
Chapter 3
Estimation of a Normal Mean Vector
Under Unknown Scale

3.1 Equivariance

In this chapter, we consider estimation of the mean of a multivariate normal distri-
bution when the scale is unknown. Let

X ∼ Np(θ, I/η) and ηS ∼ χ2
n ,

where θ and η are both unknown. For estimation of θ , the loss function is scaled
quadratic loss L(δ; θ, η) = η‖δ(x, s) − θ‖2.

The first three sections cover issues of Bayesianity, admissibility and minimaxity
among estimators which are both orthogonally and scale equivariant. The remaining
sections consider these issues among all estimators.

Consider a group of transformations,

X → γ�X, θ → γ�θ, S → γ 2S, η → η/γ 2, (3.1)

where � ∈ O(p), the group of p × p orthogonal matrices, and γ ∈ R+. Equivariant
estimators for this group (3.1) satisfy

θ̂ (γ �x, γ 2s) = γ�θ̂(x, s). (3.2)

The following result gives the form of such equivariant estimators.

Theorem 3.1 Equivariant estimators for the group (3.1) are of the form

θ̂ψ = {
1 − ψ(‖X‖2/S)

}
X, where ψ : R+ → R.

Proof Let the orthogonal matrix � ∈ O(p) satisfy

� = (x/‖x‖ z2 . . . z p)
T and �x = (‖x‖ 0 . . . 0)T = ‖x‖e1, (3.3)

where unit vectors z2, . . . , z p ∈ R
p satisfy

zTi z j = 0 for i �= j, zTi x = 0 for i = 2, . . . , p
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and e1 := (1, 0, . . . , 0)T ∈ R
p. Further let γ = 1/

√
s. Then, by (3.2), the equivariant

estimator θ̂ (x, s) satisfies

θ̂ (x, s) = 1

γ
�Tθ̂ (γ �x, γ 2s) = √

s�Tθ̂ ({‖x‖/√s}e1, 1)

= θ̂1({‖x‖/√s}e1, 1)
‖x‖/√s

x + √
s

p∑

i=2

θ̂i

(‖x‖√
s
e1, 1

)
zi , (3.4)

where θ̂i is the i th component of θ̂ .
For the orthogonal matrix �1� where �1 = diag(1,−1, 1, . . . , 1), we have

�1� = (x/‖x‖ − z2 z3 . . . z p)
T and �1�x = ‖x‖e1.

Hence the estimator (3.4) should be also expressed by

θ̂ (x, s) = 1

γ
(�1�)Tθ̂ (γ (�1�)x, γ 2s)

= θ̂1({‖x‖/√s}e1, 1)
‖x‖/√s

x − √
sθ̂2

(‖x‖√
s
e1, 1

)
z2 + √

s
p∑

i=3

θ̂i

(‖x‖√
s
e1, 1

)
zi . (3.5)

By (3.4) and (3.5), θ̂2({‖x‖/√s}e1, 1) = 0. Similarly, θ̂i ({‖x‖/√s}e1, 1) = 0 for
i = 3, . . . , p. Therefore, in (3.4), we have

θ̂ (x, s) = θ̂1({‖x‖/√s}e1, 1)
‖x‖/√s

x,

where the coefficient of x is a function of ‖x‖2/s. This completes the proof. �

Let f (t) = {(2π)p/2�(n/2)2n/2}−1 exp(−t/2). Then the joint probability density of
X and S is given by

ηp/2+n/2sn/2−1 f (η{‖x − θ‖2 + s})
= ηp/2

(2π)p/2
exp

(
−η‖x − θ‖2

2

)
× ηn/2sn/2−1

�(n/2)2n/2
exp(−ηs/2).

Also, the generalized Bayes estimator of θ with respect to a prior of the form

Q(θ, η; ν, q) = ηνηp/2q(η‖θ‖2) (3.6)

for ν ∈ R is given by

θ̂q,ν(x, s) =
∫∫

θη(2p+n)/2+ν+1 f (η{‖x − θ‖2 + s})q(η‖θ‖2)dθdη
∫∫

η(2p+n)/2+ν+1 f (η{‖x − θ‖2 + s})q(η‖θ‖2)dθdη . (3.7)
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The value of the estimator θ̂q,ν(x, s) evaluated at x = γ�x and s = γ 2s where � ∈
O(p), the group of p × p orthogonal matrices, and γ ∈ R+, is given by

θ̂q,ν(γ �x, γ 2s)

=
∫∫

θη(2p+n)/2+ν+1 f (η{‖γ�x − θ‖2 + γ 2s})q(η‖θ‖2)dθdη
∫∫

η(2p+n)/2+ν+1 f (η{‖γ�x − θ‖2 + γ 2s})q(η‖θ‖2)dθdη . (3.8)

By the change of variables θ = γ�θ∗ and η∗ = γ 2η, this may be rewritten as

θ̂q,ν(γ �x, γ 2s) = γ�

∫∫
θ∗η

(2p+n)/2+ν+1
∗ f (η∗{‖x − θ∗‖2 + s})q(η∗‖θ∗‖2)dθ∗dη∗

∫∫
η

(2p+n)/2+ν+1
∗ f (η∗{‖x − θ∗‖2 + s})q(η∗‖θ∗‖2)dθ∗dη∗

= γ�θ̂q,ν(x, s). (3.9)

By (3.2), θ̂q,ν(x, s) is equivariant.
In the next section, we show that the case ν = −1 is special within this class.

3.2 Proper Bayes Equivariant Estimators

In this section we first show that the risk of an estimator that is equivariant under the
group (3.1), depends only on the one dimensional parameter λ = η‖θ‖2 ∈ R+. We
then consider Bayes estimators among the class of equivariant estimators relative to
proper priors on λ. We show that such estimators are admissible among equivariant
estimators and are also generalized Bayes estimators relative to Q(θ, η; ν, q) with
ν = −1 given by (3.6).

Theorem 3.2 The risk function of an equivariant estimator for the group (3.1),

θ̂ψ = {
1 − ψ(‖X‖2/S)

}
X

depends only on λ = η‖θ‖2 ∈ R+.

Proof As in (3.3), let the orthogonal matrix � be of the form

�T = (θ/‖θ‖ z2 . . . z p)
T and �Tθ = (‖θ‖ 0 . . . 0)T. (3.10)

By the change of variables, y = η1/2�Tx and v = ηs, we have



48 3 Estimation of a Normal Mean Vector Under Unknown Scale

R(θ̂ψ ; θ, η)

=
∫∫

η
∥∥{1 − ψ(‖x‖2/s)}x − θ

∥∥2
sn/2−1η(p+n)/2 f (η{‖x − θ‖2 + s})dxds

=
∫∫ ∥∥{1 − ψ(‖y‖2/v)}�y − η1/2θ

∥∥2
vn/2−1 f ({‖�y − η1/2θ‖2 + v})dydv

=
∫∫ ∥∥{1 − ψ(‖y‖2/v)}y − �Tη1/2θ

∥∥2
vn/2−1 f ({‖y − �Tη1/2θ‖2 + v})dydv

=
∫∫ {({1 − ψ(‖y‖2/v)}y1 − η1/2‖θ‖)2 + {1 − ψ(‖y‖2/v)}2

p∑

i=2

y2i
}

× vn/2−1 f
((

y1 − η1/2‖θ‖)2 +
p∑

i=2

y2i + v
)
dydv,

where the last equality follows from (3.10). This completes the proof. �

By Theorem 3.2, the risk function may be expressed as

R(θ̂ψ ; θ, η) = R̃(θ̂ψ ; η‖θ‖2). (3.11)

Now assume that λ = η‖θ‖2 ∈ R+ has the prior density π̄(λ), which, in this section,
we assume to be proper, that is,

∫ ∞
0 π̄(λ)dλ = 1. For an equivariant estimator θ̂ψ ,

we define the Bayes equivariant risk as

r̃(θ̂ψ ; π̄) =
∫ ∞

0
R̃(θ̂ψ ; λ)π̄(λ)dλ. (3.12)

In this book, the estimator θ̂ψ whichminimizes r̃(θ̂ψ ; π̄ ), is called a (relative to π̄(λ)).
In the following, let

π(λ) = �(p/2)

π p/2
λ1−p/2π̄(λ) (3.13)

so that π(‖μ‖2) is a proper probability density on R
p, that is,

∫

Rp

π(‖μ‖2)dμ = 1. (3.14)

Let the Bayes equivariant estimator, which minimizes r̃(θ̂ψ ; π̄ ), be denoted by θ̂π .
Theorem 3.3 below shows that θ̂π is equivalent to the generalized Bayes estimator of
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θ with respect to the joint prior density η−1ηp/2π(η‖θ‖2), and that it is admissible
among equivariant estimators.

