Chapter 3 ®)
Estimation of a Normal Mean Vector Geda
Under Unknown Scale

3.1 Equivariance

In this chapter, we consider estimation of the mean of a multivariate normal distri-
bution when the scale is unknown. Let

X ~N,®,1/n) and nS~ x,
where 6 and 5 are both unknown. For estimation of 6, the loss function is scaled
quadratic loss L(8; 6, n) = n||8(x, s) — 6%
The first three sections cover issues of Bayesianity, admissibility and minimaxity
among estimators which are both orthogonally and scale equivariant. The remaining

sections consider these issues among all estimators.
Consider a group of transformations,

X > yI'X, 0=y, S—y2S, n—n/y% (3.1)

where I' € O(p), the group of p x p orthogonal matrices, and y € R.. Equivariant
estimators for this group (3.1) satisty

O(yTx, y2s) = yTO(x, s). (3.2)

The following result gives the form of such equivariant estimators.

Theorem 3.1 Equivariant estimators for the group (3.1) are of the form
0y = {1 =y (IXI*/S)} X, where ¥ : Ry — R.
Proof Let the orthogonal matrix I' € O(p) satisfy
F=@/lxllz2 ... zp)" and Tx = (x]|0 ... 0)" = [x]le, (3.3)
where unit vectors 2, ..., z, € R” satisfy
zjz;=0fori # j, zix=0fori =2,...,p
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ande; :=(1,0,..., 0)" € R”. Further let y = 1/./s. Then, by (3.2), the equivariant
estimator 6 (x, s) satisfies

. 1~ .
O(x,s) = ;FTe(ny, y2s) = sTTO(llxll/+/s}er, 1)

_ Oidlxll/v5ler, D AN |
=T s Y gel(ﬁelvl)% (34)

where 6; is the ith component of 6.
For the orthogonal matrix I'yI" where I'j = diag(1, —1, 1, ..., 1), we have

D= @/llxll —z22z3 ... 2,)" and I'Tx = |lx]le;.

Hence the estimator (3.4) should be also expressed by

n 1 N
6(x,s) = ;(ﬁF)Te(y(Flr)x, y2s)

_ él({||x||/ﬁ}el, 1) ~ /1l p Il |
= lxll//5 X — «/392<ﬁ61, 1)22 + ﬁ;@,(Wel, l)z,. (3.5)

By (3.4) and (3.5), Gx({|Ix|l/+/s}er, 1) = 0. Similarly, & ({|lx]|/+/s}er, 1) = O for
i =3,..., p. Therefore, in (3.4), we have

_ Odlxl/sder, D
Ixl/ s

where the coefficient of x is a function of | x||?/s. This completes the proof. O

é(x,s)

Let f(t) = {(2w)P/*T"(n/2)2"/?}~" exp(—t/2). Then the joint probability density of
X and S is given by
PP 2L f(nfllx — 017 + s))

nP/? ( nIIx—GIIZ) n
= ex —_ X
(2m)p/? 2 I(n/2)21/2

n/2sn/271

exp(—ns/2).
Also, the generalized Bayes estimator of 6 with respect to a prior of the form

06, m;v, ) =n"n"*q(@lIo1) (3.6)
for v € Ris given by

S on@rmRR f(p{llx — 011> + s)g (nll611*)dédn
S n@rmzeEl £ (pfflx — 0112 + sHg (n1011>)dédn -

bg0(x,5) = (3.7)
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The value of the estimator éq,v(x, s) evaluated at x = yI'x and s = yzs where I" €
O(p), the group of p x p orthogonal matrices, and y € R, is given by

040 (yTx, y2s)

_ JLonCrm R faillly D — 61 + yishale1dedn o o
Jf nermz L f (nfllyTx — 6112 + y25})g (n1911*)dodn

By the change of variables # = yI'6, and n, = y?#, this may be rewritten as

[ 0037 £ (llx — 6,11 + sDq (116,12 d6.dn,
[ pEPEmREREL £t — 6,07 + sHg (116,112 d6,dn,
= Vréq,v(xs ). (3.9

6,0(yTx, y%s) = yT

By (3.2), §,.,(x, 5) is equivariant.
In the next section, we show that the case v = —1 is special within this class.

3.2 Proper Bayes Equivariant Estimators

In this section we first show that the risk of an estimator that is equivariant under the
group (3.1), depends only on the one dimensional parameter A = 1||6]|> € R,.. We
then consider Bayes estimators among the class of equivariant estimators relative to
proper priors on A. We show that such estimators are admissible among equivariant
estimators and are also generalized Bayes estimators relative to Q (6, n; v, g) with
v = —1 given by (3.6).

Theorem 3.2 The risk function of an equivariant estimator for the group (3.1),
Oy = {1 —v(IXI*/9} X
depends only on . = n|0|* € R,.

Proof As in (3.3), let the orthogonal matrix I be of the form
'"=@/I10llz2 ... z,)" and TTO = (|60 ... 0)". (3.10)

By the change of variables, y = 7'/?T""x and v = 7s, we have
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R(0y;0,n)

— / / n 1 = vl 2/))x — 0] "7 £ (il — 6112 + s)deds
- / J{1 = w Iy I2/oITy — n'26 | v F(ITy — 7'20)1% + v)dydv

- f {1 = w Ay IP /0y — T0'20] > v £({lly — T'n"/?01 + v)dydv

p
= //|({1 =Yy = n'2181)" + (1= vy IP/wP Y 32

i=2
,
V2 (= ' 2100) + D7 97 + v)dydu,
i=2
where the last equality follows from (3.10). This completes the proof. (]
By Theorem 3.2, the risk function may be expressed as
R(@y: 0, m) =Ry 01 (3.11)

Now assume that A = 1|6 |> € R, has the prior density 7 (1), which, in this section,
we assume to be proper, that is, fooo 7 (A)dA = 1. For an equivariant estimator 6y,
we define the Bayes equivariant risk as

i@y ) = /Ooli(éw; A7 (W)dA. (3.12)
0

In this book, the estimator 92,, which minimizes f(éw ; ), is called a (relative to 7 (1)).

In the following, let

() = F(p/z))\l P27 (%) (3.13)

so that 7 (||4|?) is a proper probability density on R?, that is,
/ A (lll*)dp = 1. (3.14)
Rr

Let the Bayes equivariant estimator, which minimizes f(éw; 1), be denoted by 0.
Theorem 3.3 below shows that 6, is equivalent to the generalized Bayes estimator of
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6 with respect to the joint prior density n~'n”/?>7(1/6||?), and that it is admissible
among equivariant estimators.

Theorem 3.3 (Maruyama and Strawderman 2020) Assume that 7 (A) is proper.

