then feed the [CLS]
token output from the model into a linear classifier. Lretrieve represents the cross-entropy
between the predicted probability and the gold label. In contrast to S2G [28], which
employs a complex pairwise learning-to-rank loss, we opt for a simple binary cross-
entropy loss, as it maintains high performance while being significantly more efficient.

Lretrieve = E[− 1
M

M∑

i=1

(yretrieve
i · log(ŷretrieve

i )

+(1 − yretrieve
i ) · log(1 − ŷretrieve

i ))],

(1)

where ŷretrieve
i is the probability predicted by the model and yretrieve

i is the ground-truth
label. M is the number of provided documents. Emeans the expectation of all samples.

yretrieve
i =

{
1 Di is a golden document.
0 Di is a non-golden document.

(2)

3.2 Refinement Module

In the refinement module, we select the top K relevant documents from the previous
step and form pairs, resulting in C2

K combinations. Emphasizing inter-document inter-
actions crucial for multi-hop reasoning, we concatenate the following sequence: [CLS],
question, [SEP], document1, [SEP], document2, [SEP]. Similar to the retrieval module,
we extract the [CLS] token output from the model and pass it through a classifier. Pairs
containing two gold-standard documents are labeled as 1, while others are labeled as 0.
The refinement module thus filters out irrelevant documents, producing a more concise
set for further processing.

Lrefine = E[−
C2

K∑

i=1

yrefine
i log(ŷrefine

i )], (3)

where ŷrefine
i is predicted document pair probability and yrefine

i is the ground-truth label,
C2

K is number of all combination.

yrefine
i =

{
1 Ci consists of two gold documents.
0 otherwise.

(4)
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We use a single pretrained language model as the encoder for both the retrieval and
refinement module, and the final loss is a weighted sum of Lretrieve and Lrefine. λ1 and
λ2 are accordingly coefficients of Lretrieve and Lrefine .

Ltotal = λ1Lretrieve + λ2Lrefine. (5)

3.3 Reading Comprehension Module

In the reading comprehension module, we use multi-task learning to simultaneously
predict supporting sentences and extract answer span. HotpotQA [30] contains samples
labeled as “yes” or “no”. The practice of splicing “yes” and “no” tokens at the beginning
of the sequence [11] could corrupt the original text’s semantic information. To avoid the
impact of irrelevant information, we introduce an answer type selection header trained
with a cross-entropy loss function.

Ltype = E[−
3∑

i=1

ytype
i log(ŷtype

i )], (6)

where ŷfine
i denotes the predicted probability of answer type generated by our model,

and yfine
i represents the ground-truth label. answer type includes “yes”, “no” and “span”.

ytype
i =

⎧
⎨

⎩

0 Answer is no.
1 Answer is yes.
2 Answer is a span.

(7)

To extract the span of answers, we use a linear layer on the contextual representa-
tion to identify the start and end positions of answers, and adopts cross-entropy as the
loss function. The corresponding loss terms are denoted as Lstart and Lend respectively.
Similar to previous work S2G [28] and FE2H [11], we also inject a special placeholder
token < /e > and use a linear binary classifier on the output of < /e > to determine
whether a sentence is a supporting fact. The classification loss of the supporting facts is
denoted as Lsup, and we jointly optimize all of these objectives in our model.

Lreading = λ3Ltype + λ4(Lstart + Lend) + λ5Lsup. (8)

4 Label Smoothing

Label smoothing is a regularization technique that aims to improve generalization in
a classifier by modifying the ground truth labels of the training data. In the one-hot
setting, the probability of the correct category q(y|x) for a training sample (x, y) is
typically defined as 1, while the probabilities of all other categories q(�y|x) are defined
as 0. The cross-entropy loss function used in this setting is typically defined as follows:

L = −
K∑

k=1

q(k|x) log(p(k|x)), (9)
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Algorithm 1. Linear Decay Label Smoothing.
Require: training epochs n > 0; smoothing weight ε ∈ [0, 1]; decay rate τ ∈ [0, 1]; uniform

distribution u
1: Initialize: Model parameter w0 ∈ W;
2: Input: Optimization algorithm A
3: for i = 0, 1, . . . , n do
4: εi ← ε − iτ
5: if εi < 0 then
6: εi ← 0
7: end if
8: sample(xt, yt)
9: yLS

t ← (1 − εi)yi + εu
10: wi+1 ← A−step(wi;xi, y

LS
i )

11: end for

where p(k|x) is the probability of the model’s prediction for the k-th class. Specifically,
label smoothing mixes q(k|x) with a uniform distribution u(k), independent of the
training samples, to produce a new distribution q′(k|x).

q′(k|x) = (1 − ε)q(k|x) + εu(k), (10)

where ε is the weight controls the importance of q(k|x) and u(k) in the resulting distri-
bution. u(k) is construed as 1

K of the uniform distribution, where K is the total number
of categories. Next, we introduce two novel label smoothing methods.

4.1 Linear Decay Label Smoothing

Our proposed Linear Decay Label Smoothing Algorithm (LDLA) addresses the abrupt
changes in training distribution caused by the two-stage approach of TSLA, which can
negatively impact the training process. In contrast to TSLA, LDLA decays the smooth-
ing weight at a constant rate per epoch, promoting a more gradual learning process.

Given a total of n epochs in the training process and a decay size of τ , the smoothing
weight ε for the i-th epoch can be calculated as follows:

εi =
{

ε − iτ ε − iτ ≥ 0
0 ε − iτ < 0 (11)

Algorithm 1 outlines the specific steps of the LDLA algorithm. LDLA employs the
concept of curriculum learning by gradually transitioning the model’s learning target
from a smoothed distribution to the original distribution throughout the training process.
This approach incrementally reduces uncertainty during training, enabling the model to
progressively concentrate on more challenging samples and transition from learning
with uncertainty to certainty. Consequently, LDLA fosters more robust and effective
learning.
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(a2) Original end distribution.
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Fig. 3. Visualization of original distribution and different label smoothing distributions, including
Label Smoothing, Word Overlapping, and F1 Smoothing. The first row shows the distribution of
the start token, and the second row shows the distribution of the end token. The gold start and end
tokens are highlighted in red. (Color figure online)

4.2 F1 Smoothing

Unlike traditional classification tasks, MRC requires identifying both the start and end
positions of a span. To address the specific nature of this task, a specialized smoothing
method is required to achieve optimal results. In this section, we introduce F1 Smooth-
ing, a technique that calculates the significance of a span based on its F1 score.

Consider a sample x that contains a context S and an answer agold. The total length
of the context is denoted by L. We use qs(t|x) to denote the F1 score between a span of
arbitrary length starting at position t in S and the ground truth answer agold. Similarly,
qe(t|x) denotes the F1 score between agold and a span of arbitrary length ending at
position t in S .

qs(t|x) =
L−1∑

ξ=t

F1 ((t, ξ), agold) . (12)

qe(t|x) =
t∑

ξ=0

F1 ((ξ, t), agold) . (13)

The normalized distributions are noted as q
′
s(t|x) and q

′
e(t|x), respectively.

q
′
s(t|x) =

exp(qs(t|x))∑L−1
i=0 exp(qs(i|x))

. (14)

q
′
e(t|x) =

exp(qe(t|x))∑L−1
i=0 exp(qe(i|x))

. (15)

To decrease the computational complexity of F1 Smoothing, we present a computa-
tionally efficient version in Appendix 7. Previous research [31] has investigated various
label smoothing methods for MRC, encompassing traditional label smoothing and word
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Table 1. In the distractor setting of the HotpotQA test set, our proposed F1 Smoothing and LDLA
has led to significant improvements in the performance of the Smoothing R3 model compared
to the R3 model. Furthermore, the Smoothing R3 model has outperformed a number of strong
baselines and has achieved the highest results.

Model Answer Supporting

EM F1 EM F1

Baseline Model [30] 45.60 59.02 20.32 64.49

QFE [17] 53.86 68.06 57.75 84.49

DFGN [20] 56.31 69.69 51.50 81.62

SAE-large [25] 66.92 79.62 61.53 86.86

C2F Reader [22] 67.98 81.24 60.81 87.63

HGN-large [4] 69.22 82.19 62.76 88.47

FE2H on ELECTRA [11] 69.54 82.69 64.78 88.71

AMGN+ [10] 70.53 83.37 63.57 88.83

S2G+EGA [28] 70.92 83.44 63.86 88.68

FE2H on ALBERT [11] 71.89 84.44 64.98 89.14

R3 (ours) 71.27 83.57 65.25 88.98

Smoothing R3 (ours) 72.07 84.34 65.44 89.55

overlap smoothing. As illustrated in Fig. 3, F1 Smoothing offers a more accurate dis-
tribution of token importance in comparison to Word Overlap Smoothing. This method
reduces the probability of irrelevant tokens and prevents the model from being misled
during training.

5 Experiment

5.1 Dataset

We evaluate our approach on the distractor setting of HotpotQA [30], a multi-hop
question-answer dataset with 90k training samples, 7.4k validation samples, and 7.4k
test samples. Each question in this dataset is provided with several candidate docu-
ments, two of which are labeled as gold. In addition to this, HotpotQA also provides
supporting sentences for each question, encouraging the model to explain the inference
path of the multi-hop question-answer. We use the Exact Match (EM) and F1 score (F1)
to evaluate the performance of our approach in terms of document retrieval, supporting
sentence prediction, and answer extraction.

5.2 Implementation Details

Our model is built using the Pre-trained language models (PLMs) provided by Hug-
gingFace’s Transformers library [27].
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Table 2. Comparison of our retrieval and refinement module with previous baselines on Hot-
potQA dev set. Label smoothing can further enhance model performance.

Model EM F1

SAElarge [25] 91.98 95.76

S2Glarge [28] 95.77 97.82

FE2Hlarge [11] 96.32 98.02

R3 (ours) 96.50 98.10

Smoothing R3 96.85 98.32

Table 3. Performances of cascade results on the dev set of HotpotQA in the distractor setting.

Model Answer Supporting

EM F1 EM F1

SAE 67.70 80.75 63.30 87.38

S2G 70.80 – 65.70 –

R3 71.39 83.84 66.32 89.54

Smoothing R3 71.89 84.65 66.75 90.08

Retrieval and Refinement Module We used RoBERTa-large [12] and ELECTRA-
large [3] as our PLMs and conducted an ablation study on RoBERTa-large [12]. Train-
ing on a single RTX3090 GPU, we set the number of epochs to 8 and the batch size to
16. We employed the AdamW [13] optimizer with a learning rate of 5e-6 and a weight
decay of 1e-2.

Reading Comprehension Module. We utilized RoBERTa-large [12] and DeBERTa-v2-
xxlarge [8] as our PLMs, performing ablation studies on RoBERTa-large [12]. To train
RoBERTa-large, we used an RTX3090 GPU, setting the number of epochs to 16 and
the batch size to 16. For the larger DeBERTa-v2-xxlarge model, we employed an A100
GPU, setting the number of epochs to 8 and the batch size to 16. We used the AdamW
optimizer [13] with a learning rate of 4e-6 for RoBERTa-large and 2e-6 for DeBERTa-
v2-xxlarge, along with a weight decay of 1e-2 for optimization.

5.3 Experimental Results

We utilize ELECTRA-large [3] as the PLM for the retrieval and refinement modules,
and DeBERTa-v2-xxlarge for the reading comprehension module. TheR3 model incor-
porating F1 Smoothing and LDLA methods is referred to as Smoothing R3. LDLA is
employed for document retrieval and supporting sentence prediction, while F1 Smooth-
ing is applied for answer span extraction. As shown in Table 1, SmoothingR3 achieves
improvements of 0.8% and 0.77% in EM and F1 for answers, and 0.19% and 0.57% in
EM and F1 for supporting sentences compared to theR3 model. Among the tested label
smoothing techniques, F1 smoothing and LDLA yield the most significant performance
improvement.
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Table 4. Various label smoothing
methods applied to retrieval modules.

Setting EM F1

Baseline 95.93±.05 97.91±.09

LS 96.06±.11 97.94±.04

TSLA 96.21±.01 98.05±.05

LDLA 96.57±.05 98.18±.04

Table 5. Various label smoothing methods
applied to supporting sentence prediction.

Setting EM F1

Baseline 66.94±.05 90.50±.02

LS 66.88±.02 90.53±.02

TSLA 67.42±.05 90.72±.05

LDLA 67.63±.04 90.85±.03

We compare the performance of our retrieval and refinement module, which uses
ELECTRA-large as a backbone, to three advanced works: SAE [25], S2G [28], and
FE2H [11]. These methods also employ sophisticated selectors for retrieving relevant
documents. We evaluate the performance of document retrieval using the EM and F1
metrics. Table 2 demonstrates that ourR3 method outperforms these three strong base-
lines, with Smoothing R3 further enhancing performance.

In Table 3, we evaluate the performance of the reading comprehension module,
which employs DeBERTa-v2-xxlarge [8] as the backbone, on documents retrieved by
the retrieval and refinement module. Our R3 model outperforms strong baselines SAE
and S2G, and further improvements are achieved by incorporating F1 Smoothing and
LDLA. These results emphasize the potential for enhancing performance through the
application of label smoothing techniques.

5.4 Label Smoothing Analysis

In our study of the importance of label smoothing, we used RoBERTa-large [12] as
the backbone for our model. To ensure the reliability of our experimental results, we
conducted multiple runs with different random number seeds (41, 42, 43, and 44) to
ensure stability.

In our experiments, we compared three label smoothing strategies: Label Smooth-
ing (LS), Two-Stage Label smoothing (TSLA), and Linear Decay Label smoothing
(LDLA). The initial value of ε in our experiments was 0.1, and in the first stage of
TSLA, the number of epochs was set to 4. For each epoch in LDLA, ε was decreased
by 0.01.

Retrieval Module. As shown in Table 4, label smoothing effectively enhances the gener-
alization performance of the retrieval module. LDLA outperforms TSLA with a higher
EM (0.36%) and F1 score (0.13%), demonstrating superior generalization capabilities.

Supporting Sentence Prediction We assess the impact of label smoothing on the sup-
porting sentence prediction task. The results presented in Table 5 indicate that TSLA
exhibits an increase of 0.48% in EM and 0.22% in F1 compared to the baseline. Addi-
tionally, LDLA further enhances the performance by 0.21% in EM and 0.13% in F1
when compared to TSLA.



Rethinking Label Smoothing on MHQA 83

Table 6. Analysis of different label smoothing methods for Answer Span Extraction.

Methods EM F1

Baseline 69.11±.02 82.21±.03

LS 69.30±.02 82.56±.09

TSLA 69.32±.10 82.66±.09

LDLA 69.39±.12 82.69±.03

Word Overlapping 69.60±.09 82.68±.13

F1 Smoothing 69.93±.07 83.05±.10

Table 7. Error analysis on Answer Span Errors and Multi-hop Reasoning Errors.

Model Answer Span Errors Multi-Hop Reasoning Errors

S2G 1612 550

R3 1556 562

Smoothing R3 1536 (↓ 1.3%) 545(↓ 3.0%)

Answer Span Extraction. Table 6 highlights the impact of label smoothing methods on
answer span extraction in the reading comprehension module. LS, TSLA, and LDLA
exhibit slight improvements compared to the baseline. The advanced Word Overlap-
ping technique demonstrates an average improvement of 0.49% in EM and 0.47% in
F1, respectively, compared to the baseline. In contrast, our proposed F1 Smoothing
technique achieves an average EM improvement of 0.82% and an average F1 score
improvement of 0.84%. These results suggest that F1 Smoothing can enhance perfor-
mance on MRC tasks more effectively than other smoothing techniques.

5.5 Error Analysis

To gain a deeper understanding of how label smoothing effectively enhances model
performance, we examined the model’s output on the validation set, focusing on answer
span errors and multi-hop reasoning errors. First, we define these two types of errors as
follows:

– Answer Span Errors: The predicted answer and the annotated answer have a partial
overlap after removing stop words, but are not identical.

– Multi-hop Reasoning Errors: Due to reasoning errors, the predicted answer and the
annotated answer are entirely different.

By implementing label smoothing, as shown in Table 7, SmoothingR3 experienced
a 1.3% reduction in answer span errors, decreasing from 1556 to 1536, and a 3.0%
decrease in multi-hop reasoning errors, dropping from 562 to 545. SmoothingR3 shows
a significant reduction in both types of errors compared to the S2G model. This finding
suggests that incorporating label smoothing during training can effectively prevent the
model from overfitting the answer span and reasoning paths in the training set, thereby
improving the model’s generalization capabilities and overall performance.
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6 Conclusion

In this study, we first identify the primary challenges hindering the performance of
MHQA systems and propose using label smoothing to mitigate overfitting issues dur-
ing MHQA training. We introduce F1 smoothing, a novel smoothing method inspired
by the widely-used F1 score in MRC tasks. Additionally, we present LDLA, a progres-
sive label smoothing algorithm that incorporates the concept of curriculum learning.
Comprehensive experiments on the HotpotQA dataset demonstrate that our proposed
model, Smoothing R3, achieves significant performance improvement when using F1
smoothing and LDLA. Our findings indicate that label smoothing is a valuable tech-
nique for MHQA, effectively improving the model’s generalization while minimizing
overfitting to particular patterns in the training set.
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7 Appendix A

In order to alleviate the complexity introduced by multiple for loops in the F1 Smooth-
ing method, we have optimized Eq. (12) and Eq. (13). We use La = e∗ − s∗ + 1 and
Lp = e − s + 1 to denote respectively the length of gold answer and predicted answer.

qs(t|x) =
L−1∑

ξ=t

F1 ((t, ξ), agold) . (16)

If t < s∗, the distribution is

qs(t|x) =
e∗∑

ξ=s∗

2(ξ − s∗ + 1)
Lp + La

+
L−1∑

ξ=e∗+1

2La

Lp + La
, (17)

else if s∗ ≤ t ≤ e∗, we have the following distribution

qs(t|x) =
e∗∑

ξ=s

2Lp

Lp + La
+

L−1∑

ξ=e∗+1

2(e∗ − s + 1)
Lp + La

. (18)

In Eq. 17 and 18, Lp = e − i + 1.
We can get qe(t|x) similarly. If t > e∗,

qe(t|x) =
e∗∑

ξ=s∗

2(e∗ − ξ + 1)
Lp + La

+
s∗−1∑

ξ=0

2La

Lp + La
, (19)
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else if s∗ ≤ t ≤ e∗,

qe(t|x) =
e∑

ξ=s∗

2Lp

Lp + La
+

s∗−1∑

ξ=0

2(e − s∗ + 1)
Lp + La

. (20)

In Eqs. 19 and 20, Lp = i − s + 1.
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Abstract. The goal of headline style transfer in this paper is to make a headline
more attractive while maintaining its meaning. The absence of parallel training
data is one of the main problems in this field. In this work, we design a discrete
style space for unsupervised headline style transfer, short forD-HST. This model
decomposes the style-dependent text generation into content-feature extraction
and style modelling. Then, generation decoder receives input from content, style,
and their mixing components. In particular, it is considered that textual style sig-
nal is more abstract than the text itself. Therefore, we propose to model the style
representation space as a discrete space, and each discrete point corresponds to a
particular category of the styles that can be elicited by syntactic structure. Finally,
we provide a new style-transfer dataset, named as TechST, which focuses on
transferring news headline into those that are more eye-catching in technical
social media. In the experiments, we develop two automatic evaluation metrics
— style transfer rate (STR) and style-content trade-off (SCT) — along with a
few traditional criteria to assess the overall effectiveness of the style transfer. In
addition, the human evaluation is thoroughly conducted in terms of assessing the
generation quality and creatively mimicking a scenario in which a user clicks on
appealing headlines to determine the click-through rate. Our results indicate the
D-HST achieves state-of-the-art results in these comprehensive evaluations.

1 Introduction

A style makes sense under pragmatic use and becomes a protocol to regularize the
manner of communication [Jin et al. 2022; Khalid and Srinivasan 2020]. So, the task
of text style transfer is to paraphrase the source text in a desired style-relevant applica-
tion [Toshevska and Gievska 2021]. In practical use, the style is data-driven and task-
oriented in different area [Jin et al. 2022].

The absence of parallel training data for a certain style is one of the difficult prob-
lems. Continuous latent space mapping is a typical method for unsupervised style trans-
fer to address the issue. Guo et al. (2021; Liu et al. 2020) model the latent space to a
Gaussian distribution. Points in latent space are moved to the target representation with
some style guidance. Nangi et al. (2021; John et al. 2018; Romanov et al. 2018) disen-
tangle the continuous latent representation purely according to its content, and replace

c©2023 China National Conference on Computational Linguistics Published under Creative
Commons Attribution 4.0 International License.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 91–105, 2023.
https://doi.org/10.1007/978-981-99-6207-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6207-5_6&domain=pdf
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the source attribute to the target one. However, there are two problems of the contin-
uous space approach. Firstly, the style is highly abstract so that it is unstable and too
sparse to accurately represent the style in the continuous space. Second, the continuous
vector-based representation is difficult to manipulate and cannot be examined at a finer
level. To control the style transfer and enhance its explainability, several kinds of dis-
crete signals are used to represent the style. For instance, Reid and Zhong (2021; Tran
et al. 2020; Li et al. 2018) employ Mask-Retrieve-Generate strategy to decompose style
attributes by word-level editing actions. But, these methods express styles in a highly
discrete way which fail to capture the relationships between words or sentences.

To more effectively describe the style in a highly abstract and discrete manner while
also capturing the semantic relations in the texts, we propose a latent and discrete style
space for headline style transfer, abbreviated as D-HST. This model decomposes style-
dependent text generation into content-feature extraction and style modeling. There-
fore, we design a dual-encoder and a shared single-decoder framework to accomplish
the overall generation. Due to the lack of parallel training data, we have to synthesize
adequate training pairs to accommodate the content extraction and the style modeling.
Given a target stylistic headline, we first automatically generate a content-similar input
as well as style-consistent input for feeding the dual encoders. As the textual style sig-
nal is expected to be rather abstract and limited compared to the text itself, we propose
to model the style representation space as a discrete space, with each discrete point
denoting a particular category of the styles that can be elicited by syntactic structure.

Also, we provide a new style-transfer dataset derived from the real scenarios, named
asTechST, which transfers news headlines into the ones that are more attractive to read-
ers. Although several datasets are currently available for this purpose [Jin et al. 2020],
but the appealing styles—such as humor and romance—are taken from fictional works
of literature, which we believe makes them unsuitable for usage as an attractive style for
headlines. In the experiments, we design two automatic evaluation metrics, including
style transfer rate (STR) and style-content trade-off (SCT) - along with a few traditional
criteria to assess the overall of the style transfer. Additionally, the quality of the gen-
eration is thoroughly evaluated, and the click-through rate is calculated by creatively
simulating a scenario in which a user clicks on attractive headlines. Our findings show
that the D-HST performs at the cutting edge in these thorough assessments. In conclu-
sion, our article mainly has the following contributions.

• We propose an unsupervised style transfer method with discrete style space, which
is capable of disentangling content and style.

• We propose newmetrics in automatic evaluation and human evaluation, and achieves
state-of-the-art results in these comprehensive evaluations.

• We provide a novel dataset derived from actual events to convert news headlines into
catchy social media headlines.

2 Related Work

Attractive Headline Generation. It is crucial to generate eye-catching headlines for an
article. Gan et al. (2017) proposes to generate attractive captions for images and videos
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with different styles. Jin et al. (2020) introduces a parameter sharing scheme to generate
eye-catchy headlines with three different styles, humorous, romantic, and clickbait. Li
et al. (2021) proposes a disentanglement-based model to generate attractive headlines
for Chinese news. We build upon this task by rewriting source headlines to attractive
ones.

Text Style Transfer. There are mainly three kinds of methods used in TST task. 1)
Modeling in the Latent space Mueller et al. (2017; Liu et al. 2020) use continuous
space revision to search for target space. Shen et al. (2017; Sun and Zhu Jian) learn a
mapper function in source and target space. John et al. (2018; Romanov et al. 2018; Hu
et al. 2017) explicitly disentangle content and style in latent space. However, the style
is highly abstract so that it is unstable and too sparse to accurately represent the style
in the continuous space. 2) ProtoType Editing It is a word replacement method. Li et
al. (2018; Tran et al. 2020) propose three-stage methods to replace stylist words with
retrieved words in the target corpus. Reid and Zhong (2021) uses Levenshtein editing to
search target stylist words. These methods work well on Content-Preferences dataset,
like sentiment, debias. 3) Control Code Index Keskar et al. (2019; Dai et al. 2019)
use a control sign embedding to controls the attribute of generated text. Yi et al. (2021)
controls style using a style encoder. These methods don’t learn style in a fine-grained
way and the style space is a block-box. We combine the first and third methods, using
a control code to control style and modeling a style space with appropriate distribution.

To model the discrete style in an unsupervised fashion, we propose to inherit the
third and fourth methods. Specifically, we construct pseudo data to enrich the content-
based parallel data and style-based para. Further, different from the previously styled
latent space, we model it as a discrete one based on the claim that style is highly abstract
and more sparse compared to content. We will describe this in detail in the next section.

3 Methodology

We are given samples Y = {y1, y2, . . . ym} from the style dataset S. The objective of
our task is to transfer a headline sentence to a new headline equipped with the style of
the target data S, while maintaining its originally semantic content.

3.1 Model Overview

Our proposed D-HST model consists of a duel-encoder and a single shared decoder in
an unsupervised setting. It begins by constructing a pseudo-parallel dataset which com-
prises of two pairs of inputs-and-outputs. One of the inputs is XY

cont, which is generated
by using a pre-trained paraphrasing model and has input that is content-similar to out-
put Y . The other input is XY

style, which is collected in style dataset S and uses inputs
of sentences with the same style as output Y based on the defined style (Sect. 3.2).

The model structure is described in Sect. 3.3. One of the inputs is content input
XY

cont encoded by a content encoder, then fed into a content pooling to extract its
sentence-level feature, denoted as ZY

cont = poolcont(enccont(XY
cont)). Similarly, the

other input is style input XY
style encoded by a style encoder, then fed into a style pool-

ing to get style representation ZY
style. The hypothesis is that the pooling serves as a
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bottleneck which can disentangle the representation of content and style with help of
proper loss function (Sect. 3.4). The overall model architecture is shown in Fig. 1.

3.2 Pseudo Parallel Data Construction

Content Input. Prior work has demonstrated that paraphrasing techniques can trans-
late source sentences into standard written sentences while maintaining their substance
[Mitamura and Nyberg (2001)]. In our approach, we assume that a special style (such
as attractiveness, informality in the experiment) of a sentence can be removed after
paraphrasing. We use a pretrained paraphrasing model1 to remove stylist attribute, and
construct the content inputs XY

cont.
As the paraphrasing model often produces multiple outcomes, in the experiment,

we select top 5 generations as a candidate set for the content input. Then, we calculate
bertscore to estimate the similarity between the generated candidates and the output
Y . Only candidates with similarity between 0.75 to 0.95 are kept to preserve as much
content information as possible and prevent significantly overlapping generation.

Style Input. We suppose that a certain syntactic structure can reflect the style. For
example, attractive headlines often employ interrogative questions; informal conversa-
tions frequently use ellipsis; and impolite language often employ imperative sentences.
To collect more parallel headlines to train the style-based modules, we construct the
style input XY

style that shares the same syntactic structure yet different content with tar-
get Y , from the data in style dataset S. In order to filter out the content information in
the style input, we use a set of sentences CY

style that share the same syntactic structure
for XY

style, then average these sentences with a learnable parameter.
Specifically, we use a chunk parser FlairNLP2 to get the syntactic structure of these

headlines. We first get the chunk label for each word using the chunk parser. Then, we
merge the spans having the same label. Based on the assumption that words such as
“who”, “whether” and “how” are function words that guide special sentence patterns,
we set a separate label QP to mark the leading words of interrogative sentences. We
get some distinct syntactic structures, each of which has some corresponding headlines.
We assume that if one syntactic structure occurs in less than 10 headlines, it is not
representative. Then, we filter the syntactic structure and its corresponding sentences
if its syntactic structure occurs in less than 10 headlines. Table 1 shows examples of
processed syntactic structures and their corresponding sentences.

1 https://huggingface.co/tuner007/pegasus paraphrase.
2 https://github.com/flairNLP/flair.

https://huggingface.co/tuner007/pegasus_paraphrase
https://github.com/flairNLP/flair
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Fig. 1. The framework of the D-HST model. The training phase and inference phase are depicted
in the figure.

Table 1. Examples of syntactic structures and their corresponding headline sentences. These
examples indicate that some sentences can express the same style representation by syntactic
structure.

3.3 Model Architecture

The duel-encoder and the shared decoder are both based on standard Transformer model
[Vaswani et al. (2017)]. The content inputs and style inputs are both encoded by their
separate encoders, that are content encoder and style encoder, respectively. Each token
is fed to the encoder and obtains embeddings {e1, e2, ..., e|X|} = enc(X), where |X|
is the length of the input sentence, et ∈ RH , H is the dimension of transformer.

Feature Extractor. To facilitate the disentanglement between the content semantics and
the stylistic attributes, we elicit their distinct features by pooling the multi-dimensional
representation in accordance with the method used in Liu and Lapata (2019). Specif-
ically, a multi-head pooling is adopted to extract features. We employed attention at,
where t represents a token, to calculate its importance score for the whole sentence. The
equation is:

αt =
exp at∑

t∈|X| exp ai
(1)

at = ktet (2)

where kt ∈ RH is a learnable parameter. The value of each token Vt is also computed
using a linear projection of et. Finally, we take a weighted average to get the pooling
output Z.
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Z =
∑

t∈|X|
αtVt (3)

Discrete Style Space. Inspired by Hosking and Lapata (2021) who claim style is lim-
ited and sparse, we therefore propose to extract a specific style from a discrete style
space. The space maintains a discrete table C ∈ RK×D, K is the number of style cat-
egories3, equal to the number of distinct syntactic structure in style dataset S. We use
q to represent the category distribution and q̃ ∈ [0,K] to represent the sampled cate-
gory. The category distribution q is mapped from the style pooling ZY

style, and it can be
formulated as p(q|ZY

style).
Finally, we draw q̃ from the Gumbel-Softmax distribution of q. The equation can be

written as:

q̃ ∼ Gumbel-Softmax(q) (4)

The style representation, Ẑy
style = C(q̃), maps from the discrete code q̃. ẐY

style ought
to be as near as the input ZY

style. So we get a loss term:

Lq = ‖ ZY
style − sg(C(q̃)) ‖2 (5)

Because the gradient could be broken at stop gradient sg, the loss is not derivable. We
employ a reparameterization trick [Kingma and Welling (2013)] to update parameters
and exponential moving average Roy et al. (2018) strategy to update the discrete table.

Style Bias. We assume that each sentence has its own style score. For example “You
Can’t Reset Your Fingerprint” is more obviously attractive than ”AI-Assisted Coding
with Tabnine” in terms of its expressing style, although they are both in style dataset.
Therefore, we manually rank each sentence in the style dataset S based on external
knowledge Itest. Details of the external knowledge are shown in Sect. 5.

We believe that syntactic structure can be used to define the style category and that
sentences with the same structure may score similarly in terms of style. Each style is
expected to be encoded into a specific category, and categories with higher style scores
are more likely to be selected in inference. I ∈ RK is a one-hot vector and serves as
a pre-labeled supervisory signal, representing the correspondence between styles and
categories. For example, Im ∈ RK encodes the style category to which the sentence
m belongs. In training phase, we expect each style is encoded into a specific category,
so we let the output of the category distribution q fit supervisory signal I . The equation
can be written as:

Lr =‖ I − softmax(q) ‖2 (6)

In inference phase, for all sentences, we use the fixed discrete style bias distribution
Itest ∈ RK to increase the probability of choosing a high-scoring style. And we set the
probability for each category in Itest to be the normalized style score.

3 K = 324 in our TechST dataset.
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Mixture Module. We also design a mixture module to serve as negative knowledge to
guide decoder to leave away from the content of XY

style and the style of XY
cont. We use a

small full connect network with the concatenation of Zcs = poolcont(encstyle(XY
style))

and Zsc = poolstyle(enccont(XY
cont)) as input, written as Zneg = MLP (Zcs, Zsc)

Finally, the overall hidden representation Z can be written as Z = ZY
cont + ẐY

style +
Zneg . And the target distribution p(Y |Z) = dec(Z).

3.4 Model Training

We first describe the training process that makes the model to capture its local indepen-
dence information separately.

We set triples ((XY
cont,X

Y
style), Y ) as input and output, respectively. To pro-

duce strong style signals, we use a set of style sentences CY
style in the same

style as Y . The selection strategy has been described in Sect. 3.2 and the style
representation is weighted with a learnable parameter κ, such as ZY

style =
∑

ci∈CY
style

poolstyle(encstyle(ci))κci. Then, ẐY
style is sampled from the style space.

It is trained to generate target Y with the overall hidden representation Z, which is the
sum of content encoding ZY

cont, style encoding ẐY
style and negative knowledge encoding

Zneg . The factorised reconstruction loss term can be written as:

LY =
∑

t

log p(wt|w1, w2...wt−1;Z) (7)

The final objective function is:

L = LY + δLq + εLr (8)

3.5 Inference

Since we don’t have any style input XY
style for inference, only Xcont in source dataset

is available and transferred to the defined target style. As such, the well-trained style
encoder and mixture module can not be directly adopted in the inference. To fill this gap,
we further train a style predictor module to alternatively select a sample to represent
the most stylistic category for the following decoder. This predictor is formulated as
p(q|XY

cont) = MLP (poolstyle(enccont(XY
cont))). The additional predictor is trained

to predict the well-trained style category distribution q through XY
cont. q is mapped

from ZY
style and represents as p(q|ZY

style). So we distill the distribution p(q|XY
cont) to

the well-trained distribution p(q|ZY
style). The loss term is:

LKL = −KL(sm(p(q|XY
cont))||sm(p(q|ZY

style))) (9)

where sm is short for softmax function. In inference phase, we sample q̃ ∼ ((1 −
γ)sm(q) + γItest) 3 times and generate 3 candidate outputs. Finally, we select the one
with highest content preservation with the input, calculated by bertscore.
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4 Tasks and Datasets

For the headline style transfer task, we focus on attractive news headline transfer
on technology topics. Technology news headlines are always formal. For example,
“Google Document Translation Now Generally Available.” is a common style for an
event headline. On the contrary, technology blog headlines in social media tend to
be special and catch readers’ eyes. In this paper, we define this kind of headline as
“Attractive” style. To highlight the characteristics of style, the previous example can
be transferred as “Google Goodness: Document Now Available”. The goal of this task
is to transfer the formal news headlines to more attractive blog headlines in technology
domain.

Datasets. Our attractive technology dataset TechST was crawled from Dzone4, includ-
ing stylistic technology blog headlines and users’ pageviews. This data was used to
train the style transfer model. We also crawled technology news headlines from InfoQ5

as non-stylistic headlines for testing. The task is to transfer the headlines in InfoQ to a
new style that is modelled with the Dzone dataset. Both of them were crawled from the
beginning to November 2011. We filtered out the blog headlines with pageviews less
than 500 and the ones more than 22 words as we believe shorter headlines are attractive.
Finally, we get 60,000 samples for training and 2,000 samples for testing.

We also use a cornerstone dataset Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) [Rao and Tetreault (2018)] for formality transfer. It contains 53,000 paired
formal and informal sentences in two domains. To meet our requirement of unsuper-
vised style transfer setting, the task is to transfer the formal sentences to informal ones.
Only informal sentences in the Family and Relationships categories were used for train-
ing and validation.

5 Experiments and Results

External Knowledge. As mentioned in Sect. 3.3, external knowledge is used to esti-
mate the style strength. To some extents, users’ pageviews reflect attractiveness of
the style. We first parsed all the syntactic structures of sentences in the style dataset.
Then, we calculate average-pageviews for each syntactic structure. The more average-
pageviews the structure receives, the higher style score it has.We acknowledge that style
isn’t the only factor that affects pageviews, content also contributes to it. For example,
headlines with syntactic structure like “NP VP” are common, but some headlines with
such structure may have high pageviews. To eliminate the impact of content, we add a
pageview variance term. Specifically, if sentences with same syntactic structure show
little pageview variance, it is speculated that pageviews are determined by the syntactic
structure. On the contrary, if the variance is significant, it suggests that other elements,
such as content, are influencing pageviews. As such, the style score must be penalized.
Finally, we define our style score as:

4 https://dzone.com/.
5 https://www.infoq.com/.

https://dzone.com/
https://www.infoq.com/
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Ii
test =

mean(a)ω

var(a)ν
(10)

Ii
test represent the style score of category i, a is the collection of the sentences having
style i. ω and ν are hyperparameters.

For GYAFC dataset, no such corresponding information is provided, so we set all
syntactic structures the same style score.

Experiment Setup.We use 6-layers transformers to train our model. Each transformer
has 8 attention heads and 768 dimensional hidden state. Dropout with 0.1 was added
to each layer in the transformer. Encoder and decoder initialized from BART base.
Hyperparameters δ and ε in loss function are set to 0.5. In external knowledge building,
we set ω = 2, μ = 0.05.

We trained our model on a 3090 GPU for 20 epochs taking about 5 h with gradient
accumulation every 2 steps. We chose the best checkpoint for the testing through a
validation process.

Baselines. We compared the proposed model against the following three strong base-
line approaches in text style transfer: BART+R [Lai et al. (2021)] is trained by fine-tune
BART model with an extra BLEU reward and style classification reward. This model
uses parallel dataset. In order to meet our requirement of unsupervised style transfer
setting, we used pseudo-parallel data XY

cont and Y as input and target in the follow-
ing experiment. StyIns [Yi et al. (2021)] leverages the generative flow technique to
extract stylistic properties from multiple instances to form a latent style space, and style
representations are then sampled from this space. TSST [Yi et al. (2021)] proposes a
retrieval-based context-aware style representation that uses an extra retriever module to
alleviate the domain inconsistency in content and style.

5.1 Automatic Metrics

To quantitatively evaluate the effectiveness of style transfer task which calls for both the
transfer of styles as well as the preservation of content semantics, we newly designed
two metrics of Style Transfer Rate (STR) and Style-Content Trade-off (SCT), respec-
tively.

Content Preservation (CP). It is calculated by the similarity between the input and the
transferred output leveraged by standard metric Bertscore [Zhang et al.(2019)].

Style Transfer Rate. The traditional style transfer methods [Lai et al. (2021)] use a
well-trained style classifier to testify if a sentence has been successfully transferred into
a targeted style. But, this method is more suitable for polar word replacement, such
as sentiment transfer in review generation. For the cases of eye-catching or written
formality transfer, we propose a rule-based yet easy-to-use transfer metric, named as
STR. We calculate the STR according to the percentage of syntactic structures changed
between the generated output and its input as follows:

STR =

∑
i∈Ctest

structure(Xi
cont) �= structure(Oi)

|Ctest| (11)
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Table 2. The automatic evaluation results on our model and all baselines on both TechST and
GYAFC datasets.

Dataset Model CP STR SCT PPL

TechST StyIns 0.773 0.377 0.253 48.39

BART+R 0.962 0.394 0.280 92.48

TSST 0.874 0.488 0.313 104.68

D-HST 0.665 0.846 0.372 15.48

GYAFC StyIns 0.811 0.666 0.366 26.51

BART+R 0.896 0.663 0.381 12.61

TSST 0.829 0.625 0.356 23.19

D-HST 0.641 0.944 0.382 10.11

Table 3. Human evaluation.

Models Interestedness Fluency

D-HST 1.711 1.763

StyIns 1.05 1.413

BART+R 1.219 1.906

TSST 1.181 1.463

where |Ctest| is the number of testing data, Xi
cont and Oi represent content input and

generated output, respectively.

Style-Content Trade-Off. In order to integrate the STR and CP into a single measure,
we take their harmonic means as follows:

SCT =
2

1
STR + 1

CP

(12)

Language Fluency.We fine-tuned the GPT-2 model (Radford et al., 2019) on our stylis-
tic dataset S and use it to measure the perplexity (PPL) on the generated outputs.

5.2 Overall Performance

We compared the performance of our model against with the baselines in Table 2. D-
HST performs the best across all the metrics except for the CP metric. From the results
we can find that, firstly, our model achieves very obvious advantage in STR metric
(nearly 50% margin) indicate the thorough and outstanding performance on style trans-
fer; Secondly, our D-HST identifies the most harmonious balance point between content
preservation and style transfer revealed by the SCT metric; Thirdly, our language model
GPT-2 was fine-tuned in stylistic data, therefore, the PPL metric favors fluent sentences
adhere more closely to the given style format. Although the BART+R model receives
best fluency in human evaluation (Table 3), it mostly fails in our automatic fluency met-
ric. When evaluating the content preservation, we discourage the CP metric from being
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Table 4. Example outputs generated by different models. Red parts represent stylistic attributes
D-HST captures.

Example #1 Example #2 Example #3

Input IBM to Acquire Red
Hat for $34 Billion

Microsoft Releases Azure
Open AI Service
Including Access to
Powerful GPT-3 Models

EF Core Database
Providers

StyIns IBM to Acquire Red
Hat for $34 Billion

AWS and Cloudflare Add
Bot Management Features
to Their Firewalls

A Core Database
Providers

BART+R IBM to Acquire Red
Hat for $ 34 Billion

Microsoft Releases Azure
Open AI Service with
Powerful GPT-3 Models

EF Core Database
Providers

TSST IBM to Acquire Red
Hat for $ 34 Billion

Microsoft Releases Azure
Open AI Service
Including Access to
Powerful QR Models

Using Core Database
Providers

D-HST Why IBM Acquires
Red Hat for $34M

Microsoft Azure:
Accessing Open-Source
Microsoft Machine
Models

Going Into Core
Database Providers

Table 5. Examples of generated headlines given specific style category.

Example #1 Example #2

Input The New Microsoft Edge
- Microsoft Build 2020

Qwik, a Resumable
Javascript Framework

Category Category2: VP NP

Introducing Microsoft’s
New Microsoft Edge

Using a Resumable
JavaScript Framework

Category95: QP VP NP

How to Build Microsoft’s
New Microsoft Edge

How to Develop a
Resumable Javascript
Framework

as high as possible since the extremely high similarity (like close to 1) implies the
exactly same words are used in sentences. However, what is required is a change in
style that involves a particular number of words. Therefore, we argue that CP is accept-
able around 0.64-0.666, which can preserve the source content while transferring the
style.

6 We randomly sample 60 headlines from the baseline model and our model evenly, and ask the
annotators to select the ones that transfer style and preserve content, and the bertscore of the
selected headlines mostly falls between 0.63-071.
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To gain further insight on the performance of the style transfer, we sampled real
examples from our model and baselines on TechST dataset, as shown in Table 4. StyIns
and BART+R nearly copy the content of input; TSST has difficulty in generating flu-
ent sentences. D-HST can transfer the style on the premise of basically preserving the
content.

5.3 Human Evaluation

To assess the quality of text generated using D-HST from human perspective, we
designed two human evaluations based on the performance in TechST dataset. First, we
randomly sampled 20 groups headlines generated from baselines and D-HST, respec-
tively. 10 postgraduates annotators were asked to score the candidates according to the
following attributes from 0 to 2. Fluency: how fluent and readable the headline is?
Interestedness: is the generated headline interesting? The final score of each model is
calculated by averaging all judged scores. The results in Table 3 show that headlines
generated by our proposed D-HST model receives most popularity compared to other
models, indicated by the Interestednessmetric. Additionally, both BART+R and D-HST
generate fluent headlines.

The second human evaluation was designed to compute the click-through rate based
on users’ real click behavior. It is the most straightforward method of testifying attrac-
tiveness. When giving many headlines to real readers, we will examine which model
receives the most clicks in this evaluation. Specifically, we selected 11 postgraduate
annotators, each of whom was given a list of news headlines. The annotators were
asked to click on those headlines that are most attractive to them. To make the selection
as fair as possible, we carefully design to let the headlines generated by each model dis-
tribute evenly across the list, and the headline order was randomly shuffled to eliminate
the effect of position on the probability of being clicked. Finally, each list contained 36
headlines (Each model generates 9 headlines, D-HST and three baselines models com-
pared in this experiment) and the annotators were asked to click on 5 most attractive
ones. As shown in Fig. 2, the largest rate (reaches 58%) obtained by the D-HST mainly
conform to the previously quantitative results. We can conclude that D-HST generates
the most appealing and acceptably fluent headlines.

5.4 Discrete Style Space and Controllability

To investigate whether style information is encoded in categories of discrete style space,
we inspect to select two kinds of structures to control the generated headlines’ styles
in the inference stage. The outcomes are shown in Table 5. As it clearly demonstrates,
category 2 and category 95 contain two distinct syntactic structures which are “VP NP”
and “QP VP NP”, respectively. Based on them, given the same input, our D-HST model
is capable of generating different attractive headlines match the chosen structures. The
results again indicate that the stylistic features are well disentangled and it is easy to
control the style of generated results.
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Fig. 2. Human evaluation of click-through rate.

Table 6. Evaluation of the style bias strength γ

Dataset Strength CP STR SCT PPL

TechST γ = 0 0.669 0.817 0.368 14.97

γ = 0.1 0.668 0.824 0.369 15.17

γ = 0.3 0.665 0.844 0.372 15.48

γ = 0.5 0.661 0.857 0.373 15.81

5.5 Style Bias Strength

As mentioned in Sect. 3.5, external knowledge Itest is inserted as the style bias in the
inference. The style category K = 324 in TechST dataset. To investigate how the style
bias strength γ affects the final generation, we chose different values on γ and evalu-
ate the performance in a series of automatic metrics, presented in Table 6. Through the
experiment, we find that adding a style bias is effective for style transfer, and the scores
of STR and SCT increase. The generation quality of the model has no significant fluctu-
ation as the style strength increase, indicating that the model has strong generalization
and is insensitive to the parameter.

6 Conclusion

This paper presents an unsupervised model for headline style transfer. It consists of
content, style and their mixing components, which are together fed to decoder for head-
line generation. In particular, we propose to extract the style features in a discrete style
space, and each discrete point corresponds to a particular category of the styles. Our
system is comprehensively evaluated by both quantitative and qualitative metrics, and it
produces cutting-edge outcomes in two typical datasets. Our work can be applied in the
scenarios of formality machine translation, politeness transfer in intelligent customer
service, spoken language transfer in live broadcast delivery. It can also be followed by
the task of paraphrase and data augmentation.
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Abstract. Language teachers spend a lot of time developing good examples for
language learners. For this reason, we define a new task for language learning,
lexical complexity controlled sentence generation, which requires precise control
over the lexical complexity in the keywords to examples generation and better
fluency and semantic consistency. The challenge of this task is to generate fluent
sentences only using words of given complexity levels. We propose a simple but
effective approach for this task based on complexity embedding while control-
ling sentence length and syntactic complexity at the decoding stage. Compared
with potential solutions, our approach fuses the representations of the word com-
plexity levels into the model to get better control of lexical complexity. And we
demonstrate the feasibility of the approach for both training models from scratch
and fine-tuning the pre-trained models. To facilitate the research, we develop two
datasets in English and Chinese respectively, on which extensive experiments are
conducted. Experimental results show that our approach provides more precise
control over lexical complexity, as well as better fluency and diversity.

Keywords: Lexical Complexity · Language Learning · Complexity Embedding

1 Introduction

In the fields of language teaching and acquisition, language instructors and textbook
compilers need to make teaching materials with example sentences, either syntheti-
cally designed or from authentic resources [5,27]. In most cases, they are required to
create appropriate example sentences that only use the words at particular complexity
for language learners passing through different learning levels [20,30], which is very
time-consuming and exhausting. Automatically generating good examples can support
educators and language learners in obtaining, analyzing, and selecting proper example
sentences. Besides, it can also assist in the development of graded reading materials
[1,3,39].

For language learners, good examples are not only required to be fluent and diverse
but also match the level of the learners, especially the level of vocabulary. Therefore, it
is necessary to effectively control the lexical complexity in good examples generation,
which is a task of controllable text generation.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 106–126, 2023.
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Easy Hard

Keywords: 

Level A:

Level A and B:

Level A and C:

Level A Level B Level C
the

water
…

light
peach

...

palm
exposure

…

tree need

The tree needs water.

This peach tree needs light.

Palm trees need full sun exposure.

Fig. 1. An example for lexical complexity controlled sentence generation. There are three com-
plexity levels (A, B, and C) from easy to hard. Given the keywords “tree” and “need”, we will
generate “The tree needs water.” if required to use all words from level A and generate “This
peach tree needs light.” if required to use words from both level A and B as both “peach” and
“light” are in level B.

Controllable text generation (CTG), a significant area of natural language genera-
tion, contains a series of tasks that aim to generate text according to the given controlled
requirements [34,52]. CTG systems usually focus on controlling text attributions such
as sentiment [15,40,53], topic [8,17,46] or keywords [12,13,55], generating poems or
couplets with specific formats [7,43,44], and even predicting descriptions from struc-
tured data [38,45,56]. However, few works have been devoted to strict control over the
lexical complexity for text generation. Although lexical simplification has been paid
attention to the text simplification task through substitution [19], it cannot strictly con-
trol the lexical complexity levels of the generated sentence.

To this end, we propose a new task of lexical complexity controlled sentence gen-
eration, which requires that keywords and complexity levels be given to generate a
sentence including the keywords and consisting of the words in the given complexity
levels. For example, as shown in Fig. 1, we assume that there are three complexity lev-
els (A, B, and C) from easy to hard. Given the keywords, we can generate sentences
consisted with words of different complexity according to the given levels.

It is challenging to generate fluent sentences for given keywords while using the
words only at specific complexity levels. This can be regarded as an extension and a
particular case of lexical CTG task [13,28,55]. Differently, it combines two aspects
of constraints during generation: keywords constraint the semantics, and lexical com-
plexity levels constraint the surface form. It is difficult for the model to select suitable
words from a specific subspace satisfying the above two constraints in each generation
process. We formulate this problem in Sect. 2.1.

Some previous works can be customized as solutions to this problem, which are
divided into three branches: controlled decoding, prompting, and reranking. The first
method forces to change the probability distribution during the decoding phase to ensure
that only words of the specified levels are used in the generation [8,33]. But the hard
constraint may lead to poor quality generation quality. The second one considers lexi-
cal complexity through prompting [4,24,36] in the input of the model, which introduce
coarse grained information of training and inference. The method of reranking is to
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Fig. 2. Encoder-Decoder model with our proposed CE method. The representation of each input
token is a summary of three embeddings, which are token embedding, position embedding, and
complexity embedding. And we concatenate the keywords and complexity level tokens as the
input sequence of the encoder. Note that the special tokens correspond to the complexity level of
“S”, and the punctuation correspond to “P”.

select the sentence that best meets the lexical complexity requirements from the candi-
dates [31,37], which executes after decoding and does not consider lexical complexity
in the training time.

The complexity constraint requires models to aware of lexical complexity and
respond to complexity control signals. Therefore, we use two mechanisms as enhance-
ments to the transformer-based models. For the complexity awareness, we propose the
Complexity Embedding (CE) method, which represents the complexity levels with
trainable embeddings. We incorporate the CEs into both training and prediction pro-
cesses by fusing the CEs and word embeddings as token representations, which is sim-
ple but effective. For responding to complexity control signals, we concatenate spe-
cial tokens corresponding to specific complexity levels with the keywords as the input
sequence. To combine the awareness and response, we use CEs to represent these spe-
cial tokens. The experiments show that our proposed method is effective for both train-
ing from scratch and fine-tuning the pre-trained language models. And compared to
the baseline methods, our method achieves significant improvement in the restriction of
lexical complexity levels and generation quality. Our main contributions include:

– We propose a new task of lexical complexity controlled sentence generation and two
datasets in English and Chinese for this task. To evaluate the satisfaction of the lexical
complexity constraint, we develop four metrics.

– We propose a new method for this task based on complexity embedding.
– The experimental results show that the complexity embedding method we proposed
significantly outperforms the baseline methods which are implemented for this task.

2 Method

2.1 Problem Definition

Lexical Complexity Controlled Sentence Generation aims at keywords to sentence
generation with desired complexity levels. First, we give the keywords set K =
{k1, k2, ..., km} and the complexity levels L = {l1, l2, ..., ln} which correspond to a
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subset D = {W1 ∪ W2 ∪ ... ∪ Wn} of the whole vocabulary V and Wi is the word set
of complexity level li. The control elements in this task include three parts:

First, we define a predicate F (K,Y ) to be a boolean function indicating the occur-
rence of keyword ki in a generated sequence Y = y1, y2, ..., yt, and t is the sequence
length.

C1 = F (K,Y ) (1)

F (K,Y ) ≡ ∀ i, ki ∈ Y (2)

where C1 is the keywords constraint which means the keywords are required to be
included in the generated sentence.

Second, we define a predicate G(Y,D) to be a boolean function indicating the
occurrence of a word yi which is a word of the sentence Y in a word set D.

C2 = G(Y,D) (3)

G(Y,D) ≡ ∀ i, yi ∈ D (4)

where C2 is the complexity constraint on word which means the words in the generated
sentence are required to be the words of the given complexity levels.

Then, we define a predicateH(Y,Wi) to be a boolean function indicating that there
exist at least one word in the generated sentence in theWi.

C3 = H(Y,W1) ∧ H(Y,W2)... ∧ H(Y,Wn) (5)

H(Y,Wi) ≡ ∃ j, yj ∈ Wi (6)

where C3 is the constraint on the species of complexity level which means the lexical
levels of the generated sentence need cover all the given levels.

The task requires to seek optimal sequences in which all constraints are satisfied as
much as possible. The formula is as follows:

Ŷ = argmax
Y ∈Y

logPθ

(
Y |K,L

)
where

N∑

i=1

Ci = N (7)

where N is the number of constraints and N = 3.

2.2 Complexity Embedding

As illustrated in Fig. 2, our model is based on the encoder-decoder architecture. To
make the model aware of the complexity levels, we fuse the complexity into the task by
designing a lexical complexity embedding for each token. To make the model respond to
specific complexity levels, we insert special tokens corresponding to complexity levels
into the input sequence as controllable elements. This section introduces these two key
components as well as the training and inference strategy.

We initialize a learnable matrix M ∈ R
U×dim as representations of complexity

levels, where U is the total number of complexity levels, and dim is the dimensions
of each embedding. For each token input to the encoder and decoder, we retrieve a
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predefined hash-table to obtain its complexity level li. Then we get the corresponding
complexity embedding by comi = Mi. The final embedding of this token embi is as
following:

embi = toki + posi + comi (8)

where toki and posi are token and positional embeddings, which are obtained according
to Transformer model [47].

For example, as shown in Fig. 2, when two keywords “tree” and “need” along with
two complexity levels A and B are required, the sentence “This peach tree needs light.”
is generated which satisfies both constraints. We use different complexity representa-
tions (mapping into a complexity embedding) for words of different complexity levels.
And the complexity representations of special tokens and punctuation are also different.

In practice, we apply the BPE (byte pair encoding) [41] algorithm to split words
into sub-word tokens to mitigate the OOV (out-of-vocabulary) problem. We mark each
sub-word with the same complexity level as the original word. More details about the
complexity levels can be found in the Appendix A.

2.3 Controllable Elements

As illustrated in Eq. 4, each word in the sentence Y is constrained to the word setD. To
achieve this, we design a set of special tokens Z = {z1, z2, . . . , zn}, where each token
corresponds to a complexity level in L.

We concatenate the keywords and the special tokens as the input sequence X =
[K; 〈sep〉;Z]. And we refer the special tokens Z as controllable elements, as they con-
trol the complexity of the generated sentence. Note that the complexity embedding of
zi is that of the level li.

2.4 Training Complexity Embedding

We train the complexity embedding in the Transformer model from scratch or fine-tune
the pre-trained model discriminatively as there is no complexity embedding layer in the
pre-trained process. If a model is trained from scratch, the parameters of complexity
embedding will be trained the same as other parameters in the model. If the complexity
embedding is added to a pre-trained model for fine-tuning, we first train the complexity
embedding layer by fixing the original parameters of the pre-trained model and then
fine-tune the whole model.

During the training process, in fact, both the word embedding and the complex-
ity embedding are in a teach-forcing pattern through the ground truth. At the time of
inference, the next word embedding at each step will be predicted by the probability
distribution of the vocabulary of the model. Since the complexity level of the next word
is unknown at each step of the inference stage, we utilize a look-up table method to
map the predicted token id to complexity id. The table is a mapping relation between
the token id and its complexity id on the whole vocabulary. At each step, the token id
will be predicted by the model. We get its complexity id through its token id and the
table. The complexity id and token id will then be given as the input for the next step of
inference.
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2.5 Length and Syntactic Complexity Control

The length of the generated text is also a factor that language learners may consider, and
there is a correlation between text length and syntactic complexity. From a statistical
view, text length and syntactic complexity are generally positively correlated. Thus, we
design a method to dynamically control text length and syntactic complexity, which
is used in the decoding stage. We set three sentence length modes: short, normal, and
long, and the sentence length mode also corresponds to the syntactic complexity. We
introduce length penalties to beam search in the decoding time in different modes. The
formula for calculating the penalty coefficient is as follows:

Penalty = Npen (9)

where N is the counts of keywords, pen = −1, 0, 1 if the mode is short, normal or
long respectively. We have observed from statistics that the larger the number of given
keywords leads the longer the generated sentences. Therefore, we set the relationship
between the length penalty and the number of keywords. In the mode of short or long,
if the number of keywords is larger, the greater the penalty required.

3 Datasets and Evaluation Metrics

3.1 Dataset Construction

We present two datasets for lexical complexity controlled sentence generation in
English and Chinese. The English raw corpus is collected from the monolingual English
News dataset in ACL2019 WMT. The Chinese raw corpus is collected from 500 text-
books for Chinese L2 learners. We adopt the English word complexity levels in the
Common European Framework of Reference for Languages (CEFR)1 which is divided
into six complexity levels (A1, A2, B1, B2, C1, and C2). The word complexity levels in
Chinese Proficiency Grading Standards for International Chinese Language Education
(CPGS)2 is divided into seven complexity levels (1 to 7). The process for cleaning data
is divided into three steps: split the raw data into sentences and choose the proper sen-
tences; obtain the keywords from the sentences; get the lexical complexity levels from
the sentences. More details of the two datasets are in the Appendix B.

3.2 Evaluation Metrics

Generated Quality To evaluate the quality of generated text, we employ some auto-
matic evaluate metrics in three aspects. 1) N-gram Similarity with References: we use
BLEU [32], METEOR [21], and NIST [9] evaluate the difference between generated
texts and reference texts, which are commonly utilized in machine translation and text
generation. 2) Diversity: We use 2-gram and 4-gram of Entropy [54] and 1-gram and
2-gram of Distinct [23] to evaluate lexical diversity. 3) Fluency: Following previous

1 https://www.englishprofile.org/wordlists/evp.
2 https://www.chinesetest.cn/index.do

https://www.englishprofile.org/wordlists/evp.
https://www.chinesetest.cn/index.do
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works [13,55], to assess the fluency of generated sentences, we report the perplexity
(PPL) over the test set using the pre-trained GPT-2 [35] large model.

Satisfaction of Lexically Controlling The control elements of lexical complexity
controlled sentence generation have introduced in the Sect. 2.1. Our metrics are corre-
sponding to the three constraints.

– Keywords Constraint. For this aspect, we introduce Keywords Constraint (K-C)
satisfaction metric on word-level, which is computed using the percentage of the
keywords contained in the generated sentences. The formular describe is as below:

K − C =
1
N

∑N

i=1
countC1

i

/
mi (10)

where N is the total number of samples in the test dataset, countC1
i is the number

of keywords included in the generated sentence of the i-th sample, which satisfy
the constraint of C1, and mi is the number of the keywords of the input on the i-th
sample.

– Word Complexity Constraint. The purpose of this metric is to calculate the Accu-
racy (ACC) of the words that meet the lexical complexity levels requirement in the
generated sentence. As shown in the following formula:

ACC =
1
N

∑N

i=1
countC2

i

/
ti (11)

where countC2
i is the number of the words that satisfy the constraint C2 of the i-th

sample, and ti is the length of the generated sentence of the i-th sample.
– Complexity Levels Constraint. We propose three metrics to evaluate the satisfaction
of the species of the required complexity levels. It is unreasonable that the ACC is
still 100% if given two complexity levels but the words of generated sentence only
covers one of the levels. Thus we design the metrics of Precision (P), Recall (R), and
F1 to calculate the satisfaction of complexity level constraint. The formular describes
are as follows:

P =
1
N

∑N

i=1
countC3

i

/
gi (12)

R =
1
N

∑N

i=1
countC3

i

/
ni (13)

F1 =
2
N

∑N

i=1
countC3

i

/
(ni + gi) (14)

where countC3
i is the number of the complexity levels satisfy the constraint C3 of

the i-th sample, ni is the number of the complexity levels given in the source of the
i-th sample, and gi is the number of the complexity levels of the generated sentence
of the i-th sample.
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Table 1. Generation quality evaluation results on English dataset.

Metrics BLEU(%) NIST(%) METEOR(%) Entropy(%) Distinct(%) PPL

B-2 B-4 N-2 N-4 E-2 E-4 D-1 D-2

Training Transformer from scratch

K2S 16.58 4.57 3.14 3.27 15.23 8.20 10.23 5.93 24.76 74.91

Ctrl-decoding 12.12 3.16 2.45 2.61 11.72 7.28 9.22 5.27 20.14 286.50

Prompting 18.19 5.73 3.57 3.64 15.93 8.30 10.36 6.10 25.55 52.10

Reranking 18.47 6.27 3.52 3.60 15.99 7.87 9.79 5.93 22.70 47.81

CE (ours) 18.37 6.66 3.64 3.69 16.06 8.43 10.47 5.80 25.75 42.06

Fine-tuning BART

K2S 17.40 5.96 3.20 3.26 15.60 8.60 10.52 6.36 28.53 33.11

Ctrl-decoding 14.17 3.55 2.73 2.48 13.15 8.03 9.87 5.96 21.96 223.43

Prompting 19.36 6.88 3.59 3.67 16.09 8.93 10.81 7.22 33.84 39.65

Reranking 18.95 6.54 3.54 3.58 16.03 8.72 10.67 6.60 30.09 34.24

CE (ours) 19.80 7.22 3.61 3.69 16.34 8.50 10.48 6.41 27.56 28.48

4 Experiments

Our experiments are based on the two datasets introduced in Sect. 3. Besides the strong
baselines of controlled decoding, prompting and reranking mentioned in Sect. 4.2, we
generate the sentence by setting the keys as the input directly as the basic baseline
(K2S). This baseline does not require complexity levels, which are just learnt from the
data. Our evaluations include automatic evaluation and human evaluation. The auto-
matic metrics have been introduced in the Sect. 3.

4.1 Experimental Setup

Our experimental setup contains two aspects:training from scratch and fine-tuning.
From scratch training experiments are on the Transformer model [47], which is the
most widely used model in text generation. The fine-tuning experiments are on the pre-
trained model of BART [22], which has superior generation ability. During inference,
we run greedy decoding on all models for a fair comparison. We implement all models
with the Fairseq library3 and the BART pre-trained model is from HuggingFace Trans-
formers library4 [51]. All models are trained and tested on NVIDIA TITAN Xp GPU.

From Scratch Training Setup. We adopt the typical Transformer [47] as the model
trained from scratch. We utilize a learning rate of 3e-4 and set the warming-up schedule

3 https://github.com/pytorch/fairseq.
4 https://github.com/huggingface/transformers.

https://github.com/pytorch/fairseq.
https://github.com/huggingface/transformers.
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with 4000 steps for training. We train our model for around 100 epochs. The optimiza-
tion algorithm is Adam [18]. We set the maximum number of input tokens as 8192,
which is the same as transformer-based baselines.

Fine-tuning Setup. We initialize our model with BART-base [22], which has com-
parable parameters to generation baselines. For generation baselines and our models,
we use Adam [18] with an initial learning rate of 1e-5 to update parameters for four
epochs and choose the checkpoints with the lowest validation loss. We train our model
for around 30 epochs. We set the maximum number of input tokens as 2048.

Table 2. Satisfaction of controlling evaluation results on English dataset.

Metrics (%) K-C ACC P R F1

Training Transformer from scratch

K2S 96.93 95.68 89.03 83.27 84.93

Ctrl-decoding 85.56 99.02 97.84 83.51 89.19

Prompting 96.85 98.91 97.35 90.86 93.46

Reranking 97.33 96.80 91.81 87.97 88.98

CE (ours) 98.00 99.10 98.09 92.84 94.96

Fine-tuning BART

K2S 97.51 95.26 88.79 84.63 85.58

Ctrl-decoding 89.73 99.34 98.57 84.19 90.33

Prompting 96.57 97.79 95.77 90.17 92.25

Reranking 98.52 96.10 92.36 88.96 91.87

CE (ours) 98.68 99.13 98.54 93.72 95.77

Table 3. Generation quality evaluation results on Chinese dataset.

Metrics BLEU(%) NIST(%) METEOR(%) Entropy(%) Distinct(%) PPL

B-2 B-4 N-2 N-4 E-2 E-4 D-1 D-2

Training Transformer from scratch

K2S 13.92 4.17 2.73 2.76 15.00 8.83 10.20 8.60 37.70 48.32

Ctrl-decoding 12.84 3.57 2.48 2.50 13.70 8.70 10.30 6.08 34.90 224.59

Prompting 13.90 3.81 2.70 2.73 14.35 8.53 10.05 7.47 33.35 45.61

Reranking 15.46 5.37 2.98 3.02 15.34 8.84 10.15 9.13 37.88 38.56

CE (ours) 15.69 6.27 2.91 2.94 16.04 9.28 10.58 10.68 47.71 34.53

Fine-tuning BART

K2S 14.97 4.39 3.08 3.10 16.56 8.60 10.06 9.91 37.13 21.76

Ctrl-decoding 12.54 3.71 2.38 2.55 14.04 8.73 10.25 9.96 37.85 129.86

Prompting 16.81 5.47 3.15 3.17 16.24 8.69 10.13 10.04 38.33 31.75

Reranking 16.53 6.42 3.29 3.36 16.61 8.81 10.08 10.15 38.96 53.47

CE (ours) 17.07 6.46 3.18 3.26 16.73 9.34 10.27 10.55 48.76 26.52
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Table 4. Satisfaction of controlling evaluation results on Chinese dataset.

Metrics (%) K-C ACC P R F1

Training Transformer from scratch

K2S 87.36 92.74 85.40 68.40 73.75

Ctrl-decoding 71.83 99.96 99.96 61.79 74.73

Prompting 85.54 98.88 97.79 80.23 86.88

Reranking 88.22 96.70 93.05 75.74 81.59

CE (ours) 89.61 98.87 97.49 88.80 92.17

Fine-tuning BART

K2S 92.12 93.73 86.88 68.87 74.37

Ctrl-decoding 82.52 99.18 98.65 65.26 76.41

Prompting 86.94 98.73 97.98 81.78 88.02

Reranking 90.14 97.21 95.44 76.78 83.95

CE (ours) 92.58 99.07 97.91 89.34 92.85

4.2 Baseline

Controlled Decoding. We consider a strategy of controlled decoding [8] to realize
the generated sentence consists of the words belonging to the given complexity levels.
Since we know the words of the complexity level to be used in the sentence, we can
restrict the words of the subset of the vocabulary to only be used in the decoding stage.
The specific method is to set the probability of words outside the subset to zero so that
they can meet the requirements of the word complexity level.

Prompting. Prompting is another feasible method for controlled text generation [57].
Inspired by the prefix-tuning [24], which uses continuous vectors as prompts, we add
the required complexity levels as the prefix for controlling in the input of the generation
model.

Reranking. Inspired by previous works [31,37], we select the sentence that best meets
the lexical complexity requirements from the N-best candidates. We take the score that
is the sum of ACC score and F1 score on the test reference hypothesis from this N-
best list and choose the candidate that has the largest score. The detail of the re-ranking
method is shown as the Algorithm 1 in Appendix C.

4.3 Experimental Results

The experimental results on English dataset are shown in Table 1 and Table 2. From the
evaluation of generation quality in Table 1, it can be seen that the method of complexity
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Table 5. Human evaluations for fine-tuning BART model on two datasets.

Metrics (%) Semantics Fluency Diversity

English dataset

Ctrl-decoding 2.68 2.40 2.92

Prompting 4.63 3.25 3.45

Reranking 4.60 3.39 3.40

CE (ours) 4.62 3.82 3.54

Chinese dataset

Ctrl-decoding 3.89 2.82 3.27

Prompting 4.23 3.08 3.02

Reranking 4.37 3.29 3.16

CE (ours) 4.57 3.80 3.71

embedding has competitive results in different aspects, especially on fluency. In general,
the CE method has better performance in the control of lexical complexity, especially
on the metrics of R and F1. The method of controlled decoding has poor performance
on PPL because it forces the distribution of the logits to concentrate on the words of
given complexity levels in the decoding stage. This hard constraint pattern will impact
the fluency of the generated sentences. But its performances on the metrics of ACC and
P are better than other methods from Table 2. The methods of prompting and reranking
are two competitive baselines. The prompting method has better performance in the
control of the word complexity because it has considered the word complexity levels in
training. But the reranking method has better generation quality on the whole metrics
of Table 1.

The experimental results on Chinese dataset are shown in Table 3 and Table 4. We
can draw similar conclusions from these two tables. Our approach performs well in
terms of both text generation quality and lexical complexity control. The rerank app-
roach outperforms prompt in all aspects of generation quality, both in terms of similarity
to ground truth and in diversity and fluency, and even achieves the best NIST metrics
for the Chinese dataset.

4.4 More Analyses and Discussion

The CE method we proposed has an excellent performance in controlling lexical com-
plexity. The reason is that the CE method not only keeps the consistency of training and
prediction but also considers the information of the complexity at the token level. Thus,
it has more precise control of lexical complexity. And it also has competitive generation
quality in the aspect of fluency and similarity with the reference. From the metrics of
Entropy and Distinct, its diversity has a little poor performance in terms of the fine-
tuning pattern on the English dataset. We think the main reason is that the vocabulary
of the English word complexity levels is less than which of the Chinese, so the token
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level restrictions of complexity embedding will impact the diversity of the sentences.
The Chinese dataset, on the other hand, has a much larger coverage of vocabulary with
complexity and the dataset comes from the field of second language teaching, so the
diversity of our model is better. It is worth noting that our CE method performs best
in terms of lexical complexity control, especially the metrics of K-C, R, and F1, com-
pared to the baseline model. This indicates that the CE method has higher coverage on
complexity levels due to it takes into account the complexity of each word.

Table 6. The length and depth of syntactic tree of generated sentences in different modes.

Metric/Mode Short Normal Long

Length 15.3 24.6 36.8

Syn-Depth 9.3 11.1 13.5

4.5 Length and Syntactic Complexity Control

We evaluate the length and the depth of the syntactic tree of generated text in the modes
of short, normal and long, which can reflect the complexity of the generated text. As
shown in the Table 6, the experiment of controlling sentence length and syntactic com-
plexity is on the English dataset. In the long mode, the generated sentences are longer,
and the syntactic tree is deeper. In the short mode, the generated sentences are shorter,
and the syntactic tree depth is smaller. The length penalty in the decoding stage can
effectively control the sentence length while affecting the complexity of the syntax.

4.6 Human Evaluation

We conduct a human evaluation to further compare our model with the three baselines
with fine-tuning the BART model on two datasets. For each model, we randomly select
200 generated sentences from the test set for each dataset and invite three annotators
to label the sentences, who are postgraduates of the major in linguistics. To evaluate
the quality of the sentences, annotators rate the sentences on three dimensions: seman-
tic consistency between the keywords and sentence; the fluency of the sentence; the
diversity of the sentence [55]. The score is range from 0 to 5. As shown in Table 5, our
method has better performance at the three aspects of human evaluation, especially the
fluency and diversity. We give some real cases of two datasets in the Appendix D. From
the cases study we can find that the CE method can cover more lexical complexity lev-
els than the baseline methods. This also confirms the reason why the CE method that
we proposed has a better performance on R and F1 metrics of the automatic evaluation.

5 Related Work

Lexical constraint text generation is to generate a complete text sequence, given a set
of keywords as constraints [55]. Previous works involve enhanced beam search [14,
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33] and the stochastic search methods [42,55]. Currently, Seq2Seq-based models such
as Transformer and pre-trained models have been increased in generation with lexical
constraint [10,25,26,48,49]. But lexically constrained text generation is not able to
control the complexity of words used in the generation, which is different from our
work.

Text readability assess research has shown that lexical complexity is also a cru-
cial aspect of evaluating the complexity of a text for text readability assess task [6]. In
the relevant study of sentence-level readability, it is generally accepted that apart from
sentence length, the most predictive indicator is the number of difficult words in the sen-
tence [50]. In our work, we follow the definition and vocabulary of lexical complexity
of text readability assess.

Text simplification In text simplification field, lexical substitution, the replacement
of complex words with simpler alternatives, is an integral part of sentence simplification
and has been the subject of previous work [2,29]. Differently, our work can strictly
control the lexical complexity levels of the generated sentence, not only simplify the
lexical complexity.

6 Conclusions

To summarize, we introduce a new task of lexical complexity controlled sentence gener-
ation, where word complexity must be strictly controlled in generating. To promote the
development of this task, we develop two datasets and four metrics for the controlled
element. In this paper, we also develop a series of alternate solutions for this task and
propose a novel method based on complexity embedding to obtain better control of
lexical complexity in a generation. Our results indicate that the complexity embedding
method has better performance in controlling the lexical complexity and competitive
generation quality.

Acknowledgement. This work was supported by the funds of Research Project of the National
Language Commission No. ZDI145-24. We would like to thank all anonymous reviewers for their
valuable comments and suggestions on this work.

A Complexity Embedding Id

The English words have six levels. And the Chinese words have seven levels (Diff 1–7).
We give the design of the complexity embedding id for this two language in the Table 7.
Note that, if a word is out of the complexity level vocabulary, its complexity is “〈out〉”
which is mapping into id 7 in English corpus and 8 in Chinese corpus. In addition, the
special tokens such as “〈s〉” “〈pad〉” “〈\s〉” “〈unk〉” are the common meaning in data
preprocessing for model training.
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B Details of Datasets Construction

B.1 English Dataset

We adopt the English word complexity levels in the Common European Framework of
Reference for Languages (CEFR)5 which is divided into six complexity levels (A1, A2,
B1, B2, C1, and C2). First, we need to restrict the words in the corpus to ensure most
of the words are in the complexity level vocabulary. Then, we need to extract keywords
from the sentences. In this process, we command the number of keywords is related
to the length of the sentence, and the number of keywords is between 1 to 5. Finally,
we obtain the complexity information of each sentence through the complexity level
vocabulary. The English raw corpus is collected from the monolingual English News
dataset in ACL2019 WMT. We select those sentences which have 90% words in the
complexity level vocabulary of CEFR. After the processes mentioned above, we get
199k samples in the English corpus, and we split the train, validation and test dataset as
shown in the Table 8.

Table 7. Complexity Embedding Id.

English Chinese

Token Id Token Id

Punctuation 0 Punctuation 0

A1-C2 1–6 Diff 1–7 1–7

〈out〉 7 〈out〉 8

〈sep〉 8 〈sep〉 9

〈s〉 8 〈s〉 9

〈pad〉 8 〈pad〉 9

〈ns〉 8 〈ns〉 9

〈unk〉 8 〈unk〉 9

B.2 Chinese Dataset

The word complexity levels in Chinese Proficiency Grading Standards for International
Chinese Language Education (CPGS)6 is divided into six complexity levels (1 to 7).
The Chinese raw corpus is collected from 500 textbooks for Chinese learners. These
textbooks contain two types of text: essay and dialogue. We split these texts into sen-
tences and throw away those short sentences. If the raw text is a dialogue, after splitting,
we need to remove the speaker’s name to guarantee it is a proper sentence. Then, we
command the number of keywords is related to the length of the sentence, and the num-
ber of keywords is between 1 to 5. After the processes mentioned above, we get 156k
samples in the Chinese corpus, as shown in the Table 8.

5 https://www.englishprofile.org/wordlists/evp.
6 https://www.chinesetest.cn/index.do

https://www.englishprofile.org/wordlists/evp.
https://www.chinesetest.cn/index.do
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B.3 Analysis of the Datasets

Coverage of Words with Levels. We first analyze the two datasets from the coverage
rate of complexity level vocabulary. Due to the requirement of complexity level, the
target text is proper to cover most of the vocabulary of complexity level. Both of the
two datasets have covered over 93% of the vocabulary of complexity levels.
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Fig. 3. Distributions of the number of keywords and complexity levels.

Table 8. Statistics of the two datasets.

Dataset Train Valid Test Total

English 180,000 16,000 3,615 199,615

Chinese 140,000 14,000 2,661 156,661

Distributions of the Number of Keywords and Complexity Levels. One or multiple
complexity levels and keywords are given as the input to generate sentences. We give
the distribution of the number of keywords and the complexity levels in Fig. 3. From the
statistics of (a) and (c) in Fig. 3, the number of keywords in all samples has covered the
range of 1 to 5 both in the English and Chinese datasets, but the distributions are quite
different. On account of the average sentence length of English news data is longer than
the Chinese corpus, the number of keywords in English is larger. From the statistics
in (b) and (d) of Fig. 3, the number of complexity levels distribution of the Chinese
dataset is close to a standard normal distribution, and the English dataset concentrates
on a wider range of complexity levels. This indicates that in the English dataset it tends
to use more words of different complexity levels in the same sentence.

C Algorithm of Reranking

The algorithm is the detail of reranking method. We select the sentence that best meets
the lexical complexity requirements from the N-best candidates, and N = 10. On the
test set, We take the sum of ACC score and F1 score. The, we choose the candidate
that has the largest score.
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D Case Study

We choose some cases of the fine-tuning pattern from two datasets. The English cases
are in the Table 9, and the Chinese cases are in the Table 10. In both tables, the required
keywords as well as appearing in the sentences are shown in blue font, and certain given
grades as well as words actually appearing in the sentences for the corresponding grade
are shown in red font.

Algorithm 1. Reranking Method

Input: Generated n best candidate sentences H = (h0, h1, h2, ..., hn−1) for given
keywords and n = 10

Output: Sentence having highest score
1: Let score = 0
2: for each sentence hj inH do
3: ACC = Facc(hj)
4: F1 = Ff1(hj)
5: scorej = ACC + F1
6: if scorej > score then
7: score = scorej

8: ret = hj

9: end if
10: end for
11: return ret

E Related Methods

E.1 Controlled Decoding

The gradients of an external discriminator is directly used to the generation of a pre-
trained language model toward the target topic [8]. The output probabilities of a lan-
guage model is modified by using the output of a discriminator that determines whether
the future text will contain the desired attribute. Different from the controlled decoding
methods, our method considers the constraint of lexical complexity during both training
and prediction.

E.2 Prompting

The prompting method has emerged as a new way to perform natural language process-
ing by conditioning on extra information. Brown et al. propose to use a task description
and a few examples to adapt the GPT-3 model to downstream tasks, which is referred
to as in-context learning [4]. Their prompts are manually designed. Gao et al. present
LM-BFF for automatic prompts generation [11]. Liang et al. propose prefix-tuning,
which uses continuous vectors as prompts [24]. Compared to the prompting method,
our method fuses more fine-grained information on lexical complexity in model train-
ing.
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E.3 Reranking

The reranking approach has been proved to have excellent performance in machine
translation [31] and text generation [37]. The reranking method rescores the n-best can-
didates through a model or a function and selects the highest scoring candidate as the
final prediction [16]. Unlike the reranking method, our method do not need to process
the outputs after decoding.