Theorem 3.3 (Maruyama and Strawderman 2020) Assume that π̄(λ) is proper.

1. The Bayes equivariant risk, r̃(θ̂ψ ; π̄) given by (3.12) is

r̃(θ̂ψ ; π̄ ) =
∫

Rp

ψ(‖z‖2)
{
ψ(‖z‖2) − 2

(
1 − zTM2(z, π)

‖z‖2M1(z, π)

)}

× ‖z‖2M1(z, π)dz + p,

where

M1(z, π) =
∫∫

η(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη,

M2(z, π) =
∫∫

θη(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη.

(3.15)

2. Given π̄(λ), the minimizer of r̃(θ̂ψ ; π̄) with respect to ψ is

ψπ(‖z‖2) = argmin ψ r̃(θ̂ψ ; π̄ ) = 1 − zTM2(z, π)

‖z‖2M1(z, π)
, (3.16)

and the Bayes risk difference under π̄(λ) is

r̃(θ̂ψ ; π̄) − r̃(θ̂π ; π̄ )

=
∫

Rp

{
ψ(‖z‖2) − ψπ(‖z‖2)}2 ‖z‖2M1(z, π)dz. (3.17)

3. The Bayes equivariant estimator

θ̂π = {
1 − ψπ(‖X‖2/S)

}
X

with ψπ by (3.16), is equivalent to the generalized Bayes estimator of θ with
respect to the joint prior density η−1ηp/2π(η‖θ‖2) where π(λ) is given by (3.13).

4. The Bayes equivariant estimator θ̂π is admissible within the class of estimators
equivariant under the group (3.1).
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Proof (Parts 1 and 2) The Bayes equivariant risk given by (3.12) is

r̃(θ̂ψ ; π̄ ) =
∫

Rp

R̃(θ̂ψ ; ‖μ‖2)π(‖μ‖2)dμ

=
∫

Rp

R̃(θ̂ψ ; η‖θ‖2)ηp/2π(η‖θ‖2)dθ =
∫

Rp

R(θ̂ψ ; θ, η)ηp/2π(η‖θ‖2)dθ,

where the third equality follows from (3.11). Further, expanding terms, r̃(θ̂ψ ; π̄ )may
be expressed as

r̃(θ̂ψ ; π̄ ) =
∫

Rp

E
[
η‖X‖2ψ2(‖X‖2/S)

]
ηp/2π(η‖θ‖2)dθ

− 2
∫

Rp

E
[
η‖X‖2ψ(‖X‖2/S)

]
ηp/2π(η‖θ‖2)dθ

+ 2
∫

Rp

E
[
ηψ(‖X‖2/S)X Tθ

]
ηp/2π(η‖θ‖2)dθ

+
∫

Rp

E
[
η‖X − θ‖2] ηp/2π(η‖θ‖2)dθ.

(3.18)

Note that, by the propriety of the prior given by (3.14), the third term is equal to p,
that is,

∫

Rp

E
[
η‖X − θ‖2] ηp/2π(η‖θ‖2)dθ =

∫

Rp

pπ(‖μ‖2)dμ = p. (3.19)

The first and second terms of (3.18) with ψ j (‖x‖2/s) for j = 2, 1 respectively,
may be rewritten as

∫

Rp

E
[
η‖X‖2ψ j (‖X‖2/S)

]
ηp/2π(η‖θ‖2)dθ

=
∫∫∫

η‖x‖2ψ j (‖x‖2/s)η(2p+n)/2sn/2−1 f (η{‖x − θ‖2 + s})π(η‖θ‖2)dθdxds

=
∫∫∫

ηs‖z‖2ψ j (‖z‖2)η(2p+n)/2s(p+n)/2−1 f (η{‖√sz − θ‖2 + s})
× π(η‖θ‖2)dθdzds (z = x/

√
s, J = s p/2)

=
∫∫∫

ηs‖z‖2ψ j (‖z‖2)η(2p+n)/2s(2p+n)/2−1 f (sη{‖z − θ∗‖2 + 1})
× π(ηs‖θ∗‖2)dθ∗dzds (θ∗ = θ/

√
s, J = s p/2)

=
∫∫∫

‖z‖2ψ j (‖z‖2)η(2p+n)/2
∗ f (η∗{‖z − θ∗‖2 + 1})

× π(η∗‖θ∗‖2)dθ∗dzdη∗ (η∗ = ηs, J = 1/η)
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=
∫

Rp

‖z‖2ψ j (‖z‖2)M1(z, π)dz, (3.20)

where z = x/
√
s, J is the Jacobian, and

M1(z, π) =
∫∫

η(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη.

Similarly, the third term of (3.18) may be rewritten as

∫

Rp

E
[
ηψ(‖X‖2/S)X Tθ

]
ηp/2π(η‖θ‖2)dθ =

∫

Rp

ψ(‖z‖2)zTM2(z, π)dz, (3.21)

where

M2(z, π) =
∫∫

θη(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη.

Hence, by (3.19), (3.20) and (3.21), we have

r̃(θ̂ψ ; π̄ ) =
∫

Rp

{
ψ2(‖z‖2)‖z‖2M1(z, π)

−2ψ(‖z‖2){‖z‖2M1(z, π) − zTM2(z, π)}} dz + p. (3.22)

Then the Bayes equivariant solution, or minimizer of r̃(θ̂ψ ; π̄ ), is

ψπ(‖z‖2) = argmin ψ r̃(θ̂ψ ; π̄ ) = 1 − zTM2(z, π)

‖z‖2M1(z, π)
(3.23)

and hence the corresponding Bayes equivariant estimator is

θ̂π = zTM2(z, π)

‖z‖2M1(z, π)
x, (3.24)

where z = x/
√
s. Parts 1 and 2 follow from (3.22), (3.23) and (3.24).

[Part 3] Note that for � ∈ O(p), the group of p × p orthogonal matrices,
M2(�z, π) = �M2(z, π). Hence, as in (3.8) and (3.9), M2(z, q) is proportional to z
and the length of M2(z, q) is zTM2(z, q)/‖z‖, which implies that

M2(z, π) = zTM2(z, q)

‖z‖
z

‖z‖ . (3.25)

By (3.25),
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θ̂π = zTM2(z, π)

‖z‖2M1(z, π)
x = √

s
zzTM2(z, q)

‖z‖2M1(z, q)
= √

s
M2(z, π)

M1(z, π)

= √
s

∫∫
θη(2p+n)/2 f (η{‖x/√s − θ‖2 + 1})π(η‖θ‖2)dθdη

∫∫
η(2p+n)/2 f (η{‖x/√s − θ‖2 + 1})π(η‖θ‖2)dθdη .

By the change of variables θ∗ = √
sθ and η∗ = η/s, we have

θ̂π =
∫∫

θ∗η
(2p+n)/2
∗ f (η∗{‖x − θ∗‖2 + s})π(η∗‖θ∗‖2)dθ∗dη∗

∫∫
η

(2p+n)/2
∗ f (η∗{‖x − θ∗‖2 + s})π(η∗‖θ∗‖2)dθ∗dη∗

,

which is the generalized Bayes estimator of θ with respect to η−1ηp/2π(η‖θ‖2), as
in (3.7).