1. The Bayes equivariant risk, 1’(92/,; 1) given by (3.12) is

"M, (z, ) )}

2h ) — 2 2y _
r(Gw,ﬂ)—prl//(llzll et —2(1 - =mes

x ||zII* My (z, w)dz + p,

where

M(z,7) = f / n®P2 £ ({llz — 011> + 1D (nll@]1*)dedn,

(3.15)
My(z, ) = / / Onr2 f(nillz = 017 + 1D (|0]*)dodn.
2. Given 7 ()), the minimizer of f(é,/,; 7T) with respect to r is
N ' My(z, )
,,(||z||2) =argmin , 1(0y;7) =1 — —"—"——, (3.16)
v T 12IPM 2, )
and the Bayes risk difference under 7w ()) is
P(fy; 7) — F(6r; 7)
2
= / {dizl®) = v Uiz} 121> Mi 2, 7)dz. (3.17)
Rr

3. The Bayes equivariant estimator
Or = {1 =y (IXI7/5)} X

with Y, by (3.16), is equivalent to the generalized Bayes estimator of 6 with
respect to the joint prior density n~'n?/> ()10 |%) where 7 (X) is given by (3.13).

4. The Bayes equivariant estimator 0, is admissible within the class of estimators
equivariant under the group (3.1).
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Proof (Parts 1 and 2) The Bayes equivariant risk given by (3.12) is

#0,: 7) :/ Ry NP ()
RP

= [ R@y; n0IHnP 2z (n)|6%)d6 = / R@y; 6, mn? >z (n)1611*)d6,
Rr RP

where the third equality follows from (3.11). Further, expanding terms, f(év, ; T) may
be expressed as

f(@y; ) = fR E [nIX 12w (IX12/S)] n? 2= (1|6 )1*)do
—2/ E[nIX12 (IX12/S)] "7 (llo[1*)de
Re (3.18)
+2 / E[nv(I1X17/$)X"0] " (n|0]1*)do
R
+/R E[nllX — 01*] n”*x (nl|@]*)d6.

Note that, by the propriety of the prior given by (3.14), the third term is equal to p,
that is,

AE[nllX—9||2]n”/271(n||9||2)d9=/lé pr(Ipul®du = p. (3.19)

The first and second terms of (3.18) with v/ (||x||>/s) for j = 2, 1 respectively,
may be rewritten as

/R E [nlIX 1Py (1X17/8)] n”*7 (nl|@11*)do
= f / / nllx 1297 (Ix11?/s)n@P 02" 271 £ (i llx — 011> + sHh (|6 11*)dodxds
= / / f nsllzl*yd (2l n@P s PRl f (|| sz — 017 + s})

x t()|0)1*)d0dzds (z = x//s, J = s"/?)

= / / / nsllzIPy (2l @PH02s@rm2t f(snfllz — 6,01 + 1})
x 7 (ns]|0.]1*)d0.dzds (0, = 0/+/s, T = ")

- / / 21297 l2IPn 2 £ {1z — 6,12 + 1)

X 7 (1.16,1%)d6,dzdn. (. =ns, J = 1/n)
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2.0 2
= [z e (3:20)
RP
where z = x/./s, J is the Jacobian, and

M (z, ) = // NP2 fnfllz = 017 + 1) (ll611*)dodn.

Similarly, the third term of (3.18) may be rewritten as

fR E[nw(nxnz/S)XTe]n”/zn(nnenz)de= R}w(||z||2)zTMz(z,n)dz, (3.21)

where
My(z, ) = f/ Onrt2 f(nfllz — 011 + 1) (nl|6[1*)dodn.

Hence, by (3.19), (3.20) and (3.21), we have

i@y ) = | (¥ UzIPHzI*Mi(z, )
R;
=29 (IlzIHzI*Mi (z, ) — 2" Ma(z, 7)}} dz + p. (3.22)

Then the Bayes equivariant solution, or minimizer of f(éw; T), 18

A Z'M(z, )
U (z]1?) = argmin , T(0y;7) =1 — ————F— (3.23)
i v IzI2Mi (z, )
and hence the corresponding Bayes equivariant estimator is
T
n M (z,
§, — Mhm) (3.24)

= Z—x’
lzl*Mi(z, )

where z = x/./s. Parts 1 and 2 follow from (3.22), (3.23) and (3.24).

[Part 3] Note that for I" € O(p), the group of p x p orthogonal matrices,
M,(T'z, 1) = I'M;(z, 7). Hence, as in (3.8) and (3.9), M»(z, q) is proportional to z
and the length of M, (z, q) is 2" M>(z, q)/||z|l, which implies that

IM(z,q) z

My (z, ) = .
27 Izl Izl

(3.25)

By (3.25),
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5 _ "My (z, ) x= 5 722" M>(z, q) _ SMz(z,n)

T lzlIPMy (2, ) IzII2M1 (2, q) Mi(z, )
_ sff9ﬁ(2p+")/2f(fl{||x/x/_— 611> + 1) (n]611*)dodn
[ n@rtm2 f(n{llx//s — 611> + 1D (n]|6]>)dodn

By the change of variables 6, = /s and n, = n/s, we have

o SO Ol — 0. + )7 (o 6. 17)d6.
T )
I nSP2 f(llx = 6,02 + sH (01164 112)d6,dn.

which is the generalized Bayes estimator of § with respect to n~'n?/?z(n||0]), as
in (3.7).

[Part 4] Since the quadratic loss function is strictly convex, the Bayes solution is
unique, and hence Part 4 follows. O

As in (3.9), the generalized Bayes estimator of 8 with respect to Q(@, n; v, ) for
any v € R, given by (3.6), is equivariant under the group (3.1). Part 3 of Theorem
3.3, however, applies only to the special case of

v=—1. (3.26)
This is the main reason that we focus on the case of v = —1 in this book. It should be

noted, however, that Theorem 3.3 implies neither admissibility or inadmissibility of
generalized Bayes estimators within the class of equivariant estimators, if v # —1.

3.3 Admissible Bayes Equivariant Estimators Through
the Blyth Method

Even if 7 (1) on R, (and hence 7 (||£]|?) on RP) is improper, that is
o0
/ m(lpel?dp =/ 7(L)dr = oo,
RP 0

the estimator éﬂ discussed in the previous section can still be defined if M;(z, 7)
and M, (z, ) given by (3.15) are both finite. The admissibility of such 6, within the
class of equivariant estimators can be investigated through Blyth (1951) method.
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3.3.1 A General Admissibility Equivariance Result
Jor Mixture Priors

Suppose

~ ) = OO)LP/Zflgfpﬂ i [de)
7 )_/0 20121 (p/2) eXp(_2g> 8

or equivalently

o [Tl
(Il = /0 Gy 0(= 75, ) M) (3:27)

where [;° T1(dg) = oc. Then, for (3.15), we have

M\(z, ) = ff NP2 f(nfllz — 017 + 1) (1l6]1*)dodn

[// @pm/2 ¢ - n{llz — 611> + 1}>
ql(p, n) 2

nllo ||2
p(- P )mdg)dedn

(2,T)p/2 2

nrn nllzI?/(g + 1) + 1)
ql(p n) // (g+1)P/2 ( 2 )H(dg)dn

_ Mp+m/2+1) (g + P *I(dg)