F Limitation

Our proposed task has wide applications in the field of language teaching, and the pro-
posed method has precise control over lexical difficulty. However, the task requires that

Table 9. Generated examples from the English dataset.

Keywords: refuse, accept, country ; Complexity Levels: A1, A2, B1, C1

Ctrl-decoding I refuse to accept that this is a matter of time for the country,
but I do not accept it

Prompting I refuse to accept that I am the only one who has been elected
to the country, but I am not

Reranking I refuse to accept that this is the best thing I can do for the
country,” he said

CE (ours) I refuse to accept that this is a country that is going to be a
place where people are going to be unsafe

Keywords: public, maintain, lose ; Complexity Levels: A1, A2, B1, B2

Ctrl-decoding I do not think the public will maintain the power to lose, but I
do not think it will

Prompting The public will maintain the public’s ability to lose, and the
public will not lose, and they will not lose

Reranking I don’t want to be in public, but I don’t want to maintain my
weight and lose

CE (ours) The public must maintain their faith and not lose , and we will
continue to do everything we can to protect them

Keywords: football, Leicester, City, magical ; Complexity Levels: A1, A2, B1, B2, C2

Ctrl-decoding I think football is a great way to play for the game and to be
able to play for the best of the game against the game against
the game against the game and the way we play against the
game against the game against the game against the game is
not the same, but the way we are magical

Prompting I think football is going to be the best of Leicester City, but I
think it’s a magical moment for us to have to play with

Reranking This is a football game for Leicester City, and it’s a magical
moment for us to be part of the game and be a part of it

CE (ours) It’s a football club that has been around for a long time and to
see Leicester City win the title is magical
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the lexical complexity is known first. The vocabulary difficulty table is the experience
summed up by the predecessors, and it is difficult to apply to all vocabulary. There-
fore, we are actively exploring how to make the model automatically understand all
vocabulary difficulties so that it can cover a wider vocabulary at generation.

Table 10. Generated examples from the Chinese dataset.
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Abstract. Recent works in dialogue state tracking (DST) focus on a hand-
ful of languages, as collecting large-scale manually annotated data in different
languages is expensive. Existing models address this issue by code-switched
data augmentation or intermediate fine-tuning of multilingual pre-trained mod-
els. However, these models can only perform implicit alignment across lan-
guages. In this paper, we propose a novel model named Contrastive Learning
for Cross-Lingual DST (CLCL-DST) to enhance zero-shot cross-lingual adapta-
tion. Specifically, we use a self-built bilingual dictionary for lexical substitution
to construct multilingual views of the same utterance. Then our approach lever-
ages fine-grained contrastive learning to encourage representations of specific
slot tokens in different views to be more similar than negative example pairs.
By this means, CLCL-DST aligns similar words across languages into a more
refined language-invariant space. In addition, CLCL-DST uses a significance-
based keyword extraction approach to select task-related words to build the bilin-
gual dictionary for better cross-lingual positive examples. Experiment results on
Multilingual WoZ 2.0 and parallel MultiWoZ 2.1 datasets show that our pro-
posed CLCL-DST outperforms existing state-of-the-art methods by a large mar-
gin, demonstrating the effectiveness of CLCL-DST.

Keywords: Dialogue state tracking · Cross-lingual transfer learning ·
Contrastive learning

1 Introduction

Dialogue state tracking is an essential part of task-oriented dialogue systems [34], which
aims to extract user goals or intentions throughout a dialogue process and encode them
into a compact set of dialogue states, i.e., a set of slot-value pairs. In recent years, DST
models have achieved impressive success with adequate training data. However, most
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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https://doi.org/10.1007/978-981-99-6207-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6207-5_8&domain=pdf
https://doi.org/10.1007/978-981-99-6207-5_8


128 Y. Xiang et al.

models are restricted to monolingual scenarios since collecting and annotating task-
oriented dialogue data in different languages is time-consuming and costly [1]. It is
necessary to investigate how to migrate a high-performance dialogue state tracker to
different languages when no annotated target language dialogue data are available.

Previous approaches are generally divided into the following three categories: (1)
Data augmentation methods with neural machine translation system [24]. Although
translating dialogue corpora using machine translation is straightforward, it has inher-
ent limitation of heavily depending on performance of machine translation. (2) Pre-
trained cross-lingual representation [16]. The approach applies a cross-lingual pre-
trained model, such as mBERT [4], XLM [3] and XLM-RoBERTa (XLM-R) [2] as one
of the components of the DST architecture and then is trained with task data directly.
However, the approach does not introduce cross-lingual information during the training
process. (3) Code-switched data augmentation [17,18,22]. The method replaces words
randomly from the source language to the target language with a bilingual dictionary as
a way to achieve data augmentation. Nevertheless, a synonym substitution with some
meaningless words may introduce noise that impairs the semantic coherence of the sen-
tence. Besides, the model only use the code-switched corpus as the training data, ignor-
ing the interaction between the original and code-switched sentences. Consequently,
these models can not sufficiently learn the semantic representation of the corpus.

To address the above-mentioned issues, we propose a novel model named
Contrastive Learning for Cross-Lingual DST (CLCL-DST), which utilizes contrastive
learning (CL) for cross-lingual adaptation. CLCL-DST first captures comprehensive
cross-lingual information from different perspectives and explores the consistency of
multiple views through contrastive learning [11]. Simultaneously, as dialogue state
tracking is to predict the state of slots in each turn of the dialogue, we consider it as
a token-level task and then employ the same fine-grained CL. Specifically, we obtain
the encoded feature representation of each slot in the original sentence and the corre-
sponding code-switched sentence from the multilingual pre-trained model, respectively.
We then employ fine-grained CL to align the representations of slot tokens in different
views. By introducing CL, Our model is able to distinguish between the code-switched
utterance and a set of negative samples, thus encouraging representations of similar
words in different languages to align into a language-invariant feature space (Subsect.
3.1).

Furthermore, CLCL-DST introduces a significance-based keyword extraction app-
roach to obtain task-related keywords with high significance scores in different
domains. For example, in the price range domain, some words like “cheap", “moder-
ate" and “expensive" are more likely to have higher significance scores than background
words, such as “a", “is" and “do". Specifically, Our approach obtains the semantic rep-
resentation of sentences and corresponding subwords by encoder. Then the approach
gets the significance scores of the words by calculating the cosine similarity and get the
keywords of the dataset based on the scores. We then replace these keywords with the
corresponding words in the target language to generate multilingual code-switched data
pairs. These code-switched keywords can be considered as cross-lingual views sharing
the same meaning, allowing the shared encoder to learn some direct bundles of meaning
in different languages. Thus, our keyword extraction approach facilitates the transfer of
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cross-lingual information and strengthens the ties across different languages (Subsect.
3.2).

We evaluate our model on two benchmark datasets. For the Multilingual WoZ 2.0
dataset [20] which is single-domain, our model outperforms the existing state-of-the-
art model by 4.1% and 4.8% slot accuracy for German (De) and Italian (It) under the
zero-shot setting, respectively. For the parallel MultiWoZ 2.1 dataset [8] which is multi-
domain, our method outperforms the current state-of-the-art by 22% and 38.7% in joint
goal accuracy and slot f1 for Chinese (Zh), respectively. Moreover, further experiments
show that introducing fine-grained CL performs better than coarse-grained CL. We
also investigate the impact of different keyword extraction approaches on the model
to demonstrate the superiority of our extraction approach.

Our main contributions can be summarized as follows:

– To the best of our knowledge, this is the first work on DST that leverages fine-grained
contrastive learning to explicitly align representations across languages.

– We propose to utilize a significance-based keyword selection approach to select task-
related keywords for code-switching. By constructing cross-lingual views through
these keywords makes the model more effective in transferring cross-lingual signals.

– Our CLCL-DST model achieves state-of-the-art results on single-domain cross-
lingual DST tasks, and it boasts the unique advantage of performing effective zero-
shot transfer under the multi-domain cross-lingual setting, demonstrating the effec-
tiveness of CLCL-DST.

2 Related Work

2.1 Dialogue State Tracking

Methods of dialogue state tracking can be divided into two categories, ontology-based
and open-vocabulary DST. The first method selects the possible values for each slot
directly from a pre-defined ontology and the task can be seen as a value classification
task for each slot [7,14,15,27]. However, in practical applications, it is difficult to define
all possible values of slots in advance, and the computational complexity increases sig-
nificantly with the size of the ontology.

The open-vocabulary approach attempts to solve the above problems by extracting
or generating slot values directly from the dialogue history [23]. [29] generates slot val-
ues directly for each slot at every dialogue turn. The model uses GRU to encode the dia-
logue history and decode the value with a copy mechanism. Some recent works [9,33]
adopt a more efficient approach by decomposing DST into two tasks: state operation
prediction and value generation. SOM-DST [9] firstly predicts state operation on each
slot and then generates the value of the slot that needs updating. [32] proposes a frame-
work based on the architecture of SOM-DST, with a single BERT as both the encoder
and the decoder.
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2.2 Zero-Shot Cross-Lingual Dialogue State Tracking

There is a growing demand for dialogue systems supporting different languages, which
requires large-scale training data with high quality. However, these data are only avail-
able within a few languages. It remains a challenge to migrate dialogue state tracker
from the source language to the target language.

Cross-lingual dialogue state tracking can be divided into two categories: single-
domain and multi-domain. In single-domain, XL-NBT [1] first implements cross-
lingual learning under the zero-shot setting by pre-training a dialogue state tracker for
the source language using a teacher network. MLT [17] adopts a code-mixed data aug-
mentation framework, leveraging attention mechanism to obtain the code-mixed train-
ing data for learning the interlingual semantics across different languages. CLCSA [22]
further explores the dynamic replacement of words from source language to target lan-
guage during training. Based on CLCSA architecture, XLIFT-DST [19] improves the
performance by intermediate fine-tuning of pre-trained multilingual models using par-
allel and conversational movie subtitles datasets.

In multi-domain, the primary benchmark is the Parallel MultiWoZ 2.1 dataset [8]
originating from the Ninth Dialogue Systems and Technologies Challenge (DSTC-
9) [8]. This challenge is designed to build a dialogue state tracker to evaluate a low-
resource target language dataset using the learned knowledge of the source language.
All the submissions in this challenge use the translated version of the dataset, transform-
ing the problem into a monolingual dialogue state tracking task. XLIFT-DST employs
SUMBT [14] as the base architecture and achieves competitive results on the paral-
lel MultiWoZ 2.1 dataset through intermediate fine-tuning. Unlike these works, we
leverage code-switched data with CL to further align multiple language representations
under the zero-shot setting.

2.3 Contrastive Learning

Contrastive learning aims at pulling close semantically similar examples (positive sam-
ples) and pushing apart dissimilar examples (negative samples) in the representation
space. SimCSE [6] proposes a simple dropout approach to construct positive samples
and achieves state-of-the-art results in semantic textual similarity tasks. Cline [26] con-
structs semantically negative instances without supervision to improve the robustness
of the model against semantically adversarial attacks. GL-CLEF [21] leverages bilin-
gual dictionaries to generate code-switched data as positive samples, and incorporates
different grained contrastive learning to achieve cross-lingual transfer. Our model incor-
porates fine-grained CL to align similar representations between the source and target
languages.

3 Methodology

In this section, we set up the notations that run throughout the paper first, before describ-
ing our CLCL-DST model which explicitly uses contrastive learning to achieve cross-
lingual alignment in dialogue state tracking. Then, we introduce a significance-based
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code-switching approach on how to select task-related keywords in the utterance and
code-switch the input sentence dynamically in detail. The main architecture of our
model is illustrated in Fig. 1.
Notation. Suppose the dialogue has T turns. We define the dialogue utterance at turn
t as Dt = Rt⊕;⊕Ut ⊕ [SEP], where Rt and Ut(1 ≤ t ≤ T ) are the system response
and the user utterance respectively. ⊕ denotes token concatenation, and the semicolon ;
is a separation symbol, while [SEP] marks the end boundary of the dialogue. Besides,
we represent the dialogue states as B = {B1, ..., BT }, where Bt = [SLOT]1 ⊕ b1t ⊕
... ⊕ [SLOT]I ⊕ bIt denotes I states combination at the t-th turn. I is the total number
of slots. The i-th slot-value pair bit is defined as:

bit = Si ⊕ − ⊕ V i
t , (1)

where Si is a slot and V i
t is the corresponding slot value. [SLOT]i and − are separation

symbols. The representations at [SLOT]i position are used for state operation predic-
tion and contrastive learning. We use the same special token [SLOT] for all [SLOT]i.
The input tokens in CLCL-DST are spliced by previous turn dialogue utterance Dt−1,
current turn dialogue utterance Dt and previous turn dialogue states Bt−1 [9]:

Xt = [CLS] ⊕ Dt−1 ⊕ Dt ⊕ Bt−1, (2)

where [CLS] is a special token to mark the start of the context. Next, we will elaborate
each part in detail.

3.1 Fine-Grained Contrastive Learning Framework

We introduce our fine-grained contrastive learning framework (CLCL-DST) with an
encoder-decoder architecture consisting of two modules: state operation prediction and
value generation. The encoder, i.e., state operation predictor, uses a multilingual pre-
trained model to predict the type of the operations to be performed on each slot. The
decoder, i.e., slot value generator, generates values for those selected slots.

Encoder. The encoder of CLCL-DST is based on mBERT architecture. We feed the
code-switched sentence Xt,cs into the encoder and obtain the output representation

Ht,cs ∈ R
|Xt|×d, where h[CLS]

t,cs , h
[SLOT]i

t,cs ∈ R
d are the outputs corresponding to [CLS]

and [SLOT]i. h[SLOT]i

t,cs is passed into a four-way classification layer to calculate the
probability P i

enc,t ∈ R
|O| of operations in the i-th slot at the t-th turn:

P i
enc,t = softmax

(
Wench

[SLOT]i

t,cs + b

)
, (3)

where Wenc and b are learnable parameters.
O = {CARRYOVER,DELETE,DONTCARE,UPDATE} denotes four state

operations of each slot [9]. Specifically, CARRYOVER indicates that the slot value
remains unchanged; DELETE changes the value to NULL; and DONTCARE means
that the slot is not important at this turn and does not need to be tracked [29]. Only when
the UPDATE is predicted does the decoder generate a value for the corresponding slot.
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Fig. 1. The overview of the proposed CLCL-DST. The input of our model consists of previous
turn dialogue utterances Dt−1, current turn dialogue utterances Dt and previous dialogue state
Bt−1. For simplicity, we only put one turn of dialogue on the picture. The model constructs
a bilingual dictionary by obtaining keywords from the significance-based code-switching app-
roach, and then generates code-switched data. The data are fed to the encoder to obtain a feature
representation of each slot subsequently. ORG denotes the original sentence and CS denotes the
corresponding code-switched sentence. In the part of Fine-grained CL, different color denotes
different representation spaces for origin utterance, positive and negative samples. The decoder
generates the value for the slot whose state operation is predicted to UPDATE.

Our main learning objective is to train the encoder to match predicted state operation
with the ground truth operation. So the loss for state operation is formulated as:

Lenc,t = −1
I

I∑
i=1

(
Y i
enc,t

)�
log

(
P i
enc,t

)
, (4)

where Y i
enc,t ∈ R

|O| is the ground truth operation for the j-th slot.

Decoder. We employ GRU as decoder to generate the value of dialogue state for each
domain-slot pair whose operation is UPDATE. GRU is initialized with gi,0t = Wt and

ei,0t = h
[SLOT]i

t . The probability distribution of the vocabulary is calculated as:

P i,k
dec,t = softmax

(
GRU

(
gi,k−1
t , ei,kt

)
× E

)
∈ R

|V |, (5)

where k is decoding step, E ∈ R
|V |×d is the word embedding space shared with the

encoder, and |V | is the size of multilingual vocabulary. The overall loss for generating
slot value is the average of the negative log-likelihood loss:

Ldec,t = − 1
|Ut|

∑
i∈Ut

⎡
⎣ 1
Ki

t

Ki
t∑

k=1

(
Y i,k

)�
log

(
P i,k
dec,t

)⎤
⎦ , (6)
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where |Ut| is the number of slots which require value generation,Ki
t indicates the num-

ber of ground truth value to be generated for the i-th slot. Y i,k ∈ R
|V | represents the

one-hot vector of the ground truth token generated for the i-th slot at the k-th decoding
step.

Fine-Grained Contrastive Learning. In order to better capture the common features
between the source language and the target language, our model utilizes fine-grained
CL to pull closer the representation of similar sentences across different languages. The
key to CL is to find high-quality positive and negative pairs corresponding to the orig-
inal utterance. The positive sample should be semantically consistent with the original
utterance and provides cross-lingual view as well. In our scenario, we choose code-
switched input Xt,cs as the positive sample of Xt, while other inputs in the same batch
are treated as negative samples.

As state operation of each slot is a token-level task, we utilize a fine-grained CL loss
to facilitate token alignment. To achieve fine-grained cross-lingual transfer, our method

selects the output representation h
[SLOT]i

t of the special token [SLOT]i for contrastive
learning, as these I tokens are able to convey the semantics of the slots in the query.
The i-th slot token loss is defined as:

Li
cl,t = −1

I

I∑
j=1

log
cos

(
hi
t, h

j+

t

)

cos
(
hi
t, h

j+

t

)
+

∑I−1
k=0,k �=j cos

(
hi
t, h

k−
t

) , (7)

where hi
t is the abbreviation of h

[SLOT]i

t , hj+

t and hk−
t are positive and negative samples

of h[SLOT]i

t respectively. The total loss Lcl,t is calculated by adding up all tokens CL
loss.

The overall objective in CLCL-DST at dialogue turn t is the sum of individual losses
above:

Lt = Lenc,t + Lcl,t + Ldec,t. (8)

3.2 Significance-Based Code-Switching

The importance of different words in a dialogue utterance varies. For example, in the
price range domain, “cheap" and “expensive" are more likely to be keywords, while in
the area domain, keyword set might include orientation terms such as “center", “north"
and “east". Assuming that a dataset contains v words constituting a vocabulary V , we
construct a subset of keywords K ⊆ V for code-switching. Subsequently, the encoder
of CLCL-DST serves to extract keywords in the training data.

Given the input token Xt = (w1
t , w

2
t , ..., w

n
t ) at the t-th turn, n denotes the number

of words. We feed Xt into encoder, and obtain the representation h
[CLS]
t ∈ R

d of the
special token [CLS]. Then the sentence embedding vector Wt is calculated as:

Wt = tanh(Wpoolh
[CLS]
t + b), (9)
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where Wpool and b are learnable parameters. Then the cosine similarity between each
token wt ∈ Xt and the sentence embedding vector Wt is computed as:

Sim(wt) = cos(wt,Wt). (10)

Sim(wt) reflects the degree of associations between wt and sentence embedding Wt.
A higher value of the significance score Sim(wt) indicates a higher probability ofwt to
be a keyword. For words that are tokenized into subwords, we average the significance
scores of each subword to obtain the word score.

Equation 10 calculates the significance score of words in a sentence. To get the
keyword set K in training set, we add all significance scores for token w in training set
and multiply them by the inverse document frequency (IDF) [31] of w:

S(w) = log
N

|{x ∈ X : w ∈ x}| ·
∑

x∈X:w∈x

Sim(w), (11)

where N denotes the number of the input in the training dataset, |{x ∈ X : w ∈ x}|
indicates the number of the input containing w. The IDF term can reduce the weight of
words which appear frequently in the dataset, assigning meaningless words (e.g., “for"
and “an") with a lower score.

We select top-k words according to the significance scores to get a keyword set K,
and use the bilingual dictionary MUSE [12] to construct the code-switched dictionary
Dic = ((s1, t1), ...(sk, tk)), where s and t refer to the source and target language words
respectively. k is the number of keywords. In addition, we translate the whole words in
ontology and add them to Dic due to their important role in the sentence.

Inspired by [22], we randomly replace some words in source language sentence with
corresponding target words with a fixed probability if they appear in Dic. Since words
from the source language may have multiple translations in Dic, we randomly select
one of them for substitution. Notably, the input tokenX in our model includes dialogue
utterance D and dialogue states B, we just replace source words in D as B shares the
same slots across languages. Finally, we can get the code-switched input tokens Xt,cs

from Xt as:

Xt,cs = [CLS] ⊕ Dt−1,cs ⊕ Dt,cs ⊕ Bt−1, (12)

4 Experiments

4.1 Datasets

We evaluate our model on two datasets as follows:

– MultilingualWoZ 2.0 dataset [20]: A restaurant domain dialogue dataset expanded
from WoZ 2.0 [28], which contains three languages (English, German, Italian) and
1200 dialogues for each language. The corpus consists of three goal-tracking slot
types: food, price range and area. The task is to learn a dialogue state tracker only in
English and evaluate it on the German and Italian datasets, respectively.
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– Parallel MultiWoZ dataset [8]: A seven domains dialogue dataset expanded from
MultiWoZ 2.1 [5]. Parallel MultiWoZ contains two languages (English, Chinese)
and 10K dialogues. The Chinese corpus is obtained through Google Translate and
manually corrected by experts.

4.2 Compared Methods

We compare our approach with the following methods:

– XL-NBT [1] utilizes bilingual corpus and bilingual dictionaries to transfer the
teacher’s knowledge of the source language to a student tracker in the target lan-
guages.

– MLT [17] constructs code-switched data through the attention layer for training.
– CLCSA [22] dynamically constructs multilingual code-switched data by randomly
replacing words, so as to better fine-tune mBERT and achieve outstanding results in
multiple languages.

– SUMBT [14] uses a non-parametric distance measure to score each candidate slot-
value pair. We replace BERT with mBERT on the cross-lingual setup.

– SOM-DST [9] employs BERT as the encoder and uses a copy-based RNN to decode
upon BERT outputs.

– DST-as-PROMPTING [13] introduces an approach that uses schema-driven
prompting to provide history encoding and then utilizes T5 to generate slot values
directly. Here, we use the multilingual version of T5 - mT5 [30].

– XLIFT-DST [19] leverages task-related parallel data to enhance transfer learning by
intermediate fine-tuning of pre-trained multilingual models. For parallel MultiWoZ,
XLIFT-DST uses the architecture of SUMBT, while uses the state tracker in CLCSA
for Multilingual WoZ 2.0.

4.3 Implementation Details

Our method leverages the pre-trained mBERT-base1 implemented by HuggingFace as
the encoder, with 12 Transformer blocks and 12 self-attention heads. One layer GRU
is used as the decoder. The encoder shares the same hidden size s with the decoder,
which is 768. Adam optimizer [10] is applied to optimize all parameters with a warmup
strategy for the 10% of the total training steps. The peak learning rate is set to 4e-5
for encoder and 1e-4 for decoder, respectively. Besides, we use greedy decoding for
generating slot values.

For Multilingual WoZ dataset, the batch size is set to 64 and the maximum sequence
length to 200. For parallel MultiWoZ dataset, the batch size and the maximum sequence
length are 16 and 350 respectively. We replace the word for each dialogue with a fixed
probability of 0.6. The training is performed for 100 epochs as default, and we choose
the best checkpoint on the validation set to test our model.

1 https://huggingface.co/bert-base-multilingual-uncased.

https://huggingface.co/bert-base-multilingual-uncased
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4.4 Evaluation Metrics

Table 1. Slot accuracy and joint goal accuracy on Multilingual WoZ 2.0 dataset under zero-shot
setting when trained with English task data. Please see text for more details. Bold indicates the
best score in that column. CLCL-DST denotes our approach.

Model German Italian

slot acc. joint acc. slot acc. joint acc.

XL-NBT [1] 55.0 30.8 72.0 41.2

MLT [17] 69.5 32.2 69.5 31.4

Transformer based

mBERT 57.6 15.0 54.6 12.6

CLCSA [22] 83.0 63.2 82.2 61.3

XLIFT-DST [19] 85.2 65.8 84.3 66.9

CLCL-DST (ours) 89.3 63.2 89.1 67.0

The metrics in dialogue state tracking are turn-level which include Slot Accuracy, Joint
Goal Accuracy and Slot F1. Slot Accuracy is the proportion of the correct slots predicted
in all utterances. Joint Goal Accuracy is the proportion of dialogue turns where all slot
values predicted at a turn exactly match the ground truth values, while Slot F1 is the
Macro-average of F1 score computed over the slot values at each turn.

4.5 Main Results

Results for the Multilingual WoZ dataset are illustrated in Table 1. We can see that
CLCL-DST outperforms the state-of-the-art model (XLIFT-DST) by 4.1% and 4.8%
in slot accuracy for De and It respectively. This demonstrates that our model is able to
explicitly bring similar representations of different languages closer together through
contrastive learning than augmenting transfer learning process with intermediate fine-
tuning of pre-trained multilingual models.

To further study the effectiveness of our model under the zero-shot setting, We
also test CLCL-DST on parallel MultiWoZ in Table 2. As there are only a few base-
lines available for this dataset, we re-implement some monolingual models such as
SUMBT, SOM-DST, DST-as-PROMPTING into multilingual scenarios. We find that
our model has 22% and 38.7% improvement over XLIFT-DST in joint goal accuracy
and slot f1 for target language Zh under the zero-shot setting. It is worth noting that
the joint goal accuracy of all these baseline models is relatively low. The possible rea-
son is that these models do not learn considerable cross-lingual representations in the
multi-domain cases, making it difficult to migrate for complex slots. Specifically, In the
SOM-DST model, its decoder utilizes the soft-gated copy mechanism [25] in addition
to GRU, which introduces additional noise from the source language and is not appli-
cable to multilingual settings. In DST-as-PROMPTING, the model only leverages mT5
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Table 2. Joint goal accuracy and slot F1 on parallel MultiWoZ dataset under zero-shot learn-
ing setting when trained with English task data and tested on Zh language. ‘†’ denotes results
from [19]. ‘‡’ denotes our re-implemented results for the models based on corresponding multi-
lingual pretrained models.

Model joint acc. slot f1.

SUMBT [14] † 1.9 14.8

SOM-DST [9] ‡ 1.7 10.6

DST-as-PROMPTING [13] ‡ 2.5 17.6

XLIFT-DST † 5.1 40.7

CLCL-DST (ours) 27.1 79.4

In-language training † 15.8 70.2

Translate-Train † 11.1 54.2

Translate-Test † 26.5 77.0

to generate slot values directly without learning deeply cross-lingual interaction infor-
mation. Besides, we also refer to the results of translation-based methods from [19] in
Table 2. Our model still outperforms all of them. These results further indicate that our
proposed CLCL-DST leveraging code-switched data with contrastive learning boosts
the performance of dialogue state tracker.

5 Ablation Studies

We conduct ablation experiments to explore the effect of fine-grained contrastive learn-
ing and the significance-based keyword extraction approach on the overall performance
for the Multilingual WoZ 2.0 dataset.

5.1 The Effect of Fine-Grained Contrastive Learning

In addition to fine-grained CL, we also introduce coarse-grained CL for aligning similar
sentences across different languages. To be specific, we align the sentence embedding
Wt from Eq. 9 with its corresponding code-switched positive representations W+

t . The
objective for coarse-grained CL is written as follows:

Lsl,t = − log
cos

(
Wt,W

+
t

)
cos

(
Wt,W

+
t

)
+

∑I−1
k=0,k �=j cos

(
Wt,W k−

t

) , (13)

where W k−
t is the negative sample for Wt at the t-th turn.

As results shown in Table 3, we can conclude that different granularities of con-
trastive learning are effective for our model, especially fine-grained CL since it can
bring more improvement to CLCL-DST. Using fine-grained CL improves 1.4% and
5.5% in slot accuracy and joint goal accuracy for De, and 9.3% and 26% for It, respec-
tively, compared to coarse-grained CL. Since the goal of dialogue state tracking is to
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Table 3. Slot accuracy and joint goal accuracy for different grained contrastive learning under
zero-shot setting. “CL” denotes the abbreviation of contrastive learning.

Method German Italian

slot acc. joint acc. slot acc. joint acc.

w/o CL 82.5 52.0 86.8 60.0

Coarse-grained CL 87.9 57.7 79.8 41.0

Fine-grained CL 89.3 63.2 89.1 67.0

predict the state of slots in each turn of the dialogue, it can be considered as a token-
level task, so fine-grained CL is better suited for this task compared to coarse-grained
CL. Also, our approach selects specific tokens representing slots instead of all tokens
in the dialogue for contrastive learning, which can reduce the noise caused by other
semantically irrelevant tokens.

5.2 The Effect of Significance-Based Code-Switching

In this section we further explore the impact of keyword extraction algorithm on CLCL-
DST. Table 4 shows the performance of different keyword extraction strategies. We try
other four approaches to obtain the mapping dictionaries and compare them with the
significance-based code-switching approach: (1) choosing words based on their fre-
quency in our training set and converting them to target languages by MUSE; (2) using
the whole ontology, which contains 90 words approximately; (3) combining the dic-
tionaries obtained from (1) and (2) to form a new dictionary; (4) extracting keywords
using only TF-IDF algorithm.

Table 4. Slot accuracy and joint goal accuracy on Multilingual WoZ 2.0 dataset for different key-
words extraction approaches under zero-shot setting. The Method column represents the strategy
for extracting keywords. “Onto” is the abbreviation of ontology. “+” denotes the merging of dic-
tionaries obtained by the two methods.

Method German Italian

slot acc. joint acc. slot acc. joint acc.

MUSE 86.4 59.4 84.0 54.5

Onto 86.2 56.0 81.8 46.8

MUSE+Onto 88.0 57.8 88.4 66.3

TF-IDF+Onto 86.5 55.3 87.9 66.0

Significance-based 87.9 60.4 89.1 63.5

Significance-based+Onto 89.3 63.2 89.1 67.0

Compared with only considering the frequency of words in the corpus, our
significance-based code-switching approach can also make use of the numerous linguis-
tic information carried in the multilingual pretrained model, so that the selected words



Improving Zero-Shot Cross-Lingual Dialogue State Tracking 139

Table 5. Slot accuracy and joint goal accuracy on Multilingual WoZ 2.0 dataset for different
number of keywords under zero-shot setting.

Number of keywords German Italian

slot acc. joint acc. slot acc. joint acc.

200 86.5 60.4 85.1 61.5

500 88.2 62.3 86.8 64.4

1000 89.3 63.2 89.1 67.0

2000 88.6 63.3 86.9 66.3

5000 88.9 62.9 87.4 66.5

are more representative of the utterance. This approach enables the selected words to
better express the main idea of the text. At the same time, words in ontology such as
place names, food names, etc. are originally special words in the dataset, which occupy
an important position in the text. Adding these words to our dictionary can further
improve the performance of the model.

Table 5 shows the influence of different number of keywords on our model. We
can see that the model has the best or second-best performance when k is 1000. As k
continues to increase, the additional keywords are less indicative, so they even have a
negative impact on model performance.

6 Conclusion

In this paper, we propose a novel zero-shot adaptation method CLCL-DST for cross-
lingual dialogue state tracking. Our approach leverages fine-grained contrastive learn-
ing to explicitly align representations across languages. Besides, we introduce the
significance-based code-switching approach to replace task-relevant words with tar-
get language for generating code-switched sentences on downstream tasks. Our method
obtains new state-of-the-art results on Multilingual WoZ dataset and parallel MultiWoZ
dataset, which demonstrates its effectiveness. In the future, we would investigate better
training objectives for cross-lingual DST task, especially on multi-domain area, to fur-
ther boost the dialogue system on multi-lingual scenarios. We would also explore better
positive and negative samples when applying contrastive learning on DST task.
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Abstract. Document Information Extraction (DIE) is a crucial task
for extracting key information from visually-rich documents. The typ-
ical pipeline approach for this task involves Optical Character Recog-
nition (OCR), serializer, Semantic Entity Recognition (SER), and Rela-
tion Extraction (RE) modules. However, this pipeline presents significant
challenges in real-world scenarios due to issues such as unnatural text
order and error propagation between different modules. To address these
challenges, we propose a novel tagging-based method – Global TaggeR
(GTR), which converts the original sequence labeling task into a token
relation classification task. This approach globally links discontinuous
semantic entities in complex layouts, and jointly extracts entities and
relations from documents. In addition, we design a joint training loss
and a joint decoding strategy for SER and RE tasks based on GTR.
Our experiments on multiple datasets demonstrate that GTR not only
mitigates the issue of text in the wrong order but also improves RE
performance.

Keywords: Information extraction · Global tagger · Joint decoding

1 Introduction

Document Information Extraction (DIE), which is to extract key information
from document with complex layouts, has become increasingly important in
recent years [6,26]. It not only enables us to efficiently compress document data,
but also facilitates the retrieval of important information from documents. A
typical pipeline approach for the DIE task is depicted in Fig. 1(a) [5,7]. First,
the document with complex layout is converted into text blocks using Optical
Character Recognition (OCR) tools. Next, the serializer module organizes these
text blocks into a more appropriate order. Finally, the well-ordered text blocks
are input sequentially into the Semantic Entity Recognition (SER) and Relation
Extraction (RE) modules to extract key-value pairs.
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Fig. 1. A comparison between (a) current pipeline approach and (b) our end-to-end
approach.

However, the pipeline approach in Fig. 1(a) presents significant challenges in
real-world scenarios. (1) Mainstream models for the DIE task, such as LayoutLM
[23], LayoutLMv2 [22] and LayoutXLM [24], usually use sequence labeling in
the Beginning-Inside-Outside (BIO) tagging schema, which assume that tokens
belonging to the same semantic entity are grouped together after serialization. If
the serializer module fails to order the text blocks correctly, the final performance
can be severely impacted. A potential solution is to train a strong and robust
serializer module, but this is difficult due to the labor-intensive labeling process
under rich and diverse styles of documents; (2) In addition to the issue of text
order, this pipeline also suffers from error propagation when using a SER module
and a RE module. In research settings, the results of the SER and RE tasks
are generally tested separately, with the ground truth of the SER results being
used as default auxiliary information for the RE task. However, in real-world
scenarios, the SER module in the pipeline cannot provide 100% accurate results,
which ineluctably leads to error propagation on RE performance.

Researchers have explored alternative methods for modeling OCR results
directly without serializer module to tackle the issue of text in the wrong
order. Some have utilized graph convolution networks to model the relation-
ships between tokens [11,20,25]. Others have converted the DIE task into a
parsing problem, modeling tree structure for the document [8,15]. Besides, gen-
erative encoder-decoder frameworks are applied to avoid the weakness of the BIO
tagging schema essentially [10]. While these methods can mitigate the problem
of text in the wrong order, they still face challenges. For example, graph-based
methods require a more delicate model design, and generative models are usually
difficult to train and require a great amount of document data for pre-training.

To address above mentioned two problems, we propose a simple yet effective
method named Global TaggeR (GTR). Our approach is inspired by [21], which
converts the original sequence labeling task into a token relation classification
task. For the SER task, we tag all token pairs and design a decoding strategy
based on disjoint sets to decode the semantic entities. And we find GTR natu-
rally resistant to wrong text order to a certain extent. For example, there is a
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document fragment “登记表姓名李雷性别男” and we tag the token pair {姓,名}
so that we know “姓名” is a semantic entity. Even if we shuffle this fragment to
“登记表姓李性男名雷别”, we still can know “姓名” is a semantic entity using the
same tag {姓, 名}. In other words, GTR enables us to recognize discontinuous
semantic entities, regardless of text in the wrong order. Additionally, for the RE
task, we combine RE and SER tags for joint training and extend the decoding
strategy for joint decoding. The pipeline of this study is depicted in Fig. 1(b).
We remove the serializer module from the original pipeline to make it easier and
propose an end-to-end extraction framework for jointly training the SER and
RE tasks to prevent error propagation problem. The contributions of this work
are summarized as follows:

– We propose an end-to-end extraction framework for the document informa-
tion extraction, which simplifies the traditional pipeline approach and allevi-
ates error propagation issues.

– In this end-to-end extraction framework, we propose the Global TaggeR
(GTR) method, which contains a global tagging schema and a joint decoding
strategy for the SER and RE tasks.

– Our experiments on multiple datasets demonstrate that the GTR proposed
not only mitigates the issue of text in the wrong order but also facilitates
the interaction of entity and relation information, resulting in improvement
of RE performance.

2 Background

2.1 Task Definition

Given a document image I and its OCR results that containing a sequence
of tokens S = {t1, ..., tn} paired with corresponding bounding boxes L =
{b1, ..., bn}, the goal of the DIE task is to extract a set of entities E = {e1, ..., em}
in the document and their corresponding relations R = {(ei, ej)}. We usually
divide the DIE task into two sub-tasks named SER and RE. For the SER task,
we try to recognize all possible semantic entities in token sequence S and classify
them with three entity types {[Header], [Question], [Answer]}. For the RE task,
based on semantic entities that we have recognized, we match each two of them
if they are question-answer pairs, or key-value pairs. The relations only have two
types, paired or not.

2.2 LayoutXLM

We choose LayoutXLM [24] as our baseline model, which is a multilingual and
multi-modal pre-trained language model designed with a single encoder architec-
ture. The model first feeds token sequence S and bounding box sequence L, along
with visual features extracted from document image I. Next, it adopts visual and
text embedding, position embedding and layout embedding as the representation
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of tokens, and then employs multi-modal Transformer encoder layers to gener-
ate the representations of the given tokens H = {h1, ..., hn}. Finally, a simple
classifier is connected to the encoder, enabling it to perform downstream SER
and RE tasks.

2.3 BIO Tagging Schema

Fig. 2. The illustration of the BIO tagging schema.

The BIO tagging schema, which is a popular sequence labeling technique, is
widely used for the SER task. In this schema, each token in the document is
labeled with a prefix that indicates whether it is the beginning (B), inside (I), or
outside (O) of an entity span. Figure 2(a) provides a simple illustration. However,
layout-rich documents often result in OCR text in the wrong order. Given text
in the wrong order, the BIO tagging schema cannot express span boundaries cor-
rectly, illustrated in Fig. 2(b). Therefore, it is necessary to find new approaches
to tackle this issue.

3 Approach

In this section, we introduce our GTR approach in four parts. First, we propose
the global tagging schema of the DIE task. Next, a token pair scoring layer
added to baseline model is proposed. Then, we design a corresponding decoding
strategy to decode entities and relations from the predicted tagging matrix.
Finally, we introduce our training loss for jointly training SER and RE tasks.

3.1 Global Tagging Schema

For the DIE task, we use five tags {O, H, Q, A, P} to represent relations between
token ti and tj . Table 1 shows the meanings of these five tags.
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Table 1. The meanings of tags for the DIE task.

Tags Meanings

H Token ti and tj belong to the same entity span,
and the entity type is [Header]

Q Token ti and tj belong to the same entity span,
and the entity type is [Question]

A Token ti and tj belong to the same entity span,
and the entity type is [Answer]

P Token ti and tj belong to two paired entities,
with the types of [Question] and [Answer]

O No above four relations for token ti and tj

Fig. 3. The illustration of global tagging schema for jointly labeling (a) SER and (b)
RE tasks. We only display the upper triangular of tagging matrix on account of its
symmetry.

Figure 3(a) illustrates the global tagging schema tags entities that are dif-
ficult to tag using the BIO tagging schema in Fig. 2(b). Tokens in the same
semantic entity are tagged with the same label pairwise. The labels are {H, Q,
A}, representing the entity types {[Header], [Question], [Answer]}, respectively.
For example, in Fig. 3(a), the token pair {姓, 名} = Q means that the tokens
“姓” and “名” belong to the same entity span, and the entity type is [Question].
Similarly, {登, 记, 表} belongs to the [Header] entity, {性, 别} belongs to the
[Question] entity, and {李, 雷}, {男} belong to the [Answer] entity.

Figure 3(b) illustrates the global tagging schema tags relations after tagging
entities. For each [Question]-[Answer] (QA) relation in the document, tokens
from the two associated entities, are tagged with the same label P pairwise. For
example, given the premise that {姓, 名} belongs to [Question] entity and {李,
雷} belongs to [Answer] entity, the token pairs {姓, 李}, {姓, 雷}, {名, 雷} =
P, indicating that {姓,名} and {李,雷} are paired QA relation. Similarly, {性,
别} and {男} are paired QA relation.
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The global tagging schema offers two primary advantages in the DIE task.
(1) First, it allows for the tagging of discontinuous semantic entity spans. Due to
the diversity of document layouts, the token sequence produced by OCR tools
is usually in an incorrect order. Even if the tokens in the same semantic entity
span are discontinuous in the token sequence, they can still be tagged using this
global tagging schema. (2) Second, it supports joint training of the SER and
RE tasks. Using the global tagging schema, the SER task can be expanded to
token-to-token relationship classification task. This schema unifies task format
and enables unified modeling and joint training for the SER and RE tasks.

3.2 Token Pair Scoring

For the representations H = {h1, ..., hn} generated from given token sequence S,
we employ simple linear transformation and multiplication operation to obtain
the global score sij|c of token pair ti and tj classified to class c:

qi,c = Wq,chi + bq,c (1)
kj,c = Wk,chj + bk,c (2)

sij|c = (Riqi,c)T (Rjkj,c) (3)

where qi,c and kj,c are intermediate representations created by linear transfor-
mation operation. R is a rotary position embedding [16], which helps to embed
relative position information and accelerate training process.

During the training stage, we directly use sij|c to compute loss function.
For the supervision signal of sij|c, we assign signal 1 to represent {H, Q, A, P}
tags and signal −1 to represent the absence of any of the above four relations.
Therefore, during the inference stage, we obtain the predicted tagging matrix by
processing sij|c with a threshold of 0, where values greater than 0 are regarded
as tags.

3.3 Decoding Strategy

With the predicted tagging matrix, we design a decoding strategy to extract the
semantic entities and relations, as shown in Algorithm 1. Following the proposed
decoding strategy, we decode in two steps:

SER. Firstly, we recognize the diagonal tags, and use these tags to label the
token sequence S. Then, we recognize the non-diagonal tags belonging to {H,
Q, A}, and use these tags for merging tokens. Iterating through these tags, we
use a disjoint set algorithm with additional judgement to merge semantic entity
tokens. Therefore, we can extract the semantic entity set E.

RE. Using the semantic entity set E, we iterate through all possible [Question]-
[Answer] entity pairs. If there exists any token pair tk and tl that tk in an entity
ei with type [Question] and tl in an entity ej with type [Answer] and T (tk, tl) is
tagged with label P, we add (ei, ej) into relation set R. Finally, we can extract
the semantic entity set E as well as the relation set R.
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Algorithm 1. Decoding Strategy for DIE
Input: The predicted tagging matrix T . The predicted tag of token pair ti and tj is

denoted as T (ti, tj). The predicted tag of token pair ti and ti is abbreviated as
T (ti). If all tokens in a set e share the same tag, abbreviated as T (e).

Output: Entity set E and relation set R.
1: Initialize the entity set E and relation set R with ∅, and n ← len(S).
2: while i ≤ n do
3: if T (ti) ∈ {H,Q,A} then
4: E ← E ∪ {ti}
5: end if
6: end while
7: while i ≤ n and j ≤ n do
8: if i �= j and T (ti, tj) ∈ {H,Q,A} and T (ti, tj) = T (ti) = T (tj) then
9: E ← Merge the set where ti resides and the set where tj resides in E.

10: end if
11: end while
12: while ei ∈ E and ej ∈ E do
13: if T (ei) = Q and T (ej) = A and any T (tk, tl) = P that tk ∈ ei and tl ∈ ej then
14: R ← R ∪ {(ei, ej)}
15: end if
16: end while
17: return the set E and the set R

3.4 Training Loss

For token pair ti and tj , we denote yij as the ground truth tag and Pij(ŷ = k)
as the predicted probability for class k. A cross entropy loss is applied:

L = −
n∑

i=1

n∑

j=1

∑

k∈C

I(yij = k) logPij(ŷ = k), Pij(ŷ = k) =
esij|k

∑
k′∈C

esij|k′ (4)

where I is an indicator function and C is the label set {H, Q, A, P, O}. And
sij|k denotes the predicted score for token pair ti and tj classified to class k.

We attempt to train the baseline model using the above loss function but fail
due to convergence issues. And the training results always output O tags. We
suggest that our global tagging schema requires the prediction of a probability
matrix of n ∗ n, which results in very sparse supervised signals, facing a severe
class imbalance problem, and making it challenging to train the model effectively.
Inspired by [17], we improve logPij(ŷ = k) with a class imbalance likelihood:

logPij(ŷ = k) = log(1 + e−sij|k) + log(1 +
∑

k′∈C,k′ �=k

esij|k′ ) (5)

which turns loss into a pairwise comparison of target category scores and non-
target category scores.
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4 Experiments

4.1 Experimental Setup

Dataset. We use FUNSD [9] and XFUN [24] datasets to evaluate our pro-
posed approach. (1) FUNSD is an English dataset for document understanding,
comprising 199 annotated documents. The dataset is split into a training set of
149 documents and a testing set of 50 documents; (2) XFUN is a multilingual
dataset for document understanding that comprises seven languages [Chinese
(ZH), Japanese (JA), Spanish (ES), French (FR), Italian (IT), German (DE),
Portuguese (PT)], totaling 1,393 annotated documents. Each language’s data
has separate training and testing sets, with 199 and 50 documents respectively.

Parameter Settings. For training, we follow the hyper-parameter settings of
[24], setting the learning rate to 5e−5 and the warmup ratio to 0.1. The max
length of input token sequence is set to 512, which means a split of chunk size
512 if the input token sequence is too long. For a fair comparison, we set the
batch size to 64 and run the training for 2000 steps to ensure that the models
have well converged.

Input Settings. Golden input and OCR input are two types of input text order
for experiment input settings. (1) Golden input means that we concatenate the
ground truth text blocks into a token sequence and feed it into the model, which
implies that all semantic entity spans are continuous. (2) OCR input means
that we concatenate all tokens following the recognition pattern of a common
OCR from top to bottom and left to right before feeding them into the model.
This implies that under complex layouts, the same semantic entity span may be
discontinuous.

Evaluation Metrics. For evaluation, we use F1-score on two sub-tasks: (1)
Semantic Entity Recognition (SER), where semantic entities are identified by
tagging as either {[Header], [Question], [Answer]}. When the entity type and
all entity tokens are correct, the entity is regarded as a correct entity. (2) Rela-
tion Extraction (RE), where paired relation of question and answer entities are
identified. We use a strict evaluation metrics that only the paired two entities are
exactly correct at the token-level, the relation is regarded as a correct relation.

Baseline Model. We use LayoutXLMBASE model as the baseline model. Its
original RE results are tested based on the given ground truth semantic entities.
To test the RE results in the pipeline for baseline model, we first reproduce
the results of [24] and then re-test the RE results using the semantic entities
generated by its SER module.
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4.2 Result

We evaluate the baseline model with the BIO tagging and the global tagging on
language-specific fine-tuning settings (training on X, and testing on X).

Table 2. Main result under Golden input settings. ♣: results reported in [24]. Best
results are in bold comparing reproduced BIO tagging (abbreviated as BIO) with our
global tagger (abbreviated as GTR). gtSER+RE denotes evaluating the RE results
using ground truth SER results. And SER+RE denotes evaluating the RE results
using SER results of the model.

Model FUNSD ZH JA ES FR IT DE PT Avg.

SER BIO♣ 0.7940 0.8924 0.7921 0.7550 0.7902 0.8082 0.8222 0.7903 0.8056
BIO 0.8013 0.8944 0.7864 0.7426 0.7852 0.8073 0.7951 0.7848 0.7996
GTR 0.8079 0.8818 0.7972 0.7631 0.8067 0.8210 0.8032 0.8071 0.8110

gtSER+RE BIO♣ 0.5483 0.7073 0.6963 0.6896 0.6353 0.6415 0.6551 0.5718 0.6432
BIO 0.5560 0.7047 0.6519 0.7041 0.6664 0.6725 0.6485 0.5893 0.6492

SER+RE BIO 0.4340 0.5965 0.5082 0.498 0.5064 0.4861 0.4258 0.3765 0.4789
GTR 0.5910 0.7739 0.6470 0.5363 0.6063 0.6594 0.5531 0.5247 0.6115

Table 3. Main result under OCR input settings. Best results are in bold comparing
reproduced BIO tagging (abbreviated as BIO) with our global tagger (abbreviated as
GTR).

Model FUNSD ZH JA ES FR IT DE PT Avg.

SER BIO 0.5735 0.3970 0.4017 0.6287 0.6916 0.7055 0.6823 0.6863 0.5958
GTR 0.7412 0.8444 0.7205 0.7165 0.7676 0.7772 0.7508 0.7811 0.7624

SER+RE BIO 0.2712 0.1441 0.1759 0.3665 0.4141 0.4206 0.3566 0.3086 0.3072
GTR 0.5828 0.6920 0.5427 0.5686 0.5712 0.5888 0.5933 0.5580 0.5872

Table 2 presents the results under Golden input settings. We compare our
global tagger approach with the reproduced baseline. The results show that our
global tagger method outperforms the baseline model on average F1-score of the
8 languages for the SER task. Moreover, when combining the SER and RE tasks
in an end-to-end extraction framework, the RE performance of average F1-score
significantly surpassed that of the baseline model pipelined, and is even higher
on two languages compared with the baseline model using ground truth semantic
entity information.

Table 3 presents the result under OCR input settings. We directly use the
baseline model trained under Golden input settings to predict the SER and
RE results for evaluating the BIO tagging schema. We observe that the SER
performance on average F1-score of the 8 languages for the baseline model is
significantly impacted, making it difficult to perform the RE process based on
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its SER results. However, with joint training and decoding using our global
tagger approach, we are able to alleviate this issue.

4.3 Analysis

Golden Input vs. OCR Input. The BIO tagging schema requires well-ordered
input, while the global tagging schema accepts unordered input. Comparing
the average F1-score of SER performance in Table 2 and Table 3, we observe a
significant drop from 0.7996 to 0.5958 when changing Golden input settings into
OCR input, indicating a great impact by the order of input tokens using the BIO
tagging schema. On the other hand, under the global tagging schema, we find
the model’s average SER performance only drops from 0.8110 to 0.7624 between
Golden input settings and OCR input settings, demonstrating that the global
tagging schema can effectively alleviate suboptimal input token order issue.

Pipeline Framework vs. End-to-End Framework. The pipeline framework
with the BIO tagging schema suffers from error propagation, while the end-to-
end GTR method can greatly mitigate it. In Table 2, we observe a drop of average
F1-score on the RE results from 0.6492 to 0.4789 when combining the SER and
RE modules in the pipeline, demonstrating that pipeline framework can greatly
impact performance. Particularly, when both SER and RE modules have poor
performance under OCR input settings, we observe a terrible performance, which
is only 0.3072 average F1-score on the RE task. In such case, joint training and
decoding in GTR method can significantly alleviate error propagation issue with
the average F1-score of 0.5872 rather than 0.3072 of 8 language datasets on the
RE task.

Besides, in Table 2, the SER+RE results using GTR approach are even
higher than the baseline RE results using ground truth semantic entities on
English(FUNSD) and Chinese(ZH) language datasets, indicating that the end-
to-end extraction framework is potential for facilitating the interaction of entity
and relation information, resulting in better RE performance.

5 Related Work

In recent years, benefited from pre-training and fine-tuning paradigm, informa-
tion extraction for documents has gained significant attention in both research
and industry [1,12–14,18,19]. However, there are still numerous challenges in
the pipeline when applied in real-world scenarios. Addressing the issue of text
order in the pipeline, related works are organized into three perspectives.

5.1 Sequence-Based Perspective

Sequence-based models, such as LayoutLM [23] and LayoutLMv2 [22], aim to
encode serialized token sequence from complex and diverse document, integrat-
ing layout, font, and other features. These models offer several advantages, such
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as simplicity, scalability, and suitability for Masked Language Modeling (MLM)
pre-training. However, these models are constrained by the traditional BIO tag-
ging mode and require a well-ordered token sequence as a basis.

5.2 Graph-Based Perspective

Graph-based models usually treat tokens as nodes in a graph and allow inter-
actions between tokens explicitly to enhance their representations [11,20,25].
Even though these models leverage the graph structure to capture more com-
plex relationships between entities, they still use the BIO paradigm for SER
task. Alternatively, some works, like SPADE [8], take a different approach by
converting DIE task into document parsing task. It models the document as a
dependency tree to represent entities and relations.

Our work in this paper also lies in graph-based perspectives. Similar to the
tack of SPADE that converting the DIE task to a different task, we view the DIE
task as a token relation classification task. But unlike SPADE, we do not utilize
a graph generator and graph decoder. Rather, we simply modify the tagging
schema and do not change the encoding model.

5.3 End-to-End Perspective

End-to-End model typically combines the entire pipeline into one model. Dessurt
[4], TRIE++ [3], for example, unify OCR, reordering, and extraction into a single
model. Meanwhile, models like Donut [10], GMN [2], use a generative encoder-
decoder architecture to unify OCR and generation. In contrast to extraction-
based works, they directly generate the structured output, making it more flex-
ible for varying output formats.

6 Conclusion

In this paper, we propose an end-to-end approach named global tagger to solve
the document information extraction task. Experiments on the FUNSD and
XFUN datasets demonstrate its efficacy in effectively mitigating the gap between
token order in OCR input and golden input. Furthermore, our experimental
results indicate that joint training and decoding of semantic entity recognition
and relation extraction tasks in this end-to-end extraction framework can alle-
viate the negative impact of error propagation and improve the performance of
the relation extraction results.
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Abstract. Entity relation extraction, as a core task of information
extraction, aims to predict the relation of entity pairs identified by text,
and its research results are applied to various fields. To address the prob-
lem that current distantly supervised relation extraction (DSRE) meth-
ods based on large-scale corpus annotation generate a large amount of
noisy data, a DSRE method that incorporates selective gate and noise
correction framework is proposed. The selective gate is used to reason-
ably select the sentence features in the sentence bag, while the noise
correction is used to correct the labels of small classes of samples that
are misclassified into large classes during the model training process, to
reduce the negative impact of noisy data on relation extraction. The
results on the English datasets clearly demonstrate that our proposed
method outperforms other baseline models. Moreover, the experimental
results on the Chinese dataset indicate that our method surpasses other
models, providing further evidence that our proposed method is both
robust and effective.

Keywords: Entity relation extraction · Distant supervision · Selective
gate · Noise correction

1 Introduction

Entity Relation Extraction (RE) is a crucial task in information extraction that
aims to identify the relation between entity pairs in text. The findings of RE
have practical applications in several fields, such as the construction of knowledge
graphs (KG), semantic web annotation, and the development and optimization
of question-and-answer systems and search engines, which have a significant
impact on daily life. However, the task of RE is challenging due to the limited
availability of annotated data. To address this challenge, distant supervision has
been proposed, which automatically annotates data, significantly increasing the
number of annotated samples.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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However, distant supervision suffers from a strong hypothesis, leading to a
large number of noisy labels during data annotation. Training on a dataset with
noisy labels can result in model overfitting to the noise, which adversely impacts
the model’s performance [4,9].

To mitigate these issues, this paper proposes a novel method for RE that
incorporates selective gate and the end-to-end noise correction method. In our
model, selective gate is utilized to rationally select sentence features in the sen-
tence bag, while noise correction is used to correct the labels of small classes of
samples that are misclassified into larger classes during model training. These
techniques reduce the negative impact of noisy data on the distant DSRE model.
Additionally, since common word embedding models, such as Word2Vec and
Glove, produce static vectors that overlook contextual semantics and the flexi-
ble use of multiple-meaning words, this paper introduces a pre-trained language
model (PLM) to encode and extract features from sentences. This approach pro-
vides richer sentence semantic features, effectively improving prediction accuracy
and reducing training time. Experiment results demonstrate that this method
significantly outperforms the baseline models, improving the DSRE model’s per-
formance.

The major contributions of this paper can be summarized as follows:

– We propose a DSRE method, named PLMG-Pencil, which combines PLM and
selective gate and introduces an end-to-end noise correction training frame-
work called pencil. Selective gate prevents the propagation of noisy representa-
tions and pencil corrects noise labels during the training process, reducing the
impact of noise on the dataset and improving the performance of the DSRE
model.

– We present a novel algorithm for DSRE that combines selective gate mecha-
nism and pencil framework within a three-stage training process. This process
involves training the backbone model, gradually correcting noisy labels, and
subsequently fine-tuning our model using the corrected data. Empirical exper-
iments demonstrate the robustness and effectiveness of our proposed method.

– Our experiments on three different Chinese and English datasets demonstrate
that effective sentence-level feature construction methods and training meth-
ods, combined with noise correction, are crucial for improving the performance
of models on DSRE tasks.

2 Related Work

2.1 Distantly Supervised Relation Extraction Models

Numerous RE models have been proposed, with deep learning-based models
like convolutional neural networks (CNNs) being the current mainstream. CNNs
can automatically extract features from sentences, making them a fundamen-
tal model for future research [24]. However, the maximum pooling operation
used in this model ignores important structural and valid information about the
sentence.
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Socher [15] was the first to propose a recurrent neural network (RNN) to train
relational extractors by encoding sentences. In addition, Zeng [23] proposed a
piecewise convolutional neural network (PCNN) that uses maximum pooling
processing based on CNN to effectively preserve the information features of long
texts while also reducing the time complexity. Zhou [26] introduced an atten-
tion mechanism based on the long short-term memory network (LSTM) to form
the classical BiLSTM-ATT model. The model can reasonably assign weights to
features to obtain a better representation of the sentence. Riedel [13] proposed
a multi-instance learning (MIL) framework with a basic annotation unit of a
sentence bag containing a common entity pair, rather than a single individual
sentence. For sentence bag level labeled data, the model can be made to implic-
itly focus on correctly labeled sentences through an attention mechanism, thus
learning from noisy data to become a stable and robust model. Subsequently, Ye
and Ling [21] proposed a DSRE method based on the intra- and inter-sentence
bag, combining sentence-level and bag-level attention for noise correction. Alt
[1] introduced a transformer-based PLM for DSRE. Chen [3] proposed a new
contrastive instance learning method (CIL) to further improve the performance
of DSRE models. Further, Li [7] introduces a hierarchical contrast framework
(HiCLRE) on top of Chen’s CIL method to enhance cross-layer semantic inter-
action and reduce the impact of noisy data. These methods are generally neural
network driven and use neural network models that have strong generalization
capabilities compared to traditional methods.

2.2 Noise Correction Methods

There are three categories of noise correction methods for DSRE: rule-
based statistical methods, multi-instance learning-based methods, and adver-
sarial and reinforcement learning-based methods. Multi-instance learning-based
approaches have received the most attention from scholars, due to their effec-
tiveness in correcting noise labels as demonstrated by Yao [20].

In deep neural networks, designing robust loss functions has also proven
effective in coping with noise by making models robust during training. Several
studies have examined the robustness of different loss functions such as mean
square loss and cross-entropy loss. Zhang [25] combined the advantages of mean
absolute loss and cross-entropy loss to obtain a better function. Li [8] proposed
DivideMix framework that separates noisy samples using a Gaussian mixture
model before training the model. Tanaka [16] proposed an optimization strategy
while Jiang [6] introduced MentorNet technique for regularizing deep CNNs on
test data with weakly supervised labels.

Moreover, Wu [18] and Shi [14] have investigated adversarial training based
approaches where simulated noise is mixed with real samples during training
in order to improve model’s robustness against noisy datasets by distinguishing
between real versus noisy samples. Although this type of approaches improves
corpus quality up to some extent, it requires simultaneous training of two models
which can lead to instability and difficulty when applied directly into production
systems at scale.
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3 Methodology

To mitigate the impact of noise on the DSRE model, this paper proposes a two-
pronged approach, PLM-based selective gate pencil (PLMG-Pencil) method. As
shown in Fig. 1, first, we encode the text using PLM and employ the selective
gate mechanism to select sentence-level features that contribute to the bag-level
feature. Second, we replace all labels with soft labels and train the model in
the pencil framework. This framework uses soft labels that are updated during
training and can be corrected for noisy data. This approach reduces the chances
of noise being selected in the selective gate, even if it cannot be corrected in
the pencil framework. These two methods complement each other, reducing the
degree of noise interference and improving the model’s RE performance. In this
section, we will describe our approach from the backbone model architecture,
noise correction framework, and the RE algorithm.

Fig. 1. Overview of PLMG-Pencil

3.1 Backbone Model

This paper proposes the PLM-based selective gate as the backbone model,
inspired by the Entity-aware Self-attention Enhanced selective gate (SeG) frame-
work proposed by Li [10]. The primary architecture of our model is presented in
the backbone model structure part in Fig. 1, and it comprises two main compo-
nents: (1) PLM, structured to encode sentence, entity, and location features for
semantic enhancement. (2) Selective gate, which enhances the representation
of bag-level features by assigning weights to different sentences in the bag. The
selective gate mechanism reduces the impact of noise on the model by weighing
the contribution of each sentence in the bag.
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Input Embeddings. To convert a sentence into a sequence of tokens,
we use the BERT tokenizer, which results in a token sequence S =
{t1, t2, . . . , e1, . . . , e2, . . . , tL}, where tn denotes tokens, e1 and e2 denote the
head and tail entities, respectively, and L represents the maximum length of
the input sentence. We add two special tokens, [CLS] and [SEP], to signify the
beginning and end of the sentence, respectively.

However, the [CLS] token is not ideal for RE tasks as it only serves as a pool-
ing token to represent the entire sentence. Therefore, to incorporate entity infor-
mation into the input, we introduce four tokens: [unused1], [unused2], [unused3],
and [unused4], which mark the start and end of each entity.

Selective Gate Enhanced Bag Representation. To obtain an effective bag
representation, we introduce the selective gate mechanism, which dynamically
calculates the weight of each sentence in the bag. We first represent each sentence
using a PLM, such as BERT, which accepts structured sequences of tokens S that
integrate entity information e1 and e2. The PLM’s sentence encoder then sums
the embeddings, including tokens, entities, and position, to generate context-
aware sentence representations H = {ht1 , ht2 , . . . , he1 , . . . , he2 , . . . , htL}:

H = PLM(S) (1)

where htn denotes the hidden features of the token tn and PLM represents a
pre-trained language model, such as BERT, that serves as the sentence encoder.
We use special tokens to encode sentences to generate structural representations
of sentences for RE task, including [CLS] for sentence-level pooling, its hidden
features denoted as h[CLS]. [unused1] and [unused2] mark the start and end of
the head entity, [unused3] and [unused4] for the tail entity.

heh = mean(ht[unused1] , ht[unused2]) (2)

het = mean(ht[unused3] , ht[unused4]) (3)

Representations of two entities, heh and het , are generated by Eq. (2) and
Eq. (3). The hidden features of these special tokens are denoted as ht[unused1] ,
ht[unused2] , ht[unused3] and ht[unused4] . The sentence representations are generated
using the following formulas:

hSi
= σ([heh || het || h[CLS]] · WS) + bS (4)

where || represents the concatenation operation, σ is the activation function, WS

is a weight matrix, and bS is the bias.

Bag Representation. The use of PLMs allows us to obtain sentence repre-
sentations Sn, which can be stacked to form the initial bag representation
B = {S1, S2, ..., Sn}. While selective attention modules are commonly used to
aggregate sentence-level representations into bag-level representations, our pro-
posed model leverages SeG’s novel selective gate mechanism for this purpose.



164 Z. Chen et al.

Specifically, when dealing with noisy data, the selective attention mechanism
may be inefficient or ineffective if there is only one sentence in the bag, or if that
sentence is mislabeled. Given that approximately 80% of the RE benchmark
datasets contain single-sentence bags with mislabeled instances, our selective
gate mechanism offers a more effective solution by dynamically reducing the
alignment of gating values with instances of mislabeling, thereby preventing the
propagation of noisy representations.

To generate gate values for each Sj , we employ a two-layer feed-forward
network with the following formula:

gj = σ(W (g1)σ(W (g2)Sj + b(g2)) + b(g1)),∀j = 1, ...,m (5)

We have W (g2) ∈ R3dc×dh and W (g1) ∈ Rdh×dh , σ(·)denotes the activation
function and gi ∈ (0, 1), after that, values of the gates are calculated and the
mean pooling aggregation is performed in the bag to generate bag-level repre-
sentation thus the further relation classification can be performed. The formula
of this process is as follows, and m denotes the size of the sentence bag.

Q =
1
m

∑m

j=1
Sjgj (6)

Classifier. We feed Q into a multi-layer perception (MLP) and apply the |c|-way
softmax function to determine the relation between the head and tail entities,
where |c| represents the number of distinct relation classes. The formula for this
process is as follows:

p = Softmax(MLP(Q)) ∈ R|c| (7)

Model Learning. To train the model, we minimize the negative log-likelihood
loss plus an L2 regularization penalty, which is expressed by the following for-
mula:

LNLL = − 1
|D|

|D|∑

k=1

log pk + β||θ||22 (8)

where pk represents the predicted distribution of the k-th example in the dataset
D from Eq. (8). The term β||θ||22 is the L2 regularization penalty, where θ is the
set of model parameters, and β controls the strength of the regularization.

By minimizing this loss function using an optimization algorithm such as
stochastic gradient descent, the model learns to predict the correct relation
between the head and tail entities.

3.2 Noise Correction Framework

In this section, we introduce pencil, a noise correction framework based on the
end-to-end noise-labeled learning correction framework proposed by Yi and Wu
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Fig. 2. Pencil Framework

[22]. The framework is illustrated in Fig. 2, with solid arrows representing forward
computation and dashed arrows indicating backward propagation.

The pencil framework is designed to update both the network parameters
and the data labels simultaneously using gradient descent and backpropagation.
To accomplish this, the model generates a vector ỹ to construct soft labels.

yd = Softmax(ỹ) (9)

With Equation (9), ỹ can be updated by gradient descent and backpropa-
gation. The following equation shows the initialized representation of the label
with noise in the initial value.

ỹ = Kŷ (10)

where ŷ is the original label with noise, and K is a large constant which ensures
yd and ŷ has the most similar distribution in Equation (9), i.e., yd ≈ ŷ.

An intricately devised loss function is employed to correct the noise labels
during the model training procedure, with Le and Lo as penalty terms and Lc

as the classification loss. This loss function incorporates two hyperparameters,
denoted as α and β, which can be flexibly adjusted to accommodate diverse
datasets with varying proportions of noisy data. Specifically, increasing the value
of α and reducing the value of β will yield a diminished degree of label correction.
In a c-class classification problem, the loss function is presented as follows.

L =
1
c
Lc + αLo +

β

c
Le (11)

where c denotes the number of classes.
The classification loss, which works as the main loss of the model guiding the

model to learn, is measured using the dual form of the KL divergence between
the predicted distribution and the soft labels. The formula for the classification
loss Lc is given by:
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Lc =
1
n

n∑

i=1

c∑

j=1

fj(xj ; θ) log

(
fj(xi; θ)

yd
ij

)
(12)

where n denotes the batch size and yd
ij denotes the corresponding soft label. In

this equation, KL divergence is used in a symmetric form, which has been shown
to perform better than using it directly in this framework in previous studies
[18]. Based on the gradient of the loss function Lc, it can be observed that a
larger gap between the predicted value and the true label tends to correspond to
a larger gradient. In this framework, the model parameter and noise labels can
be updated together, which effectively serves to balance the disparity between
the prediction and the true label, facilitating the gradual correction of noisy
labels.

To avoid falling into a local optimum, the model sets the entropy loss Le,
using the predicted values of the network and its calculation of the cross-entropy
loss. The formula is as follows.

Le = − 1
n

n∑

i=1

c∑

j=1

fj(xi; θ) log fj(xi; θ) (13)

The compatibility loss function Lo is formulated as follows, which uses noise
labels and soft labels to calculate the cross-entropy loss so as to avoid large
deviations between the corrected label and the original noise label.

Lo = − 1
n

∑n

i=1

∑c

j=1
ŷij log yd

ij (14)

3.3 PLMG-Pencil Relation Extraction Method

This paper presents a DSRE algorithm that utilizes selective gate and noise cor-
rection, as shown in Algorithm 1. The complete training process of the algorithm
is described below.

– Stage 1 - Backbone Network Learning Phase: Initially, the PLMG-
Pencil network is trained from scratch with a larger fixed learning rate. The
noise in the data is not processed in this stage, and the loss calculation formula
only utilizes the classification loss. The network parameters obtained at this
stage serve as the initialized network parameters for the next training step.

– Stage 2 - Model Learning and Noise Correction Phase: In this stage,
the network parameters and label distributions are updated together using
the model, thus, noisy labels can be corrected. To avoid overfitting the label
noise, the label distribution is corrected for the noise in the original labels. We
obtain a vector of label distributions for each sentence bag at the end of this
stage. Due to the dissimilarity of the learning rate used for soft labels update
and the global model parameters update, a hyperparameter λ is set to adjust
it.
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Algorithm 1. PLMG-Pencil Distantly Supervised Relation Extraction
Algorithm
Input: Dataset D = xi, ỹi(1 < i < n), epoch of stages T1, T2.

Stage 1:
Initialization: t ← 1.
while t ≤ T1 do

Train and update the model parameters θ, while calculating the loss in
equation (14) with α = 0 and β = 0. Hold off on using ỹi;
t ← t + 1;

Stage 2:
Initialization: ỹi = Kŷi.
while T1 ≤ t ≤ T2 do

Train and update the model parameters θ and yd
i ;

t ← t + 1;

Stage 3:
while T2 ≤ t do

Train and update the model parameters θ and yd
i ;

Train and update the model parameters θ, while calculating the loss in
equation (14) with α = 0 and β = 0. Do not update sample labels.
t ← t + 1;

Output: θ, noise-corrected labels.

– Stage 3 - Final Fine-Tuning Phase: The label distribution learned by
the model in the previous stages are utilized to fine-tune the network in this
stage. Sample labels in the training set are not updated, and the network
parameters are updated using the classification loss as the loss function of the
model. There are no additional adjustments to the learning rate, and the same
decay rules are followed for general neural network training.

4 Experiments

4.1 Datasets

We evaluate our proposed model on three different datasets: the New York Times
(NYT10) dataset and the GDS dataset in English, the SanWen dataset in Chi-
nese. Datasets statistics are shown in Appendix A.

– NYT10 [13]: This dataset is widely used in models based on DSRE, which
is annotated with 58 different relations and the NA relation account for over
80% of the total. It has 522K and 172K sentence sets in the training and test
sets respectively.

– GDS [5]: This dataset is created from the Google RE corpus, which contains
5 relations. It has 18K and 5K instances in the training and test sets, respec-
tively.
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– SanWen [19]: This dataset contains 9 relations from 837 Chinese documents. It
has 10K, 1.1K, and 1.3K sentences in the training set, test set, and validation
set respectively.

4.2 Baselines

To validate the effectiveness of the RE model proposed in this paper, we com-
pare it with mainstream RE methods on the three datasets mentioned above.
The following baseline methods are used.
Mintz [12]: It concatenates various features of sentences to train a multi-class
logistic regression classifier.
PCNN+ATT [11]: It uses selective attention to multiple instances to alleviate
the problem of mislabelling.
RESIDE [17]: It exploits the information of entity type and relation alias to
add a soft limitation for relation classification.
MTB-MIL [2]: It proposes a method for matching gaps and learning sentence
representations through entity-linked text.
DISTRE [1]: It combines the selective attention with its PLM.
SeG [10]: It uses an entity-aware embedding-based self-attentive enhancement
selective gate based on PCNN+ATT to rationally select sentence features within
sentence bags to reduce the interference of noise.
CIL [3]: It proposes a comparative instance learning method in the MIL frame-
work.
HiCLRE [7]: It incorporates global structural information and local fine-grained
interactions to reduce sentence noise.

4.3 Parameter Settings

Table 1 presents the hyperparameter settings used in our experiments. The
English datasets are trained on the bert-base-uncased model from the Hugging-
face platform, while the Chinese dataset uses the bert-base-chinese model. To
effectively train our model, we use the parameter settings from Yi and Wu [22]
as initialization settings for our experiments. The model’s dropout rate, learning
rate, α, β, batch size, and epoch settings are shown in the table.

Table 1. Parameter Settings. Epoch 1 and Epoch 2 mark the end of Stage 1 and Stage
2, respectively, and LR stands for the learning rate.

Params Dropout LR α β BatchSize Epoch 1 Epoch 2

Value 0.5 0.035 0.1 0.4 64 15 20

It is important to note that the optimal values for α and β may vary based on
the level of noise in different datasets. Therefore, these values should be adjusted
accordingly to improve the loss calculation and enhance the overall performance
of the model.



A Distantly-Supervised Relation Extraction Method 169

4.4 Results

To evaluate the performance of our model in DSRE tasks, we use AUC and P@N
values as evaluation metrics. AUC measures the area under the ROC curve, while
P@N indicates the average accuracy of top N instances. Finally, P@M represents
the average of these three P@N results.

Evaluation on English Dataset. Table 2 and Table 3 present a comparison of
our proposed model with baseline models on dataset GDS and NYT10, respec-
tively. Our model achieves promising results, as shown by the following observa-
tions: (1) Our proposed model shows competitive performance in terms of AUC
values on both datasets. As shown in Table 2, on the GDS dataset, the AUC val-
ues of our model reach comparable levels with CIL and HiCLRE. Furthermore,
as shown in Table 3, on the NYT10 dataset, our model outperforms CIL and
DISTRE by 4.1% and 5.2% in AUC values respectively. (2) Our model demon-
strates a clear advantage in terms of P@N values. On the NYT10 dataset, the
P@100 value is 2.5% higher than CIL, which uses a contrast learning framework.
The maximum difference in P@N values appears on the P@300 value, of which
our method is 5.9% higher. In comparison to the DISTRE model, which also
uses the PLM and MIL framework, our model outperforms it by 16%, 13.5%,
and 12.7% on P@100, P@200, and P@300 values respectively.

We further conduct ablation experiments to highlight the benefits of the
pencil framework. Specifically, we train our model using a conventional MIL
training framework. When comparing the results of the PLMG model with the
PLMG-Pencil model on the GDS dataset, we observe a 0.2% decrease in the
AUC value and a 0.1% decrease in the P@1K value for the PLMG model. These
findings provide compelling evidence for the effectiveness of the pencil framework
and our proposed algorithm. On the dataset NYT10, the proposed model shows
a significant improvement compared to the model without pencil framework.
Precisely, we observe a 6%, 2.5% and 2% improvement in P@100, P@200 and
P@300 values respectively.

Table 2. Model Performances on GDS. (†) marks the results are reported in the
previous research.

Dataset Models AUC P@500 P@1K P@2K P@M

GDS Mintz† [12] - - - - -

PCNN-ATT† [11] 79.9 90.6 87.6 75.2 84.5

MTB-MIL† [2] 88.5 94.8 92.2 87.0 91.3

RESIDE† [1] 89.1 94.8 91.1 82.7 89.5

REDSandT† [4] 86.1 95.6 92.6 84.6 91.0

DISTRE† [1] 89.9 97.0 93.8 87.6 92.8

CIL† [3] 90.8 97.1 94.0 87.8 93.0

HiCLRE [7] 90.8 96.6 93.8 88.8 93.1

PLMG-Pencil 91.0 95.4 94.1 88.8 92.8

-without pencil (PLMG) 90.8 95.4 94.0 89.0 92.8
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Table 3. Model Performances on NYT10. (†) marks the results are reported in the
previous research.

Dataset Models AUC P@100 P@200 P@300 P@M

NYT10 Mintz† [12] 10.7 52.3 50.2 45.0 49.2

PCNN-ATT† [11] 34.1 73.0 68.0 67.3 69.4

MTB-MIL† [2] 40.8 76.2 71.1 69.4 72.2

RESIDE† [1] 41.5 81.8 75.4 74.3 77.2

REDSandT† [4] 42.4 78.8 75.0 73.0 75.3

DISTRE† [1] 42.2 68.0 67.0 65.3 66.8

CIL† [3] 43.1 81.5 75.5 72.1 76.9

HiCLRE [7] 45.3 82.0 78.5 74.0 78.2

PLMG-Pencil 47.0 84.0 80.5 78.0 80.8

-without pencil (PLMG) 47.0 78.0 78.0 76.0 77.3

Figure 3 shows the PR curves for our proposed model and the baseline model.
Our model clearly outperforms the baselines, particularly compared to the DIS-
TRE model, which also uses PLM and MIL. Based on the ablation experiments
conducted on the NYT10 dataset, it can be observed that the PLMG-Pencil
method demonstrates a notable superiority in terms of precision at N (P@N)
values. These results suggest that the selective gate has a positive impact on
constructing sentence bag features and improving model performance. Further-
more, the pencil framework effectively corrects for noisy samples during training,
leading to improved performance.

Fig. 3. PR-Curve on NYT10



A Distantly-Supervised Relation Extraction Method 171

Evaluation on Chinese Dataset. We conduct additional experiments on the
SanWen dataset to further validate the effectiveness of the pencil framework
and selective gate mechanism. Figure 4 presents the model performances on this
dataset.

Our model exhibits superior performance compared to HiCLRE, which uti-
lizes the contrast learning framework, with a notable increase of 4.4% in AUC
values. Furthermore, when compared to the SeG model that employs the selec-
tive gate mechanism, our PLMG-Pencil model, which incorporates the pencil
approach, demonstrates a significant enhancement in AUC values. The ablation
experiment further validates the effectiveness and robustness of our method.
These results highlights the positive influence of the PLM and noise correction
framework on the RE task.

Based on the experimental results and the analysis of the dataset features
described in Sect. 4.1, our model tends to perform better on datasets with more
relations, such as NYT and SanWen. Compared with baselines, our model can
achieve greater advantages on such datasets. In addition, the experimental results
on the NYT10 dataset reveal that the pencil framework generates more signif-
icant performance enhancements compared to those obtained through experi-
ments performed on the GDS dataset. The GDS dataset employs various meth-
ods to mitigate noise interferences and thus has higher quality annotations [5].
Moreover, the pencil framework is designed to conduct a noise correction process
for optimizing model performance, thus, it tends to bring larger improvements
on datasets with greater amounts of noisy data.

Fig. 4. AUC Values of Models on SanWen

5 Conclusion

In this paper, we propose the PLMG-Pencil method for DSRE. Our approach
automatically learns the weights of different sentences in a sentence bag and
selects the features that best represent the sentence bag through a gate mech-
anism. Additionally, we introduce a noise correction framework based on end-
to-end probability with noise label learning for improved performance in RE.
The experimental results clearly demonstrate that our proposed model outper-
forms baselines and achieves significant improvement in the RE task. Our app-
roach shows great potential for practical application in the field of information
extraction.
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A Datasets statistics

Table 4. Datasets statistics.

Dataset #Relation #Train #Dev #Test Language

NYT 58 520K - 172K English

GDS 5 18K - 5K English

SanWen 9 10K 1.1K 1.3K Chinese
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Abstract. Cascade decoding framework has shown superior perfor-
mance on event extraction tasks. However, it treats a sentence as a
sequence and neglects the potential benefits of the syntactic structure
of sentences. In this paper, we improve cascade decoding with a novel
module and a self-supervised task. Specifically, we propose a syntax-
aware aggregator module to model the syntax of a sentence based on
cascade decoding framework such that it captures event dependencies as
well as syntactic information. Moreover, we design a type discrimination
task to learn better syntactic representations of different event types,
which could further boost the performance of event extraction. Experi-
mental results on two widely used event extraction datasets demonstrate
that our method could improve the original cascade decoding framework
by up to 2.2 percentage points of F1 score and outperform a number of
competitive baseline methods.