[Part 4] Since the quadratic loss function is strictly convex, the Bayes solution is
unique, and hence Part 4 follows. �

As in (3.9), the generalized Bayes estimator of θ with respect to Q(θ, η; ν, π) for
any ν ∈ R, given by (3.6), is equivariant under the group (3.1). Part 3 of Theorem
3.3, however, applies only to the special case of

ν = −1. (3.26)

This is the main reason that we focus on the case of ν = −1 in this book. It should be
noted, however, that Theorem 3.3 implies neither admissibility or inadmissibility of
generalized Bayes estimators within the class of equivariant estimators, if ν �= −1.

3.3 Admissible Bayes Equivariant Estimators Through
the Blyth Method

Even if π̄(λ) on R+ (and hence π(‖μ‖2) on R
p) is improper, that is

∫

Rp

π(‖μ‖2)dμ =
∫ ∞

0
π̄(λ)dλ = ∞,

the estimator θ̂π discussed in the previous section can still be defined if M1(z, π)

and M2(z, π) given by (3.15) are both finite. The admissibility of such θ̂π within the
class of equivariant estimators can be investigated through Blyth (1951) method.
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3.3.1 A General Admissibility Equivariance Result
for Mixture Priors

Suppose

π̄(λ) =
∫ ∞

0

λp/2−1g−p/2

2p/2�(p/2)
exp

(
− λ

2g

)
�(dg)

or equivalently

π(‖μ‖2) =
∫ ∞

0

g−p/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
�(dg), (3.27)

where
∫ ∞
0 �(dg) = ∞. Then, for (3.15), we have

M1(z, π) =
∫∫

η(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη

= 1

q1(p, n)

∫∫∫
η(2p+n)/2 exp

(
−η{‖z − θ‖2 + 1}

2

)

× 1

(2π)p/2gp/2
exp

(
−η‖θ‖2

2g

)
�(dg)dθdη

= 1

q1(p, n)

∫∫
η(p+n)/2

(g + 1)p/2
exp

(
−η{‖z‖2/(g + 1) + 1}

2

)
�(dg)dη

= �((p + n)/2 + 1)

q1(p, n)2−(p+n)/2−1

∫ ∞

0

(g + 1)−p/2�(dg)

{1 + ‖z‖2/(g + 1)}(p+n)/2+1
, (3.28)

where the third equality follows from Lemma A.1, and

q1(p, n) = (2π)p/2�(n/2)2n/2. (3.29)

Similarly, for (3.15), we have

M2(z, π) = �((p + n)/2 + 1)

q1(p, n)2−(p+n)/2−1

∫ ∞

0

gz

g + 1

(g + 1)−p/2�(dg)

{1 + ‖z‖2/(g + 1)}(p+n)/2+1
. (3.30)

Then, by (3.16), (3.28) and (3.30), the (improper or generalized) Bayes equivariant
estimator is

θ̂π = {
1 − ψπ(‖z‖2)} x

=
(
1 −

∫ ∞
0 (g + 1)−p/2−1{1 + ‖z‖2/(g + 1)}−(p+n)/2−1�(dg)
∫ ∞
0 (g + 1)−p/2{1 + ‖z‖2/(g + 1)}−(p+n)/2−1�(dg)

)
x, (3.31)
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where ‖z‖2 = ‖x‖2/s. For some k2i (g), assume the propriety of k2i (g)�(dg) as∫ ∞
0 k2i (g)�(dg) < ∞. Then

π̄i (λ) =
∫ ∞

0

λp/2−1

gp/22p/2�(p/2)
exp

(
− λ

2g

)
k2i (g)�(dg) (3.32)

is also proper. Let θ̂π i = {1 − ψπ i (‖x‖2/s)}x be the proper Bayes equivariant esti-
mator under π̄i (λ). By (3.17), the Bayes risk difference between θ̂π and θ̂π i under π̄i

is

r̃(θ̂π ; π̄i ) − r̃(θ̂π i ; π̄i )

=
∫

Rp

{
ψπ(‖z‖2) − ψπ i (‖z‖2)

}2 ‖z‖2M1(z, πi )dz. (3.33)

For w = ‖z‖2, the integrand of (3.33) is expressed as

{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

= w

(∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1�(dg)
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1�(dg)

−
∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)

)2

× �((p + n)/2 + 1)2(p+n)/2+1

q1(p, n)

∫ ∞

0

(g + 1)−p/2k2i (g)�(dg)

{1 + w/(g + 1)}(p+n)/2+1
. (3.34)

As in Sect. 2.4.2, with the sequence k2i (g) = i/(g + i), we have the following result
on admissibility within the class of equivariant estimators.

Theorem 3.4 (Maruyama and Strawderman 2020) The estimator θ̂π is admissible
within the class of equivariant estimators if

∫ ∞

0

�(dg)

g + 1
< ∞.

Proof Under the above assumption, k2i (g) = i/(g + i) gives an increasing sequence
of proper priors since

∫ ∞

0
k2i (g)�(dg) = i

∫ ∞

0

�(dg)

g + i
≤ i

∫ ∞

0

�(dg)

g + 1
< ∞,

for fixed i . Applying the inequality (Part 3 of Lemma A.3) to (3.34), we have
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q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1
{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

≤ 2w

( {∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1�(dg)}2
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1�(dg)

+ {∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)}2
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)

)
,

where q1(p, n) is given by (3.29). Further, applying the Cauchy-Schwarz inequality
(Part 1 of Lemma A.3) to the first and second terms, we have

q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1
{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

≤ 4‖z‖2
∫ ∞

0

(g + 1)−p/2−2�(dg)

{1 + ‖z‖2/(g + 1)}(p+n)/2+1
.

Hence, we have

q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1

∫

Rp

{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )dz

≤ 4
∫

Rp

∫ ∞

0

‖z‖2
{1 + ‖z‖2/(g + 1)}(p+n)/2+1

�(dg)

(g + 1)p/2+2
dz

= 4
π p/2

�(p/2)

∫ ∞

0

∫ ∞

0

t p/2

(1 + t)(p+n)/2+1

�(dg)

g + 1
dt

= 4
π p/2

�(p/2)
B(p/2 + 1, n/2)

∫ ∞

0

�(dg)

g + 1
< ∞,

where the equalities follow from Part 1 of Lemma A.2 and Part 3 of Lemma A.2,
respectively.

Then by the dominated convergence theorem, we have

lim
i→∞

{
r̃(θ̂π ; π̄i ) − r̃(θ̂π i ; π̄i )

}
= 0

which, by the Blyth method, implies the admissibility of θ̂π within the class of
equivariant estimators. �

As in Sect. 2.4.3, suppose �(dg) in (3.27) has a regularly varying density of the
form

π(g; a, b, c) = 1

(g + 1)a

( g

g + 1

)b 1

{log(g + 1) + 1}c . (3.35)

Then, by (3.31), the corresponding generalized Bayes estimator is of the form
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θ̂π =
(
1 −

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1π(g; a, b, c)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1π(g; a, b, c)dg

)
x .

(3.36)
As a corollary of Theorem 3.4, using the argument in the admissibility proofs of
Sect. 2.4.3, we have the following result.

Corollary 3.1 The generalized Bayes estimator θ̂π given by (3.36) is admissible
within the class of equivariant estimators if

either {a > 0, b > −1, c ∈ R} or {a = 0, b > −1, c > 1}.

3.3.2 On the Boundary Between Equivariant Admissibility
and Inadmissibility

For the class of densitiesπ(g; a, b, c)given by (3.35),with either−p/2 + 1 < a < 0
or {a = 0 and c > 1}, Corollaries 3.3 and 3.4 in Sect. 3.6 show the inadmissibility
of the corresponding generalized Bayes estimator by finding an improved estimator
among the class of equivariant estimators. Hence, together with Corollary 3.1, the
issue of admissibility/inadmissibility within the class of equivariant estimators for
all values of a and c except for the cases {a = 0 and |c| ≤ 1}, has been settled. The
following result addresses this case.

Theorem 3.5 (Maruyama and Strawderman 2020) Assume the measure �(dg) in
(3.27) has the density π(g; a, b, c) given by (3.35) with

a = 0, b > −1, −1 < c ≤ 1.