= , 3.28
q1(p, n)2=PH2=1 Jo {1 4 |1z]12/(g + D}pFm/2H (3:28)
where the third equality follows from Lemma A.1, and
qi(p.n) = 2m)P’T (n/2)2">. (3.29)
Similarly, for (3.15), we have
r 2+1 o0 + 1)~P?11(d
Moz, ) = (p+n)/2+1) 8z g+D (dg) (3.30)

qi(p, )2~ m2=1 | o+ T {1+ |22/ (g + D}ptm/2ti

Then, by (3.16), (3.28) and (3.30), the (improper or generalized) Bayes equivariant
estimator is

0, =1 =¥ (lzlH} x

(1_ Jo g+ 1" p/2—1{1+||z||2/<g+1)}—<P+">/2—1H(dg>>x 331
J (g + DP2{1 + |zI12/(g + D}-rmi2-1Tidg) )77 T
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where ||z||> = ||x||?/s. For some k(g), assume the propriety of k?(g)I1(dg) as
Jo " kX (9)T1(dg) < oo. Then

_ e8] )\p/2—1 A )
i (A) =/0 WGXI’(—g)ki (g)I(dg) (3.32)

is also proper. Let Opi = {1 — ¥ (]x]I?/s)}x be the proper Bayes equivariant esti-
mator under 7; (1). By (3.17), the Bayes risk difference between 6,, and 6,;; under 7;
is

(6 7)) — FOni; )

= /R [ (1217 = Yre (21D 1207 M (2, 7)dz. (3.33)

For w = ||z||?, the integrand of (3.33) is expressed as

W (12l = Y (I P12l My 2, 70)
J2 @+ D7PP {1+ w/(g + D}~ P21 (dg)
- w( JZ @+ )21 + w/(g + D) P2 1 T(dg)
[+ D721+ w/(g + DY~ PH2- 12 ()M (dg) \
g+ DR+ w/ (g + D)2k ()T (dg) )
L Dp +m/2+ 120/ /w (g + D7k (g)M(dg)
a1(p.n) o {L+w/(g+ D)/l

(3.34)
Asin Sect. 2.4.2, with the sequence ki2 (g) = i/(g + i), we have the following result
on admissibility within the class of equivariant estimators.

Theorem 3.4 (Maruyama and Strawderman 2020) The estimator é,, is admissible
within the class of equivariant estimators if

/ > T(dg)
< 00
0 g+ 1
Proof Under the above assumption, kiz(g) =1i/(g + i) gives an increasing sequence
of proper priors since

o0 L[ TI(dg) . [ TI(dg)
K2 =/ &) f %8 o,
/0 S(@Tl(dg) =i L eti <i et < 00

for fixed i. Applying the inequality (Part 3 of Lemma A.3) to (3.34), we have
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o n)q/'z(i ’32(,,“) S W2l = Y Q2P M 2. )

<{fooo(8 + D7+ w/(g + D) P27 TI(dg))
<2w =
Jo (€ +D7P2{1+w/(g + D)}~ r+m/2-1TI(dg)
(@ + D1+ w/(g+ 1)}_(”+”)/2_'k,~2(g)l'l(dg)}2)
Jo @+ D71+ w/(g + D}~ Ptm/2-1k2 (g)[1(dg)

where g1 (p, n) is given by (3.29). Further, applying the Cauchy-Schwarz inequality
(Part 1 of Lemma A.3) to the first and second terms, we have

X n)q/‘z(i ’320’”) W (1) = Y2l P 2P M 2, i)

cape [T (e DNMg
- (1 + [12I2/(g + D)@rm/+

Hence, we have

q1(p, n)
C((p 4 n)/2 + 1)2w+m/2+1

[1; W1zl = Vi (12l P10 M) (2, ) dz

<4/ / llzll? I(dg) .
T e {1+ 1IzlI?/ (g + D}PHm2H (g + 1)p/2+2

_ np/2 / / P2 H(dg)dt
B F(p/2) (I + )2+ g 41
p/2 H(dg)

T
=4 B 241 2
T i "/)/

< 00,

where the equalities follow from Part 1 of Lemma A.2 and Part 3 of Lemma A.2,
respectively.
Then by the dominated convergence theorem, we have

Jim {r(éﬂ; 7)) — i ﬁi)} —0

i—00

which, by the Blyth method, implies the admissibility of 6, within the class of
equivariant estimators. O

As in Sect. 2.4.3, suppose [1(dg) in (3.27) has a regularly varying density of the
form

1 g \* 1
. _ . 3.35
w(g;a,b,c) (g + 1) <g+1> {log(g + 1) + 1}° ( :

Then, by (3.31), the corresponding generalized Bayes estimator is of the form
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) ( S5 (g + D71+ w/(g + DY 2 (g5 a, b, c)dg)
T @+ DR+ w/(g + D)2 (g a, b, c)dg
(3.36)
As a corollary of Theorem 3.4, using the argument in the admissibility proofs of
Sect. 2.4.3, we have the following result.

Corollary 3.1 The generalized Bayes estimator 6 given by (3.36) is admissible
within the class of equivariant estimators if

either{a >0, b>—1, ceR}or{a=0, b > —1, ¢ > 1}.

3.3.2 On the Boundary Between Equivariant Admissibility
and Inadmissibility

For the class of densities w (g; a, b, c¢) given by (3.35), witheither —p/2+ 1 <a < 0
or {a =0 and ¢ > 1}, Corollaries 3.3 and 3.4 in Sect. 3.6 show the inadmissibility
of the corresponding generalized Bayes estimator by finding an improved estimator
among the class of equivariant estimators. Hence, together with Corollary 3.1, the
issue of admissibility/inadmissibility within the class of equivariant estimators for
all values of a and c except for the cases {a = 0 and |c| < 1}, has been settled. The
following result addresses this case.

Theorem 3.5 (Maruyama and Strawderman 2020) Assume the measure T1(dg) in
(3.27) has the density m(g; a, b, c¢) given by (3.35) with

a=0,b>—-1, -1 <c<l.

Then the corresponding generalized Bayes estimator is admissible within the class
of equivariant estimators.

Proof See Appendix A.6. (|

Our proof unfortunately does not cover the case ¢ = —1, although we conjecture
that admissibility holds within the class of equivariant estimators as well. The proof
of Theorem 3.5 is based on Maruyama and Strawderman (2020), where b > 0 was
assumed. In this book, we also include the case —1 < b < 0.