Keywords: Event Extraction · Cascade Decoding · Contrastive
Learning

1 Introduction

As an important yet challenging task in natural language processing, event
extraction has attracted much attention for decades [2,12,18,24,26,34,43,45].
This task aims at predicting event types, triggers and arguments from a given
sentence. We display three examples in Fig. 1. Given an example sentence (a)
“In 2018, Chuangwei Tech acquired equity of Qianhong Electronics for 1.5 billion
...”, an event extraction system is able to recognize the trigger “acquired ”, that
corresponds to the event type “invest”, and the argument “Chuangwei Tech”,
that plays the subject role of “sub” in the event.

A great number of methods have been developed for event extraction. Early
methods formulate the event extraction as a sequence labeling task, where each
token is considered as a candidate for labeling. They perform trigger extrac-
tion and argument extraction with joint learning [17,25,27], which easily causes
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 175–191, 2023.
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the label conflict issue. Considering the precedence relationship between the
components in an event, pipeline methods are explored to perform trigger and
argument extraction in separate stages [2,5,21,24]. But the error is accumulated
along with the pipeline. Recently, a cascade decoding framework [32,37] is pro-
posed to extract events with a cascade tagging strategy, which could not only
handle the label conflict issue, but also avoid error propagation.

Fig. 1. Three examples of event extraction. We annotate the event types with blue
boxes under the triggers, and label the argument roles with orange boxes under the
arguments. (Color figure online)

In above methods, a sentence is treated as a sequence, and methods suffer
from the low efficiency problem in capturing long-range dependency. We take
sentence (a) in Fig. 1 as an example. The argument “1.5 billion” is far from
the trigger “acquired ” based on the sequential order while they are closely con-
nected via the dependency arc. Therefore, it is necessary to take advantage of
the syntactic structure to capture the relations between triggers and arguments.
Some researches managed to include syntactic information of sentences in event
extraction. Chen et al. [2] first employed dependency trees to conduct event
extraction. Nguyen et al. [26] and Yan et al. [38] treated each dependency tree
as a graph and adopted Graph Convolution Network (GCN) [11] to represent
the sentence. More recent studies strengthened the graph representation via gate
mechanism to filter out noisy syntactic information [13] or empowered the graph
encoder with more advanced Transformer [1]. These methods could effectively
solve the long-range dependency issue. However, they either follow the joint
learning paradigm or pipeline paradigm thus still encounter the issue of label
conflict or error propagation. In this paper, we develop our approach modeling
syntactic information for event extraction based on cascade decoding framework.
To achieve this, two main challenges should be addressed.
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First, cascade decoding represents event types, triggers as well as arguments
in the format of a triple. It sequentially predicts components in triples as sub-
tasks and learns the implicit dependencies of the subtasks. It is not trivial to
design a syntax encoder which is customized for the cascade decoders. In this
paper, we propose a novel Syntax-enhanced Aggregator which could not only
integrate the information from the precedent subtask with the current subtask
but also model the syntactic structure of sentences. Moreover, this module could
fuse the heterogeneous features together. In detail, our aggregator processes both
subtask dependency and syntactic information via two channels. The final rep-
resentation will be fused based on the alignment between tokens of a sentence
and components in a dependency tree. Such aggregators are deployed in cascade
decoders.

Second, existing methods involving syntactic structure rarely consider the
interaction among event types. As examples (a) and (b) shown in Fig. 1, the
sentences of the same event type usually have similar syntactic structure despite
different involved entities. In contrast, the sentences of the different event types
usually have different syntactic structure despite similar involved entities, as
examples (a) and (c). We design Contrastive Learning of syntactic representa-
tion to capture the interactions between sentences. Specifically, we define a type
discrimination task to distinguish whether two sentences belong to the same
event type based on their syntactic representations. This is jointly trained with
event extraction task.

We conduct experiments on two event extraction datasets, FewFC [46] and
DuEE [20]. The experiments show that compared with original cascade frame-
work, our method can clearly perform better on both datasets. Our method
also outperforms competitive baseline methods that represent the state-of-the-
art on event extraction tasks. To reveal the working mechanism of our method,
we also conduct ablation study and visualization that shed light on where the
improvement comes from.

We summarize the contributions of this paper as follows: (1) We propose a
novel syntax-enhanced aggregator to model the syntactic structure of sentences,
which is a good fit for the cascade decoding framework. This aggregator is able to
model syntax and fuse with dependencies of events. (2) To further benefit from
the syntax modeling, we design a type discrimination task to refine the syntactic
representation via contrastive learning. (3) We empirically show the effectiveness
of our method on two datasets. Our proposed method outperforms the baseline
methods with remarkable margins based on F1 score of all measurement metrics.

2 Background

2.1 Problem Formulation

The task of event extraction aims at identifying event triggers with their types
and event arguments with their roles. Specifically, a pre-defined event schema
contains an event type set C and an argument role set R. Given a sentence
x = {w1, w2, ..., wn}, the goal is to predict all events in gold set Ex of the sentence



178 Z. Sheng et al.

x, where the components of Ex are in the format of triples (c, t, ar). Here, c ∈ C
is an event type, t is a trigger word in sentence x, and ar is an argument word
corresponding to the role r ∈ R. A dataset D consists of a set of (x, Ex).

2.2 A Cascade Decoding Framework

To solve the task, we follow the existing cascade decoding approach, CasEE
method [32], which is proposed to predict the events by maximizing the following
joint likelihood:

∏

(x,Ex)∈D
[

∏

(c,t,ar)∈Ex

P ((c, t, ar)|x)]

=
∏

(x,Ex)∈D
[
∏

c∈C
P (c|x)

∏

t∈Tx

P (t|x, c)
∏

ar∈Ax,r

P (ar|x, c, t)], (1)

where Tx and Ax,r denote trigger and argument sets of x, respectively.
The joint likelihood explicates the dependencies among the type, trigger,

and argument. The order of cascade decoding indicates that the framework
first learns a Type Decoder P (c|x) to identify the event types in the sentence.
Then, it extracts the trigger words from the sentence via a Trigger Decoder
P (t|x, c) which corresponds to the detected type. After that, an Argument
Decoder P (ar|x, c, t) is developed to extract role-specific arguments.

In the cascade decoding approach, the decoders are built upon a sharing
BERT encoder:

{h1,h2, ...,hn} = BERT(x), (2)

where H = {h1,h2, ...,hn} is the hidden representation of x for downstream
decoding. Next, an attention layer followed by a simple feed-forward neural net-
work is leveraged as the type decoder to predict the event type. We denote it
as:

P (c|x) = TypeDecoder(H). (3)

After that, the predicted type embedding c is concatenated with each token
representation. This will be further processed via a conditional layer normaliza-
tion (CLN) [14] layer and a self-attention layer to form the hidden representation
Hc. A pointer network takes charge of predicting the position of start and end
indexes based on Hc. We denote the above trigger extraction procedure as fol-
lows:

Hc = Aggregator(H, c),
P (t|x, c) = Pointer(Hc). (4)

For argument decoder, the trigger information is concatenated with Hc and
processed with a CLN to form the hidden representation Hct. Given Hct, the
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start and end indexes of role-specific arguments are then predicted as follows:

Hct = Aggregator(Hc, t),

P (ar|x, c, t) = Pointer(Hct). (5)

More details could be found in the original paper [32].

3 Our Approach

The cascade decoding framework that we described in Sect. 2.2 decodes dif-
ferent components of events in a cascading manner, the inputs of which are
hidden representations of tokens featured with subtask dependencies. Our app-
roach follows the framework, but we improve it by introducing a module to fuse
the syntactic information over the decoding process and a self-supervised task
to further refine the syntactic representation. Specifically, we propose Syntax-
enhanced Aggregators to take place of the original aggregators. The proposed
aggregator elaborately models the syntactic structure of the sentence and fuses
syntax with the original hidden representation, as we will explain in Sect. 3.1. To

Fig. 2. The overall architecture of our approach. The network modules are annotated
with solid boxes and data is annotated with imaginary boxes. The left part is the
cascade decoding framework. We modify the original aggregators to syntax-enhanced
aggregators. The middle part shows the details of proposed syntax-enhanced aggregator
in trigger decoder, where dependency and syntactic information are carried via two
channels and eventually fuse together in fusion layer. The right part shows the details
of type discrimination task, where syntactic representations belonging to the same event
type are learned to be closer. Please note the imaginary line from the aggregator to
the discriminator is meant to show the input of the discriminator rather than forward
pass of the architecture.
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better capture the interactions among event types, we design a Type Discrimina-
tion Task to distinguish whether the representations belonging to the same type
are syntactically close or not, which will be presented in Sect. 3.2. Eventually,
event detection and type discrimination generate their training objectives and
we join them together, as we will describe in Sect. 3.3. The overall architecture
of our approach is displayed in Fig. 2.

3.1 Syntax-Enhanced Aggregator

Recall that we could prepare the hidden representations enriched with depen-
dency information Hc and Hct through the aggregators in trigger decoder and
argument decoder, respectively. Now we describe, in our syntax-enhanced aggre-
gator, how we obtain the syntactic representations and fuse these heterogeneous
features to form new representations H̃c and H̃ct. For simplicity, we take Hc in
trigger decoder as the example. The similar procedure is conducted for Hct in
argument decoder.

We first extract the dependency tree of the sentence via existing parsing
tools. To avoid one way message transition from the root to leaf nodes, we add
reversed edges and distinguish them with different edge labels in the depen-
dency tree. This results in a syntactic graph G(v, e), where v is the entity in
a dependency tree and e is the grammatical link between these entities. The
representation of entities are updated along with the graph structure. Let us use
V = {v1, ...vm} to denote the representations of m entities in G. Each entity is
initially represented via the average embeddings of their tokens.

To model the syntactic structure of sentences, we adopt the commonly used
Relational Graph Convolutional Network (R-GCN) [28] as our graph encoder to
capture the message transition of the syntactic graph:

{v1, ...vm} = GraphEncoder({v1, ...vm)}. (6)

In this way, the updated entity representation is featured with sentence syn-
tax. Next, we aggregate them with the original hidden representations Hc =
{hc

1, ...,h
c
n}, which are arranged in token level, such that we can fuse these two

types of information together.
We first utilize two individual multi-head self-attentions (MH-SelfAttns) to

process both Hc and V, respectively. Inspired by the Knowledgeable Encoder
proposed in prior work [42], where the language representation is enhanced with
knowledge graphs, we align an entity with its corresponding tokens or characters
if it is formed by multiple tokens or characters. As shown in Fig. 2, the entity
“创维科技 (Chuangwei Tech)” is aligned with “创”, “维”, “科” , and “技” . Thus
there are explicit links between this entity and the four characters. We define
the fusion layer as follows:

zj = σ(U1hc
j +

∑

vi∈Align(wj)

W1vi + b1) (7)
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h̃c
j = σ(U2zj + b21) (8)

ṽc
i = σ(

∑

wj∈Align(vi)

W2zj + b22), (9)

where σ is non-linear activation function GELU [7] and Align indicates the
alignment between tokens and entities. The inputs are hidden representation
Hc and entity representation V. U, W and b with subscripts are parameters
to learn. zj indicates fused hidden representation of j-th token. As a result,
H̃c = {h̃c

1, h̃
c
2, ..., h̃

c
n} is the token representation with fusion of syntax informa-

tion. It will be leveraged as the input of pointer network in Eq. (4) for trigger
extraction. Ṽc = {ṽc

1, ṽ
c
2, ..., ṽ

c
m} is the entity representation enriched with sub-

task dependencies. It will be utilized in downstream decoding.
When it comes to the argument decoder, Ṽc is used as the input entity rep-

resentation to be continuously processed via the graph encoders and eventually
fuse with the hidden representation Hct to generate H̃ct. This will be fed into
pointer network in Eq. (5) for argument extraction. Compared with the origi-
nal aggregator, besides capturing dependency information, our syntax-enhanced
aggregators encode syntactic structure and fuse both subtask dependencies and
syntactic information to generate a more expressive representation for decoding.

3.2 Type Discrimination Task

Type discrimination task aims at predicting whether two sentences are syntac-
tically close or not. The intuition behind is that sentences describing the same
event type usually have similar syntactic structure. To this end, we adopt the
idea of contrastive learning and push the syntactic representations of positive
pairs closer than negative pairs. The syntactic representations learned from type
discrimination task can further boost the performance of cascade decoding.

We conduct dependency parsing for all sentences and obtain a collection
of syntactic graphs denoting as U , each G ∈ U deriving from a sentence is
labeled with their event type. Then, we train the representations of a pair of
syntactic graphs that share the same event type to be closer in the space. We
adopt Momentum Contrast (MoCo) [6] for self-supervised representation learn-
ing, which formulates contrastive learning as a dictionary look-up task and is
effective in maintaining a large-scale dynamic dictionary.

Specifically, given a syntactic graph G as a query, we represent it by the
average of all entities encoded via the graph encoder of Eq. (6) and obtain
g = 1

m

∑m
i=1 vi to indicate the status of the syntactic graph. Meanwhile, we

sample a set of syntactic graphs from U as keys of a dictionary and encode
these key graphs via another graph encoder to obtain their representations. For
clear presentation, we denote the query graph encoder and key graph encoder
as GraphEncoderθq

and GraphEncoderθk
, respectively. In the dictionary, the

positive key (denoted as k+) is the only graph having the same type as the
query. The others are negative keys {k1,k2, ...,kL}, as depicted in Fig. 2. We
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define the loss function of the type discrimination task as follows:

LTD = −
∑

G∈U
log

exp(gᵀk+/τ)
∑L

i=0 exp(gᵀki/τ)
, (10)

where τ is a temperature hyper-parameter. For each query, we construct one
positive key and L negative keys.

Similar as MoCo, during training, the keys in the dictionary are progressively
updated. For each new query graph G, the old key graphs in the dictionary are
removed and new key graphs are collected. Moreover, the parameters of the
encoder of keys are driven by momentum update as follows:

GraphEncoderθk
← γGraphEncoderθk

+(1 − γ)GraphEncoderθq
, (11)

where γ is the momentum coefficient. This results in a smooth evolution of
GraphEncoderθk

as we can control the evolving progress.

3.3 Training Objective

During our training procedure, event extraction and type discrimination tasks
are performed simultaneously. For each sampled data, a sentence and its cor-
responding syntactic graph are both collected for event extraction training. A
dictionary of key graphs for a query graph is also prepared for contrastive learn-
ing.

The overall training objectives of our improved cascade decoding framework
is shown as follows:

L = λLEE + (1 − λ)LTD, (12)

where LEE is the negative logarithm of the joint likelihood of event extrac-
tion task in Eq. (1), and λ is a hyper-parameter. All the parameters except for
GraphEncoderθk

are updated by back-propagation.

4 Experiments

In this section, we conduct experiments to evaluate the proposed method. We
first introduce our experiment settings including datasets and evaluation met-
rics, comparable methods, and implementation details in Sect. 4.1, Sect. 4.2, and
Sect. 4.3. Next, we discuss our main results in Sect. 4.4. We show further analysis
in Sect. 4.5

4.1 Datasets and Evaluation Metrics

We conduct experiments on two commonly used event extraction datasets:
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– FewFC [46]1 is a public Chinese dataset for event extraction in the financial
domain. It contains 10 event types and 19 role types. There are 12, 890 sen-
tences in the dataset. Following previous setting [32], we split the dataset with
the ratio 8 : 1 : 1 to form training, development, and test sets.

– DuEE [20]2 is a relatively large Chinese event extraction dataset, which con-
tains 19, 640 sentences in total. The data is collected by crowdsourcing and
contains 65 event types associated with 121 role types in real-world scenarios.
We follow its default split setting to construct the data sets.

We utilize the standard evaluation metrics [2,5] to evaluate performance of
trigger detection and argument detection: (1) Trigger Identification (TI): If a
predicted trigger word matches the gold word, this trigger is identified correctly.
(2) Trigger Classification (TC): If a trigger is correctly identified and assigned
to the correct type, it is correctly classified. (3) Argument Identification (AI): If
an event type is correctly recognized and the predicted argument word matches
the gold word, it is correctly identified. (4) Argument Classification (AC): If
an argument is correctly identified and the predicted role matches the gold role
type, it is correctly classified. We measure Precision, Recall and F1 score based
on the above four metrics.

4.2 Comparable Methods

We choose a range of advanced approaches for event extraction as our baselines:

– DMCNN [2] is a pipeline with dynamic multi-pooling convolutional neu-
ral network and enriched encoded syntactic features. It is the early attempt
adopting syntactic information into event extraction.

– GCN-ED [26] develops a GCN based on dependency trees to perform event
detection, where each word is treated as a trigger candidate and joint learning
is performed to label words with event types.

– GatedGCN [13] is GCN-based model for event detection which uses a gating
mechanism to filter noisy information. It also follows a joint learning paradigm.

– BERT+CRF [5] is a sequence labeling model with advanced pre-trained
language model BERT for encoding sentences and conditional random field
(CRF) for tagging labels.

– MQAEE [15] is a pipeline method that formulates the extraction task as a
multi-turn question answering without any syntactic information involved.

– CasEE [32] is the representative cascade decoding approach for event extrac-
tion, which simply treats a sentence as a sequence.

We either utilize official source codes or follow their descriptions to re-
implement the baseline methods.

1 https://github.com/TimeBurningFish/FewFC.
2 http://ai.baidu.com/broad/download.

https://github.com/TimeBurningFish/FewFC
http://ai.baidu.com/broad/download
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Table 1. Event extraction results on test set of FewFc dataset. P(%), R(%) and F1(%)
denote percentages of precision, recall and F1 score, respectively. The methods anno-
tated with “�” are those enriched with syntactic features.

Methods TI TC AI AC
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DMCNN� 82.0 79.4 80.7 69.4 68.2 68.8 70.2 66.3 68.2 66.8 65.7 66.2

GCN-ED� 84.4 83.7 84.0 71.7 68.9 70.3 69.1 69.6 69.4 71.2 65.7 68.3

GatedGCN� 88.9 85.0 86.9 76.2 73.4 74.8 72.3 70.1 71.2 71.4 68.8 70.1

BERT-CRF 88.4 84.1 86.2 74.2 70.5 72.3 69.4 68.1 68.7 70.8 68.2 69.5

MQAEE 88.7 86.2 87.4 77.2 76.4 76.8 72.7 69.7 71.2 70.2 66.5 68.3

CasEE 89.1 87.8 88.4 77.8 78.6 78.2 71.6 73.2 72.4 71.2 72.4 71.8

Ours� 90.1 88.9 89.5 78.1 79.4 78.7 71.9 77.0 74.4 71.5 75.7 73.5

4.3 Implementation Details

For implementation, we use Chinese BERT Model [4] in Transformers library3

as our basic textual encoder to convert words into vector representations. For
other parameters, we randomly initialize them. To obtain syntactic graphs, we
extract the syntactic dependency of sentences via StanfordNLP parsing tool4 and
convert dependency trees into graphs via DGL5 library. In our syntax-enhanced
aggregator, we use 8 heads for MH-SelfAttns layers and 2 stacked R-GCN lay-
ers to form a GraphEncoder. For hyper-parameters, we search via grid search
through pre-defined spaces and decide the best configuration based on the best
F1 score on the development set. The dimension of hidden representations in
graph encoders or aggregators are all set to 768. We use an Adam optimizer [10]
to train all trainable parameters. The initial learning rate is set to 1e − 5 for
BERT parameters and 1e − 4 for the other parameters. A warmup proportion

Table 2. Event extraction results on test set of DuEE dataset. P(%), R(%) and F1(%)
denote percentages of precision, recall and F1 score, respectively. The methods anno-
tated with “�” are those enriched with syntactic features.

Methods TI TC AI AC
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DMCNN� 78.4 80.2 79.3 79.4 76.3 77.8 69.2 67.4 68.3 67.2 65.6 66.4

GCN-ED� 82.4 76.2 79.2 81.6 76.2 78.8 71.3 69.5 70.4 70.9 64.5 67.5

GatedGCN� 88.6 83.0 85.7 82.4 80.5 81.4 73.8 71.6 72.7 72.5 68.4 70.4

BERT-CRF 87.2 77.6 82.1 80.4 77.4 78.8 70.6 68.1 69.3 70.5 66.7 68.5

MQAEE 87.9 82.1 84.9 80.9 79.4 80.1 73.2 71.7 72.4 71.0 69.7 70.3

CasEE 85.5 88.2 86.8 83.6 83.9 83.7 70.3 75.4 72.8 68.6 75.7 72.0

Ours� 87.7 89.0 88.3 83.7 86.8 85.2 72.8 76.9 74.8 71.2 77.4 74.2

3 https://huggingface.co/.
4 https://nlp.stanford.edu/software/lex-parser.shtml.
5 https://www.dgl.ai/.

https://huggingface.co/
https://nlp.stanford.edu/software/lex-parser.shtml
https://www.dgl.ai/
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for learning rate is set to 10%. The training batch is set to 16 and the maxi-
mum training epoch is 30. The size of dictionary L is set to 1000 for contrastive
learning. We set τ = 0.07, λ = 0.5 and γ = 0.8. To avoid overfitting, we apply
dropout layers in syntax-enhanced aggregators with a dropout ratio as 0.3.

4.4 Main Results

The performance of all methods on FewFC and DeEE datasets is displayed in
Table 1 and Table 2, respectively. Based on the two tables, we have the following
observations:

(1) For both datasets, our method surpasses all baseline methods with a remark-
able margin and obtains new state-of-the-art results on F1 score of all mea-
surement metrics. This shows that our method incorporating syntactic infor-
mation with cascade decoding framework indeed brings the largest benefit
for event extraction task. Compared with CasEE, our method shows gains
on TI as well as AI measurement. This may because that leveraging syntactic
relation of sentences captures long-range dependency and enables the model
to retrieve more accurate trigger and arguments. Also, the gains on TC and
AC may comes from contrastive learning, which helps the model label events
by discriminating the different syntactic structure of event types.

(2) In the perspective of framework, compared with the joint learning and
pipeline paradigms, cascade decoding could achieve better performance.
CasEE outperforms BERT-CRF as well as MQAEE with marginal improve-
ment on both datasets. As discussed in Sect. 1, cascade decoding frame-
work could avoid label conflicts and error propagation effectively [32], which
reveals the necessity of developing methods based on cascade decoding
framework.

(3) For methods featured with syntactic information, different methods show
different effects. Specifically, DMCNN and GCN-ED are methods involv-
ing syntactic information, their performance on both datasets are not ideal,
this may because that these two methods are developed upon un-contextual
word embeddings thus cannot fully capture the deep semantics of sentences.

Table 3. Results of ablation study on FewFC dataset. We display the percentages of
F1 score on all measurement metrics. SA denotes Syntax-enhanced Aggregator.

TI(%) TC(%) AI(%) AC(%)

Our Model 89.5 78.7 74.4 73.5

w/o Contrastive learning 88.7 78.3 73.6 72.4

w/o Fusion Layer 89.0 78.4 73.6 72.8

w/o SA in Trigger Decoder 88.5 78.1 72.4 71.9

w/o SA in Argument Decoder 89.3 78.6 73.0 72.1
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GatedGCN takes advantage of BERT encoder and encodes syntactic infor-
mation via GCN model and it could outperform the BERT-CRF method.
Our method is also built upon BERT encoder and featured with syntax-
enhanced aggregator and type discrimination task, which is effective in solv-
ing the label conflict and modeling syntactic information of sentences.

4.5 Further Analysis

Ablation Study. To explore details of our proposed method, we show the result
of ablation study in Table 3. As we can see, both syntax-enhanced aggregators
and contrastive learning contribute to the entire system. After we omit the con-
trastive learning, the performance decreases. This indicates that capturing the
syntactic structure of sentences is key for detecting the event types. Similarly,
After we omit the fusion layer in syntax-enhanced aggregator and simply add
the hidden representation of syntactic graph to Hc, the performance drops. This
indicates that the way to combine syntactic feature and subtask dependencies
is critical. We remove the syntax-enhanced aggregators in trigger and argument
decoders in turn. The performance decrease indicates that the proposed syntax-
enhanced aggregators contribute to both trigger extraction and argument extrac-
tion.

Effect of L. In order to show the effect of L value in contrastive learning,
we train our method on FewFC dataset with varying dictionary sizes and draw
curves in Fig. 3(a). The figure shows that with the increase of L value in con-
trastive learning, the performance of trigger classification and argument classifi-
cation increases. This is because seeing more interactions of different event types
could help the model learn more distinct syntactic features.

Representation Visualization. In Fig. 3(b), we display the learned query rep-
resentations in FewFC dataset by mapping them into two dimensional space via
t-distributed stochastic neighbor embedding (t-SNE) [8]. The data points with
different colors indicate query graphs of different categories of event types. As
we can observe, the query representations of different event types without con-
trastive learning mix together and exhibit random distribution. In contrast, after
including type discrimination task with contrative learning, the same event types
clustered. This verifies that contrastive learning leads to a better syntactic rep-
resentation for each sentence.
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Fig. 3. (a) shows the performance change of TC and AC on FewFC with increasing
L value in contrastive learning. (b) shows the t-SNE plots of representations of query
graphs of FewFC without and with contrastive learning.

5 Related Work

5.1 Frameworks of Event Extraction

The frameworks of event extraction can be roughly categorized into three groups.
Joint learning framework solves event extraction in a sequence labeling man-
ner [9,17,22,25,27,29,31]. They treat each token as the candidate of a trigger
or an argument and tag it with types. However, joint learning has the disad-
vantage of solving sentences where one token could have more than one event
types. Pipeline framework performs trigger extraction and argument extraction
in separate stages [3,5,15,21,24,33,40,45]. This framework could avoid the label
conflict issue but it ignores the potential label dependencies in modeling and suf-
fers from error propagation. The cascade decoding framework formulates triples
to represent event types, triggers and arguments [32,37,39]. It jointly performs
predictions for event triggers as well as arguments based on shared feature repre-
sentations and learns the implicit dependencies of the triples. It could avoid label
conflict and error propagation. Empirical results show it is an effective solution
for event extraction. The cascade decoding framework is also effective in jointly
extracting relations and entities from text [35,44].

5.2 Syntax Modeling for Event Extraction

There are a number of studies that incorporate the syntactic structure of sen-
tences into event extraction tasks. The early work [2] collected syntactic features
from the dependency tree and fed them into a dynamic multi-pooling convolu-
tional neural network for extracting events. Li et al. [16] also utilized dependency-
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based embeddings to represent words semantically and syntactically and pro-
posed a PMCNN for biomedical event extraction. Some studies tried to enhance
the basic network with syntactic dependency, Sha et al. [30] proposed a novel
dependency bridge recurrent neural network and Zhang et al. [41] transformed
dependency trees into target-dependent trees. The follow-up studies [22,26,38]
employed graph convolutional network to encode the dependency tree and uti-
lized it for predicting event types. More advanced neural networks are leveraged
to model syntax in event extraction tasks. The gate mechanism and Trans-
former [1,13,36] have shown to be effective in encoding the graph information
of dependency tree. [19] utilized the relationships of event arguments based on
a reinforcement learning and incremental learning. [23] designed a sequence-to-
structure framework to uniformly models different subtasks of event extraction.
However, some of them focus on detecting event types with syntax modeling
which can be treated as a joint learning framework of event extraction, the oth-
ers follow a pipeline framework of event extraction to enhance syntactic infor-
mation. To fully make use of the cascade decoding framework, we propose our
method based on the cascade decoding architecture, which captures the subtask
dependencies and syntactic structure simultaneously.

6 Conclusions

In this paper, we improved cascade decoding with syntax-aware aggregator and
contrastive learning for event extraction. We demonstrated the effectiveness of
our proposed method on two datasets. The results showed that our method out-
performs all baseline methods based on F1 score. Considering that many scenes
have relatively high requirements for real-time performance, we will explore to
optimize the computational complexity of the model and improving the univer-
sality of the model in the future.
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Abstract. Relation Extraction (RE) task aims to discover the semantic rela-
tion that holds between two entities and contributes to many applications such
as knowledge graph construction and completion. Reinforcement Learning (RL)
has been widely used for RE task and achieved SOTA results, which are mainly
designed with rewards to choose the optimal actions during the training pro-
cedure, to improve RE’s performance, especially for low-resource conditions.
Recent work has shown that offline or online RL can be flexibly formulated as
a sequence understanding problem and solved via approaches similar to large-
scale pre-training language modeling. To strengthen the ability for understanding
the semantic signals interactions among the given text sequence, this paper lever-
ages Transformer architecture for RL-based RE methods, and proposes a generic
framework called Transformer Enhanced RL (TERL) towards RE task. Unlike
prior RL-based RE approaches that usually fit value functions or compute policy
gradients, TERL only outputs the best actions by utilizing a masked Transformer.
Experimental results show that the proposed TERL framework can improve many
state-of-the-art RL-based RE methods.

Keywords: Relation Extraction · Reinforcement Learning · Transformer

1 Introduction

Relation Extraction (RE) aims to discover the binary semantic relation between two
entities in a sequence of words. E.g., given a sentence “· · ·Carey will succeed Cathleen
P. Black, who held the position for 15 years and will take on a new role as chairwoman
of Hearst Magazines, the company said· · · ” [37], and we aim to predict the relation type
between two entities “Cathleen P. Black” and “chairwoman” and the result is “per:title”.

Deep neural network (DNN) driven methods have gained decent performance when
labeled data is available [7,12]. While Reinforcement Learning (RL) based RE methods
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 192–206, 2023.
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gain a lot of attention recently and show encouraging effects [12,30,35], especially in
low-resource and few-shot conditions. Since this kinds of work requires fewer labeled
data or could expand limited labeled data by exploiting information on unlabeled data
to iteratively improve the performance [12].

Recent works have shown Transformers [33] can model high-dimensional distribu-
tions of semantic concepts at scale, and several attempts have demonstrated the combi-
nation between transformers and RL architecture [22,23,39]. These works have shown
that the Transformer’s efficiency for modeling beneficial semantic interactions in the
given sequence [1,44], which is very enlightening for RE task. Given the diversity of
successful applications of such models [1], this paper seeks to investigate their applica-
tion to sequential RE problems formalized as RL, because of the three main advantages
of transformers: (i) Its ability to model long sequences has been demonstrated in many
tasks; (ii) It could perform long-term credit assignment via self-attention strategy, con-
trary to Bellman backups [16] which slowly propagate rewards and are prone to dis-
tractor signals [13] in Q-learning, which could enable Transformer-based architecture
to still work effectively in the presence of distracting rewards [1]; and (iii) It can model
a wide distribution of behaviors, enabling better generalization [26]. Hence, inspired by
[1,44], we try to view the RL-based RE as a conditional sequence understanding prob-
lem. Especially, we model the joint distribution of the sequence of states, actions and
rewards, and discuss whether generative sequence understanding could can serve as a
substitute for traditional RL algorithms in RE task. Overall, we propose Transformer
Enhanced Reinforcement Learning (TERL), which abstracts RL paradigm as autore-
gressively sequence understanding and utilize Transformer architecture in BERT1 to
model text sequences with minimal modification to native transformer’s architecture,
and we investigate whether the sequence understanding paradigm can perform policy
optimization by evaluating TERL on RL benchmarks in RE task. This enables us to
leverage the scalability of the Transformer’s architecture, as well as the related advance-
ments in pre-training language modeling (such as the BERT’s series).

Especially, following the backbone proposed in [1], we train Transformer archi-
tecture on collected experience with a sequence understanding objective for RE task,
instead of training a policy through conventional RL algorithms [12,35]. This trans-
former is trained to predict next token in a sequence of rewards (forward-cumulative-
rewards emphasized here), states, and actions. This paper shows that leveraging Trans-
formers can open up another paradigm to solve RL-based RE problem. The main dif-
ferences between this work and previous RL-based RE methods, can be concluded as
follows: (i) RL is transformed into sequence understanding; (ii) We learn the natural
projection from reward and state to action, instead of maximizing cumulative discount
rewards or only modeling state and action in conventional behavior cloning paradigm
[2]; (iii) Q/V-functions are no need to be learned, while we directly model it as a
sequence problem, wherein as long as given the expected return, we can get the corre-
sponding action; and (iv) Bellman backups or other temporal difference frameworks is
no need; In RE tasks (even relation and entity joint extraction tasks) with our work, the
expected target return is highly correlated with the actual observed return. Under cer-
tain conditions, the proposed TERL could successfully generate sequences that almost

1 Other transformer architecture is also applicable.
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completely match the required returns. In addition, we can prompt TERL with a higher
return than the maximum event available in the dataset, indicating that our TERL can
sometimes be extrapolated. Moreover, the proposed framework can also be used as a
plug-in unit for any RL-based RE architecture, and be extended to relation and entity
joint extraction task [46]. Experimental results show that the proposed TERL frame-
work can improve many state-of-the-art RL-based RE methods.

2 Related Work

Relation Extraction (RE) aims to predict the binary relation between two entities in
a sequence of words. Recent work leverages deep neural network (DNN) for learn-
ing the features among two entities from sentences, and then classify these features
into pre-defined relation types [12]. These methods have achieved satisfactory perfor-
mance when labeled data is sufficient [7,40], however, it’s labor-intensive to obtain
large amounts of manual annotations on corpus. Hence, few-shot (even zero-shot) RE
methods gained a lot of attention recently, since these methods require fewer labeled
data and could expand limited labeled information by exploiting information on unla-
beled data to iteratively improve the performance. Wherein, Reinforcement Learning
(RL) based methods have grown rapidly [35,41], which has been widely used in Nature
Language Processing (NLP) [18,21,46]. These methods are all designed with rewards
to force the correct actions to be chosen during the model’s training procedure. For RE
task, [24] proposes a RL strategy to generate the false-positive indicator, where it auto-
matically recognizes false positives for each relation type without any supervised infor-
mation. [18] addresses the RE task by capturing rich contextual dependencies based
on the attention mechanism, and using distributional RL to generate optimal relation
information representation. [12] proposes gradient imitation RL method to encourage
pseudo label data to imitate the gradient descent direction on labeled data. For rela-
tion and entity joint extraction task, [30] proposes a hierarchical RL framework which
decomposes the whole extraction process into a hierarchy of two-level RL policies
for relation extraction and entity extraction, respectively. [41] applies policy gradient
method to model future reward in a joint entity and relation extraction task. [35] jointly
extracts entities and relations, and propose a novel bidirectional interaction RL model.

Recently, there exist many exciting works which formulate the Reinforcement
Learning (RL) problem as a context-conditioned “sequence understanding” problem
[1,44]. For offline RL settings, [1] trains a transformer [33] as a model-free context-
conditioned policy, and [14] trains a transformer as both a policy and model and shows
that beam search can be used to improve upon purely model-free performance. These
works focus on exploring fixed datasets that transformers are traditionally trained with
in NLP applications, which is similar to our focus. For online RL settings, [44] proposes
a RL algorithm based on sequence understanding that blends offline pre-training with
online fine-tuning in a unified framework. To best of our knowledge, this work is the
first test to leverage Transformer for enhancing RL-based RE task.
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3 Methodology

This section presents the proposed TERL for RE task, as summarized in Fig. 1.

Fig. 1. The architecture of TERL for RE task.

3.1 Relation Extraction with RL

The RL policy π for Relation Extraction (RE), usually aims to detect the relations in
the given word sequence τ1 = {w0, w1, w2, · · · , wT }, which can be regarded as a
conventional RL policy over actions. A Markov Decision Process (MDP) described
by the tuple (S,A,P,R) [35], is usually used for learning procedure. Especially, the
MDP tuple consists of states s ∈ S, actions a ∈ A, transition probability P (s′|s, a) and
rewards r ∈ R. At timestep t, st, at, and rt = R(st, at) denote the state, action, and
reward, respectively. The goal in RL is to learn a desired policy which maximizes the
expected reward E(

∑T
t=1 ri) in MDP [1].

Action: The action at is selected from A = R
⋃
None, wherein notation None indi-

cates that no relation exists in the given context, and R is the pre-defined relation-type
set.

State: The state st ∈ S of the relation extraction RL process at timestep t, can be repre-
sented by [31,35]: (i) the current hidden state vector ht, (ii) the relation-type vector at−1

(the embedding of the latest action at−1 that at−1 �= None, a learnable parameter), and
(iii) the state from the last timestep st−1, formally represented as follows:

st = f(WS [ht; at−1; st−1]) (1)

where f(·) denotes a non-linear function implemented by MLP (Other encoder archi-
tecture is also applicable, which is not the focus of this paper). To obtain the current
hidden state ht, sequence Bi-LSTM over the current input word embedding xt, charac-
ter embedding ct, token-type embedding vt, and token-position embedding pt, can be
used here, as follows:
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−→
ht =

−−−→
LSTM(

−−→
ht−1, xt, ct, vt,pt)

←−
ht =

←−−−
LSTM(

←−−
ht+1, xt, ct, vt,pt)

ht = [
−→
ht ;

←−
ht ]

(2)

Policy: The stochastic policy for detecting relation-type can be defined as π : S → A,
which specifies a probability distribution over actions:

at ∼ π(at|st) = SoftMax(Wπst) (3)

Reward: The environment provides intermediate reward rt to estimate the future return
when chose action at. The reward is computed as follows:

rt =

⎧
⎪⎨

⎪⎩

1, at conforms to τ1,

0, at = None,

-1, at not conforms to τ1.

(4)

If at equals to None at certain timestep t, the agent transfers to a new relation extraction
state at the next timestep t+1. Such a MDP procedure mentioned above continues until
the last action about the last word wT of current sequence is sampled. Finally, a final
reward r∗ is obtained to measure the RE’s performance that the RL’s policy π detects,
which is obtained by the weighted harmonic mean of precision and recall in terms of the

relations in given sentence sequence τ1 [35]: r∗ = (1+β2)·Prec·Rec
β2·Prec+Rec . Wherein, notation

Prec and Rec indicate the precision value and recall value respectively, computed over
the current sequence τ1.

3.2 Transformer

For simplicity, we take BERT as an example. BERT [3] is the first bidirectional language
model, which makes use of left and right word contexts simultaneously to predict word
tokens. It is trained by optimizing Masked Language Model (MLM) objective etc. The
architecture of conventional BERT is a multi-layer bidirectional transformer encoder
[33], and the inputs are a sequence of tokens {x1, x2, · · · , xn}. The tokens go through
several layers of transformers. At each layer, a new contextualized embedding is gen-
erated for each token by weighted-summing all other tokens’ embeddings. The weights
are decided by several attention matrices (multi-head attention). Note that: (i) tokens
with stronger attentions are considered more related to the target word; (ii) Different
attention matrices capture different types of token relations, such as exact match and
synonyms.

The entire BERT model is pre-trained on large scale text corpora and learns linguis-
tic patterns in language. It can be viewed as an interaction-based neural ranking model
[6]. Given the widespread usage of BERT, we do not detail the architecture here. See
[3] for more details about the conventional architecture of BERT and its variants for
various applications.
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3.3 Input Generation

Given sequence under RL’s paradigm {s0, r0, a0, s1, r1, a1, · · · , sT , rT , aT }, the
reward of a sequence at step t, is defined as the forward-cumulative-rewards from the
current timestep, similar to [1]: r̂t =

∑T
i=t ri, without discount. Wherein, ri denotes

the reward from environment at timestep i. Because we want to generate actions based
on future (forward direction) expected returns rather than past (backward direction)
rewards. Hence the input sequence towards our Transformer, is defined as follows,
which consists of states, actions and rewards:

τ = {a−1, s0, r̂0, a0, s1, r̂1, a1, s2, r̂2, a2, · · · , sT , r̂T , aT } (5)

It represents the whole sequence from the beginning to the end, but in the actual training
process, we often only intercept K timesteps (i.e., context length) as input (details in
Sect. 3.4). Wherein, K is a hyper-parameter with different values towards different
tasks, and a−1 in Eq. (5) is a padding indicator.

3.4 Procedure

We feed the last K timesteps into TERL, for a total of 3 × K tokens (one for each
type: states, actions and rewards). As shown in Fig. 1, to obtain token embeddings:
(i) for state and action, Eq. (1) and Eq. (2) are used to generate state embedding
and action embedding, which consider word embeddings, character embeddings, type
embeddings and position embeddings [35,46]; (ii) for forward-cumulative-rewards, we
learn a linear-layer, which projects inputs to the embedding dimension, followed by
layer-normalization [1,36].

Moreover, a token-position (respect to timestep) embedding, a token-type embed-
ding for each token as well as a token-character embedding respect to action token
or state token, is learned and added to each token, as one timestep corresponds to 4
types of tokens in our framework. Wherein, we define the token-type projection as:
{[CLS], action, state, reward, [SEP]} → {0,1,2,3,4}. The tokens are then pro-
cessed by a BERT [3] or GPT [25] model (as well as their variants), which predicts
future (forward) action: {at−1, st, r̂t} → at.

With efforts above, after executing the generated actions for the current state, we
reduce the target return by the rewards we receive and repeat until the end of the episode.
The output is action sequence {a0, a1, a2, · · · , aT }, which is generated with a linear
layer (on top of Fig. 1). Note that, the output can also includes sequence of states or
rewards. For simplicity, we do not use them and leave for future discussion.

The details about training procedure and testing procedure, can be concluded as
follows:

(i) In training procedure, we sample mini-batches of sequence length K (i.e., context
length) from the training dataset, and mainly use the self-attention paradigm in
Transformer. a−1 with zero-padding is added before the entire sequence. As shown
in Fig. 1, predicting action at each timesetp at with cross-entropy loss, is used as
the training objective.
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(ii) At test time, we use the definition of Eq. (4) as the desired performance. At the
beginning, given the desired performance (e.g., r̂0 = 1) as well as the initial state
s0, transformer generates action a0. Let the agent perform actions a0, the environ-
ment will give return r0 and the next state s0, and we can get r̂1. Then {a0, s1, r̂1}
can be added into the input sequence, and we can get a1. The aforementioned test-
ing procedure is autoregressive, because the output at−1 in previous timestep will
intuitively be the viewed as input in the following timestep: {at−1, st, r̂t} → at.

4 Experiments

This paper constructs relation extraction task and relation and entity joint extraction
task for evaluations.

4.1 Datasets and Metrics

For relation extraction (RE) task examination, we follow [12] to leverage two public RE
datasets for conducting experiments on, including SemEval 2010 Task 8 (SemEval) [8],
and TAC Relation Extraction Dataset (TACRED) [43]: (i) SemEval dataset is a standard
benchmark dataset for testing RE models, which consists of training, validation and
test set with 7,199, 800, 1,864 relation-mentions respectively, with totally 19 relations
types (including None). (ii) TACRED dataset is a more large-scale crowd-sourced RE
dataset, which is collected from all the prior TAC KBP relation schema. It consists of
training, validation and test set with 75,049, 25,763, 18,659 relation-mentions respec-
tively, with totally 42 relation types (including None).

We also test the extension of the proposed framework for relation and entity joint
extraction task. For this task, we conduct experiments on two public datasets NYT
[28] and WebNLG [4]: (i) NYT dataset is originally produced by a distant supervi-
sion method, which consists of 1.18M sentences with 24 predefined relation types; (ii)
WebNLG dataset is created by Natural Language Generation (NLG) tasks and adapted
by [42] for relational triple extraction task. It consists of 246 predefined relation types.

For both datasets, we follow the evaluation setting used in previous works. A triple
(head entity, relation-type, tail entity) is regarded as correct if the relation-type (belongs
to R) and the two corresponding entities (head entity and tail entity head entity) are
all correct. Precision, Recall and F1-score are introduced here as metrics for all the
compared models. For each dataset, we randomly chose 0.5% data from the training set
for validation [35].

4.2 Baselines

For relation extraction task, the baselines include three categories:

(i) When comparing with supervised relation encoders with only labeled data, we
choose LSTM [9], PCNN [40], PRNN [43], and BERT [3] as baselines.

(ii) When comparing with semi-supervised relation encoders with both labeled data
and unlabeled (or pseudo labeled) data, we choose Self-Training [29], Mean-
Teacher [32], DualRE [19], and MetaSRE [11] as baselines.



TERL: Transformer Enhanced Reinforcement Learning for Relation Extraction 199

(iv) When comparing with the RL-based models, we choose RDSRE [24], DAGCN
[18] and GradLRE [12] as baselines. RDSRE is a RL strategy to generate the
false-positive indicator, where it automatically recognizes false positives for each
relation type without any supervised information. DAGCN addresses the RE task
by capturing rich contextual dependencies based on the attention mechanism, and
using distributional RL to generate optimal relation information representation.
GradLRE is gradient imitation RL method to encourage pseudo-label data to imi-
tate the gradient descent direction on labeled data and bootstrap its optimization
capability through trial and error. As our work can be viewed as a plug-in unit for
this kind of RL-based model, the variant model with help of our work is named
with suffix “+TERL”.

Our framework can be easily extended to relation and entity joint extraction method
based on RL. For evaluating joint extraction task, the baselines include four categories:

(i) The traditional pipeline models are FCM [15] and LINE [5]. Wherein, FCM
is a conventional and compositional joint model by combining hand-crafted fea-
tures with learned word embedding for relation extraction task. LINE is a net-
work embedding method which embeds very large information networks into low-
dimensional vectors. Note that, following [35], both of them obtain the NER results
by CoType [27], and then the results are fed into the two models to predict rela-
tions.

(ii) The joint learning baselines used here include feature-based methods (e.g., DS-
Joint [38], MultiR [10] and CoType [27]), and neural-based methods (e.g.,
SPTree [17] and CopyR [42]). Wherein, DS-Joint is an incremental joint frame-
work extracting entities and relations based on structured perceptron and beam-
search.MultiR is a joint extracting approach for multi-instance learning with over-
lapping relation types. CoType extracts entities and relations by jointly embedding
entity mentions, relation mentions, text features, and type labels into two meaning-
ful representations. SPTree is a joint learning model that represents both word
sequence and dependency tree structures using bidirectional sequential and tree-
structured LSTM-RNNs. CopyR is a sequence-to-sequence learning framework
with a copy mechanism for relation and entity jointly extracting.

(iii) The tagging mechanism based models include Tagging-BiLSTM [45] and
Tagging-Graph [34]. Wherein, Tagging-BiLSTM utilizes a Bi-LSTM-based
architecture to capture the context representation of the input sentences through
and then uses an LSTM network to decode the tag sequences. Tagging-Graph
converts the joint extraction task into a directed graph by designing a novel graph
scheme.

(iv) RL-based joint extraction models include HRL [30], JRL [46], Seq2SeqRL [41]
and BIRL [35]. Wherein, HRL presents a hierarchical RL framework decompos-
ing the whole joint extraction process into a hierarchy of two-level RL policies
for relation extraction and entity extraction, respectively. JRL consists of two
components, including a joint network and a RL agent (which refines the train-
ing dataset for anti-noise). Seq2SeqRL applies RL strategy into a sequence-to-
sequence model to take the extraction order into consideration. BIRL proposes a
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novel bidirectional interaction RLmodel for jointly extracting entities and relations
with both inter-attention and intra-attention.

4.3 Experimental Settings

For a fair comparison, we build our TERL implementation for RE and joint extraction
task with BERT [3], as BERT-based work has achieved the state-of-the-art performance
in RE task. Besides, we adopt BERT as the base encoder for both our TERL and other
RL-based baselines for a fair comparison. Although GPT is also tested, the experi-
mental trend is consistent. All hyper-parameters are tuned on the validation set. The
word vectors are initialized using Word2Vec vectors and are updated during training.
DQN encoder [20] with an additional linear layer is introduced here for projecting to
the embedding dimension. The main list of hyper-parameters is concluded as follows:
Number of layers is 6; Number of attention heads is 8; Embedding dimensionality is
256; Batch size is 512; Context length K = 30; Max epochs is 5; Dropout is 0.1;
Learning rate is 10−4.

4.4 Performance Summary

F1 results with various labeled data on Relation Extraction (RE) task, are shown in
Table 1. Average results over 20 runs are reported, and the best performance is bold-
typed. As our work can be viewed as a plug-in unit for RL-based model, the variant
model with help of our work is named with suffix “+TERL”. RL-based methods out-
performs all baseline models consistently. We could observe that +TERL improve all
the RL-based methods. More specifically, compared with the previous SOTA model
GradLRE, which defeats other models across various labeled data, +TERL is also

Table 1. Performance comparisons on Relation Extraction (RE) task (F1).

Model SemEval TACRED

5%↑ 10%↑ 30%↑ 3%↑ 10%↑ 15%↑
LSTM [9] 0.226 0.329 0.639 0.287 0.468 0.494

PCNN [40] 0.418 0.513 0.637 0.400 0.504 0.525

PRNN [43] 0.553 0.626 0.690 0.391 0.522 0.546

BERT [3] 0.707 0.719 0.786 0.401 0.532 0.556

Self-Training [29] 0.713 0.743 0.817 0.421 0.542 0.565

Mean-Teacher [32] 0.701 0.734 0.806 0.443 0.531 0.538

DualRE [19] 0.744 0.771 0.829 0.431 0.560 0.580

MetaSRE [11] 0.783 0.801 0.848 0.462 0.570 0.589

RDSRE [24] 0.729 0.756 0.812 0.422 0.549 0.568

RDSRE+TERL(Ours) 0.787 0.801 0.853 0.435 0.560 0.574

DAGCN [18] 0.781 0.801 0.838 0.464 0.570 0.587

DAGCN+TERL(Ours) 0.804 0.817 0.846 0.478 0.582 0.593

GradLRE [12] 0.797 0.817 0.855 0.474 0.582 0.599

GradLRE+TERL(Ours) 0.820 0.833 0.864 0.488 0.594 0.605
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more robust than all the baselines. Considering low-resource RE when labeled data
is very scarce, e.g. 5% for SemEval and 3% for TACRED, the improvement from
+TERL is significant: +TERL could achieve an average 3.15% F1 boost compared
with GradLRE. Moreover, the improvement is still robust when more labeled data can
be used (i.e., 30% for SemEval and 15% for TACRED), and the average F1 improve-
ment is 1.15%. Especially, RDSRE fall behinds DualRE in most cases, while it outper-
forms DualRE when plugged with our TERL (i.e., RDSRE+TERL). This because the
attention mechanism gives our TERL an excellent ability of long-term credit assign-
ment, which can capture the effect of actions on rewards in a long sequence. We believe
this phenomenon is meaningful and important for document-level RE task. Moreover,
a key difference between our TERL and previous RL-based RE SOTA methods, can
be concluded that this work dos not require policy regularization or conservatism
to achieve optimal performance, which is consistent with the observation in [1] and
[44]. Especially, our speculation is that an algorithm based on time difference learning
paradigm learns an approximation function and improves the strategy by optimizing the
value function.

Relation and entity joint extraction is a more challenging task, and the proposed
Transformer enhanced RL framework can be easily extend to this task. The experimen-
tal results on NYT andWebNLG datasets are shown in Table 2. It can be concluded that,

Table 2. Performance comparisons on relation and entity joint extraction task (Precision, Recall,
and F1).

Model NYT WebNLG

Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑
FCM [15] 0.561 0.118 0.193 0.472 0.072 0.124

LINE [5] 0.340 0.251 0.277 0.286 0.153 0.193

MultiR [10] 0.344 0.250 0.278 0.289 0.152 0.193

DS-Joint [38] 0.572 0.201 0.291 0.490 0.119 0.189

CoType [27] 0.521 0.196 0.278 0.423 0.175 0.241

SPTree [17] 0.492 0.557 0.496 0.414 0.339 0.357

CopyR [42] 0.569 0.452 0.483 0.479 0.275 0.338

Tagging-BiLSTM [45] 0.624 0.317 0.408 0.525 0.193 0.276

Tagging-Graph [34] 0.628 1.632 0.844 0.528 0.194 0.277

HRL [30] 0.714 0.586 0.616 0.601 0.357 0.432

HRL+TERL(Ours) 0.750 0.604 0.641 0.631 0.368 0.449

JRL [46] 0.691 0.549 0.612 0.581 0.334 0.410

JRL+TERL(Ours) 0.712 0.582 0.613 0.610 0.344 0.425

Seq2SeqRL [41] 0.779 0.672 0.690 0.633 0.599 0.587

Seq2SeqRL+TERL(Ours) 0.802 0.692 0.711 0.665 0.617 0.611

BIRL [35] 0.756 0.706 0.697 0.660 0.636 0.617

BIRL+TERL(Ours) 0.794 0.727 0.725 0.693 0.655 0.643
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the proposed model consistently outperforms all previous SOTA models in most cases,
especially RL-base methods. Especially, RL-based methods usually defeats encoder-
decoder based methods. E.g., RL-based HRL and JRL significantly surpass Tagging-
BiLSTM and CopyR. Compared with HRL, JRL and BIRL, the their +TERL’s vari-
ants improve the F1 score by 3.94%, 3.66% and 4.22% on WebNLG dataset, respec-
tively. This phenomenon shows that, our TERL-based variant matches or exceeds the
performance of SOTAmodel-free RL algorithms, even without using dynamic program-
ming. Note that, the behavior of optimizing the learning function in previous work, may
unfortunately exacerbate and exploit any inaccuracies in the approximation of the value
function, leading to the failure of policy improvement. Due to the fact that the proposed
TERL does not require explicit optimization with learning functions as the objective,
it avoids the need for regularization or conservatism, to a certain degree. Moreover,
when we represent the distribution of policies, just like sequence understanding, con-
text allows the converter to identify which policies generate actions, thereby achieving
better learning and improving training dynamics.

4.5 Analysis and Discussion

This section investigates whether our TERL variant can remain robust performance
on metric of imitation learning (like GradLRE etc.,) on a subset of the dataset.
Hence, we adopt baseline GradLER which is based on imitation learning, by fol-
lowing the experimental setting of Percentile Behavior Cloning strategy proposed by
[1], wherein we run behavior cloning on only the top X% of timesteps in the corre-
sponding dataset, following [1]. The Percentile Behavior Cloning variant of GradLER
is denoted as %GradLER here in Table 3. The percentile X% interpolates between
standard behavior cloning (X = 100%) that trains on the complete dataset and only
cloning the best observed sequence (X ≈ 0%), which in a manner trades off between
better generalization by training on more data with training a specialized model that
focuses on a subset of the dataset. Table 3 shows experimental results comparing
%GradLRE to +TERL, when the value of X are chosen in {10%, 30%, 50%, 100%}.
From the experimental results, we conclude that, lower X reduces the performances
of GradLRE, however +TERL successfully exceeds the performance and pulls
F1 metric back. Especially, when X is 30, with enhancement from our TERL,
30%GradLRE+TERL could even defeats 50%GradLRE, while 30%GradLRE lags
behind 50%GradLRE obviously. Moreover, 50%GradLRE+TERL nearly matches
the performance of 100%GradLRE. This phenomenon indicates that, the improvement
of our TERL can be made to the specific subset, after training the distribution of the
complete dataset.

Then, to evaluate the importance of accessing previous states, actions, and returns,
we discuss the context length K. This is interesting because when using frame stacking,
it is usually assumed that the previous state is sufficient for the RL algorithm. Figure 2
and Fig. 3 is evaluated on RE task (with TACRED dataset and 15% labeled data) and
joint extraction task (with WebNLG dataset), respectively. TERL with different K is
loaded into baselines RDSRE, DAGCN and GradLRE, as well as baselines JRL,
Seq2SeqRL and BIRL. Experimental results show that performance of TERL is signif-
icantly worse when K is small (i.e., K = 1 or K = 5), indicating that past information
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Table 3. Performance comparisons on Percentile Behavior Cloning (F1).

Model TACRED

3%↑ 10%↑ 15%↑
10%GradLRE 0.190 0.233 0.240

10%GradLRE+TERL 0.342 0.416 0.424

30%GradLRE 0.356 0.437 0.449

30%GradLRE+TERL 0.410 0.499 0.508

50%GradLRE 0.379 0.466 0.479

50%GradLRE+TERL 0.464 0.564 0.575

100%GradLRE 0.474 0.582 0.599

100%GradLRE+TERL 0.488 0.594 0.605

(i.e., previous states st, actions at, and returnsr̂t) is useful for RE task. Especially, when
K becomes small, the performances have fallen off a cliff, even falling behind the orig-
inal with side effect. Note that, the proposed framework still match the MDP properties
when K = 1, while the results is worse, which demonstrates the sequence understand-
ing is highly context dependent. When K = 20 and K = 30, +TERL defeats the
corresponding original comparative baseline and the performances have changed little
when K becomes larger. Besides, the context information (i.e., larger K) enables the
transformer to figure out which actions are generated, which can lead to higher returns.
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RDSRE+TERL
GradLRE
DAGCN
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Fig. 2. Effect of context lengthK on RE task.
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Fig. 3. Effect of context length K on joint extraction task.

5 Conclusion

In this work, we try to combine transformers and Reinforcement Learning (RL) based
sequence relation extraction (RE), and extend Transformer paradigm to RL.We design a
novel framework (TERL) that abstracts RL-based RE as a sequence understanding task,
which could leverage the simplicity and scalability of the Transformer-based architec-
ture for understanding textual sequence, as well as the advancements released by pre-
training language modeling (such as the BERT/GPT series). Moreover, the proposed
framework can also be used as a plug-in unit for any RL-based RE architecture, and be
extended to relation and entity joint extraction task. Experimental results show that the
proposed TERL framework can improve many state-of-the-art RL-based RE methods.
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Abstract. Multimodal Named Entity Recognition (MNER) is a chal-
lenging task in social media due to the combination of text and image
features. Previous MNER work has focused on predicting entity infor-
mation after fusing visual and text features. However, pre-training lan-
guage models have already acquired vast amounts of knowledge dur-
ing their pre-training process. To leverage this knowledge, we propose
a prompt network for MNER tasks (P-MNER). To minimize the noise
generated by irrelevant areas in the image, we design a visual feature
extraction model (FRR) based on FasterRCNN and ResNet, which uses
fine-grained visual features to assist MNER tasks. Moreover, we intro-
duce a text correction fusion module (TCFM) into the model to address
visual bias during modal fusion. We employ the idea of a residual network
to modify the fused features using the original text features. Our experi-
ments on two benchmark datasets demonstrate that our proposed model
outperforms existing MNER methods. P-MNER’s ability to leverage pre-
training knowledge from language models, incorporate fine-grained visual
features, and correct for visual bias, makes it a promising approach for
multimodal named entity recognition in social media posts.

Keywords: Prompt Learning · MNER · Faster RCNN · Multimodal
fusion module

1 Introduction

With the rapid development of the Internet, social media platforms have experi-
enced an exponential growth of content. These platforms offer a wealth of user-
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generated posts that provide valuable insights into the events, opinions, and pref-
erences of both individuals and groups. Named Entity Recognition (NER) is a
crucial task in which entities contained in textual data are detected and mapped
to predefined entity types, such as location (LOC), person (PER), organization
(ORG), and miscellaneous (MISC). Incorporating visual information from posts
has been shown to significantly enhance the accuracy of entity prediction from
social media content. For instance, as illustrated in Fig. 1, the sentence “Alban
got Rikard a snowball in the snow” can be easily resolved by leveraging the visual
cues in the accompanying image, allowing us to identify “Rikard” as an animal.
However, relying solely on textual data to predict entities may lead to erroneous
predictions, such as identifying “Rikard” as a name.

With the continuous evolution of deep learning models, several multi-modal
Named Entity Recognition (NER) models have been proposed to enhance the
prediction performance of entities by incorporating visual information. These
models employ techniques such as cross-attention [17,20], adversarial learning [5,
6], and graph fusion [17,18]. However, previous methods fused text features with
visual features and directly fed them into a neural network model for prediction.
This approach overlooks the wealth of information embedded in the pre-training
language model itself. To overcome this limitation, we propose the use of prompt
learning [11] to process the fused features, followed by final training.

Fig. 1. An example for MNER with (A and B) the useful visual clues and the (C and
D) useless visual clues.

The presence of irrelevant content in an image may negatively impact the per-
formance of Named Entity Recognition (NER) models. As illustrated in Fig. 1,
regions A and B in an image may aid in identifying entities in a sentence, while
regions C and D may not contribute to model prediction. In previous Multi-
modal NER (MNER) tasks, however, all visual regions were involved in cross-
modal fusion. To address this issue, we propose a novel model(FRR), which
utilizes visual objects in images for modal fusion. This approach effectively elim-
inates extraneous image features that are irrelevant to the corresponding text.
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In this paper, we present a new Transformer-based [15] text correction fusion
module (TCFM) to address the issue of cross-modal visual bias in the named
entity recognition (NER) task. Inspired by the residual network, the TCFM
continuously integrates the original text features with the fusion features to
iteratively correct the fusion features. This approach effectively alleviates the
problem of visual bias and enhances the performance of the NER task.

In order to showcase the effectiveness of our proposed approach, we con-
ducted a comprehensive set of experiments on two publicly available datasets:
Twitter-2015 and Twitter-2017. The obtained experimental results unequivo-
cally demonstrate that our method outperforms the existing MNER algorithm
in terms of performance.

The significant contributions of our work can be summarized as follows:

• We introduce a novel approach, the Prompt Network for Named Entity Recog-
nition (P-MNER), which aims to leverage the abundant information present
in pre-trained language models. To accommodate the specific requirements
of our proposed prompt network, we further present a novel Text Correc-
tion Fusion Module (TCFM) that effectively minimizes the visual bias in the
fusion process.

• To mitigate the impact of irrelevant visual regions on modal fusion, we pro-
pose a novel Feature Extraction Module (FRR) that leverages fine-grained
visual objects for more precise feature extraction.

• Experimental results show that our proposed P-MNER network achieves
SOTA performance on both datasets.

2 Related Work

Named Entity Recognition (NER) has emerged as a crucial component in a
plethora of downstream natural language processing (NLP) applications, includ-
ing but not limited to affective analysis [1], relationship extraction [7], and knowl-
edge graph [3] construction. With the advent of neural network models, the use
of Bi-LSTM [2] or Convolutional Neural Network (CNN) [21] as encoders, and
Softmax [9], RNN [10], or Conditional Random Field (CRF) [23] as decoders
has gained popularity in the NER community. For instance, Huang et al. [8]
utilized BiLSTM and CRF as the encoder and decoder, respectively, for NER
tasks. Similarly, Chiu and Nichols et al. [2] proposed a CNN-based encoder with
CRF as the decoder to accomplish the final prediction.

Social media posts are characterized by their brevity and high levels of noise,
which often lead to suboptimal performance of conventional NER methods when
applied to such data. To address this challenge, several recent studies have
proposed novel approaches for cross-modal fusion in the context of NER. For
instance, Sun et al. [13,14] introduced a novel image-text fusion approach for
NER tasks, while Zhang et al. [20] employed BiLSTM to combine visual and
textual features in multimodal social posts. Similarly, Zheng et al. [22] proposed
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an adversarial learning approach to tackle the issue of semantic gap in mul-
timodal NER tasks. Lu et al. [12] integrated an attention mechanism into the
modal fusion process and introduced a visual gate to filter out noise in the image.
Lastly, Yu et al. [19] designed a multimodal Transformer model for the MNER
task and introduced an entity span module to facilitate the final prediction.

In order to utilize the vast amount of knowledge encoded in pre-trained
language models, Wang et al. [16] proposed a prompt-based method, namely
PromptMNER, which extracts visual features and subsequently fuses them with
input text for enhanced performance.

Fig. 2. An example for MNER with (A and B) the useful visual clues and the (C and
D) useless visual clues.

Previous studies on named entity recognition (NER) in social media have
yielded promising results. However, these methods have been unable to fully
utilize the power of pre-training language models in capturing the contextual
nuances of input text. This shortcoming has limited the overall effectiveness of
NER in social media. To overcome this challenge, our paper proposes a novel
prompt learning approach that directly leverages the knowledge embedded in
pre-training language models to enrich input text and image features. By doing
so, we are able to tap into the full potential of these models and achieve a higher
level of accuracy in NER tasks. In essence, our approach represents a significant
step forward in the field of NER for social media. It addresses a critical limitation
of previous methods and provides a more effective way of leveraging pre-training
language models. Our approach offers a promising new avenue for future research.
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3 Methods

The objective of this study is to predict a tag sequence L = (l1, l2, ..., ln). given
a sentence Y and an associated picture V as input. Here, belongs to a predefined
set of tags for the BIO2 tagging pattern.

Figure 2 depicts the overall architecture of our proposed model, which com-
prises four modules: visual feature extraction, text feature extraction, modal
fusion, and prompt learning. The visual feature extraction module takes the
objects in the picture as input. In the text feature extraction module, we lever-
age BERT to extract features by processing the wrapped text. We also introduce
a text correction fusion module to obtain more precise fusion features. In the
prompt learning module, we utilize the Bert Masked Language Model for prompt
learning.

3.1 Text Feature Extraction

In Fig. 2, the input sentence Y = (y1, y2, ..., yn) is demonstrated on the left.
To structure the sentences, a wrapping class is utilized, which adheres to a
predetermined template. For MNER direction, a prompt template is intro-
duced: “<sentence>, the word of <entity> is <mask>.” Within the template,
<sentence> represents the sentence Y, <entity>∈y.

In order to effectively process complex information from input text and tem-
plates, a new Tokenizer has been introduced to tokenize the input sentences
that are wrapped by the wrapper class. Following the pre-training models, spe-
cial tokens are added to the tokenized sequences to form a sequence, denoted as
S = (s0, s1, ..., sn + 1), where s0 and sn + 1 represent the two special tokens at
the beginning and end of the final sequence. The tokenized sequences are then
sent to the embedding layer where BERT embedding is utilized to convert each
word into a vector form that includes token embedding, segment embeddings,
and position embeddings.

xi = et(si) + es(si) + ep(si) (1)

where {et, es, ep} denotes the embeddings lookup table.X = (x0, x1, ...xn+1) is
the word representation of S, where xiis the sum of word, segment, and position
embeddings for token yi.

In various social media posts, the same word may have different meanings
depending on the context. To address this challenge, we adopt BERT as the
sentence encoder. The resulting embedding representation is fed into the BERT
encoder, producing a signature of encodings R = (r0, r1, ...rn+1).

The Self-Attention mechanism establishes direct links between any two words
in a sentence through a calculation step, significantly reducing the distance
between distance-dependent features and enabling their efficient use. Conse-
quently, we feed the hidden representation output by BERT Encoder into Self-
Attention to capture long-distance dependencies in a sentence.
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T = softmax(
[WqtR]

T [WktR]√
dt

)[WvtR]
T (2)

where {Wkt
,Wvt

,Wqt} is parameter matrices for the key, value and query. The
final text feature T = (t0, t1, ...tn+1), where ti is the generated contextualized
representation for yi.

3.2 Visual Feature Extraction

We utilize object-level visual features in the visual feature extraction module to
aid named entity recognition, and introduce a novel method for feature extrac-
tion.

To begin with, we feed the image into the Faster RCNN [4] detection module
to extract the visual object area. Specifically, we input the image into a feature
extraction network that includes convolutional layers, pooling layers, and rec-
tified linear unit (ReLU) layers to obtain feature maps of the image. Next, we
pass the feature maps to the Region Proposal Networks (RPN) to train them to
extract Region Proposal regions from the original maps. Then, we use RoI Pool-
ing to normalize candidate recognition areas of different sizes and shapes into
fixed-size target recognition areas. RoI Pooling collects proposals (coordinates of
each box) generated by RPN and extracts them from feature maps. Finally, we
process the resulting proposals with Fully Connected and Softmax to determine
the probability that each proposal corresponds to a particular category.

Typically, only a small number of visual entities are needed to emphasize
the entities in a sentence. To accomplish this, we choose the first m visual
objects with a probability exceeding 0.95. Then, we crop the original picture
based on these proposals to obtain the final visual object set, denoted as
I = {I1, I2, ..., Im}, where Ii represents the i-th visual object.

The residual network is among the most advanced CNN image recognition
models, with the ability to extract meaningful features from input images. Thus,
we feed the resulting visual objects into a pre-trained 152-layer ResNet and use
the output of the last convolution layer as the visual characteristics of each
object, denoted as ˜V = {˜V1,˜V2, ..., ˜Vm}, where ˜Vi ∈ R1024 represents the features
of the i-th object. We then employ Self-Attention to enable each visual block to
fully comprehend the context of the visual features:

V = softmax(
[Wqv

˜V ]T [Wkv
˜V ]√

dv
)[Wvv

˜V ]T (3)

where {Wqv ,Wkv
,WVv

} denote the weight matrices for the query, key and value.
The final visual features are: V = {v1, v2, ..., vm} , vi refer to the visual features
processed by Self-Attention.

3.3 Text Correction Fusion Module

In the text feature extraction module, we have extracted text features through
contextual comprehension. However, the short length of social media posts and
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the presence of irrelevant information make it challenging to accurately iden-
tify entities using text information alone. To address this issue, we utilize visual
objects in pictures to guide text-based word representations for improved accu-
racy. Nevertheless, the challenge of visual bias in modal fusion remains. There-
fore, we propose a text correction fusion module to generate the final fusion
features.

As shown in the right of Fig. 2, we initially apply a k-head cross-modal atten-
tion mechanism. This involves using the visual features V = {v1, v2, ..., vm}
as queries in the self-attention mechanism and utilizing the text features T =
{t0, t1, ..., tn+1} as keys and values:

Hi(V, T ) = softmax(
[WqiV ]T [Wki

T ]
√

d/k
)[Wvi

T ]T (4)

M_H(V, T ) = W ′[Hi(V, T ), ...,Hk(V, T )]T (5)

where Hi refers to the i-th head of cross-modal attention, {Wqi ,Wki
,Wvi

} and
W ′ denote the weight matrices for the query, key, value, and multi-head atten-
tion, respectively. By utilizing this cross-attention approach, we can derive fea-
ture representations based on the correlation between words and visual objects
in the text. We then process the fused features through two normalization layers
and a feed-forward neural network [15]:

˜P = LN(V +M_H(V, T )) (6)

P = LN( ˜P + FFN( ˜P )) (7)

where FFN is the feed-forward network, LN is the layer normalization. Get the
text features based on visual objects, denoting as P = {p0, p1, ..., pn+1}. Similar
to the description above, We use the text feature T = {t0, t1, ..., tn+1} as queries
in our own attention and the visual feature V = {v1, v2, ..., vm} as keys and
values. The result is a text-based visual object, denoting as q = {q1, q2, ..., qm}.

During the process of acquiring visual object-based text features, the result-
ing features may exhibit bias towards the visual mode, as the queries used are
primarily based on visual features. In order to alleviate such bias, we propose the
use of a cross-modal layer for the refusion of text features. In this approach, the
original text features are employed as queries, while the visual-based text fusion
features are utilized as keys and values. The final cross-modal text representation
is obtained as C = {c0, c1, ..., cn+1}.

Previous studies have simply connected cross-modal visual features and cross-
modal text features, which may lead to biased final fusion features. In this paper,
we propose an alternative approach for the final stitching process by connecting
initial text features to both cross-modal visual features and cross-modal text
features. This method aims to mitigate bias and enhance the quality of the
fusion features.

H = T + V + C (8)
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where T is the initial text features, V is the cross-modal visual features, and C
is the cross-modal text features.

By incorporating the original text features in the final fusion process, it is
effectively reduce visual bias. The resulting fusion feature is denoted as H =
{h0, h1, ..., hn+1}.

3.4 Prompt-Learning Module

In this module, we employ the Bert model as our Pre-trained Language Model
(PLM). Our approach involves inputting the resulting fusion feature H into
the PLM and leveraging the masked language model (MLM) to reconstruct
sequences with <MASK>. The predicted part of the text is replaced with
<MASK> during packaging to optimize the pre-training language model stimu-
lation. Our method follows the pre-training language model training process for
processing fusion features.

In PLM, our aim is to predict a probability distribution for the <MASK>
section that aligns with the objectives of MLM. Here, we are only predicting
that part of <MASK> belongs to a certain vocabulary. The ultimate goal is
to predict <MASK> as predefined tags in a sentence. To accomplish this, we
introduce a verbalizer class to process the output of the MLM model. This
class constructs a mapping from original tags to words. When PLM predicts a
probability distribution for a masked location in the vocabulary, the verbalizer
maps the word to the original label. The output layer can be defined as:

ci = plm(hi) (9)

di = ver(ci) (10)

where plm is masked language model (MLM), ver refers to the verbalizer. ci is
the probability distribution of predicted positions on the vocabulary, di is a label
for prediction. Finally, the prediction tag distribution is D = {d0, d1, ..., dn+1}.

During the training phase, we calculate the loss of verbalizer-mapped labels
and real labels:

L = −
n

∑

i=1

oilog(di) (11)

where oi is the true tag for di.

4 Experiments

We tested the model on two common datasets. Furthermore, we compare our
model with the single-mode NER model and the existing multimodal methods.
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4.1 Experiment Settings

Datasets: During the model training and evaluation phase, we employed a pub-
licly available dataset from Twitter, comprising four distinct entity types, namely
PER, LOC, ORG, and MISC, with non-entity words marked as O. Following the
same protocol established by Zhang et al. [20], the dataset was partitioned into
training, development, and test sets. Table 1 provides an overview of the dataset,
including the number of samples in each set and the count of each entity type.

Table 1. Statistics of Twitter datasets.

Entity Type Train-15 Dev-15 Test-15 Train-17 Dev-17 Test-17

PER 2217 552 1816 2943 626 621

LOC 2091 552 1697 731 173 178

ORG 928 247 839 1674 375 395

MISC 940 225 726 701 150 157

Total 6176 1546 5078 6049 1324 1351

Tweets 4000 1000 3257 3373 723 723

Hyperparameter: Compared with other NER methods, our model is an exper-
iment performed on a GUP. For visual object extraction, the first five objects
with an accuracy above 0.95 are selected for feature extraction using a pre-
trained 152-layer ResNet. The maximum sentence length is set to 128, and the
batch size is 8. The input template has a maximum length of 20, while the
encoded text length is set at 256. Cross-modal multi-head attention is applied
to facilitate modal fusion, utilizing 12 attention heads. The learning rate and
learning attenuation rate are set at 0.005 and 0.01, respectively. During the
evaluation phase, standard precision, recall rate, and F1-score are employed as
evaluation metrics. The model with the highest performance in the evaluation
phase is selected, and its performance is reported on the test dataset.

4.2 Main Result

Table 2 presents the experimental results of our proposed model and the com-
parative approaches. During model evaluation, we calculated the precision (P),
recall (R), and F1-score (F1) of our model.

In the upper section of Table 2, we initially conducted a series of experiments
using a text-only model to extract features. Our findings revealed that employing
BERT as the encoder for text feature extraction resulted in significantly superior
results compared to other methods. We believe that the contextualized word
representation and contextual understanding of the input text played a crucial
role in enhancing the performance of the NER models. In order to achieve even
deeper text representation, we leveraged BERT to extract hidden features of the
text.
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Table 2. Performance comparison on two TWITTER datasets. Specifically, B-L+CRF
and C+B-L+CRF refers to Bi-LSTM+CRF and CNN+Bi-LSTM+CRF, respectively.

Models TWITTER-2015 TWITTER-2017
P R F1 P R F1

B-L+CRF 68.14 61.09 64.42 79.42 73.42 76.31
C+B-L+CRF 66.24 68.09 67.15 80.00 78.76 79.31
T-NER 69.54 68.65 69.09 - - -
BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44
MNER-MA 72.33 63.51 67.63 - - -
AGBAN 74.13 72.39 73.25 - - -
UMT 71.67 75.23 73.41 85.28 85.34 85.31
UMGF 74.49 75.21 74.85 86.54 84.50 85.51
PromptMNER 78.03 79.17 78.60 89.93 90.10 90.27
Ours 79.18 79.55 79.43 90.11 91.23 91.31

Moreover, we took our analysis a step further and experimented with some
representative multimodal NER models to compare their performance with
single-mode NER models. As shown in Table 2, the results demonstrate that
MNER-MA outperforms the single-mode NER models, indicating the effective-
ness of combining visual information in NER tasks. However, we noticed that
when BERT was utilized to replace the encoder in the model, the observed
improvement was relatively modest. Therefore, it is evident that novel methods
need to be developed and employed to address the current limitations in this
area.

Prompt learning, a novel paradigm, has demonstrated strong potential in
the field of NLP. Wang et al. [16] propose utilizing prompt learning to aid in
the extraction of visual features. Specifically, they suggest employing the CLIP
model as a prompt language model (PLM) to leverage the learned information
from the pre-training stage for visual feature extraction. During training, both
visual and text information are processed and fed into the PLM to obtain visual
features based on prompts. Finally, the extracted visual and text features are
fused together.

The results presented in Table 2 unequivocally demonstrate the superior per-
formance of our proposed approach over existing single-mode approaches in the
task of named entity recognition(NER). Our method outperforms the current
state-of-the-art MNER method as well, owing to our incorporation of prompt
learning, which allows us to extract rich information from the pre-trained lan-
guage model. The primary reason for our success is the utilization of visual con-
text, which enables us to make full use of the available information and improve
the overall accuracy of the model. Our approach outperforms the promptMNER
method as well. The incorporation of prompt learning in our model allows us to
effectively fuse the visual and text features, thereby making the most of the pre-
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trained model’s knowledge during the training process. As a result, we are able to
achieve a better overall performance in the NER task. In summary, our proposed
approach offers a significant improvement over existing single-mode approaches
in the NER task. Our method outperforms both the current state-of-the-art
MNER method and the promptMNER method. By incorporating visual con-
text and prompt learning, we are able to effectively extract and utilize the rich
information contained in the pre-trained language model, resulting in superior
performance.

4.3 Ablation Result

To evaluate the effectiveness of each component in our proposed P-MNER model,
we conduct ablation experiments. Our results, presented in Table 3, indicate that
all components in the P-MNER model have contributed significantly to the final
predicted results.

T+V is the baseline of our MNER task, with BERT utilized as the encoder
for text feature extraction and ResNet employed as the encoder for visual data.
The experimental results presented in Table 3 demonstrate that our proposed
baseline model achieves a higher F1-score than all single-mode models, thereby
validating the effectiveness of incorporating visual information into our model.

Table 3. The effect of each module in our model.

Models TWITTER-2015 TWITTER-2017

T+V 72.76 72.53 72.31 83.74 83.24 84.33
T+V+TCFM 74.38 74.12 73.35 85.16 84.35 85.41
T+FRR+TCFM 75.32 75.54 75.14 85.47 84.89 86.02
OURS 79.18 79.55 79.43 90.11 91.23 91.31

T+V+TCFM replaced the modal splicing part with TCFM. Table 3 shows
a significant increase in F1-score of 1.22% and 1.08%, respectively, upon imple-
mentation of the proposed text correction fusion module, which validates our
proposed modal fusion mechanism. Our TCFM module improved accuracy by
1.62% and 1.42% on the two datasets, due to its ability to continuously uti-
lize text information to correct feature bias during mode fusion. This effectively
addresses the problem of feature alignment and improves model performance.

T+FRR+TCFM uses a new visual feature extraction method (FRR). Table 3
illustrates that our proposed visual feature extraction module achieved F1-scores
of 75.14% and 86.02% on the two datasets, respectively, surpassing other NER
methods.

Our proposed model, OURS, is a comprehensive approach that employs
prompt learning throughout the entire system. The effectiveness of prompt learn-
ing is demonstrated in Table 3, where F1-scores of 79.43% and 91.31% were
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achieved on two different datasets, respectively, surpassing the current state-of-
the-art methods in MNER. The superiority of OURS can be attributed to its
ability to deeply explore latent knowledge within pre-trained language models,
thanks to the prompt learning technique. Moreover, we achieved a 0.83% and
1.04% improvement in F1-score compared to promptMNER, due to our use of
prompt learning for feature fusion processing. Our method is more effective in
extracting hidden knowledge from pre-trained language models.