Then the corresponding generalized Bayes estimator is admissible within the class
of equivariant estimators.

Proof See Appendix A.6. �

Our proof unfortunately does not cover the case c = −1, although we conjecture
that admissibility holds within the class of equivariant estimators as well. The proof
of Theorem 3.5 is based on Maruyama and Strawderman (2020), where b ≥ 0 was
assumed. In this book, we also include the case −1 < b < 0.

While this section considers admissibility only within the class of equivariant esti-
mators, the next section broadens the discussion and considers admissibility among
all estimators.
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3.4 Admissibility Among All Estimators

3.4.1 The Main Result

In this section, we consider admissibility of generalized Bayes estimators among all
estimators for a broad class of mixture priors. In particular, we consider the following
class of joint prior densities:

π∗(θ, η) = 1

η
× ηp/2π(η‖θ‖2)

where

π(‖μ‖2) =
∫ ∞

0

gp/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
π(g; a, b, 0)dg, (3.37)

and where π(g; a, b, c) is given in (3.35). We note that all such priors are improper
because each is non-integrable in η for any given θ . Then, as in (3.36), the corre-
sponding generalized Bayes estimator is

{1 − φ(‖x‖2/s)/{‖x‖2/s}}x

where

φ(w) = w

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1π(g; a, b, 0)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1π(g; a, b, 0)dg

. (3.38)

Here is the main theorem of this section.

Theorem 3.6 (Maruyama and Strawderman 2021, 2023a) The generalized Bayes
estimator under π∗(θ, η) is admissible among all estimators if

max(−p/2 + 1, 0) < a < n/2 + 2, b > −1, c = 0.

Remark 3.1 As far as we know, Theorem 3.6 is the only known result on admissi-
bility of generalized Bayes estimators of the form

{
1 − φ(‖x‖2/s)/(‖x‖2/s)} x . As

in Corollary 3.5 in Sect. 3.7, the generalized Bayes estimator under π∗(θ, η) is also
minimax if

−p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
, b ≥ 0, c = 0.

Strawderman (1973) considered the truncatedproper prior onη,ηc I(γ,∞) with c < −1
and γ > 0 instead of the invariant prior on η. Under this prior, a class of proper Bayes,
and hence admissible estimators dominating the usual unbiased estimator for p ≥ 5
was found. However, because of the truncation of the prior on η, such estimators are
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not scale equivariant of the form
{
1 − φ(‖x‖2/s)/(‖x‖2/s)} x , but instead have the

form
{
1 − φ(‖x‖2/s, s)/(‖x‖2/s)} x .

Recall π(g; a, b, c) given by (3.37) is proper for a > 1 and c ∈ R. In order to prove
the result, we construct a sequence of proper priors πi (θ, η) converging to π∗(θ, η)

of the form

πi (θ, η) = h2i (η)

η

∫ ∞

0

ηp/2

(2π)p/2gp/2
exp

(
− η

2g
‖θ‖2

)
π(g)k2i (g)dg (3.39)

where

hi (η) = log(i + 1)

log(i + 1) + | log η| ,

ki (g) =
⎧
⎨

⎩
1 − log(g + 1)

log(g + 1 + i)
max(−p/2 + 1, 0) < a ≤ 1,

1 1 < a < n/2 + 2.

Note that log(1 + 1) < 1 < log(2 + 1). For this technical reason, the sequence starts
at i = 2. Properties of hi (η) and ki (g) are provided in Lemmas 3.1 and A.6. In
particular, we emphasize that h2i (η)/η and π(g)k2i (g) are both proper by Part 2 of
Lemma 3.1 and Part 5 of Lemma A.6, respectively, which implies that πi (θ, η) given
by (3.39) is proper.

Lemma 3.1 Let

hi (η) = log(i + 1)

log(i + 1) + | log η| .

1. hi (η) is increasing in i and limi→∞ hi (η) = 1 for all η > 0.

2.
∫ ∞

0
η−1h2i (η)dη = 2 log(i + 1).

Proof (Part 1) This part is straightforward given the form of hi (η).
[Part 2] Let j = log(i + 1). The results follow from the integrals,

∫ ∞

0

h2i (η)

η
dη =

∫ 1

0

j2dη

η( j − log η)2
+

∫ ∞

1

j2dη

η( j + log η)2

=
[ j2

j − log η

]1

0
+

[ − j2

j + log η

]∞
1

= 2 j.

�
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3.4.2 A Proof of Theorem 3.6

We start by developing expressions for Bayes estimators and risk differences which
are used to prove Theorem 3.6. We make use of the following notation. For any
function ψ(θ, η), let

m(ψ(θ, η))

=
∫∫

ψ(θ, η)
ηp/2

(2π)p/2
exp

(
−η

‖x − θ‖2
2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)
dθdη.

Then, under the loss (1.3), the generalized Bayes estimator under the improper prior
π∗(θ, η) is

θ̂∗ = m(ηθπ∗(θ, η))

m(ηπ∗(θ, η))

and the proper Bayes estimator under the proper prior πi (θ, η) is

θ̂i = m(ηθπi (θ, η))

m(ηπi (θ, η))
.

The Bayes risk difference under πi is

�i =
∫

Rp

∫ ∞

0

{
E

[
η‖θ̂∗ − θ‖2

]
− E

[
η‖θ̂i − θ‖2

]}
πi (θ, η)dθdη.

Note that ‖θ̂∗ − θ‖2 − ‖θ̂i − θ‖2 = ‖θ̂∗‖2 − ‖θ̂i‖2 − 2θ T(θ̂∗ − θ̂i ). Then �i can be
re-expressed as

�i =
∫∫∫∫

η
(
‖θ̂∗‖2 − ‖θ̂i‖2 − 2θ T(θ̂∗ − θ̂i )

)

× ηp/2

(2π)p/2
exp

(
−η

‖x − θ‖2
2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)
πi (θ, η)dxdsdθdη

=
∫∫ {

m(ηπi )(‖θ̂∗‖2 − ‖θ̂i‖2) − 2m(ηθ Tπi )(θ̂∗ − θ̂i )
}
dxds

=
∫∫

‖θ̂∗ − θ̂i‖2m(ηπi (θ, η))dxds. (3.40)

Next, we rewrite θ̂∗, θ̂i and ‖θ̂∗ − θ̂i‖2m(ηπi (θ, η)), the integrand of (3.40). By
Lemma A.1, we have
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m(ηπi ) =
∫∫∫

η
ηp/2

(2π)p/2
exp

(
−η

‖x − θ‖2
2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)

× ηp/2

(2π)p/2gp/2
exp

(
− η

2g
‖θ‖2

)h2i (η)

η
π(g)k2i (g)dθdgdη

= sn/2−1

q1(p, n)

∫∫
F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη, (3.41)

where w = ‖x‖2/s, q1(p, n) = (2π)p/2�(n/2)2n/2, and

F(g, η;w, s) = ηp/2+n/2

(g + 1)p/2
exp

(
−ηs

2

(
1 + w

g + 1

))
.

Similarly we have

m(ηθπi ) = sn/2−1

q1(p, n)

∫∫
gx

g + 1
F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη. (3.42)

By (3.41) and (3.42), the Bayes estimator under πi is

θ̂i = m(θηπi )

m(ηπi )
=

(
1 − φi (w, s)

w

)
x, (3.43)

where

φi (w, s) = w

∫∫
(g + 1)−1F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη∫∫

F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη
. (3.44)

With hi ≡ 1 and ki ≡ 1 in (3.44), we have

φ∗(w, s) = w

∫∫
(g + 1)−1F(g, η;w, s)π(g)dgdη

∫∫
F(g, η;w, s)π(g)dgdη

(3.45)

and our target generalized Bayes estimator given by

θ̂∗ =
(
1 − φ∗(w, s)

w

)
x . (3.46)

Note that

∫ ∞

0
F(g, η;w, s)dη = �(p/2 + n/2 + 1)

(g + 1)p/2

( 2s−1

1 + w/(g + 1)

)p/2+n/2+1

which implies

φ∗(w, s)

w
=

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1π(g)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1π(g)dg

. (3.47)
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In the following development, however, we utilize (3.45) not (3.47) as the expression
of φ∗(w, s).