While this section considers admissibility only within the class of equivariant esti-
mators, the next section broadens the discussion and considers admissibility among
all estimators.
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3.4 Admissibility Among All Estimators

3.4.1 The Main Result

In this section, we consider admissibility of generalized Bayes estimators among all
estimators for a broad class of mixture priors. In particular, we consider the following
class of joint prior densities:

1
7.0, 1) = e n"x(nll6]1%)

where

o . p/2 2
) g ]

= — ca,b,0)dg, 3.37
2 (lul?) /0 R exp( 3 )7 (g5 a. b, 0)dg (3.37)

and where 7 (g; a, b, ¢) is given in (3.35). We note that all such priors are improper
because each is non-integrable in 1 for any given 6. Then, as in (3.36), the corre-
sponding generalized Bayes estimator is

{T—oUxI?/s)/UxI?/s}x
where

@ )T+ w/(g + DY PP (gr a, b, 0)dg

P = ) PPl +w/ (g + D) PP ix(gia, b O)dg

(3.38)

Here is the main theorem of this section.

Theorem 3.6 (Maruyama and Strawderman 2021, 2023a) The generalized Bayes
estimator under 1w, (6, n) is admissible among all estimators if

max(—p/2+1,0) <a <n/2+2, b > —1, c=0.

Remark 3.1 As far as we know, Theorem 3.6 is the only known result on admissi-
bility of generalized Bayes estimators of the form {1 — ¢ (lx[1*/s)/(llx[*/s)} x. As
in Corollary 3.5 in Sect. 3.7, the generalized Bayes estimator under 7w, (6, 1) is also
minimax if
o2l PIREED Ly
2Q2p+n-2)

Strawderman (1973) considered the truncated proper prioron 1, n°I, o) withc < —1
and y > 0instead of the invariant prior on 5. Under this prior, a class of proper Bayes,
and hence admissible estimators dominating the usual unbiased estimator for p > 5
was found. However, because of the truncation of the prior on 7, such estimators are
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not scale equivariant of the form {1 — ¢ (||x||*/s)/(|lx|[*/s)} x, but instead have the

form {1 —o(x)?/s, s)/(||x||2/s)} X.

Recall 7 (g; a, b, c¢) given by (3.37) is proper for a > 1 and ¢ € R. In order to prove
the result, we construct a sequence of proper priors 7; (6, ) converging to (6, )
of the form

hZ 00 p/2
won = [ exp(— L 10 (39)
n Jo 28

(2m)r/2gr/2
where
log(i + 1)

hi(n) = - ,
log(i + 1) + | logn|

1 1

— M max(—p/2+1,0) <a <1,
ki(g) = log(g +1+1)
1 l<a<n/2+2.

Note thatlog(1 4+ 1) < 1 < log(2 + 1). For this technical reason, the sequence starts
at i = 2. Properties of %;(n) and k;(g) are provided in Lemmas 3.1 and A.6. In
particular, we emphasize that hiz(n) /n and n(g)kiz(g) are both proper by Part 2 of
Lemma 3.1 and Part 5 of Lemma A.6, respectively, which implies that ; (8, 1) given
by (3.39) is proper.
Lemma 3.1 Let

log(i + 1)

hi(n) = - .
(m) log(i + 1) + |log n|

1. h;(n) is increasing in i and lim;_, - h;(n) = 1 for all n > 0.
o0
2. / n~'hZ(n)dn = 2log(i + 1).
0

Proof (Part 1) This part is straightforward given the form of 4; (7).
[Part 2] Let j = log(i + 1). The results follow from the integrals,

* hi(n) b jRdn < jidy
dn = — >+ YT PRy
0 n o n(j—logn) 1 n(j +logn)

.2 1 _.2 00
=[] =] =2
j —logndo Jj +lognli
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3.4.2 A Proof of Theorem 3.6

We start by developing expressions for Bayes estimators and risk differences which
are used to prove Theorem 3.6. We make use of the following notation. For any
function ¥ (9, 1), let

m(y (6, n))
nn/an/Z—l

"> Ilx — 6117 ns
/W D Gyert © xp(— 2 )r(n/Z)zn/zeXp(_T)ded"'

Then, under the loss (1.3), the generalized Bayes estimator under the improper prior
(6, n) is

b — mnom.(6,n))
T om0, n)

and the proper Bayes estimator under the proper prior 7; (0, 1) is

5 _ mom©.m)
m(nm;(6,n))

The Bayes risk difference under r; is

ai= [ [ (B[, - 0] = & [n1di ~ 012] ) 0. mavan.

Note that [0, — 02 — [|6; — 011> = [10.11> — 16;11> — 2070, — 6;). Then A; can be
re-expressed as

A = /f[/n(né*nz — 1017 = 26" @. — )

nP/Z ( Ix — 9”2) 77”/25‘"/2_1 (
X €X — €X
Qm)r2 T ) T2y P

= / / {m@m) 16,12 = 1017 — 2m (o™ 0. — 0) | dwas

—?)m(@, n)dxdsdfdn

=/ 16, — 6:11Pm (n7; (6, n))dxds. (3.40)

Next, we rewrite ,, §; and ||é* -6 I>m(nm; (6, n)), the integrand of (3.40). By
Lemma A.1, we have
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n/2.n/2—1

nk’? lx — 617\ n"/%s ns
) /// " @myprn ™ _" 2 >r(n/2)2n/2eXp(_?)

n"" HON
x Wexp(—gllml ) m(g)k?(g)dodgdn

n/2—1
d / / Fg, n: w, )R> (m (9)k (g)dgdn, (3.41)

" aipn)
where w = ||x|1/s, q1(p, n) = 27)?/?T'(n/2)2"/2, and
p/24n/2 -
P = comm (=7 (1+ 57))
Similarly we have
gn/2-1

m(nb;) = /f X F(gum: w2 () (g)dgdn.  (3.42)
q1(p,n) g+1

By (3.41) and (3.42), the Bayes estimator under 7; is

s m(Onm;) i (w, s)
6 = —2 = (1 - 222y, 3.43
m(nm;) ( w )x (.43
where
b (0. 5) — /@ + DT (g, n; w, )R () (9)k} (g)dgdn (3.44)
o [ F(g,n; w, )k} ()7 (2)k} (g)dgdn
With h; = 1 and k; = 1 in (3.44), we have
e, 5) = [f(e+ 1D F(g,n; w,s)m(g)dgdn (3.45)
o [ F(g.m; w, )7 (g)dgdn '
and our target generalized Bayes estimator given by
bo=(1- M)x (3.46)
w
Note that
®© C(p/2+n/2+1) 257! p/2+n/2+1
F(g,nw,s)dn =
/0 (o 0n == (w7 0)
which implies
¢u(w,s) [ (g+ DRI+ w/(g + D) PP n(g)dg (3.47)

w o [Fe+ D PP+ w/(g + D) P22 1x(g)dg
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In the following development, however, we utilize (3.45) not (3.47) as the expression

of ¢ (w, s).
By (3.41), (3.43) and (3.46), we have

A

QI(P, n)