4.4 Case Analysis

To further strengthen our argument regarding the effectiveness of our proposed
method, we have conducted a comprehensive case study analysis. We present
the results of this analysis in Fig. 3, where we compare the performance of three
models for entity prediction: BERT-CRF, UMGF, and P-MNER.

BERT-CRF is a text-only NER model, while UMGF and P-MNER are
MNER models that incorporate both visual and textual information. In the
first case of our analysis, BERT-CRF failed to accurately predict the entity
“Susie”. We attribute this to the model’s lack of attention to visual information.
This highlights the importance of incorporating visual data to improve entity
prediction accuracy.

In the second case, all three models correctly predicted the entities. However,
this case also revealed that not all image information is semantically consistent
with the accompanying text. Hence, the incorporation of visual data should be
done thoughtfully and with a proper understanding of the context.

Finally, in the third case, both BERT-CRF and UMGF failed to accurately
predict the entity types. In contrast, our P-MNER model leverages the pre-
trained language model to effectively acquire knowledge and make accurate
entity type predictions. Our model outperformed the other models by a con-
siderable margin, thereby highlighting the superiority of our proposed method.

Fig. 3. Three cases of the predictions by BERT-CRF, UMGF and OUR MODE.
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In conclusion, the case study analysis provides strong evidence to support
our claim that incorporating visual information enhances the accuracy of entity
prediction. Additionally, our proposed P-MNER model outperforms the other
models by leveraging the pre-trained language model to acquire knowledge and
make accurate predictions.

5 Conclusion

In this paper, we have introduced the P-MNER architecture, which has been
specifically designed to tackle named entity recognition (MNER) tasks. Our
proposed architecture leverages the power of prompt learning to process modal
fusion features, thereby enabling the model to fully exploit the wealth of knowl-
edge that pre-trained language models have to offer during training. We also pro-
posed a fine-grained visual object feature extraction module (FRR) to address
the issue of noise caused by irrelevant visual areas. This module aids in the
MNER task by extracting only the relevant visual information, thus improving
the accuracy of the model. To further address the issue of visual bias across
modes, we proposed a new text correction fusion module. This module aligns
the fusion features with text features to reduce visual bias and improve the
model’s performance. Experimental results on benchmark datasets demonstrate
that our P-MNER model outperforms state-of-the-art approaches. Our model’s
superior performance is attributed to its ability to effectively utilize pre-trained
language models and its innovative feature extraction and fusion modules. Over-
all, our proposed P-MNER architecture offers a promising solution for named
entity recognition tasks, and we believe that our approach can be extended to
other natural language processing tasks to improve their performance.
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Abstract. The purpose of Aspect Sentiment Triplet Extraction (ASTE) is to
extract a triplet, including the target or aspect, its associated sentiment, and
related opinion terms that explain the underlying cause of the sentiment. Some
recent studies fail to capture the strong interdependence between ATE and OTE,
while others fail to effectively introduce the relationship between aspects and
opinions into sentiment classification tasks. To solve these problems, we con-
struct a multi-round machine reading comprehension framework based on a
rethink mechanism to solve ASTE tasks efficiently. The rethink mechanism
allows the framework to model complex relationships between entities, and
exclusive classifiers and probability generation algorithms can reduce query con-
flicts and unilateral drops in probability. Besides, the multi-round structure can
fuse explicit semantic information flow between aspect, opinion and sentiment.
Extensive experiments show that the proposed model achieves the most advanced
effect and can be effectively applied to ASTE tasks.

Keywords: ASTE · MRC · parameter sharing · joint learning

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is a fine-grained task [25]. Its purpose is
to detect the sentiments of different entities rather than infer the overall sentiment of
sentences. As shown in Fig. 1, researchers proposed many subtasks of ABSA, such as
Aspect Term Extraction (ATE) [9], Opinion Term Extraction (OTE) [26], Aspect-based
Sentiment Classification (ABSC) [6], Aspect-oriented Opinion Extraction (AOE) [4],
etc. Aspect terms refer to words or phrases that describe the attributes or characteristics
of an entity. Opinion terms refer to words or phrases that express the corresponding
attitudes of the aspect terms. ATE and OTE aim to extract aspects and opinions from
sentences, respectively. For ABSC, given a sentence and an aspect within the sentence,
it is possible to predict the sentiment (positive, neutral, or negative) associated with that
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aspect. In the sentence “The service is good, but the food is not so great”, ATE extracts
“service” and “food”, and OTE extracts “good” and “not so great”. ABSC predicts
the sentiment polarity of “service” and “food” as positive and negative, respectively.
However, these studies focus on individual tasks respectively while neglecting their
interdependencies.

Recent studies have focused on joint tasks to explore the interactions among dif-
ferent tasks. Figure 1 provides examples of Aspect Term Extraction and Sentiment Co-
classification (AESC) as well as Aspect-Opinion Pair Extraction(pair). However, these
subtasks still cannot tell a complete story. Hence Aspect Sentiment Triplet Extraction
(ASTE) was introduced. The purpose of ASTE is to extract aspect terms, related opinion
terms, and sentiment polarities for each aspect simultaneously. ASTE has two advan-
tages: first, opinions can enhance the expressiveness of the model, helping to determine
the sentiment of the aspects better; second, the sentiment dependency between aspects
and opinions can narrow the gap of sentiment decision-making, further improving the
interpretability of the model.

Peng [11] proposed the first solution for ASTE, which jointly extracts aspect-
sentiment pairs and opinions using two sequence taggers. Sentiment is attached to
aspects through a unified tagging process, and then an exclusive classifier is used to
pair the extracted aspect-sentiment pairs with opinions. While this method achieved
significant results, there are also some issues. Firstly, the model has low computational
efficiency because its framework involves two stages and requires training three inde-
pendent models. Secondly, the model does not fully recognize the relationship between
ATE and OTE, and does not effectively utilize the correspondence between aspect terms
and opinion terms. Thirdly, the correspondence between aspect and opinion expres-
sions can be very complex, involving various relationships such as one-to-many, many-
to-one, overlapping, and nesting, which makes it difficult for the model to flexibly and
accurately detect these relationships. Therefore, we take the solution to the above prob-
lems as our challenge.

Fig. 1. Illustration of ABSA subtasks
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To address the first problem mentioned above, inspired by [2], this paper proposes
an improved multi-round MRC framework (R-MMRC) with a rethink mechanism to
elegantly identify ASTE within a unified framework. To address the second problem,
we decompose the ASTE into multiple rounds and introduce prior knowledge from the
previous round to the current round, which effectively learns the associations between
different subtasks. In the first round, we design static queries to extract the first entity
of each aspect-opinion pair. In the second round, we design dynamic queries to identify
the second entity of each aspect-opinion pair based on the previously extracted entity.
In the third round, we design a dynamic sentiment query to predict the corresponding
sentiment polarity based on the aspect-opinion pairs obtained in the previous round. In
each step, the manually designed static and dynamic queries fully utilize the sentence’s
explicit semantic information to improve the extraction or classification performance.
Based on these steps, we can flexibly capture complex relationships between entities,
effectively mine the connection between ATE and OTE, and use these relationships to
guide sentiment classification. To address the third issue, inspired by human two-stage
reading behaviour [27], we introduce a rethink mechanism to validate candidate aspect-
opinion pairs further, enhance the information flow between aspects and opinions, and
improve overall performance. Our contributions are summarized as follows:

– We proposed an improved multi-round machine reading comprehension framework
(R-MMRC) with a rethink mechanism to address the ASTE task effectively.

– The model introduced the rethink mechanism to enhance the information flow
between aspects and opinions. The exclusive classifier was added to avoid interfer-
ence and query conflicts between different Q&A steps. The probability generation
algorithm was also introduced to improve the prediction performance further.

– The proposed model conducts extensive experiments on four public datasets, and
experimental results show that our framework is very competitive.

2 Related Work

We present related work in two parts, including various subtasks of aspect-based senti-
ment analysis and machine reading comprehension.

2.1 Aspect-Based Sentiment Analysis

ATE. Locating and extracting terms that are pertinent for sentiment analysis and opin-
ion mining is the task of ATE [17]. Recent studies use two ways to alleviate the noise
from pseudo-labels generated by self-learning [15].
OTE. OTE is to extract opinion terms corresponding to aspect terms, hoping to find
specific words or phrases that describe sentiment [3].
ABSC. The task’s aim is to forecast sentiment polarity of specific aspects. The latest
development of ABSC focuses on developing various types of deep learning models:
CNN-based [7], memory-based methods [10], etc. Dependencies and graph structures
have also been used effectively for sentiment classification problems [19,24].
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AOE. Fan [4] first proposed this subtask, which aims to extract corresponding opinion
terms for each provided aspect term. The difference between AOE and OTE is that the
input of AOE contains aspect terms.
AESC. AESC aims to simultaneously extract aspect terms and sentiment. Recent work
removes the boundaries of these two subtasks using a unified approach. Chen [3] pro-
poses a relational awareness framework that allows subtasks to coordinate their work
by stacking multitask learning and association propagation mechanisms.
Pair. The Pair task usually uses the pipeline method or directly uses the unified model.
Gao [5] proposed a machine reading comprehension task based on question answering
and span annotation.
ASTE. Peng [11] defined a triplet extraction task intending to extract all possible aspect
terms, their corresponding opinion terms, and sentiment polarities. Xu [20] propose a
span-based method to learn the interaction between target words and opinion words and
propose a two-channel span pruning strategy.

2.2 Solving NLP Tasks by MRC

The purpose of machine reading comprehension (MRC) is to enable machines to answer
questions from a specific context based on queries. Xu [20] proposed a post-training
method for BERT. Yu [23] introduced role replacement into the reading comprehension
model and solved the coupling problem in different aspects. To sum up, MRC is an
effective and flexible framework for natural language processing tasks.

2.3 Aspect Sentiment Triplet Extraction

ASTE is the latest subtask in the field of ABSA. Xu [21] proposed a position-aware
tagging scheme that efficiently captures interactions in triplets. However, they generally
overlooked the relationship between words and language features. In a similar vein, Yan
[22] converted the ASTE task into a generative formulation, but also tended to ignore
the linguistic aspects of word features. Meanwhile, Chen [1] introduced an enhanced
multi-channel GCN that incorporated various language features to enhance the model.
However, they failed to consider the interaction between these different language fea-
tures. In summary, there are still many issues waiting to be resolved in ASTE, and we
will try our best to make breakthroughs in ASTE tasks.

3 Methodology

3.1 Model Framework

As shown in Fig. 2, to address the ASTE task, we propose a multi-round machine read-
ing comprehension framework based on a rethink mechanism. Specifically, we design
two modules: parameter sharing and joint learning. First, for the parameter sharing
module, we design a bidirectional structure to extract aspect-opinion pairs, consisting
of two querying rounds. The first round is static queries aimed at extracting all aspect or
opinion sets based on the given query statements. The second round is dynamic queries,
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aimed at identifying the corresponding opinion or aspect sets based on the results of the
static queries and generating aspect-opinion pairs. Then, the rethink mechanism is used
to filter out invalid aspect-opinion pairs in the parameter sharing stage. For the joint
learning module, the framework employs dynamic sentiment queries to predict the sen-
timent polarity of the filtered aspect-opinion pairs. During the probability generation
stage, the model combines the answers from different queries and forms triplets.

Fig. 2. Overview of R-MMRC framework

3.2 Query Template Construction

In R-MMRC, we build queries using a template-based method. Specifically, we

designed static queries QS =
{
qSi

}|QS|
i=1

and dynamic queries QD =
{
qDi

}|QD|
i=1

, where
i represents the i-th token in the sentence. In particular, static queries do not carry any
contextual information. Dynamic queries require the results of static queries as key-
words to search for valid information in sentences. Static and dynamic queries are used
to formalize the ASTE task as an MRC task:
Parameter Sharing

Static Aspect Query qSA: We design the query ‘Find the aspect in the text?’ to extract

a set of aspects A = {ai}|A|
i=1 from a given review sentence X .

Dynamic Opinion Query qDO : We design the query ‘Find the opinion of the aspect

ai?’ to extract the relevant opinions Oai = {oai,j}|Oai|
j=1 for each aspect ai.

Static Opinion Query qSO: We design the query ‘Find the opinion in the text?’ to

extract the collection of opinions O = {oi}|O|
i=1 from a given review sentence X .

Dynamic Aspect Query qDA : We design the query ‘Find the aspect of the opinion oi’

to extract the corresponding aspects Aoi = {aoi,j}|Aoi|
j=1 for each opinion Oi.

Through the above queries, dynamic queries elegantly learn the conclusions of static
queries and naturally integrates entity extraction and relationship detection. Although
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the entity results of these two queries are the same, the latter conveys the information of
the former and searches for all entities described by the former, while the former does
not carry any contextual information. Then, in the joint learning module, we classify
the sentiment corresponding to the aspect-opinion pairs.
Joint Learning

Dynamic Sentiment Query qD
′
: We build the query ‘Find the sentiment of the aspect

ai and the opinion oi?’ to anticipate the sentiment polarity si of each aspect ai.
Through the queries, we can fully consider the semantic relationship of aspect terms

and corresponding opinion terms.

3.3 Input Representations

This section focuses on the triplet extraction task. Given a sentence X =
{x1, x2, . . . , xN} with max-length N as the input, and each query qi ={

qi1, q
i
2, . . . , q

i
|qi|

}
with |qi| tokens. We use BERT as the model’s encoder, and

the encoding layer’s role is to learn each token’s context representation. First, we
associate the query Qi with the review sentence X and obtain the input I ={
[CLS], qi1, q

i
2, . . . , q

i
|qi|, [SEP ], x1, x2, . . . , xN

}
after combination, where [CLS]

and [SEP ] are the start tag and the segment tag. Bert is used to encode an initial repre-
sentation sequence E =

{
e1, e2, . . . , e|qi|+2+N

}
, which is encoded as a hidden repre-

sentation sequence He =
{
h1, h2, . . . , h|qi|+2+N

}
with stacked transformer blocks.

3.4 Query Answer Prediction

For the first two rounds of static and dynamic queries, the answer is to extract aspect
terms or opinion terms from review sentence X . For instance, in Fig. 2, the aspect term
“outdoor patio” should be extracted as the answer to the Static Aspect Query.

In the original BMRC [2], all queries shared a single classifier, which could lead to
interference between different types of queries and cause query conflicts. Since there are
four different queries in the parameter sharing part, we set an exclusive BERT classifier
for each query, which can effectively avoid interference of query conflict and answering
step. Classifiers are BERT-A, BERT-AO, BERT-O, and BERT-OA, respectively. The
context representation generated by BERT is used for Bi-LSTM to generate sentence
hidden state vectors. Since He already contains information about aspect or opinion, we
obtain specific context representation by aggregating the hidden states of two directions:

H =
[−−→
Hef ;

←→
Heb

]
, where

−−→
Hef is the hidden state of the forward LSTM and

←−−
Heb is of

the backward LSTM. We adopted the strategy of [18] and employ two binary classifiers
to predict the answer spans based on the hidden representation sequence H . We utilize
two classifiers to predict the possibility that the token xi is the start or end of the answer.
Then, we obtain the logits and probabilities for start and end positions:

pstartxi,q = softmax
(
Wsh|q|+2+i

)
(1)

pendxi,q = softmax
(
Weh|q|+2+i

)
(2)
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where Ws ∈ Rd×2 and We ∈ Rd×2 are model parameters, d represents the dimension
of hidden representations, and |q| stands for the query length.

For dynamic sentiment queries, we utilize the hidden representation of [CLS] to pre-
dict the answer. We add a three-class classifier in BERT, called “BERT-S” for short, to
predict the sentiment of aspect-opinion pairs. In addition, we add two layers of ResNet
network to protect the integrity of information and reduce the loss of information.

h = σF (h1, {Wri}) + h1 (3)

pD
′

X,q = softmax (Wch) (4)

where h1 is the hidden representation of [CLS], σ refers to ReLU activation function,
F () is the residual mapping of fitting, Wri and Wc = Rd×3 is the model parameter.

3.5 Rethink Mechanism

During the inference process, we combine the answers from different queries into
tuples. As shown in Fig. 2, the left-side static aspect query qSA first identifies all aspect
items A =

{
a1, a2, . . . , a|A|

}
. For each aspect item ai, the corresponding opinion

expression set Oi =
{
oi,1, oi,2, . . . , oi,|Oi|

}
is identified through the dynamic opinion

query qSO, resulting in a set of aspect-opinion pairs VAO =
[(

ak
i , o

k
i,j

)]I
k=1

, and ulti-
mately obtaining the probability of each candidate pair p (ai, oi,j) = p (ai) p (oi,j | ai).
Similarly, on the right side, the model first identifies all the opinion items and then
queries all corresponding aspect items, and we finally obtain another set of aspect-

opinion pairs VOA =
[(

ak
j,i, o

k
j

)]J
k=1

, from which we obtain the probability of each
candidate pair p (aj,i, oj) = p (oj) p (aj,i | oj).

However, the above approach may introduce incorrect aspect-opinion pairs. To bet-
ter address this issue, we implement a rethink mechanism through a soft-selection strat-
egy. If there exist identical candidate pairs in sets VAO and VOA, then the corresponding
aspect-opinion pairs are added to the valid set V . If there are unmatched candidate pairs
in VAO and VOA, it indicates that one side’s output may be invalid. Therefore, in the soft
selection strategy, we adjust the probabilities and introduce a probability threshold λ.
If the probability p(a, o) of a certain candidate pair in the difference set is greater than
or equal to the probability threshold λ, then this candidate pair is added to the valid set
V ; otherwise, it is discarded. By using a rethink mechanism, invalid pairs can be better
filtered out, reducing the interference of erroneous candidate pairs on the model.

3.6 Entity Pair Probability Generation

After filtering with the rethink mechanism, we obtained a set of valid aspect-opinion
pairs, and the next step is to calculate the probability of each candidate pair. In BMRC,
the probability of an entity is the product of the probabilities of its start and end posi-
tions, and the probability of a candidate pair is the product of the probabilities of the
aspect item and opinion item. However, this can result in a product of high probabilities
equaling a lower probability value, which does not well represent the model’s predic-
tion. As shown in the formula, we balance the probabilities of entities and candidate
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pairs by taking the square root, which keeps the probability within the range of two
related probabilities. This approach can avoid unilateral decrease of probability and
better meeting the expectation of the model.

p(e) =
√

p (estart ) ∗ p (eend) (5)

p(a, o) =
{√

p(a) ∗ p(o | a) · · · if (a, o) ∈ VAO√
p(o) ∗ p(a | o) · · · if (a, o) ∈ VOA

(6)

where e represents the aspect or opinion entity, start and end represent the start and
end positions of the entity, and p(a, o) represents the probability of the final candidate
pair.

Finally, we employ the dynamic sentiment query qD
′

i to predict the various aspects
of emotion ai. We obtain the output of labeled triplets for input sentence Xi, denoted
as Ti = {(a, o, s)}, where s ∈(positive, neutral, negative) and (a, o, s) refers to (aspect
term, opinion term, sentiment polarity).

3.7 Loss Function Construction

In order to learn triplet subtasks jointly and make them promote each other, we inte-
grate loss functions from various queries. For static queries in different directions, we
minimize the loss of cross-entropy:

LS = −
|QS|∑

i=1

|S|∑

j=1

[
pstartxj ,qi · log p̂startxj ,qi + pendxj ,qi · log p̂endxj ,qi

]
(7)

where p() represents the distribution of gold, p̂() indicates the predicted distribution.
Similarly, the loss of dynamic queries in different directions is as follows:

LD = −
|QD|∑

i=1

|D|∑

j=1

[
pstartxj ,qi · log p̂startxj ,qi + pendxj ,qi · log p̂endxj ,qi

]
(8)

For dynamic sentiment classification queries, we minimize the cross-entropy loss
function:

LD′ = −

∣
∣
∣QD′ ∣∣

∣

∑

i=1

pD
′

X,qi · log p̂D
′

X,qi (9)

Then, we integrate the aforementioned loss functions to generate the overall model’s
losses. In this paper, we used the method of AdamW [8] to optimize:

L(θ) = LS + LD + LD′ (10)
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4 Experiments

4.1 Datasets

To verify the validity of our proposed approach, we conducted experiments on four
benchmark datasets from the SemEval ABSA challenge [12–14] and listed the statistics
for these datasets in Table 1.

Table 1. Statistics of 4 datasets. #S and #T denotes number of sentences and triples.

Datasets Train Dev Test

#S #T #S #T #S #T

14-Lap 920 1265 228 337 339 490

14-Res 1300 2145 323 524 496 862

15-Res 593 593 148 238 318 455

16-Res 842 1289 210 316 320 465

4.2 Subtasks and Baselines

To demonstrate the validity of the proposed model, we compared the R-MMRC with
the following baseline.

– CMLA+ [11] modifies CMLA [23], the attention mechanism is used by CMLA to
detect the relationship between words and to extract aspects and opinions jointly.
CMLA+ incorporates MLP to further determine whether the triplet is accurate during
the matching phase.

– Two-Stage [11] is a two-stage pipeline model for ASTE. The task of the first stage is
to mark all aspects and opinions. The goal of the second stage is to match all aspects
with the corresponding opinion expression.

– RACL+ is improved by RACL framework [3], which uses mechanisms for relation-
ship propagation and multi-task learning to enable subtasks to cooperate in a stacked
multi-layer network. Then researchers [2] construct the query “Matching aspect ai

and opinion expression oj?” to detect relationships.
– JET [21] is a first end-to-end model with a novel position-aware tagging scheme that
is capable of jointly extracting the triple.

– GTS-BERT [16] address the ASTE task in an end-to-end fashion with one unified
grid tagging task.

– BMRC [2] transforms the ASTE task into a bi-directional MRC task and designs
three types of queries to establish relationships between different subtasks.

4.3 Model Settings and Evaluation Metrics

We adopted a Bert [18] model for the encoding layer with 12 attention heads, 12 hidden
layers, and 768 hidden sizes. The fine-tuning rate of BERT and the learning rate of the
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training classifier are set to 1e−5 and 1e−3, respectively. We use AdamW optimizer
with a weight decay of 0.01 and a warm-up rate of 0.1. At the same time, we set the
batch size to 8 and the dropout rate to 0.3. The F1-score is extracted according to the
triplet state on the development set. The threshold λ manually adjusted to 0.8, and the
step size is set to 0.1.

We use precision, recall, and f1-score as measurement indicators to measure perfor-
mance, including aspect term and sentiment co-extraction, aspect-opinion pair extrac-
tion, and aspect sentiment triplet extraction, respectively. Only when the prediction of
aspects, opinions, and sentiments is correct, the triplet’s prediction is correct.

4.4 Main Results

Table 2 shows the comparison results for all approaches, from which we derive the fol-
lowing conclusions. The proposed model R-MMRC achieves competitive performance
on all datasets, which demonstrates the efficacy of our model. Under the F1 metric, the
R-MMRCmodel is superior to the pipeline method in all datasets. Our model’s F1-score
on AESC exceeded the baseline average by 2.09%, on Pair by 3.66%, and on ASTE by
2.67%, respectively. The result shows that our method extracts more practical features.
We observe that the method based on MRC achieves more significant improvement
than the pipeline method, because it establishes the correlation between these subtasks
by jointly training multiple subtasks, and alleviates the error propagation problem. It
is worth noting that our model also has a significant improvement in precision, which
indicates that the model’s prediction ability is more reliable than those baselines.

The Pair and ASTE of our model achieve the best performance on all datasets, but
the scores of two datasets in AESC are inferior to RACL+. We think that the idea that
RACL+ first jointly trains the underlying shared features, then independently trains the
advanced private features, and finally exchanges subtask information clues through the
relationship propagation mechanism is very effective. TS performs better than CMLA+,
since it uses a unified tagging schema to resolve sentiment conflicts. It is noteworthy
that the improvement of precision contributes the most to the increase in F1 score.
We believe that the high precision score is due to the rethink mechanism filtering out
some negative samples. Both JET and GTS-BERT used labeling schemes, but the latter
yielded better results due to the use of more advanced grid labeling and the design of
effective inference strategies. The sentiment classification task is more challenging than
the previous extraction task because sentiment heavily relies on the extracted aspect-
opinion pairs. However, with the help of dynamic sentiment queries constructed based
on aspect-opinion information, compared to BMRC, an overall improvement has been
achieved.

There is a certain performance gap between the baseline model and our proposed
model, which confirms the rationality of the architecture we proposed. We believe that
the design of static and dynamic queries can naturally integrate entity extraction and
relation detection to enhance their dependency. The rethink mechanism validates each
candidate aspect-opinion pair by modeling the information flow from aspect to opinion
(or from opinion to aspect), effectively filtering out negative samples and improving the
performance of the model. At the same time, the exclusive classifier we introduced, as
well as the probability generation algorithm, further improve the performance of the
model.
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Table 2. Statistics of 4 datasets. #S and #T denotes number of sentences and triples.

Models 14Lap 14Res 15Res 16Res

AESC Pair ASTE AESC Pair ASTE AESC Pair ASTE AESC Pair ASTE

Precision CMLA+ 54.70 42.10 31.40 67.80 45.17 40.11 49.90 42.70 34.40 58.90 52.50 43.60

TS 63.15 50.00 40.40 74.41 47.76 44.18 67.65 49.22 40.97 71.18 52.35 46.76

RACL+ 59.75 54.22 41.99 75.57 73.58 62.64 68.35 67.89 55.45 68.53 72.77 60.78

JET - - 52.00 - - 66.76 - - 59.77 - - 63.59

GTS-BERT - 66.41 57.52 - 76.23 70.92 - 66.40 59.29 - 71.70 68.58

BMRC 72.73 74.11 65.12 77.74 76.91 71.32 72.41 71.59 63.71 73.69 76.08 67.74

Ours 70.32 74.60 63.76 78.95 78.36 72.69 72.95 69.57 63.96 72.22 78.04 68.64

Recall CMLA+ 59.20 46.30 34.60 73.69 53.42 46.63 58.00 46.70 37.60 63.60 47.90 39.80

TS 61.55 58.47 47.24 73.97 68.10 62.99 64.02 65.70 54.68 72.30 70.50 62.97

RACL+ 68.90 66.94 51.84 82.23 67.87 57.77 70.72 63.74 52.53 78.52 71.83 60.00

JET - - 35.91 - - 49.09 - - 42.27 - - 50.97

GTS-BERT - 64.95 51.92 - 74.84 69.49 - 68.71 58.07 - 77.79 66.60

BMRC 62.59 61.92 54.41 75.10 75.59 70.09 62.63 65.89 58.63 72.69 76.99 68.56

Ours 62.92 63.27 54.69 77.00 78.54 72.85 68.49 70.33 62.64 68.49 70.33 67.31

F1-score CMLA+ 56.90 44.10 32.90 70.62 48.95 43.12 53.60 44.60 35.90 61.20 50.00 41.60

TS 62.34 53.85 43.50 74.19 56.10 51.89 65.79 56.23 46.79 71.73 60.04 53.62

RACL+ 64.00 59.90 46.39 78.76 70.61 60.11 69.51 65.46 53.95 73.19 72.29 60.39

JET - - 42.48 - - 56.58 - - 49.52 - - 56.59

GTS-BERT - 65.67 54.58 - 75.53 70.20 - 67.53 58.67 - 74.62 67.58

BMRC 67.27 67.45 59.27 76.39 76.23 70.69 67.16 68.60 61.05 73.18 76.52 68.13

Ours 66.41 67.61 61.45 77.96 78.45 72.77 69.70 69.95 62.30 72.41 77.62 69.67

4.5 Ablation Test

We conduct further ablation studies to analyze the impact of different components of
R-MMRC. We present the results of ASTE in Table 3, where the first row shows the
reproduced results of R-MMRC. The next three rows show the results after removing
the rethink mechanism, exclusive classifier, and probability generation, respectively.
The last row shows the final results after removing these three parts of the R-MMRC
model.

The results show that each component improves the performance of the model,
demonstrating their advantages and effectiveness. We remove the dynamic query in
the parameter sharing stage of R-MMRC and keep only static queries and the dynamic
sentiment query, which is referred to as “-dynamic query”. Obviously, removing the
dynamic query resulted in a significant drop in model performance. We analyze that
after removing the dynamic query, the model could not capture the dependency rela-
tionships between entities and separated entity extraction from relation detection. The
results indicate that the dynamic query in the parameter sharing stage is highly effective
in capturing dependencies.

The advantage of the rethink mechanism is quite significant. Specifically, compared
with R-MMRC, the rethink mechanism achieved F1-score improvements of 3.15%,
3.43%, 2.73%, and 2.35% on the four datasets, demonstrating the effectiveness of the
rethink mechanism. The probability generation also has a certain improvement effect,
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Table 3. Ablation study results (%). P represents precision, R represents recall, F1 represents
Macro-F1 score.

Model 14Lap 14Res 15Res 16Res

P R F1 P R F1 P R F1 P R F1

R-MMRC 63.76 54.69 61.45 72.69 72.85 72.77 63.96 62.64 62.30 68.64 67.31 69.67

—rethink mechanism 64.45 53.21 58.30 71.76 65.42 68.34 60.21 59.26 59.57 67.61 65.02 67.32

—exclusive classifier 63.60 55.26 60.58 72.02 68.91 72.36 63.67 61.85 61.98 68.50 68.39 69.15

—probability generation 62.51 53.03 59.03 70.64 69.73 70.50 61.16 60.03 60.69 67.26 66.16 67.80

—dynamic query 60.12 50.41 53.27 65.32 67.63 61.16 55.71 56.63 54.05 62.74 60.56 60.13

which proves that our model better avoids unilateral decline of probability and is more
consistent with the model’s expectation. For the exclusive classifier, the model’s F1
score improvement is relatively smaller compared to the previous two components.
Moreover, we find that it has a significant downside of slowing down the model’s run-
time.

4.6 Case Study

We conduct a case study to illustrate the effectiveness and perform an error analysis in
Table 4. We select three cases from datasets and compare our results with RACL+. The
reason for choosing RACL+ is that its performance is second only to our R-MMRC
model.

The first case has two aspect terms: “exterior patio” and “ambiance”. RACL+ can-
not extract the triplets corresponding to “ambiance”. We speculate that the model only
considers the relationship between sentence representations of subtasks, which weak-
ens aspect terms in long and complicated sentences. Our proposed model considers all
triplets in the sentence because it can guarantee that an aspect or an opinion can produce
a pair, precisely like human reading behavior.

The second case is a long sentence with two triplets, and the corresponding senti-
ments are positive and neutral, respectively. Our R-MMRC correctly extracted aspect
terms and opinion terms, and successfully predicted the corresponding polarity. How-
ever, RACL+ correctly extracts all aspect terms, but it misjudges the polarity of “seat-
ing”. The reason is that RACL+ is good at making use of different semantic relation-
ships between subtasks, so it may use irrelevant “rule” and “late” as keywords, and
predict the sentiment of “seating” as “negative”. On the contrary, R-MMRC can more
accurately identify aspect terms and the corresponding opinion terms in complex sen-
tences.

The third case is error analysis. Although the sentence is not long, both models pre-
dict the sentiment of “dinner” incorrectly. We analyze that “ok” is usually considered a
positive opinion term, so the two models define “dinner” as positive. However, by care-
fully observing this sentence, we find that the seldom choices in “vegetarian options”
are the reason why guests say “dinner” is just “okay” rather than “good”. So, sentiment
polarity should be “neutral” rather than “positive”. We speculate that we are looking
for the training loss of maximum likelihood cross entropy in the training set, which
may be the reason for the wrong prediction in this case. More interestingly, RACL+
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Table 4. Case study. Marker × indicates incorrect predictions. The table’s abbreviations POS,
NEU, and NEG represent positive, neutral, and negative sentiments, respectively.

Case Ground Truth RACL+ R-MMRC

The outdoor patio is really
nice in good weather, but
what ambience the indoors
possesses is negated by
the noise and the crowds.

(outdoor patio, nice, POS)
(ambience, negated, NEG)

(outdoor patio, nice, POS) (outdoor patio, nice, POS)
(ambience, negated, NEG)

The food is pretty good, but
after 2 or 3 bad experiences
at the restaurant (consistently rude, late
with RSVP’d
seating).

(food, pretty good, POS)
(seating, RSVP, NEU)

(food, pretty good, POS)
(seating, rude, NEG) ×
(seating, late, NEG) ×

(food, pretty good, POS)
(seating, RSVP, NEU)

Dinner is okay not many
vegetarian options and
the portions are small.

(Dinner, okay, NEU)
(positions, small, NEG)

(Dinner, okay, POS) ×
(vegetarian options, not
many, NEG) ×
(portions, small, NEG)

(Dinner, okay, POS) ×
(vegetarian options, not
many, NEG) ×
(portions, small, NEG)

and our R-MMRC, as two excellent solutions, incorrectly consider (vegetarian options,
not many, NEG) as a triplet. Therefore, we think that understanding sentence structure
through logic and even causal reasoning may provide new ideas for the future research
of sentiment analysis.

5 Conclusion

In this paper, we investigate ASTE task and propose an improved multi-round MRC
framework with a rethink mechanism(R-MMRC). This framework sequentially extracts
aspect-sentiment pairs and performs sentiment classification, which can handle com-
plex correspondences between aspects, opinions, and sentiments. In each round, explicit
semantic information can be effectively utilized. Additionally, the rethink mechanism
models the bidirectional information flow to verify each candidate aspect-opinion pair,
effectively utilizing the corresponding relationship between entities. Exclusive clas-
sifiers avoid interference between different queries, and probability generation algo-
rithms further improve prediction performance. The experimental results demonstrate
the effectiveness of the R-MMRC framework, further improving the overall perfor-
mance of the system. More importantly, our model can serve as a general framework to
address various tasks of ABSA. However, our model still suffers from the issue of high
computational cost, and we hope to compress the model in the future to make it more
lightweight.
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Abstract. Pre-trained language models (PLMs) have been widely used in entity
and relation extraction methods in recent years. However, due to the seman-
tic gap between general-domain text used for pre-training and domain-specific
text, these methods encounter semantic redundancy and domain semantics insuf-
ficiency when it comes to domain-specific tasks. To mitigate this issue, we pro-
pose a low-cost and effective knowledge-enhanced method to facilitate domain-
specific semantics modeling in joint entity and relation extraction. Precisely, we
use ontology and entity type descriptions as domain knowledge sources, which
are encoded and incorporated into the downstream entity and relation extraction
model to improve its understanding of domain-specific information. We construct
a dataset called SSUIE-RE for Chinese entity and relation extraction in space sci-
ence and utilization domain of China Manned Space Engineering, which contains
a wealth of domain-specific knowledge. The experimental results on SSUIE-RE
demonstrate the effectiveness of our method, achieving a 1.4% absolute improve-
ment in relation F1 score over previous best approach.

Keywords: Joint Entity and Relation Extraction · Knowledge Enhancement ·
Transformer

1 Introduction

Extracting relational triples from plain text is a fundamental task in information extrac-
tion and it’s an essential step in knowledge graph (KG) construction [14]. Traditional
methods perform Named Entity Recognition (NER) and Relation Extraction (RE) in
a pipelined manner, that is, first extract entities, and then perform relation classifica-
tion on entity pairs [6,9,35]. However, since the entity model and relation model are
modeled separately, pipelined methods suffer from the problem of error propagation.
To address this issue, some joint methods have been proposed [13,21,25,26,30,33].
The task of joint entity and relation extraction aims to simultaneously conduct entity
recognition and relation classification in an end-to-end manner.

In recent years, with the development of pre-trained language models (PLMs) such
as BERT [8] and GPT [18], many entity and relation extraction methods have adopted
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 237–252, 2023.
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the paradigm of pre-training and fine-tuning. They utilize PLMs to encode the con-
textual representations of input text and design various downstream models for task-
specific fine-tuning. However, when employed for domain-specific entity and relation
extraction, this paradigm suffers from problems of semantic redundancy and insuffi-
ciency of domain-specific semantics, particularly in highly specialized domains. On
the one hand, PLMs are usually trained on general-domain corpora, which results in
a significant amount of redundant semantic information that may not be relevant to
specific domains and a lack of sufficient domain-specific semantic information. On the
other hand, modeling domain-specific information in this paradigm depends primarily
on the role of downstream model and domain-specific labeled data in the fine-tuning
stage. However, due to the significantly smaller parameter size of downstream model
compared to PLMs and the limited availability of domain-specific labeled data, the
effectiveness of domain-specific semantic information modeling is constrained.

Consequently, some methods attempt to incorporate domain knowledge into entity
and relation extraction models to enhance the their comprehension of domain-specific
information. These methods can be broadly categorized into two groups according
to how knowledge is introduced: pre-training domain-specific language models and
integrating domain-specific knowledge graph information into models. Methods of
domain-specific pre-training utilize large-scale domain corpora to facilitate continuous
pre-training of existing general-domain language models [2,12,17] or, alternatively,
to perform domain-specific pre-training from scratch [5,10]. However, in certain spe-
cialized domains, there may be a dearth of enough domain-specific corpora to support
domain-specific pre-training. Another category of methods involve integrating domain-
specific knowledge graph information into models, where entity mentions in input text
are linked to the corresponding entities in knowledge graph, and then the relevant
information of the linked entities in the knowledge graph is incorporated into mod-
els [11,19,27,32]. Some of these knowledge graph integration methods are designed
simply for the task of relation extraction (RE) where the entities in the sentence are
pre-specified, rather than the task of joint entity and relation extraction. In addition, a
prerequisite for this kind of approaches is the availability of a well-constructed domain-
specific knowledge graph, which is scarce and expensive for some highly specialized
domains.

In this study, we explore how to incorporate domain knowledge for the task of
joint entity and relation extraction in space science and utilization domain of China
Manned Space Engineering. Due to the lack of sufficient domain-specific corpora
to support the pre-training of large-scale language models and the absence of well-
constructed domain-specific knowledge graphs, the aforementioned approaches can-
not be directly used for domain knowledge enhancement. We propose an ontology-
enhanced joint entity and relation extraction method (OntoRE) for space science and
utilization domain. The predefined domain-specific ontology involves many highly spe-
cialized entity types that interconnected by different semantic relations, which frames
the knowledge scope and defines the knowledge structure in this domain, so it is an
appropriate source of domain knowledge. The ontology can be formalized as a graph
structure containing nodes and edges, where nodes represent entity types and edges
represent relation types. Furthermore, drawing inspiration from the manner in which
humans comprehend specialized terminology, we add descriptions for each entity type
in the ontology to enhance the semantic information of entity types. We serialize the
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ontology graph and then adopt an ontology encoder to learn the embeddings of ontol-
ogy knowledge. The encoded ontology features are fused with input sentence features,
and then the entity and relation extraction is carried out under the guidance of ontol-
ogy knowledge. To evaluate our model, we construct a dataset called SSUIE (Space
Science and Utilization Information Extraction), which contains rich knowledge about
space science and utilization in the aerospace field. This work exclusively pertains to
the problem of entity and relation extraction, therefore our model was evaluated on
the subset of SSUIE specifically designed for entity and relation extraction, namely
SSUIE-RE.

The main contributions of this work are summarized below:

1. A dataset named SSUIE-RE is proposed for Chinese entity and relation extraction
in space science and utilization domain of China Manned Space Engineering. The
dataset is enriched with domain-specific knowledge, which contains 19 entity types
and 36 relation types.

2. An ontology-enhanced method for domain-specific joint entity and relation extrac-
tion is proposed, which substantially enhances domain knowledge without the need
of domain knowledge graphs or large-scale domain corpora. Experimental results
show that our model outperforms previous state-of-the-art works in terms of relation
F1 score.

3. The effect of domain ontology knowledge enhancement is carefully examined. Our
supplementary experiments show that the ontology knowledge can improve the
extraction of relations with varying degrees of domain specificity. Notably, the ben-
efit of ontology knowledge augmentation is more evident for relations with higher
domain specificity.

2 Related Work

Among the representative entity and relation extraction approaches in recent years,
some focus on solving the problem of triple overlapping [16,23,24,29,31] and some
focus on the problem of task interaction between NER and RE [22,25,26]. However, the
challenge of effectively integrating domain knowledge into entity and relation extrac-
tion models to improve their applicability in specific fields, has not been solved well by
previous works. We survey the representative works on topics that are most relevant to
this research: domain-specific pre-training and integrating knowledge graph informa-
tion.

Domain-Specific Pre-training. In order to enhance the domain-specific semantics in
PLMs, this family of approaches uses domain corpora to either continue the pre-training
of existing generic PLMs or pre-train domain-specific language models from scratch.
FinBERT [2] is initialized with the standard BERT model [8] and then further pre-
trained using financial text. BioBERT [12] and BlueBERT [17] are further pre-trained
from BERT model using biomedical text. Alsentzer et al. [1] conduct continual pre-
training on the basis of BioBERT, and PubMedBERT [10] is trained from scratch using
purely biomedical text. Chalkidis et al. [5] have explored both strategies of further pre-
training and pre-training from scratch and release a family of BERTmodels for the legal
domain.
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Integrating Knowledge Graph Information. This category of methods infuse knowl-
edge into the entity and relation extraction models with the help of external knowledge
graph. Lai et al. [11] adopt the biomedical knowledge base Unified Medical Language
System (UMLS) [4] as the source of knowledge. For each entity, they extract its seman-
tic type, sentence description and relational information from UMLS with an entity
mapping tool MetaMap [3], and then integrate these information for joint entity and
relation extraction from biomedical text. Roy and Pan [19] fuse UMLS knowledge into
BERT model for clinical relation extraction and explore the effect of different fusion
stage, knowledge type, knowledge form and knowledge fusion methods. Zhang et al.
[32] integrate the knowledge from Wikidata1 into a generative framework for relational
fact extraction.

To the best of our knowledge, only a limited number of specialized domains can
meet the conditions for applying the two aforementioned methods of enhancing domain
knowledge, mainly including biomedical, financial, and legal fields. These fields are
comparatively prevalent in human life, so there are more likely to be a considerable
amount of domain corpora and data in these fields. However, in highly specialized
fields like aerospace, both the large-scale domain-specific corpora and well-constructed
domain-specific knowledge graph are scarce. Our proposed method only utilize the
ontology and entity type descriptions to inject domain knowledge into entity and rela-
tion model without additional prerequisites.

3 Method

In this section, we introduce the architecture of OntoRE. As shown in Fig. 1, the model
mainly includes four parts: knowledge source, knowledge serialization, knowledge
encoding and knowledge fusion. In the following subsections, we provide a detailed
description of each component.

BFS

Entity Type Descriptions

Knowledge Source Serialization

BERT(Frozen)
&

 Avg Pool
Ontology Graph Transformer

Encoder

Knowledge Encoder

……

Fusion Layer

BERT

MGE

Knowledge Fusion

Extracted Triples... ...

Fig. 1. The architecture of the proposed OntoRE framework. We formalize the ontology as
a directed graph, where the nodes (blue) represent the predefined entity types and the edges
(orange) represent the predefined relation types. The ontology graph is serialized through Breadth
First Search (BFS) algorithm. The special marker “[S]” represents the end of each level of BFS.
desi denotes the descriptions of entity type ei. MGE [25] is used as a baseline to verify the effect
of our knowledge enhancement method. (Color figure online)

1 https://www.wikidata.org.

https://www.wikidata.org
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3.1 Knowledge Source

In the process of human learning professional knowledge, a common practice is to
first understand the meaning of each specialized term and then establish the interrela-
tionships between them. Following this pattern, we leverage ontology and entity type
descriptions as domain knowledge sources to augment the capacity of entity and rela-
tion extraction models to comprehend domain-specific information. Ontology defines
the semantic associations among specialized entity types in the domain, while entity
type descriptions provide further explanations for each type of specialized terms. For the
space science and utilization domain, the ontology is predefined in SSUIE-RE dataset
(see Sect. 4.1). We collect the official descriptions of domain-specific entity types from
the China Manned Space official website2. Compared to large-scale pre-training cor-
pora and domain-specific knowledge graphs, ontology and entity type descriptions are
more accessible for highly specialized domains like space science and utilization.

3.2 Knowledge Serialization

The ontology is a graph structure, where nodes represent entity types and edges rep-
resent relation types. It can be formalized as a directed graph G = (V,E), where
V = {e1, e2, . . . , eM} denotes the set of predefined entity types andM is the number of
predefined entity types. E denotes a multiset of predefined relation types. Additionally,
to enrich the semantic information of the entity type nodes in the graph, we append the
corresponding entity type descriptions to each node:

V ′
= {(e1, des1), (e2, des2), . . . , (eM , desM )} , (1)

where desm denotes the descriptions of entity type em. Then the resulting new graph
with the added entity type descriptions can be represented as G′

= (V ′, E).
To facilitate the integration of ontology graph knowledge into entity and rela-

tion extraction models that are typically based on sequences, we serialize it using the
Breadth First Search (BFS) algorithm while maintaining the structural and semantic
properties of the original graph. The graph is represented as an adjacency list in BFS.
Before performing the BFS traversal, we initially sort the nodes based on the frequency
of their occurrence as entity types in the dataset. Subsequently, we sort the neighbor-
ing nodes and edges based on the sum of the node frequency and the edge frequency.
This ensures that the nodes and edges with higher frequency in dataset will be traversed
first. Then the sorted adjacency list of G is input into the BFS algorithm. During the
BFS traversal, we insert a special marker “[S]” at the end of each layer of BFS traver-
sal. Taking the nodes e1, e2, and e3 shown in Fig. 1 as an example, the first special
marker denotes the end of traversing the triple types with e1 as the head entity, while
the second special marker denotes the end of traversing the triple types with e3 as the
head entity, which conveys the structural information among the nodes in the graph.
Formally, the BFS serialization process is summarized in Algorithm 1. Then we get
an ontology sequence sπ of nodes and edges in the order visited by BFS with level
markers:

sπ
= {sπ

1 , s
π
2 , . . . , s

π
L} , (2)

where L represents the length of the ontology sequence obtained by BFS traversal.
2 http://www.cmse.gov.cn.

http://www.cmse.gov.cn
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Algorithm 1. BFS traversal with level markers
Input: A sorted adjacency list of ontology graph G′

= (V ′, E)
Output: A list sπ of nodes and edges in the order visited by BFS, with level markers
1: sπ

← empty list
2: q ← empty queue
3: Enqueue the first node of G′ into q
4: Mark all the nodes as unvisited
5: while q is not empty do
6: size← size of q
7: for i ← 1 to size do
8: v ← dequeue a node from q
9: if v is visited then
10: break
11: end if
12: Append v to sπ

13: for each unvisited neighbor w of v do
14: Enqueue w into q
15: Append the edge (v, w) to sπ

16: Append w to sπ

17: end for
18: Append a level marker “[S]” to sπ

19: Mark v as visited // The triple types with v as the head entity type have all been
traversed

20: end for
21: end while
22: return sπ

3.3 Knowledge Encoding

The elements in sπ consist of texts with varying lengths, which encompass relation type
words, special markers, and texts formed by concatenating entity type words with their
corresponding entity type description words. To get a preliminary semantic representa-
tions of these texts, we initialize the representation of each element in sπ with a frozen
BERT encoder [8] and employ average pooling to unify the feature size. Then we can
generate a representation hk for each element in sπ as follows:

hk =AvgPool(BERTfrozen (sπ
k )), k ∈ {1, 2, . . . , L}, (3)

where hk ∈ R
d and d is the hidden size of BERT. AvgPool (·) denotes the operation of

average pooling. The representations of the whole ontology sequence sπ is concatenated
by hk:

Hsπ = [h1, h2, . . . , hL], (4)

whereHsπ ∈R
L×d. The feature information inHsπ are individually encoded from each

element in sπ . To further capture the inherent information in the ontology sequence, we
use a Transformer Encoder [20] to obtain the final ontology knowledge representations
Hknow ∈ R

L×d:
Hknow = TransformerEncoder (Hsπ ) , (5)
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3.4 Knowledge Fusion

Given the encoded ontology knowledge representations Hknow, it can be integrated
into different downstream entity and relation extraction models for knowledge enhance-
ment. We select the state-of-the-art methods that have performed best on publicly avail-
able benchmark datasets in recent years, and then we evaluate these algorithms on the
SSUIE-RE dataset (evaluation results are shown in Table 1). We select the MGE model
[25], which performs the best on SSUIE-RE, as our baseline for comparison, and infuse
ontology knowledge into it to verify the effectiveness of ontology knowledge enhance-
ment. MGE model uses BERT to encode the contextual information of input sentences,
and designs a multi-gate encoder (MGE) based on gating mechanism to filter out unde-
sired information and retain desired information, then performs decoding with table-
filling module [15]. We infuse ontology knowledge at the position between the BERT
layer and MGE layer, as shown in Fig. 1.

We have explored different fusion methods to integrate ontology knowledge rep-
resentations with input sentence representations, including appending, concatenation
and addition. Regarding the appending operation, we concatenate the ontology knowl-
edge representationsHknow with the input sentence representations along the sequence
length dimension. We then apply a self-attention layer to model the guiding effect of
ontology knowledge on the extraction of entities and relations from the sentence. The
fused representations are calculated as follows:

Happend = SA ([Hb;Hknow]) , (6)

where SA (·)means the self-attention layer andHb denotes the input sentence represen-
tations extracted by BERT. [; ] denotes the operation of appending, that is, concatenating
along the sequence length dimension.

In the case of the concatenation and addition fusion methods, a linear transformation
is initially employed to unify the feature dimensions. After this step, the input represen-
tations Hb and ontology knowledge representations Hknow are concatenated along the
hidden size dimension or added. The concatenation fusion method can be formalized as
below:

Hconcat = Concat (Hb,Linear(Hknow)) , (7)

whereConcat (·)means the operation of concatenation along the hidden size dimension
and Linear (·) denotes linear transformation. And the fusion method of addition can be
formalized as below:

Hadd =Hb + Linear(Hknow). (8)

Then the representations fused with ontology knowledge is input into the downstream
MGE model to obtain the final results of entity and relation extraction.

4 Experiments

4.1 SSUIE-RE Dataset

To evaluate our method, we construct a SSUIE-RE dataset for entity and relation extrac-
tion in the space science and utilization domain, which contains rich domain exper-
tise about space science and utilization in the aerospace field. The process of creating
SSUIE-RE can be divided into two steps:
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Corpora Collection and Preprocessing. The corpora is collected from published pro-
fessional technical documents in the field, official websites related to China Manned
Space Engineering, and Web pages returned by the Google search engine for in-domain
professional terms. Before annotation, we preprocess the collected corpora using the
following measures:

– We only select Chinese texts and discard texts that are in other languages.
– The invisible characters, spaces and tabs are removed, which are generally meaning-
less in Chinese.

– In order to eliminate excessively short sentences and incomplete sentences, we split
the texts at the Chinese sentence-ending punctuation symbols (e.g., period, question
mark, exclamation point), and only retain sentences with more than 10 characters.

– We deduplicate the segmented sentences.

Human Annotation. We invite annotators with related majors in aerospace field to anno-
tate the processed corpora on the brat3 platform. The brat platform is an online environ-
ment for collaborative text annotation. To ensure the annotation quality, pre-labeling is
carried out prior to the formal labeling stage, which aims to ensure that all annotators
reach a unified and accurate understanding of the labeling rules. During the annotation
process, each sentence is annotated by at least two annotators. If there are inconsis-
tent annotations, the annotation team will discuss the corresponding issue and reach a
consensus.

Our final constructed dataset contains 19 entity types, 36 relation types, and 66 triple
types. The dataset contains 6926 sentences, 58,771 labeled entities and 30,338 labeled
relations. We randomly split the dataset into training (80%), development (10%) and
test (10%) set.

4.2 Evaluation and Implementation Details

Following standard evaluation protocol, we use precision (Prec.), recall (Rec.), and
micro F1 score (F1) to evaluate our model. The results of NER are considered as correct
if the entity boundaries and entity types are both predicted correctly. The results of RE
are considered correct if the relation types, entity boundaries and entity types are all
predicted correctly.

We use the official implementation of the comparison models to evaluate them on
the SSUIE-RE dataset. For fair comparison, we adopt chinese-bert-wwm [7] as the pre-
trained language model for all the models. Our proposed OntoRE model is trained with
Adam optimizer for 100 epochs, and the batch size and learning rate are set to be 4 and
2e−5 respectively. The max length of input sentence is set to 300 characters. All the
models are trained with a single NVIDIA Titan RTX GPU. The models that achieves
the best performance on the development set is selected, and its F1 score on the test set
is reported.

3 https://brat.nlplab.org/.

https://brat.nlplab.org/
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4.3 Comparison Models

To ensure a rigorous evaluation, we carefully select state-of-the-art algorithms that have
demonstrated superior performance on publicly available benchmark datasets in recent
years, and then evaluate their performance on the SSUIE-RE dataset. We compare
our model with the following models: (1) TPLinker [23]: this method formulates the
task of joint entity and relation extraction as a token pair linking problem, and intro-
duces a handshaking tagging scheme that aligns the boundary tokens of entity pairs
for each relation type. (2) CasRel [24]: it models the relations as functions that map
subjects to objects rather than discrete labels of entity pairs, allowing for the simultane-
ous extraction of multiple triples from sentences without the issue of overlapping. (3)
PFN [26]: this work utilizes a partition filter encoder to produce task-specific features,
which enable effective modeling of inter-task interactions and improve the joint entity
and relation extraction performance. (4) PURE [34]: this study constructs two distinct
encoders for NER and RE, respectively, and conducts entity and relation extraction in
a pipelined manner. (5) PL-Marker [28]: this work is similar to PURE except that it
adopts a neighborhood-oriented packing strategy to better model the entity boundary
information and a subject-oriented packing strategy to model the interrelation between
the same-subject entity pairs. (6)MGE [25]: this work designs interaction gates to build
bidirectional task interaction and task gates to ensure the specificity of task features,
based on gating mechanism.

4.4 Main Result

Table 1 shows the comparison of our model OntoRE with other comparison models on
SSUIE-RE dataset. As is shown, OntoRE achieves the best results in terms of relation
F1 scores. Although PURE achieves the best performance on NER, its relation F1 score
is relatively low due to the pipelined architecture which may encounter error accumula-
tion issues. Similarly, PLMarker, which is also a pipelined method, achieves mediocre

Table 1.Overall results of different methods on SSUIE-RE Dataset. The results of all comparison
models are implemented using official code. We use the same chinese-bert-wwm [7] pre-trained
encoder for all these models. Results of PURE and PL-Marker are reported in single-sentence
setting for fair comparison. Results of OntoRE are reported under the utilization of addition
fusion method.

Model NER RE

Prec.(%) Rec.(%) F1(%) Prec.(%) Rec.(%) F1(%)

TPLinker [23] 77.0 56.0 64.8 65.3 40.8 50.2

CasRel [24] - - - 57.8 53.5 55.6

PFN [26] 74.9 75.8 75.4 57.8 62.0 59.8

PURE [34] 80.5 80.6 80.6 55.0 67.4 60.6

PL-Marker [28] 80.2 62.6 70.3 55.5 33.4 41.7

MGE [25] 75.8 76.3 76.0 60.0 64.2 62.0

OntoRE (Ours) 75.0 78.3 76.6 62.4 64.5 63.4
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results on the SSUIE-RE dataset. Among other compared joint methods, MGE achieves
the best relation extraction F1 score, and is therefore selected as the baseline model for
ontology knowledge injection. As we can see in the table, OntoRE achieves an abso-
lute entity F1 improvement of +0.6% and absolute relation F1 improvement of +1.4%
compared to MGE, which indicates that the ontology knowledge injection can enhance
the performance of entity and relation extraction in highly specialized domain. Fur-
ther observation reveals that the models with the best performance on general domain
datasets may not perform well in specific professional domains, which reflects the
necessity of introducing domain knowledge for entity and relation extraction in spe-
cialized fields.

4.5 Effect of Domain Knowledge Enhancement

Although our proposed OntoRE achieves the best results on the SSUIE-RE dataset in
terms of the overall relation F1 score, in this section, we take a deeper look and further
investigate whether OntoRE’s integration of domain knowledge essentially improves
the model’s ability to comprehend domain-specific information.

We observe that the SSUIE-RE dataset includes entity types with varying levels
of specialization, ranging from highly specialized entity types (such as Space Mission,
Experimental Platform and Space Science Field, etc.) to more general entity types (such
as Person, Location, and Organisation, etc.). We refer to the former as in-domain entity
types and the latter as general entity types. According to the degree of domain speci-
ficity, we categorize 15 out of the 19 entity types defined in the SSUIE-RE dataset as

Table 2. We divide entity types into in-domain and general entity types according to the degree
of domain specificity.

Domain Specificity Entity Types

In-domain (68%) Space Mission, Space Station Segment, Space Science Field, Prize,
Experimental Platform, Experimental Platform Support System,
Experimental System, Experimental SystemModule, Patent, Criterion,
Experimental Project, Experimental Data, Academic Paper,
Technical Report, Research Team

General (32%) Organisation, Person, Time, Location

Table 3. NER results of in-domain and general entity types on SSUIE-RE test set. In-domain
entities account for 68% in the dataset, and general entities account for 32%.

Entity Type Model NER

Prec.(%) Rec.(%) F1(%)

In-domain (68%) Baseline 73.4 73.0 73.2

OntoRE 72.0 75.3 73.6 (+0.4)

General (32%) Baseline 79.6 81.6 80.6

OntoRE 79.8 83.0 81.4 (+0.8)
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in-domain entity types, and the remaining 4 as general entity types, as shown in Table 2.
Based on this categorization, in-domain entities account for 68% of the total entities in
the SSUIE-RE dataset, while general entities account for 32%.

To more accurately evaluate OntoRE’s ability to understand domain-specific infor-
mation, we further differentiate the domain specificity of relation types. A triple type
defined in the dataset is composed of a head entity type, a relation type, and a tail entity
type in the form of (s, r, o). We assess the degree of domain specificity of a relation
type by determining whether the head and tail entities it connects are classified as in-
domain entity types, as listed in Table 2. Specifically, we consider a relation to be highly
domain-specific when both the head and tail entity types are in-domain. If only one of
the two entity types is in-domain and the other is general, the corresponding relation is
considered to exhibit weaker domain specificity. Furthermore, relations with head and
tail entity types are both general rather than in-domain entity types, are considered to
exhibit the weakest domain specificity.

We compare our model with the baseline MGE on the performance of recognizing
in-domain and general entities, respectively. And for relation extraction, we compare the
performance of our model and baseline in extracting relation types with varying degrees
of domain specificity. The experimental results are shown in Table 3 and Table 4.

As shown in Table 3, OntoRE outperforms the baseline in recognizing in-domain
and general entity types, with a respective improvement of +0.4% and +0.8% in terms
of entity F1 score. Table 4 demonstrates that OntoRE obtains an absolute relation F1
score improvement of +0.5%, +1.5% and 1.7% respectively, as the domain specificity
of the relation types increases. The experimental results show that OntoRE improves
the performance of extracting relation types with varying degrees of domain speci-
ficity, and the benefit of ontology knowledge augmentation is more evident for rela-
tions with higher domain specificity. This indicates that the incorporation of ontology
knowledge appears to be an effective approach for enhancing the model’s ability to
understand domain-specialized information, while not weakening its understanding of
general information.

4.6 Ablation Study

In this section, we conduct ablation study on the SSUIE-RE dataset to examine the
effectiveness of our model, specifically with regard to three factors: knowledge source,
knowledge fusion method, and the number of knowledge encoder layers.

Knowledge Source and Fusion Method. We put the two factors of knowledge source
and knowledge fusion method together for experimental analysis. For the aspect of
knowledge source, we remove the entity type descriptions (denoted as Des in Table 5)
from the complete OntoRE framework to examine the role of entity type descriptions
in knowledge enhancement. For knowledge fusion method, we examine the effects of
three fusion methods: appending, concatenation and addition.

Table 5 presents a comparison of the experimental results for different combina-
tions of these factors on the SSUIE-RE dataset. The experimental results show that,
under the fusion methods of appending and concatenation, the incorporation of entity



248 X. Xiong et al.

Table 4. RE results of relation types with varying degrees of domain specificity on SSUIE-RE
test set. IDE (In-Domain Entity) represents the number of in-domain entity types contained in a
triple type according to ontology definition. The proportions of relations with IDE= 0, IDE= 1,
and IDE= 2 in the SSUIE-RE dataset are 26%, 11%, and 63%, respectively.

Relation Type Model RE

Prec.(%) Rec.(%) F1(%)

IDE = 0 (26%) Baseline 68.5 72.2 70.3

OntoRE 69.7 71.8 70.8 (+0.5)

IDE = 1 (11%) Baseline 55.5 42.7 48.2

OntoRE 60.5 42.2 49.7 (+1.5)

IDE = 2 (63%) Baseline 56.8 64.6 60.4

OntoRE 59.3 65.3 62.1 (+1.7)

type descriptions improves NER F1 scores by 1.4% and 1.4% respectively. However,
under the addition fusion method, there is a slight decrease in NER F1 score. This
can be attributed to the need for compressing the dimension of the entity type descrip-
tion tensor to match the input sentence tensor before addition, leading to information
loss. Across all three fusion methods, the inclusion of entity type descriptions consis-
tently improve the relation F1 scores. Additionally, when using the same combination of
knowledge sources, the performance of the appending and concatenation fusion meth-
ods is comparable, while the addition fusion method achieves the best relation F1 score.
This suggests that the optimal approach is to employ ontology and entity type descrip-
tions as knowledge sources and use the addition fusion method to integrate knowledge
representations into the model.

Number of Knowledge Encoder Layers. In the knowledge encoding stage, we uti-
lize Transformer encoder to encode the serialized ontology knowledge, as described
in Sect. 3.3. We conduct ablation study to investigate whether stacking multiple layers
of encoders could improve the model performance. Considering the parameter size of

Table 5. Ablation study on SSUIE-RE for knowledge source and knowledge fusion method. Des
denotes entity type descriptions.

Knowledge Source Fusion Method NER RE

Prec. (%) Rec. (%) F1 (%) Prec. (%) Rec. (%) F1 (%)

Ontology Append 71.3 77.9 74.5 61.0 62.2 61.6

Ontology Concat. 72.9 78.3 75.5 61.3 64.4 62.8

Ontology Add 74.2 79.4 76.7 62.2 64.4 63.3

Ontology + Des Append 73.3 78.8 75.9 60.6 65.4 62.9

Ontology + Des Concat. 75.7 78.0 76.9 63.0 63.0 63.0

Ontology + Des Add 75.0 78.3 76.6 62.4 64.5 63.4
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Transformer encoder, we only experiment with encoder layers up to three. As shown
in Table 6, using two layers of Transformer encoders achieved the best performance
(which we employed in our final model), and further stacking of encoders does not
result in additional performance improvements.

Table 6. Ablation study on SSUIE-RE for the number of knowledge encoder layers.

Knowledge Encoder Layers NER RE

Prec.(%) Rec.(%) F1(%) Prec.(%) Rec.(%) F1(%)

L = 1 70.6 80.8 75.3 58.4 64.9 61.5

L = 2 75.0 78.3 76.6 62.4 64.5 63.4

L = 3 75.0 77.7 76.4 61.1 62.0 61.5

5 Conclusion

In this work, we propose an ontology-enhanced method for joint entity and relation
extraction in space science and utilization domain. Our model utilizes ontology and
entity type descriptions as sources of domain knowledge, and incorporate them into
downstream model to enhance model’s comprehension of domain-specific informa-
tion. We introduce a new dataset, SSUIE-RE, which contains rich domain-specialized
knowledge. Experimental results on SSUIE-RE demonstrate that our approach outper-
forms previous state-of-the-art methods. Moreover, we conduct a detailed analysis of
the extraction of entities and relations with different degrees of domain specificity and
validate the effectiveness of ontology knowledge enhancement. Overall, our proposed
method provides a promising direction for improving the performance of entity and
relation extraction in specialized domains with limited resources. In the future, we
would like to further explore how to generalize the ontology knowledge enhancement
idea to other domain-specific information extraction tasks.
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Abstract. Document-level neural machine translation (NMT) has gar-
nered considerable attention since the emergence of various context-
aware NMT models. However, these static NMT models are trained
on fixed parallel datasets, thus lacking awareness of the target docu-
ment during inference. In order to alleviate this limitation, we propose
a dynamic adapter-translator framework for context-aware NMT, which
adapts the trained NMT model to the input document prior to trans-
lation. Specifically, the document adapter reconstructs the scrambled
portion of the original document from a deliberately corrupted version,
thereby reducing the performance disparity between training and infer-
ence. To achieve this, we employ an adaptation process in both the train-
ing and inference stages. Our experimental results on document-level
translation benchmarks demonstrate significant enhancements in trans-
lation performance, underscoring the necessity of dynamic adaptation
for context-aware translation and the efficacy of our methodologies.

Keywords: Machine Translation · Context-aware Translation ·
Dynamic Translation

1 Introduction

Numerous recent studies have introduced a variety of context-aware models aim-
ing to effectively harness document-level context either from the source side [1–6],
target side [13,14,21], or both [15–19]. In the prevailing practice, a context-aware
model remains fixed after training and is then employed for every testing doc-
ument. Nonetheless, this approach presents a potential challenge, as the model
is required to encapsulate all translation knowledge, particularly from diverse
domains, within a predefined set of parameters. Accomplishing this task within
the confines of reality poses a formidable undertaking.

The “one sentence one model” approach for sentence-level NMT, as proposed
by [20], aims to familiarize the model with each sentence in the test dataset
by fine-tuning the NMT model for every testing sentence. However, acquiring
suitable fine-tuning sentences for a given testing sentence proves to be highly
time-consuming, as they require meticulous extraction from the bilingual train-
ing data through similarity search. This presents a significant challenge when
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 255–270, 2023.
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Fig. 1. The figure presented in this section depicts the adapter-translator architec-
ture designed for context-aware neural machine translation. In this architecture, the
encoder(s) are shared between the adapter denoted as φ and the translator denoted
as ψ. It is important to note that the translator and adapter constitute two distinct
stages within the same model, rather than being treated as separate models.

attempting to replicate their methodology by seeking similar documents from
the bilingual document-level training data. Moreover, this approach assesses sen-
tence similarity solely based on the Levenshtein distance, thereby disregarding
the document-level context of these sentences extracted from distinct documents.

To address the potential challenge of employing a fixed, trained model for all
testing documents, we propose the “one document one model” approach in this
paper. This alternative approach aims to achieve the objective by introducing the
document adapter. Unlike other methods, the adapter relies solely on the input
document itself and does not require additional input forms. Its primary function
is to reconstruct the original document from a deliberately corrupted version,
thereby enabling the model to familiarize itself with the task of document-level
translation. Notably, this approach differs from previous methods where the
input and output are in different languages, as opposed to the same language.
Following adaptation, this modified model is utilized to translate the document.

Both the adapter model and the NMT model employed in our study are
context-aware and utilize shared encoder(s), while each having its dedicated
decoder. In this paper, we present a training methodology that aims to adapt a
pre-trained NMT model to a specific document through a process of alternating
document reconstruction and document translation for each document batch.
This approach is employed during both the training and inference stages. To
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Fig. 2. Illustration of document reconstruction task.

evaluate the effectiveness of our proposed approach, we conducted experiments
on three English-to-German document-level translation tasks. The results reveal
significant enhancements in translation performance, providing strong evidence
for the necessity of employing a one document one model approach and the
efficacy of our proposed methodology.

Overall, we make the following contributions.

– We present an enhanced context-aware document-level auto-encoder task to
facilitate dynamic adaptation of translation models.

– We propose an adapter-translator framework for context-aware NMT. To
the best of our knowledge, this is the first study that investigates the one-
document-one-model approach specifically for document-level NMT.

2 Adapter-Translator Architecture

The Adapter-Translator architecture entails an iterative procedure involving an
adaptation process denoted as φ and a translation process denoted as ψ. Figure 1
presents a visual representation of the proposed architecture. The translator ψ,
which is a context-aware NMT model, comprises context-aware encoder(s) and
a decoder specific to translation.1 The adapter shares the encoder(s) with the
translator while possessing a decoder specifically designed for adaptation. Given
a source document X , the corpus processing script generates a deliberately cor-
rupted version ̂X of the document. This corrupted version is then utilized to
optimize the adapter in order to reconstruct the scrambled segments of the
original document X . As the encoder(s) are shared between the adapter and
the translator, the capability to capture context during document adaptation
can also be harnessed during the document translation process. The translation
component of this architecture resembles that of other document-level transla-
tion models. Due to its straightforward yet impactful architecture, the proposed
method can be employed with diverse document-level translation models.

1 It is worth noting that while not all context-aware NMT models possess an additional
context encoder [23], the adapter-translator architecture can still be adapted to
accommodate these models.
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2.1 Document Adapter

Motivated by the work of [22], we present an adapter-based methodology to
restore the scrambled segments of an input document. To be more precise, we
adopt a strategy where sentences or words are randomly omitted from the origi-
nal document, and the adapter is trained to reconstruct these scrambled portions
by minimizing the cross-entropy reconstruction loss between the output of its
decoder and the corresponding correct part of the original document.

Given a document X = (Xi) |Ni=1 consisting of N sentences, we apply token
substitution, insertion, and deletion operations to each sentence Xi. Following
the approach of BERT [37], we randomly select 15% of the tokens. However,
unlike BERT, we do not replace these tokens with [MASK] tokens. Instead, the
adapter is responsible for identifying the positions that require correct inputs.
Furthermore, we do not preserve 10% of the selected tokens unchanged, as our
method does not rely on the [MASK] token. In our experiments, we observed
that compared to generating the entire original document, generating only the
corrected scrambled part significantly reduced the computational time. Never-
theless, this modification did not significantly compromise the model’s ability to
capture context and become familiar with the document to be translated.

Figure 2 depicts an example involving 3 sentences in the original document.
In this example, the first sentence undergoes a word deletion operation, while
the third sentence experiences word scrambling and replacement operations. The
scrambled preceding and succeeding sentences serve as context for the second
sentence. The adapter produces the missing words in the first sentence, the cor-
rected words in the third sentence, and the complete second sentence. While
our document reconstruction task draws inspiration from the similar proposal
in [37], there exist two significant distinctions. Firstly, instead of substituting
selected words with [MASK] tokens, we introduce contextual document corrup-
tion by allowing token substitution, insertion, and deletion. Secondly, in contrast
to BERT, our training objective simultaneously considers the utilization of both
sentence-level and document-level context.

To summarize, we define the document adaptation task by employing the
following two sub-tasks:

– Sentence-level: The adapter generates corrected words based on a deliberately
scrambled version of the original sentence.

– Document-level: The adapter utilizes the concatenated context sentences to
generate the original sentences.

2.2 Context-Aware Translator

The context-aware translation model in our framework is designed as a relatively
independent model, which shares the encoder(s) with the adaptation model while
having a dedicated decoder for translation. This design ensures the flexibility
of the framework, allowing it to be easily integrated with different translation
models by simply incorporating the adapter model’s encoder.
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Table 1. Performance on test sets. + Adapter indicates we use our proposed context-
aware adapter to guidance the context-aware encoder. Significance test [25] shows that
the improvement achieved by our approach is significant at 0.05 on almost all of the
above models.

# Model TED News Europarl Average
BLEU Meteor BLEU Meteor BLEU Meteor BLEU Meteor

1 DocT [2] 24.00 44.69 23.08 42.40 29.32 46.72 25.47 44.60
2 + Adapter 24.70 45.20 23.68 43.01 29.84 47.15 26.07 45.12
3 HAN [3] 24.58 45.48 25.03 44.02 28.60 46.09 26.07 45.20
4 + Adapter 24.90 45.89 25.51 44.38 29.07 46.61 26.49 45.63
5 SAN [17] 24.42 45.26 24.84 44.17 29.75 47.22 26.34 45.55
6 + Adapter 24.80 45.69 25.24 44.63 30.11 48.20 26.72 46.17
7 QCN [24] 25.19 46.09 22.37 41.88 29.82 47.86 25.79 45.28
8 + Adapter 25.83 46.80 22.89 42.40 30.32 48.35 26.35 45.85
9 GCNMT [19] 25.81 46.33 25.32 44.35 29.80 47.77 26.98 46.15

10 + Adapter 26.50 46.96 25.71 44.83 30.43 48.46 27.55 46.75
11 Transformer [8] 23.02 43.66 22.03 41.37 28.65 45.83 24.57 43.62

From a structural perspective, this approach facilitates the applicability of
the framework to a wide range of translation models. However, in terms of trans-
lation performance, there are significant differences between the output of the
adaptation phase and the translation phase. Sharing the decoder between these
two phases may introduce bias towards shorter output text during translation,
given the relatively short length of the corrected scrambled part produced in the
adaptation phase. Furthermore, sharing the decoders may increase the vocabu-
lary size of the translation model decoding end and the dimension of the vector,
thereby increase the computational cost of training and inference. Additionally,
changes in the decoder’s vocabulary may alter the semantic space of the trans-
lation model, necessitating retraining even if a well-trained translation model is
available.

As discussed earlier, the adapter model’s decoder only generates the corrected
part of the original document. Therefore, employing two different decoders does
not significantly impact the time required during the translation inference phase.

2.3 Training and Inference

During the model training phase, the framework follows different procedures
based on whether it is built upon a pre-trained translation model or trained
from scratch. When using a pre-trained model, the parameters of the translator
are frozen, and only the decoder part of the adapter is trained. In the case of
training from scratch, parallel corpora are employed as input and output for
the translator, while the source corpus and its scrambled versions are used as
input and output for the adapter. Training is performed iteratively, alternating
between the translation and reconstruction tasks.
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Table 2. Performance on ZH-EN test sets with and without the context-aware adapter
is presented in this Table. The “+Adapter” indicates that our proposed context-aware
adapter was used to guide the context-aware encoder. Significance testing [25] demon-
strates that the improvements achieved by our approach are statistically significant at
the 0.05 level for almost all of the aforementioned models.

# Model MT06 MT02 MT03 MT04 MT05 MT08 All
BLEU BLEU BLEU BLEU BLEU BLEU BLEU Meteor d-BLEU

1 DocT [2] 37.08 43.40 43.83 41.51 41.79 32.47 40.35 27.45 42.91
2 + Adapter 38.65 44.57 44.17 42.80 43.19 33.75 41.52 28.66 44.07
3 HAN [3] 37.20 42.96 44.53 41.89 42.31 32.57 40.83 28.00 43.28
4 + Adapter 38.11 43.62 45.99 43.51 43.03 33.91 42.47 29.49 45.10
5 SAN [17] 37.40 43.28 44.82 41.99 42.60 32.46 41.01 28.19 43.54
6 + Adapter 39.62 45.37 46.72 43.91 43.59 34.48 42.93 30.01 45.38
7 GCNMT [19] 38.39 44.33 46.43 42.92 43.60 33.41 41.51 28.73 44.08
8 + Adapter 39.51 45.28 47.26 43.70 44.56 34.27 42.43 29.50 44.96
9 Transformer [8] 36.27 42.71 43.51 41.25 41.07 31.54 39.64 26.70 42.16

In the framework’s inference phase, the decoders of both the translator and
adapter are frozen for two primary reasons. Firstly, these decoders have under-
gone sufficient training during the training phase. Secondly, freezing them saves
computational time during inference. Similarly, a certain percentage (P%) of the
context-aware encoder parameters are also frozen for similar reasons. This not
only reduces computational overhead but also facilitates multi-round learning by
utilizing multiple scrambled versions of the same document, enabling the trans-
lation model to become familiar with the document to be translated. By freezing
most of the encoder parameters and increasing the dropout rate, overfitting on a
single document is mitigated, preventing potential performance degradation on
other documents in the test set.

Specifically, the document restoration process consists of the following steps:

1. Expansion of X : We expand the original document X by creating K copies,
where K is the expansion ratio. Each copy is processed independently, forming
instances for the document restoration task.

2. Freezing of Translator and Adapter Parameters: We freeze a portion of the
parameters in both the translator and adapter. The dropout rate is set to 0.2,
while P% (the percentage of frozen context-aware encoder parameters) is set
to 99%.

3. Training the Context-Aware Model: We utilize the corrupted instances to
train the context-aware model, which follows the adapter-translator archi-
tecture, with the aim of familiarizing it with the document. This involves
updating part of the parameters in the context-aware encoder(s). During
adaptation, the learning rate is set to 0.1.

4. Document Translation: We employ the adapted model to translate the origi-
nal document X . This entails utilizing the updated parameters in the context
encoder and the sentence encoder to encode the source sentences, and employ-
ing the translator decoder to decode the target sentences.
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3 Application to Various Document-Level NMT Model

To evaluate the effectiveness of our proposed framework in context-aware NMT,
we select the following five representative NMT models:

– DocT [2]: This model considers two previous sentences as context. It employs
a document-aware transformer that incorporates context representations into
both the sentence encoder and decoder.

– HAN [3]: HAN leverages all previous source and target sentences as context
and introduces a hierarchical attention network to capture structured and
dynamic context. The context representations are then fed into the decoder.

– SAN [17]: SAN extends the context coverage to the entire document. It adopts
sparse attention to selectively attend to relevant sentences and focuses on key
words within those sentences.

– MCN [5]: MCN employs an encoder to generate local and global contexts
from the entire document, enabling the model to understand inter-sentential
dependencies and maximize the utilization of contextual information.

– GCNMT [19]: GCNMT comprises a global context encoder, a sentence
encoder, and a sentence decoder. It incorporates two types of global context
to enhance translation performance.

All of these models utilize a context encoder to encode global or local
contexts, thereby improving document-level translation performance. To apply
our proposed adapter-translator architecture to these models, we introduce an
adapter decoder.

4 Experimentation

4.1 Settings

Datasets and Evaluation Metrics. We conduct experiments on English-to-
German (EN→DE) translation tasks in three different domains: talks, news, and
speeches. Additionally, we evaluate our proposed framework for the Chinese-to-
English translation task.

– TED: This dataset is obtained from the IWSLT 2017 MT track [26]. We
combine test2016 and test2017 as our test set, while the remaining data is
used as the development set.

– News: This dataset is derived from the News Commentary v11 corpus. We
use news-test2015 and news-test2016 as the development set and test set,
respectively.

– Europarl: This dataset is extracted from the Europarl v7 corpus. We randomly
split the corpus to obtain the training, development, and test sets.

– For ZH-EN: The training set consists of 41K documents with 780K sentence
pairs.2 We use the NIST MT 2006 dataset as the development set and the NIST

2 It consists of LDC2002T01, LDC2004T07, LDC2005T06, LDC2005T10,
LDC2009T02, LDC2009T15, LDC2010T03.
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Table 3. Statistics of the training, development, and test sets of the three translation
tasks.

Set TED News
#SubDoc #Sent #SubDoc #Sent

Training 7,491 206,126 10,552 236,287
Dev 326 8,967 112 2,169
Test 87 2,271 184 2,999
Set Europarl

#SubDoc #Sent
Training 132,721 1,666,904
Dev 273 3,587
Test 415 5,134

Table 4. Averaged performance with respect to different data expansion ratio in infer-
ring stage.

K BLEU Meteor

0 26.98 46.15
1 27.33 46.50
5 27.55 46.75

10 27.41 46.50
15 27.13 46.32

MT 02, 03, 04, 05, and 08 datasets as the test sets. The Chinese sentences
are segmented using Jieba, while the English sentences are tokenized and
converted to lowercase using Moses scripts.

We obtained the three document-level translation datasets from [17].3 For
the source-side English sentences, we segmented them using the corresponding
BPE model trained on the training data. Meanwhile, for the target-side German
sentences, we used the BPE model with 25K operations trained on the corre-
sponding target-side data. Table 3 provides a summary of the statistics for the
three translation tasks. It should be noted that we divided long documents into
sub-documents containing at most 30 sentences to enable efficient training.