By (3.41), (3.43) and (3.46), we have

q1(p, n)

‖x‖2sn/2−1

∥∥∥θ̂∗ − θ̂i

∥∥∥
2
m(ηπi ) = q1(p, n)

sn/2−1

(φ∗(w, s)

w
− φi (w, s)

w

)2
m(ηπi )

= A(w, s; i),

where

A(w, s, i) =
(

∫∫
Fπ

g + 1
dgdη

∫∫
Fπdgdη

−

∫∫
Fh2i πk

2
i

g + 1
dgdη

∫∫
Fh2i πk

2
i dgdη

)2 ∫∫
Fh2i πk

2
i dgdη.

(3.48)
Applying the inequality (Part 3 of Lemma A.3) to (3.48), we have

1

3

(∫∫
(g + 1)−1Fπdgdη

∫∫
Fπdgdη

−
∫∫

(g + 1)−1Fh2i πk
2
i dgdη∫∫

Fh2i πk
2
i dgdη

)2

≤
(∫∫

(g + 1)−1Fπdgdη
∫∫

Fπdgdη
−

∫∫
(g + 1)−1Fh2i πdgdη∫∫

Fh2i πdgdη

)2

+
(∫∫

(g + 1)−1Fh2i πdgdη∫∫
Fh2i πdgdη

−
∫∫

(g + 1)−1Fh2i πk
2
i dgdη∫∫

Fh2i πdgdη

)2

+
(∫∫

(g + 1)−1Fh2i πk
2
i dgdη∫∫

Fh2i πdgdη
−

∫∫
(g + 1)−1Fh2i πk

2
i dgdη∫∫

Fh2i πk
2
i dgdη

)2

.

Hence we have

A(w, s; i)
3

≤ A1(w, s; i) + A2(w, s; i) + A3(w, s; i),

where

A1(w, s; i) =
{∫∫ ∣∣∣

1
∫∫

Fπdgdη
− h2i∫∫

Fh2i πdgdη

∣∣∣
Fπdgdη

g + 1

}2
∫∫

Fh2i πdgdη,

A2(w, s; i) =

(∫∫
(g + 1)−1Fh2i π(1 − k2i )dgdη

)2

∫∫
Fh2i πdgdη

,

A3(w, s; i) =
(∫∫

(g + 1)−1Fh2i πk
2
i dgdη

)2

(
∫∫

Fh2i πdgdη)2
∫∫

Fh2i πk
2
i dgdη

(∫∫
Fh2i π(1 − k2i )dgdη

)2

.

In Sects. A.7.1–A.7.3, we prove that
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lim
i→∞

∫∫
‖x‖2sn/2−1A�(‖x‖2/s, s; i)dxds = 0, for � = 1, 2, 3,

which implies that �i → 0 as i → ∞. Thus the corresponding generalized Bayes
estimator is admissible among all estimators, as was to be shown.

3.5 Simple Bayes Estimators

Interestingly, and perhaps somewhat surprisingly, suitable choices of the constants
a and b (with c = 0) lead to admissible minimax generalized Bayes estimators of a
simple form. Further, this form represents a relatively minor adjustment to the form
of the James–Stein estimator. Here are the details. Consider the case b = n/2 − a in
(3.38). For the numerator of (3.38), we have

∫ ∞

0

(g + 1)−p/2−a−1{g/(g + 1)}bdg
{1 + w/(g + 1)}p/2+n/2+1

=
∫ ∞

0

gn/2−adg

(g + 1 + w)p/2+n/2+1

= 1

(1 + w)p/2+a

∫ ∞

0

tn/2−adg

(1 + t)p/2+n/2+1
= B(n/2 + 1 − a, p/2 + a)

(1 + w)p/2+a+2
.

Similarly, for the denominator of of (3.38), we have

∫ ∞

0

(g + 1)−p/2−a{g/(g + 1)}bdg
{1 + w/(g + 1)}p/2+n/2+1

=
∫ ∞

0
(1 + g)

(g + 1)−p/2−1−a{g/(g + 1)}bdg
{1 + w/(g + 1)}p/2+n/2+1

= B(n/2 + 1 − a, p/2 + a)

(1 + w)p/2+a
+ B(n/2 + 2 − a, p/2 − 1 + a)

(1 + w)p/2−1+a

= B(n/2 + 1 − a, p/2 + a)

(1 + w)p/2+a

(
1 + n/2 + 1 − a

p/2 − 1 + a
(w + 1)

)
.

Thus the generalized Bayes estimator is of the form

θ̂SB
α =

(
1 − α

‖x‖2/s + α + 1

)
x,

where α = (p/2 − 1 + a)/(n/2 + 1 − a). This estimator was discovered and stud-
ied in Maruyama and Strawderman (2005). By Theorem 3.6, provided

α >
p − 2

n + 2
⇔ a > 0,

θ̂SB
α is admissible among all estimators. Also, by Theorem 3.5, θ̂SB

α with α = (p −
2)/(n + 2) is admissible within the class of equivariant estimators. Additionally, by
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Corollary 3.5, in Sect. 3.7 below, minimaxity of θ̂SB
α holds for

0 < α ≤ 2
p − 2

n + 2
⇔ −p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
.

3.6 Inadmissibility

3.6.1 A General Sufficient Condition for Inadmissibility

This section is devoted to the question of inadmissibility of shrinkage estimators of
the form θ̂φ = (1 − φ(w)/w)x where w = ‖x‖2/s. Note that such estimators are
equivariant. By (1.48) in Chap. 1, withψ(w) = φ(w)/w, the SURE for an estimator
of the form θ̂φ is

R̂φ = p + (n + 2){φ(w) − 2cp,n}φ(w)

w
− 4φ′(w) {1 + φ(w)} , (3.49)

where cp,n = (p − 2)/(n + 2). For a competing estimator of the form

θ̂φ+ν =
(
1 − φ(w) + ν(w)

w

)
x,

the difference in the SURE between θ̂φ and θ̂φ+ν is

R̂φ − R̂φ+ν = ν(w){�1(w;φ) + �2(w;φ, ν)} (3.50)

where

�1(w;φ) = 2(n + 2)
cp,n − φ(w)

w
+ 4φ′(w),

�2(w;φ, ν) = −(n + 2)
ν(w)

w
+ 4ν ′(w) + 4

ν ′(w)

ν(w)
{1 + φ(w)}.

Our approach to finding an estimator dominating θ̂φ is to find a non-zero solution
ν(w) to the differential inequality R̂φ − R̂φ+ν ≥ 0. Here is the result.

Theorem 3.7 (Maruyama and Strawderman 2017) Let cp,n = (p − 2)/(n + 2).
Suppose

lim sup
w→∞

φ(w) ≤ cp,n

and lim inf
w→∞ logw

{
(n + 2){cp,n − φ(w)} + 2wφ′(w)

}
> 2(1 + cp,n).

(3.51)

Then the estimator θ̂φ = (1 − φ(w)/w)x with w = ‖x‖2/s is inadmissible.
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Proof By (3.51), there exist

w1 > exp(1) and 0 < ε < 1 (3.52)

such that for all w ≥ w1,

φ(w) − cp,n ≤ 1 + cp,n
6

ε

and

logw
{
(n + 2){cp,n − φ(w)} + 2wφ′(w)

} − 2(1 + cp,n)(1 + ε) ≥ 0,

or equivalently �1(w;φ) − 4
(1 + cp,n)(1 + ε)

w logw
≥ 0,

(3.53)

Let q(w;w2) be the cumulative distribution function of Y + w2, wherew2 > w1 will
be precisely determined later and Y is a Gamma random variable with the probability
density function y exp(−y)I(0,∞)(y), that is,

q(w;w2) =
{
0 for 0 ≤ w < w2∫ w−w2

0 y exp(−y)dy for w ≥ w2.