A |2 _QI(p,n) ¢)*(wvs) ¢i(w9s) 2
—||x||2s"/2*1 9*—9,-‘ m(nm;) = /21 ( ” — ” )m(nm)
= A(w, 55 1),
where

Atw,s, o-(/[ e // . ) || Frimiiagan

I Fndgdn [ thrrkzdgdn
(3.48)

Applying the inequality (Part 3 of Lemma A.3) to (3.48), we have

1 (ff(g + 1) 'Frdgdy  [[(g+ 1)1Fhfnkfdgdn)2
3 [[ Frdgdn [ Fhiwk}dgdn
_ ( J/(g+ D 'Frdgdn  [[(g+ 1>—'Fh%ndgdn)2
- [[ Frdgdn [[ Fhizdgdn
(ff(g + 1)~ Fhindgdn  [f(g+ 1)‘1Fhi2nki2dgdn)2
[ Fhndgdn [ Fh*ndgdn
(ff(g + )~ 'Fhixkidgdn  [[(g+ 1)1Fhl.2nki2dgdn)2
JJ Fhimdgdn JJ Fhimkidgdn '

Hence we have

A(w, s;10)

3 < A(w, s;0) + Ax(w, 55 0) + Az(w, 55 §),

where

h? Frdgdn)2
Ay(w, 53 1) = L | f/Fh?ndgdn,

1
f/‘ff Frdgdy  [[ Fh’mdgdn! g+1
2
f (g + D' FR2r(l — k,?)dgdn)
[ Fh*ndgdn

' ( [fg+1) Fh271k2dgdn X X
Asz(w, s;i) = (ff thndgdn)z ff thnkzdgdn <// Fhim(l —k; )dgdn) .

Ar(w,s;i) =

)

In Sects. A.7.1-A.7.3, we prove that
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: 2.n/2—1 2 L _ _
lim [[x||“s A¢(l|x|I7/s, s;i)dxds =0, for € =1,2,3,
11— 00

which implies that A; — 0 as i — oo. Thus the corresponding generalized Bayes
estimator is admissible among all estimators, as was to be shown.

3.5 Simple Bayes Estimators

Interestingly, and perhaps somewhat surprisingly, suitable choices of the constants
a and b (with ¢ = 0) lead to admissible minimax generalized Bayes estimators of a
simple form. Further, this form represents a relatively minor adjustment to the form
of the James—Stein estimator. Here are the details. Consider the case b = n/2 — a in
(3.38). For the numerator of (3.38), we have

/°° g+ 177 He/(g+ D)dg /°° g"*dg

0 {1+ w/(g+ D22+l o (g+ 14 w)r/>n/2+1
_ 1 o gr2-adg _ Bm/24+1—a,p/2+4a)
T (L4 w)p/2ra Joo (14 p)p/2An/2+1 T (1 + w)r/2+a+2

Similarly, for the denominator of of (3.38), we have

f"o (g+ D" g/(g + 1)) dg

o (L+w/(g+ D

_ /00(1 " )(g+ 1)1 g /(g + 1))’dg

Th T T e
_Bn/2+1—a,p/24+a) Bm/2+2—a,p/2—1+a)
B (14 w)r/2+a (1 + w)p/2-1+a
_B(n/2+1—a,p/2+a) n/2+1—-a

B (1 4+ w)r/2+a <1 p/2—1 +a(w+1)>

Thus the generalized Bayes estimator is of the form

o= (1= —% )
« IxlI?/s +a+1/7"

where o = (p/2 — 14+ a)/(n/2 4+ 1 — a). This estimator was discovered and stud-
ied in Maruyama and Strawderman (2005). By Theorem 3.6, provided

p—2

Os
) < a>

o >

é(fB is admissible among all estimators. Also, by Theorem 3.5, é,fB witha = (p —
2)/(n + 2) is admissible within the class of equivariant estimators. Additionally, by
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Corollary 3.5, in Sect. 3.7 below, minimaxity of é(fB holds for

p—2 (p—2)(n+2)
0<a<2 —p24l<a< PZDNTI
ses2s © TPRFl<asoa T

3.6 Inadmissibility

3.6.1 A General Sufficient Condition for Inadmissibility

This section is devoted to the question of inadmissibility of shrinkage estimators of
the form é¢ = (1 —-¢(w)/w)x where w = ||x||2/s. Note that such estimators are
equivariant. By (1.48) in Chap. 1, with ¢ (w) = ¢ (w)/w, the SURE for an estimator
of the form 6, is

2, = pt (n+2){p(w) —2cpnlep(w)

Ry = —4¢' (w) {1 + p(w)}, (3.49)
w

where ¢, , = (p — 2)/(n + 2). For a competing estimator of the form

Bpsr = (1 _9(w) Z V(w))

X,

the difference in the SURE between 6, and 0, , is

Ry — Rypy = v() A (w; @) + Ar(w; ¢, )} (3.50)
where
Ar(w: ) =2(n + 2)”’*”_7"’(’”) + 49 (w),
vw) V' (w)
Ao(w; p,v) = —-n+2)— +4'(w) +4——{1 + ¢ (w)}.
w v(w)

Our approach to finding an estimator dominating é¢ is to find a non-zero solution
v(w) to the differential inequality Ry — Ry, > 0. Here is the result.

Theorem 3.7 (Maruyama and Strawderman 2017) Let c,, = (p —2)/(n + 2).
Suppose

limsupgp(w) < cp,

W 3.51
and liminf log w {(n +2Dfcpn —d (W)} + 2w¢)’(w)} > 2(1 +cpp). ( )

w— 00

Then the estimator é¢ = (1 — ¢(w)/w)x with w = ||x||*/s is inadmissible.
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Proof By (3.51), there exist
w; >exp(l) and 0 <€ < 1 (3.52)

such that for all w > wy,

1
+ cpn .

d)(U)) - Cp,n = 6

and

logw {(n 4+ 2){cp.n — P (W)} + 2w’ (w)} — 2(1 + ¢, (1 +€) = 0,
1+ cp,,,)(l +€) -0 (3.53)

’

or equivalently Aj(w;¢) —4
wlog w

Let g (w; w,) be the cumulative distribution function of ¥ + w,, where w, > w; will
be precisely determined later and Y is a Gamma random variable with the probability
density function y exp(—y)/(0,00) (), that is,

0 forO <w < w,
g(w; w2) =1 ww,
0 yexp(—y)dy forw > ws.