Model Settings. For all translation models, we have set the hidden size to 512
and the filter size to 2048. The number of heads in the multi-head attention
mechanism is 8, and the dropout rate is 0.1. During the training phase, we train
the models for 100K steps using four A100 GPUs, with a batch size of 40960
tokens. We employ the Adam optimizer [27] with β1 = 0.9, β2 = 0.98, and a
learning rate of 1, incorporating a warm-up step of 16K. As for the fine-tuning
3 https://github.com/sameenmaruf/selective-attn/tree/master/data.

https://github.com/sameenmaruf/selective-attn/tree/master/data
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stage, we fine-tune the models for 40K steps on a single A100 GPU, with a batch
size of 40960 tokens, a learning rate of 0.3, and a warm-up step of 4K. During
the inference phase, we set the beam size to 5.

4.2 Experimental Results

We utilize two evaluation metrics, BLEU [28] and Meteor [29], to assess the
quality of translation. The results, presented in Table 1, demonstrate that our
proposed approach consistently achieves state-of-the-art performance, outper-
forming previous context-aware NMT models on average. We observe significant
improvements across all datasets by adapting the NMT model to the charac-
teristics of each input document. Of particular note is the comparison between
models #9 and #10, where our approach demonstrates a notable improvement
with a gain of +0.57 in BLEU and +0.60 in Meteor.

Table 2 showcases the performance results for Chinese-English translation.
The table presents the BLEU scores for each sub-test set and the average
Meteor score across all sets. The results demonstrate that our proposed adapter-
translator framework consistently achieves state-of-the-art performance when
compared to the original versions of previous context-aware NMT models. More-
over, we consistently observed improvements across all datasets by adapting the
trained NMT model to fit each input document. For instance, comparing mod-
els #8 and #7, our approach achieves an improvement with a gain of +0.92 in
BLEU, +0.77 in Meteor, and +0.88 in d-BLEU.

Effect of Hyper-Parameter K in Dynamic Translation. In the inference stage,
the expansion ratio is an important hyperparameter for dynamic translation.
A low ratio may restrict the effectiveness of adaptation in parameter optimiza-
tion, whereas a high ratio may lead to overfitting of the model to the document
restoration task. As indicated in Table 4, we observe that the optimal perfor-
mance is attained with a ratio of 5 for the EN-DE translation task using the
GCNMT model.

5 Analysis and Discussion

In this section, we employ the Chinese-to-English translation task as a represen-
tative to offer additional evidence for the efficacy of our proposed framework. In
addition to reporting s-BLEU, we also present case-insensitive document-level
BLEU (d-BLEU) scores.

5.1 Effect of Adapting Task

In a previous study (Li et al., 2020), it was suggested that context encoders
not only utilize context to guide models but also encode noise. Therefore, the
improvement in translation quality can sometimes be attributed to enhanced
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model robustness. The authors discovered that two context-aware models exhib-
ited superior performance during inference even when the context input was
replaced with noise. To ascertain whether our framework genuinely benefits from
the document adaptation task, we compare the experimental results with and
without an adapter in a Chinese-to-English translation task.

Table 5. Performance on ZH-EN test sets of effectiveness of adapting process.

Context s-BLEU d-BLEU Meteor

HAN [3] 40.83 43.28 28.00
Fake adapting 39.35 42.00 26.29
Noisy adapting 40.80 43.55 28.33
ours 42.47 45.10 29.49

Table 6. Performance on ZH-EN test sets of sharing the sentence encoder, the context
encoder, or both.

Share s-BLEU d-BLEU Meteor

Sentence encoder 41.59 44.19 28.40
Context encoder 41.55 44.13 28.42
Both 42.47 45.10 29.49

We conducted an investigation on the impact of adapting a document prior
to translation. We define Fake adapting as the process wherein nonsensical
words are employed as the target output during the model’s adaptation phase,
and Noisy adapting as the process wherein the model employs shuffled noisy
sentences as input and corrects portions of these sentences as output. The results
in Table 5 demonstrate that our proposed framework achieves improvements of
+3.12 and +1.67 compared to Fake adapting and Noisy adapting, respectively.
Furthermore, a notable performance disparity is observed between the results of
Fake adapting and Noisy adapting. The adapter that employs shuffled documents
as input achieves a gain of +1.45 compared to Fake adapting, indicating that
document adaptation indeed has a positive effect on the translation model.

5.2 Architecture of the Adapter

As elaborated in Sect. 2 on the Adapter-Translator Architecture, our pro-
posed framework employs shared encoder(s) for both the adaptation process and
translation process. It is worth noting that some previous context-aware models
have utilized multiple encoders. To determine whether this architecture is the
optimal choice for our research objectives, we investigated the impact of the
adapter architecture on the translation model’s performance.
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In our framework, the encoder(s) are shared between the adapter and trans-
lator; however, the effectiveness of each encoder remains uncertain. To explore
this, we conducted experiments and present the results in Table 6. The table
demonstrates that sharing either the sentence encoder, the context decoder, or
both leads to significant improvements in translation performance. These find-
ings align with our intuition, and we observe that sharing both encoders yields
the best performance, as indicated in the first row of the table. A possible expla-
nation for these results is that sharing both encoders maximizes the preservation
and exchange of information acquired during the reconstruction process in the
adaptation phase, specifically concerning the test document.

Table 7. Performance of different document adapting task on ZH-EN translation task.

Task s-BLEU d-BLEU Meteor

Translation 41.30 44.00 28.01
Masked sentences 41.98 44.60 28.33
Ours 42.47 45.10 29.49

Table 8. Evaluation on pronoun translations of ZH-EN.

Model Pronoun

Transformer 68.68
GCNMT [19] 68.77
+ adapter 68.95
SAN [17] 69.37
+ adapter 69.84

5.3 Designing of Adapting Task

Masked sentence auto-encoding tasks have been extensively utilized in natural
language processing and have consistently shown their effectiveness and general-
izability in numerous previous studies. In Table 7, we present the performance of
various document adaptation tasks on the Chinese-to-English translation task.
Interestingly, we observe a decline in performance when using the translation
process itself as a document adaptation task, which aligns with findings from
prior research on double-translation. Similarly, the experiment employing the
reconstruction of typical masked sentences as an adaptation task also exhib-
ited a similar phenomenon. These findings indicate that our proposed approach
effectively assists translation models in capturing valuable information from doc-
uments.
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5.4 Pronoun Translation

To evaluate coreference and anaphora, we adopt the reference-based metric pro-
posed by Werlen and Belis [38], following the methodology of Miculicich et al.
[3] and Tan et al. [4]. This metric measures the accuracy of pronoun translation.
Table 8 displays the performance results. We observe that our proposed approach
significantly improves the translation of pronouns, indicating that pronoun trans-
lation benefits from leveraging global context. This finding is consistent with the
results reported in related studies [3,4,38].

5.5 Adapting with Human Feedback

Adapting with human feedback has been widely employed in various natural lan-
guage models, and its effectiveness and generalization have been demonstrated
in numerous prior studies. We sought to investigate whether human feedback
could enhance our translator-adapter framework.

Table 9. Performance of human feedback augmented adapting task on ZH-EN trans-
lation task.

Task s-BLEU d-BLEU Meteor

Real feedback 42.64 45.37 29.60
Fake feedback 42.03 44.71 28.50
Ours 42.47 45.10 29.49

Table 9 presents the performance of the adapting task augmented with human
feedback on the Chinese-to-English translation task. The term “Fake feedback”
refers to using the adapter’s outputs as simulated human feedback, while “Real
feedback” denotes the process of reviewing and correcting the adapter’s out-
puts, and using the corrected sequences as target sentences. From the results, we
observe that using the adapter’s output as simulated human feedback leads to a
decrease in performance. Additionally, employing human-corrected sentences as
feedback incurs a doubling of the adaptation task cost, but only yields marginal
improvements in translation performance. One possible assumption is that sig-
nificant positive impact on translation quality can be achieved only when a
substantial amount of high-quality human feedback data is available. Therefore,
we did not integrate this method into our adapter-translator framework.

5.6 The Impact of Frozen Encoder Parameters Proportion

We performed preliminary experiments to examine the optimal proportion
of frozen encoder parameters during the inference phase of the translator.
The results in Table 10 demonstrate that the translator’s performance steadily
improved as we increased the proportion of frozen encoder parameters, reaching
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its peak at 99%. However, when we further increased the proportion to 99.5%, the
translator’s performance started to decline. Consequently, in our experiments,
we set the proportion of frozen encoder parameters to 99% during the inference
phase of the translator.

6 Related Work

Local context has been extensively investigated in neural machine transla-
tion (NMT) models, including both RNN-based RNNSearch and Transformer-
based models [7,8]. An early attempt in RNN-based NMT was the concatena-
tion method proposed by [30]. Subsequently, the adoption of multiple encoders
emerged as a promising direction in both RNNSearch and Transformer-based
NMT models [2,24,31–35]. Cache/memory-based approaches [1,15,16] also fall
under this category, as they utilize a cache to store word/translation information
from previous sentences.

An alternative approach in document-level NMT treats the entire document
as a unified translation unit and dynamically extracts pertinent global knowledge
for each sentence within the document. This global context can be derived either
from the source side [1,4,17,36] or the target side [21].

Table 10. The impact of frozen encoder parameters proportion.

K BLEU Meteor

97.0% 23.57 43.46
98.0% 26.69 45.83
99.0% 27.55 46.75
99.5% 27.50 46.68
99.7% 27.46 46.60

Moreover, several endeavors have been undertaken to enhance the perfor-
mance of document-level translation through the utilization of monolingual doc-
ument data. For instance, in order to improve translation coherence within a
document, Voita et al. [39] propose DocRepair, which is trained on monolingual
target language document corpora to address inconsistencies in sentence-level
translations. Similarly, Yu et al. [14] train a document-level language model
to re-evaluate sentence-level translations. In contrast, Dowmunt [40] harness
monolingual source language document corpora to investigate multi-task train-
ing using the BERT-objective on the encoder.

7 Conclusion

To enhance the alignment between the trained context-aware NMT model and
each input document, we present in this paper an adapter-translator framework,
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designed to facilitate the model’s familiarity with a document prior to trans-
lation. Our modification to the NMT model involves incorporating an adapter
encoder, which reconstructs the intentionally corrupted portions of the origi-
nal document. Empirical findings from Chinese-to-English translation tasks and
various English-to-German translation tasks demonstrate the considerable per-
formance improvement achieved by our approach compared to several robust
baseline models.

Limitations

Our experimental findings and analysis validate the effectiveness of the proposed
adapter-translator framework in facilitating model familiarity with documents
prior to translation, thereby yielding substantial enhancements across multiple
evaluation benchmarks. However, it should be noted that the inclusion of the
adapter module may introduce a certain degree of computational overhead to
the framework’s efficiency. Nevertheless, it is widely recognized that the time-
consuming aspect of machine translation during the inference stage primarily
stems from the serial decoding process of beam search. In contrast, our approach,
as described in this paper, does not employ beam search during the adaptation
stage; instead, it leverages parallel attention and mask mechanisms that align
with the training stage. The main increase in computational time for this app-
roach arises from the storage of checkpoints after the completion of parameter
updates during the adaptation stage.
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Abstract. Multimodal summarization which aims to generate sum-
maries with multimodal inputs, e.g., text and visual features, has
attracted much attention in the research community. However, previ-
ous studies only focus on monolingual multimodal summarization and
neglect the non-native reader to understand the cross-lingual news in
practical applications. It inspires us to present a new task, named Mul-
timodal Cross-Lingual Summarization for news (MCLS), which gen-
erates cross-lingual summaries from multi-source information. To this
end, we present a large-scale multimodal cross-lingual summarization
dataset, which consists of 1.1 million article-summary pairs with 3.4
million images in 44 * 43 language pairs. To generate a summary in
any language, we propose a unified framework that jointly trains the
multimodal monolingual and cross-lingual summarization tasks, where
a bi-directional knowledge distillation approach is designed to transfer
knowledge between both tasks. Extensive experiments on many-to-many
settings show the effectiveness of the proposed model.

Keywords: Multimodal Summarization · Cross-lingual
Summarization · Knowledge Distillation

1 Introduction

The goal of multimodal summarization is to produce a summary with the help of
multi-source inputs, e.g., text and visual features. With the rapid growth of mul-
timedia content on the Internet, this task has received increasing attention from
the research communities and has shown its potential in recent years. It benefits
users from better understanding and accessing verbose and obscure news, and
thus can help people quickly master the core ideas of a multimodal article.

In the literature, many efforts have been devoted to the multimodal summa-
rization fields, e.g., SportsSum [57], MovieSum [13], MSMR [12], MMSS [28],
MSS [27], How2 [51], MSMO [83], E-DailyMail [8], EC-product [26], MM-
AVS [15], and MM-Sum [34]. All these datasets cover video summarization,
movie summarization, meeting records summarization, sentence summarization,
product summarization, and news summarization. With the predefined task,
former state-of-the-art multimodal summarization models have achieved great
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 273–288, 2023.
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Fig. 1. An example of our MM-CLS dataset. Inputs: an article and image sequence
pair; Output: summaries in different language directions.

outcomes. For instance, [46] and [80] explore the hierarchy between the textual
article and visual features, and integrate them into the MAS model. [39] design
a multistage fusion network to model the fine-grained interactions between the
two modalities. And [76] study multiple multimodal fusion methods to infuse the
visual features into generative pre-trained language models, e.g., BART [25].
Despite their efforts and effectiveness, existing methods are all conducted in
monolingual scenarios. In practical applications, for non-native news viewers,
they desire some native language summaries to better understand the contents
of the news in other languages. To our knowledge, little research work has been
devoted to multimodal cross-lingual summarization. One important season is the
lack of a large-scale multimodal cross-lingual benchmark.

To assist those non-native readers, we propose a new task: Multimodal Cross-
Lingual Summarization for news (MCLS). As shown in Fig. 1, the inputs consist
of two parts: the image sequence and textual article in the source language (e.g.,
English), and the summary outputs can be in any target language (e.g., English,
Chinese, Japanese, and French). Therefore, the MCLS seeks to generate sum-
maries in any target language to reflect the salient new contents based on the
image sequence and the article in the source language. To this end, based on
CrossSum [5], we first construct a large-scale multimodal cross-lingual summa-
rization dataset (MM-CLS) for news. The MM-CLS includes over 1.1 million
article-summary pairs with 3.4 million images in 44 * 43 language pairs.

Based on the constructed MM-CLS, we benchmark the MCLS task by estab-
lishing multiple Transformer-based [59] systems adapted from the advanced rep-
resentative multimodal monolingual models [76], based on mT5 [72]. Specifically,
we incorporate multimodal features into the models for a suitable summariza-
tion in any language. Furthermore, to transfer the knowledge between monolin-
gual summarization and cross-lingual summarization, we design a bidirectional
knowledge distillation (BKD) method. Extensive experiments on many-to-many
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settings in terms of ROUGE scores [38], demonstrate the effectiveness of multi-
modal information fusion and the proposed BKD.

In summary, our main contributions are:

– We propose a new task: multimodal cross-lingual summarization for news
named MCLS, to advance multimodal cross-lingual summarization research.

– We are the first that contributes the large-scale multimodal cross-lingual sum-
marization dataset (MM-CLS), which contains 1.1 million article-summary
pairs with 3.4 million images, in total 44 * 43 language pairs.

– We implement multiple Transformer-based baselines and provide benchmarks
for the new task. Extensive experiments show that our model achieves state-
of-the-art performance on the benchmark. We also conduct a comprehensive
analysis and ablation study to offer more insights.

2 Related Work

2.1 Abstractive Text Summarization (ATS)

Given the input textual article, the goal of ATS is to generate a concise sum-
mary [19,67]. Thanks to the generative pre-trained language models [25], the
ATS has achieved remarkable performance [17,41,47,50,68,69,71,77,79]. Differ-
ent form them, this work mainly focuses on benchmarking multimodal cross-
lingual summarization.

2.2 Multimodal Abstractive Summarization (MAS)

With the rapid growth of multimedia, many MAS datasets have been built
such as SportsSum [57], MovieSum [13], MSMR [12], MMSS [28], MSS [27],
How2 [40,51], MSMO [83], E-DailyMail [8], EC-product [26], MM-AVS [15], MM-
Sum [34], and M3Sum [32]. All these datasets, covering video summarization,
movie summarization, meeting records summarization, sentence summarization,
product summarization, and news summarization, aim to generate a summary
based on multimodal inputs (text, vision, or audio). With the data resources
extensively used, the MAS task has attracted much attention, where the existing
work mainly focuses on how to effectively exploit the additional visual features,
having achieved impressive performance in recent years [29,30,76,80,82,85,86].
The difference from ours lies in the cross-lingual summarization where we hope
to generate a summary in any target language.

2.3 Cross-Lingual Summarization (CLS)

Cross-lingual summarization aims to generate a summary in a cross-lingual
language, which has achieved significant progress [64,66]. Generally, besides
some work of constructing datasets [5,23,48,52,58,75,84], existing methods
mainly include: the pipeline methods [24,44,45,60,61,74,78], i.e., translation
and then summarization or summarization and then translation, mixed-lingual
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pre-training [70], knowledge distillation [43], contrastive learning [62], zero-shot
approaches [2,10,11], and multi-task learning [3,4,6,7,37,55,87]. [65] concen-
trate on building a benchmark dataset for CLS on the dialogue field. We focus
on offering additional visual features for multimodal cross-lingual summariza-
tion.

2.4 Multilingual Abstractive Summarization

It aims to train a model that can produce a summary in any language. Existing
studies mainly pay attention to constructing the multilingual abstractive summa-
rization dataset and there have been many datasets publicly available: MultiL-
ing2015 [16], GlobalVoices [42], MultiSumm [7], MLSUM [52], MultiHumES [75],
MassiveSumm [58], MLGSum [62], and XL-Sum [18]. Most of these datasets are
automatically constructed from online websites due to high human cost, which
involves at least two languages. Essentially, this line of work is still monolingual
while we aim to generate summaries in a cross-lingual manner.

2.5 Knowledge Distillation (KD)

Knowledge distillation [20] is a method to train a model, called the student,
by leveraging valuable information provided by soft targets output by another
model, called the teacher. In particular, the framework initially trains a model
on one designated task to extract useful features. Subsequently, given a dataset
D = {(X1, Y1), (X2, Y2), . . . (X|D|, Y|D|)}, where |D| is the size of the dataset,
the teacher model will generate the output HT

i = {hT
1 ,hT

2 , . . . ,hT
LT

} for each
input Xi. Dependent on the researchers’ decision, the output might be hidden
representations or final logits. As a consequence, to train the student model,
the framework will use a KD loss that discriminates the output of the student
model HS

i = {hS
1 ,hS

2 , . . . ,hS
LS

} given input Xi from the teacher output HT
i .

Eventually, the KD loss for input Xi will possess the form as follows

LKD = dist(HT
i ,HS

i ), (1)

where dist is a distance function to estimate the discrepancy of teacher and
student outputs.

The explicated knowledge distillation framework has shown its effectiveness
in many NLP tasks, such as question answering [1,21,73] and neural machine
translation [31,54,56,63,81]. Nonetheless, its application for multimodal cross-
lingual summarization has received little interest.

3 Method

3.1 Problem Formulation

Given an input article XL1={xk}|XL1|
k=1 in the source language and the correspond-

ing object sequence O={oij}i≤n,j≤m
i=1,j=1 , where xk denotes the k-th token and oij
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Fig. 2. The overview of our model architecture.

represents the detected j-th object of the i-th image (n, m is the number of
images and detected objects in each image, respectively), the MCLS task is
defined as:

p(YL2|XL1,O) =
|YL2|∏

t=1

p(yt|XL1,O, y<t),

where y<t indicates the previous tokens before the t-th time step of the summary
YL2={yt}|YL2|

t=1 in target language and L1 �= L2.

3.2 The MCLS Model

[76] design a text-vision fusion method to inject the visual features into the gener-
ative pre-trained language models (e.g., BART), which achieves state-of-the-art
performance on MAS [34]. As shown in the left part of Fig. 2, the backbone of the
MAS model is a variant of transformer [59] with four modules: textual encoder,
visual encoder, text-vision fusion, and decoder.

Textual Encoder. The input text XL1 is firstly tokenized and mapped to a
sequence of token embeddings X. Then, the positional encodings Epe are point-
wisely added to X to keep the positional information [59]:

Z0
T = X+Epe, {Z0

T ,X,Epe} ∈ R
|XL1|×d,

where d is the feature dimension. It forms the input features Z0
T to the encoder,

which consists of L stacked layers and each layer includes two sub-layers: 1)
Multi-Head Attention (MHA) and 2) a position-wise Feed-Forward Network
(FFN):

Sl
T = MHA(Zl−1

T ) + Zl−1
T , Sl

T ∈ R
|XL1|×d,

Zl
T = FFN(Sl

T ) + Sl
T , Zl

T ∈ R
|XL1|×d,

where Zl
T is the state of the l-th encoder layer.
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Visual Encoder. Following previous work [33,35,36], the object sequence O is
typically extracted from the image by the Faster R-CNNs [49] (actually, we have
several images instead of only one image. Then the visual features are fed into the
visual encoder with H layers. Finally, we obtain the output visual features ZH

V :

Sh
V = MHA(Zh−1

V ) + Zh−1
V , Sh

V ∈ R
|O|×dv ,

Zh
V = FFN(Sh

V ) + Sh
V , Zh

V ∈ R
|O|×dv ,

where Z0
V is the extracted visual features O.

Text-Vision Fusion. The fusion method is vision-guided multi-head atten-
tion [76]. Firstly, the query Q is linearly projected from the textual features
ZL

T , and the key K and value V are linearly projected from the visual fea-
tures ZH

V . Secondly, a Cross-modal Multi-Head Attention (CMHA) is applied to
get the text queried visual features M. Then, a forget gate G is used to filter
redundant and noisy information from the visual features. Finally, we obtain the
vision-guided output ZT+V by concatenating the textual features ZL

T and the
result of a point-wise multiplication G ⊗ M, and then linearly project it to the
original dimension d. Formally, the text-vision fusion process is:

Q = ZL
TWq, Q ∈ R

|XL1|×dc ,

K = ZH
V Wk, V = ZH

V Wv, K,V ∈ R
|O|×dc ,

M = CMHA(Q,K,V), M ∈ R
|XL1|×dc ,

G = Sigmoid(Concat(ZL
T ,M)Wg + bg),

ZT+V = Concat(ZL
T ,G ⊗ M)Wz + bz,

where Concat is the concatenation operation and W∗ and b∗ are trainable
weights.

Decoder. Similar to the encoder, but each of L decoder layers includes an addi-
tional Multi-Head Cross-Attention sub-layer (MHCA):

Sl
dec = MHA(Zl−1

dec ) + Zl−1
dec , Sl−1

dec ∈ R
|YL2|×d,

Cl
dec = MHCA(Sl

dec,ZT+V ) + Sl
dec,

Zl
dec = FFN(Cl

dec) +Cl
dec, Cl

dec ∈ R
|YL2|×d,

(2)

where Zl
dec ∈ R

|YL2|×d denotes the state of the l-th decoder layer. Then, at
each decoding time step t, the top-layer (L-th) decoder hidden state ZL

dec,t is fed
into the softmax layer to produce the probability distribution of the next target
token as:

p(yt|XL1,O, y<t) = Softmax(WoZL
dec,t + bo),

where Wo and bo are trainable weights.
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3.3 Bidirectional Knowledge Distillation

Our framework is shown in the right part of Fig. 2, where we initiate the process
by training the teacher model on the multimodal monolingual summarization
task. In detail, given an input XL1 = {x1, x2, . . . , xN} and corresponding image
features, the teacher model will aim to generate its monolingual summary Y L1 =
{yL1

1 , yL1
2 , . . . , yL1

M1
}. Similar to previous multimodal monolingual summarization

schemes, our model is trained with the cross-entropy loss:

LMLS = −
|YL1|∑

t=1

log(p(yL1
t |yL1

<t ,XL1 ,O)). (3)

After finetuning the teacher model, we progress to train the student
model, which also uses the Transformer architecture. Contrary to the teacher,
the student model’s task is to generate the cross-lingual output Y L2 =
{yL2

1 , yL2
2 , . . . , yL2

M2
} in language L2, given the input document XL1 in language

L1 and corresponding image features. We update the parameters of the student
model by another cross-entropy loss:

LMCLS = −
|YL2|∑

t=1

log(p(yL2
t |yL2

<t ,XL1 ,O). (4)

To pull the cross-lingual and monolingual representations nearer, we imple-
ment a KD loss to penalize the large distance of two vector spaces. Specifically, let
HT = {hT

1 ,hT
2 , . . . ,hT

LT
} denote the contextualized representations produced by

the decoder of the teacher model, and HS = {hS
1 ,hS

2 , . . . ,hS
LS

} denote the rep-
resentations from the decoder of the student model, our KD loss are defined as:

LKD = dist(HT ,HS), (5)

where dist is the distance function to evaluate the difference between two repre-
sentations (e.g., KL, and cosine similarity). Conversely, when the student model
achieves better performance, we also distill its knowledge into the teacher model.
Therefore, the knowledge between the teacher and student models can be trans-
ferred to each other and thus enhance both of them. The bidirectional knowledge
distillation loss function can be defined as:

LBKD = dist(HT ,HS) + dist(HS ,HT ). (6)

3.4 Training and Inference

For training, the model can deal with inputs in multiple languages and predict
the summary in the corresponding language. Specifically, for each language Lk

in the set of K languages Lang = {L1, l2, ..., LK}, the training objective is:

J =
K∑

k=1

(LLk

MLS + LLk

MCLS + α ∗ LBKD). (7)

During inference, the BKD is not involved and only the MLS or MCLS model
is used to conduct summarization.
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4 Experiments

4.1 MM-CLS Dataset

There is no large-scale multimodal cross-lingual benchmark dataset until now.
We construct one as follows.

Data Source and Data Construction. Based on the CrossSum dataset [5], we
construct our MultiModal Cross-Lingual Smarization (MM-CLS) dataset. The
original CrossSum dataset is automatically crawled from the BBC website1.
However, the lacking of the associated image sequence in CrossSum, makes it
impossible to directly conduct research on multimodal cross-lingual summariza-
tion. Therefore, we strictly follow the procedure of [5] to crawl the images for
the corresponding textual summarization dataset given the article URL, where
we maintain the article-summary pair if it contains images and keep the image
order that appeared in the article.

Dataset Statistics and Splits. Table 1 shows that our MM-CLS covers 44
languages and totally includes 1,073,301 article-summary pairs with 3,381,456
images, where each article-summary pair contains about 3.15 images on aver-
age. According to the language directions, we select six languages and conduct
experiments in the many-to-many setting. Due to space limit, here we show
6 * 5 language pairs in Table 1. In fact, we construct the MM-CLS dataset based
on CrossSum [5] where 62% data of CrossSum are maintained. Therefore, our
MM-CLS covers 44 * 43 language pairs and totally includes 1,073,301 article-
summary pairs with 3,381,456 images, where each article-summary pair contains
about 3.15 images on average. The average article and summary length for all
languages is about 520 and 84, respectively.

Table 1. An example of 6 * 5 Language pairs covered by our MM-CLS dataset, and
the number of images with the corresponding article-summary pair is 3 4. Here, we do
not list them for simplicity.

Languages English French Hindi Chinese Japanese Russian

English - 1,881 4,256 4,561 2,447 7,854
French 1,881 – 546 288 256 656
Hindi 4,256 546 – 1,234 5,23 4,256
Chinese 4,561 288 1,234 − 956 2,432
Japanese 2,447 256 523 956 – 1,253
Russian 7,854 656 4,256 2,432 1,253 –

1 https://www.bbc.com/.

https://www.bbc.com/
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Table 2. Results on MM-CLS (ROUGE-1/ROUGE-2/ROUGE-l).

Src Trg
Models English French Hindi Chinese Japanese Russian

English mT5 35.80/13.45/27.99 31.29/11.17/22.28 33.22/11.72/26.20 29.49/15.24/23.85 30.62/15.02/23.94 24.47/8.22/19.88
VG-mT5 36.08/13.84/28.23 31.67/11.56/22.77 33.47/11.98/26.58 29.88/15.76/24.34 30.99/15.54/24.61 24.85/8.77/20.44
VG-mT5+BKD (Ours) 36.85/14.51/29.44 32.55/12.45/23.67 34.67/13.48/27.89 30.49/17.13/25.67 31.86/16.74/25.87 25.88/9.88/21.58

French mT5 23.29/8.75/18.66 38.31/19.19/29.21 22.11/7.44/18.41 25.45/11.21/18.55 26.78/12.44/20.01 23.44/7.47/18.42
VG-mT5 23.80/8.99/18.99 38.53/19.59/29.67 22.45/7.93/18.85 25.78/11.56/18.93 26.99/12.78/20.56 23.83/7.82/18.90
VG-mT5+BKD (Ours) 24.72/9.45/19.78 39.79/20.24/30.66 23.62/8.95/19.77 26.91/13.04/19.89 28.18/14.21/22.05 24.91/9.05/20.31

Hindi mT5 27.05/11.67/21.72 22.11/7.16/17.28 36.41/14.82/27.34 26.12/11.59/19.89 21.32/9.21/16.78 22.11/7.41/16.11
VG-mT5 27.62/11.99/22.07 22.34/7.45/17.61 36.84/15.25/27.76 26.54/11.87/20.21 21.67/9.56/17.15 22.60/7.88/16.70
VG-mT5+BKD (Ours) 28.34/13.07/23.24 23.52/8.41/18.78 37.49/16.56/29.04 27.54/13.11/20.99 22.87/10.56/18.86 23.83/8.41/17.40

Chinese mT5 29.10/13.08/27.37 26.29/11.17/21.28 27.70/12.12/22.22 33.47/15.24/28.81 28.60/13.06/21.95 22.81/7.49/16.42
VG-mT5 29.49/13.52/27.78 26.56/11.57/21.71 27.92/12.71/22.55 33.91/15.60/29.23 28.87/13.55/22.19 23.11/7.90/16.82
VG-mT5+BKD (Ours) 30.54/14.51/28.29 27.45/13.07/23.16 28.83/13.79/23.71 35.38/16.82/30.84 30.68/15.01/23.88 23.99/8.89/17.58

Japanese mT5 29.97/14.18/24.44 24.22/9.15/18.25 25.21/10.72/21.20 24.49/11.21/18.80 39.60/18.08/33.91 25.04/8.44/20.44
VG-mT5 30.31/14.54/24.93 24.62/9.56/18.70 25.63/10.95/21.57 24.81/11.62/19.09 39.97/18.50/34.33 25.60/8.92/20.87
VG-mT5+BKD (Ours) 31.57/15.78/25.77 25.86/10.59/19.77 26.78/12.17/22.45 25.66/12.33/19.98 40.97/19.41/35.16 26.77/9.49/21.89

Russian mT5 29.47/9.86/22.82 25.28/10.17/20.26 28.01/11.28/26.51 27.49/13.24/20.85 27.62/12.02/20.94 29.32/11.32/23.72
VG-mT5 29.89/10.05/23.18 25.67/10.51/20.60 28.60/11.57/26.97 27.91/13.65/21.28 27.98/12.55/21.46 29.66/11.70/24.12
VG-mT5+BKD (Ours) 30.56/11.18/24.13 26.76/11.45/21.85 29.45/12.88/27.59 28.88/14.41/22.87 28.88/14.01/22.91 30.93/12.88/24.87

4.2 Implementation Details and Metrics

Data Pre-Processing. Following [5], we pre-process the textual data by truncat-
ing or padding them into sequences of 512 tokens for X and the outputs Y to 84
tokens after using the 250k wordpiece [72] vocabulary provided with the mT5
checkpoint. For the image sequence, we also truncate or pad the sequence length
to 180 (i.e., five images: 5 * 36; n = 5, m= 36) (Table 2).

Hyper-Parameters. Following [5], we use the base2 model of mT5 [72], in which
L = 12 for both encoder and decoder. For the vision-related hyper-parameters
mentioned in Sect. 3.2, we follow [76] for a fair comparison. Specifically, we use
a 4-layer encoder (i.e., H = 4) with 8 attention heads and a 2048 feed-forward
dimension. For all models, the dropout is set to 0.1 and the label smoothing is
set to 0.1. The d, dc, and dv are 768, 256, and 2048, respectively. During the
training, following a similar training strategy [5,9], we sample each batch from a
single language containing 256 samples and use a smoothing factor (0.5) so that
batches of low-resource languages would be sampled at a higher rate, increasing
their frequency during training. We set the training step to 35,000 steps on a
distributed cluster of 8 NVIDIA Tesla V100 GPUs and trained for about 5 days.
We use the Adafactor optimizer [53] with a linear warm-up of 5,000 steps and
the “inverse square root” learning rate schedule.

For inference, we use beam search with beam size 4 and length penalty of
γ = 0.6. When calculating the ROUGE scores, we use the multi-lingual rouge3
toolkit following [18]. All experimental results reported in this paper are the
average of three runs with different random seeds.

Metrics. Following [5], we use the standard ROUGE scores (R-1, R-2, and R-
L) [38] with the statistical significance test [22] for a fair comparison.

2 https://huggingface.co/google/mt5-base/tree/main.
3 https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring.

https://huggingface.co/google/mt5-base/tree/main
https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring
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4.3 Comparison Models

Text-Only MAS Systems

Table 3. Ablation results under different language directions (Avg. R-1/R-2/R-L
results), where each loss is separately added on the baseline.

Models English→* French→* Hindi→* Japanese→* Russian→* Chinese→*

0 Baseline (VG-mT5) 31.15/12.90/24.49 26.89/11.44/20.93 26.26/10.66/20.25 28.31/12.47/23.38 28.49/12.34/23.24 28.28/11.67/22.93
1 w/ LLk

MLS 31.62/13.41/24.92 27.45/11.86/21.45 26.69/11.06/20.77 28.87/12.88/23.81 28.66/12.58/23.66 28.51/11.99/23.35
2 w/ LBKD 31.75/13.77/25.04 27.80/11.99/21.80 26.89/11.35/21.02 28.99/13.37/24.13 28.96/12.82/23.92 28.65/12.27/23.59
3 w/ LLk

MLS&LBKD 32.05/14.03/25.68 28.02/12.49/22.07 27.26/11.68/21.38 29.47/13.68/24.57 29.60/13.29/24.17 29.24/12.80/24.04

mT5: We choose the mT5 [72], a multilingual language model pre-trained on a
large dataset of 101 languages, as the text-only baseline which is fine-tuned on
our dataset.

Vision-Guided MAS Systems

VG-mT5: We implement the fusion method described in Fig. 3.2 to inject visual
features into the mT5 model, which is a strong baseline.

VG-mT5+BKD (Ours): It is the proposed model where we design two
summary-oriented vision modeling tasks to enhance the VG-mT5 model.

4.4 Main Results

Figure 2 presents the main results on many-to-many scenarios. Overall, our
model obtains notably better results than the text-only “mT5” model and the
vision-guided “VG-mT5” model no matter if it is the MLS or MCLS setting.
Compared with the text-only model, the VG-mT5 model can substantially sur-
pass it, showing that the vision plays a vital role and suggesting the value of
our MM-Sum dataset. After adding the BKD approach, the model performance
obtains further significant improvement, up to 1.35/0.92/1.42 ROUGE scores
on average, showing the effectiveness of our proposed approach.

5 Analysis

5.1 Ablation Study

We conduct ablation studies to investigate how well the two auxiliary tasks work.
The results are shown in Table 3. We have the following findings:
– The MLS task shows a positive impact on the model performance (row 1

vs. row 0), demonstrating that the knowledge of MLS can be transferred to
MCLS, which is beneficial to the summary generation;

– The BKD substantially improves the MCLS model in terms of ROUGE scores
(row 2 vs. row 0), suggesting that transferring knowledge into each other is
helpful for summarization;

– The two loss functions exhibit notable cumulative benefits (row 3 vs. rows
0∼2), showing that transferring the knowledge of MLS to the MCLS is effec-
tive;
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5.2 Human Evaluation

To further evaluate the performances of mT5, VG-mT5 and our VG-mT5+BKD,
we conduct human studies on 50 samples randomly selected from English and
Chinese test sets. We invite three Chinese postgraduate students who highly
proficient in English comprehension to compare the generated summaries under
the multilingual training setting, and assess each summary from three indepen-
dent perspectives: fluency, conciseness and informativeness. We ask them
to assess each aspect with a score ranging from 1 (worst) to 5 (best). The average
results are presented in Table 4.

Table 4 shows the human results on Chinese→English and English→Chinese.
We find that our model outperforms all comparison models from all criteria in
both languages, which further demonstrates the effectiveness and superiority
of our model. The Fleiss’ Kappa scores [14] of Flu., Conci and Info. are 0.72,
0.68 and 0.59, respectively, which indicates a substantial agreement among three
evaluators.

Table 4. Human evaluation results.

Models Chinese→English English→Chinese
Fluency Conciseness Informativeness Fluency Conciseness Informativeness

mT5 4.21 3.54 3.04 3.56 3.14 3.04
VG-mT5 4.44 3.68 3.26 3.82 3.36 3.22
VG-mT5+BKD (Ours) 4.26 4.38 3.76 4.32 3.88 3.68

6 Conclusion and Future Work

In this paper, we propose to benchmark the MCLS task and provide a large-scale
MM-CLS dataset. We also propose a bidirectional knowledge distillation app-
roach, which can explicitly enhance the knowledge transferring between VG-mT5
and MCLS, and thus improve the summary quality. Extensive experiments on
multiple settings, show that our model significantly outperforms related baselines
in terms of ROUGE scores. In the future, due to the difficulty of simultaneously
learning cross-lingual alignment and cross-modal alignment, future work should
focus on these directions.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their insightful comments and suggestions to improve this paper.
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Abstract. Event detection (ED) is a crucial area of natural language
processing that automates the extraction of specific event types from
large-scale text, and studying historical ED in classical Chinese texts
helps preserve and inherit historical and cultural heritage by extracting
valuable information. However, classical Chinese language characteris-
tics, such as ambiguous word classes and complex semantics, have posed
challenges and led to a lack of datasets and limited research on event
schema construction. In addition, large-scale datasets in English and
modern Chinese are not directly applicable to historical ED in classical
Chinese. To address these issues, we constructed a logical event schema
for classical Chinese historical texts and annotated the resulting dataset,
which is called classical Chinese Historical Event Dataset (CHED). The
main challenges in our work on classical Chinese historical ED are accu-
rately identifying and classifying events within cultural and linguistic
contexts and addressing ambiguity resulting from multiple meanings of
words in historical texts. Therefore, we have developed a set of anno-
tation guidelines and provided annotators with an objective reference
translation. The average Kappa coefficient after multiple cross-validation
is 68.49%, indicating high quality and consistency. We conducted various
tasks and comparative experiments on established baseline models for
historical ED in classical Chinese. The results showed that BERT+CRF
had the best performance on sequence labeling task, with an f1-score of
76.10%, indicating potential for further improvement (The CHED data
is released on https://github.com/lcclab-blcu/CHED).

Keywords: Event detection · Classical Chinese · Dataset

1 Introduction

Event detection (ED) is a significant research area in natural language processing
(NLP). The ED task mainly includes two steps. Firstly, recognizing and labeling
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triggers (words that best represent the occurrence of events) in the text, and
secondly, determining the event types to which triggers belongs. For example, in
the sentence “九月乙丑，太尉李修罢。” (In September of Yi Chou, General Li
Xiu was dismissed.), the word “罢” (ba) means “dismiss”. Therefore, the trigger
in this sentence is “罢” (ba), and we label this sentence as a “职位-官位-免职”
(Position-Official_position–Dismiss_from_a_position) event triggered by the
word “罢” (ba).

Constructing high-quality datasets for specific domains is critical for ED
tasks. Several high-quality ED datasets exist for English and Chinese, such as
ACE 2005 [13], LEVEN [16], MAVEN [14], PoE [8] and DuEE [9]. However,
classical Chinese lacks such datasets due to complex semantics and special era.
Large-scale datasets in English and modern Chinese are not directly applicable to
classical Chinese ED. The current research on ED in classical Chinese is limited
by the lack of high-quality datasets that are specific, systematic, and scalable.

To address these crucial issues and enhance the accuracy and efficiency of
classical Chinese ED, we have constructed the classical Chinese Historical Event
Dataset (CHED). This dataset has the potential to serve as a benchmark for
developing and evaluating ED algorithms for classical Chinese historical texts.
The hierarchical and logical event schema of the CHED can be extended and
adapted to other NLP domains, making it a valuable resource not only for NLP
researchers but also for scholars in other humanities fields. Moreover, CHED
offers a unique historical perspective for exploring ancient societies, enhanc-
ing our comprehension of their cultures and interconnections. It also supports
the digital humanities research and helps preserve cultural heritage through the
study of classical Chinese texts.

During the construction of our dataset, we encountered three primary chal-
lenges: 1) developing an event schema that could encompass the majority of
events described in classical Chinese literature; 2) accurately identifying and
classifying events within cultural and linguistic contexts while accounting for
the ambiguity resulting from multiple meanings of words in historical texts; 3)
ensuring consistent annotation results, which was essential throughout the entire
dataset construction process.

To address these challenges, we proposed several approaches. One such app-
roach involved subjecting the processed data and preliminary event schema to
trial annotation and expert review. Through several revisions and validations, we
constructed a hierarchical and logical event schema with fine granularity, consist-
ing of 9 major event categories and 67 subcategories that cover significant events
in ancient Chinese history. The 9 major categories of events include Life , Posi-
tion , Communication , Movement , Ritual , Military , Law , Economy ,
and Nature . The complete event schema has been placed in the Appendix A, as
shown in Figs. 11 and 12. In addition, we have annotated a total of 8,122 valid
sentences.

To ensure further accuracy, our annotators possessed extensive knowledge
of classical Chinese and actively sought expert opinions while constructing
the dataset. Multiple cross-validation were also conducted, yielding an average
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Kappa coefficient of 68.49%, which denotes a high level of consistency and qual-
ity. Additionally, we conducted various tasks and comparative experiments on
established baseline models for historical ED in classical Chinese. The outcomes
indicated that BERT+CRF exhibited the highest performance on sequence label-
ing task, achieving an f1-score of 76.10%.

We conclude three main contributions as follows: 1) We constructed the
CHED, which provides a rich cross-historical data foundation for classical Chi-
nese ED, making it a valuable resource for scholars and researchers. The dataset
contains 8,122 valid sentences; 2) We proposed a hierarchical and logical event
schema, which has a fine-grained structure that can be adapted more effec-
tively to other NLP domains; 3) We excavated a unique and profound historical
perspective from the CHED, promoting the advancement of digital humanities
research.

2 Related Work

In the realm of event detection (ED) tasks in deep learning, sparse and imbal-
anced training data, complex text, and semantic ambiguity still pose prob-
lems, highlighting the importance of dataset construction and feature extraction
through text refinement processing.

A high-quality dataset is essential for ED tasks. It should be large enough
to support various learning algorithms, has high accuracy and consistency in
labeled data, and contains diverse event types. Several high-quality annotated
ED datasets have been constructed, including the widely used English dataset
ACE 2005 [13], the legal ED dataset LEVEN [16], the large-scale cross-domain
ED dataset MAVEN [14], the electrical power ED dataset PoE [8] and the Chi-
nese event dataset DuEE [9] based on real-world scenarios. While many studies
have summarized the primary methods of Chinese ED based on literature, classi-
cal Chinese field ED faces challenges due to differences in context and expression
of historical texts.

There have been studies using deep learning methods to investigate histori-
cal ED in classical Chinese texts [6], such as researching the war events in the
ZuoZhuan (左传). For example, the RoBERTa-CRF model was established [15],
and pattern matching and CRF models were used to extract events from the
ZuoZhuan (左传) [17]. Additionally, mixed techniques using information extrac-
tion have been applied to classical Chinese texts, including entity recognition and
event extraction, with the extracted information being visualized using electronic
charts [10]. Furthermore, studies have been conducted on extracting historical
events and event elements from Shiji (史记) and ZuoZhuan (左传) [2]. However,
these studies have only produced coarse-grained event type constructions, mostly
focused on a single text and based on relatively small dataset sizes.

3 Event Schema Construction

The construction of event types in a given context should fulfill the criteria
of comprehensive coverage, precise granularity, and high accuracy. To achieve
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Fig. 1. This is the complete process for constructing the event schema. The preliminary
construction was based on word frequency statistics and semantic clustering of the
translations corpus, and it was finalized through trial annotation and expert evaluation.

these goals, we mainly carried out work in four aspects, as shown in Fig. 1: 1)
Word frequency statistics; 2) Word semantic clustering; 3) Trial anno-
tation; 4) Expert evaluation. Eventually, we constructed an event schema
that includes 9 major categories and 67 subcategories. Figure 2 depicts the struc-
ture of one of the major categories, Position .

We assume that the words with higher frequency in the text reflect the main
content and central theme of the text, which is closely related to the event types.
Therefore, it is necessary to conduct comprehensive word frequency statistics
on the text to ensure the coverage of event types. We selected the translated
works of the Twenty-Four Histories from NiuTrans1and used HanLP2 for basic
word segmentation and part-of-speech tagging on the corpus, and conducted
word frequency statistics based on the results. After removing stop words and
irrelevant part-of-speech tags, we analyzed the word frequency statistics results
of nouns, verbs, and gerunds. We discovered that certain high-frequency words,
such as “进攻” (attack), could serve as event types for historical events in classical
Chinese.

Position

Imperial_position

Designating

Succeed_to_the_throne

Ascend_to_the_throne

Official_position

Hold_a_position

Dismiss_from_a_position

Promote

Demote

Reward_and_gift

Fig. 2. Position is one of the 9 major event categories in the CHED event schema,
and this diagram shows the complete hierarchical structure of Position .

Semantic clustering analysis was further conducted on words to automatically
classify similar semantic words, aiming to provide more refined classification
references for the construction of classical Chinese event types. We used Fasttext3

1 https://github.com/NiuTrans/Classical-Modern.
2 https://github.com//hankcs/pyhanlp.
3 https://github.com/facebookresearch/fastText.

https://github.com/NiuTrans/Classical-Modern
https://github.com//hankcs/pyhanlp
https://github.com/facebookresearch/fastText
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to generate vector representations for each word and the k-means clustering
algorithm to cluster words with high semantic similarity. Based on the analysis,
and inspired by the ACE [13], MEVEN [14], LEVEN [16] and other datasets, we
preliminarily summarized the classical Chinese historical event types, including
15 major categories and 73 subcategories.

To evaluate the actual event coverage in real-world texts, we randomly
selected 15 volumes from the Benji (本纪) and Liezhuan (列传) sections of each
book in the Corpus of the Twenty-Four Histories provided by the Hancheng web-
site4, which included a total of 8,304 sentences,for trial annotation. Finally, we
obtained 2,913 annotated sentences and 4,047 event labels. Based on the trial
annotation results and the actual situation during the annotation process,we
modified and merged some event types.

In addition, to ensure the accuracy of classical Chinese historical event types
and avoid personal subjective bias, we invited experts and students with linguis-
tic and computer science backgrounds to evaluate our event types. After these
efforts, we constructed the final event schema for CHED.

4 Annotation Process

We used Fig. 3 to illustrate our process.

4.1 Document Selection

In order to ensure the completeness and high quality of the corpus, we chose
the published book The Twenty-Four Histories (12 volumes of annotated edi-
tions with comparison of classical Chinese and modern Chinese) published by
Xianzhuang Shuju (线装书局) as our main source of annotated corpus.

There are three main reasons for choosing published books: 1) High-quality
corpus: the corpus in published books has been carefully selected and strictly
reviewed multiple times; 2) Reduced workload: the standardized typesetting
of books eliminates the need for additional data prepossessing; 3) Provide ref-
erence translations: the books provide high-quality aligned classical Chinese
and modern Chinese corpus, facilitating reference for annotation personnel.

We mainly focused our annotations on the Benji (本纪) and Liezhuan (列传)
(the main body of the histories), selecting 2–3 complete volumes at random from
each of the Twenty-Four Histories to ensure complete historical figure records. In
total, we selected 61 volumes, comprising 61 historical figures, 13,159 sentences,
and 236,842 characters. Our main objective is to identify and label triggers in
classical Chinese texts, and determine the event categories to which these triggers
belong.

4 https://guoxue.httpcn.com/zt/24shi/.

https://guoxue.httpcn.com/zt/24shi/
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Fig. 3. The entire annotation process from raw corpus to dataset is presented, including
two main stages, as well as the measures taken to ensure the quality of annotation.

Fig. 4. The Doccano annotation interface contains three events in this example, with
triggers “见” (jian), “取” (qu), and “生” (sheng). We can select the corresponding event
type below each trigger for annotation.

4.2 Annotation Stage

The annotation process mainly consisted of two stages: 1)Trial annotation was
to preliminary test and refine the types of historical events in classical Chinese,
as well as to unify the annotation discrepancies between the two annotators. This
was helpful for improving the consistency and accuracy of the formal annotation
stage; 2) Formal annotation: the two annotators were assigned different tasks.
Annotator 1 was responsible for annotating the first 12 books of the Twenty-
Four Histories, while annotator 2 for the latter 12 books. Specifically, as shown in
the Fig. 4, we created a sequence annotation project on the Doccanno platform5

and split the documents into units of sentences delimited by periods for ease of
annotation.

4.3 Annotation Quality

In this section, we introduce our three main measures taken to ensure the accu-
racy and consistency of the annotated corpus.

Annotation Guidelines. To ensure dataset quality and improve manual anno-
tation consistency, rules and standards have been established for selecting trig-
gers.

Contextual and Semantic Priority. We should focus on the semantics of
the translation and its original context because the problem of polysemy is par-
ticularly prominent in classical Chinese, and the process of annotation is prone
5 https://github.com/doccano.

https://github.com/doccano
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to errors in understanding. In example (1) and (2), “胜之” (sheng zhi) and “败
之” (bai zhi) have different usages, but both semantically denote victory. We
annotated both of them as “Military-Ceasefire-Vanquish” based on the semantic
meaning of the translated text.

(1) 军事-停战-战胜：四月，友宁引兵西，至兴平，及李茂贞战于武功，
大败之。
(Military-Ceasefire-Vanquish: In April, Youning led his army westward to
Xingping and fought against Li Maozhen in Wugong, where he achieved a
resounding victory.)

(2) 军事-停战-战胜：与晋战河阳，胜之。

(Military-Ceasefire-Vanquish: In the battle against Jin at Heyang, they
emerged victorious.)

Simplest Trigger. It’s best to use simple triggers that are easy to understand
and annotate, as this reduces the time and cost of annotation, minimizes subjec-
tive differences among annotators, simplifies subsequent processing and analysis,
and ultimately improves the accuracy and reliability of the annotated data. For
example (3), we only label the noun “水” (flood), while “大” (massive) is not
labeled.

(3) 自然-灾害-水灾：秋七月乙酉，三郡大水。

(Nature-Disaster-Flood/Drought: In the second month of autumn, there was
a severe flood in three counties.)

Event Property. It is difficult to immediately determine event attributes such
as tense and polarity in classical Chinese because crucial information is often
omitted. We have adopted LEVEN’s event annotation guidelines [16] and anno-
tate any events that are mentioned. In example (4), even if the attack has not
yet taken place, we still annotate it.

(4) 军事-攻击-征伐：引兵欲攻燕，屯中山。

(Military-Attack-Conquest: The army is preparing to attack Yan kingdom and
stationed at Zhongshan.)

Incorporation of Ancient Cultural Knowledge. Classical Chinese contains
a wealth of historical and cultural background knowledge that must be taken
into consideration when constructing event schema and annotating them. For
example, Classical Chinese has specific vocabulary expressions for the change of
official positions, such as “去” (qu) and “罢” (ba), which means “dismiss”.

Alignment of Classical Chinese and Its Translation. It was necessary to
provide annotators with an objective reference translation standard during the
annotation process to ensure consistency, given the difficulty of understanding
the semantics of classical Chinese. Our aligned classical Chinese and modern Chi-
nese data mainly came from the Twenty-Four Histories (12 volumes of annotated
editions with comparison of classical Chinese and modern Chinese) published by
Xianzhuang Shuju (线装书局).
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Cohen’s Kappa Coefficient. To verify the consistency of the annotations and
ensure the validity and reliability of the dataset, we conducted cross-validation
using Cohen’s Kappa coefficient. Specifically, the labeled sentences were divided
into two datasets, A and B, with annotator 1 and annotator 2 each annotating
a portion of the sentences. A random sample of 10% of the sentences was taken
from each dataset, and the annotators swapped datasets to annotate the sampled
sentences.

Regarding the calculation standard for Cohen’s kappa coefficient, we consid-
ered the annotation to be consistent if both annotators labeled the same event
labels for the same sentence, and considered it to be inconsistent if they labeled
different event labels. After conducting 4 rounds of cross-validation, the average
kappa coefficient was 68.49%, indicating a relatively high level of consistency
between the two annotators and a high level of reliability for the annotation
results. Inconsistent annotations often stem from ambiguity resulting from multi-
ple meanings of words in historical texts. Such as example (5), the character “屯”
may have been incorrectly labeled as the trigger for the “Military-Garrisoning”
event. However, it is actually a noun that means “military camp”. Therefore, the
sentence should be annotated with “还” as the trigger word for the “Movement-
Arrive” event type.

(5) 坚还屯。 (Sun Jian returned to the military camp.)

*Annotator 1: Military-Garrisoning : 坚还屯。
Annotator 2: Movement-Arrival : 坚还屯。

5 Data Analysis

In this section, we mainly introduce the scale and distribution of the dataset,
as well as the phenomenon of data sparsity that has been observed, and provide
possible explanations for it.

5.1 Data Size

The dataset consists of 61 volumes and 61 historical figures from the Twenty-Four
Histories, comprising a total of 13,159 sentences and 236,842 characters. Among
them, there are 8,122 sentences with event labels, totaling 145,973 characters,
and a total of 14,154 labels.

The scale of the dataset we finally constructed is moderate due to the dif-
ficulty and high cost of cross-historical annotation. However, it contains rich
information on classical Chinese history texts from different dynasties and his-
torical figures, and has certain representativeness. It can be used in the future to
train and evaluate algorithms and models for classical Chinese historical event
detection.
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5.2 Data Distribution

An imbalanced distribution of event types is indicated by Fig. 5 in the CHED
dataset. The major event types-including Military, Communication, Movement
and Position, account for the vast majority of the dataset. Among the event sub-
types depicted in Fig. 6, including Arrive, Hold_a_position, Conquest, Dispatch
and others, the proportions are higher. This imbalance may result in insufficient
recognition of minority events by models, posing a challenge for future classical
Chinese ED tasks.
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Following our previous annotation standards, Figure 7 displays the triggers
that appear at a frequency greater than 100 in the sentences, which primar-
ily consist of monosyllabic words. The frequency distribution of triggers corre-
sponds to the proportion of event types. For instance, “至” (zhi) corresponds
to the Arrival event. This indicates that identifying high-frequency triggers in
a sentence to predict the corresponding event type is a vital aspect in classical
Chinese historical ED.
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Displaying the number of event labels that appear in a single sentence, Fig. 8
reveals that a single sentence typically contains one or multiple event types, with
1–3 event types being the most common. This poses a challenge for accurately
detecting multiple event types in classical Chinese.

Several possible explanations for the imbalanced distribution observed in the
CHED dataset have been identified based on historical facts from ancient China.
The frequency of certain events in historical texts reveals significant aspects of
ancient Chinese political, social, and cultural life. The emphasis on posthumous
honor is shown by the disparity in the frequency of birth and death events.
The prevalence of imperial edict events indicates a society governed by men
rather than laws, while the high proportion of position events is a result of the
imperial examination system. The frequent occurrence of military events reflects
the challenges to the legitimacy and orthodoxy of feudal monarchy. Overall, these
findings align with historical reality and demonstrate the potential for effective
digitization of ancient literature.

Economy

PositionMilitary

Law

Ritual

Nature
Communication

Life

Movement

Imperial
position

Official
position

Fig. 9. The figure shows the Position event divided into Imperial position and
Official position connected through Movement and Communication . Military ,
Law , Ritual , and Economy events serve Position while Nature events affect people
represented by Imperial position and Official position .

5.3 Event Logical System Construction

We have constructed a complete and logically consistent ontology of classical
Chinese historical event types that exhibit a hierarchical relationship and entail
connections between the major categories of event types, as shown in Fig. 9. It is
our belief that the central theme of records in Twenty-Four Histories continues to
revolve around political power struggles and the pursuit of authority. Therefore,
we focus on the Position events as the core, which are further divided into
imperial position and official position , reflecting the two major relationships
between emperors and officials in ancient China.

The transition of political power is generally reflected in Military events,
which seize power through warfare and maintain power through Law events,
supported by the Economy events that are centered around the taxation sys-
tem. In order to strengthen the legitimacy of their political power, emperors often
hold Ritual events, including the worship of heavenly deities to emphasize the
divine right of emperors, the worship of ancestral spirits to emphasize the con-
tinuity of their bloodline-based inheritance system centered around the eldest
son, and the worship of sages (e.g. Confucius) to provide a source of legitimate
political ideology for their regimes.
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In a political system that centers around imperial power, there exists a rela-
tionship between emperors and officials, where Movement and Communica-
tion events are utilized to facilitate the transmission of political orders and the
implementation or abolition of measures from top to bottom. The Life events
mainly refer to the lives of the emperor and the officials, which are the main
records of figures in the Benji (本纪), Liezhuan (列传) and Shijia (世家) sections
of the Twenty-Four Histories.

Table 1. The detailed statistics of subsets of CHED

Dataset Sentences Event_labels Characters

Training 5,685 9,979 102,636
Validation 1,218 2,056 21,618
Test 1,219 2,119 21,719
Total 8,122 14,154 145,973

At the same time, the records of Nature events in the Twenty-Four Histories
mainly focus on how natural events affected the behavior of the emperor and
the officials. For example, in Volume One of Song Shi (宋史), in the Benji (本
纪) of Taizu (太祖), the sentence following contains famine event, which affected
the emperor’s subsequent actions, namely, ordering the opening of granaries to
provide relief for the people due to the occurrence of famine in eight provinces.

(6) 辛亥, 澶, 滑, 卫, 魏, 晋, 绛, 蒲, 孟八州饥, 命发廪振之。

(In Xinhai year, there was a famine in eight provinces, including Chanzhou,
Huazhou, Weizhou, Jinzhou, Jingzhou, Puqizhou, and Mengzhou. The emperor
commanded the opening of granaries to provide relief for the people.)

6 Experiments

6.1 Setting

We randomly shuffled the dataset and divided it into training set, validation set,
and test set in a ratio of 0.7:0.15:0.15. The sizes of each part of the dataset are
shown in the Table 1.

Regarding the hyper parameters of the model, including BERT, BiLSTM,
IDCNN, CRF, we set the seed number of the random number generator to 123
to ensure the reproducibility and stability of the model. We set the maximum
input sequence length to 150 to ensure model performance. The train batch size
is set to 32, and the eval batch size is set to 12 for training and validation batches,
respectively. Due to the specificity of the corpus and the imbalance of the labels,
we set the number of training epochs to 30, the learning rate to 3e-05, dropout
to 0.3, and adam epsilon to 1e−08 to prevent the model from over-fitting.
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Inspired by Leven [16], we used two perspectives of micro and macro for
the evaluation metrics of the model, including precision, recall, and f1-score.
This was because we noticed the imbalance of the labels for classical Chinese
event types. The micro perspective focuses on categories with a large number of
samples, considering the frequency of each category’s occurrence in the samples.
The macro perspective treats each category equally, enabling us to evaluate the
model from multiple aspects.

Table 2. The experimental results by modeling ED as a sequence labeling task on the
CHED.

Model Micro Macro
Precision Recall F1-score Precision Recall F1-score

BERT 74.58 77.11 75.82 67.95 65.05 65.19
BERT+CRF 75.15 77.06 76.10 67.69 65.22 64.98
BiLSTM 70.40 64.98 67.58 58.40 51.36 53.15
BiLSTM+CRF 70.24 66.73 68.44 60.77 52.91 54.76
IDCNN 71.70 60.97 65.90 57.98 44.40 49.05
IDCNN+CRF 71.04 63.66 67.15 55.50 46.88 49.44
BERT+BiLSTM+CRF 72.93 77.68 75.23 66.17 66.64 65.23

6.2 Baseline

We approached the ED task by dividing it into two tasks: 1) Sequence labeling
task: We labeled the event type corresponding to the triggers to detect events
in a sentence, using BERT, BiLSTM, IDCNN, and CRF as baseline models.
BERT from chinese-bert-wwm-ext [3] was used as the input vector represen-
tation for BiLSTM and IDCNN models, and the project code was based on
tianshan19946 [12]; 2) Multi-class classification task: We utilized BERT
[3] and T5 [11] with human-crafted prompts to predict the upcoming sentence
given the known context, and transformed the multi-label classification problem
into a binary classification problem to detect events in a sentence. We designed
a prompt template: ([“placeholder”:“text_a”] Does the sentence contain
[“placeholder”:“text_b”]? [MASK] ), and “text_a” represents the sentence
text and “text_b” represents the event type. The project code was based on
Openprompt [4]7.

The baseline models used in each task were: BERT [3] and T5 [11] are pre-
trained language models that have demonstrated state-of-the-art performance on
a range of NLP tasks. BiLSTM is a widely used sequence modeling method that
captures bidirectional context [5]. IDCNN is a convolutional neural network that

6 https://github.com/taishan1994/pytorch_bert_bilstm_crf_ner.
7 https://github.com/thunlp/OpenPrompt.

https://github.com/taishan1994/pytorch_bert_bilstm_crf_ner
https://github.com/thunlp/OpenPrompt
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uses different dilation kernel sizes to capture contextual information at different
ranges [1]. CRF is a commonly used sequence labeling model that improves
labeling accuracy by considering the dependencies between labels [7]. Prompt is
a novel technique for zero-shot learning tasks that allows the model to perform
new tasks without any training examples by adding special prompts [4] (Tables 2
and 3).

6.3 Result and Analysis

In the sequence labeling task, overall, the micro-average results outperformed the
macro-average results, due to the imbalanced distribution of event labels where
some labels had fewer instances in the dataset, resulting in insufficient learning
by the model. The results showed that the BERT+CRF model performed the
best, while the performance of the BiLSTM and IDCNN models was inferior,
respectively. Additionally, the BERT+BiLSTM+CRF model had the highest
macro-average f1-score while the IDCNN model had the lowest macro-average
f1-score.

Table 3. The experimental results by modeling ED as a multi-class classification task
on the CHED.

Model Micro Macro
Precision Recall F1-score Precision Recall F1-score

BERT+Prompt 87.36 87.36 87.36 86.88 74.26 76.27
T5+Prompt 87.93 87.93 87.93 83.39 74.70 75.69

These results indicate that the BERT+CRF model is better suited for this
task than other models, as it can capture richer contextual information and the
use of CRF can address label dependencies and enhance algorithm performance.
However, in the historical ED task in classical Chinese texts, triggers are often
monosyllabic, and label dependencies may not be as strong, hence the influence
of the CRF model may not be as significant.

In multi-class classification tasks, the difference between the results of micro-
average and macro-average is not significant compared to sequence labeling tasks.
This may be because Prompt is more suitable for handling datasets with few sam-
ples, and it provides additional information to the pre-trained language model
through manually designed prompts, enabling the model to better utilize exist-
ing knowledge for classification tasks. Moreover, the Prompt method performed
well. Unlike sequence labeling tasks, multi-class classification tasks focus more
on the classification of historical events in classical Chinese texts, and therefore,
the BERT/T5 + Prompt model may have an advantage in classification.

There may be several reasons for such results: 1) Model structure: The
superior performance of BERT in historical ED tasks in classical Chinese texts
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Fig. 10. The comparison results of f1-scores for different models across different event
types in CHED.

may be attributed to its pre-trained Transformer-based architecture that effec-
tively captures contextual information, compared to traditional neural network
models like BiLSTM and IDCNN that may be affected by sequence length lim-
itations and gradient vanishing. However, combining BERT with BiLSTM and
CRF in the BERT+BiLSTM+CRF model did not yield the expected perfor-
mance level, possibly due to increased noise or conflicts resulting from the intro-
duction of more complexity and parameters. 2) Annotation errors: Despite
our efforts to ensure the quality and consistency of the annotations, the com-
plexity of the context and cultural context of classical Chinese, as well as the
ambiguity of word meanings, may lead to some annotation errors in the dataset,
especially when the annotator’s knowledge level is limited. These errors may
have an impact on the performance of the models. 3) Sparse samples: As
shown in the Fig. 10, the f1-scores of different event types on different models
are displayed. We can see that the performance of the Ritual, Economy, and Law
events is poorer compared to other events, and the number of samples for these
three event types in the dataset is also the smallest. With an imbalanced distri-
bution, the presence of some noise or mislabeling may lead to poor recognition
ability of the model for certain event types and stronger recognition ability for
other types.

Overall, the BERT+CRF model performed the best in the task of historical
ED in classical Chinese texts. The Prompt method also performed well. However,
there is still significant room for improvement and challenges in future research.

7 Conclusion and Future Work

In conclusion, we have constructed a hierarchical and logical schema for classi-
cal Chinese events and used it to create the CHED based on the Twenty-four
Histories corpus. The CHED can effectively facilitate the advancement of digital
humanities research by providing a unique and profound historical perspective.
Despite encountering various challenges during the construction of the dataset,
we ensured the consistency and quality of the annotations. We assessed the
effectiveness and quality of the dataset by testing it against several baselines
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and calculating kappa scores, and we obtained satisfactory results. Nevertheless,
there is scope for further enhancement, and our future work will concentrate
on expanding and optimizing the dataset to meet a wider range of application
needs. Our dataset is a valuable resource not only for natural language process-
ing but also for classical literature and cultural studies. Furthermore, it makes a
significant contribution to the field of event detection in classical Chinese, and
we anticipate that it will inspire further research and exploration.

Acknowledgements. This research project is supported by the National Natural
Science Foundation of China (61872402), Science Foundation of Beijing Language and
Culture University (supported by “the Fundamental Research Funds for the Central
Universities”) (18ZDJ03).
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Fig. 12. Event schema of the CHED in Chinese
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Abstract. Pre-trained language models are sensitive to adversarial
attacks, and recent works have demonstrated universal adversarial
attacks that can apply input-agnostic perturbations to mislead models.
Here, we demonstrate that universal adversarial attacks can also be used
to harden NLP models. Based on NLI task, we propose a simple uni-
versal adversarial attack that can mislead models to produce the same
output for all premises by replacing the original hypothesis with an irrel-
evant string of words. To defend against this attack, we propose Training
with UNiversal Adversarial Samples (TUNAS), which iteratively gener-
ates universal adversarial samples and utilizes them for fine-tuning. The
method is tested on two datasets, i.e., MNLI and SNLI. It is demon-
strated that, TUNAS can reduce the mean success rate of the universal
adversarial attack from above 79% to below 5%, while maintaining sim-
ilar performance on the original datasets. Furthermore, TUNAS models
are also more robust to the attack targeting at individual samples: When
search for hypotheses that are best entailed by a premise, the hypothe-
ses found by TUNAS models are more compatible with the premise than
those found by baseline models. In sum, we use universal adversarial
attack to yield more robust models.

1 Introduction

Pre-trained models have achieved impressive performance among natural lan-
guage processing (NLP) tasks, including natural language inference (NLI) and
machine reading comprehension (MRC) [8,12]. Nevertheless, these models are
vulnerable under adversarial attacks [1]. For most adversarial attack methods,
the adversarial samples are input-specific, i.e., the adversarial perturbation is
targeted at a specific input. More recently, however, studies have also shown
the existence of universal adversarial attacks, which are input-agnostic [1,20].
Multiple methods have been proposed to find universal adversarial samples. One
method is to append an input-agnostic string of words to any input to convert the
input into an adversarial sample. For example, Wallace et al. [20] use gradient-
based search to find strings that, when concatenated to any input, could result
in specific model output. For instance, for models trained on SNLI, prepending
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 306–324, 2023.
https://doi.org/10.1007/978-981-99-6207-5_19
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“nobody” to the hypothesis could cause >99% of the samples to be judged as
being contradictory to the premise, even when all the tested hypotheses are in
fact entailed by the premises. Another method is to randomly sample a large
number of sentences and screen for universal adversarial samples. For example,
Lin et al. [11] use such a method to find sentences that a model always judges
as the correct answer to multiple-choice MRC questions.

Fig. 1. Examples of the NLI task and universal adversarial attack method adopted in
this work. The model originally output the correct answers. Nonetheless, when UBS,
i.e., “a exceeds lowly herein1974”, is presented as the hypothesis, the model is fooled to
give out entailment prediction, even though they are actually irrelevant.

The mainstream method to increase the robustness of models against adver-
sarial attacks is adversarial training [7,13,24]. In this process, adversarial samples
are generated and injected into the training batch. Adversarial training generally
focuses on input-specific attacks, which involve small perturbations and target-
ing at individual samples. Therefore, models fine-tuned with these methods still
fail in universal adversarial attacks [17]. Besides, unlike input-specific attacks,
universal attacks use single perturbation to cause the model fail in lots of sam-
ples, making it more effective to generate adversarial samples. Recently, in the
domain of vision, some studies have also proposed to use universal adversarial
samples for adversarial training [17,23], which is proved to be helpful for improv-
ing the robustness of the models. Nonetheless, in the domain of NLP, efficient
training with universal adversarial samples appears to be more challenging. Gen-
erally, universal adversarial attacks for NLP models are achieved by appending
an input-agnostic adversarial sequence to the input. Training with such adver-
sarial samples can easily lead to a degenerated solution of ignoring the appended
adversarial sequence [9].

To avoid such degenerated solutions, we propose a new universal adversarial
attack method, where the adversarial samples are created by directly replacing
specific components of the input with adversarial sequence. This work is based on
NLI, a task requires models to judge whether a premise can entail a hypothesis.
Specifically, instead of appending an adversarial sequence to the hypothesis, we
create adversarial samples by replacing the original hypothesis with a string of
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words, referred to as the Universal Biased Strings (UBSs), as shown in Fig. 1.
Here, UBSs are the strings wrongly judged as being entailed by a large number
of premises by the model. For an effective UBS, the model judges that it is
entailed by any premise. We automatically generate UBSs, and present them
as hypothesis sentence to fool the models. The advantage of using UBSs for
attack is that they are guaranteed to be irrelevant to individual premises, since
no string can be entailed by all premises. Notably, although this work is based
on the NLI task, it can be easily adapted to describe, e.g., sentence similarity
judgement, question answering, and other tasks that requires the judgement of
the relationship between two sentences.

In the following, we first described the method to search for the UBSs
and then introduced Training with UNiversal Adversarial Samples (TUNAS),
a simple but effective training method to augment models by iteratively finding
and correcting universal adversarial samples. It was demonstrated that popular
transformer-based models were vulnerable to universal adversarial attack, and
the UBSs achieved a mean success rate higher than 79%, i.e., the model judged
that >79% of the premises in the dataset could entail the UBSs. When the
models were fine-tuned using TUNAS, however, the mean success rate of UBSs
dropped to <5%. Furthermore, when searching for strings that could be best
entailed by a particular premise, the strings found by a model fine-tuned with
TUNAS were more reasonable compared with that found by a baseline model.

2 Method

2.1 Task and Models

Our work was based on two standard NLI datasets, i.e., SNLI [2] and MNLI
[21]. In these datasets, each sample contained a pair of sentences, one being the
premise and the other being the hypothesis, and a label indicating the relation
between the premise and hypothesis, i.e., entailment, contradiction, or neutral.
We tested three mainstream pre-trained transformer models, i.e., BERT [5],
RoBERTa [12], and DeBERTa-v3 [8], and considered both the base version and
large version of the models. The pre-trained models were provided by Hugging-
face [22] and were fine-tuned based on SNLI or MNLI, respectively. During fine-
tuning, the inputs were formatted as [CLS, premise, SEP , hypothesis, SEP ].
At the output, the final embedding of the CLS token, denoted as C, was run
through a linear layer to obtain three logits for each label, i.e., logits = WC+ b.
The label with the highest logit was selected as the model prediction. The mod-
els were trained based on the cross-entropy loss between the golden label and
the model prediction. The fine-tuning parameters and model performance were
shown in Appendix A.
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Algorithm 1. UBS Generation (Gradient-based search)
Input: input premises, P ; vocabulary, V ; target model, f ; embedding layer, E; loss
function, Loss;
Parameter: search times, T ; UBS length, L; iterations, N ; candidates number, K;
return UBSs number, M ;
Output: M UBSs
1: result ← ∅
2: for i ← 1 to T do � Repeat search procedure for T times
3: result ← result + SearchingBiasedStringsStep(...)
4: end for
5: return result
6: function SearchingBiasedStringsStep
7: UBS ← s0:L, s ∈ hypothesis set � Initialize current UBS
8: memory ← ∅
9: for iteration ← 1 to N do � Select candidates for each token in UBS

10: Vcand ← top-k
w∈V

(−E(w)ᵀ · ∇UBSLoss(f(P, UBS), entailment), K)

11: for i ← 0 to L do � for each token position
12: for t ∈ V

(i)
cand do � for each candidate

13: UBS′ ← UBS0:i ⊕ t ⊕ UBSi+1:L � Generate potential UBSs
14: memory[UBS′] ← −Loss(f(P, UBS′), entailment) � Evaluate

potential UBSs
15: end for
16: UBS ← argmax

s∈memory
memory[s] � Update current UBS

17: end for
18: end for
19: return top-k

s∈memory
(memory[s], M)

20: end function

2.2 UBS Generation

We used two methods, i.e., gradient-based search and dataset-based sampling, to
search for the UBSs. Operationally, all strings returned by the search algorithms
were referred to as UBSs. The effectiveness of a UBS was quantified by its success
rate A%, i.e., the target model judged that the UBS was entailed by A% of the
premises in a premise set. To balance the process time and the effectiveness,
for each UBS, the success rate was calculated based on 256 premises randomly
sampled from the dataset being analyzed.

Gradient-Based Search. The UBSs were generated using a variant of the
gradient-based search method proposed by Wallace et al. [20]. The length of the
UBS, i.e., L, was fixed, and an L-word UBS was initialized by randomly selecting
a hypothesis from hypothesis set, which contained all hypotheses in the dataset
being analyzed. The UBS was updated for N iterations to maximize the success
rate. The tokens in the current UBS were iteratively replaced to create potential
UBSs with higher success rate (Eq. 1), and the top M UBSs with the highest
success rate were returned (see Algorithm 1).
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Algorithm 2. UBS Generation (Dataset-based Sampling)
Input: input premises, P ; target model, f ; loss function, Loss;
Parameter: hypothesis set, H; return UBSs number, M ;
Output: M Magnet UBSs
1: result ← ∅
2: for h ∈ H do
3: result[h] ← −Loss(f(P, h), entailment) � Evaluate each hypothesis string
4: end for
5: return top-k

s∈result
(result[s], M)

In the iteration procedure, we calculated the first-order Taylor approxima-
tion of the change in loss to entailment label caused by replacing each token
in the UBS [6,20]. A candidate set Vcand ∈ R

L×K was identified (Eq. 1), where
the top K tokens estimated to cause the greatest decrease to loss for each posi-
tion were collected. For each token at the position i (i ∈ [1, L]) of the current
UBS, potential UBSs were generated by replacing the token with the candidates
(Eq. 2). The potential UBS with the highest success rate was retained as the
current UBS.

Vcand = top-k
w∈V

(−E(w)ᵀ · ∇UBSLoss(·),K) (1)

potential UBSs = {UBS0:i ⊕ t ⊕ UBSi+1:L|t ∈ V
(i)
cand} (2)

where E (w) was the input embedding of token w. Loss (·) was the cross-entropy
loss, and ∇UBSLoss (·) was the average gradient of the loss to entailment label
over a batch. ⊕ denoted token concatenation. The search procedure was repeated
T times with different initialization strings to ensure the diversity of the UBSs.
The hyperparameters were set as following: T = 10, M = 50, N = 20, and K = 20
(full hyperparameters for UBS attack and TUNAS were listed in Appendix B).
Therefore, for each model, a total of 500 (10 × 50) UBSs were generated.

Dataset-Based Sampling. We also utilized the hypotheses extracted from
the validation split of each dataset to find effective UBSs [11]. Three hundred of
hypotheses with the highest success rate were referred to as the magnet UBSs.
Details of the algorithm were shown in Algorithm 2.

Table 1. The accuracies for models on the validation split.

Dataset BERT base BERT large
Baseline TUNAS Baseline TUNAS

SNLI 0.8962 0.8920 0.9186 0.9191
MNLI 0.8404 0.8360 0.8625 0.8661
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Algorithm 3. TUNAS
Input: input batches, X={{(premise, hypothesis, label), ...}, ...}; total training step,
Nstep;
Parameter: added adversarial samples ratio, R; UBSs update times, Nupdate;
1: procedure Collect UBSs
2: Using Gradient-based search to collect UBS set UBSs
3: UBSs ← FILTER(UBSs), s.t., the success rate of UBSs is above 0.33
4: end procedure
5: stepupdate ← LINSPACE(0, Nstep, Nupdate) � Initialize steps for collecting UBSs
6: stepaugment ← RANDOM_CHOICE(range(0, Nstep), R) � Initialize steps for

data augment
7: for step ← 1 to Nstep do
8: if step in stepupdate then
9: Collect UBSs

10: end if
11: get current training batch {(premise, hypothesis, label), ...} from X
12: TRAIN({(premise, hypothesis, label), ...}) � Train model with the genuine

samples
13: if step in stepaugment then � Train model with the adversarial samples
14: if UBSs is not empty then
15: TRAIN({(premise, UBS, neutral), ...}), UBS ∈ UBSs
16: end if
17: end if
18: Update learning rate and other settings
19: end for

2.3 Training with Universal Adversarial Samples

For the baseline fine-tuning procedure, the model was initialized with the pre-
trained parameters, and then fine-tuned based on the downstream NLI task.
Here, we proposed an augmented fine-tuning procedure, i.e., Training with UNi-
versal Adversarial Samples (TUNAS), to generate models that are more robust
to UBS attack. TUNAS differed from the baseline fine-tuning procedure in the
following way (lines 8–10 and 13–17 in Algorithm 3): On the one hand, we uni-
formly selected Nupdate steps from the entire training procedure Nstep steps,
and collected the UBSs found in these steps for augmented training. We uti-
lized the gradient-based search to generate the UBSs that were between 5 and 7
words. On the other hand, we randomly selected R% of the Nstep steps, where
the same amounts of adversarial samples as the original samples were added to
the training batch. The inferential relation between the UBSs and any premise
was labeled as neutral. The hyperparameters were set as following: Nupdate = 40,
R%= 0.3.
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Fig. 2. Success rate of the top 500 UBSs.

Fig. 3. Mean success rate of UBSs with different lengths.

3 Experiments

3.1 UBS Attack on Baseline Models

We tested whether models fine-tuned using the baseline procedure were sensitive
to the UBS attack. The UBSs were generated using gradient-based search and
the UBS length was set to 5. Over 75% of the UBSs achieved a success rate above
70%, and the mean success rate averaged across all the 500 UBSs returned by
the gradient-based search was above 79% for all models (Fig. 2). The UBSs were
mostly ungrammatical nonsense word strings. For instance, “a exceeds lowly
herein1974” was an UBS that achieved a success rate of 100% for RoBERTa-
large fine-tuned on SNLI. In other words, the models judged that all premises
in the validation split of the dataset entailed this string. More examples were
shown in Appendix C.