Then q(w;w2) is non-decreasing, differentiable with q ′(w)|w=w2 = 0 and q(∞) =
1.

Let ν(w) for the competing estimator be given by

ν(w;w2) = q(w;w2)

(logw)1+ε/2
, (3.54)

with ε satisfying (3.52) and (3.53). Then, for all w ≥ w2, we have

�2[w;φ, ν(w;w2)] + 4
(1 + cp,n)(1 + ε)

w logw

= −(n + 2)
q(w;w2)

w(logw)1+ε/2
− 4(1 + ε/2)q(w;w2)

w(logw)2+ε/2
+ 4q ′(w;w2)

(logw)1+ε/2

+ 4
{q ′(w;w2)

q(w;w2)
− 1 + ε/2

w logw

}
{1 + φ(w)} + 4

(1 + cp,n)(1 + ε)

w logw
.

Note that q ′(w;w2) ≥ 0, q(w;w2) ≤ 1, (logw)2+ε/2 ≥ (logw)1+ε/2 and

4(1 + ε/2){1 + φ(w)} ≤ 4(1 + ε/2)
(
1 + cp,n + 1 + cp,n

6
ε
)

= (1 + cp,n)
(
4 + 2ε + 2

3
(1 + ε/2)ε

)
≤ (4 + 3ε)(1 + cp,n).
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Hence

�2[w;φ, ν(w;w2)] + 4
(1 + cp,n)(1 + ε)

w logw

≥ −4(1 + cp,n)(1 + 3ε/4)

w logw
− 4(1 + ε/2) + n + 2

w(logw)1+ε/2
+ 4

(1 + cp,n)(1 + ε)

w logw

= (1 + cp,n)ε

w logw

(
1 − 4(1 + ε/2) + n + 2

(1 + cp,n)ε

1

(logw)ε/2

)

≥ (1 + cp,n)ε

w logw

(
1 − 4(1 + ε/2) + n + 2

ε

1

(logw)ε/2

)
.

(3.55)

Now let

w2 = max
{
exp

({4(1 + ε/2) + n + 2

ε

}2/ε)
, w1

}
.

Then, by (3.53) and (3.55), we have

�1(w;φ) + �2[w;φ, ν(w;w2)]
=

{
�1(w;φ) − (1 + cp,n)(1 + ε)

(1/4)w logw

}
+

{
�2[w;φ, ν(w;w2)] + (1 + cp,n)(1 + ε)

(1/4)w logw

}

≥ 0, (3.56)

for all w ≥ w2. Hence, by (3.50), (3.54) and (3.56),

R̂φ − R̂φ+ν = ν(w){�1(w;φ) + �2(w;φ, ν(w;w2))}
{

= 0 for w < w2

≥ 0 for w ≥ w2,

which completes the proof. �

As a corollary of Theorem 3.7, we have the following result.

Corollary 3.2 The estimator θ̂φ is inadmissible if φ(w) satisfies either

lim sup
w→∞

φ(w) <
p − 2

n + 2
and lim

w→∞ wφ′(w) = 0 (3.57)

or

lim
w→∞ φ(w) = p − 2

n + 2
, lim

w→∞ w logw
φ′(w)

φ(w)
= 0,

and lim inf
w→∞ logw

{ p − 2

n + 2
− φ(w)

}
>

2(p + n)

(n + 2)2
.

(3.58)
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3.6.2 Inadmissible Generalized Bayes Estimators

In this subsection, we apply the results of the previous subsection to a class of
generalized Bayes estimators. As in Sect. 2.5, we assume that �(dg) in (3.27) has a
regularly varying density π(g) = (g + 1)−aξ(g)where ξ(g) satisfies AS.1 and AS.2
given in the end of Sect. 2.1. The corresponding generalized Bayes estimator is of
the form (1 − φ(w)/w)x where

φ(w) = w

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

,

In addition to AS.1 and AS.2, we assume the following mild assumptions on the
asymptotic behaviors on ξ(g);

A.S.5 lim sup
g→∞

{
(g + 1) log(g + 1)

ξ ′(g)
ξ(g)

}
is bounded,

A.S.6 ξ(g) is ultimatelymonotone i.e., ξ(g) ismonotone on (g0,∞) for some g0 > 0.

Under AS.1, AS.2, AS.5 and AS.6, we have the following result on the properties of
φ(w).

Lemma 3.2 Suppose−p/2 + 1 < a < n/2 + 1. AssumeAS.1,AS.2,AS.5 andAS.6.
Then φ(w) satisfies the following;

1. lim
w→∞

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

w−p/2+1−aξ(w)B(p/2 − 1 + a, n/2 − a + 2)
= 1.

2. lim
w→∞ φ(w) = p/2 − 1 + a

n/2 + 1 − a
.

3. lim
w→∞ w

φ′(w)

φ(w)
= 0.

Proof See Sect. A.10. �
By (3.57) of Corollary 3.2 and Parts 2 and 3 of Lemma 3.2, we have the following
result.

Theorem 3.8 Assume AS.1, AS.2, AS.5 and AS.6. Then the generalized Bayes esti-
mator, with respect to the regularly varying density π(g) = (g + 1)−aξ(g), is inad-
missible if −p/2 + 1 < a < 0.

As inSect. 2.4.3, suppose�(dg) in (3.27) has a regularly varyingdensityπ(g; a, b, c)
as given in (3.35). It is easily seen that ξ(g) = {g/(g + 1)}b{log(g + 1) + 1}−c, for
b > −1 and c ∈ R, satisfies AS.5 and AS.6 as well as AS.1, AS.2. Hence we have
the following corollary.

Corollary 3.3 Assume

−p/2 + 1 < a < 0, b > −1, c ∈ R,

inπ(g; a, b, c). Then the corresponding generalized Bayes estimator is inadmissible.
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When limw→∞ φ(w) = (p − 2)/(n + 2), recall that a sufficient condition for inad-
missibility is given by (3.58) of Corollary 3.2. The following lemma on the behavior
of φ(w) is helpful for providing an inadmissibility result for π(g; a, b, c) when
a = 0.

Lemma 3.3 Let a = 0, b > −1, and c �= 0 in π(g; a, b, c). Then

lim
w→∞ logw

{ p − 2

n + 2
− φ(w)

}
= −c

2(p + n)

(n + 2)2
, (3.59)

and lim
w→∞ w logw

φ′(w)

φ(w)
= 0. (3.60)

Proof See Sect. A.11. �

Then, by Parts 2 and 3 of Lemma 3.2, Lemma 3.3, and (3.58) of Corollary 3.2, we
have the following result.

Corollary 3.4 Assume
a = 0, b > −1, c < −1

inπ(g; a, b, c). Then the corresponding generalized Bayes estimator is inadmissible.

Note that Corollaries 3.3 and 3.4 correspond to Corollary 2.1 for the known scale
case.

3.7 Minimaxity

3.7.1 A Sufficient Condition for Minimaxity

In this section, we study the minimaxity of shrinkage estimators of the form

θ̂φ =
(
1 − φ(w)

w

)
x

where w = ‖x‖2/s and φ(w) is differentiable. The risk function of the estimator is

R(θ̂φ; θ, η) = p − 2
n∑

i=1

E
[
η
φ(W )

W
Xi (Xi − θi )

]
+ η E

[
S
φ2(W )

W

]
. (3.61)

As in (3.49) the SURE for an estimator θ̂φ is give by R(θ̂φ; θ, η) = E[R̂φ(W )], where

R̂φ(w) = p + {(n + 2)φ(w) − 2(p − 2)}φ(w)

w
− 4φ′(w) {1 + φ(w)} . (3.62)
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Hence, for a nonnegative φ(w), we have the following equivalence,

w{R̂φ(w) − p}
φ(w){1 + φ(w)} ≤ 0 ⇔ 2(p − 2) − (n + 2)φ(w)

1 + φ(w)
+ 4w

φ′(w)

φ(w)
≥ 0.

This implies the following result, which is Lemma 4.1 of Wells and Zhou (2008).