Then g (w; w,) is non-decreasing, differentiable with ¢’ (w)|y=w, = 0 and g(c0) =
1.
Let v(w) for the competing estimator be given by

q(w; wy)

_—, 3.54
(log w)!+</2 (3.54)

v(w; wy) =

with € satisfying (3.52) and (3.53). Then, for all w > w,, we have

(I +cp)+e)
wlog w
- (+2) gw;wy) 4l +€/Dq(wiwy) - 4q"(w; wy)
w(log w)1+e/2 w(log w)2+e/2 (log w)1+e/2
q'(w; wy) 1+6/2}{1 Jr¢(w)}+4(1 topn)d+e)
qg(w; wy) wlogw wlogw

Ao[w; ¢, v(w; wa)] + 4

+4

Note that ¢'(w; w) > 0, ¢(w; wy) < 1, (log w)***/? > (logw)'**/? and

l+cpn e)
6

2
=+ cp,n)(4+ 2e+ 501 +e/2)e) < @ +36)(1+cpn).

41+ €/2){1 + p(w)} < 4(1 + 6/2)(1 Fepn +
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Hence

Aolw: ¢, v(w; wy)] + 4L L)

wlog w
- _4(1 +cpa)(1+3e/4) _ 4(14+€/2)+n+2 4(1 +cp )1 +6)
- wlogw w(log w)!l+e/2 wlogw

(3.55)

(1 + Cp,n)6 4(1 + 6/2) +n+2 1
=—<1 — )

wlogw (I +cpn)e (log w)</?
- (1+cp’,,)6(1_4(1+6/2)+n—|—2 1 )
~ wlogw € (log w)</2/"
Now let

4(14+€/2) +n+ 2}2/e>’ w]}_

Wy = max{exp(i
€

Then, by (3.53) and (3.55), we have

Ar(w; @) + As[w; ¢, v(w; wy)]

_ o U4cpa)d4e) ) ) (I +cp)d+e)
= {Al(w"p) (/3w log w }+ {AZ[w"p’ w2l = logw }
>0, (3.56)

for all w > w,. Hence, by (3.50), (3.54) and (3.56),

=0 forw < w;

Ry — Ryt = VW) [A (w5 @) + Ax(w; ¢, v(w; w2))) {> 0 forw > w,

which completes the proof. U

As a corollary of Theorem 3.7, we have the following result.

Corollary 3.2 The estimator é¢ is inadmissible if ¢ (w) satisfies either

-2
limsup ¢ (w) < P

w—00 n 2

and lim we¢'(w) =0 (3.57)
w—00

or

-2 !
lim pw) = 222, tim wlogw® ™ — o,
w— 00 n-+2 w— 00 ¢(w)

2(p +n)
(n+2)?°

(3.58)

w— 00

o p—2
d timinfloguw{ ==~ ¢ w))
and liminf log w a2 d(w)t >
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3.6.2 Inadmissible Generalized Bayes Estimators

In this subsection, we apply the results of the previous subsection to a class of
generalized Bayes estimators. As in Sect. 2.5, we assume that [T(dg) in (3.27) has a
regularly varying density 7w (g) = (g + 1)7“§(g) where £ (g) satisfies AS.1 and AS.2
given in the end of Sect. 2.1. The corresponding generalized Bayes estimator is of
the form (1 — ¢ (w)/w)x where

Jo (g + D7PP 1+ w/(g + 1) PPADE(g)dg

= Jo @+ Dl w/(g + D)1+ 0E(g)dg

In addition to AS.1 and AS.2, we assume the following mild assumptions on the
asymptotic behaviors on £(g);

AS.5 lim sup{(g +1)log(g + 1)°8)
g—>o0 §(g)
A.S.6 &(g)isultimately monotonei.e., £(g) is monotone on (gy, oo) for some gg > O.

} is bounded,

Under AS.1, AS.2, AS.5 and AS.6, we have the following result on the properties of
o (w).

Lemma 3.2 Suppose —p/2 +1 <a <n/2+ 1. AssumeAS.1,AS.2,AS.5and AS.6.
Then ¢ (w) satisfies the following;

S (g + DL w /(g + D) PP g () dg

1. lim =1

w—oo  wP2H-ag(w)B(p/2 —1+a,n/2 —a+2)

2—1

2 lim gy = P2=1Fa

w—>00 n/2+1—a
3. lim wM =0

w00 ¢(w)
Proof See Sect. A.10. O

By (3.57) of Corollary 3.2 and Parts 2 and 3 of Lemma 3.2, we have the following
result.

Theorem 3.8 Assume AS.1, AS.2, AS.5 and AS.6. Then the generalized Bayes esti-
mator, with respect to the regularly varying density m(g) = (g + 1)7*£(g), is inad-
missible if —p/2+1 <a < 0.

AsinSect.2.4.3, suppose I1(dg) in (3.27) has aregularly varying density 7 (g; a, b, ¢)
as given in (3.35). It is easily seen that £(g) = {g/(g + 1)}*{log(g + 1) + 1}7¢, for
b > —1 and ¢ € R, satisfies AS.5 and AS.6 as well as AS.1, AS.2. Hence we have
the following corollary.

Corollary 3.3 Assume
—p/2+1<a<0,b>—1, c eR,

inm(g; a, b, c). Thenthe corresponding generalized Bayes estimator is inadmissible.
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When limy o ¢ (w) = (p — 2)/(n + 2), recall that a sufficient condition for inad-
missibility is given by (3.58) of Corollary 3.2. The following lemma on the behavior
of ¢ (w) is helpful for providing an inadmissibility result for 7w (g; a, b, ¢) when
a=0.

Lemma3.3 Leta=0,b> —1,andc #0inn(g;a,b,c). Then

. p—2 _ 2p+n)
/
and lim wlog wM =0. (3.60)
w— 00 ¢(w)
Proof See Sect. A.11. ([

Then, by Parts 2 and 3 of Lemma 3.2, Lemma 3.3, and (3.58) of Corollary 3.2, we
have the following result.

Corollary 3.4 Assume
a=0,b>—-1, c<—1

inm(g; a, b, c). Thenthe corresponding generalized Bayes estimator is inadmissible.

Note that Corollaries 3.3 and 3.4 correspond to Corollary 2.1 for the known scale
case.

3.7 Minimaxity

3.7.1 A Sufficient Condition for Minimaxity

In this section, we study the minimaxity of shrinkage estimators of the form

é¢= (1— M)x

w

where w = ||x||?/s and ¢ (w) is differentiable. The risk function of the estimator is

i=1

d*(W)
v ] 3.61)

Asin (3.49) the SURE for an estimator é¢ is give by R(é(,,; 0,n) = E[ﬁ¢ (W)], where

n {(n+2)p(w) —2(p — 2)}¢p(w)

w

Ry(w) = p —4p'w) {1 +¢w)}. (3.62)
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Hence, for a nonnegative ¢ (w), we have the following equivalence,

w{Ry(w) — p} <0 2p=2)—(n+2)pw) @' (w)
et — P wot >
¢ w){l + ¢ (w)} 1+ ¢(w) ¢ (w)
This implies the following result, which is Lemma 4.1 of Wells and Zhou (2008).

Theorem 3.9 Assume that for p > 3 and a constant y > 0, the differentiable func-
tion ¢ (w) satisfies the conditions: for any w > 0

we' (w) p—2-2y
bw) >—y and 0 < ¢p(w) < Zm-

Then, the estimator é¢ is minimax.