3.2 UBS Attack on TUNAS Models

Next, we asked whether TUNAS could improve the robustness of models. We
fine-tuned BERT-base and BERT-large using TUNAS. The performance on
MNLI/SNLI were comparable for models fine-tuned using the baseline proce-
dure and TUNAS (Table 1). Nevertheless, for over 80% of the UBSs returned
by the gradient-based search, the success rate was below 10%, and the mean
success rate was below 5% (Fig. 2). These results suggested that TUNAS could
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Fig. 4. Success rate of the top 300 magnet UBSs.

significantly improve the robustness of models to UBS attack, while maintaining
the same task performance.

3.3 Generalization of Robustness Against UBSs

The current TUNAS procedure only considered 5-word, 6-word, and 7-word
UBSs. Here, we further evaluated whether the model fine-tuned using these UBSs
were also robust to UBSs of other lengths. We varied the length of the UBS from
5 to 23, in steps of 2, and found that models fine-tuned using TUNAS were more
robust to UBSs of all tested lengths (Fig. 3). Furthermore, the UBSs generated by
the gradient-based search were generally ungrammatical word strings (Appendix
C), it was possible that TUNAS only instructed the models to output “neutral”
for ungrammatical word strings. To rule out this possibility, we further tested
the models on the magnet UBSs, which were grammatical meaningful sentences.
On SNLI, TUNAS decreased the success rate of magnet UBSs by 31% and 21%
on average, for BERT-base and BERT-large (Fig. 4). On MNLI, magnet UBSs
were only effective at attacking BERT-large and TUNAS decreased the success
rate of magnet UBSs by 27% on average.

4 Biased Strings for Individual Premises

TUNAS could effectively increase the robustness to the UBS attack. The UBS
attack, however, were particularly strong attacks that utilized a single word
string to attack all possible premises. Next, we evaluated whether TUNAS could
also increase the robustness to attacks targeting at individual premises. Here,
the BERT base model fine-tuned on SNLI was used as an example. The other
TUNAS models showed similar results, which were shown in Appendix D.

4.1 Biased Strings Generation

We applied the same gradient-based search to find word strings that were best
entailed by single premise. Specifically, the algorithm was the same as Algorithm
1, except that the input premise set P was replaced by a particular premise. Here,
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Table 2. Examples for biased strings. The target premises for the biased strings are
shown in bold. The initialization strings are shown in italic, where the relationship
between the initialization strings and the premise is shown in the brackets. The last
column in the table lists likelihood to entailment label output by the models.

Premise: A young man is standing staring at something

Biased String Likelihood
Baseline TUNAS Baseline TUNAS
(Premise Itself) A young man is standing staring at something 96.98 98.31
a human person was
standing. at thisceded

A human human is standing
staring at something

99.51 98.92

(Neutral) A young man is looking intently at a young woman 0.92 0.47
Humans existuffed or
movementifiable
concerningoir young persons

Elustient is seen peers at a
young something

99.27 93.20

(Contradiction) A young man is asleep 0.01 0.03
near males Humansestive
remotely present

foss staringthating 99.25 86.12

(Entailment) A young man has his eyes open 96.61 96.64
sts human individual has
bodily eyes
encounteredrricular

an young man has his eyes
open

99.38 97.22

Premise: A black dog and a goose swim in the water
Biased String Likelihood
Baseline TUNAS Baseline TUNAS
(Premise Itself) A black dog and a goose swim in the water 96.99 97.14
A human beings and a
freshwateristed in thebol

A black animal or a human
swim in the water

99.35 98.51

(Neutral) The goose has something in its mouth 63.87 82.43
humansnial possessing
something wet or bodily

An dog with one of dark color 99.33 98.19

(Contradiction) The animals are not in the water 2.95 3.90
Human animals
comprisedroats bodyddling
water

Human animals are together
in the water

99.37 98.28

(Entailment) There are two animals in the water 98.57 98.41
There comprises animal
objectsluk In human

There are animals mammals
in the water

99.42 98.88

the strings returned were referred to as biased strings. We randomly selected 100
premises from the SNLI validation split for this analysis. Since the gradient-based
search was sensitive to the initial condition, we tested 4 initialization strings for
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Fig. 5. Histograms of BERTScore Precision and STS-B model score for sentence pairs,
where the hypotheses were generated by the model with or without TUNAS based on
the given premise.

each premise: One string was the premise itself, the other 3 strings were the 3
hypotheses associated with the premise in the dataset, which were separately
labeled as entailment, neutral, and contradiction. For each initialization string,
the search returned 30 biased strings. The search was separately applied to the
baseline model and models fine-tuned using TUNAS.

4.2 Relatedness Between Biased Strings and Premises

Examples of the biased strings were shown in Table 2. In general, the biased
strings generated based on the TUNAS models were more readable and more
related to the premise, compared to the biased strings generated based on the
baseline model.

We further quantified the relatedness between the premises and the biased
strings based on human judgement and model-based metrics. For human judge-
ment, we recruited subjects to judge which of the two biased strings (generated
by the baseline model or the TUNAS model) were more related to the premise.
Automatic model-based metrics were also carried out to evaluate the relatedness
between the premise and the biased strings, i.e., BERTScore [25] and STS-B
model score [4]. BERTScore was a sentence-level metric to compare the seman-
tic similarity between two sentences, which ranged from 0 to 1. Likewise, STS-B
was a regression task of predicting the semantic similarity score of two sentences,
which ranged from 0 to 5. We used the base version of BERT fine-tuned with
STS-B task to score for the sentence pairs.

Human Judgement. Two hundred samples were randomly selected, and each
sample contained a premise and 2 hypotheses that were separately generated by
the baseline and TUNAS models using the same initialization string. For each
sample, 10 subjects judged which hypothesis was more related to the premise.
Subjects could choose that they could not judge which hypothesis was more
related. Such responses (22% of all collected responses) were excluded from final
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Table 3. Human evaluation results. The first column gives the initialization type of
the biased strings. The last two columns denote the ratio for a string, generated by the
model with or without TUNAS, being selected as more entailed one by human.

Initialization Type Baseline TUNAS

Contradiction 0.16 0.84
Entailment 0.21 0.79
Neutral 0.11 0.89
Premise Itself 0.17 0.83

analysis. Results showed that 84% of the biased strings generated by TUNAS
model were judged as being more related to the premise (Table 3).

Model-Based Metrics. We reported BERTScore Precision and the STS-B
model score (Fig. 5). Results showed that the biased strings generated by models
fine-tuned using TUNAS achieved a higher similarity score on average (PBERT

= 0.69 and STS-B model score = 2.72), compared to the baseline model (PBERT

= 0.50 and STS-B model score = 1.11), indicating that the models fine-tuned
with TUNAS could generate biased strings with more similar semantics to the
premises.

5 Related Work and Discussion

Adversarial Attack. Generally, the adversarial attacks are input-specific,
which generate specialized perturbations for each input. Jia and Liang [9] attack
the reading comprehension models by adding a distractor sentence to the input
paragraph. Song et al. [18] use natural attacks to cause semantic collisions, i.e.,
irrelevant sentence pairs are judged to be similar by the NLP models. In these
methods, an extra evaluation should be used to verify the golden labels of the
adversarial samples. In this paper, we avoid human evaluation by generating
UBSs, which are inherent to be neutral with most of the premises.

Universal adversarial attacks are input-agnostic. Wallace et al. [20] and Beh-
jati et al. [1] oncurrently propose to perform gradient-based search strategies
to generate input-agnostic sequences, referred to as triggers, that can cause a
model to output a specific prediction when concatenated to any input. Song
et al. [19] extend it to generate natural triggers. Parekh et al. [15] propose a
data-free attack method. Most of the previous works construct the attack based
on appending strategy, and aim at generating and analyzing universal adversar-
ial triggers. In this work, we propose to use UBSs directly for attack, and aim at
augmenting the models through universal adversarial samples. Here, we do not
use append strategy to avoid models from learning to ignore attack positions
during augmentation.
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Adversarial Training. Adversarial training is one of the most successful
approaches for defending against adversarial attacks [7,13], where adversarial
samples are used for training to improve the robustness of models. Universal
adversarial training has proven to be beneficial in the domain of computer vision
[14,17], and malware classification [3]. Lin et al. [11] augment the training pro-
cedure for multi-choice models using magnet options: The options irrelevant to
the questions are still prone to be selected as the answer by the models. Our
work is more extensive as we utilize a searching method for generating UBSs
automatically, which is more effective in digging out the biases of the models.

In this work, we use ungrammatical UBSs for adversarial training. Although
the ungrammatical UBSs are unlikely to appear in real-world scenarios, they
have potential to reveal the biases learned by the models. Meanwhile, they can
serve as a cheap method to augment the models. Results suggest that the model
augmented by ungrammatical UBSs also perform better in defending grammat-
ical UBSs attack. Moreover, this work is based on NLI task, but the UBSs
generation and application can be extended to many NLP tasks. For example,
in multiple-choice task, e.g., RACE [10], the model can be fooled to choose a
certain biased option as the answer. In span extraction tasks, e.g., SQuAD [16],
the model can be fooled to always output a certain biased span. In these cases,
it is still feasible to generate universal adversarial examples and use them for
adversarial training.

6 Conclusion

Universal adversarial attacks are effective in revealing the shallow heuristics
learned by the models [20]. Here, we propose TUNAS, which utilizes universal
adversarial samples to harden the models. A simple yet effective universal adver-
sarial attack method is designed by replacing the hypotheses with UBSs, which
can achieve above 79% success rate among 2 NLI tasks. The UBSs are generated
automatically by gradient-based method. In TUNAS, the universal adversar-
ial samples are generated and used to train the models. The models fine-tuned
using TUNAS show robustness against UBS attack, while maintaining compa-
rable task performance. Moreover, when searching biased strings for individual
premises, models fine-tuned using TUNAS could generate strings better entailed
by the premise.

Acknowledgements. This work was partly supported by the STI2030-Major Project,
grant number: 2021ZD0204105. We would like to thank the anonymous reviewers for
their valuable comments on this work.
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Appendix A Hyperparameters for Fine-Tuning

Table 4. Hyperparameters for fine-tuning on SNLI and MNLI.

MNLI/SNLI BERT RoBERTa DeBERTa
Version base large base large base large

Learning rate 2e−5/3e−5 2e−5/3e−5 2e−5/2e−5 6e−6/6e−6 2e−5/2e−5 6e−6/5e−6
Train epochs 3/2 3/2 3/3 2/2 3/2 2/2
Batch size 32/32 32/32 32/32 64/64 64/64 32/32
Weight decay 0.01/0.1 0.01/0.1 0.1/0.01 0.0/0.0 0.0/0.0 0.0/0.0

Table 5. The fine-tuned models’ performance on the validation splits.

Model/Accuracy Dataset
SNLI MNLI

matched mismatched

BERT base 0.8962 0.8404 0.8393
BERT large 0.9186 0.8625 0.8651
RoBERTa base 0.9103 0.8784 0.8762
RoBERTa large 0.9265 0.9034 0.9013
DeBERTa base 0.9330 0.9024 0.9070
DeBERTa large 0.9392 0.912 0.9105

The parameters we used in the process of fine-tuning the pre-trained models
were shown in Table 4 [5,8,12]. Model performance after fine-tuning was shown
in Table 5.

Appendix B Hyperparameters for UBS Attack and
TUNAS

The hyperparameters used for UBS attack and TUNAS were shown in Table 6.
The usage for hyperparameters were described in Algorithm 1 and Algorithm
3. Here, the filter threshold for loss referred to the filtering condition for UBSs
used in TUNAS. The potential UBSs with task loss on entailment label above
the filter threshold would be filtered.
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Table 6. Hyperparameters for UBS attack and TUNAS.

Hyperparameters TUNAS UBS attack Single Test
SNLI MNLI

UBS length, L 5–7/5 5/5 5–23(step=2) Initialization
string length

Split for
evaluation

test test matched dev Single premise

hypothesis set Randomly
selected
hypothesis and
magnet
hypotheses

Randomly
selected
hypothesis

Randomly
selected
hypotheses

none

Iterations, N 20 20 20 40

Candidates
number, K

20 20 20 30

Return UBSs
number, M

50 50 50 30

Batch size 256 256 256 1

Search times, T 10 10 10 1

Added adversarial
samples ratio, R

0.3 0.3 – –

UBSs update
times, Nupdate

40 40 – –

Filter threshold
for loss

1 1 – –

Appendix C Examples for UBSs

We selected several UBSs with high success rate obtained from 256-sample eval-
uation, and re-evaluated them on the full validation splits. The UBSs as well as
their success rate were reported in Table 7. The UBSs were all meaningless token
sequences.
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Table 7. Success rate of the UBSs on models that are fine-tuned with or without
TUNAS. For each model, the UBSs with the highest success rate are selected, and are
evaluated on the test splits. The fine-tuning dataset used for the model are shown in
the brackets. For MNLI, success rate show on both matched and mismatched sets, in
the format of “matched set result/mismatched set result”.

Model SNLI MNLI
UBS Success rate UBS Success rate

Baseline
BERT base individuals physically

something
geographicallymered

1.0000 Across Miraentry
crosses aspect

0.9937/0.9865

BERT large of lungs Ad bearing a 1.0000 bakeryple encounters
words referring

0.9937/0.9898

RoBERTa base sufficientAbility
humanoid
circumstanceUSE

1.0000 votationInsert word
something

0.9975/0.9971

RoBERTa large a exceeds lowly
herein1974

1.0000 Supportedpired
upholding
utilizingSupported

0.9960/0.9957

DeBERTa base footed humans
mobilised
locomotionAthletic

1.0000 representative
Ostensiblysomething
instantiated a

0.9687/0.9699

DeBERTa large corporeal individuals
Emotionally humPub

0.9987 antly viewer usage
Audience utilization

0.9922/0.9939

TUNAS
BERT base human person played

outside
0.3236 We can cross concerns 0.2808/0.3343

BERT large The man ps up 0.2717 Something receives
recognizable
involvement

0.2729/0.3862

Appendix D Model-Based Metrics on Biased Strings

Here was the result for other TUNAS models equal to the test in Sect. 4 on
model-based metrics, as shown in Fig. 6. The results were similar to BERT base
model on SNLI. The biased strings generated by models fine-tuned using TUNAS
achieved a higher similarity scores in both of the metrics.
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Fig. 6. Histograms of semantic similarity evaluated by BERTScore or STS-B model
score. Biased strings were generated based on baseline models or models fine-tuned
with TUNAS.
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Abstract. Pre-trained Language Models (PLMs), as parametric-based
eager learners, have become the de-facto choice for current paradigms
of Natural Language Processing (NLP). In contrast, k-Nearest-Neighbor
(k-NN) classifiers, as the lazy learning paradigm, tend to mitigate over-
fitting and isolated noise. In this paper, we revisit k-NN classifiers for
augmenting the PLMs-based classifiers. From the methodological level,
we propose to adopt k-NN with textual representations of PLMs in two
steps: (1) Utilize k-NN as prior knowledge to calibrate the training pro-
cess. (2) Linearly interpolate the probability distribution predicted by
k-NN with that of the PLMs’ classifier. At the heart of our approach is
the implementation of k-NN-calibrated training, which treats predicted
results as indicators for easy versus hard examples during the training
process. From the perspective of the diversity of application scenarios, we
conduct extensive experiments on fine-tuning, prompt-tuning paradigms
and zero-shot, few-shot and fully-supervised settings, respectively, across
eight diverse end-tasks. We hope our exploration will encourage the com-
munity to revisit the power of classical methods for efficient NLP (Code
and datasets are available in https://github.com/zjunlp/Revisit-KNN).

1 Introduction

Pre-trained Language Models (PLMs) (Radford et al., 2018, Devlin et al., 2019,
Raffel et al., 2020) have shown superior performance across a wide range of
language-related downstream tasks (Kowsari et al., 2019, Nan et al., 2020). After-
ward, the conventional paradigm fine-tuning, which extends extra task-specific
classifiers on the top of PLMs, has been proposed to apply PLMs for down-
stream tasks. Recently, a new paradigm called prompt-tuning, which originated
from GPT-3 (Brown et al., 2020), has been introduced and has shown better
results for PLMs on few-shot and zero-shot tasks. Fine-tuning has proved to
be effective on supervised tasks and is widely used as the standard method for
natural language processing (NLP). Despite the effectiveness of adapting PLMs,
parametric-based eager learners (Friedman, 2017), like PLMs with neural net-
works, require estimating the model parameters with an intensive learning stage.
Besides, Training a large PLM model can require significant computing resources
and energy, which have negative environmental consequences. As a result, there

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 327–338, 2023.
https://doi.org/10.1007/978-981-99-6207-5_20
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Fig. 1. Revisiting how does a lazy learner (k-NN) help the eager learner (PLM).

has been a growing interest in developing more efficient and sustainable methods
for training and deploying PLMs (Fig. 1).

A stark contrast to PLMs is the k-NN classifier: a simplest machine learning
algorithm that does not have a training phase but simply predicts labels based on
the nearest training examples instead. NLP researchers (Khandelwal et al., 2020,
He et al., 2021) have found that k-NN enable excellent unconditional language
modeling (Khandelwal et al., 2020, He et al., 2021) during test phrase. According
the definition in (Friedman, 2017), k-NN is actually a lazy learner that can avoid
over-fitting of parameters (Boiman et al., 2008) and effectively smooths out the
impact of isolated noisy training data (Orhan, 2018). Though k-NN has the
above advantages, previous works only leverage k-NN for testing, and there is
no systematic examination of the full utilization of k-NN for PLMs.

To this end, we have conducted a comprehensive and in-depth empirical study
of the k-NN classifier for natural language understanding (NLU). Our approach
involves leveraging the predictive results of a k-NN classifier and augmenting
conventional parametric PLM classifiers in two steps: (1) We explore the role of
k-NN as prior knowledge for calibrating training by using k-NN results as an
indicator of easy vs. hard examples in the training set; (2) During inference, we
linearly interpolate probability distributions with the PLM’s predicted distribu-
tions to make the final prediction; (3) We conduct extensive experiments with
fine-tuning in fully-supervised, few-shot and zero-shot settings, aiming to reveal
the different scenarios where k-NN is applicable. We hope this work can open up
new avenues for improving NLU of PLMs via k-NN and inspire future research
to reconsider the role of ”old-school“methods.

2 Related Work

k-NN in the Era of PLMs. The k-Nearest Neighbor (kNN) classifier is a
classic non-parametric algorithm that predicts based on representation similar-
ities. While kNN has lost some visibility compared to current deep learning
approaches in recent years, it has not fallen off the radar completely. In fact,
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kNN has been used to enhance pre-trained language models (PLMs) in various
tasks, such as unconditional language modeling (Khandelwal et al., 2020, He
et al., 2021), machine translation (Khandelwal et al., 2021, Gu et al., 2018),
and question answering (Kassner and Schütze, 2020). Most recently, (Alon et
al., 2022, Meng et al., 2021) further respectively propose automaton-augmented
and GNN-augmented retrieval to alleviate the computationally costly datastore
search for language modeling. However, previous researchers (He et al., 2021,
Khandelwal et al., 2021, Kassner and Schütze, 2020, Li et al., 2021, Meng et al.,
2021, Alon et al., 2022, Zhang et al., 2022) mainly focus on generative tasks or
adopt simple interpolation strategies to combine k-NN PLMs only at test time.
(Shi et al., 2022) propose to leverage k-NN for zero-shot inference.

Revisiting k-NN for PLMs. Unlike them, we focus on empirically demon-
strating that incorporating k-NN improves PLMs across a wide range of NLP
tasks in fine-tuning and prompt-tuning paradigms on various settings, including
the fully-supervised, few-shot and zero-shot settings. Note that our work is the
first to comprehensively explore k-NN during both the training and inference
process further for fruitful pairings: in addition to the approaches mentioned
above, we propose to regard the distribution predicted by k-NN as the prior
knowledge for calibrating training, so that the PLM will attend more to the
examples misclassified by k-NN.

3 Methodology

The overall framework is presented in Fig. 2. We regard the PLM as the feature
extractor that transforms the input textual sequence x into an instance repre-
sentation x with dimensions D. We revisit k-NN in Sect. 3.1 and then introduce
our method to integrate k-NN with tuning paradigms in Sect. 3.2.

3.1 Nearest Neighbors Revisited

Given the training set of n labeled sentences {x1, . . . , xn} and a set of target
labels {y1, . . . , yn}, y ∈ [1, C], the k-NN classifier can be illustrated in the next
three parts:

Feature Representations. For k-NN, we firstly have to collect the correspond-
ing set of features D = {x1, . . . ,xn} from the training set. Concretely, we assign
x with the embedding of the [CLS] token of the last layer of the PLM for the
fine-tuning procedure. More specifically, we define the feature representations as
follows:

x = h[CLS], (1)

The feature representation q of a query example xq also follows the above equa-
tion.

Retrieve k Neighbors. Following the commonly practiced in k-NN (Friedman,
2017, Wang et al., 2019), we pre-process both q and features in the training set



330 L. Li et al.

Input text

Feature Representations

Retrieve k Neighbors Similartiy-based Aggregation

Pretrained LM

···

terrible

terrible
great

Label

···

Top K
Data-
store

3
5
6

Distance

···

0.5
0.3

0.2

exp(·)

···

0.8
0.2

terrible

great

Label

Norm.

[CLS] head
or

MLM head

 · · =

-NN as Prior Knowledge for
Calibrating Training

Represen-
tation

terrible

terrible

great

Label

···

Integrating -NN into Inference

Fig. 2. Overview of incorporating k-NN for PLMs

D with l2-normalization. We then compute the similarity between the query q
and each example in D with Euclidean distance as : d(q,x), ∀x ∈ D, where d(·, ·)
is the Euclidean distance calculation function. According to the similarity, we
select the top-k representations from D, which are the closest in the distance to
q in the embedding space.

Similarity-Based Aggregation. Let N donate the set of retrieved top-k neigh-
bors, and Ny be the subset of N where the whole examples have the same class
y. Then the k-NN algorithm converts the top-k neighbors to q and the corre-
sponding targets into a distribution over C labels. The probability distribution
of q being predicted as c is:

pkNN(c|q) =
∑

x∈Ny
exp (−d(q,x)/τ)

∑
y∈C

∑
x∈Ny

exp (−d(q,x)/τ)
, (2)

where τ is the hyper-parameter of temperature.

3.2 Comprehensive Exploiting of k-NN

In this section, we propose to comprehensively leverage the k-NN, the represen-
tative of lazy learning, to augment the PLM-based classifier.

Role of k-NN as Prior Knowledge for Calibrating Training. As k-NN
can easily make predictions for each query instance encountered without any
training, it is intuitive to regard its predictions as priors to guide the network
in focusing on hard examples during the training process of language models.
We distinguish between easy and hard examples based on the results of k-NN.
Given the probability distribution pkNN of q being predicted as true label y,
we propose to adjust the relative loss for the correctly-classified or misclassified
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instances identified by k-NN, in order to reweight the cross-entropy loss LCE .
Specifically, we define the calibrated training loss LJ as:

LU = (1 + f(pkNN))LCE , (3)

where f(pkNN) donates the modulating factor1 for calibration. We are inspired
by Focal-loss (Lin et al., 2018) to employ the modulating factor, while our focus
is on exploring the application of k-NN in the fine-tuning of PLMs.

Integrating k-NN into Inference. Let PM denote the class distribution pre-
dicted by the PLM, and PkNN be the class distribution predicted by a k-NN
classifier. Then, the PM is reformulates by interpolating the non-parametric k
nearest neighbor distribution PkNN using parameter λ (Khandelwal et al., 2020)
to calculate the final probability PU of the label as:

PU = λPkNN + (1 − λ)PM, (4)

where λ ∈ [0, 1] is an adjustable hyper-parameter.

4 Experiments

Table 1. Detailed dataset statistics.

Dataset Type # Class Test Size

SST-5 sentiment 5 2,210
TREC question cls 5 500
MNLI NLI 3 9,815
QNLI NLI 2 5,463
BoolQ QA 2 3,245
CB NLI 3 250
SemEval relation extraction 19 2,717
TACREV relation extraction 42 15,509

4.1 Datasets

We choose a variety of NLP tasks to evaluate our proposed methods, including
sentiment analysis task (SST-5 (Socher et al., 2013)), question classification task
(TREC (Voorhees and Tice, 2000)), NLI tasks (MNLI (Williams et al., 2018) and
QNLI (Rajpurkar et al., 2016)), sentence-pair classification task (BoolQ (Clark
et al., 2019) and CB (De Marneffe et al., 2019)), and information extraction
tasks (SemEval (Hendrickx et al., 2010) and TACREV (Alt et al., 2020)). We
also list a detailed introduction of datasets in Table 1.
1 We specify the f(pkNN) = (1− pkNN)

γ , and other factors are also alternative.
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4.2 Experimental Settings

Compared Baseline Methods. We adopt RoBERTalarge (Liu et al., 2019)
as the underline PLM and conduct comprehensive experiments to integrate k-
NN into PLMs. We choose the baseline approaches and the variant of our pro-
posed method as follows: (1) k-NN: the method described in Sect. 3.1, which
performs classification directly through nearest neighbor retrieval of instance
features without relying on any pre-trained language models (PLMs). (2) FT:
which denotes vanilla fine-tuning with PLMs. (3) FT_Scratch: which denotes
vanilla PLMs in zero-shot setting. (4) PT: which denotes prompt-tuning with
PLMs, similar to (Gao et al., 2021). (5) Union-inf: a variant of our method,
which simply linear interpolate k-NN and paradigms of PLMs during the test
time. (6) Union-all: the completeness of our approach, which involves apply-
ing k-NN as prior knowledge for calibrating training and also integrating k-NN
into inference.

Table 2. Results on eight NLP tasks across the fully-supervised, few-shot (16-shot) and
zero-shot settings. For the 16-shot setting, we provide the mean and standard deviation
across three different random seeds. Scores that are marked with an underline signify
the best results among all methods.

Shot Method SST-5 TREC MNLI QNLI BoolQ CB SemEval TACREV AVG
Acc. F1. Acc. Acc. Acc. F1. F1. F1. Score.

Full k-NN 35.8 80.0 41.5 57.2 61.4 42.3 2.5 5.3 40.8

FT 59.2 97.8 83.9 89.1 81.7 89.5 89.4 72.5 82.9

Union-inf 59.5 98.0 84.0 89.2 82.9 89.6 89.2 67.8 82.5

Union-all 60.9 98.2 84.2 90.8 83.4 90.5 89.6 73.1 83.8
16 k-NN 25.62.4 46.15.0 33.70.3 51.61.3 50.42.6 40.84.9 0.50.4 0.90.3 31.1

FT 43.30.7 86.64.7 44.44.5 55.33.7 56.04.2 68.34.7 64.12.3 25.60.3 55.5

Union-inf 43.01.2 86.74.5 44.54.5 55.43.4 55.44.3 65.64.7 65.12.1 30.51.7 55.8

Union-all 43.70.5 90.03.9 51.71.8 58.12.7 57.62.7 69.84.5 67.23.3 32.13.1 58.9
0 FT_Scratch 23.8 22.6 31.6 49.5 37.8 21.5 8.2 0.1 24.4

PT 36.7 38.2 50.9 50.8 62.2 39.7 10.9 1.1 36.3

Union-inf 51.6 82.4 67.5 67.4 62.9 56.9 11.8 3.2 50.5
Union-all 35.1 38.0 53.7 50.4 62.4 50.3 11.3 1.4 37.8

Settings. We test the above methods in full-supervised, few-shot and zero-
shot experiments, we assign different settings, respectively: (1) Full-supervised
setting: We use full trainsets to train the PLMs and as neighbors to retrieve. (2)
Few-shot setting: We follow LM-BFF (Gao et al., 2021) to conduct 16-shot
experiment and test the average performance with a fixed set of seeds Sseed,
across three different sampled Dtrain for each task. In this setting, we use the
few-shot training set as k-NN neighbors to retrieve. (3) Zero-shot setting:
We directly evaluate the vanilla FT and Union-inf on the test set without
training. As for Union-all, we take the prompt tuning (Gao et al., 2021) to
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tag the pseudo labels on unlabeled trainsets and apply untrained k-NN in the
training and inference.

4.3 Hyper-parameter Settings

We report the hyper-parameters in Table 3. For the GLUE and SuperGLUE
datasets, we follow LM-BFF2 to construct templates and verbalizer for prompt-
tuning. While for RE datastes, we follow KnowPrompt (Chen et al., 2021) to
construct templates and verbalizer. We utilize Pytorch to conduct experiments
with 1 Nvidia 3090 GPUs. We used the AdamW optimizer for all optimizations,
with a linear warmup of the learning rate followed by a linear decay over the
remainder of the training. The hyper-parameter settings used in our experiments
are listed below.

Table 3. Hyper-parameter settings.

Hyper-parameter Value

maximum sequence length {128, 256}
max training step 1000
evaluation step 100
learning rate {1e−5, 2e−5, 5e−5}
batch size 8
gradient accumulation step {2, 4, 8}
adam epsilon 1e−8
k {16, 32, 128}
λ {0.1 : .1 : 0.9}
τ {0.01, 0.1, 1, 10}

4.4 Main Results

k-NN Features Result in Performance Gains. We compare the specific
results with baseline models and provide comprehensive insights of k-NN on dif-
ferent paradigms and different settings. The results as shown in Table 1. Leverage
k-NN features results in performance gains in both few-shot and fully-supervised
settings. In the zero-shot setting, PT-based methods outperform FT-based and
k-NN features further enhance the performance of PT-based methods, which
demonstrates that it is flexible and general to integrate k-NN for PLMs.

Calibrating Training vs. Incorporating into Inference. It is necessary
to study the different application scenarios of incorporating k-NN during the

2 https://github.com/princeton-nlp/LM-BFF.

https://github.com/princeton-nlp/LM-BFF
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Fig. 3. Case analysis to show how k-NN benefits the prediction of PLMs. We illustrate
the test texts, the predicted probability distribution, and the top-5 nearest neighbors
from the 16-shot training set of the SST-5 dataset.

training and testing phases. From Table 2, we observe the following: (1) Lever-
aging k-NN during the test phrase is especially helpful for the zero-shot set-
ting. While Union-all performs worse due to the noise brought from the
pseudo-labels on unsupervised data. (2) Union-inf is not doing as well in
the fully-supervised and few-shot setting. In contrast, Union-all outperforms
Union-inf in these settings, especially in the few-shot setting. These findings
reveal to us the applicable scenarios of incorporating k-NN and inspire further
studies to utilize k-NN classifier more practically for efficient NLP.

4.5 Analysis

Q1: How Does the Lazy Learner Benefit Eager Learner? To further
understand how does the lazy learner (k-NN) benefit the eager learner (PLM),
we manually check cases in which k-NN, PT, Union-inf and Union-all produce
different results. As shown in the example of the upper row of Fig. 3, k-NN and
Union-all predict correctly when PT fails. This result is because Union-all
produces a more confident probability for the correct class via calibrating the
attention on the easy vs. hard examples identified by the k-NN classifier. Note
that the bottom row shows that Union-all predicts correctly even when k-NN
predicts wrongly, possibly due to the robustness of k-NN calibration.

Q2: Does the Similarity Metric Matter? In the above experiments, we
mainly utilize negative L2 distance to measure the similarity between the query
q and the instance representation of the data store. It is intuitive to estimate the
impact of different similarity metrics, such as cosine similarity. Thus, we present
the performance of Union-all using both metrics with the same hyperparam-
eters as below.

We can find that Union-all with cosine distance achieves nearly the same
performance as those trained with L2, revealing that our Union-all is robust
to the similarity metric.

Q3: How Does the Modulating Factor f(pkNN) works? Since we adopt
focal loss (Focal) as the modulating factor for main experiments, we further
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Similarity Metric L2 cos

16-shot SST-5 (%) 43.7 42.8
16-shot TREC (%) 90.0 89.4
16-shot QNLI (%) 58.1 57.2

Fig. 4. Comparison between the modulating factors NLL and Focal.

explore other functions as modulating factors, such as negative log-likelihood
(NLL). As shown in Fig. 4, we visualize two modulating factors with different
settings of α and γ, where α donates a scalar that represent the proportion of the
term of NLL, and γ is the exponential coefficient for Focal. We can find that NLL
and Focal produce large weights for the misclassified examples, demonstrating
the diversity of modulating factor selection.

5 Limitations

We only explore leveraging the training data for k-NN search, while various
external domain data are also suitable for k-nearest neighbor retrieval. Moreover,
incorporating k-NN also faces the following limitations: (1) the requirement of
a large memory for retrieval; (2) hyper-parameters (such as λ and α) used for
retrieval have an impact on the performance of model training; (3) if the number
of nearest neighbors k is too large, it will also affect the efficiency.

6 Conclusion and Future Work

In this paper, we propose a novel method to enhance PLM-based classifiers using
k-NN. Specifically, we introduce a calibration process and linear interpolation
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of inference phrases to effectively integrate k-NN into the training pipeline. To
evaluate the effectiveness of our approach, we conduct a comprehensive and in-
depth analysis of the role of k-NN in various NLU tasks and tuning paradigms.
Our results demonstrate that the integration of k-NN is flexible and can signifi-
cantly enhance the performance of large models. Future work should explore the
combination of k-NN and LLMs such as (1) Inject external knowledge into the
LLMs with k-NN. Specifically, k-NN can be used to retrieve relevant knowledge
from an external database during the reasoning process, which can help correct
errors and reduce the prevalence of gibberish output and factual errors that are
common in LLMs. (2) Retrieve contextual information to enhance LLMs. k-NN
algorithms can automatically retrieve relevant information based on the input
sentence, such as instructions or other relevant context. (3) Augment the train-
ing data for LLMs. k-NN is a powerful tool for identifying similar instances in
a large dataset, which can help overcome the limitations of data scarcity and
improve the performance LLMs.
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Abstract. BERT, a pre-trained language model entirely based on attention, has
proven to be highly performant for natural language understanding tasks. How-
ever, pre-trained language models (PLMs) are often computationally expensive
and can hardly be implemented with limited resources. To reduce energy burden,
we introduce adder operations into the Transformer encoder and propose a novel
AdderBERT with powerful representation capability. Then, we adopt mapping-
based distillation to further improve its energy efficiency with an assured perfor-
mance. Empirical results demonstrate that AddderBERT6 achieves highly com-
petitive performance against that of its teacher BERTBASE on the GLUE bench-
mark while obtaining a 4.9x reduction in energy consumption.

Keywords: PLMs · Distillation · AdderBERT

1 Introduction

The last five years have seen great success achieved by large-scale pre-trained language
models, such as BERT [8], ELECTRA [6], and GPT3 [3]. By modeling long-distance
dependencies based on self-attention, they can learn powerful language representations
from the unlabeled corpus.

While these models lead to significant improvement on many downstream tasks
(e.g., the GLUE benchmark [25]), the growing computation costs have impaired their
deployment, especially on limited-resource devices such as mobile phones, AR glasses,
and smartwatch. Since attending to all tokens yields a complexity of O(n2)with respect
to sequence length, prior works aim to investigate efficient Transformers with lower
complexity. [15] replaces dot-product attention with one using locality-sensitive hash-
ing. [26] decomposes the original attention into multiple smaller ones by linear projec-
tions. However, they can only solve the problem partway, for the consumption except
self-attention has not been changed in the encoder.

Various attempts also focus on model compression techniques, including quantiza-
tion [11], weights pruning [12], and knowledge distillation (KD) [19]. As one of the
most popular methods, KD aims to transfer knowledge from a large teacher network to
a small student network, employed by DistilBERT [20], BERT-PKD [23], TinyBERT
[14], and FastBERT [17]. Beyond these methods, [5] proposed Adder Neural Network
(AdderNet), which replaced massive multiplications with cheaper additions to reduce
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 339–347, 2023.
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Fig. 1. Depiction of AdderBERT learning. AdderBERT implements the encoder block with
cheaper adder operations, and it has a unique mapping-based distillation. HS and HT are the
hidden states of the student and teacher networks, respectively. M denotes the number of adder
encoders.

computation costs, and achieved better performance on the ImageNet dataset compared
to CNNs. Then researchers attempt to build efficient deep-learning models based on
AdderNet for computer vision tasks [21,29]. Inspired by this, it is an interesting idea
to investigate the feasibility of replacing multiplications with additions in pre-trained
language models like BERT.

In this paper, we first present AdderBERT, a pre-trained model consisting of several
adder encoders, in which key modules including multi-head attention and feed-forward
network are implemented with cheaper adder operations. As shown in Fig. 1, it also has
a unique mapping-based distillation that could make it to be more energy-efficient with
an assured performance. Finally, we conduct full experiments on the GLUE benchmark.
Empirical results demonstrate that our method can achieve comparable performance
with the baselines in much lower energy consumption.

The contributions are summarized as follows:

– We propose AdderBERT, which introduces adder operations into the mechanism of
self-attention and feed-forward network.

– We adopt a novel mapping-based distillation to encourage that linguistic knowledge
can be adequately transferred from the teacher network to AdderBERT.

– Experimental results show that AddderBERT6 can achieve highly competitive per-
formance against that of its teacher BERTBASE on the GLUE benchmark while
obtaining a 4.9x reduction in energy consumption.
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2 Preliminary

In this section, we revisit the related works including AdderNet and knowledge distil-
lation. We are motivated by them to design AdderBERT.

2.1 Adder Neural Networks (AdderNet)

Denote the input feature as X ∈ R
h×w×cin , in which h and w are the height and width

of the feature map, respectively. Consider a filter W ∈ R
d×d×cin×cout in an arbitrary

layer of AdderNet, where d is the kernel size, cin and cout are the number of input
channels and output channels, respectively. The original adder operation is defined as:

Y(m,n, v) = −
d∑

i=1

d∑

j=1

cin∑

u=1

|X(m + i, n + j, u) −W(i, j, u, v)| , (1)

where |·| is the absolute value function. m and n are the spatial locations of features.
v denotes the index of output channels. Given that Eq. 1 has been proven to be used to
replace the traditional convolution operation, it is an interesting idea to transport this
success of CNNs to PTMs.

2.2 Knowledge Distillation (KD)

As one of the most popular compression techniques, KD was used to help a small stu-
dent network S mimic the behavior of a large teacher network T for better performance.
Given fT and fS represent the mapping functions of teacher and student networks,
respectively. The student network can be optimized with the following objective func-
tion:

LKD =
∑

x∈Ω

L(fS(x), fT (x)), (2)

where L(·) is an arbitrary loss function, x is the input sequence and Ω denotes the train-
ing dataset, fS(x) and fT (x) are the outputs of student network and teacher network,
respectively. Based on Eq. 2, we adopt a unique kernel-based distillation to encourage
that linguistic knowledge can be adequately transferred from the teacher network to the
student AdderBERT.

3 Method

This section describes our proposed AdderBERT as well as its training method. Con-
cisely, AdderBERT implements the encoder block with cheaper adder operations, and it
takes advantage of mapping-based distillation to be better in performance and efficient
in energy.
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3.1 Adder Encoder

Given that linear transformation is equivalent to 1× 1 convolution with fixed input size
in mathematical, in this paper, the adder operation can be redefined as:

Y(l, v) = −
dembd∑

u=1

|X(l, u) − W(u, v)| = X ⊕ W, (3)

where l is the sequence length, dembd is the dimension of embedding, and ⊕ denotes
the adder operation between matrices.

Following the original Transformer [24], We first consider creating output queries
Q ∈ R

l×dq , keys K ∈ R
l×dk , and values V ∈ R

l×dv by weight matrices WQ ∈
R

dembd×dq , WK ∈ R
dembd×dk , WV ∈ R

dembd×dv in the projection layer of a single-
head self-attention. dq, dk, dv is the dimension of queries, keys, and values, respec-
tively. We employ Eq. 3 to measure the �1-distance between embedding and the weight
matrices as:

Q = LN (X ⊕ WQ), K = LN (X ⊕ WK), V = LN (X ⊕ WV ), (4)

where X ∈ R
l×dembd is the input embedding and LN (·) denotes layer normalization

[1]. [5] first indicated that the output values of the adder operation should be followed
by batch normalization. We also apply layer normalization to stabilize the hidden state
dynamics for better learning. Similarly, Eq. 3 can be easily modified for a batch matrix-
matrix product to realize self-attention:

Attention(Q,K,V) = softmax(
Q ⊕ KT

√
dk

) ⊕ V, (5)

where softmax(·) is the normalized exponential function and dk is used for scaling. The
attention matrix is calculated from the similarity of Q and K by adder operation and
acts as the weighted sum factor to V to get the final output. Multi-head self-attention
concatenated different heads from different representing subspaces as follows:

MHA(Q,K,V) = LN (Concat(head1, ..., headn) ⊕ WO), (6)

where headi is the i-th attention head obtained by Eq. 5 and n is the number of heads.
Then we use WO to realize an adder projection for dimensional transformation fol-
lowed by layer normalization. Finally, the feed-forward network can also be reformu-
lated as:

FFN(X) = LN (ReLU(X ⊕ W1) ⊕ W2). (7)

The new FFN consists of two adder linear transformations, one ReLU activation,
and one layer normalization.
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3.2 Mapping-Based Distillation

Since the basic calculation paradigm of AdderBERT is completely different from that of
the original BERT, we adopt a novel mapping-based distillation to adequately transport
linguistic knowledge from Teacher BERT to student AdderBERT.

Specifically, we distill the output of each encoder block, and the objective function
is as follows:

Lmap = MSE(HS ,HT ), (8)

where HS and HT are the hidden states of the student and teacher networks, respec-
tively. MSE(·) denotes the mean square error loss function. As discussed in AdderNet
[5], the weight distribution in a well-trained ANN is Laplacian distribution rather than
Gaussian distribution. Thus we attempt to map the inputs and weights to a higher dimen-
sional space to minimize the distribution gap between HS and HT .

Given {XS ,WS
1 ,WS

2 }, {XT ,WT
1 ,WT

2 } are the inputs and weights of the FFN
of the student and teacher network, respectively. During the distillation process, we
transform the hidden states by feature mapping as follows:

HS = k1 < XS ,WS
1 ,WS

2 >= e−XS⊕WS
1 ⊕WS

2
σs ,

HT = k2 < XT ,WT
1 ,WT

2 >= e
−XT WT

1 WT
2

2σ2
t ,

(9)

where σs and σt are two learnable smoothing factors. k1< · > is a designed Laplacian-
alike kernel that takes the adder operation of two matrices, while k2< ·> is a Gaussian-
alike kernel. After applying Eq. 9, the inputs and weights are mapped into a higher
dimensional space, thus we can calculate the hidden states by the new smoothing rep-
resentation.

We also use the cross-entropy loss for classifier distillation Lclf as in previous work
[13]. Then the final loss function is defined as:

Lmodel = αLmap + Lclf =
∑

x∈Ω

(
M∑

m=1

αLm
map(x) + Lclf (x)), (10)

where M is the number of encoder blocks of AdderBERT, and m denotes the m-th
block. α is the hyper-parameter for seeking the balance between Lmap and Lclf .

4 Experiment

In this section, we verify the effectiveness of AdderBERT on three tasks with different
model settings.

4.1 Datasets

We evaluate our method on the General Language Understanding Evaluation (GLUE)
benchmark [25]. For Sentiment classification, we test on CoLA [27], SST-2 [22]. For
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similarity matching, we conduct on QQP1, MRPC [10], and STS-B [4]. For language
inference, we use MNLI [28], QNLI [18], WNLI [16] and RTE [2].

4.2 AdderBERT Settings

For a fair comparison, We build AdderBERT12 with the same configuration as the origi-
nal BERTBASE (the number of layers is 12, the hidden size is 768, the feed-forward size
is 3072, the number of heads is 12). BERTBASE uses pre-trained parameters released by
Google, and we train AdderBERT12 from scratch with the same pre-training settings.
We fine-tune them both using the AdaMod [9] optimizer for better performance, the
learning rate is set to 2e−5, and the batch size is set to 32. We then select the model
with the best accuracy in 3 epochs.

We also use the fine-tuned BERTBASE as the teacher model and use 6 and 3 lay-
ers of AdderBERT as the student models (i.e. AdderBERT6 and AdderBERT3). The
student models learn from every 2 and 4 layers of the teacher model, respectively. We
increase the learning rate to 5e−5 and distill them for 5 epochs. All the experiments are
conducted on NVIDIA Tesla-V100 GPUs.

Given that hyperparameters can exert a great impact on the ultimate result, we report
the full details about how to find them. We follow the grid search method until the best-
performing parameters are at one of the middle points in the grid. For fine-tuning, we
tune over hyperparameters to work well across all tasks about batch size: {8, 16, 32,
64}, the initial learning rate of AdaMod:{2e−5, 3e−5, 5e−5, e−4}, and the number of
epochs: {2, 3, 4, 5}.

4.3 Baselines

We compare AdderBERT against two strong baselines as follows:

– BERT The 12-layer BERTBASE model, which was pre-trained on Wiki corpus and
released by Google [8].

– DistilBERT The most famous distillation version of BERT with 6 layers, which
was released by Huggingface [20]. In addition, we use the same method to distill the
DistilBERT with 3 layers.

4.4 Experiments on GLUE

We submitted our model predictions to the official GLUE evaluation server to get results
on the test data, as reported in Table 1. Note that values in both models are 32-bit floating
numbers and the energy consumptions for a 32-bit multiplication and addition are 3.7pJ
and 0.9pJ , respectively [7]. The original BERTBASE achieves a 79.7 score on average
with 11.27B multiplications and 11.27B additions, and AdderBERT12 achieves a 79.0
score with 0.31B multiplications and 22.23B additions. By replacing massive multipli-
cations with additions, our proposed model obtains about a 2.5x reduction in energy

1 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Table 1. Results from the GLUE test server. The best results for each group are in-bold. All mod-
els are learned in a single-task manner. The energy consumption is calculated from the number
of multiplications and additions, respectively. Nothing that T denotes the teacher model, and all
the 3-layers and 6-layer models are distilled from it while AdderBERT12 is undistilled.

Model # Mul. # Add. Energy (pJ) MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERTBASE (T) 11.27B 11.27B 51.8B 83.8/83.1 71.0 90.7 93.9 52.5 85.5 89.1 68.1 79.7

AdderBERT12 0.31B 22.23B 21.1B 84.3/83.4 70.4 90.9 92.5 50.7 83.7 89.0 65.9 79.0

DistilBERT6 5.64B 5.64B 25.9B 82.1/81.3 69.9 88.9 92.4 47.4 76.2 88.1 56.3 75.8

AdderBERT6 0.16B 11.12B 10.6B 84.9/83.1 71.3 91.2 93.8 51.3 83.2 87.9 69.5 79.6

DistilBERT3 2.82B 2.82B 13.0B 73.4/72.9 66.0 81.3 85.6 27.5 75.1 80.2 61.0 69.2

AdderBERT3 0.08B 5.56B 5.3B 80.7/80.9 68.6 88.0 90.7 45.9 79.3 87.2 65.2 76.3

consumption from 51.8BpJ to 21.1BpJ at the cost of a little performance loss (0.7
drops relative to BERTBASE on the average score). This demonstrates that AdderBERT
performs a powerful representation capacity like BERT even with few multiplications.

We then evaluate the distillation versions of our model against the strong KD base-
lines, respectively. For 6 layers, DistilBERT6 achieves a 75.8 score on average with
5.64B multiplications and 5.64B additions while AdderBERT-6 achieves a higher 79.6
score with 0.16B multiplications and 11.12B additions. With mapping-based distilla-
tion, our proposed model AdderBERT-6 significantly outperforms DistilBERT6 by a
margin of 3.8 on average and obtains a 2.5x reduction in energy consumption as well.
Compared to BERTBASE, AdderBERT6 is in much lower energy consumption (4.9x
reduction) while maintaining competitive performance (79.7 vs 79.6). This indicates
that our proposed KD method can adequately transport linguistic knowledge from the
teacher model to the student model. For 3 layers, AdderBERT3 is consistently better
than DistilBERT3 (a large improvement of 8.1 on average), especially on the challeng-
ing CoLA dataset, and it only consumes less than one-tenth of the energy of the teacher
model. In conclusion, empirical results validate our motivation that AdderBERT com-
bines the advantage of both BERT and AdderNet, that is, it could obtain comparable
results with the teacher model but substantially reduce the energy burden.

4.5 Ablation Study

We further investigate the effectiveness of different distillation objectives on Adder-
BERT learning. The baselines include without mapping-based distillation (w/o map) or
classification distillation (w/o clf), respectively.

The results are summarized in Table 2. We can find the performance without
mapping-based distillation drops significantly from 76.9 to 71.8, which demonstrates
that our proposed method plays the most important role of the two objectives. The rea-
son for the significant drop lies in the distribution gap between HS and HT . Linguistic
knowledge is hard to transport across completely different representations.
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Table 2. Ablation studies of different distillation objectives in the AdderBERT learning. The
results are validated on the dev set.

Model MNLI-m MNLI-mm MRPC CoLA Avg

AdderBERT6 84.3 83.4 89.0 50.7 76.9

w/o map 80.5 77.8 84.3 44.6 71.8

w/o clf 82.0 79.3 88.6 46.9 74.2

5 Conclusion

In this paper, we propose an energy-efficient version of BERT, called AdderBERT.
Specifically, AdderBERT consists of several adder encoders implemented by cheap
addition operations but has a powerful representation capacity. It adopts a unique
mapping-based distillation method to narrow the gap in feature distribution between
the teacher and student model. Empirical results on the GLUE benchmark demonstrate
that our method can achieve highly competitive performance to the teacher BERTBASE

while reducing energy consumption significantly.
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Abstract. A simile is an important linguistic phenomenon in daily com-
munication and an important task in natural language processing (NLP).
In recent years, pre-trained language models (PLMs) have achieved great
success in NLP since they learn generic knowledge from a large corpus.
However, PLMs still have hallucination problems that they could gener-
ate unrealistic or context-unrelated information. In this paper, we aim
to explore more accurate simile knowledge from PLMs. To this end, we
first fine-tune a single model to perform three main simile tasks (recogni-
tion, interpretation, and generation). In this way, the model gains a bet-
ter understanding of the simile knowledge. However, this understanding
may be limited by the distribution of the training data. To explore more
generic simile knowledge from PLMs, we further add semantic depen-
dency features in three tasks. The semantic dependency feature serves
as a global signal and helps the model learn simile knowledge that can be
applied to unseen domains. We test with seen and unseen domains after
training. Automatic evaluations demonstrate that our method helps the
PLMs to explore more accurate and generic simile knowledge for down-
stream tasks. Our method of exploring more accurate knowledge is not
only useful for simile study but also useful for other NLP tasks leveraging
knowledge from PLMs. Our code and data will be released on GitHub.

Keywords: NLP · Pre-trained language model · Simile knowledge

1 Introduction

A simile is a figure of speech that compares two things from different categories
(called the tenor and the vehicle) via shared properties [17]. A tenor and a vehicle
are usually connected with comparator words such as “like” or “as”. For example,
the sentence “The girl is as pretty as an angel.” is a simile where the tenor is
“The girl”, the vehicle is “an angel”, the comparator is “as ... as” and the shared
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 348–363, 2023.
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property is “pretty”. Simile plays an important role in human language to make
utterances more vivid, interesting, and graspable [26], comprehending similes is
essential to appreciate the inner connection between different concepts and is
useful for other natural language processing (NLP) tasks [8,20].

In recent years, pre-trained language models (PLMs) have achieved great
success in NLP since they learn generic knowledge from a large corpus and
could serve as a knowledge base [5,18]. Considerable attention has been paid to
exploring simile knowledge from PLMs to solve downstream simile tasks, such
as recognition, interpretation, and generation [4,8]. However, PLMs are known
to suffer from hallucination problems [7,12,19], they could generate unrealistic
or unfaithful information about the provided source content, which will impact
their performance on downstream tasks. For example, when completing the blank
in a simile sentence “Are you feeling ill? You are as __ as a ghost.”, a PLM may
generate “creepy” instead of the expected shared property “pale”.

In this paper, we study how to explore more accurate and generic simile
knowledge from PLMs. Specifically, we first train PLMs with three main simile
tasks (recognition, interpretation, and generation). In this way, the PLMs can
learn the shared semantic feature among different tasks and gain a better under-
standing of the simile knowledge. However, this understanding may be limited
by the distribution of the training data. The performance of the model will drop
when applied to unseen domains. To explore more generic simile knowledge, we
further add semantic dependency features in the fine-tuning process. The seman-
tic dependency feature serves as a global signal, helps the model learn simile
knowledge shared among similar syntax structures, and enhances the model’s
performance on unseen domains. During tests, we conduct experiments on both
seen and unseen test sets to verify the effectiveness of our method. To sum up,
our contributions are:

– We propose a novel method to explore more accurate and generic simile knowl-
edge from PLMs.

– We test our model with both seen and unseen test sets. Experimental results
demonstrate the effectiveness of our method and we give a detailed analysis
of the results.

– Our code and data (including a new manually annotated simile data set) will
be released on GitHub1.

2 Related Work

In this section, we will introduce previous work related to this paper.

2.1 Simile and Metaphor

Metaphor is often used in human language to make speech more vivid and
easy to understand [15]. [2] categorized metaphor into Noun phrases, Adjectives,
1 https://github.com/realZsh/simile-tasks.

https://github.com/realZsh/simile-tasks
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Table 1. Different metaphor categories. For similes, we use underline font to show
tenors and use italic font to show vehicles.

Metaphor Category Example Is a simile?

Noun phrase The judge is like an angel. Yes

Adjective The boy has a warm heart. No

Verbal He kills the seeds of peace. No

Adverb-Verb The child speaks France fluidly. No

Verbal phrase Raising little cats is like taking care of
children.

Yes

Sentence The man walks into the crowd like
a fish swims into the ocean.

Yes

Verbs, and Multi-word. [10] defined metaphor as Nominal, Verbal (Subject-Verb-
Object), Adjective-Noun, and Adverb-Verb. Table 1 shows examples of these cat-
egories. The Noun phrase metaphor is usually defined as a simile [4,8,10]. In this
paper, we not only study the Noun phrase metaphor. Meanwhile, to test whether
the trained model performs well on unseen domains, we construct a new test set.
In this new test set, the tenor and vehicle can be verbal phrases/sentences that
perform a similar role to Noun phrases. The examples of verbal phrases and
sentences as simile components are shown in Table 1.

2.2 Tasks in Simile

The current simile study usually focus on recognition [1,11], interpretation [24],
and generation [10]. The recognition task [10,14,22,25] is judging whether a
triplet or a sentence contains a simile. The interpretation [11] assigns an appro-
priate interpretation to a simile expression [2] or infers the shared properties of
the tenor and the vehicle [4,8,20]. The generation task generates a simile sen-
tence [3,10,23,26] or the vehicle [4,20]. In this paper, we follow previous work
and study the simile recognition/interpretation/generation (SR/SI/SG) tasks.
Since there are not enough simile data that can be used for all three simile
tasks. We construct the data we need based on existing SI data.

2.3 Exploring Simile Knowledge in PLMs

Previous simile work usually exploited the simile knowledge from PLMs for
resolving downstream tasks. [20] fine-tune BERT [5] for simile recognition and
simile component (tenor, shared property, and vehicle) extraction. [3] fine-tune
BART [9] on the literal-simile pairs to generate novel similes given a literal sen-
tence. [8] design a simile property probing task to let the PLMs infer the shared
properties of similes for the interpretation task. [4] propose an Adjective-Noun
mask Training method to explore simile knowledge from BERT for simile inter-
pretation and generation tasks. [10] fine-tune a GPT-2 [18] model for simile
generation. In this paper, we also study how to explore simile knowledge from
PLMs. However, different from previous work, we investigate how to leverage
three simile tasks to explore more generic simile knowledge from PLMs.



Exploring Accurate and Generic Simile Knowledge 351

SR loss

SR Example Semantic Dependency

<cls>

SI or SG loss

Position
Segment
Word

BERT 

Simile Example Semantic Dependency

[mask]

(a) Simile recognition task (b) Simile Interpretation/Generation Tasks (c) Semantic Dependency Tree
Example: She was as thin as a toothpick .

She was as thin as a toothpick

nsubj

cop
dep

punct

.

Obl:as

case
det

Fig. 1. Demonstration of the training method and semantic dependency.

3 Our Proposed Method

In this section, we formalize the simile recognition/simile interpretation/simile
generation (SR/SI/SG) tasks and introduce our method in detail. For a fair
comparison with previous work [4,8], we use BERT-base [5] as the backbone of
our model. Figure 1 shows the model structure of SR/SI/SG tasks.

3.1 Training of Simile Recognition (SR) Task

We follow previous work [10,11] and define SR as a binary classification task.
The SR model needs to distinguish whether an input sequence contains a simile.
The input to the SR model is a sequence and the output is a binary label: True
for simile and False for literal. The only common feature between simile data and
literal data is that they both contains the comparator words [11]. For example,
the sentence “the boy runs like a deer.” is a simile, but the sentence “the girl
looks like her mother.” is literal.

Following the original BERT paper, we use the first output position (a special
token <cls>) to calculate the classification score, such as (a) part in Fig. 1. We
denote the corresponding output vector of <cls> as Ecls. Then the final score
S of the input sequence is calculated as follows:

S = σ(W2 · μ(W1 · Ecls + b1) + b2), (1)

where W1,2 and b1,2 are training parameters; σ/μ is the sigmoid/tanh function,
respectively. The example with S ≥ 0.5 is classified as a simile, otherwise literal.
The training loss is cross-entropy between predicted labels yi and ground-truth
label ȳi:

LSR = − 1
N

N∑

i=1

(ȳilogP (yi)) (2)

where N is the number of training examples. After this fine-tuning, we can test
the model on the SR test sets. We input an example and verify whether the SR
model gives a correct classification for it.



352 S. Zhou et al.

Table 2. Examples for simile interpretation/generation tasks. We place the correct
answer in the first position in these examples. In real data, the position of the correct
answer is randomly placed. During training, the model learns to recover the [MASK]
word. During the test, the model needs to select one answer from the 4 candidates.

Task Example Candidates

SI My client is as [MASK] as a newborn
lamb.

A. innocent. B. delicious.
C. legal. D. guilty.

SG The participant swims like a
[MASK].

A. dolphin. B. plait.
C. depiction. D. pod.

3.2 Training of Simile Interpretation (SI) and Simile Generation
(SG) Tasks

Following the previous simile interpretation (SI) and simile generation (SG) work
[8,20], we define the training of SI and SG as a masked language model task where
the BERT learns to recover the masked words, such as (b) part in Fig. 1. Two
examples are shown in Table 2. In SI, the masked word is the shared property.
In SG, the masked word is the vehicle.

During the test, we also follow the previous work [8,20] and define SI/SG
as a multi-choice task which chooses an answer from 4 candidates. Given an
input simile sentence or dialogue with a masked shared property/vehicle, the
SI/SG model needs to select the correct property/vehicle from the candidates,
respectively. We use the masked-word-prediction heads of BERT to compute the
probability for each candidate. The candidate with the highest probability will
be chosen as the final choice.

3.3 Training with Semantic Dependency Features

Through the training process with SR/SI/SG, the PLM learns to use simile
knowledge for three different simile tasks. However, the distribution of the train-
ing data may restrict the model’s performance when applied to unseen domains.
To this end, we enhance the PLM with global semantic dependency information,
which can help the model learn simile knowledge across different syntax struc-
tures. This more generic simile knowledge can help the model’s performance on
unseen domains.

We adopt the semantic dependency tool2 to get the semantic dependency tree
of each input sequence. One example is shown in (c) part of Fig. 1. The depen-
dency tree for “She was as thin as a toothpick.” is a list of tuples: “[(‘ROOT’, ‘.’,
‘thin’), (‘nsubj’, ‘thin’, ‘She’), (‘cop’, ‘thin’, ‘was’), (‘dep’, ‘thin’, ‘as’), (‘case’,
‘toothpick’, ‘as’), (‘det’, ‘toothpick’, ‘a’), (‘obl’, ‘thin’, ‘toothpick’), (‘punct’,
‘thin’, ‘.’)]”. The word “thin” is the root of this tree and please refer to [13]
for the definition of each semantic dependency relation.

2 https://stanfordnlp.github.io/CoreNLP.

https://stanfordnlp.github.io/CoreNLP
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Table 3. Statistics of datasets.

Dataset Train/Dev/Test Words/Example Data Format

MSP-original (for SI) 4,510/-/1,633 12.2 sentence
MSP-modified for SG 4,510/-/1,633 12.3 sentence
MSP-modified for SR 7,216/902/902 12.3 sentence
New test set -/-/957 30.6 three-turn dialogue

For the SR task, we can directly use the semantic dependency results. How-
ever, in SI or SG task, key simile component such as the vehicle “toothpick” of
the above example is masked. We change the example to “She was as thin as
a UNK.”, where UNK represents the [MASK] vehicle. Then the output seman-
tic dependency tree changes to “[(‘ROOT’, ‘.’, ‘thin’), (‘nsubj’, ‘thin’, ‘She’),
(‘cop’, ‘thin’, ‘was’), (‘dep’, ‘thin’, ‘as’), (‘case’, ‘UNK’, ‘as’), (‘det’, ‘UNK’, ‘a’),
(‘obl’, ‘thin’, ‘UNK’), (‘punct’, ‘thin’, ‘.’)]”. In this way, the model is aware of
the semantic dependency tree of the input sentence but does not see the masked
word.

The final input to BERT is the concatenation of the semantic dependency
tree and the original sentence. We use different segment embedding to distinguish
the data example and its semantic dependency information, such as the (a)/(b)
part of Fig. 1.

After training, we test with two different settings, one is the MSP test set,
and the other is an unseen test set that is newly constructed by us. Next, we
will introduce the data sets.

4 Experimental Setup

4.1 Datasets

We use simile data sets with “as ... as” comparator since the shared property
naturally exists in the comparator, which is suitable for our experiments since
we want conduct all SR/SI/SG tasks with this data. This kind of simile data
can be used for all three simile tasks. The data statistics are shown in Table 3
and we introduce the data details next.

MSP Dataset (for SI Task). Since we could not find enough data for all three
simile tasks, we construct the required data based on a recently released simile
benchmark. The multi-choice simile probe (MSP) data [8] is originally proposed
for SI task. It has a total of 5,410 training examples and 1,633 test examples. All
examples in MSP are simile sentences with comparator “as ... as”. Each example
in the MSP test set has three distractors for the shared property. During training,
the model learns to recover the masked property in MSP training data. During
the test, the model needs to choose the correct answer from 4 candidates in the
MSP test set.
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Table 4. Relations in ConceptNet we used to find distractors. “<->” means Symmetric
relation for A and B. “->” means Asymmetric relation that A entails B.

Relation: Definition

RelatedTo: The most general relation. There is some positive relationship between
A and B, but ConceptNet can’t determine what that relationship
is based on the data. Symmetric. exercise <-> fit

IsA: A is a subtype or a specific instance of B; every A is a B. This can
include specific instances; the distinction between subtypes and
instances is often blurry in language. This is the hyponym relation
in WordNet. car -> vehicle; Mexico -> Country

Causes: A and B are events, and it is typical for A to cause B. run -> tired
Desires: A is a conscious entity that typically wants B. Many assertions of

this type use the appropriate language’s word for “person” as A.
person -> respect

DistinctFrom: A and B are distinct member of a set; something that is A is not B.
Symmetric. red <-> blue; June <-> May

SymbolOf: A symbolically represents B. blue -> cold
MannerOf: A is a specific way to do B. Similar to “IsA”, but for verbs. auction

-> sale
LocatedNear: A and B are typically found near each other. Symmetric. computer

<-> table
CausesDesire: A makes someone want B. hungry -> eat food
MadeOf: A is made of B. porcelain -> ceramic

MSP-Modified Data (for SG Task). To perform the SG task, we introduce
a modified version of MSP. During training, we mask the vehicle and train the
model to recover it. During the test, we provide 4 vehicle candidates for the multi-
choice task. Besides the real vehicle, the other 3 distractors are constructed with
ConceptNet [21]. The ConceptNet is a knowledge graph that connects words and
phrases of natural language with labeled relations [21]. We show 10 relations of
ConceptNet in Table 4. They are used to find the related concepts to the vehicle
as the distractors. For the example “She was as thin as a toothpick.”, the vehicle
is the word “toothpick”. We find that “toothpick” is usually located near to
(LocatedNear) “food” and can be made of (MadeOf) “plastic” or “wooden”. So
the three distractors can be “food, plastic, wooden”. When we find more than
three distractors with the relations in Table 4, we randomly choose 3 of them as
the final distractors. Notice that there are a few cases we could not find enough
distractors, we manually construct distractors for these cases.

MSP-Modified Data (for SR Task). Similarly to the SG task, we introduce
another modified version of MSP for the SR task. Since the SR task needs both
simile examples and literal examples [10,11], we use certain relations in Con-
ceptNet to obtain the literal data we need. For example, we replace the tenor
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“his muscle” in the simile example “his muscle is as hard as a rock” with the
phrase “a stone”, the Synonym concept of “a rock”, then we get a literal sen-
tence “a stone is as hard as a rock”. This is different from replacing “his muscle”
with a random word such as “air”. Because the sentence “air is as hard as a
rock” does not have a practical meaning. If we use “air is as hard as a rock”
as a literal sample to train an SR model. The model may classify this sample
as literal by identifying that it is against common sense. Instead, when we use
the literal sentence “a stone is as hard as a rock”, the SR model needs to use
simile knowledge to judge whether this example is a simile. The knowledge is
that simile only exists when comparing things from different categories. “stone”
and “rock” are in the same category so this sentence is literal. Besides the Syn-
onym relation, we can also use other relations of the vehicle including Distinct-
From/IsA/RelatedTo/SimilarTo in ConceptNet to find a concept to replace the
tenor. When we find more than one distractor, we randomly choose one of them
as the literal sentence. By this method, we not only obtain the required training
literal data but also has more difficult literal data. Because the syntax structure
of the literal data is the same as the original simile example but the semantic
information is different. These literal examples will help the model to learn more
accurate simile knowledge. Finally, we obtain 9020 examples. We randomly split
this data into train/dev/test (8:1:1) to train our model. During training, the
model learn to give a higher/lower score for the simile/literal data. During the
test, the model assigns a score for the input. In both training and testing, an
example with a score ≥ 0.5 will be set as simile, <0.5 will be set as literal.

A New Test Data (for SR/SI/SG Task). After the above data set con-
struction, we now have the training/testing MSP sets for SR/SI/SG tasks. We
denote the MSP test sets as a seen set because the training and testing data are
in a similar domain and similar range of length. To test whether our method can
help to explore more generic simile knowledge, we provide unseen test sets for
SR/SI/SG tasks.

The new test data is collected from Reddit-dialogue corpus [6] which has
∼15 million English dialogues. The dialogues are comments from the Reddit
forum and each dialogue has three turns. We extract 1,000 dialogue examples
from the Reddit dataset with three rules. First, the dialogue length is around 30
tokens so it is informative and not too long. Second, the last turn must contain
a comparator “as ... as” with an adjective word in the comparator. Third, we
use the semantic dependency tool to ensure that the tenor and vehicle are in the
response. Then we manually annotate whether they are similes or literal. For the
simile sentences, we further check whether the tenor and vehicle labeled by the
semantic dependency tool are correct. Notice that we do not make any change
to the data. Therefore, for dialogue examples that tenor or vehicle is missing, we
withdraw this example even it contains a simile. We make sure that all simile
components are in the example so that we can use it for all simile tasks. We
finally have 486 simile examples and 471 literal examples, total 957 examples.
When testing on SI/SG, we construct the distractors using the same method as
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we construct MSP-modified data. For the examples in this new test set that we
could not find enough vehicle distractors, we randomly choose the vehicles from
other dialogues as the distractors.

The new test set is different from the training data (MSP) in the following
respects: 1) the data format is dialogue and the length is much longer than data
in MSP; 2) the tenor and vehicle in dialogue can be verbal phrase or sentence,
which is different from the noun phrase in MSP. We use the new test set to
verify whether our method can perform well on a different simile distribution
compared to MSP.

4.2 Baselines

We introduce the baselines we used in this section.

Baselines for SR. BERT-base is fine-tuned on the MSP modified SR train-
ing set. The checkpoint for test is selected based on the performance on the
corresponding dev set.

Baselines for SI/SG. The first baseline is a BERT-base model without fine-
tuning with the data sets in this paper. It takes the input with key simile compo-
nent masked and predicts the masked words. The second baseline is BERT-ANT
[4] which is trained with masked word prediction with a number of metaphor
data. It is based on a BERT-large-uncased model and can solve the SI and SG
tasks in a unified framework of simile triple completion. For example, when giv-
ing tenor= fireman and vehicle = bull, BERT-ANT can generate a list of words
including the shared property like “strong” or “brave”. When performing our
SI/SG tasks, we match the candidates of each example with the output list
of BERT-ANT. An example is counted correct if the ground truth answer is
listed before the other three distractors. The BERT-Probe baseline is from [8]
that fine-tuned BERT with MSP-original data for simile interpretation task.
To compare both SI and SG tasks with this baseline, we further fine-tuned the
BERT-Probe model with MSP-modified SG training data and report its results
on the MSP-modified SG test data.

Our Models. Besides the fully fine-tuned model, we also provide several set-
tings for our model. (- SR training) means we remove the simile recognition
data in the unified training process. Similarly, (- SI training) and (- SG train-
ing) means we remove the SI and SG data in training, respectively. (- Semantic
Dependency) means we do not use syntax features. These settings can reflect
the contribution of the removing part.

4.3 Evaluation Metrics

Following previous work [11], we use macro Precision/Recall/F1 and Accuracy
to measure the simile recognition results. Following previous work on simile
interpretation and generation [4], we use Hit@1 to measure the multi-choice
accuracy.
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Table 5. Simile recognition results. The BERT-base (fine-tuned with MSP-modified
SR train set) is the base model to do the significant test for our models (* means
statistically significant with p < 0.01).

Model Precision Recall F1 Accuracy

MSP-modified SR Test set
BERT-base 0.7127 0.6981 0.6939 0.6996
Ours 0.7904* 0.7905* 0.7905* 0.7905*

(- SR training) 0.5000* 0.5000* 0.3768* 0.5000*
(- SI training) 0.7712* 0.7725* 0.7718* 0.7717*
(- SG training) 0.7774* 0.7801* 0.7781* 0.7779*
(- Semantic Dependency) 0.7822* 0.7805* 0.7836* 0.7821*

Our Proposed Test set
BERT-base 0.4949 0.4963 0.4559 0.4922
Ours 0.5419* 0.5393* 0.5332* 0.5413*

(- SR training) 0.4927 0.4968 0.4179 0.5026
(- SI training) 0.5030* 0.5020* 0.4532* 0.4974*
(- SG training) 0.5152* 0.5136* 0.4985* 0.5110*
(- Semantic Dependency) 0.5325* 0.5284* 0.5114* 0.5256*

4.4 Implementation Details

Our model is implemented by PyTorch [16]. The implementations of the pre-
trained models in this paper are all based on the public Pytorch implementation
(https://github.com/huggingface/transformers). During the training, the maxi-
mum input length is set to 512. We use a single Tesla v100s GPU with 32 gb mem-
ory for experiments. The batch size is all set to 24. The model is optimized using
the Adam optimizer with a learning rate of 5e−6. The learning rate is scheduled
by a warm-up and linear decay. A dropout rate of 0.1 is applied for all linear
transformation layers. The gradient clipping threshold is set as 10.0. Early stop-
ping on the corresponding validation data is adopted as a regularization strat-
egy. The training epochs are ∼3. For SI/SG testing on the new unseen set, if the
masked position is a single word, we select the answer with the highest probabil-
ity of the masked position; if there are multiple masked words, we encode the pre-
dicted words and the candidates into dense vectors with a sentence-transformer
(https://www.huggingface.co/sentence_transformers/all-MiniLM-L6-v2). Then
we compute the cosine similarity between the predicted words and each of the
candidates. The candidate with the highest similarity is chosen as the answer.

5 Results and Analysis

In this section, we introduce the experimental results and provide our analysis
of the results.

https://github.com/huggingface/transformers
https://www.huggingface.co/sentence_transformers/all-MiniLM-L6-v2
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5.1 Simile Recognition

Table 5 shows the simile recognition results. The experiments are conducted on
the MSP-modified SR test set and our new unseen test set.

Comparing with Baseline. The BERT-base model is fine-tuned with the
MSP-modified SR train set and is tested with two test sets. One is the MSP-
modified SR test set and the other is our new test set. We can see that on both
test sets, our model performs better than the baselines. On the MSP-modified
SR test set, our model surpasses BERT-base by around 7.8% on accuracy. On
our proposed test set, our model outperforms BERT-base by around 4.9% on
accuracy. On Macro Precision/Recall/F1, our model also outperforms the BERT-
base model. The results show that our method not only can help PLM to use
a more accurate simile knowledge but also perform better on a more difficult
unseen test set. The results on the new test set are much lower than the MSP-
modified SR test set, which indicates the new test set is much harder. Although
our method helps the PLM to obtain a better performance on this new test set,
there is still a lot of room to improve.

Ablation Study on SR. We also report the ablation study in Table 5. We
can see that on both the MSP test set and the new test set, removing the key
component of our model will cause declines. On the MSP test set, (- SR training)
is exactly 50% because the model does not understand the SR task without the
SR training. On the new test set, similar results are observed. The results are
also around 50% and are not statistically significant.

On both test sets, (- SI training) performs worse than (- SG training). The
results indicate that the SI fine-tuning task (recovering the masked property) is
more useful than the SG fine-tuning task (recovering the masked vehicle) for the
model to learn SR knowledge. It is because the shared property usually serves as
the root of the semantic dependency tree. As shown in the (c) part of Fig. 1, the
shared property connects most words in a simile sentence and the vehicle only
connects a few words. When training with SI, the model learns more semantic
relations between words than training with SG, so that the model can better
leverage this semantic dependency knowledge for the SR task.

(- Semantic Dependency) causes more declines on the new test set (from 0.9–
2.2% on all metrics) than on the MSP test set (from 0.7–1.0% on all metrics).
It means the semantic dependency information helps the PLM to learn a more
generic simile knowledge. This generic simile knowledge brings more gains in an
unseen domain.

To sum up, experimental results on SR verify that 1) our method can explore
more accurate and generic simile knowledge; 2) each fine-tuning task and the
semantic dependency signal contributes to the performance.
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Table 6. Simile interpretation and generation results (Hit@1) on MSD-En. The BERT-
Probe is the base model to do the significant test for other models (* means statistically
significant with p < 0.01).

Model Interpretation Generation

MSP-original SI Test set and MSP-modified SG Test set
BERT-base (without fine-tuning) 0.7436 0.8155
BERT-Probe [8] 0.8015 0.8667
BERT-ANT [4] 0.8020 0.8675
Ours 0.8101* 0.8986*

(- SR training) 0.8006* 0.8819*
(- SI training) 0.7273* 0.8608*
(- SG training) 0.7832* 0.8113*
(- Semantic Dependency) 0.8089* 0.8799*

Our proposed Test set (the simile data)
BERT-base (without fine-tuning) 0.5905 0.4510
BERT-Probe [8] 0.6454 0.5031
BERT-ANT [4] 0.5921 0.5094
Ours 0.6142* 0.5232*

(- SR training) 0.6084* 0.5189*
(- SI training) 0.5801* 0.4976*
(- SG training) 0.6025* 0.4888*
(- Semantic Dependency) 0.6031* 0.5022*

5.2 Simile Interpretation and Generation

Table 6 shows the simile interpretation and simile generation results. The SI task
uses the MSP-original SI test set and our new test set. The SG task uses the
MSP-modified SG test set and our new test set.

Comparing with Baselines. The first baseline is the BERT-base model with-
out any fine-tuning. We can see that BERT-Probe performs better than BERT-
base on both SI/SG tasks. The results are reasonable since BERT-Probe ben-
efits from the fine-tuning of MSP-original/MSP-modified data on SI/SG tasks,
respectively.

Different from the above two baselines, BERT-ANT is based on BERT-large
and trained with a large corpus through Adjective-Noun mask Training. Bene-
fiting from both a larger parameter size and the training process, BERT-ANT
outperforms the BERT-Probe on both SI/SG tasks.

On the other hand, our model surpasses the strong BERT-ANT on both
SI/SG even though our model uses BERT-base as the backbone. The results
again verify that our method can enhance PLM with more accurate and generic
simile knowledge.
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The results on the new test set are still lower than the MSP test sets. One
notable result is that the gap between results on the SG task is much larger
than the gap on the SI task. The results show that the MSP-modified SG test
set is easier than the MSP-original SI test set. The Hit@1 results are 89.86%
and 81.01%, respectively. This may also be one of the reasons why SI training
contributes more than SG training in Table 5. We can try constructing more
difficult SG training data to improve the learning efficiency of our model.

Ablation Study on SI/SG. We also report the ablation study in Table 6. We
can see that on both MSP test sets and the new test set, removing the training
component of our model will cause declines.

On the MSP-original SI test set, (- SI training) causes ∼8.3% declines. On the
new test set, (- SI training) only has ∼2.4% declines. The results are reasonable
since the unseen test set is not as sensitive to the training data as the seen test
set. A similar trend can be observed with the SG task. On the MSP-modified
SG test set, (-SG training) causes ∼8.7% declines. On the new test set, (- SG
training) only entails ∼3.4% declines.

On all test sets, (- SR training) only causes a little decline, which indicates
that the SR fine-tuning contributes little to SI/SG tasks. This is different from
the experimental results in Table 5, where SI/SG training contribute more to
the SR task. How to leverage SR training to improve the SI/SG tasks requires
further study.

Similar to the SR experiments, (- Semantic Dependency) causes more declines
on the new test set (∼1.1% on SI and ∼2.1% on SG) than on MSP test sets
(∼0.1% on SI and ∼1.9% on SG). The results mean the semantic dependency
information helps more on an unseen set than the seen set, which is consistent
with the results of the SR task.

To sum up, experimental results on SI/SG again verify that 1) our method
can explore more accurate and generic simile knowledge; 2) each fine-tuning task
and the semantic dependency signal have positive effects on the performance.

6 Conclusion

We propose a novel method to explore more accurate and generic simile knowl-
edge from PLMs. We fine-tune PLM with three simile tasks (recognition, inter-
pretation, and generation) to explore local simile knowledge between key simile
components (tenor, shared property, vehicle). Then we use the semantic depen-
dency feature for global simile knowledge among different examples. This global
simile knowledge can help our model perform well across domains. Experiments
with seen and unseen test sets verify the effectiveness of our method. Our explor-
ing method may be useful for other NLP tasks that leverage knowledge from
PLMs. Since our method does not need an expensive pre-training process, it may
also be useful for leveraging more large-scaled PLMs. Future works include but
are not limited to 1) testing our method on other knowledge-intensive tasks; 2)
verifying whether our method can be transferred to auto-regressive-based PLMs.
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Abstract. Sentiment analysis is a crucial text classification task that aims to
extract, process, and analyze opinions, sentiments, and subjectivity within texts.
In current research on Chinese text, sentence and aspect-based sentiment analy-
sis is mainly tackled through well-designed models. However, despite the impor-
tance of word order and function words as essential means of semantic expres-
sion in Chinese, they are often underutilized. This paper presents a new Chi-
nese sentiment analysis method that utilizes a Learnable Conjunctions Enhanced
Model (LCEM). The LCEM adjusts the general structure of the pre-trained lan-
guage model and incorporates conjunctions location information into the model’s
fine-tuning process. Additionally, we discuss a variant structure of residual con-
nections to construct a residual structure that can learn critical information in
the text and optimize it during training. We perform experiments on the public
datasets and demonstrate that our approach enhances performance on both sen-
tence and aspect-based sentiment analysis datasets compared to the baseline pre-
trained language models. These results confirm the effectiveness of our proposed
method.