Theorem 3.9 Assume that for p ≥ 3 and a constant γ ≥ 0, the differentiable func-
tion φ(w) satisfies the conditions: for any w ≥ 0

wφ′(w)

φ(w)
≥ −γ and 0 ≤ φ(w) ≤ 2

p − 2 − 2γ

n + 2 + 4γ
.

Then, the estimator θ̂φ is minimax.

Kubokawa (2009) proposed an alternative expression for the risk function which
differs from the SURE estimator given by (3.62). We will use the result below to
strengthen Theorem 3.9.

Theorem 3.10 (Kubokawa 2009) The risk function is R(θ̂φ; θ, η) = p +
η E [(S/W )I(W )], where

I(w) = φ2(w) + 2φ(w) − (n + p)
∫ 1

0
zn/2φ(w/z)dz.

Proof Unlike the development of (3.62), we apply both Lemmas 1.1 and 1.2 to the
second term on the right hand side of (3.61). Define a function �(W ) by

�(w) = 1

2w

∫ 1

0
zn/2φ(w/z)dz = wn/2

2

∫ ∞

w

φ(t)

tn/2+2
dt,

where the third expression results from the transformation t = w/z. Using Lemma
1.2, we obtain

η ES | X [�(W )S] = ES | X
[
n�(W ) + 2S

∂

∂s
�(W )

]
= ES | X

[φ(W )

W

]
, (3.63)

where ES | X [·] denotes the conditional expectation with respect to S given X . Note
that all the expectations are finite since φ(w) is bounded.

By (3.63), we can rewrite the cross product term in (3.61) as

η

p∑

i=1

E
[φ(W )

W
Xi (Xi − θi )

]
= η2

p∑

i=1

E [S�(W )Xi (Xi − θi )] . (3.64)

Note
∂

∂xi
xi�(‖x‖2/s) = �(‖x‖2/s) + 2

x2i
s

�′(w)

∣∣∣∣
w=‖x‖2/s

, (3.65)
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where

�′(w) = 1

2

(n
2
wn/2−1

∫ ∞

w

φ(t)

tn/2+2
dt − φ(w)

w2

)
= 1

2

(
n
�(w)

w
− φ(w)

w2

)
. (3.66)

By Lemma 1.1, (3.65) and (3.66), we have

η

p∑

i=1

EX | S [�(W )Xi (Xi − θi )] = EX | S
[
(p + n)�(W ) − φ(W )

W

]

and, by (3.64)

η

p∑

i=1

E
[φ(W )

W
Xi (Xi − θi )

]
= η E

[
S
{
(p + n)�(W ) − φ(W )

W

}]
.

The proof is completed by combining the appropriate terms above. �

Suppose φ(w) is differentiable in Theorem 3.10. Then we have

φ(w/z) − zγ φ(w) = zγ

wγ
{(w/z)γ φ(w/z) − wγ φ(w)}

= zγ

wγ

∫ w/z

w

{ d

dt
tγ φ(t)

}
dt = zγ

wγ

∫ w/z

w

tγ−1φ(t)
{
γ + t

φ′(t)
φ(t)

}
dt,

and hence

I(w) = φ2(w) + 2φ(w) − (n + p)
∫ 1

0
zn/2 {φ(w/z) − zγ φ(w) + zγ φ(w)} dz

≤ φ2(w) + 2φ(w) − (n + p)φ(w)

∫ 1

0
zn/2+γ dz

= φ2(w) + 2φ(w) − 2
n + p

n + 2 + 2γ
φ(w)

= φ(w)
(
φ(w) − 2

p − 2 − 2γ

n + 2 + 2γ

)
,

where the inequality follows if φ(w) ≥ 0 andwφ′(w)/φ(w) + γ ≥ 0. Thenwe have
the following result.

Theorem 3.11 (Kubokawa 2009) Assume that for p ≥ 3 and a constant γ ≥ 0, the
differentiable function φ(w) satisfies the conditions for any w ≥ 0,

wφ′(w)

φ(w)
≥ −γ and 0 ≤ φ(w) ≤ 2

p − 2 − 2γ

n + 2 + 2γ
.

Then, the estimator θ̂φ is minimax.
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Note that the result given by Theorem 3.11 is slightly stronger than that in Theorem
3.9 since

2
p − 2 − 2γ

n + 2 + 4γ
≤ 2

p − 2 − 2γ

n + 2 + 2γ
.

For this reason we will use Theorem 3.11, to consider the minimaxity of generalized
Bayes estimator in Sect. 3.7.2.

3.7.2 Minimaxity of Some Generalized Bayes Estimators

Suppose π(g) = (g + 1)−aξ(g) where ξ(g) satisfies AS.1–AS.4 as in Sect. 2.5.1.
In this section, we investigate minimaxity of the corresponding generalized Bayes
estimators with

φ(w) = w

∫ ∞
0 (g + 1)−p/2−a−1{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

.

Recall that, in Sect. 2.5.1, �(g), �1(g), �2(g) and �2∗ were defined based on ξ(g)
and that the properties of these functions are summarized in Lemma2.1. These results
imply to the following properties for φ(w).

Lemma 3.4 Suppose −p/2 + 1 < a < n/2 + 1 − �2∗. Then

φ(w) ≤ p − 2 + 2a + 2�2∗
n + 2 − 2a − 2�2∗

and w
φ′(w)

φ(w)
≥ −�2∗. (3.67)

Proof Section A.12. �

Hence by Theorem 3.11 and Lemma 3.4, we have the following result.

Theorem 3.12 The generalized Bayes estimator is minimax if

p + 2 + 2a + 2�2∗
n − 2 − 2a − 2�2∗

≤ 2
p − 2 − 2�2∗
n + 2 + 2�2∗

.

For ξ(g) = {g/(g + 1)}b/{log(g + 1) + 1}c with b ≥ 0, the following corollary fol-
lows from Lemma 2.2 and Theorem 3.12.

Corollary 3.5 For π(g; a, b, c) given by (3.35) with b ≥ 0, the corresponding gen-
eralized Bayes estimator is minimax if either

−p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
, c ≤ 0

or
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− p/2 + 1 < a < + (p − 2)(n + 2)

2(2p + n − 2)
, c > 0,

(p − 2 + 2a){1 + log(b/c + 1)} + 2c

(n + 2 − 2a){1 + log(b/c + 1)} − 2c
≤ 2

(p − 2){1 + log(b/c + 1)} − 2c

(n + 2){1 + log(b/c + 1)} + 2c
.

Suppose

ξ(g) =
( g

g + 1

)b
for − 1 < b < 0,

as considered in Sect. 2.5.2. For this case, the behavior of the corresponding φ(w)

is summarized in the next result.

Lemma 3.5 Let −1 < b < 0. Then φ(w) of the corresponding generalized Bayes
estimator satisfies

φ(w) ≤ p − 2 + 2a

n + 2 − 2a + b(p + n)
and w

φ′(w)

φ(w)
≥ (p + 2a)b

2(b + 1)
.

Proof Section A.13. �

Thus Theorem 3.11 and Lemma 3.5, giveminimaxity under the following conditions.

Theorem 3.13 The generalized Bayes estimator is minimax if −1 < b < 0 and

p − 2 + 2a

n + 2 − 2a + b(p + n)
≤ 2

(p − 2)(b + 1) + b(p + 2a)

(n + 2)(b + 1) − b(p + 2a)
.

3.8 Improvement on the James–Stein Estimator

In this section we extend the discussion in Sect. 2.6 to the case of unknown variance.
As in (1.49) and Theorem 1.8, the James–Stein estimator

θ̂JS =
(
1 − p − 2

n + 2

S

‖X‖2
)
X

dominates the estimator X for p ≥ 3. Using the expression for the risk of θ̂φ given
by (3.49), the risk difference is given by

�(λ) =R(θ̂JS; θ, η) − R(θ̂φ; θ, η)

=E
[
−(n + 2)

{φ(W ) − cp,n}2
W

+ 4{1 + φ(W )}φ′(W )
]
,

where cp,n = (p − 2)/(n + 2), λ = η‖θ‖2 and W = ‖X‖2/S. Conditions on φ

which ensure that �(λ) ≥ 0 are provided in the following theorem.
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Theorem 3.14 (Kubokawa 1994) The shrinkage estimator θ̂φ improves on the
James–Stein estimator θ̂JS if φ satisfies the following conditions: (i) φ(w) is non-
decreasing in w; (ii) limw→∞ φ(w) = (p − 2)/(n + 2) and φ(w) ≥ φ0(w) where

φ0(w) = w

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1dg

.