Kubokawa (2009) proposed an alternative expression for the risk function which
differs from the SURE estimator given by (3.62). We will use the result below to
strengthen Theorem 3.9.

Theorem 3.10 (Kubokawa 2009) The risk function is R(é¢; 0,n) =
nE[(S/W)Z(W)], where

1
Z(w) = ¢*(w) +2¢(w) — (n + p) / "¢ (w/z)dz.
0

Proof Unlike the development of (3.62), we apply both Lemmas 1.1 and 1.2 to the
second term on the right hand side of (3.61). Define a function ® (W) by

1 1 ; wn/2 [od] ¢(f)
- /2 —
P (w) = Zw/O dew/2)dz = — =
where the third expression results from the transformation ¢t = w/z. Using Lemma
1.2, we obtain

d ¢ (W)
S|X —_ ESIX _ —ESIX| 222
nE [P(W)S]=E [n@(W)—i—ZS SCD(W)] E [ ], (3.63)

where E5!%[.] denotes the conditional expectation with respect to S given X. Note
that all the expectations are finite since ¢ (w) is bounded.
By (3.63), we can rewrite the cross product term in (3.61) as

P P
UZE[ﬂX X = 00| =n* Y BISOWNXi(X; =601 (364)

i=1 i=1

Note 5 2
L o(lx|2/s) = (llx|2/s) +2 = — @' (w)

, 3.65
ox, (3.65)

w=|lx||?/s
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where

' (w) =

Lyt [ 20 4 By _ 1,20 o0
2

/242 w2 w w2

: ) (3.66)

By Lemma 1.1, (3.65) and (3.66), we have

$00)

14
X|s (X. —0.)] = EXIS _
1Y EX S [0 XX - 001 = X[ (p 4+ maw) - 7

i=1

and, by (3.64)

WXP:E[MX (X; — A)]=nE[ {(p+n)q>(W)_%}]

i=1
The proof is completed by combining the appropriate terms above. (]

Suppose ¢ (w) is differentiable in Theorem 3.10. Then we have

14
p(w/z) — 7 Pp(w) = % {w/2)"¢(w/2) — w”d(w)}

Zy w/z d Zy w/z . ¢()
= § {Etw(r)]dt:W/w tY ¢)(t){ +tm]dt,

and hence
1
I(w) = ¢*(w) +2¢(w) — (n + p) / P p(w/z) — ¥ p(w) + 27 p(w)} dz
0

1
=< ¢2(w) +2¢(w) — (n + p)¢(w)/ gy

— Pw) + 26w —2— P4 (w)

n—+2+2y
_ p—2-2y
=g (o) -2, ——5-")

where the inequality follows if ¢ (w) > 0 and w¢'(w) /¢ (w) + y > 0. Then we have
the following result.

Theorem 3.11 (Kubokawa 2009) Assume that for p > 3 and a constant y > 0, the
differentiable function ¢ (w) satisfies the conditions for any w > 0,

we' (w) p—2-2y
o(w) >—y and 0 < ¢(w) < 2m-

Then, the estimator é¢ is minimax.
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Note that the result given by Theorem 3.11 is slightly stronger than that in Theorem
3.9 since 9_5 n_2
Al 5217— Y
n+2+4y n+242y

For this reason we will use Theorem 3.11, to consider the minimaxity of generalized
Bayes estimator in Sect. 3.7.2.

3.7.2 Minimaxity of Some Generalized Bayes Estimators

Suppose 7(g) = (g + 1)7*£(g) where £(g) satisfies AS.1-AS.4 as in Sect. 2.5.1.
In this section, we investigate minimaxity of the corresponding generalized Bayes
estimators with

fo (g + D771 +w/(g + D) P22 Vg (g)dg

P = Jo g+ D7r2ma(l + w/(g + D)2+ Dg (g)dg

Recall that, in Sect. 2.5.1, E(g), E1(g), E2(g) and E,, were defined based on £(g)
and that the properties of these functions are summarized in Lemma 2.1. These results
imply to the following properties for ¢ (w).

Lemma 3.4 Suppose —p/2+1 <a <n/2+ 1 — Ep. Then

—2+2a+ 28, !
pwy < L 2H2aH 28,0 o g (3.67)
n—+2—2a—28, ¢ (w)
Proof Section A.12. (Il

Hence by Theorem 3.11 and Lemma 3.4, we have the following result.

Theorem 3.12 The generalized Bayes estimator is minimax if

p+2+4+2a+28 - p—2—2E
n—2—2a—282* - I’l+2+282*

Foré(g) ={g/(g + 1)}b/{10g(g + 1) + 1}° with b > 0, the following corollary fol-
lows from Lemma 2.2 and Theorem 3.12.

Corollary 3.5 Form(g;a,b, c) given by (3.35) with b > 0, the corresponding gen-
eralized Bayes estimator is minimax if either

(p—2)(n+2)

Pl2¥l<as s Ty ¢S

or
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(p—2)(n+2)
2Qp+n—-2)°
(p —242a){l +1log(b/c+ 1)} +2c - 2(p —2){1 +log(b/c + 1)} — 2c.
(n+2—2a){1 +logb/c+ 1)} —2c = (m+2){1 +log(b/c + 1)} +2c

—-p2+1l<a<+ c>0,

Suppose

E(g) = (ﬁ)b for —1 <b <0,

as considered in Sect. 2.5.2. For this case, the behavior of the corresponding ¢ (w)
is summarized in the next result.

Lemma 3.5 Let —1 < b < 0. Then ¢(w) of the corresponding generalized Bayes
estimator satisfies

p—2+2a ¢'(w) (p+2a)b
and w > .
n+2—2a+b(p+n) ¢ (w) 2(b+1)

o(w) <

Proof Section A.13. O

Thus Theorem 3.11 and Lemma 3.5, give minimaxity under the following conditions.