Keywords: Sentiment Analysis · Conjunction Enhanced · Residual Structure

1 Introduction

Sentiment analysis is a crucial area of research within the field of natural lan-
guage processing. Before the advent of Transformer [33], Recurrent Neural Networks
(RNNs) were the primary method used to model sequences in language modeling
tasks [12,13,21,31]. RNN, along with its variants LSTM (Long-Short Term Memory)
and GRU (Gated Recurrent Unit), are powerful models for processing sequences of
varying lengths and addressing long-term dependencies. However, the sequential nature
of RNNs makes parallelization difficult. Transformer introduces the attention mecha-
nism to encode the context information, which can well capture the internal correlation
and ease the problem of long-term dependencies. This allows for greater parallelization
and improved performance on certain tasks.

Nevertheless, since self-attention discards sequential operations when processing
sequences, the position information in the sequence cannot be fully utilized. In lan-
guages such as Chinese, word order plays a crucial role in conveying grammatical
meaning1, making it important to consider the sequential nature of the language when

1 Higher Education Press.
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developing natural language processing models. Word order refers to the sequence of
words in a phrase or sentence, while Chinese word order is relatively fixed, and the
change of word order can make the phrase or sentence express different meanings.
“Speak well/说好话” , “easy to speak with/好说话” , and “easier said/话好说” are
three Chinese phrases that demonstrate the importance of word order in conveying
meaning. Although these phrases share similar characters, their meanings differ greatly
depending on how those characters are arranged. “Speak well/说好话” means to speak
positively or say good things about someone or something, while “easy to speak with/好
说话” describes someone who is easy to communicate with. Lastly, “easier said/话好
说” implies that something may sound simple or easy to do but can be more difficult
in practice. It’s essential to consider both the context and word order when interpreting
or translating Chinese phrases. In addition, function words in Chinese play an impor-
tant role in constructing the grammatical structure of a sentence and reflecting specific
grammatical relationships. They are a crucial grammatical tool necessary for express-
ing meaning2. Among them, conjunctions connect grammatical units at different levels,
and their positions in sentences are significantly different [17], which can be used as an
essential aspect of studying syntactic distribution.

Therefore, in this paper, we propose LCEM, a learnable conjunctions augmenta-
tion model for Chinese sentiment analysis. By adjusting the structure of the pre-trained
language model, LCEM introduces the conjunction position information into the fine-
tuning process. The paper also explores variants of residual structure and constructs an
enhanced model capable of learning critical information during training and optimiza-
tion of the residual structure.

The main contributions of this paper can be summarized as follows:

– LCEM is a generic structure that can be easily integrated into a pre-trained language
model based on Transformer using an adaptive update optimized network of learn-
able parameter factors.

– By incorporating the relative position of conjunctions in each layer of the pre-trained
language model, LCEM enhances multi-head self-attention and effectively considers
the sentiment range of sentences connected by conjunctions.

– Additionally, LCEM combines a learnable residual structure to better balance the
network and optimize semantic representation more efficiently.

– LCEM is evaluated on benchmark datasets for sentence and aspect-based sentiment
analysis. Experiments show that LCEM consistently achieves state-of-the-art per-
formance across all test datasets.

2 Related Work

2.1 Chinese Sentiment Analysis

Early Chinese sentiment analysis methods [19,27,43] primarily relied on sentiment lex-
icons, such as HowNet sentiment word dictionary and National Taiwan University Sen-
timent Dictionary (NTUSD), and classified sentiment polarity based on dictionaries and

2 The Commercial Press.
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rules. However, these methods are limited by the quality and coverage of lexicons. The
sentiment analysis in a specific field needs to construct a specific dictionary, which is
time-consuming and laborious. When traditional machine learning algorithms are used
in sentiment classification, different features enable different classifiers to obtain higher
accuracy than dictionary methods [6,36,38]. However, traditional machine learning
methods rely on the quality of the annotated corpus and cannot fully use contextual
semantic information.

With the rapid development of deep learning, neural network and attention mech-
anism have been widely concerned and applied in Chinese sentiment analysis [2,23].
Transformer with self-attention mechanism, which employs an encoder-decoder frame-
work to better address long-term dependencies and allows for more robust scalabil-
ity of parallel computations, is widely used in natural language processing. Based on
the Transformer architecture, a series of landmark pre-trained language models have
emerged, showing a strong ability to learn generic Chinese representations. Li [14]
fully extracted context information using improved attention to encode relative position
between words based on ELMo [24]. Xie [35] used BERT to encode the set of sen-
timent words extracted from texts and used attention to obtain sentiment information.
However, in the above studies, although the pre-trained language model has powerful
modeling ability, it neglects the application of syntactic structure or semantic informa-
tion in sentiment analysis and fails to use sentiment features effectively.

2.2 Relative Position Feature

In order to leverage the sequential information contained within input text, Transform-
ers incorporate position embeddings into the original input embedding. This process is
calculated as follows:

PE(pos,2i) = sin(pos/10000(2i/dmodel))

PE(pos,2i+1) = cos(pos/10000(2i/dmodel))
(1)

where pos represents position, i represents the number of dimensions, dmodel is the
input and output vector dimensions. The sines and cosines enable the model to learn the
relative position and easily extend to longer sequences.

The BERT-based pre-trained language model adopts the encoder structure in Trans-
former and selects absolute position embedding to better adapt to downstream tasks.
In the input layer, word embedding is combined with position embedding to ensure
that identical words at different positions can learn representations that are appropri-
ate for their respective contexts. Li [14] improved attention by encoding relative posi-
tions between words. Shaw [26] used relative encoding as an additional value in the
self-attention to capture information about the relative position differences between
input elements. According to different task characteristics, different position embed-
dings contain different meanings. For instance, in the named entity recognition task,
entity term is often introduced by designing different position features [11,22,37]. In
the causality extraction task, position features can reflect the position of connectives
and the distance between causal events and connectives [42].
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Fig. 1. Overview of LCEM

2.3 Residual Structure

Neural networks have a strong representation ability and can optimize and update the
network structure through the back propagation algorithm. However, during backprop-
agation, gradients may either vanish or increase exponentially, resulting in ineffective
updates to the underlying parameters, or gradient explosion. Furthermore, deeper net-
works are susceptible to degradation problems. He [5] verified that adding more layers
to a network model with a certain depth will lead to higher training errors.

Recently, residual learning has been widely used in natural language processing
and computer vision as a technique for optimization of deep neural network to allevi-
ate gradient vanishing or explosion problems [5,15,16,28]. Since each sub-module of
the Transformer encoder contains residual structures with layer normalization, BERT-
based pre-trained variants can also make full use of residual connections to optimize
the network.

This paper introduces the learnable residual structure based on enhanced self-
attention by the position features of conjunctions. By assigning learnable parameters
to each branch, the residual structure can be adjusted adaptively, and performance can
be improved through simple model adjustment.

3 Methodology

3.1 Overview

LCEM is based on the basic architecture of the pre-trained language model. The overall
structure of LCEM is described in Fig. 1. LCEM uses the conjunction relative position
enhanced multi-head attention to replace the multi-head attention module in each layer
of the pre-trained language model. By combining the relative position feature with the
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attention mechanism, the model can learn global semantic information while still pay-
ing close attention to important local ranges. In addition, the residual structure of the
pre-trained language model is improved to a more flexible structure to optimize the
network and enable better internal information sharing. The learnable factors can adap-
tively control the residual structure, better integrating the semantic information learned
by the relative position feature and further optimizing by assigning different importance
to each residual branch.

3.2 Conjunction Relative Position Enhanced Multi-head Attention

LCEM uses the relative position feature to enhance attention to learn the interaction
between input text and the conjunctions representation. Conjunctions of transition, pro-
gression, selection, and coordinate are selected in the Chinese Function Word Usage
Knowledge Base (CFKB) [10,39,41], and the distance d(d ≥ 0) between each char-
acter in a sentence and the first character of the conjunction is calculated. We map the
relative position of conjunctions into the interval of (0, 1) to obtain the relative position
feature RP , and the calculation is as follows:

RP = 1 − Sigmoid(d) = 1 − 1
1 + e−d

(2)

If there is no conjunctions in the sentences, the d in the formula is the distance between
each word in the sentences and the beginning of the sentences.

Then, as shown in Fig. 2, RP increases the attention to the context near conjunc-
tions. At the same time, the learnable parameter ω is introduced to reduce the noise
caused by introducing the relative position feature to the original input representation
H . The attention after adding the relative position feature is as follows:

Attetnion(Q,K, V ) = Softmax(
QKT

√
dK

+ ωRP )V

where Q = HWQ,K = HWK , V = HWV

(3)

3.3 Learnable Residual Structure

Some studies [15,16] divided the problems existing in residual connection into two types:
the balance problem of each residual branch and the optimization problem. Liu [15]
analyzed existing works and summarized the general residual structure as follows:

Y = αx + βF + γLN(x + F) (4)

where x is the input branch, i.e., the skip connection, F is the residual branch, LN is
layer normalization, Y is the output of the residual block, and α, β, γ are the weight
factors. The residual block can be adjusted and optimized adaptively by adjusting values
for α, β, and γ. Liu [16] proposed formula 5 to summarize the residual connection with
normalization. Normalization G was placed outside the sum of input x and nonlinear
transformation F(x,W ), and λ was used to enhance the input branch.

Y = G(λx + F(x,W )) (5)
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Fig. 2. Details of Conjunction Relative Position Enhanced Multi-Head Attention

(a) Transformer (b) Learnable Residual Structure in LCEM

Fig. 3. Residual Structure in Transformer and LCEM

Drawing inspiration from the residual structure present in every layer of the Trans-
former (Fig. 3 (a)), layer normalization plays a crucial role in the model’s overall per-
formance. It can help the optimization of nonlinear transformation to a certain extent.
And, in combination with the idea of adjusting each branch of residual in the neural
network by the weight factor mentioned above, the residual structure is summarized as
follows:

Y = LN(αx + βF) (6)

As shown in Fig. 3 (b), the residual structure in Transformer can be regarded as a
particular case Y = LN(x+F) when α = β = 1. In Transformer, the residual branch
F can be either multi-headed attention or feedforward networks. In this paper, we focus
on the residual structure of multi-head attention. We propose to replace the residual
branch with conjunctions relative position enhanced attention. Meanwhile, α and β are
set as learnable parameters so that the model can self-learn appropriate scaling factors.
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Table 1. Statistical data of each category in the datasets.

Datasets COAE2013 NLPCC2014 SemEval16_CAM SemEval16_PHO

Train Test Train Test Train Test Train Test

Positive 753 305 5000 1250 809 344 758 310

Negative 876 239 5000 1250 450 137 575 219

The proportion of input branch x and residual branch F in the network is constantly
modified to achieve optimization.

The semantic representation obtained by the enhanced attention will further learn
the appropriate proportion in the propagation under the adjustment of scaling factor
β, reducing the noise caused by the introduction of the relative position feature. Scal-
ing factors α and β jointly determine the different distribution of x and F . The layer
normalization is used to make the distribution of each layer in the network relatively
consistent to avoid gradient vanishing or explosion caused by the change of learnable
parameters. Through multi-layer structure with learnable conjunctions enhanced atten-
tion, the final output is obtained by a linear classifier.

4 Experimental Settings

4.1 Datasets

In this paper, we study two granular subtasks in Chinese sentiment analysis. Statistical
data of the above datasets are shown in Table 1.

For Chinese sentence-level sentiment analysis, COAE2013 and NLPCC2014 are
selected. COAE2013 is a dataset of annotated data from The Fifth Chinese Opinion
Analysis Evaluation, consisting of 1004 positive reviews and 834 negative reviews. The
dataset was divided into train set and test set according to the ratio of 9:1. NLPCC2014
is from the 3rd CCF Conference on Natural Language Processing & Chinese Comput-
ing, including reviews of books, DVDs, electronic products, and other domains. The
train set consisted of 5,000 positive and 5,000 negative texts, and the test set consisted
of 2,500 texts.

For the Chinese aspect-based sentiment analysis task, this paper selects
SemEval2016 [25]. Task 5 of SemEval2016 provides a Chinese dataset of electronic
product aspect-based reviews in two specific domains, including phone and camera,
including 400 samples, a total of about 4100 sentences.

4.2 Baselines

We evaluate LCEM with typical sentiment analysis and text classification models
as baselines for sentence-level sentiment analysis, including BiLSTM [41], BiL-
STM+Att [40], TextCNN [9], DPCNN [8], and pre-trained language models like EBi-
SAN [14], BERT, BERT_wwm [3], RoBERTa [18], ERNIE [30]. For aspect-based sen-
timent analysis, we compare our solution to several models that can be applied to Chi-
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nese text, including MemNet [32], ATAE-LSTM [34], IAN [20], Ram [1], AOA [7],
MGAN [4], Tnet [12], and QA-B [29] and NLI-B [29], and also BERT and ERNIE.

The word vector pre-trained by the Sogou News corpus is selected as the initial
embedding in the general baselines. The batch size is 128, the learning rate is 1E−5,
and 30 epochs are trained by Adam optimization. Based on the pre-trained model, the
baselines all follow the default 12 hidden layers with a size of 768, the batch size is 20,
and the learning rate is 5E−5. Adam is used to optimize the cross-entropy loss function
and fine-tunes the parameters.

5 Experimental Results

5.1 Results on Sentence-Level Sentiment Analysis

Table 2 shows the results of comparative experiments on the sentence-level datasets.
Compared with the pre-trained model ERNIE and neural network models based on
RNN and CNN, such as TextCNN and DPCNN, the results indicate that the fine-tuned
pre-trained language model performs better on the datasets than the neural network
models based on RNN and CNN, highlighting the huge advantage of pre-trained lan-
guage models in sentiment analysis tasks. Additionally, compared to other pre-trained
models, ERNIE performs better on two sentiment analysis datasets. By using relative
positional encoding of conjunctions and learnable residual structures based on ERNIE,
LCEM further optimized the model and improved its performance, demonstrating the
effectiveness of the proposed method in this paper.

Table 2. Results on sentence-level sentiment analysis datasets.

Datasets COAE2013 NLPCC2014

Acc(%) F1(%) Acc(%) F1(%)

BiLSTM 85.74 85.39 60.48 60.48

BiLSTM+Att 86.91 86.76 69.60 69.56

TextCNN 89.65 89.46 69.04 68.85

DPCNN 87.30 87.07 62.48 58.88

EBi-SAN – – 79.08 78.48

BERT 93.57 93.53 79.61 79.61

BERT_wwm 94.88 94.83 80.21 80.20

RoBERTa 94.99 95.01 79.57 79.56

ERNIE 95.77 95.74 80.89 80.88

LCEM 96.69 96.68 81.08 81.08

5.2 Results on Aspect-Based Sentiment Analysis

Experimental results are shown in Table 3 compared with aspect-based sentiment
analysis baselines. Under the accuracy and F1, LCEM outperforms all base-
lines in SemEval16_CAM and SemEval16_PHO. The accuracy of LCEM on the
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Table 3. Results on aspect-based sentiment analysis datasets.

Datasets SemEval16_CAM SemEval16_PHO

Acc(%) F1(%) Acc(%) F1(%)

ATAE-LSTM 87.11 82.79 79.02 78.78

MemNet 88.57 85.33 77.88 76.77

IAN 88.77 85.97 79.40 78.91

Ram 85.65 82.66 77.69 76.81

Tnet 87.32 83.47 79.77 79.14

AOA 88.36 85.52 79.58 79.21

MGAN 85.45 82.65 79.96 79.38

BERT 87.94 85.57 83.74 83.22

ERNIE 93.14 91.45 90.17 89.84

ERNIE-SPC 92.52 90.65 90.36 90.07

ERNIE-based QA-B 92.41 92.41 89.23 89.22

NLI-B 91.48 91.48 88.94 88.94

LCEM 94.39 93.13 91.12 90.79

Table 4. Results of ablation experiment

Datasets COAE2013 NLPCC2014 SemEval16_CAM SemEval16_PHO

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

Baseline(ERNIE) 95.77 95.74 80.89 80.88 93.14 91.45 90.17 89.84

+RP 95.96 95.94 80.76 80.75 92.93 91.77 89.60 89.17

+ωRP 95.96 95.93 80.92 80.91 92.93 91.32 90.74 90.42

+LRS 96.51 96.49 80.40 80.40 92.31 90.74 90.17 89.83

+RP&LRS 95.96 95.93 80.96 80.95 93.35 93.35 90.55 90.27

+ωRP&LRS(LCEM) 96.69 96.68 81.08 81.08 94.39 93.13 91.12 90.79

SemEval16_CAM is 1.25% higher than that of ERNIE, and the F1 value is 0.72%
higher than that of QA-B. Compared with IAN, MGCN, and other non-pre-trained lan-
guage models, the fine-tuned results of the pre-trained model have great advantages.
On the one hand, the pre-trained model has been trained on large text corpus and has
learned rich language representation capabilities, which enables the pre-trained model
to better understand the semantics and context of the text, which is very helpful for sen-
timent analysis tasks. On the other hand, pre-trained models can achieve better results
on small datasets, while recurrent neural networks require large amounts of manually
annotated training data, and the size of the training data will limit the performance of
the model.

5.3 Ablation Study

Table 4 shows the results of LCEM ablation experiments on four datasets.
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In which,+RP and+ωRP respectively represent adding relative position encoding
(RP) and weighted relative position encoding (Weighted RP) only in the self-attention
module on top of the baseline model. Comparing +RP and +ωRP with baseline
ERNIE, we can see that +ωRP is better than +RP , improves performance on both
sentence-level datasets and SemEval16_PHO. But on SemEval16_CAM, neither +RP
nor+ωRP can achieve effective performance enhancement, which may be because the
relative position feature is added to each layer of the pre-trained language model. The
output of each layer will serve as input to the next layer and participate in the residual
structure. As the network depth increases, each addition of the relative position feature
will introduce some noise into the original representation. Although the weighted rel-
ative position feature(+ωRP ) introduces parameters that can learn relative positional
shifts with the network structure, its effect varies on different datasets.

+LRS represents only the learnable residual structure added to ERNIE. The com-
parison results also show that +LRS has a slight improvement, indicating that the
structure of the pre-trained language model, especially the residual structure, has the
advantages of efficiency, stability, and universality.

Accuracy and macro-F1 of +RP&LRS are better than +RP , +ωRP , and +LRS
in both datasets. This suggests that scaling within the residual structure can effectively
adjust the enhanced multi-head attention as a branch of residual connection. In addi-
tion, the output of the previous layer serves as the skip connection branch of the resid-
ual structure of the next layer, and residual scaling can adjust the input branch and
the residual branch adaptively. At the same time, it shows that enhanced attention by
relative location features can capture both content and distance information, and learn
richer context representation under the role of location information.

The proposed model LCEM(+ωRP&LRS) achieves the highest accuracy and F1
in both sentence-level datasets. In the two datasets of SemEval16, the F1 improved by
1.68% and 0.95%, respectively, compared with baseline model ERNIE, and achieved
the highest accuracy in both datasets. Compared with +RP&LRS, the accuracy is
significantly improved, indicating that weighted relative position encoding can achieve
more effective optimization. The learnable weights during network training also reduce
the noise effects introduced by relative position encoding, better capture the balance
within the network and maximizing the gain of residual scaling.

5.4 Case Study

For further analysis of the model, the LCEM and ERNIE models are analyzed in this
paper, as shown in Table 5.

For the adversative conjunction “但是” , it serves as a transitional element between
two sentences or clauses. It indicates a contrast or contradiction between the infor-
mation presented before and after it. In the given context, the emotional tone of the
sentence preceding the transition is predominantly negative. However, the emotional
tone of the sentence following the use of “但是” changes from negative to positive.
Therefore, the emotional label of the first sentence in Table 5 is 1, signifying a shift
from negative to positive emotion.

On the other hand, the coordinating conjunction “而且” is used to connect two sen-
tences or clauses to express a progression or addition of information. While the emo-
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Table 5. Case studies of LCEM and ERNIE models

Type of conjunction Conjunction Example Model Label

转折 但是 拿到的时候还觉得像盗版，但确实是正版的，很完整，非常不错
ERNIE 0

LCEM 1

递进 而且 是真正的职场小说，感觉更像《圈子圈套》，而且厚厚的一大本，很值。
ERNIE 0

LCEM 1

Fig. 4. The parameter ω of RP over time. Fig. 5. The ratio of α to β over time.

tional information in the sentence before the conjunction may not be overtly expressed,
it is more fully conveyed in the sentence that follows the use of “而且.” Consequently,
the emotional label of the second sentence in Table 5 is 1, indicating the enhanced
expression of emotional content instead of label 0. When compared to ERNIE, LCEM,
which incorporates conjunctive information, provides more accurate predictions of
emotional labels.

6 Learnable Parameters Analysis

Figures 4 and 5 show the changes of relative position parameter ω and α to β ratio over
time. The X-axis represents the range of parameter values, while the Y-axis on the right
represents the number of training steps. Each slice in the figure is a single histogram,
representing the distribution of parameters in a training step. The number of training
steps is gradually increased from back to front.

According to Fig. 4, the learnable parameter ω of the relative position feature RP
is more evenly distributed in [0.919, 0.999], indicating that the relative position feature
occupies a vital proportion of attention. Moreover, combined with the ablation experi-
ment results in Sect. 5.4, relative location feature enhanced attention can capture both
content and distance information and learn a richer context representation under the
effect of location information.

Figure 5 shows that the ratio of α to β is evenly distributed in [0.919, 1.01]. In most
cases, the proportion of input branches is smaller than that of residual branches. In
each Transformer encoder, the proportion of representations from the previous layer
is smaller than that of expressions enhanced by the relative position of the conjunc-
tions. It demonstrates the significance of the semantic representation obtained through
enhanced attention in the network. Moreover, input branches also play an important role
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in network. Through layer-by-layer propagation, the semantic representation acquired
by each layer can be preserved in the lower layers and will participate in the attention
mechanism to further extract abstract semantics. The learnable parameters greatly help
the information transfer and optimization of network structure.

7 Conclusion

In this paper, we introduce LCEM, a model that incorporates semantic information
using relative position features of conjunctions, and guides the Chinese sentiment anal-
ysis task through adaptive residual structure. Specifically, weighted relative position
features reduce the introduced noise and improve the learning ability of location-related
syntactic features, which can better guide the self-attention mechanism and help the
model focus on the critical sentences for semantic representation. At the same time,
we propose a novel learnable residual structure based on pre-trained language mod-
els that can effectively handle the interaction between residual and input branches in
an adaptive manner. Experimental results show that our method is effective in Chinese
sentiment analysis, where relative position and adaptive residual structure complement
each other. The relative position information helps the model to focus on crucial infor-
mation for sentiment analysis, while the residual structure in each layer balances the
learned knowledge within the network structure.
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Abstract. Implicit sentiment modeling in aspect-based sentiment analysis is a
challenging problem due to complex expressions and the lack of opinion words
in sentences. Recent efforts focusing on implicit sentiment in ABSAmostly lever-
age the dependency between aspects and pretrain on extra annotated corpora. We
argue that linguistic knowledge can be incorporated into the model to better learn
implicit sentiment knowledge. In this paper, we propose a PLM-based, linguis-
tically enhanced framework by incorporating Part-of-Speech (POS) for aspect-
based sentiment analysis. Specifically, we design an input template for PLMs
that focuses on both aspect-related contextualized features and POS-based lin-
guistic features. By aligning with the representations of the tokens and their POS
sequences, the introduced knowledge is expected to guide the model in learning
implicit sentiment by capturing sentiment-related information. Moreover, we also
design an aspect-specific self-supervised contrastive learning strategy to optimize
aspect-based contextualized representation construction and assist PLMs in con-
centrating on target aspects. Experimental results on public benchmarks show
that our model can achieve competitive and state-of-the-art performance without
introducing extra annotated corpora.

Keywords: Aspect-based Sentiment Analysis · Implicit Sentiment ·
Part-of-Speech Alignment

1 Introduction

Aspect-based Sentiment Analysis (ABSA) aims to identify the sentiment polarities
towards specific aspects in sentences. For example, in the sentence “The dessert is
incredible but the service is terrible,” the sentiment polarities towards the aspects
“dessert” and “service” are positive and negative respectively.

Previous work on aspect-based sentiment analysis has focused on explicit sentiment
expression for specific aspect terms. It means that the sentiment polarities towards the
aspects can be explicitly revealed by opinion words. e.g., the sentence “The dessert
is incredible” contains the opinion word “incredible” which carries the positive sen-
timent towards the corresponding aspect “dessert”. Many studies have been proposed
and achieved promising results towards this task, such as attention mechanism-based

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Table 1. Several examples of reviews with implicit sentiment expressions about laptops and
restaurants where aspects are marked in bold. The “Polarity” column indicates the sentiment
polarities of aspects.

Domain Example Polarity

Restaurant (1) The waiters even forget their high-tipping regulars negative

(2) They’re a bit more expensive than typical, but then again, so is their food. positive

Laptop (3) My voice recording sounds like interplanetary transmissions in Star Wars negative

(4) Can you buy any laptop that matches the quality of a MacBook? positive

methods [15,29,50,60], graph neural network-based methods [26,47,61,64], and pre-
trained language model-based methods [3,6,36,41].

However, due to the diversity and flexibility of natural language, sentences contain-
ing implicit sentiment expressions are common in human speech. For implicit senti-
ment, we refer to the recognition of subjective textual units where no polarity mark-
ers, opinion words or obvious descriptions are present but people are still able to state
whether the text portion under analysis expresses the sentiment [38]. As shown in
Table 1, the four sentences can clearly express the sentiment without any opinion words.
Taking the second sentence as an example, no opinion words can be found to determine
the sentiment polarities towards the aspects “food”, but people can still recognize that its
polarity is negative. Additionally, we find that some complex expressions, such as fac-
tual statements and rhetorical techniques, are often used to express implicit sentiment,
which always contains complex semantics. For example, sentence (1) and sentence (4)
in Table 1 are factual statement and rhetorical question respectively. These complex
expressions and the absence of opinion words make it more challenging to detect the
implicit sentiment of sentences in the ABSA task.

Few previous studies have paid more attention to the implicit sentiment in ABSA.
Among them, Yang et al. [57] propose a local sentiment aggregation paradigm for
learning the implicit sentiments in a local sentiment aggregation window. Li et al. [24]
adopt supervised contrastive pre-training on large-scale sentiment annotated corpora
to capture both implicit and explicit sentiment orientation towards aspects in reviews.
Their results demonstrate promising performance. However, we argue that the complex
implicit expressions can be handled with the help of linguistic knowledge. Motivated
by the applications of Parts of Speech (POS) in ABSA [12,36] and opinion mining [8],
we suppose that POS-based linguistic knowledge has the potential to enhance implicit
sentiment learning in ABSA. Intuitively, specific POS categories imply the orientation
of sentiment polarity. As shown in Fig. 1, although the sentence lacks opinion words,
the verbs also carry rich sentiment information [5,32]. The verb “runs” states the fact
about “virus scan” without more related descriptions of this aspect. However, “flick-
ers” shows the problem of the aspect “display screen”. The polarities of the sentiments
towards them should be neutral and negative, respectively. Such heuristics motivate
us to incorporate POS-based linguistic knowledge into ABSA models for enhancing
implicit sentiment prediction.
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Fig. 1. Review example with its corresponding POS sequence, marked with Universal POS
tags [34]. The aspect terms and the verbs are marked in italics and bold.

Inspired by the exploitation of natural language prompts [21,30] and linguistic
knowledge in ABSA [19,36], we propose a PLM-based, linguistically enhanced frame-
work for aspect-based sentiment analysis that incorporates Part-of-Speech. We first
design a template with POS sequences as PLMs’ input. With the multi-head self-
attention mechanism, PLMs based on the transformer architecture are able to pay
attention to the POS tags and their context information [45], thereby acquiring poten-
tial sentiment knowledge from POS sequences. Considering that the POS sequences
are essentially the ordered permutations of the POS tags corresponding to the input
sequences and not independent natural language sentences, we leverage token-POS
alignment to minimize the semantic impact of POS sequences. In addition, motivated
by the applications of contrastive learning to optimize the sentence embeddings derived
from BERT [11,16,56], an aspect-specific self-supervised contrastive learning strategy
is proposed to enhance the construction of contextualized representations, which would
focus on aspect-related words in context and the target aspects when handling reviews
with multiple aspects. We carry out the experiments on the SemEval 2014 [37] and
Twitter [9] benchmark datasets. The experimental results demonstrate the efficacy of
our proposed framework.

The main contributions of this work are as follows:

– We analyze the feasibility of incorporating Part-of-Speech to assist PLMs in mod-
eling implicit sentiment and design an input template for PLMs to focus on both
aspect-related contextualized features and POS-based linguistic features.

– We propose the token-POS alignment to reduce the influence of POS sequences
on semantics. Additionally, the proposed aspect-specific self-supervised contrastive
learning can optimize aspect-based contextualized representations construction and
help PLMs concentrate on target aspects.

– Experimental results show the effectiveness of our method, which boosts PLMs to
achieve competitive and state-of-the-art performance in ABSAwith fewer additional
parameters.

2 Related Work

In this section, we will briefly review the studies on aspect-based sentiment analy-
sis from three perspectives: methods based on attention mechanisms, graph neural
networks (GNNs), and pre-trained language models (PLMs). Then we will introduce
implicit sentiment study.

ABSA Methods Based on Attention Mechanism. The majority of early atten-
tion mechanism-based methods construct the relationship between context and aspects
to tackle the ABSA task. Wang et al. [48] and Ma et al. [29] equip neural networks
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with attention mechanisms, promoting the model’s ability to identify related informa-
tion about aspects from input reviews. Li et al. [23] propose a framework that combines
contextual features with word representations. Except for concentrating on the rela-
tionship between context and aspects. Zhang et al. [61] exploit syntactic features from
dependency and mark each word in reviews by proximity values.

ABSA Methods Based on GNNs. ABSA has demonstrated excellent performance
in extracting syntactic features from graph structure since the development of graph
neural networks. Sun et al. [43] and Zhao et al. [63] use the Graph Convolutional Net-
work (GCN) with the dependency graph to model the dependencies of input sentences.
Wang et al. [47] leverage distances between words in the dependency tree and syntac-
tic tags simultaneously to extract syntactic features by the Graph Attention Network
(GAT). Xu et al. [54] propose to divide sentences into structural scopes according to
the results of constituency parsing, which improve the performance of GCN in ABSA.

ABSA Methods Based on PLMs. The emergence of pre-trained language mod-
els in recent years has given ABSA methods a new trend. On the one hand, in order
to reduce the gap between pre-training and fine-tuning, numerous works propose
sentiment-aware pre-training tasks [10,17,58] based on capturing sentiment semantics
and incorporating external knowledge [1]. On the other hand, recent efforts to help
PLMs overcome the disadvantages of aspect-aware sentiment perception are flourish-
ing. Cao et al. [3] remove the sentiment bias of aspect terms and proposes a model
trained with differential sentiment loss that is based on the model of Song et al. [41]. Ma
et al. [30] design three aspect-specific input transformations for BERT and RoBERTa
that enable the enhancement of aspect-specific context modeling. Moreover, other
PLM-based methods solve the ABSA task from the perspective of machine reading
comprehension [53] and natural language generation [55].

For handling implicit sentiment in ABSA, Li et al. [24] propose supervised con-
trastive pre-training that facilitates BERT in learning sentiment knowledge from large-
scale sentiment-annotated corpora. The representation of implicit sentiment expressions
is aligned with those of explicit sentiment expressions with the same sentiment polar-
ities through supervised contrastive learning. Yang and Li [57] build the local senti-
ment aggregation to model sentiment dependency, which promotes the model’s ability
to learn implicit sentiment by capturing sentiment information from adjacent aspects.
A differentially weighted strategy is also proposed for controlling adjacent aspects that
contribute different sentiment information. While these approaches improve the learn-
ing and modeling of implicit sentiment in ABSA, external large-scale annotated cor-
pora for encoding adjacent aspects are required. In view of the limitations of these
approaches, we propose to leverage POS-based linguistic knowledge to assist PLMs in
learning and modeling implicit sentiment in ABSA.

3 Our Method

3.1 Overall Architecture

As mentioned above, in this paper, we propose a PLM-based linguistically enhanced
framework for Aspect-based Sentiment Analysis. Our framework consists of three com-
ponents: aspect-aware token-POS concatenation, token-POS alignment, and aspect-
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Fig. 2. Overall architecture of our proposed framework. In a mini-batch, the input template Ii is
derived from the i-th input sentence. Ij , I

−
i represent templates with the other sentence in the

mini-batch and the disordered i-th input sentence. ZD|c and ZD|p denote the representations of
the input sentences subset and POS sequences subset. hcls

i , hasp
i , hcls

j , hasp
j , h−cls

i and h−asp
i are

the representations from Ii, Ij and I−
i , which are elaborated in Sect. 3.4.

specific self-supervised contrastive learning. It is expected that POS-based linguistic
knowledge will facilitate PLM’s learning of implicit sentiment in ABSA. And self-
supervised contrastive learning is applied to optimize the representation construction of
the target aspect. Our method is shown in Fig. 2.

Generally, an input sentence contains one or more aspect terms that correspond
to multiple sentiments. In this paper, we focus on the sentiment analysis of a specific
aspect. Given a sentence x = {w1, . . . , wt, a1, . . . , am, wt+1, . . . , wn} where wi indi-
cates the ith word and asp = {a1, . . . , am} denotes the target aspect in x, an input
template of our proposed framework I is composed of x and asp. We will elaborate on
the detail of input template I in Sect. 3.2. The goal of ABSA is to predict the sentiment
polarity towards asp according to the sentence x.

3.2 Aspect-Aware Token-POS Concatenation

Motivated by natural language prompt [2], we treat the POS sequence as a type of
prompt with linguistic knowledge and change the input schema of the PLM. In a mini-
batch, for each input sentence xi, we utilize spaCy1 to perform Part-of-Speech tagging
on it and combine POS tags into the POS sequence posi = {p1, p2, . . . , pn} accord-
ing to the order of xi. Instead of concatenating xi and posi as the input template Ii

directly, we additionally append the target aspect term aspi to Ii following Song et
al. [41], which allows the PLM to capture dependencies between the context and the
target aspect:

Ii = [CLS] + xi + [SEP ] + posi + [SEP ] + aspi + [SEP ] (1)

Special tokens “[CLS]” and “[SEP]” of BERT should be “〈s〉” and “〈/s〉” in RoBERTa.
After encoding Ii by BERT or RoBERTa, the pooled representation of aspi is denoted

1 https://spacy.io/.

https://spacy.io/


Enhancing Implicit Sentiment Learning 387

as hasp
i ∈ R

d×l (l ≥ m). Here d is the hidden size of the PLM and l is the length of the
tokenized aspect by WordPiece [52] or Byte Pair Encoding [39].

3.3 Token-POS Alignment

Unlike the discrete templates used in previous research, the POS sequence posi is not
an independent natural language sentence but the ordered permutation of the POS tags
corresponding to the given sentence xi. To reduce the effects of POS sequences on
semantics and promote the interaction of POS sequences and input sentences, we design
a token-POS alignment strategy referring to word patch alignment [18]. As illustrated
in Fig. 2, in this method, the outputs of the PLM corresponding to the input sentences
subset and POS sequences subset in each mini-batch are represented as ZD|c and ZD|p
respectively. After the encoding, ZD|c ∈ R

B×k×d and ZD|p ∈ R
B×h×d can be treated

as two different probability distributions, where B is the mini-batch size, h, k are the
lengths of the tokenized input sentence and POS sequence, d is the hidden size. Thus,
we convert the alignment into computing the statistical distance between ZD|c and
ZD|p, and the alignment score is optimized according to Optimal Transport theory [35].
Following such theory, we utilize Wasserstein distance [44] to measure the statistical
distance between ZD|c and ZD|p :

Wp(ZD|c, ZD|p) := LMp(ZD|c, ZD|p) 1
p (2)

where p denotes the p-dimensional Wasserstein distance, LMp represents computing
Wasserstein distance by Sinkhorn-Knopp algorithm [20] with the constraint of cost
matrix M ∈ R

d×d, and the metric of Sinkhorn-Knopp algorithm is set to the cosine
similarity considering the hidden size d of the PLM. Consequently, for ZD|c and ZD|p
within a mini-batch B, the token-POS alignment loss can be defined as:

LA =
∑

ZD|c,ZD|p∈B

Wp(ZD|c, ZD|p) (3)

3.4 Aspect-Specific Self-supervised Contrastive Learning

Inspired by the applications of contrastive learning in ABSA [24,25], we propose to
utilize self-supervised contrastive learning to enhance the representation construction
of target aspects. According to the aim of contrastive learning [13], one of the keys is
constructing the proper positive instances. Following the previous research in ABSA,
both the embedding of the “[CLS]” token [25,62] and the aspect features [6,30] can
be used as the final representation for sentiment polarity classification. Hence, those
two representations from the same instance can be treated as positives and others
from different in-batch instances are taken as negatives. We denote hasp

i = fasp
θ (xi)

where fθ(·) represents the encoder. And the embedding of the “[CLS]” token from
the same instance is represented as hcls

i = fcls
θ (xi). Moreover, in order to further

leverage the training data and improve the ability of the model to identify the aspect-
related context, we construct hard negatives by disordering the input sentence as
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xdis
i = {wt+1, . . . , wn, a1, . . . , am, w1, . . . , wt}. Thus, the input template filled with
the disordered input sentence I−

i is defined as:

I−
i = [CLS] + xdis

i + [SEP ] + posdis
i + [SEP ] + aspi + [SEP ] (4)

where posdis
i is the POS sequence derived from xdis

i . The embedding of the “[CLS]”
token and the pooled hidden vector of the aspect term from xdis

i can be denoted as
h−cls

i = fcls
θ (xdis

i ) and h−asp
i = fasp

θ (xdis
i ) respectively. Therefore, the aspect-specific

self-supervised contrastive loss is defined as (B is the mini-batch size):

LCL = − log
esim(hasp

i ,hclsi )/τ

∑B
j=1(e

sim(hasp
i ,hclsj )/τ + esim(hasp

i ,h−cls
j )/τ + esim(hasp

i ,h−asp
j )/τ )

(5)

where τ is a temperature hyperparameter and sim(h1,h2) is the function that computes
the cosine similarity between h1 and h2.

3.5 Joint Training

Except for applying the two losses mentioned above to optimize the training of our
proposed framework, we also use the cross-entropy loss LCE as the fine-tuning object
of the PLM for sentiment polarity prediction:

LCE = −
B∑

i=1

N∑

j=1

yj
i log ŷj

i + λ||θ||2 (6)

where N is the number of labels, B is the mini-batch size, λ and θ represent the L2

regularization and the parameter of the model. As shown in previous studies [31],
Dropout [42] may induce inconsistency between the training and inference stages of
the model. We argue that such inconsistency will be severe when introducing POS
sequences into the input sentences. In order to regularize Dropout, we use the bidirec-
tional Kullback-Leibler (KL) divergence lossLKL based on R-Drop [51] in our models.
The overall loss function L for joint training is:

L = LCE + λ1LA + λ2LCL + αLKL (7)

whereλ1 andλ2 are trainable parameters as theweights of token-POS alignment loss and
aspect-specific self-supervised contrastive loss. The coefficient α is a hyperparameter.

4 Experiments

4.1 Datasets

We conduct experiments using three publicly available benchmark datasets. They are
Restaurant and Laptop from SemEval 2014 Task 4 [37] and Twitter [9]. The statistics
of the three datasets are shown in Table 2. Due to the lack of development sets, 10%
of items from the training sets are randomly selected and treated as development sets.
Following previous research, we remove examples with conflicting sentiment polarities.
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Table 2. Statistics on three benchmark datasets of ABSA.

Dataset Positive Neutral Negative Total

Train Test Train Test Train Test Train Test

Restaurant 2164 728 637 196 807 196 3608 1120

Laptop 994 341 464 169 870 128 2328 638

Twitter 1561 173 3127 346 1560 173 6248 692

4.2 Implement Details

We fine-tune the BERT-base-uncase [7] and RoBERTa-base [27] models pre-trained
by HuggingFace Transformers [49] and implemented by PyTorch [33]. The learning
rate is set as 2 × 10−5 and the batch size is 32. We adopt Dropout strategy and the
drop probability is adjusted as 0.1. The model is trained with AdamW [28] optimizer
and the L2 regularization parameter λ is 10−5. The temperature hyperparameter τ of
aspect-specific self-supervised contrastive learning is 0.1. The coefficient α is set as
0.3. Following the work of Chen et al. [4], we utilize the 2-dimensional Wasserstein
distance for token-POS alignment. Since not all of the Universal POS tags exist in
the vocabularies of BERT and RoBERTa, we map the tags to their complete names
before encoding them to overcome the problem of out-of-vocabulary. We perform our
proposed models three runs with different seeds and report their average performance.

4.3 Compared Models

In order to demonstrate the effectiveness of our proposed method which can benefit
various PLMs in ABSA, we compare the proposed models with several state-of-the-art
baselines and models focusing on implicit sentiment in ABSA from the perspectives of
BERT-based models and RoBERTa-based models:

– BERT, RoBERTa denote the vanilla BERT and RoBERTa proposed by Devlin et
al. [7] and Liu et al. [27] respectively. We fine-tune them by ABSA datasets and
keep their default settings.

– BERT-SPC [41] transforms the input reviews into sentence-aspect pairs and takes
the “[CLS]” token for sentiment polarity classification.

– LCF-BERT [59] utilizes the local context focus mechanism to model the relation
between global context and local context.

– BERTAsp and BERTAsp+SCAPT [24] are fine-tuned BERT for ABSA. The latter
is pre-trained on large-scale annotated corpora by supervised contrastive learning
before fine-tuning.

– ASGCN-RoBERTa, RGAT-RoBERTa are implemented by Dai et al. [6]. They are
based on ASGCN [60] and RGAT [47] respectively and RoBERTa is applied includ-
ing its induced tree and embeddings.

– LSAP-RoBERTa [57] aggregates local sentiments by BERT-SPC [41] and models
implicit sentiment by exploiting adjacent aspects’ sentiment information.
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– BERT+AM andRoBERTa+AM [30] uses the tokens “〈asp〉” and “〈/asp〉” to mark
boundaries of aspects, which promotes PLMs to construct aspect-specific contextu-
alized features.

4.4 Overall Results and Analysis

The experimental results of the aforementioned compared models and ours are shown
in Table 3. Specifically, the accuracy and Macro-F1 score are utilized to evaluate the
performance of models. According to the results, we have the following observations:

1) Incorporating linguistic knowledge improves the performance of ABSA models.
Compared to the vanilla BERT and RoBERTa, on the one hand, incorporating syntac-
tic knowledge by graph neural networks such as GCN and GAT promotes PLMs to
capture the related information about the aspects, which is directly represented as the
improvement of ASGCN-RoBERTa and RGAT-RoBERTa. On the other hand, leverag-
ing Part-of-Speech to assist PLMs in modeling implicit sentiment benefits the ABSA
task. By incorporating Part-of-Speech and aspect-specific self-supervised contrastive
learning, both BERT and RoBERTa improve significantly on three ABSA benchmarks,
achieving approximate 2.7%/1.6%/2.4% and 1.6%/1.7%/2.0% performance gains in
accuracy as well as 3.6%/2.6%/3.7% and 2.5%/2.3%/2.2% in Macro-F1 score on
Laptop/Restaurant/Twitter benchmarks respectively.

2) Without introducing numerous additional parameters and extra corpora, our
model can perform similarly to state-of-the-art models and even outperform them. The
proposed model IPOS-RoBERTa has a similar number of parameters (125.2M) to the
vanilla RoBERTa-base model (125M). The difference between them lies in the layer
for sentiment polarity classification. However, IPOS-RoBERTa can achieve state-of-
the-art performance on Laptop and Twitter benchmarks, demonstrating the effective-
ness of our method. Unlike LSAP-RoBERTa and BERTAsp+SCAPT, our method opti-
mizes the fine-tuning of RoBERT to learn implicit sentiment rather than introducing
additional parameters for encoding adjacent aspects and extra corpora for pre-training.
Specifically, the parameters of the compared models mentioned above are 138.2M and
133.3M respectively2, indicating millions of parameters are added compared to our pro-
posed model. However, on the test set of the Laptop benchmark, the Macro-F1 score of
IPOS-RoBERTa is 80.91%, which is 1.76% higher than BERTAsp+SCAPT (Macro-
F1=79.15%) and 0.44% higher than LSAP-RoBERTa (Macro-F1=80.47%). Though
the results of RoBERT-based models on Twitter are not shown in [57], the accuracy
and Macro-F1 score of IPOS-RoBERTa are 0.55% and 0.73% higher than LSAP-
DeBERTa (Accuracy=76.91%, Macro-F1=75.90%), which is based on a progressive
PLM called DeBERTa [14].

Though the difficulty of improving RoBERTa-based models in ABSA is indicated
by Dai et al. [6], these results prove that POS-based linguistic knowledge and aspect-
specific self-supervised contrastive learning are actually beneficial for enhancing the
performance of fine-tuned RoBERTa in this task.

2 The statistics of parameters are derived from open-source repositories released by Yang and
Li [57] and Li et al. [24].
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Table 3. Overall results (%) in three benchmark datasets where the “IPOS-BERT” and “IPOS-
RoBERTa” are the proposed models that indicate combining BERT and RoBERTa with our
method. The experimental results of the models we reproduced are marked by “∗”. For a fair
comparison, we mark BERTAsp+SCAPT by “†” and additionally list it in the category “SCAPT”
because of its in-domain pre-training and underline its state-of-the-art performance. The best
results within other models are highlighted in bold according to different categories.

Category Model Laptop Restaurant Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERT BERT [7]∗ 77.90 73.37 84.20 76.76 73.70 70.86

BERT-SPC [41] 78.99 75.03 84.46 76.98 74.13 72.73

LCF-BERT [59]∗ 80.09 76.42 85.65 78.68 74.32 73.32

BERTAsp [24] 78.53 74.07 85.80 78.95 - -

BERT+AM [30] 76.33 71.93 84.71 78.07 - -

IPOS-BERT (Ours) 80.56 76.99 85.83 79.41 76.11 74.52

RoBERTa RoBERTa [27]∗ 81.97 78.38 87.23 81.00 75.43 74.47

ASGCN-RoBERTa [6] 83.33 80.32 86.87 80.59 76.10 75.07

RGAT-RoBERTa [6] 83.33 79.95 87.52 81.29 75.81 74.91

LSAP-RoBERTa [57] 83.39 80.47 88.04 82.96 - -

RoBERTa+AM [30] 82.07 78.50 86.41 79.58 - -

IPOS-RoBERTa (Ours) 83.54 80.91 88.93 83.30 77.46 76.63

SCAPT BERTAsp+SCAPT [24]† 82.76 79.15 89.11 83.79 - -

4.5 Effectiveness on Implicit Sentiment Learning

Besides conducting extensive experiments on three benchmarks mentioned above, we
also report the results of the experiment on Implicit Sentiment Expression (ISE) slices
of Laptop and Restaurant that are derived from the work of Li et al. [24]. As shown in
Table 4, on both two ISE slices, our proposed models IPOS-BERT and IPOS-RoBERTa
outperform compared models based on the same PLMs with them. Though predicting
sentiment polarities conveyed by implicit sentiment expressions is challenging, IPOS-
RoBERTa’s accuracy on ISE slices is higher than that of vanilla RoBERTa by large
margins, which indicates the obvious improvement of 5.71% and 2.62%. And the other
improvement (6.46% and 1.12%) of Accuracy-ISE can be observed by the comparison
of IPOS-BERT and BERT-SPC on the ISE slices of Laptop and Restaurant respectively.
Such progresses demonstrates the effectiveness of incorporating POS-based linguistic
knowledge for learning implicit sentiment in ABSA.
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Table 4. Model performance (%) on the Laptop and Restaurant benchmarks and their Implicit
Sentiment Expression slices (ISE). The “Accuracy-ISE” column denotes the performance of mod-
els on ISE, which is measured by accuracy.

Models Laptop-test Restaurant-test

Accuracy Accuracy-ISE Accuracy Accuracy-ISE

BERT-SPC [41] 78.99 69.54 84.46 65.54

IPOS-BERT (Ours) 80.56 76.00 85.83 66.66

RoBERTa [27] 81.97 78.86 87.23 68.54

IPOS-RoBERTa (Ours) 83.54 84.57 88.93 71.16

Table 5. Ablation studies of different components and temperatures on the Laptop benchmark
(%). “w/o LA, LCL, LKL” indicates the models without token-POS alignment, aspect-specific
self-supervised contrastive learning and R-Drop respectively. In the ablation study of tempera-
tures (τ ), we compare the original setting (τ = 0.1) with three variants.

(a) Different components (b) Different temperatures

Model Variant Laptop Model Variant Laptop

Accuracy Macro-F1 Accuracy Macro-F1

IPOS-RoBERTa 83.54 80.91 IPOS-RoBERTa 83.54 80.91

w/o LA 81.97 78.80 τ = 0.01 81.03 77.77

w/o LCL 82.29 78.85 τ = 0.05 83.23 80.65

w/o LKL 82.60 79.25 τ = 0.5 83.07 79.37

5 Discussion

5.1 Ablation Study

Considering that each component of the proposed framework plays a different role as
well as the temperatures contribute variously, extensive ablation experiments are con-
ducted on Laptop benchmark and results are shown in Table 5. We find that removing
the token-POS alignment degrades the proposed model drastically and even leads to the
suboptimal performance of the proposed model, which is similar to that of the vanilla
RoBERTa. We suppose that the POS sequences imported from the external parser
affect contextual semantics without the token-POS alignment (Similar visual exam-
ples are shown in the rows of “RoBERTa (with POS)” in Fig. 3). Thus, though keep-
ing the aspect-specific self-supervised contrastive learning and R-Drop, their effects
are obscure while importing POS sequences directly. Such degradation indicates the
importance of incorporating Part-of-Speech knowledge properly.
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Table 6. A case study in the domain of laptops. For each case example, the original review and
its POS sequence are shown. The model marked by “∗” denotes BERTAsp+SCAPT proposed
by Li et al. [24] and the aspect terms are underlined. We use “Pos, Neu, Neg” to indicate three
sentiment polarities (“Positive, Neutral, Negative”). The correct predictions are associated with
the symbol “�” and the wrong predictions are marked with “×”.

Example and POS Sequence RoBERTa BERTAsp∗ Ours

However, I can refute that OSX is FAST Pos Pos Neg

ADV PRON AUX VERB SCONJ PROPN AUX ADJ (×) (×) (�)

Fan only comes on when you are playing a game Neg, Neu Neu, Neu Neu, Neu

NOUN ADV VERB ADP SCONJ PRON AUX VERB DET NOUN (×), (�) (�), (�) (�), (�)

It has so much more speed and the screen is very sharp Pos, Pos Pos, Neg Pos, Pos

PRON VERB ADV ADV ADJ NOUN CCONJ DET NOUN AUX ADV ADJ (�), (�) (�), (×) (�), (�)

I did swap out the hard drive for a Samsung 830 SSD which I highly recommend Neu, Neu Neu, Neu Neu, Pos

PRON AUX VERB ADP DET NOUN ADP DET PROPN PRON PRON ADV VERB (�), (×) (�), (×) (�), (�)

Another noticeable performance degradation is caused by the absence of aspect-
specific self-supervised contrastive learning since it promotes the model to concentrate
on target aspects. Similarly, our model benefits from R-Drop [51] due to the regulariza-
tion of the predictions.

Moreover, in order to investigate the influence of different temperatures, we set the
temperature τ ∈ {0.01, 0.05, 0.1, 0.5} and keep other settings of our model. Compared
to the carefully tuned temperature (τ = 0.1), the other lead to different degrees of
impact. It is worth noting that an extremely small temperature (τ = 0.01) causes an
obvious drop in the performance, which makes the model focus much on hard neg-
atives [46]. However, a high temperature is also inappropriate. Specifically, both the
accuracy and the Macro F1 score of the proposed model trained with a high tempera-
ture (τ = 0.5) are lower than those of the model with a carefully tuned temperature by
large margins.

5.2 Case Study

To verify the effectiveness of our method, we select several cases in the laptop domain
that contain implicit sentiment expressions, as shown in Table 6. According to these
cases, the capabilities of modeling implicit sentiment and capturing syntactic fea-
tures are demanded. Hence, BERTAsp+SCAPT [24] and RoBERTa [27] are chosen
as strong compared models for the case study. Following the comparison results, both
BERTAsp+SCAPT and RoBERTa fail to correctly predict all the case examples. For
example, RoBERTa wrongly comprehends the semantics of the second review and
predicts the sentiment polarity towards “fan” as negative, which is represented by
implicit sentiment expression. Additionally, for the aspect “screen” in the third case,
BERTAsp+SCAPT mistakes the opinion “sharp” and incorrectly infers the correspond-
ing polarity as negative. However, when given some complicated cases carrying multi-
ple aspects and intricate implicit sentiment, both of them improperly capture the aspect-
related contextualized features such as the aspects “OSX” and “Samsung 830 SSD” in
the first and the last cases.
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Owing to the POS-based linguistic knowledge, the proposed IPOS-RoBERTa model
can precisely predict all aforementioned cases. We suppose that POS sequences encour-
age the model to learn implicit sentiment and distinguish sentiment expressions about
different aspects, as suggested by the good performance of our proposed model. For the
first case, the adjective “FAST” is related to the aspect “OSX” from the view of syn-
tax but it implies the contrary sentiment polarity due to the verb “refute”, which helps
to perceive the implicit sentiment. Moreover, when inferring multiple aspects “hard
drive” and “Samsung 830 SSD” in the same sentence, IPOS-RoBERTa can distinguish
the related information about them and predict the correct sentiment polarity towards
“Samsung 830 SSD”.

Fig. 3. Visualization of two selected cases. Both two target aspects are expressed by implicit sen-
timent. The gradient saliency maps [40] for the embedding of input tokens are shown, including
words and POS tags. For each token, the darker color denotes the higher gradient saliency score.
The “Asp” column indicates the aspect terms.

5.3 Visualization

Since it seems that the effect of appending POS tags to the input tokens is intricate,
we visualize the gradient saliency scores of the embedding of input templates for two
selected cases, which can be employed for model interpretation [22]. As shown in Fig. 3,
we compare our model with two backbones and keep the setting that appends the aspect
terms to the input sequences for all of them. However, “RoBERTa (with POS)” denotes
only employing aspect-aware token-POS concatenation to RoBERTa but ignoring the
token-POS alignment and “RoBERTa” indicates the vanilla RoBERTa model.

In the first case, the words “refute” and “FAST” are assigned different saliency
scores among the three models, signifying these words differently contributing to the
predictions. Compared to another two models, we suppose that our model pays more
attention to such important words in comprehending the semantics. Furthermore, due
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to the token-POS alignment, our model can distinguish the importance of different POS
tags instead of treating them equally. Similarly, though the three selected models focus
on the word “not”, the neglect of the verb “using” leads to incorrect predictions of sen-
timent polarity towards the aspect “slot”. In contrast, our model can precisely capture
essential words and their POS for prediction, demonstrating the effect of aspect-aware
token-POS concatenation and token-POS alignment.

6 Conclusion

In this paper, we propose a PLM-based linguistically enhanced framework for aspect-
based sentiment analysis based on the analysis of the feasibility of incorporating Part-
of-Speech into the ABSA task. Using POS-based linguistic knowledge, our method
optimizes the PLMs’ fine-tuning for implicit sentiment capturing. Aspect-specific self-
supervised contrastive learning allows the model to concentrate on target aspects when
handling sentences containing multiple aspect terms. Extensive experiments show that
our proposed model can achieve competitive and state-of-the-art performance relative
to baseline models without introducing extra corpora. Although the introduction of POS
as linguistic knowledge can effectively improve the enhancement of implicit sentiment
detection in ABSA, there are still limitations. If there are difficulties in deriving pre-
cise POS sequences in low-resource settings, the POS-based solution might not provide
sufficient information. Further research can investigate approaches for integrating var-
ious linguistic knowledge into models for learning implicit sentiment without external
sources.
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Abstract. In recent years, many researchers have recognized the impor-
tance of associating events with sentiments. Previous approaches focus on
generalizing events and extracting sentimental information from a large-
scale corpus. However, since context is absent and sentiment is often
implicit in the event, these methods are limited in comprehending the
semantics of the event and capturing effective sentimental clues. In this
work, we propose a novel Multi-perspective Knowledge-injected Inter-
action Network (MKIN) to fully understand the event and accurately
predict its sentiment by injecting multi-perspective knowledge. Specifi-
cally, we leverage contexts to provide sufficient semantic information and
perform context modeling to capture the semantic relationships between
events and contexts. Moreover, we also introduce human emotional feed-
back and sentiment-related concepts to provide explicit sentimental clues
from the perspective of human emotional state and word meaning, fill-
ing the reasoning gap in the sentiment prediction process. Experimental
results on the gold standard dataset show that our model achieves better
performance over the baseline models.

Keywords: Affective Event Classification · Sentiment Analysis ·
Knowledge Injection

1 Introduction

Affective Event Classification (AEC) aims at predicting the sentiment polarity
of the given event. We consider events that have positive effects on people who
experience them as positive events. For instance, typically positive events include
having a new crush, going to the bonfire, seeing a rainbow. On the contrary, events
that have negative effects on people who experience them are treated as neg-
ative events, such as breaking a marriage, going to the funeral, hearing a loud
noise. Since events often trigger sentiments and sentiments are often implicit,
recognizing affective events is of great values to various natural language pro-
cessing applications, covering dialogue systems [22], question-answering systems
[15], implicit sentiment analysis [31] and opinion mining [28].

The challenges of AEC lie in the limited context and the implicit sentiment of
the event. To be specific, we often rely on the context to analyze sentiments, but
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Fig. 1. An example of an affective event for identifying the sentiment with the help of
event contexts, human emotional feedback and sentiment-related concepts.

there is no rich context to understand the event. Besides, traditional sentiment
analysis methods rely on the occurrence of explicit sentiment words, but there
are few explicit sentimental clues in the event. Many previous approaches have
been devoted to cope with the challenges by extracting sentimental information
from a large-scale corpus [5,19,32]. However, such attempts are not effective
enough to understand the event and capture sentimental clues due to weak
context modeling and insufficient sentimental information.

We believe that this task would benefit from multi-perspective knowledge
injection. Specifically, context can provide additional semantic information to
understand the event, and human emotional feedback as well as sentiment-
related concepts can provide explicit sentimental information from two per-
spectives to fill the reasoning gap. Figure 1 shows an example of an affective
event, demonstrating the significance of contexts, human emotional feedback
and sentiment-related concepts in understanding events and detecting implied
sentiments. On the one hand, the given event (“〈I, have, drink, with my dad〉”)
could be thoroughly understood by supplying contexts (“I invite my dad over
for dinner.”, “I have a good time.”). On the other hand, from people’s positive
emotional feedback towards the event (“happy”, “relaxed”), we could know that
the event would typically have a positive effect on them. Moreover, the meaning
of “drink” and “dad” in the event are enriched by sentiment-related concepts
(“celebrating”, “party”, “cool”, etc.). Thus, the implicit sentiment of the event
could be identified more easily via enhanced emotions and enriched concepts.

In this paper, to cope with the aforementioned challenges, we propose a
novel Multi-perspective Knowledge-injected Interaction Network (MKIN) to
thoroughly comprehend the event and precisely infer its sentiment. Specifically,
we utilize a pre-trained generative commonsense reasoning model to create event
contexts and human emotional feedback of the event. Meanwhile, a commonsense
knowledge base and an emotion dictionary are adopted to retrieve sentiment-
related concepts. Then, we devise a Multi-Source Text Encoding Module to
encode these events and knowledge. To better integrate contextual information
and sentimental clues, we construct a Semantic and Sentimental Fusion Module,
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which performs interaction as well as fusion of semantics and sentiments. Finally,
we introduce a classifier to accurately classify affective events.

To evaluate the performance of MKIN, we conduct extensive experiments on
the gold standard dataset for AEC. State-of-the-art performance is achieved by
us compared with the baseline models.

The main contributions of our work are summarized as follows:

– For the first time, we propose to leverage commonsense knowledge to improve
Affective Event Classification.

– We introduce a novel approach MKIN to perform context modeling and sen-
timent reasoning, which injects knowledge from multiple perspectives to meet
the challenges of AEC.

– Extensive experimental results on the benchmark dataset demonstrate the
superiority of MKIN. Our source code will be publicly available.

2 Related Work

Relevant work mainly includes two directions, one is affective event classification,
and the other is incorporating external knowledge in sentiment analysis tasks.

2.1 Affective Event Classification

Prior work has focused on producing lexical resources of verbs or event phrases
with corresponding sentiment polarity values. Goyal et al. (2010) [6] created a
new type of lexicon for narrative text comprehension, consisting of patient polar-
ity verbs that impart positive or negative states on their patients. Vu et al. (2014)
[26] created a manually-constructed dictionary of emotion-provoking events, then
used seed expansion and clustering to automatically acquire and aggregate events
from web data. Li et al. (2014) [9] extracted major life events from Twitter by
clustering tweets corresponding to speech act words, such as “congratulations”
or “condolences”. Ding and Riloff (2016) [4] first defined stereotypical affective
events as triples 〈Agent, Verb, Object〉 that are independent of context, and used
a semi-supervised label propagation algorithm to discover affective events from
Blogs.

More recently, many researches on affective event classification exert much
effort to extract sentimental information from a large-scale corpus. Ding and
Riloff (2018) [5] expanded affective events as tuples 〈Agent, Predicate, Theme,
Prepositional Phrase〉, and introduced a weakly supervised semantic consistency
model for inducing a large collection of affective events from a personal story cor-
pus. Saito et al. (2019) [19] proposed to exploit discourse relations to propagate
sentiment polarity from seed predicates. They extracted events that co-occur
with seeds in a Japanese web corpus, and used discourse relations as constraints
in the model learning process. Zhuang et al. (2020) [32] first utilized the pre-
trained model and presented a discourse-enhanced self-training method, which
combines the classifier’s predictions with information from local discourse con-
texts, and iteratively improves the classifier with unlabeled data. Another line
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of related work is Event-related Sentiment Analysis, which explicitly models
events to improves sentiment analysis because events often trigger sentiments in
sentences. Zhou et al. (2021) [31] proposed a hierarchical tensor-based composi-
tion mechanism for event-centered text representation and develop a multi-task
learning framework to improve sentiment analysis with event type classification.

However, existing methods only induce affective events based on semantic
relations or discourse relations, or purely focus on sentimental information from
local discourse contexts. Unlike the previous work, we consider multiple per-
spectives of knowledge, covering event contexts, human emotional feedback and
sentiment-related concepts.

2.2 Sentiment Analysis with Knowledge

In recent years, there is a growing number of researches on incorporating external
knowledge in various sentiment analysis tasks. Turcan et al. (2021) [24] explored
the use of commonsense knowledge via adapted knowledge models to under-
stand implicitly expressed emotions and the reasons of those emotions for Emo-
tion Cause Extraction. Sabour et al. (2021) [18] leveraged commonsense knowl-
edge to obtain more information about the user’s situation and feelings to fur-
ther enhance the empathy expression in the generated responses for Empathetic
Response Generation. Zhao et al. (2022) [29] utilized commonsense knowledge
to provide causal clues to guide the process of causal utterance traceback for
Emotion Recognition in Conversations. Peng et al. (2022) [16] employed com-
monsense knowledge to obtain the psychological intention of the help-seeker to
generate the supportive responses for Emotional Support Conversation. Xu et
al. (2022) [27] used a knowledge graph to supplement a large amount of knowl-
edge and common sense omitted in implicit emotional sentences for Implicit
Sentiment Analysis.

There are also many studies on integrating external knowledge in other natu-
ral language processing tasks, but less studies on Affective Event Classification.
To the best of our knowledge, this is the first attempt to introduce external
knowledge into Affective Event Classification task.

3 Methodology

The problem of the AEC task could be formulated as follows. Given an
event tuple 〈 Agent: agent =

{
w1, w2, · · · , wnagent

}
, Predicate: pred ={

w1, w2, · · · , wnpred

}
, Theme: theme = {w1, w2, · · · , wntheme

}, Prepositional
Phrase: prep =

{
w1, w2, · · · , wnprep

} 〉 with the corresponding sentiment cat-
egory, the goal of this task is to predict the sentiment distribution over three
sentiment polarities.

The overall architecture of our proposed model MKIN is shown in Fig. 2,
which consists of four modules: Knowledge Acquisition Module, Multi-Source
Text Encoding Module, Semantic and Sentimental Fusion Module, Sentiment
Classification Module. Each one of the four modules will be elaborated in the
rest of this section.
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Fig. 2. The overall architecture of our proposed model.

3.1 Knowledge Acquisition Module

Event Context Acquisition. Since retrieving context from corpus is expensive
and noisy, we turn to the commonsense knowledge base to provide the con-
text for the given event. In this work, we employ ATOMIC-2020 [7] as our
commonsense knowledge base, which is a commonsense knowledge graph of
general-purpose everyday inferential knowledge covering social, physical, and
event-centered aspects.

To be more specific, we explore two event-centered categories of common-
sense knowledge from ATOMIC-2020, called isAfter and isBefore. These two
relations provide reasoning about event scripts or sequences, respectively intro-
ducing events that can precede or follow an event. Therefore, we use isAfter and
isBefore to introduce two events that happened before and happened after the
given event, respectively. The two introduced events could form the context of
a given event, and the three events can be treated as a narrative event chain.
Then the given event could be fully understood via context awareness.

In order to acquire contexts for given events, we adopt a generative model
COMET [2] which is a pre-trained GPT-2 model [17] finetuned on ATOMIC
[20]. More precisely, we use a BART-based [8] variation of COMET, which is
trained on ATOMIC-2020. This model can generate accurate and representative
knowledge for new, unseen events. It is suitable and necessary for AEC task,
because affective event has a broad scope and many events may not exist in
the static ATOMIC-2020 dataset. An event is given to form the input format
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(e, r, [GEN ]), where e is the sequence that comprise an event tuple. For instance,
〈I, have, drink, with my dad〉 is converted into the sequence “I have drink with
my dad”. And r is the relations we select, including isAfter and isBefore. Then
we use COMET to generate five commonsense inferences for each relation r.

Human Emotional Feedback Acquisition. In this work, ATOMIC-2020 is also
utilized to acquire human emotional feedback. We explore one type of social-
interaction commonsense knowledge called xReact, which manifests the emo-
tional states of the participants in a given event. The introduced emotion reac-
tions could fill the reasoning gap between events and sentiments. We acquire
human emotional feedback in the same way that we acquire event contexts. As
the commonsense inferences for xReact are usually emotion words (e.g., happy,
sad, angry, etc.) rather than events or sentences, we simply adopt the hidden
state representation from the last encoder layer of COMET as the human emo-
tional feedback representation.

Sentiment-Related Concept Acquisition. Following [10], we use a commonsense
knowledge base ConceptNet [23] combined with an emotion lexicon NRC VAD
[14] to obtain sentiment-related concepts.

ConceptNet is a large-scale multilingual semantic graph proposed to describe
general human knowledge, allowing natural language applications to better
understand the meanings behind the words. We introduce the tuple (head con-
cept, relation, tail concept, confidence score) to represent the assertions in Con-
ceptNet graph and their associated confidence scores, and denote the tuple as
τ = (h, r, t, c). For instance, one such tuple from Conceptnet is (birthday, Relat-
edTo, happy, 4.16). Let W be a collection of words in a given event tuple. For
each non-stopword h ∈ W , we retrieve a set of tuples Ti =

{
τ j
i =

(
hi, r

j
i , t

j
i , c

j
i

)}

containing its immediate neighbors from ConceptNet, where i, j are indices of
non-stopwords and the retrieved tuples.

To refine the retrieved concepts, we first remove tuples where concepts tji are
stopwords or not in our vocabulary. We further filter tuples where confidence
scores cji are smaller than 1 to reduce annotation noises. As many of the tuples are
still useless for our AEC task, we select 10 relevant relations from 38 relations in
ConceptNet as [11] did, they analyzed the effects of various relations on implicit
sentiment analysis in detail. And then we remove the tuples where relations rji
belong to other relations.

To highlight sentimental information, we adopt NRC VAD to measure sen-
timental intensity of the external concepts. NRC VAD is a lexicon with valence,
arousal, and dominance (VAD) scores. The interpretations of three dimensions
are presented in Table 1. Such as the VAD score vector [Va, Ar,Do] of word
“happy” is [1.000, 0.735, 0.772]. Following [30], sentimental intensity value of a
concept x is computed as:

η(x) = min-max

(∥
∥
∥
∥Va(x) − 1

2
,
Ar(x)

2

∥
∥
∥
∥
2

)
(1)
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where min-max() denotes min-max normalization, ‖.‖k denotes Lk norm, Va(x)
and Ar(x) denote the valence and arousal scores in VAD vector of concept x,
respectively. For concept x not in NRC VAD, η(x) will be set to 0. We rank the
tuples according to the sentimental intensity values η(tji ) of concepts tji . Based
on the order of tuples, we reserve at most three external concepts with adequate
sentimental intensity values (i.e., η(tji ) ≥ 0.6) for each word h.

Table 1. Interpretations of NRC VAD dimensions

Dimensions Values Interpretations

Valence [0,1] Negative - Positive

Arousal [0,1] Calm - Excited

Dominance [0,1] Submissive - Dominant

3.2 Multi-source Text Encoding Module

Multi-source text encoder considers text from three sources, including raw event,
event context and external concepts. The event encoder, context encoder and
concept encoder are the same encoder, which employ widely-used pre-trained
model BERT [3].

Firstly, the events are encoded. For each event e = {w1, w2, · · · , wn}, we
concatenate two special tokens [CLS] and [SEP ] to the beginning and end of the
event. Then the sequence {[CLS], w1, w2, · · · , wn, [SEP ]} is fed to the encoder,
leading to a series of hidden states:

hi = BERT( [CLS], w1, w2, · · · , wn, [SEP ] ) (2)

where hi ∈ R
dm is the i-th token in the input sequence, dm is the dimension of

hidden states in BERT. And the vectorized representation of an event is H. It
is worth noting that we specifically denote [CLS] token as g.

Secondly, the contexts are encoded. For both isAfter and isBefore, we con-
catenate the five generated commonsense inferences to get a context sequence
CSr:

CSr = csr1 ⊕ csr2 · · · ⊕ csr5 (3)

where ⊕ is the concatenation operation, r is the relation we select from
ATOMIC-2020. Then we pass each context sequence in the same input format
as {[CLS], CSr, [SEP ]}, to derive a series of hidden states from the last layer:

srj = BERT( [CLS], CSr, [SEP ] ) (4)

where srj ∈ R
dm is the j-th token in the input sequence. And the vectorized

representation of a context sequence is Sr.
Thirdly, the concepts are encoded. For each concept x, we perform mean-

pooling operation from the last hidden layer to obtain its representation c ∈ R
dm :

c = Mean-pooling(BERT( [CLS], x, [SEP ] ) ) (5)
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3.3 Semantic and Sentimental Fusion Module

As contexts and sentimental clues have been collected, Semantic and Sentimental
Fusion Module is devised to perform interaction as well as fusion of contextual
and sentimental information.

Semantic Interaction. In order to highlight the more important semantic fea-
tures from the contexts, we utilize multi-head cross-attention mechanism [25] to
achieve the interaction of contexts and the event. Then for each context sequence
CSr, a context-aware representation Sr′ is learned:

Sr′ = MH(f(H), f(Sr), f(Sr)) (6)

where f is a linear transformation, each vector is transformed to the dimension
of dh with f , and

MH(Q,K, V ) = Concat(head1, · · · , headh)WO (7)

headi = Att(QWQ
i ,KWK

i , V WV
i ) (8)

Att(Q,K, V ) = Softmax(
QKT

√
dk

)V (9)

where Q, K, and V are sets of queries, keys and values, respectively, the pro-
jections are parameter matrices WO ∈ R

mdv×dh , WQ
i ∈ R

dh×dk , WK
i ∈ R

dh×dk ,
WV

i ∈ R
dh×dv , and dk = dv = dh/h. The final context representation S is

obtained by:
S =

⊕

r∈{isAfter,isBefore}
Max-pooling(Sr′) (10)

then S is transformed to the dimension of dh with a linear projection.

Sentimental Interaction. We construct a graph network for modeling the event
and relevant concepts. Specifically, each event token and concept are represented
as vertices in the graph, including the [CLS] token as a global vertex for aggre-
gating information. Furthermore, three relation types of edges are applied to
connect the vertices: (1) global edge, a directed edge which connects global node
to each event node; (2) general edge, an undirected edge between two successive
event nodes; (3) extended edge, a directed edge which connects a concept node
to the corresponding event node.

Let G = (V, E ,R) denotes our graph, where V, E , and R are sets of ver-
tices, edges and relation types, respectively. We initialize each vertex with
the corresponding encoded feature vector, and denote vertex features as V =
{v1, v2, · · · , vN} = {g, h1, · · · , hn, c1, · · · , cm}.

We feed the initial vertex features into a graph encoder to propagate seman-
tic and sentimental information. Considering different relation types of edges,
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we adopt relational graph convolutional networks [21] to update vertex repre-
sentations. The convolutional computation for a vertex at the (l + 1)-th layer
which takes the representation v

(l)
i at the l-th layer as input is defined as:

v
(l+1)
i = ReLU

⎛

⎝
∑

r∈R

∑

v∈Nr
i

1
|Nr

i |
W (l)

r v
(l)
i

⎞

⎠ (11)

where ReLU [1] is an activation function, Nr
i is the set of neighbor vertices under

relation type r, and W
(l)
r are relation-specific learnable parameters at the l-th

layer.
To selectively attend to the more important sentimental features within the

enriched event representation, we pass the updated vertex features to a multi-
head self-attention layer, then a sentiment-enhanced representation V ′ is learned:

V ′ = MH(V (L), V (L), V (L)) (12)

where V (L) =
{

v
(L)
1 , v

(L)
2 , · · · , v

(L)
N

}
= {g′, h′

1, · · · , h′
n, c′

1, · · · , c′
m} are the out-

puts of the graph encoder. We take the global vertex feature as the final event
representation G, and G is transformed to the dimension of dh with a linear
projection.

Feature Fusion. We first transform the human emotional feedback representation
E to the dimension of dh via a linear transformation. Inspired by [12], we fuse
the three representations with a gated manner, including context representation
S, event representation G, and human emotional feedback representation E. The
gate is formulated as:

GS = ReLU(FC([G,S,G − S,G 	 S])) (13)

GE = ReLU(FC([G,E,G − E,G 	 E])) (14)

p = Sigmoid(FC[GS , GE ]) (15)

where FC is a fully-connected layer and [., .] means concatenation. Then the
three features are fused as:

F = G + p 	 S + (1 − p) 	 E (16)

3.4 Sentiment Classification Module

Finally, taking the above fused representation as input, a sentiment classifier is
applied to predict the sentiment of the event:

ŷ = Softmax(MLP(F )) (17)

where MLP is a multi-layer perception.
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Cross entropy loss is adopted to train the model, the loss function is defined
as:

L = − 1
T

T∑

i=1

C∑

j=1

yj
i · log(ŷij) (18)

where T and C denote the number of training examples and the number of
sentiment categories, respectively, and yj

i represents the ground-truth label.

4 Experiments

In this section we present the dataset, evaluation metrics, baseline models, model
variants, and other experimental settings.

4.1 Dataset and Evaluation Metrics

We conduct experiments on the gold standard dataset for AEC. It is collected
from Twitter Dataset with sentiment category labels annotated by [32], and the
sentiment categories belong to negative, neutral and positive. Statistics of the
dataset are shown in Table 2.

Following [32], we report the precision, recall and F1 score for each of the
three categories, and weighted average results for each metric.

Table 2. Dataset statistics

Category Number

Negative Event 348

Neutral Event 717

Positive Event 435

4.2 Baselines and Comparison Models

We compare our proposed model with the following method:
BERT-Base/Large [3]: BERT is a widely-used pre-trained language model

with excellent performance in various natural language processing tasks. We
adopt the base version and the large version of BERT as the basis for our classifier
and perform fine-tuning during the training process.

RoBERTa-Base/Large [13]: RoBERTa has the same model architecture as
BERT but with a robustly optimized pre-training scheme allowing it to generalize
better to downstream tasks. Similarly, we adopt the base version and the large
version of RoBERTa for experiments.

DEST [32]: DEST is a discourse-enhanced self-training model which is the
state-of-the-art model for AEC. It introduces BERT-base model for classification
and combines the classifier’s predictions with information from local discourse
contexts to iteratively assign high-quality labels to new training instances.
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4.3 Implementation Details

Following [32], we performed 10-fold cross-validation over the dataset, where
each of the 10 runs used 8 folds of the data for training, 1 fold of the data for
validation and tuning, and 1 fold of the data for testing.

Base version of BERT is adopted as the encoder, and the dimension of hidden
states dm in the encoder is 768. For all representations in the rest of our model,
the dimension dh is set to 300. For the multi-head cross-attention layer and
the multi-head self-attention layer, the number of attention head is 5 and 12,
respectively. For sentiment classification, the dimensions of MLP are set to [300,
100, 3] and the dropout rate is set to 0.1. We train our model with AdamW
optimizer in a learning rate of 1e−5 and a linear warmup rate of 0.1. And the
batch size is set to 8. We implemented all models in PyTorch with a single Tesla
V100 GPU. Reported results are medians over 5 times of 10-fold cross-validation
with the same 5 distinct random seeds.

5 Results and Analysis

In this section we present model evaluation results, ablation study, and case
study.

5.1 Overall Results

As depicted in Table 3, our proposed model achieves state-of-the-art results.
Benefiting from the effective context modeling with event contexts and accu-
rate sentiment reasoning with human emotional feedback and sentiment-related
concepts, MKIN achieves the best results on each metrics and the highest F1
score in each category compared with the state-of-the-art model DEST and other
baselines.

Table 3. Performance of all models. The best results among all models are highlighted
in bold.

Model NEG NEU POS P R F1

P R F1 P R F1 P R F1

BERT-base (110M) 71.6 77.4 74.1 76.5 78.1 77.1 76.8 69.9 73 75.8 75.3 75.3

BERT-large (340M) 72.5 75.5 73.5 76.7 78.6 77.5 77.6 72 74.3 76.4 75.7 75.7

RoBERTa-base (125M) 73.4 74.9 73.6 78 79.6 78.7 78.3 74.5 76 77.3 76.9 76.8

RoBERTa-large (355M) 74.4 75.3 74.5 77.7 82.3 79.8 78.9 71.7 74.8 77.7 77.3 77.2

DEST (110M) 78.9 77.6 78 78 83.7 80.6 80.2 71.5 75 79.2 78.6 78.5

MKIN (ours) (110M) 83.7 75.9 79.1 80.1 84.3 82 80 78.8 79.1 81.3 80.7 80.6

For the state-of-the-art model DEST, we reproduce the performance in the
same setting as the original model. Although DEST utilizes a large number of
coreferent sentiment expressions to provide explicit sentiment clues, it is unre-
liable because coreferent sentiment expressions are quite noisy due to imperfect
coreference and issues like sarcasm, which leads to low-quality pseudo labels,
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even if an additional event classifier is introduced. Instead of retrieving infor-
mation from corpus, we turn to the commonsense knowledge base for context
information and explicit sentiment clues. MKIN improves precision of negative
events from 78.9 to 83.7 and improves recall of positive events from 71.5 to 78.8.
The substantial gain demonstrates the effectiveness of injecting multi-perspective
knowledge to improve affective event classification, and shows the strong ability
of our Semantic and Sentimental Fusion Module in extracting important features
for enriching the event representation.