Proof LetU = η‖X‖2 and V = ηS, and let f p(u; λ) and fn(v) be density functions
of χ2

p(λ) and χ2
n , respectively. ThenU ∼ χ2

p(λ) where λ = η‖θ‖2 and V ∼ χ2
n . The

expected value of a function ψ(‖x‖2/s) may be expressed as

E[ψ(‖X‖2/S)] = E[ψ({η‖X‖2}/{ηS})]
=

∫∫
ψ(u/v) f p(u; λ) fn(v)dudv =

∫∫
ψ(w)v f p(wv; λ) fn(v)dvdw

=
∫ ∞

0
ψ(w)

{∫ ∞

0
v f p(wv; λ) fn(v)dv

}
dw

=
∫ ∞

0
ψ(w)

∞∑

i=0

(λ/2)i

eλ/2i !
{∫ ∞

0
v
(wv)p/2+i−1 exp(−wv/2)

�(p/2 + i)2p/2+i

vn/2−1 exp(−v/2)

�(n/2)2n/2
dv

}
dw

=
∫ ∞

0
ψ(w) jp,n(w; λ)dw,

where

jp,n(w; λ) =
∞∑

i=0

(λ/2)i

eλ/2i !
w p/2−1(1 + w)−p/2−n/2

B(p/2 + i, n/2)

( w

w + 1

)i
.

Then, arguing as in (2.45) and (2.46), the first term of �(λ) may be expressed as
written as

− E
[
W−1(φ(W ) − cp,n)

2
]

= 2
∫ ∞

0
{φ(w) − cp,n}φ′(w)

{∫ ∞

0

jp,n(w/(g + 1); λ)

g + 1
dg

}
dw

and hence �(λ) may be written as
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�(λ) = 2
∫ ∞

0
φ′(w)

(
(n + 2){φ(w) − cp,n}

∫ ∞

0

jp,n(w/(g + 1); λ)

g + 1
dg

+ 2{1 + φ(w)} jp,n(w; λ)
)
dw

= 2
∫ ∞

0
φ′(w)

(
(n + 2){φ(w) − cp,n} + 2{1 + φ(w)}Jp,n(w; λ)

)

×
{∫ ∞

0

jp,n(w/(g + 1); λ)

g + 1
dg

}
dw,

where

Jp,n(w; λ) = jp,n(w; λ)
∫ ∞
0 (g + 1)−1 jp,n(w/(g + 1); λ)dg

.

Further, as in (2.47), Jp,n(w; λ) ≥ Jp,n(w; 0) holds where

Jp,n(w; 0) = jp,n(w; 0)
∫ ∞
0 (g + 1)−1 jp,n(w/(g + 1); 0)dg

= (1 + w)−p/2−n−2

∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2dg

. (3.68)

Hence we have �(λ) ≥ 0 if φ′(w) ≥ 0 and

(n + 2){φ(w) − cp,n} + 2{1 + φ(w)}Jp,n(w; 0) ≥ 0,

which is equivalent to φ(w) ≥ φ0(w) where

φ0(w) = p − 2 − 2Jp,n(w; 0)
n + 2 + 2Jp,n(w; 0) (3.69)

=
(p − 2)

∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
− 2

(1 + w)p/2+n/2

(n + 2)
∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
+ 2

(1 + w)p/2+n/2

. (3.70)

For the denominator of (3.70), an integration by parts gives
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(n + 2)
∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
+ 2

(1 + w)p/2+n/2

= (n + 2)
∫ ∞

0

(g + 1)n/2dg

(1 + g + w)p/2+n/2
+ 2

(1 + w)p/2+n/2

= 2
∫ ∞

0
(g + 1)n/2+1

{ (p + n)/2

(1 + g + w)p/2+n/2+1

}
dg

= (p + n)

∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2+1
. (3.71)

Similarly, for the numerator of (3.70), an integration by parts gives

(p − 2)
∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
− 2

(1 + w)p/2+n/2

= 2
∫ ∞

0
(g + 1)−p/2+1

{ w

(g + 1)2
(p + n)/2

{1 + w/(g + 1)}p/2+n/2+1

}
dg

= (p + n)w

∫ ∞

0

(g + 1)−p/2−1dg

{1 + w/(g + 1)}p/2+n/2+1
. (3.72)

By (3.70), (3.71) and (3.72), we have

φ0(w) = w

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1dg

, (3.73)

which completes the proof of Theorem 3.14. �

By (3.68), we have

Jp,n(w; 0) = 1
∫ ∞
0 (g + 1)n/2{(1 + w)/(1 + w + g)}p/2+n/2dg

,

which is decreasing in w and approaches 0 as w → ∞. It then follows directly from
the first line of (3.69) that

φ′
0(w) ≥ 0, lim

w→∞ φ0(w) = (p − 2)/(n + 2),

and hence the function φ0(w) satisfies conditions (i) and (ii) of Theorem 3.14. It
follows that the estimator associated with φ0(w) is a minimax estimator improving
on the James–Stein estimator. Further, comparing φ0(w) with (3.36), we see that

(
1 − φ0(‖X‖2/S)

‖X‖2/S
)
X
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can be characterized as the generalized Bayes estimator under π(g; a, b, c) in (3.35)
with a = b = c = 0, or equivalently, the joint Stein (1974) prior given by (1.23),

η−1 × ηp/2πS(η‖θ‖2) = η−1 × ηp/2
{
η‖θ‖2}1−p/2 = ‖θ‖2−p, (3.74)

where πS is given by (1.14).
Additionally, by (3.73), φ0(w) ≤ w and hence the the truncated function

φ+
JS = min{w, (p − 2)/(n + 2)}

corresponding to the James–Stein positive-part estimator

θ̂+
JS = max

(
0, 1 − p − 2

n + 2

S

‖X‖2
)
X,

also satisfies conditions (i) and (ii) of Theorem 3.14, which implies that the James–
Stein positive-part estimator dominates the James–Stein estimator, See Baranchik
(1964) and Lehmann and Casella (1998) for the original proof of the domination.

It seems that the choice a = b = c = 0 in π(g; a, b, c) is the only one which
satisfies the conditions (i) and (ii) of Theorem 3.14. Recall, however, that we have
concentrated on priors with ν = 1 in (3.6) when deriving minimaxity and admissi-
bility results in this chapter. As a choice of prior with ν �= −1 in (3.26), suppose the
joint improper prior

ηα(n+p)/2−1 ×
∫ ∞

0

ηp/2

(2π)p/2gp/2
exp

(
−η‖θ‖2

2g

) 1

(g + 1)α(p−2)/2
dg,

for α > 0. The choice α = 0 corresponds to the joint Stein prior (3.74). Then the
generalized Bayes estimator is given by

θ̂α =
(
1 −

∫ ∞
0 (g + 1)−(α+1)(p/2−1)−2{1 + w/(g + 1)}−(α+1)(p/2+n/2)−1dg

∫ ∞
0 (g + 1)−(α+1)(p/2−1)−1{1 + w/(g + 1)}−(α+1)(p/2+n/2)−1dg

)
x .

The following result is due to Maruyama (1999).

Theorem 3.15 (Maruyama 1999) The generalized Bayes estimator θ̂α for α > 0
dominates the James–Stein estimator θ̂JS. Further θ̂α approaches the James–Stein
positive-part estimator θ̂+

JS as α → ∞.

Proof Appendix A.14. �

We do not know whether θ̂α , for α > 0, is admissible within the class of equivariant
estimators.
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