Theorem 3.13 The generalized Bayes estimator is minimax if —1 < b < 0 and

p—2+2a - (p—2B+1)+b(p—+2a)
n+2—-2a+b(p+n) ~ m+2)b+1) —b(p+2a)

3.8 Improvement on the James—Stein Estimator

In this section we extend the discussion in Sect. 2.6 to the case of unknown variance.
As in (1.49) and Theorem 1.8, the James—Stein estimator

A p—2 S
ejsz(l— 2>X
n+2 X

dominates the estimator X for p > 3. Using the expression for the risk of §¢ given
by (3.49), the risk difference is given by

A() =R(ss; 6, n) — R(@y: 6, 1)

{¢ ( W) - Cp,n }2

=E[—(n+2) W

+ 4L+ WY W) .

where ¢,, = (p —2)/(n+2), »=n|#|* and W = | X||>/S. Conditions on ¢
which ensure that A(A) > 0 are provided in the following theorem.
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Theorem 3.14 (Kubokawa 1994) The shrinkage estimator é¢ improves on the
James-Stein estimator Oys if ¢ satisfies the following conditions: (i) ¢ (w) is non-
decreasing in w; (ii) limy_. o ¢ (W) = (p — 2)/(n 4 2) and ¢ (w) > ¢o(w) where

@+ D7+ w/(g + D)2 dg
fooo(g + 1)7[7/2{1 + w/(g + 1)}*p/27n/2,1dg .

do(w) = w

Proof LetU = || X||>and V = S, and let fp(u; A) and f, (v) be density functions
of x2() and x;;, respectively. Then U ~ x>(1) where A = n|6||*> and V ~ x?. The
expected value of a function v (|| x||?/s) may be expressed as

Ely (1X17/$)] = ElY (nll X117} /{nSH]
= f/ Y (u/v) fpu; A) fu(v)dudv = / Y (w)vf,(wo; A) fr(v)dvdw

_ / v f fp (w0 1) £, )dv | dw
0 0

Y A2 [ (wu)PP i exp(—wv/2) v exp(—v/2)
_/0 Ww); 2] H/O T (p/2 + i)2r T(n/2)2' d”}dw

= fo Y (w) jp.n(w; A)dw,

where
o0

o ( -x)—z(x/z)" wP/2—1(1+w)_p/2_n/2( . )i
Tpn 5 4) = < el B(p/2+in/2) \w+1/"

i=

Then, arguing as in (2.45) and (2.46), the first term of A(A) may be expressed as
written as

—E[W ' @W) —cpn)?)

A, [T ) ® jpaw/(g+1); 1)
= 2/0 {p(w) — cpald (w){/o o dg Jdu

and hence A(A) may be written as
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Jpn(w/(g +1D;A) dg

a0 =2 [ ¢+ Dhpw) — ey [ LS

+ 21+ ()} (w5 1) )du
=2 [0/ (0 + 20 ) = . 201+ B0 2)

o jp,n(w/(g +1); 1)
X {/0 P dg}dw,

where ]
Jpn (W3 2)

J n ;)‘- = — - .
P 2) Jo @+ D7 jpa(w/(g+ 1:A)dg

Further, as in (2.47), J,, ,(w; A) > J,, ,(w; 0) holds where

jp,n(w; 0)
fOOO(g + D7 jpa(w/(g 4+ 1); 0)dg
_ (1 4+ w)—p/2n=2
T @+ DR+ w/(g £ D) PR

Jp,n(W; 0) =

(3.68)

Hence we have A(L) > 0if ¢/(w) > 0 and
(n+2){p(w) — cpnt +2{1 + P (w)}Jpn(w; 0) = 0,

which is equivalent to ¢ (w) > ¢o(w) where

— 227, ,(w; 0)
po(w) = 2 pn
n+2+2J,,(w;0)

( 2)/“’ (g+1)"Pdg 2
_ P77 Ut/ DR (o wyrn

= (g1 D) "7dg 2
2
o+ )/o T+ w/(g + Dy T (A wyrzer

(3.69)

(3.70)

For the denominator of (3.70), an integration by parts gives
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00 1)~?/2d 2
o {14+w/(g+ D22 7 (1 4 w)r/2+n/2

%0 1)"/2d 2
=m+D/ (g +1)""dg n
o (1+g+w)r/2n/2 = (1 4 w)p/2+n/2

* (p+m)2
_ n/2+1
_2/0 €+ D +{(1+4g'+w)P/2+”/2“]dg
_ * g+ Dridg
=04 [ et D

(3.71)

Similarly, for the numerator of (3.70), an integration by parts gives

( 2)/"" (g +1)r2dg 2
PTO ) U w/G+ DPEE (@ f wyrr

Y i W (p+mn)/2
_2/0 (g7 [(g+1)2{1+w/(g+1)}P/2+"/2“}dg

(gD dg
= (p+n)w/O T+ w)(g + Djr/ara (3.72)

By (3.70), (3.71) and (3.72), we have

Jy(g + D7+ w/ (g + D) P g
fooo(g + D) P21 +w/(g + 1)}r/2n/2-1dg

do(w) = w , (3.73)

which completes the proof of Theorem 3.14. (]
By (3.68), we have

1

J n ;O = %) ,
pn(w; 0) S (g + D21+ w) /(1 + w + g)}r/2n/2dg

which is decreasing in w and approaches 0 as w — 00. It then follows directly from
the first line of (3.69) that

$o(w) =0, lim ¢o(w) = (p —2)/(n +2),

and hence the function ¢y(w) satisfies conditions (i) and (ii) of Theorem 3.14. It
follows that the estimator associated with ¢o(w) is a minimax estimator improving
on the James—Stein estimator. Further, comparing ¢o(w) with (3.36), we see that

2
(1 _ (I X]| /S))X
X112/
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can be characterized as the generalized Bayes estimator under 7 (g; a, b, c) in (3.35)
witha = b = ¢ = 0, or equivalently, the joint Stein (1974) prior given by (1.23),

1—-p/2

n~t x nPPrsmlel®) ==t x n?* {00117} = |16]I>~7, (3.74)

where g is given by (1.14).
Additionally, by (3.73), ¢o(w) < w and hence the the truncated function

¢js = min{w, (p —2)/(n +2)}

corresponding to the James—Stein positive-part estimator

N p—2 S
ot = max(O, 1-— —)X,
5 n+2 X2

also satisfies conditions (i) and (ii) of Theorem 3.14, which implies that the James—
Stein positive-part estimator dominates the James—Stein estimator, See Baranchik
(1964) and Lehmann and Casella (1998) for the original proof of the domination.

It seems that the choice a = b =c =0 in w(g; a, b, c¢) is the only one which
satisfies the conditions (i) and (ii) of Theorem 3.14. Recall, however, that we have
concentrated on priors with v = 1 in (3.6) when deriving minimaxity and admissi-
bility results in this chapter. As a choice of prior with v # —1 in (3.26), suppose the
joint improper prior

wtm-t o [T (_nll9||2> 1 q
! o Qorgr ST g ) (g

for @ > 0. The choice o = 0 corresponds to the joint Stein prior (3.74). Then the
generalized Bayes estimator is given by

. fooo(g + 1)~@D@2=D=209 4y /(g + 1)}~ @FD@/24n/D=14 4
O = < - fooo(g + 1)~@+Dp/2=D=1{] 4 w/(g + 1)}—(a+l)(p/2+n/2)—ldg>x
The following result is due to Maruyama (1999).

Theorem 3.15 (Maruyama 1999) The generalized Bayes estimator Oy for a >0
dominates the James—Stein estimator Oys. Further 0, approaches the James—Stein
positive-part estimator OJE as o — oQ.

Proof Appendix A.14. (]

We do not know whether éa, for @ > 0, is admissible within the class of equivariant
estimators.
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