For other baselines models, they are not comparable with our proposed model
MKIN. It suggests that the event representations extracted by pre-trained lan-
guage models are not sufficient for classification, and only slight improvements
are gained when a larger model is adopted. Besides, two instructive conclusions
can be derived. On the one hand, it is of great significance to perform context
modeling and capture semantic relationships between events and contexts, which
lead to the thorough understanding of the events. On the other hand, explicit
sentiment clues provided by human emotional feedback and sentiment-related
concepts can fill the reasoning gap between events and sentiments.

5.2 Ablation Study

To gain better insight into the performance of our proposed model MKIN, we
conduct an ablation study to verify the contributions of its main components.

Results in Table 4 show that each component is beneficial to the final per-
formance. First, when the Event Context component is removed, the semantic
features of the context are not integrated in the final representation of the event.
The performance of the model degrades to a certain extent, which proves that
context modeling is crucial to AEC. Since there is very limited information in
the event, the model needs additional semantic information from the context
for better event representation learning. Second, when removing the Human
Emotional Feedback component, human’s feelings are not taken into account.
The dropped results demonstrate that human emotional feedback are power-
ful sentimental signals. Third, when the Sentiment-Related Concept component
is removed, external concepts are not introduced to expand the original word
meaning. The performance of the model decreased even more, which suggests
that sentiment-related concepts have a considerable impact on sentiment classifi-
cation. Introducing external sentimental commonsense knowledge and enriching
the meaning of words in events can help the model detect implicit sentiments.
Besides, the use of R-GCN enables more accurate capturing of interactive infor-
mation, while the gate can better fuse complementary information.

5.3 Case Study

We provide several cases from the Twitter dataset to analyze the influence
brought by event contexts, human emotional feedback and sentiment-related
concepts. As illustrated in Table 5, the injected knowledge provide interpretable
results for the prediction of our model. For events that do not contain sentiment
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Table 4. Results of ablation study on model components.

Model P R F1

MKIN 81.3 80.7 80.6

w/o Event Context 79.9 79.3 79.2

w/o Human Emotional Feedback 79.7 79 78.9

w/o Sentiment-Related Concept 79.4 78.8 78.8

w/o R-GCN 79.8 78.9 78.8

w/o Gate 79.7 79.1 79.1

words, such as those listed in Table 5, baseline models tend to classify them as
neutral, whereas our model gives the correct predictions. From the cases, it can
be observed that the three perspectives of knowledge injection play different
roles in sentiment prediction. In most cases, intuitively, context information is of
relatively little help in the reasoning process, because the model often does not
get direct sentiment-related information from context. However, context infor-
mation helps the model understand the event, which enriches the original event
semantics. Moreover, compared with the other two kinds of information, human
emotional feedback brings stronger sentimental signals. Especially when external
concepts do not provide obvious sentimental clues, human emotional feedback
plays a greater role. Finally, with the help of sentiment-related concepts, the
model gains more profound insight into the meaning of words in the event. Since
the sentiment of an event is often derived from its predicate and entities, impor-
tant sentimental clues can be obtained from the extended concepts. Then the
implied sentiment can be inferred more easily and more accurately.

Table 5. Cases that our model makes the correct predictions.

Event & Label Event Context Emotional Feedback Sentiment-Related Concept

〈I, go, -, on date〉
Positive

I meet a girl.
I have a great time.

happy, excited, romantic go → energy, travel, journey
date → lover, engagement

〈I, have been, -, at hospital〉
Negative

I was in a car accident.
I was released from hospital.

worried, sick, scared hospital → death, disease,
injury

〈I, save, much money, -〉
Positive

I work hard at my job.
I buy a new car.

happy, satisfied, proud save → rescue, protect
money → rich, reward, earnings

〈-, separate, child, from family〉
Negative

Parents go to jail.
Mother cries.

sad, unhappy, scared separate → divorce, abduction
child → cute, naughty, noisy
family → fellowship, mother

〈I, have, free weekend, -〉
Positive

I work all week.
I go to the beach to relax.

relaxed, happy, excited free → fun, gift, independent

〈I, hear, loud noise, -〉
Negative

I am walking down the street.
I call the police.

scared, alarmed, alert loud → strong, nightclub, vulgar
noise → explosion, bang,
trouble

6 Conclusion and Future Work

In this paper, we propose a novel Multi-perspective Knowledge-injected Inter-
action Network (MKIN) for affective event classification. MKIN models various
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aspects of information by considering contexts, human emotional feedback, and
sentiment-related concepts, to fully comprehend the event as well as accurately
predict its sentiment. To be more specific, in order to complement the semantic
information of the event, we leverage context information and perform context
modeling to capture the semantic association between the event and the con-
text. To enhance the sentimental information of the event, we take advantage
of human emotional feedback to provide sentimental clues from the perspec-
tive of people’s emotional state. In addition, external sentiment-related concepts
are introduced to enrich the word-level representations. Both emotional state
information and concept information fill the reasoning gap between events and
sentiments. Experiment results show that knowledge injection from all perspec-
tives improve the model performance, and our model achieves 2.1% performance
improvement over the state-of-the-art model on the gold standard dataset.

For future work, to apply the model in a variety of natural language pro-
cessing applications, we would like to explore event-centered sentiment analy-
sis. Affective event classification can be employed as an additional subtask to
improve sentiment analysis.
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Abstract. Zero-shot stance detection intends to detect previously
unseen targets’ stances in the testing phase. However, achieving this goal
can be difficult, as it requires minimizing the domain transfer between
different targets, and improving the model’s inference and generalization
abilities. To address this challenge, we propose an adversarial network
with external knowledge (ANEK) model. Specifically, we adopt adversar-
ial learning based on pre-trained models to learn transferable knowledge
from the source targets, thereby enabling the model to generalize well
to unseen targets. Additionally, we incorporate sentiment information
and common sense knowledge into the contextual representation to fur-
ther enhance the model’s understanding. Experimental results on several
datasets reveal that our method achieves excellent performance, demon-
strating its validity and feasibility.

Keywords: Zero-shot stance detection · Adversarial learning ·
External knowledge · Contrastive learning

1 Introduction

Stance detection [3,12,19] is a significant task in NLP, focusing on identifying
the stance (e.g., against, favor, or neutral) conveyed in the text towards a given
target. It can be efficiently applied to social opinion analysis [14], rumor detection
[13], and other research fields by mining text opinions.

Traditional intra-target stance detection [19] has limited applications since
it requires training and testing under the same target and depends heavily
on labeled data to achieve excellent performance. With the frequent and vast
updates of topics on social platforms, manually labeling new targets becomes
expensive and time-consuming, making it impractical to create a labeled dataset
with all potential targets [22]. Therefore, the study of zero-shot stance detection
[1] for unseen targets is essential and promising.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 419–433, 2023.
https://doi.org/10.1007/978-981-99-6207-5_26
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Table 1. Examples of zero-shot stance detection.

Text Target Gold Label

I do not understand why the Republicans
don’t dismiss him.

Donald Trump Against

@HillaryClinton bad wife, bad role model for
women, bad lawyer, bad First Lady, bad
Senator, horrible Secretary of State.

Hillary Clinton Against

To tackle the zero-shot stance detection task, existing works generally incor-
porate external knowledge [18] as support for inference or introduce attention
mechanisms [1] to capture the relationships between targets, which do not explic-
itly model of the transferable knowledge between source and destination targets.
Some methods solely focus on employing adversarial training [2,24] to learn a
target-invariant representation of the text content, disregarding the possibility
that the model may encounter challenges in correctly predicting sentences that
contain implicit viewpoints or require more profound understanding.

For example 1 in Table 1, the document does not explicitly mention the target
“Donald Trump”. If the model is unaware that Donald Trump is affiliated with
the Republican Party, it is easy to misclassify the stance as neutral. Therefore,
by incorporating common sense knowledge into adversarial networks and supple-
menting the target-related concept representations in the knowledge base, we can
help the model more efficiently understand the text content, thus improving its
generalization. In addition, we find a certain correlation between sentiment infor-
mation and stance detection [15]. For example 2 in Table 1, when a document
contains some negative words, it generally implies an Against stance. Stance
detection will perform better if some sentiment knowledge can be acquired con-
currently.

Motivated, on the one hand, based on the knowledge transfer ability of pre-
trained models, we jointly embed the text and target into BERT and sentiment-
aware BERT (noted as SentiBERT), and employ a cross-attention module to
integrate the sentiment information extracted by SentiBERT with the contex-
tual representations, resulting in semantic feature representations of the text.
Meanwhile, we impose supervised contrastive learning [16] to make the model
learn to distinguish stance category features in the potential distribution space.
We separate the target-specific and target-invariant representations using a fea-
ture separator, then feed the target-invariant representation into the target dis-
criminator for adversarial training, which enables the model to learn robust and
transferable representations that can generalize well across different targets. On
the other hand, we extract document-specific subgraphs from ConceptNet, and
obtain concept representations of the common sense graph by using a graph
autoencoder trained on the ConceptNet subgraph, which is fused into the text
representation to enhance the model’s performance. Our contributions are as
follows:
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(1) Our proposed ANEK model utilizes semantic information, sentiment infor-
mation and common sense knowledge for zero-shot stance detection, espe-
cially adding sentiment information to assist stance detection and implicit
background knowledge to enhance the model’s comprehension.

(2) We employ adversarial training to learn target-invariant information to
transfer knowledge effectively. Stance contrastive learning is used to enhance
the inference of the model.

(3) We experimentally demonstrate that ANEK obtains competitive results on
three datasets, and the extension to target stance detection is also effective.

2 Related Work

2.1 Stance Detection

Stance detection is the study of determining a text’s viewpoint on a prescrip-
tive target. [12]. Previous studies have primarily focused on scenarios where the
training and testing sets share the same target, known as intra-target stance
detection [3,19]. However, when new topics emerge, there is insufficient labeled
data. Some studies explore cross-target stance detection [17,23,25], which trains
a model on one target and tests it on another related target. Xu et al. [25] pre-
sented a self-attentive model to extract shared features between targets. Wei et
al. [23] further exploited the hidden topics between targets as transferred knowl-
edge. In contrast, zero-shot stance detection does not rely on any assumption of
target correlation and is a more general study that can handle irregular target
emergence.

Allaway et al. [1] developed a dataset containing multiple targets and
presented a topic-grouping attention model to capture implicit relationships
between them. Liu et al. [18] utilized the structural and semantic information
of the common sense knowledge graph to enhance the model’s inference. All-
away et al. [2] regarded each target as a domain and modeled the task as a
domain adaptation problem, which successfully learnd the target-invariant rep-
resentation. Liang et al. [16] designed an agent task that distinguished stance
expression categories and implemented hierarchical contrastive learning. These
works are considered incomplete as they overlook the impact of external knowl-
edge containing sentiment information on the model. Whereas, we not only learn
transferable target-invariant knowledge, but also take into account the introduc-
tion of multiple knowledge to enhance semantic information, further improving
the model’s predictive ability. To the best of our knowledge, we are the first
to systematically introduce external knowledge into adversarial networks and
achieve good results.

2.2 Adversarial Domain Adaptation

Domain adaptation mainly aims to minimize domain differences, ensure avail-
able knowledge transfer, and increase the model’s generalization ability. Adver-
sarial loss methods, inspired by the generative adversarial network (GAN) [8],
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have been commonly applied to domain adaptation. Ganin et al. [5] proposed a
domain adversarial neural network (DANN), which utilized a gradient reversal
layer to obfuscate the domain discriminator and enable the feature extractor to
capture domain-invariant knowledge. Tzeng et al. [21] presented an adversarial
discriminative domain adaptation (ADDA) model, which involved a discrimina-
tive method, GAN loss, and unshared weights to decrease the domain disparity.
Therefore domain adaptation is an effective solution for the zero-shot stance
detection task.

2.3 External Knowledge

Neural networks enhanced with external knowledge have been used for various
NLP tasks, like dialogue generation, sentiment classification, and stance detec-
tion. Ghosal et al. [6] employed a domain adversary framework to handle cross-
domain sentiment analysis and further improved the performance by injecting
common sense knowledge using ConceptNet. Zhu et al. [27] incorporated tar-
get background knowledge from Wikipedia into the stance detection model. In
addition, sentiment information is useful external knowledge for stance detec-
tion tasks. Li et al. [15] designed a sentiment classification task as an auxiliary
task and built sentiment and stance vocabularies to guide attention mechanisms.
Hardalov et al. [9] adopted a pre-trained sentiment model to generate sentiment
annotations for text, which improved cross-lingual stance detection performance.
Based on the above work, we simultaneously consider introducing common sense
and sentiment knowledge to aid stance detection.

3 Method

The structure of our ANEK model is displayed in Fig. 1, which mainly contains
two parts. (1) Knowledge graph training: we train a graph autoencoder using
ConceptNet relation subgraphs. (2) Stance detection: we obtain context and sen-
timent information with pre-trained models, use contrastive learning to improve
representation quality, separate features and perform adversarial learning, and
finally incorporate the extracted common sense knowledge graph features to
implement stance detection.

3.1 Task Description

Suppose we are given an annotated dataset Ds =
{
xi
s, t

i
s, y

i
s

}Ns

i=1
from source

targets and an unlabeled dataset Dd =
{
xi
d, t

i
d

}Nd

i=1
from a destination target

(unknown target), where x is a document, t and y are its corresponding target
and stance label, respectively, and N is the number of examples. The purpose of
zero-shot stance detection is to train the model using labeled data from multiple
source targets to predict the stance labels of the unknown target examples.
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Fig. 1. Overview of the ANEK model.

3.2 Knowledge Graph Training

Common Sense Subgraph Generation. ConceptNet is a common sense
knowledge base denoted as a directed graph G = (V,E,R), where concepts
vp ∈ V , edges (vp, r, vq) ∈ E, and r ∈ R is the relation type of the edge between
vp and vq. Given that ConceptNet contains tens of millions of triplet relations
like (cake, IsA, dessert), we use it to construct our knowledge subgraph. To be
specific, we extract unique nouns, adverbs, and adjectives from the datasets of
all targets as seed words. We then extract all triples that are one edge distance
away from these seed concepts to obtain a subgraph G

′
=

(
V

′
, E

′
, R

′
)
.

Graph Autoencoder Pre-training. To integrate common sense knowledge
into our model, we obtain the concept representations in the subgraph G

′
by

training a graph autoencoder composed of a RGCN encoder and a DistMult
decoder [20]. We feed the incomplete set of edges Ê′ from E

′
into the autoen-

coder. We then assigns scores to the potential edges (vp, r, vq) to ascertain the
possibility of these edges being in E

′
.

Encoder Module. To obtain enriched feature representations of the target-related
concepts, we utilize two stacked RGCN encoders to compose our encoder module.
RGCN can create a rich stance aggregated representation for each concept by
combining related concepts in the process of neighborhood-based convolutional
feature transformation. Specifically, we randomly initialize the hidden vector gp
of concept vp and then transform it into the stance aggregated hidden vector hp

by a two-step graph convolution.

f(xp, l) = σ(
∑

r∈R

∑

q∈Nr
p

1
ap,r

W (l)
r xq + W

(l)
0 xp) (1)



424 C. Wang et al.

hp = h(2)
p = f(h(1)

p , 2);h(1)
p = f(gp, 1) (2)

where f denotes the encoder function with vector xp and layer l as inputs, σ
is the activation function, Nr

p indicates the neighbouring concepts of concept
vp with relation r, ap,r is a normalization constant, W

(l)
r , W

(l)
0 are trainable

parameters.

Decoder Module. To reconstruct the edges of the graph to recover the triples’
missing information, we utilize the DistMult factorization as a scoring function
to calculate the score of a given triple (vp, r, vq).

s(vp, r, vq) = σ(hT
p , Rr, hq) (3)

where σ is the logistic function, hT
p is the transpose vector of concept vp encoded

by RGCN.

Training. We use negative sampling to train our graph autoencoder model [6].
Specifically, for the triples in Ê′ (i.e., positive samples), we generate the same
amount of negative examples by destroying the concepts or relation of links at
random, resulting in the complete sample set Z. Our training goal is to perform
binary classification between positive/negative triples with optimization using a
cross-entropy loss function.

LG′ = − 1

2|Ê′ |
∑

(vp,r,vq,y)∈Z

(y log s(vp, r, vq) + (1 − y) log(1 − s(vp, r, vq))) (4)

where y is an indication that is set to 0 for negative triples and 1 for positive
triples.

3.3 Stance Detection Training

Commonsense Feature Encoding. After training the graph autoencoder,
we utilize it to generate common sense graph features for a specific target t and
document x. Specifically, we extract all seed words in the document and denote
them as the set K. Then the subgraph G

′
K is extracted from G

′
, where triples

consist of concepts in K or around radius 1 of any concept in K. Next, we feed
G

′
K to the pre-trained RGCN encoder module and make a forward pass to get

the feature representations. We calculate the average of the representations hp

for all concepts p of document x as its common sense graph features hk. Finally,
we input hk to an encoder layer to obtain its hidden representation hx.

hx = Wxhk + bx (5)

where Wx and bx are trainable parameters.
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Encoding with Sentiment Information. Considering that the stance of a
text is influenced by sentiment information, we learn the sentiment knowledge of
the text to increase prediction accuracy. Following Zhou et al. [26], we exploit a
perceptual sentiment language model (SentiBERT) to extract sentiment knowl-
edge. We input the given document x and target t into the pretrained SentiBERT
model in the form of “ [CLS]x[SEP ]t[SEP ]” to obtain a hidden vector hs with
sentiment information.

hs = SentiBERT ([CLS]x[SEP ]t[SEP ]) (6)

Moreover, to take advantage of the contextual information, we also adopt a
pretrained BERT [11] model to jointly embed document x and target t to obtain
a hidden vector hb of each example.

hb = BERT ([CLS]x[SEP ]t[SEP ]) (7)

Then hb and hs are concatenated, and the information of both is fused by the
cross-attention module. Cross-attention can effectively capture the interdepen-
dencies between text and sentiment, facilitating the integration of knowledge
and resulting in the generation of more accurate and meaningful features. The
final output ha is the hidden state of the [CLS] token.

ha = CrossAttention([hb, hs])[CLS] (8)

Stance Contrastive Learning. Supervised contrastive learning can bring
examples of identical categories closer together and push examples of distinct cat-
egories apart, thus learning a superior semantic representation space. To improve
the generalization of the stance representation, based on the stance label infor-
mation of the examples, we perform contrastive learning on their hidden vectors
ha [16]. Specifically, given the hidden vectors H = {hm}Nb

m=1 of a batch of exam-
ples, for a specific anchor hm ∈ H, if hn ∈ H and hm have the same stance label,
i.e., yn = ym, then hn is considered to be a positive example of hm, while other
examples ho ∈ H are considered to be negative examples. The final contrastive
loss is calculated over all positive pairs, including (hm, hn) and (hn, hm) in a
batch:

Lc =
1

NB

∑

hm∈H

l(hm) (9)

l(hm) = − log
∑Nb

n=1 1[n�=m]1[ym=yn] exp(sim(hm,hn)/τ)
∑Nb

o=1 1o�=m exp(sim(hm,ho)/τ)
(10)

sim(s, t) =
sT t

||s||||t|| (11)

where 1[m=n] ∈ (0, 1) is an indicator function that evaluates to 1 iff m = n.
sim (s, t) represents the cosine similarity of vectors s and t. τ denotes a temper-
ature parameter.
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Target Discriminator. The contextual representations generated by Bert and
the fused sentiment information contain both target-specific and target-invariant
information. Learning and exploiting transferable target knowledge is effective
in enhancing the model’s generalization to new targets. We separate and dif-
ferentiate target-specific and target-invariant features by a simple linear trans-
formation, which can decrease the transfer challenge with no removal of stance
cues. We first extract target-specific features using a linear transformation layer
[24]:

hg = Wgha + bg (12)

where Wg and bg are trainable parameters. By subtracting target-specific fea-
tures from ha, the target-invariant features hz can be obtained:

hz = ha − hg (13)

To further make the feature representation hz target invariant and facilitate
automatic adaptation of the model among different targets, we utilize a target
discriminator to identify the target that the hz comes from. If the discriminator
cannot accurately predict the target label of hz, we consider hz has target-
invariance. Our target discriminator is a linear network with softmax, which is
trained with a cross-entropy loss function.

ŷd = Softmax(Wdhz + bd) (14)

Ld =
∑

x∈Ds

CrossEntropy(yd, ŷd) (15)

where Wd and bd are the trainable parameters of the target discriminator, ŷd and
yd are the predicted and true target labels. Specifically, hz attempts to confound
the target discriminator and increase the target classification loss Ld in order to
learn the target-invariant features. Meanwhile, the discriminator itself struggles
to decrease Ld. So we adopt the gradient reversal layer (GRL) technique, inspired
by [5], to achieve this adversarial effect by placing the GRL before the target
discriminator. The essence of adversarial training is the minimum-maximum
game:

min

θZ

max

θD
− λ log fD(hz) (16)

where θZ are the parameters of all network layers that generate hz, including fine-
tuned Bert, graph encoder, Wg and bg, etc., θD is the discriminator parameters,
and fD is the discriminator function.

Stance Classifier. Since stances are essentially dependent on targets, target-
specific information for each target is also indispensable. We concatenate the
common sense knowledge graph features hx, the target-invariant features hz

and the target-specific features hg to obtain hc, as the input for the stance
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classifier with softmax normalization. We minimize the stance classification loss
using cross-entropy loss.

hc = hx ⊕ hz ⊕ hg (17)

ŷ = Softmax(Wchc + bc) (18)

Ls =
∑

x∈Ds

CrossEntropy(y, ŷ) (19)

where Wc and bc are the trainable parameters of the stance classifier, ŷ and y
are the predicted stance probability and ground-truth distribution.

The training goal of our proposed model is to minimize the overall loss,
defined as follows:

L = Ls + αLc + βLd (20)

where α and β are hyperparameters.

4 Experiments

4.1 Datasets

We conduct experiments on three publicly available datasets. 1)SEM16 [19]
is a Twitter dataset that contains six targets for stance detection, including
the Legalization of Abortion (LA), Feminist Movement (FM), Hillary Clinton
(HC), Donald Trump (DT), Atheism (A), and Climate Change is a Real Concern
(CC). 2)WT-WT [4] is a stance detection dataset in the financial domain. The
dataset contains four targets, including ANTM_CI (AC), AET_HUM (AH),
CVS_AET(CA), and CI_ESRX (CE). 3)COVID-19 [7] is a dataset related to
COVID-19 health tasks, which includes four targets: Anthony S. Fauci, M.D.
(AF), Wearing a Face Mask (WA), Keeping Schools Closed (SC), and Stay at
Home (SH). Each text in the three datasets contains a stance (favor, against,
neutral) for a specific target.

Following [16], we utilize the data from one target as the test set and the
remaining targets as the training set. Moreover, we report the F1_avg (the
Macro-averaged F1 of against and favor) as evaluation metrics.

Table 2 represents the statistics for the three datasets, listing all targets under
each dataset and the number of samples labeled “favor, against, neutral, unla-
beled” (where WT-WT and COVID-19 have no unlabeled samples) for each
target.

4.2 Experimental Implementation

We employ the pretrained SentiBERT and BERT models as the encoder, whose
maximum sequence length is 85. Adam [11] is used to optimize the model. In the
graph autoencoder training stage, the graph batch size is 10000, the learning rate
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Table 2. Statistics of the SEM16, WT-WT and COVID-19 datasets

Dataset Target Favor Against Neutral Unlabeled

SEM16 DT 148 299 260 2,194
HC 163 565 256 1,898
FM 268 511 170 1,951
LA 167 544 222 1,899
A 124 464 145 1,900
CC 135 26 203 1,900

WT-WT CA 2,469 518 5,520 -
CE 773 253 947 -
AC 970 1,969 3,098 -
AH 1,038 1,106 2,804 -

COVID-19 WA 515 220 172 -
SC 430 102 85 -
AF 384 266 307 -
SH 151 201 396 -

is 0.01, the dropout rate is 0.25, and we apply gradient clipping to 1.0. In the
stance detection training stage, the batch size is 8, the learning rate is 1.5e-5, the
dropout rate is 0.1, we train up to 50 epochs, the patience is 5, the temperature
parameter for contrastive loss is 0.07. We use different seeds to train our model
and record the best results.

4.3 Baselines

We compare the ANEK with several strong baselines, including BiCond [3]:
bidirectional conditional encoding model, CrossNet [25]: BiCond with topic-
specific attention, TOAD [2]: BiCond with adversarial learning, BERT [10]:
pretrained language model, BERT-GCN [18]: BERT with GCN for node infor-
mation aggregation, TGA Net [1]: Bert with topic-group attention, TPDG
[17]: GCN-based model for designing target-adaptive pragmatic dependency
graphs, PT-HCL [16]: hierarchical contrastive learning model.

4.4 Main Results

We implemented comparison experiments on three datasets and show the
F1_avg results (Percentage System) in Table 3. Our proposed ANEK model
presents superior performance compared to the baseline models on most target
datasets. Specifically, BiCond and CrossNet perform the worst overall, as they
do not consider the target invisibility to learn transferable information. Although
TOAD also adopts an adversarial strategy to learn target-invariant information,
its use of BiLSTM encoding is prone to poor performance in case of an unbal-
anced target distribution. It can be observed that it performs even less efficiently
than Bert on multiple targets. As a strong baseline in NLP, BERT has good gen-
eralization because it learns rich semantic information in a large corpus, despite
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Table 3. Experimental results on three datasets. Bold indicates the best score for each
test target.

Model SEM16 WT-WT COVID-19
DT HC FM LA A CC CA CE AC AH WA SC AF SH

BiCond 30.5 32.7 40.6 34.4 31.0 15.0 56.5 52.5 64.9 63.0 30.1 33.9 26.7 19.3
CrossNet 35.6 38.3 41.7 38.5 39.7 22.8 59.1 54.5 65.1 62.3 38.2 40.0 41.3 40.4
TOAD 49.5 51.2 54.1 46.2 46.1 30.9 55.3 57.7 58.6 61.7 37.9 47.3 40.1 42.0
BERT 40.1 49.6 41.9 44.8 55.2 37.3 56.0 60.5 67.1 67.3 44.3 45.1 47.5 39.7
BERT-GCN 42.3 50.0 44.3 44.2 53.6 35.5 67.8 64.1 70.7 69.2 - - - -
TPDG 47.3 50.9 53.6 46.5 48.7 32.3 66.8 65.6 74.2 73.1 48.4 51.6 46.0 37.3
TGA Net 40.7 49.3 46.6 45.2 52.7 36.6 65.7 63.5 69.9 68.7 - - - -
PT-HCL 50.1 54.5 54.6 50.9 56.5 38.9 73.1 69.2 76.7 76.3 58.8 44.7 41.7 53.3
ANEK 50.3 54.7 55.0 49.0 54.1 39.2 71.4 69.8 74.8 76.3 52.9 49.8 48.6 50.3

ignoring transferable information between targets. However, when it is applied to
target transfer, it causes performance degradation due to its tendency to fit the
source data. Our model explores adversarial learning based on pre-trained mod-
els, which can learn enhanced target-invariant features and improve the model’s
transferability.

Table 3 shows that relying solely on the introduction of common sense knowl-
edge to help the model understand is not enough for Bert-GCN, and our model
also accounts for learning sentiment information to enhance the discriminative
capability of the model. We can find that ANEK slightly outperforms the PT-
HCL method with hierarchical contrastive learning. Although PT-HCL obtains
excellent generalization by identifying the invariant stance expressions from spe-
cific syntactic levels, it requires pre-processing the data to generate pseudo-
labels, which increases the complexity of the model. Moreover, the noise brought
by pseudo-labels may affect the prediction results. In contrast, our model has
stronger generality and interpretability.

Table 4. Experimental results of the ablation study

Model SEM16 WT-WT COVID-19
DT HC FM LA A CC CA CE AC AH WA SC AF SH

ANEK 50.3 54.7 55.0 49.0 54.1 39.2 71.4 69.8 74.8 76.3 52.9 49.8 48.6 50.3
w/o LC 49.2 52.8 52.9 47.8 53.2 38.0 69.2 66.5 73.2 75.2 51.3 48.2 48.1 49.2
w/o SK 48.7 51.8 53.4 47.2 52.0 37.8 68.1 67.5 71.3 74.0 51.0 49.3 47.2 48.0
w/o CK 48.0 52.4 53.0 46.8 51.1 36.5 67.6 66.8 72.0 73.8 49.7 48.7 46.5 47.9
w/o TD 47.8 51.2 52.3 46.5 52.9 37.8 69.0 68.8 72.6 73.3 50.4 47.9 47.8 47.2

4.5 Ablation Study

We further designed several variants of ANEK for ablation experiments to ana-
lyze the effects of different components on the model, where “w/o CL”, “w/o
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SK”, “w/o CK”, “w/o TD” denote the removal of contrastive learning, sentiment
information, common sense knowledge and adversarial learning, respectively.

We report the F1_avg scores (Percentage System) of the ablation study
in Table 4. The experimental results indicate that removing stance contrastive
learning ("w/o CL") significantly decreases the model’s performance, which sug-
gests that we perform stance contrastive learning on the text representation
assists the encoder in learning better category representations from samples,
leading to better generalization. The removal of sentiment information (“w/o
SK”) reduces model performance, implying that the model may learn the poten-
tial relationship between stance and sentiment and make judgments with the
help of sentiment knowledge. Removing common sense knowledge (“w/o CK”)
leads to poor performance in stance detection, indicating that introducing com-
mon sense knowledge can indeed help the model understand text information
and improve its reasoning ability. "w/o TD" indicates that the removal of the
target discriminator becomes less effective on multiple targets, demonstrating
the success of adversarial learning applied to zero-shot scenarios, generalizing to
unseen targets by encouraging the encoder to generate target-invariant repre-
sentations.

4.6 Generalizability Analysis

We further performed experiments on the SEM16 dataset for cross-target stance
detection and report the F1_avg results (Percentage System) in Table 5. The
cross-target stance detection task is treated as a particular zero-shot setting,
as we need to train using data from a source target related to the test target.
Table 5 illustrates that our ANEK model achieves better performance. We can
also find that the cross-target setting outperforms the zero-shot setting, which
indicates that knowing the relationship between targets in advance can learn
more reliable target-invariant representations to generalize to unseen targets,
illustrating the challenges of zero-shot stance detection. Additionally, enhanc-
ing the understanding and generalization of the model by introducing external
knowledge is also effective.

Table 5. Experimental results of cross-target stance detection. “FM→LA” indicates
training on FM, testing on LA, etc.

Model SEM16
FM→LA LA→FM HC→DT DT→HC

BiCond 45.0 41.6 29.7 35.8
CrossNet 45.4 43.3 43.1 36.2
BERT 47.9 33.9 43.6 36.5
TPDG 58.3 54.1 50.4 52.9
PT-HCL 59.3 54.6 53.7 55.3
ANEK 58.5 54.8 54.3 56.4
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4.7 Case Study

To qualitatively analyze our model, we conduct a case study and error analysis.
We select four cases from the test data of SEM16 and compare our results to the
predictions of BERT and TOAD. Table 6 reports these results. In the first case,
our model and TOAD with adversarial learning output the correct labels, while
the output of BERT is wrong. We believe that because the training data contains
the target “Hillary Clinton”, the model learns the election relationship between
the two targets and transfers the knowledge, and semantically focuses more
on the stance-related words rather than the target words, with a robust target
generalization. In the second case, only our method makes the correct prediction,
demonstrating that depending only on contextual information is insufficient.
Adding sentiment information strengthens the model’s comprehension of texts
with a sarcastic sentiment. In the third case, our method still correctly predicts
the outcome. Although no words about Trump appear in the text, we speculate
that the model learns the hidden connection between “Republican" and “Donald
Trump" and understands the implied meaning of the text, further confirming
the validity of common sense knowledge.

Table 6. Four cases of the predictions by BERT, TOAD and ANEK.

Text Target Gold Label BERT TOAD ANEK

Your have to wonder if Hillary will
attempt to replace #ObamaCare
with #HillaryCare.

Donald Trump Against Neutral Against Against

Donald trump is way better than
ANY candidate out there. Because
he’s real, not a lobbyist backed
puppet.

Donald Trump Against Favor Favor Against

I do not understand why the
Republicans don’t dismiss him.

Donald Trump Against Neutral Neutral Against

......and some, I assume, are good
people.

Donald Trump Against Favor Favor Favor

In the fourth case, all models output incorrect results. We suspect that this
is because the text is too brief, resulting in less valid information being learned,
and the background knowledge is too complex, which reveals that we can explore
data augmentation methods in the future to improve the performance of zero-
shot stance detection by expanding the data.

5 Conclusion

This paper proposes an adversarial network with external knowledge (ANEK)
to handle the zero-shot stance detection task. The model applies adversarial
learning based on pre-trained models to ensure knowledge transferability, and



432 C. Wang et al.

introduces common sense knowledge and sentiment information to enhance the
model’s deep understanding and assist stance detection. In addition, stance con-
trastive learning is used to improve the model’s generalization. The experimental
results on three benchmark datasets indicate that our method performs competi-
tively on some unseen targets. In future work, we will design a data enhancement
method to alleviate the data scarcity problem in zero-shot settings and improve
performance.
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Abstract. Legal judgment prediction (LJP), which consists of subtasks
including relevant law article prediction, charge prediction, and penalty
term prediction, is a basic task in legal artificial intelligence. In recent
years, many deep learning methods have been proposed for this task.
Most of them improve their performance by integrating law articles and
the fact description of a legal case. However, they rarely consider that the
judges usually look up historical cases to help make the final judgment
in real practice. To simulate this scenario, in this paper, we propose a
new framework for LJP, which explicitly incorporates retrieved historical
cases in the process of LJP. Specifically, we select some cases from the
training dataset. Then, we retrieve the most similar Top-k historical
cases of the given case and use the vector representation of these Top-
k historical cases to help predict the judgment results. We experiment
with two widely used legal datasets, and the results show that our model
outperforms several state-of-the-art baseline models.

Keywords: Legal Judgment Prediction · Case Retrieval · Historical
Case

1 Introduction

Recently, it has become a trend to use artificial intelligence to help judicial
personnel. Legal judgment prediction (LJP) is a typical legal artificial intelligence
task. As shown in Table 1, given a legal case with a fact description, the LJP
task can predict the judgment result of the case. The predicted result consists
of three parts: relevant law article, charge and term of penalty. LJP can not
only give the judgment results efficiently for reference for judicial personnel but
also provide legal suggestions for ordinary people when there is a legal dispute
[20,27–29] in daily life.

Currently, various methods have been proposed to help improve the perfor-
mance of the LJP task. Some methods [24,28] consider using the order informa-
tion among the three subtasks of LJP in reality to enhance the ability to repre-
sent the fact description. Further, some methods [4,13,26] consider a fine-grained
division of the fact description to improve the fact representation. Additionally,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Sun et al. (Eds.): CCL 2023, LNAI 14232, pp. 434–448, 2023.
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Table 1. An example of the legal judgment prediction task.

Fact Description

On XX, XXX, the procuratorate accused the defendant Yang XX of taking
gasoline out of his motorcycle fuel tank after quarrelling with his girlfriend
Tang XX, putting it into a beer bottle, and pouring gasoline through the
crack of the door into room X of the rental room opposite the XX Internet
cafe in the XX community where Tang XX is located, and using a lighter
to ignite the gasoline. The fire spread to the room along with the
gasoline and was extinguished by Tang XX and other people in the room.
On the morning of that day, the public security police arrested the defendant
Yang XX ...

Relevant Law Article

Article #114 [Crime of Arson] Whoever commits arson, breaches a dike,
causes an explosion, spreads toxic, radioactive, infectious disease pathogens
and other substances or endangers public security by other dangerous methods,
but has not caused serious consequences, shall be sentenced to fixed-term
imprisonment of not less than three years but not more than ten
years.

Charge: Crime of Arson

Term of Penalty: A fixed-term imprisonment of thirty-six months

some methods [8,12,20,23] consider the important role of law articles in reality
and introduce them to improve the performance. These efforts have effectively
improved the performance of the LJP task. However, the existing methods are
affected by the fact that the law articles are too concise and still have limitations
in modelling the judgment process.

On the one hand, the law articles are very concise and lack specific details and
some law articles have similar provisions and so easy to be confused. As shown
in Fig. 1, Article #114 and Article #115 both stipulate the same charge Crime
of Arson and the provisions in the two law articles are very short. In order to
distinguish them, the judge usually re-finds and analyzes historical cases because
the fact description information of historical cases usually contains more detailed
information than the law articles.

On the other hand, most of the previous methods predict the judgment results
mainly based on the fact description of a single case, however, they overlook the
practical scenario that judges usually look up typical historical cases for reference
before making a judgment. As we all know, historical cases are very important
for making a judgment, whether in the Case Law system or the Statutory Law
system.1 In the Case Law system, judges mainly refer to historical cases to make
a judgment. In the Statutory Law system, before making a judgment the judges

1 The details of the Case Law and Statutory Law system can be found in https://en.
wikipedia.org/wiki/Case law and https://en.wikipedia.org/wiki/Statutory law.

https://en.wikipedia.org/wiki/Case_law
https://en.wikipedia.org/wiki/Case_law
https://en.wikipedia.org/wiki/Statutory_law
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Fig. 1. Article #114 and Article #115 both stipulate the same charges (Charge 1–5).
There is little difference between the specific provisions of Article #114 and Article
#115 on the Crime of Arson.

should not only look up the law articles but also look up typical historical cases.
Obviously, historical cases are indispensable references for judges in their work.

To solve the above challenges, we propose a framework for legal judgment
prediction based on a historical case retrieval module to simulate the actual legal
scenario of looking up historical cases before making a judgment.

First, we consider that the number of cases looked up by judges in actual
work is usually limited and select a part of cases from the training dataset as
historical cases.

Second, in order to avoid the impact of highly unbalanced class distribution
of the dataset on the model performance [8,27], we consider selecting the same
number of historical cases for each category.

Third, we retrieve the most similar Top-k historical cases of the current legal
case and concatenate the vector representation of these Top-k cases and the fact
description of the current case to predict the judgment results. Finally, we train
our model with a cross-entropy loss function. We call our model CR4LJP, which
stands for Case Retrieval framework for Legal Judgment Prediction.

Our contributions are three-fold:

(1) We take into account that judges usually look up historical cases before
making a judgment after investigating the human justice system.

(2) We propose a case retrieval framework for the legal judgment prediction
task to use historical cases to help predict the judgment results.

(3) Experimental results on two real large-scale legal datasets show that our
model outperforms the state-of-the-art models and verify the effectiveness of
our framework. This study shows that case retrieval is effective in improving
the legal judgment prediction task.
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2 Related Work

2.1 Legal Judgment Prediction

The earliest legal judgment prediction (LJP) methods [5,10,16,17,19] mainly
use mathematical and statistical tools. These methods are based on artificial
features or rules, so they are difficult to extend. In recent years, some researchers
have proposed a lot of models [3,24,28,29] based on deep learning to predict
judgment results. Specifically, some research works [24,28] consider that the
legal judgment prediction task is composed of three subtasks, and there are
dependencies among them which are useful information. Some research works [4,
13,26] consider that the fact description is usually long, and the fact description
can be better represented by dividing or extracting the fine-grained information.
Some research works [8,12,20,23] consider the important role of law articles in
reality and then try to use the information of law articles. These previous works
improve the performance of LJP, but they fail to take into account that historical
cases are also important information.

2.2 Retrieval Methods

For deep learning models, even the pre-trained models, such as Bert [2], can not
remember all samples. Therefore, it is worth considering using a retrieval model
to obtain additional information. Generally, retrieval models can be divided into
two types: sparse representation based on bag-of-word (BOW) [1] and dense vec-
tor representation based on neural networks [9,31]. The retrieval models based
on sparse representation have been applied in machine translation [6] and open
domain question answering [1,11,21]. The retrieval models based on dense vec-
tor representation [9,31] have attracted more attention from researchers in recent
years. This method can achieve better recall performance than the sparse retrieval
model on various Natural Language Processing (NLP) tasks, such as personalized
search [14,31] and domain question answering [7,9,25]. Considering that judges
usually only need some typical cases and the good performance of dense vector
representation, we use the dense vector representation retrieval method.

3 Problem Definition

Before introducing our model, we first introduce some concepts and definitions
of legal judgment prediction.

A legal case in our paper consists of a fact description and three judgment
results, which are made by human judges. The fact description is a text that
describes the criminal facts of a suspect. As shown in Fig. 2, our model uses f to
represent it. The three judgment results are the relevant law article, charge
and term of penalty and we use y1, y2 and y3 to represent them respectively.
Then a legal case can be represented as:

Case = (f, y1, y2, y3), (1)

where f, y1, y2, y3 are defined above.
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Fig. 2. The framework of our model. The main module of our framework is the Basic
Encoder and the Case Retrieval module.

Referring to previous studies [12,23,28], we adopt a multi-task learning frame-
work to solve the LJP task. Our goal is to train a model F (·) which can be used
to predict a case ft in the test dataset with a given training dataset D, namely:

F (ft) = (ŷ1, ŷ2, ŷ3), (2)

where ŷ1, ŷ2 and ŷ3 are the predicted judgment results. Consistent with the
existing works [23,28], we only consider the legal cases with one relevant law
article and one charge label.

4 Model Framework

In a practical situation, judges usually look up some typical historical cases for
reference. To simulate this situation, we propose a framework (CR4LJP) with a
historical case retrieval module.

4.1 Overview

Our model framework is shown in Fig. 2. In general, our model is a multi-task
learning framework, which jointly solves three legal judgment prediction sub-
tasks, with the case retrieval module we proposed. The main modules and train-
ing process of our model framework are as follows:

(1) The fact description f is converted into vector representation ZB
f through

the basic encoder.
(2) All selected historical cases are transformed into vector representations by

the basic encoder. We select the Top-k cases which are most similar to the
vector ZB

f from these cases according to the cosine similarity. Then, we get
the mean vector ZB

t of these Top-k cases as auxiliary information.
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(3) The representation vector ZB
f and the mean vector ZB

t of these Top-k cases
are concatenated to solve the three legal judgment prediction subtasks.

(4) Our model is optimized by the losses of three subtasks. In the test phase, we
also use the historical case vectors as auxiliary information to predict the
judgment results.

4.2 Basic Encoder

As shown in Fig. 2, our model framework uses the same encoder for the current
case and historical cases. Considering the consistency with the previous models
[23,26,28] and the operation efficiency, we adopt the recurrent neural network
(RNN) based encoder. Although we use RNN based encoder, our framework can
flexibly select the neural network. Other neural networks, such as the current
neural network (CNN) and pre-trained language models (PLMs), can also be
used as encoders.

Specifically, the fact description of a legal case with m words is represented
as:

f = (w1, · · · , wm), (3)

where wi is a word in the fact description. Then we convert it to a word embed-
ding sequence f though looking up a pre-trained word embedding table E:

f = [e1, e2, · · · , em], ei ∈ E, (4)

where f ∈ Rm×de , and ei ∈ Rde is the embedding vector of the i-th word wi.
Then we use Bi-GRU neural network to encode the fact description.

ZB
f = Bi-GRU(f), (5)

where ZB
f = (h1, · · · , hl) ∈ Rl×dh , dh is the length of the hidden layer of Bi-GRU

encoder.
After introducing RNN based encoder, we introduce an alternative neural

network Bert [2] as the encoder. First, the fact description f is set as the input
of Bert after an embedding layer. After the multi-layer self-attention encoder,
the output of “[CLS]” token of Bert is set as the vector representation of the
fact description. It can also be represented as:

ZBert
f = BERT(f)[CLS], (6)

where “[CLS]” is one of the tokens output by the Bert model.

4.3 Case Retrieval Module

In the actual judgment process, judges usually look up some typical historical
cases as references. So we design a case retrieval module to simulate the scenario.
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As the performance of the dense representation retrieval method is usually better,
we choose the dense representation retrieval method for our retrieval module.

Case Selection. In reality, the number of historical cases is huge and judges
usually only look up some cases as references. For the efficiency of the model,
we consider only selecting part of the cases instead of all the cases in the train-
ing dataset as historical cases to be retrieved. It should be noted that some
law articles stipulate the same charges as shown in Fig. 1. And considering the
unbalanced distribution of categories, we select the same number of cases for
each charge under each law article.

Case Retrieval. In order to realize the historical case retrieval module, we
first represent all historical cases (c1, c2, · · · , cn) as word embedding sequences
through Formula 4, and then represent them as n encoded vectors (ZB

c1 , · · · ,ZB
cn)

through Formula 5. Then we calculate the similarity scores of these n historical
cases and the fact vector representation ZB

f of the current case according to
cosine similarity. Finally, we select the Top-k most similar cases as the reference
cases by ranking the similarity scores, and then we calculate the mean vector of
these Top-k cases:

ZB
t = Mean(ZB

t1 , · · · ,ZB
tk

). (7)

The final mean vector ZB
t of these k historical cases is the output of the case

retrieval module.

4.4 Prediction and Optimization

Before predicting the judgment results for calculating the losses of three legal
judgment prediction subtasks, we concatenate the vector representation of the
current case and the historical cases as follows:

ZB = [ZB
f ;ZB

t ], (8)

and then we use a multi-layer perceptron layer to predict the results as follows:

yi = MLPi(ZB), (9)

where i represent the i-th subtask of legal judgment prediction.

Total Loss. The legal judgment prediction task includes three subtasks (relevant
law article prediction, charge prediction and term of penalty prediction). We use
the cross-entropy loss to calculate the loss of each subtask and train our model.
The total loss is calculated as follows:

LLJP = −
3∑

i=1

αi

|Nj |∑

j=1

yi,j log(ŷi,j), (10)

where |Nij | represent the number of labels of subtask i, and αi is the weight of
subtask i which is hyper parameter.
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Table 2. The statistics of the CAIL2018 dataset [22] used in this paper.

Dataset CAIL-small dataset CAIL-big dataset

Number of the Training Cases 106,750 1,648,600

Number of the Test Cases 25,652 200,449

Number of Law Articles Referenced 94 115

Number of Distinct Charges 109 129

Number of Distinct Term of Penalty 11 11

5 Experiments

5.1 Datasets and Preprocessing

Following existing works, we experiment with the Chinese AI and Law challenge
(CAIL2018) dataset [22]. The dataset consists of a large of legal cases published
by the Supreme People’s Court of China. There are two sub-datasets, CAIL-
small and CAIL-big, in this dataset. Every case has a fact description, together
with the judgment results given by human judges. We show the statistics of the
dataset in Table 2.

In addition, to be consistent with the baseline methods [23,26,30], we focus
on the simple legal cases and remove the legal cases with multiple article/charge
labels. We then remove the low-frequency law articles and charges which have
less than 100 cases. Finally, we remove the legal cases with missing or error law
article labels. We experiment with the left legal cases which are supposed to be
high-quality legal cases.

5.2 Baselines

In order to verify the effectiveness of our model, we select several representative
legal judgment prediction models as the baselines.

(1) FLA [12] first considers the important role of law articles in the actual legal
judgment process and uses the attention module to introduce the law article
information.

(2) Attribute-Att [8] considers distinguishing the confusing charges is hard
by introducing brief and concise law articles, and then designs ten common
artificial attributes for charges.

(3) TOPJUDGE [28] first takes into account the sequence dependency of the
three subtasks of LJP in the actual scenario. This model designs a topolog-
ical multi-task learning framework to use the dependency information.

(4) MPBFN-WCA [24] takes into account that the judge needs to check again
whether the relevant law articles, charges and term of penalty are suitable.

(5) LADAN [23] considers distinguishing the confusing law articles and design
a graph distillation operator to learn the differences among law articles.
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(6) Neurjudge [26] takes into account the circumstances in the actual scenario
and use the intermediate results to separate the fact description vector rep-
resentation. It is one of the state-of-the-art models.

(7) CR4LJP is our method.

Table 3. Results with GRU-based encoder on the CAIL-small dataset. The best results
are in bold.

Method Law Articles Charges Term of Penalty

Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

FLA 0.8853 0.8463 0.8067 0.8188 0.8732 0.8414 0.8134 0.8119 0.3566 0.3279 0.3176 0.3104

Attribute-Att 0.8910 0.8490 0.8357 0.8396 0.8896 0.8587 0.8343 0.8450 0.3686 0.3355 0.3288 0.3246

TOPJUDGE 0.8940 0.8578 0.8348 0.8430 0.8819 0.8513 0.8331 0.8379 0.3668 0.3296 0.3494 0.3275

MPBFN-WCA 0.8944 0.8600 0.8434 0.8478 0.8820 0.8537 0.8393 0.8425 0.3677 0.3417 0.3346 0.3357

LADAN 0.9016 0.8711 0.8556 0.8604 0.8871 0.8588 0.8451 0.8464 0.3718 0.3496 0.3488 0.3383

Neurjudge 0.9112 0.8853 0.8661 0.8720 0.8913 0.8663 0.8486 0.8512 0.4064 0.3780 0.3641 0.3656

CR4LJP 0.9137 0.8868 0.8785 0.8791 0.8932 0.8675 0.8570 0.8596 0.3802 0.3714 0.3398 0.3431

Table 4. Results with GRU-based encoder on the CAIL-big dataset. The best results
are in bold.

Method Law Articles Charges Term of Penalty

Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

FLA 0.9436 0.8471 0.7870 0.8091 0.9383 0.8390 0.7765 0.7993 0.5338 0.4223 0.4033 0.4097

Attribute-Att 0.9512 0.8787 0.7849 0.8137 0.9469 0.8759 0.7821 0.8148 0.5503 0.4552 0.3941 0.4126

TOPJUDGE 0.9502 0.8648 0.8021 0.8246 0.9461 0.8643 0.7943 0.8201 0.5574 0.4583 0.4040 0.4206

MPBFN-WCA 0.9507 0.8733 0.8054 0.8291 0.9457 0.8656 0.7957 0.8189 0.5583 0.4429 0.4110 0.4221

LADAN 0.9530 0.8719 0.8141 0.8345 0.9427 0.8607 0.8070 0.8263 0.5799 0.4833 0.4334 0.4413

Neurjudge 0.9568 0.8841 0.8307 0.8497 0.9505 0.8707 0.8197 0.8356 0.5805 0.4851 0.4611 0.4638

CR4LJP 0.9594 0.8850 0.8449 0.8576 0.9524 0.8800 0.8235 0.8436 0.5801 0.4864 0.4537 0.4560

5.3 Experiment Setting

For the GRU-based encoder, we first use the tool THULAC [18] to do word
segmentation for the fact description and pre-train the word embedding with
the dimension of 200 using word2vec [15]. The maximum text length of the fact
description is set to 400 for all the models. The hidden size is set to 150 for all
the models. The learning rate is set to 1e−3. For the Bert-based encoder, the
learning rate is set to 1e−5. Our model is trained on one V100 GPU (2 V100
GPUs for Bert-based encoder) for 20 epochs and the batch size is 128. We set
the hyperparameter αi to 1 for three subtasks and we use the AdamW optimizer
to train our model. For the case retrieval module, we select the same number of
20 cases for each charge under each law article and set the k of Top-k as 5. We
use Accuracy (Acc.), Macro Precision (MP), Macro Recall (MR), and Macro F1
(F1) to measure all models following the previous works.
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5.4 Overall Results

The overall results on the two datasets are shown in Table 3 and Table 4. Com-
pared with the best baseline model Neurjudge, our model CR4LJP increases F1
scores of the law article and charge prediction subtasks by 0.81% and 0.98%
respectively on the CAIL-small dataset and increases F1 scores of these two sub-
tasks by 0.93% and 0.96% respectively on the CAIL-big dataset. This proves the
effectiveness of our model. It should be noted that our model still underperforms
Neurjudge in the term of penalty prediction task on both datasets. Neurjudge
simulates the actual judicial process and makes fine-grained division of the case
description which is based on human knowledge and proved very effective for
the term of penalty prediction.

Table 5. Results with Bert-based encoder on CAIL-small dataset.

Method Law Articles Charges Term of Penalty

Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

Bert 0.9238 0.8987 0.8822 0.8859 0.9139 0.8897 0.8759 0.8792 0.4083 0.3837 0.3486 0.3425

Bert-Crime 0.9235 0.8948 0.8875 0.8872 0.9145 0.8898 0.8844 0.8838 0.4100 0.4013 0.3409 0.3441

Neurjudge+Bert 0.9314 0.9112 0.9041 0.9064 0.9230 0.9065 0.8994 0.9010 0.4126 0.3977 0.3594 0.3670

CR4LJP+Bert 0.9343 0.9140 0.9043 0.9070 0.9245 0.9067 0.9007 0.9022 0.4072 0.3857 0.3447 0.3501

Compared with the results of other baseline models, we further draw the
following conclusions:

(1) TOPJUDGE and MPBFN-WCA both make use of the relationship among
the three subtasks to improve the fact representation of a single case. Our
model is able to outperform these two models, showing that retrieving his-
torical cases help LJP get a better representation of the fact and finally
improves the performance of judgment prediction.

(2) The performance of FLA is worse than those of other neural network mod-
els because it directly introduces the Top-k law articles, but the law articles
are short and confusing, which may bring some noise. To solve the confus-
ing law article problem, Attribute-Att designs ten artificial attributes and
LADAN designs a graph distillation operator to improve the representation
of introduced law articles. The better results of our model CR4LJP show
that historical case information is more helpful to improve the performance
of the legal judgment prediction task than law article information.

5.5 Results with Bert Based Encoder

The pre-trained language models, such as Bert [2], have achieved the best results
on many NLP tasks. These models can be used as encoders in our framework,
which usually leads to better results. In order to show the flexibility of our model,
we compare our model based on the Bert encoder with other methods.

• Bert only uses the fact description as the input, and it uses the output of
“[CLS]” token as the representation of the case. We fine-tune it on the CAIL
dataset for the LJP subtasks.
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• Bert-Crime [30] pre-trains Bert on a larger legal dataset. The process of
fine-tuning is the same as Bert.

• Neurjudge+Bert is the Bert-based Neurjudge model, which replaces the
GRU encoder with Bert.

• CR4LJP+Bert is our Bert-based model.

Due to the limitation of computing resources and the huge amount of parameters
of Bert, we only experiment with the CAIL-small dataset. Specifically, on the
CAIL-small dataset, the time required for one epoch of training CR4LJP+Bert
is about 36 times that of GRU based model (41400 s vs 1140 s). Experimental
results are shown in Table 5. We find that CR4LJP+Bert achieves better results
than the original GRU-based encoder. This shows the flexibility and effectiveness
of CR4LJP.

Fig. 3. Ablation study on the CAIL-small dataset. We remove the Top-k historical
cases’ mean vector from each subtask to study the impact of the case retrieval module.

Compared with other Bert-based baseline models, we find that:

(1) Our model (CR4LJP+Bert) is better than Bert and Bert-Crime, indicating
that additional case information can indeed improve the performance of the
legal judgment prediction task.

(2) Our model is superior to Neurjudge+Bert, which proves once again the
effectiveness of our case retrieval framework.

5.6 Ablation Study

We perform an ablation study to verify the effectiveness of the case retrieval
module for the three subtasks. Specifically, we remove the Top-k historical cases’
mean vector from each subtask to study the impact of the case retrieval module.
The corresponding models are expressed as w/o article, w/o charge, and w/o
term. The ablation study results on the CAIL-small dataset are shown in Fig. 3.
We find:

(1) Removing the case retrieval module will degrade the performance of the
three subtasks. This shows that the case retrieval module is effective.
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(2) Removing the case retrieval module has the least impact on the term of
penalty prediction subtask, which is in line with our expectations. In reality,
the term of penalty prediction needs to be discussed and determined in more
detail.

(3) In general, removing the case retrieval module from the law article prediction
subtask has the most impact on the legal judgment prediction task. The
underlying reason is that the law article prediction subtask provides the
basis for the other two tasks in reality, so it plays the most important role
in the LJP task.

Fig. 4. Case study on confusing charges.

5.7 Confusing Case Study

As shown in Fig. 1, Article #114 and Article #115 stipulate some similar charges.
It is difficult to distinguish these cases with similar charge labels for neural
network models. To illustrate the impact of the models in identifying easily
confusing cases, we choose the cases related to Article #114 and Article #115 in
the CAIL-small test set as a tiny dataset and test the baseline model Neurjudge
and our model CR4LJP on the dataset.

From the experimental results in Fig. 4, it can be seen that our model
CR4LJP has better performance on the law article and charge prediction sub-
tasks than Neurjudge, which shows that the case retrieval framework we pro-
posed can effectively improve the ability to distinguish confusing cases.

6 Conclusion

In this paper, we first consider that judges usually look up some typical histori-
cal cases before making a judgment. We design a historical case retrieval model
framework to simulate this scenario. For the current case, we retrieve the Top-k
similar historical cases and get vector representation of these cases using the
basic encoder, then we concatenate the mean vector of them to the fact descrip-
tion vector to predict the judgment results. Experimental results show that our
method is effective.
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Abstract. Self-supervised learning has been widely used to learn effec-
tive sentence representations. Previous evaluation of sentence representa-
tions mainly focuses on the limited combination of tasks and paradigms
while failing to evaluate their effectiveness in a wider range of applica-
tion scenarios. Such divergences prevent us from understanding the lim-
itations of current sentence representations, as well as the connections
between learning approaches and downstream applications. In this paper,
we propose SentBench, a new comprehensive benchmark to evaluate sen-
tence representations. SentBench covers 12 kinds of tasks and evaluates
sentence representations with three types of different downstream appli-
cation paradigms. Based on SentBench, we re-evaluate several frequently
used self-supervised sentence representation learning approaches. Exper-
iments show that SentBench can effectively evaluate sentence represen-
tations from multiple perspectives, and the performance on SentBench
leads to some novel findings which enlighten future researches.

Keywords: Self-supervised learning · Sentence Representation ·
Benchmark

1 Introduction

Self-supervised representation learning is considered an important reason for
breakthroughs in NLP [12,22,28,29]. And learning effective sentence represen-
tations has long been a fundamental challenge. [7,9,18]. In recent years, vari-
ous self-supervised sentence representation learning approaches leverage different
self-constrained signals, e.g., sentence pairs in the same narratives [12], sentence
order [19], or sentence permutation [20], to learn representations by training
models to distinguish positive instances from negatives.
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Even though current self-supervised sentence representation approaches have
reached significant progress on some datasets like Semantic Textual Similar-
ity (STS) [14,15], benchmarks for evaluation lag far behind the development of
methods [34]. Currently, sentence representations are evaluated in limited tasks
and specific paradigms. For example, the most commonly used SentEval bench-
mark [8] mainly focuses on single sentence classification and semantic similarity
tasks. Unfortunately, prior literature shows that performance on STS cannot
reflect the effectiveness of sentence representations on a wider range of tasks
[30,34,41]. And available evaluation toolkits assess the same downstream task
with a singular paradigm, limiting our perception of methods in different applica-
tion scenarios. Moreover, current self-supervised sentence representation learning
approaches are coupled with multiple factors, including diverse contrastive sig-
nals, training losses, and model architectures. Consequently, evaluating whether,
where, and how a learning method will benefit the downstream tasks is difficult.

Fig. 1. The framework of the paper (SentBench and decoupling analysis scheme).

In this paper, we propose SentBench, a new benchmark to comprehensively
evaluate sentence representations with various downstream tasks and evalua-
tion paradigms. As shown in Fig. 1, SentBench contains 12 kinds of NLP tasks,
including sentiment classification, question answering, story cloze, etc., and three
evaluation paradigms, including single sentence classification, sentence pair clas-
sification and sentence pair contrasting [42]. The classification paradigm trains
a simple additional classifier to assess information within representations for
single sentence tasks or identify the connection between two candidate represen-
tations for pair-wise tasks. Besides, contrasting paradigm is similar to common
retrieval or ranking scenario. Finally, SentBench constructs 18 datasets, which
cover diverse tasks and common applications of sentence representations.

Based on SentBench, we re-evaluate several widely used self-supervised sen-
tence representation learning approaches. We decouple previous approaches from
two perspectives to identify critical factors: contrasting knowledge applied to
construct positive instances and training losses used to optimize models. Specif-
ically, we concentrate on three contrasting knowledge, including next sentence
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prediction [12], self-contrasting [14,38] and data augmentation [13,40], as well as
two widespread training losses, including contrastive loss and classification loss.
By thoroughly comparing different approaches on SentBench, we find that the
advantages of the state-of-the-art methods can not be exhibited consistently to a
broader range of downstream tasks and evaluation paradigms. Furthermore, the
applied training loss leads to more significant impacts than contrasting knowl-
edge. These findings shed some light on future research on sentence representa-
tion learning.

2 Benchmark Construction

2.1 Tasks

SentBench covers 12 downstream tasks for evaluating sentence representations,
divided into single sentence and sentence pair tasks. In the following, we will
briefly describe tasks in SentBench.

Single sentence tasks aim to classify sentence representations into corresponding
categories. Because the previous SentEval 1 benchmark has covered extensive
single sentence classification tasks, SentBench inherits all of them, including
sentiment analysis (MR, SST) [27,31], Opinion Polarity (MPQA, SUBJ) [26,36],
Question type (TREC) [33], product reviews (CR) [16].

Sentence pair tasks aim to identify sentence pairs with specific connections.
We investigate six tasks covering various fields of downstream applications of
NLP (Table 1):

Table 1. The statistics of sentence pair tasks.

Dataset Classification Contrasting

Train size Valid Size Test Size

SWAG 56,131 18,711 18,711 20,006

DBpedia 89,965 27,988 27,989 69,971

GoEmotions 54,535 18,178 18,179 4,590

ROCStories 2,513 - 629 1,571

StyleTransfer 24,986 8,328 8,330 2,500

CommonsenseQA 13,154 4,384 4,386 1,221

– DBpedia [40], which identifies whether a pair of sentences come from the
same category;

– Style Transfer (ST) [17], which distinguishes whether modern English and
Shakespearean English expresses same content;

1 https://github.com/facebookresearch/SentEval.

https://github.com/facebookresearch/SentEval
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– GoEmotions (GoEmo) [11], which recognizes whether a sentence pair
expresses similar fine-grained emotion;

– ROCStories (ROC) [23], which predicts whether a given sentence is the
proper ending to a four-sentence story;

– CommonsenseQA (CQA) [32], which determines if candidate answers
match a commonsense question;

– SWAG [39], which predicts correct answer for a question about grounded
situations.

2.2 Evaluation Paradigm

We design three evaluation paradigms in SentBench:

– single sentence classification directly leverage sentence representations as
features with a simple classifier to assess how much desirable information is
contained in representations;

– sentence pair classification trains a simple classifier that determines
whether there is a specific connection between candidate sentences, that is
mapping a pair of sentence representation (x1,x2) into corresponding label;

– sentence pair contrasting distinguishes a sentence from candidates that
are more likely to share a specific relationship with the given sentence, i.e.,
given a target sentence x and two candidates (x+, x−), sentence pair con-
trasting selects more suitable candidate based on the similarity between x,
x+, and x−.

Note that the classification paradigm requires data to train additional classifier
parameters, while sentence pair contrasting depends on the similarity between
sentence pairs by directly calculating certain distance metrics (e.g., cosine simi-
larity) without additional training instances. Therefore, we provide training and
development sets for classification tasks.

3 Experiment Setup

Based on SentBench, we re-evaluate several most frequently used self-supervised
sentence representation methods. Since contrasting knowledge and training
losses are usually coupled, it is challenging to directly identify critical factors for
successful sentence representations from previous works. To this end, this paper
explores different combinations of contrasting knowledge and training losses to
investigate the effects of distinct factors.

Contrasting Knowledge. We exploit three popular contrasting knowledge sources:

– narrative contrasting, which predicts whether a hypothesis sentence
belongs to the same narrative with a premise, is also known as next sentence
prediction (NSP);
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– self-contrasting, which disturbs sentence representations at feature-level,
tries to distinguish representations stemming from the same instance. SimCSE
[14] is one of the most popular methods, which creates contrasting pairs via
random dropout from neural networks;

– data augmentation, which modifies the original instances via some rule-
based modification, and tries to distinguish original instances from others.

In this paper, we apply NSP [12], two-times Dropout (Dropout) [14], and syn-
onym substitution (DA) [37] as each knowledge sources, respectively.

Training Loss. Contrastive loss and classification loss are the most popular loss
functions in self-supervised sentence representation learning. Given an instance
x, contrastive loss (CTR) [25] aims to distinguish positive instance represen-
tation x+ from a batch of negatives:

LCTR(θ) = − log
esim(x,x+)/τ

∑
xi∈batch esim(x,xi)/τ

where τ is a temperature hyperparameter and sim is a similarity function (e.g.,
cosine similarity).

classification loss (CLS) classifies sentence pairs representation into corre-
sponding semantic labels:

LCLS(θ) = − log P (y = 1
∣
∣x ∗ x+)

−
∑

x−∈batch

log P (y = 0
∣
∣x ∗ x−)

where ∗ is the concatenation of representations.

Implementation Details. We implement the above-mentioned approaches based
on BERTbase (uncased) [19] and RoBERTabase [21]. To compare the benefit
of different approaches, we also implement two token-aggregation approaches
without further learning as baselines, which regard average representations of
all tokens or the [CLS]2 representation of the last layer of models as sentence
representation.

In this paper, we use BookCorpus [43] to construct the next sentence samples.
[12] concatenate two sentences with [SEP] and feed the [CLS] representation into
the classifier. A slight difference from the above approach is that we first obtain
the [CLS] representations of two sentences separately and then concatenate them
to learn the next sentence prediction. For self-supervised sentence representation
learning with different combinations of loss functions and contrasting knowledge,
we train models for one epoch on 106 sentences from BookCorpus and set batch
size to 64. The temperature τ of contrastive loss is set to 0.05, and max sequence
length is set to 32. Cosine similarity is the default distance metric and similarity
function. All experiments are run in NVIDIA TITAN RTX GPUs. Following
2 We discard the MLP layer over [CLS] for evaluation.
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[14,37], the best checkpoint on the development set of STS is saved for evaluation.
We use NLPAUG3 for synonym substitution and take other sentences in the same
mini-batch as negatives.

4 Empirical Findings

Table 2, 3 and 4 show the experiment results on three evaluation paradigms in
SentBench, respectively. From these empirical results, we obtain the following
findings.

Table 2. Accuracies on single sentence classification tasks and corner markers represent
the performance rank. CTR: contrastive loss; CLS: classification loss.

Model MR CR MPQA SUBJ SST TREC AVG

BERT-AVG 82.241 87.391 88.712 95.453 84.624 91.801 88.372

BERT-[CLS] 81.832 87.391 88.216 95.482 86.911 91.332 88.531

Dropout (CTR) 80.434 85.095 88.434 94.646 84.663 90.673 87.324

Dropout (CLS) 67.738 70.098 85.507 87.938 75.368 79.338 77.668

NSP (CTR) 81.133 87.183 88.345 95.531 85.052 89.675 87.823

NSP (CLS) 78.926 85.594 88.543 95.104 83.426 89.874 86.916

DA (CTR) 80.165 84.646 89.331 94.725 83.985 89.675 87.085

DA (CLS) 73.897 77.257 80.108 90.747 77.467 84.737 80.707

RoBERTa-AVG 83.433 88.582 86.755 95.222 87.263 91.931 88.802

RoBERTa-[CLS] 81.274 86.015 84.186 94.154 86.664 83.006 85.886

Dropout (CTR) 80.185 85.436 87.552 93.226 85.355 87.805 86.595

Dropout (CLS) 60.587 63.848 77.827 81.107 70.457 66.607 70.077

NSP (CTR) 85.901 90.601 88.961 95.391 91.121 91.332 90.551

NSP (CLS) 83.622 88.513 87.513 94.723 87.752 89.673 88.633

DA (CTR) 80.036 86.784 87.124 93.235 84.476 89.134 86.794

DA (CLS) 56.028 63.977 74.108 77.598 61.258 65.608 66.428

Finding 1. Training loss is a more critical factor than contrasting knowl-
edge. We find that the selection of training loss has more significant impacts
than the selection of contrasting knowledge, and contrastive loss significantly
outperforms classification loss across all contrasting knowledge, models, and
evaluation paradigms. Note that previously NSP is commonly coupled with clas-
sification loss and therefore achieves little performance superiority [21]. However,

3 https://github.com/makcedward/nlpaug.

https://github.com/makcedward/nlpaug
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Fig. 2. Alignment and uniformity plot of models based on BERT. For both alignment
and uniformity, lower numbers are better.

from our experiments, NSP trained with contrastive loss can bring significant
performance improvements. To further investigate how contrasting knowledge
and training loss influence sentence representations, we calculate the alignment
and uniformity, two quantified quality evaluation metrics for sentence represen-
tations [35]. As shown in Fig. 2, we can see that different contrasting informa-
tion is essentially a trade-off between alignment and uniformity. And contrastive
loss outperforms classification loss with better alignment and uniformity, which
reveals the underlying reason for the superior performances.

Finding 2. Narrative contrasting provides more useful information for a
wide range of single sentence and sentence pair tasks. Experiments show
that the NSP with contrastive loss achieves satisfactory performance in almost all
settings. Besides, we can see that performance improvement on RoBERTa is more
significant than that of BERT. This may be because the [CLS] representation
of BERT has been pretrained with NSP signals and therefore already contain
such kind of knowledge. Furthermore, we find that self-contrasting strategies,
which are reported to achieve superior performance on STS benchmarks [2–6],
do not perform well in SentBench. We believe that this is because, as previous
findings have shown [34], STS tasks have a weak correlation with downstream
tasks. Therefore, evaluations on STS benchmarks are not universal, revealing
the necessity of building SentBench.

Finding 3. Self-supervised contrastive sentence representation learning
leads to more significant improvements on sentence pair contrasting
tasks. We can see that for BERT-AVG and RoBERTa-AVG, there are 6.2%
and 12% of average performance improvements of all methods with contrastive
loss, which is significantly higher than that on the other two tasks. We spec-
ulate that contrastive loss is more appropriate for similarity-based evaluation,
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Table 3. Accuracies on sentence pair classification tasks and corner markers represent
the performance rank. CTR: contrastive loss; CLS: classification loss.

Model ST DBpedia GoEmo ROC CQA SWAG AVG

BERT-AVG 86.031 91.356 56.645 63.122 58.383 65.812 70.222

BERT-[CLS] 85.763 91.575 56.516 60.154 54.306 64.193 68.756

Dropout (CTR) 84.196 92.294 57.333 56.606 59.692 62.525 68.775

Dropout (CLS) 79.198 79.838 52.188 53.588 50.977 52.948 61.458

NSP (CTR) 85.932 96.071 59.061 64.071 60.111 66.051 71.881

NSP (CLS) 84.405 95.672 57.184 59.415 55.885 63.414 69.334

DA (CTR) 84.924 93.343 57.782 61.053 57.834 61.086 69.333

DA (CLS) 80.427 83.607 53.067 54.007 50.828 54.837 62.797

RoBERTa-AVG 83.413 89.176 54.905 59.464 54.435 65.911 67.884

RoBERTa-[CLS] 81.605 89.785 53.766 55.126 50.477 64.222 65.836

Dropoput (CTR) 82.094 92.744 55.384 55.755 56.722 60.465 67.195

Dropout (CLS) 75.167 69.627 50.727 53.158 49.938 51.767 58.397

NSP (CTR) 84.831 96.491 58.951 66.931 60.411 63.853 71.911

NSP (CLS) 83.462 95.742 56.703 63.012 55.824 61.544 69.382

DA (CTR) 81.476 94.693 57.882 59.623 55.833 59.156 68.113

DA (CLS) 74.128 66.978 50.168 53.217 50.526 51.308 57.718

which substantially improves the consistency between sentence representation
distribution and downstream applications. Furthermore, single sentence and sen-
tence pair classification tasks introduce an additional trainable classifier, which
may weaken the effectiveness of self-supervised pretraining. Consequently, self-
supervised contrastive sentence representation is more suitable for similarity-
based scenarios without additional supervised signals, which is also consistent
with recent advances of these methods on previous STS benchmarks [14].

5 Related Works

SentEval vs SentBench SentEval and SentBench are both benchmarks that eval-
uate the quality of sentence representations in natural language processing tasks.
SentEval consists of a set of 17 downstream tasks and 10 probe tasks, including
sentiment analysis, natural language inference, paraphrase detection, and text
similarity. However, the tasks and methods in SentEval have fallen behind in
recent years due to the rapid development of models and methods.

SentBench builds on SentEval, expanding the sentence-pair tasks to include
six new datasets such as commonsense QA, story generation, and fine-grained
sentiment analysis. Previous studies have shown that the performance of text
semantic similarity tasks cannot reflect the effectiveness of sentence representa-
tions in more downstream tasks [30,34,41]. Unlike SentEval, SentBench replaces
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Table 4. Accuracies on sentence pair contrasting tasks and corner markers represent
the performance rank.

Model ST DBpedia GoEmo ROC CQA SWAG AVG

BERT-AVG 63.888 85.895 57.024 58.754 52.995 56.505 62.505

BERT-[CLS] 65.526 74.726 53.096 59.903 52.096 54.196 59.926

Dropout (CTR) 73.162 91.434 57.562 60.532 67.491 62.012 68.702

Dropout (CLS) 73.162 66.537 52.967 52.458 51.687 51.307 58.017

NSP (CTR) 71.844 94.681 57.821 62.701 65.853 63.241 69.351

NSP (CLS) 64.727 94.622 56.275 56.026 61.514 57.484 65.104

DA (CTR) 75.521 91.763 57.473 57.735 66.832 59.643 68.163

DA (CLS) 71.485 64.028 52.148 52.517 49.808 50.868 56.808

RoBERTa-AVG 61.208 67.916 50.118 52.138 55.616 51.326 56.387

RoBERTa-[CLS] 73.963 86.205 51.905 58.825 56.355 60.323 64.595

Dropout (CTR) 75.681 90.764 55.883 60.093 64.862 61.982 68.212

Dropout (CLS) 70.606 63.387 51.356 56.726 52.257 49.947 57.376

NSP (CTR) 69.647 96.781 58.261 64.741 65.441 62.961 69.641

NSP (CLS) 70.804 95.172 55.534 63.912 61.434 59.774 67.773

DA (CTR) 74.762 94.173 57.712 59.014 61.923 57.005 67.434

DA (CLS) 70.725 59.488 50.137 52.327 46.858 49.758 54.878

text similarity tasks with contrasting tasks, which can more objectively reflect
the actual application performance of sentence representations. Additionally,
SentBench adds different evaluation paradigms to enrich the evaluation forms of
the data, which can provide different understanding perspectives for the same
downstream task.

GLUE vs SentBench The General Language Understanding Evaluation (GLUE)
benchmark is a collection of nine natural language processing tasks designed to
assess the performance of language models in various natural language under-
standing tasks, including sentiment analysis, question answering, and natural
language inference. Unlike SentBench, which aims to evaluate sentence represen-
tation models and methods, GLUE is designed to evaluate and analyze natural
language understanding systems. Although both benchmarks contain sentence
representation-related applications, the differences in their design goals result in
differences in datasets and usage methods. While SentBench focuses on the gen-
eralization and universality of sentence representations, GLUE tests the overall
ability of the model. Additionally, the datasets used in GLUE and SentBench
are complementary, as SentBench does not currently collect data relevant to nat-
ural language inference tasks. Thus, SentBench could look to GLUE’s relevant
content for future expansion.



458 X. Liu et al.

Probing Researchers have not only focused on building more efficient evalua-
tion benchmarks but also used various probing tasks to uncover the underlying
principles of sentence representation, such as identifying syntactic and seman-
tic information, as well as subtle perturbations. These evaluation tasks offer
insights into which factors are challenging for sentence representation and which
can better distinguish different models, driving the development of sentence rep-
resentation. In their attempt to analyze sentence representation, [1] designed
three evaluation tasks that focused only on surface information, such as sen-
tence length, sentence content, and word order, and experimented with popular
methods. However, these evaluation tasks failed to reflect the syntactic, seman-
tic, and other knowledge of sentence representation. To address this limitation,
[10] designed and collected 10 probing tasks that were divided into categories of
surface, syntactic, and semantic information, revealing differences and connec-
tions between different methods. Furthermore, [42] proposed a triplet evaluation
framework that generated triplet sentences to explore how syntactic structure
or semantic changes in a given sentence affected inter-sentence similarity. This
approach not only evaluated the performance of different sentence representation
methods in capturing different semantic attributes but also avoided bias from
human annotation data, providing a better understanding of these methods. Our
work is similar to the previously mentioned research in that we aim to inves-
tigate the underlying mechanisms of sentence representation learning through
thorough more comprehensive evaluation and decoupling analysis.

6 Conclusion

In this paper, we propose a new universal sentence evaluation benchmark Sent-
Bench, which introduces more downstream tasks and evaluation paradigms. Fur-
thermore, we decouple and analyze the effects of contrasting knowledge and
training losses on sentence representations. Empirical findings show that training
losses play a more critical role in self-supervised sentence representation learn-
ing and help us better understand and design sentence representation learning
algorithms.

7 Limitations

Currently, SentBench mainly covers English datasets, and therefore can not
evaluate whether self-supervised representation learning methods have some
language-specific properties. Besides, due to the limitation of time, we mainly
experiment with BERT and RoBERTa without evaluating more self-supervised
sentence representations methods, such as Sentence-T5 [24]. Finally, we mainly
focus on the performance of models on SentBench without discussing more
details of the training process, which is also an important aspect of self-
supervised sentence representations.



SentBench: Comprehensive Evaluation of Self-Supervised 459

Acknowledgements. We sincerely thank the reviewers for their insightful comments
and valuable suggestions. This research work is supported by the National Natural
Science Foundation of China under Grants no. U1936207, 62122077 and 62106251.

References

1. Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., Goldberg, Y.: Fine-grained anal-
ysis of sentence embeddings using auxiliary prediction tasks. arXiv preprint
arXiv:1608.04207 (2016)

2. Agirre, E., et al.: SemEval-2015 task 2: Semantic textual similarity, English, Span-
ish and pilot on interpretability. In: Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015). pp. 252–263. Association for Compu-
tational Linguistics, Denver, Colorado (2015). https://doi.org/10.18653/v1/S15-
2045

3. Agirre, E., et al.: SemEval-2014 task 10: multilingual semantic textual similar-
ity. In: Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014). pp. 81–91. Association for Computational Linguistics, Dublin,
Ireland (2014). https://doi.org/10.3115/v1/S14-2010

4. Agirre, E., et al.: SemEval-2016 task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In: Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016). pp. 497–511. Association for Computational
Linguistics, San Diego, California (2016). https://doi.org/10.18653/v1/S16-1081

5. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A.: SemEval-2012 task 6: a pilot on
semantic textual similarity. In: SEM 2012: The First Joint Conference on Lexical
and Computational Semantics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (2012). pp. 385–393. Association for Computational
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