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Preface

This book provides a self-contained introduction to Stein’s estimation, mainly
focusing onminimaxity and admissibility. For estimation of aP-variate normalmean,
if X ∼ Np(μ, I ), the estimator X is the MLE, UMVUE and is minimax with the
constant risk p under the standard quadratic loss function. Stein (1956) showed that
estimators of the form (1 − a/(b + ‖X‖2))X dominate X, for a sufficiently small
and b sufficiently large when p ≥ 3. James and Stein (1961) explicitly constructed
the dominating estimator, (1 − (p − 2)

/‖X‖2))X . Paradoxically the James-Stein
estimator is itself inadmissible and can be dominated by another inadmissible esti-
mate, its positive part. In such a situation, we are particularly interested in finding
admissible estimators dominating a given inadmissible estimator.

Over 50 years ago, the third author of this book, Strawderman (1971) (WS) first
constructed a class of proper Bayes admissible minimax estimators improving on
X for p ≥ 5. In that same year, Brown (1971) proposed sufficient conditions for a
generalized Bayes estimator to be admissible. Brown’s (1971) results led to a greatly
enlarged class of generalized Bayes admissible minimax estimators.

Twenty years after Strawderman (1971), the second author of this book,Kubokawa
(1991) (TK)first found an admissible estimator dominating the James-Stein estimator
among the enlarged class of admissible minimax estimators. Further Kubokawa
(1994) proposed sufficient condition for a shrinkage estimator to be superior to the
James-Stein estimator. In that same year, 1994, the first author, Maruyama (YM),
entered graduate school at the University of Tokyo, where the second author, (TK)
was affiliated. YM got very interested in statistical decision theory, chose the second
author, TK, as his supervisor, and wrote a Ph.D. thesis in this area. Theorems 2.7
and 3.15 are from that thesis.

After YM graduated, he contacted WS, arranged a visit to WS’s University
(Rutgers), and began a fruitful, continuing collaboration, resulting in several co-
authored papers. Particularly, over the past five years, they have worked on admis-
sible estimation of a multivariate normal mean when the scale is unknown. Recently,
Maruyama and Strawderman (2021) constructed a class of generalized Bayes admis-
sible minimax estimators for this longstanding open problem. Coincidentally, this
occurred exactly 50 years after Strawderman (1971).

v



vi Preface

TK and WS also have had a longstanding collaboration resulting in several
publications on minimaxity and admissibility in the general area covered by this
book.

However, this thin book represents the first project on which the three of us have
collaborated. It is our attempt to present a (nearly) self-contained introduction to
Stein estimation. We focus on minimaxity and admissibility results in the estimation
of the mean vector of a normal distribution in the known and unknown scale case
when the covariance matrix is a multiple of the identity matrix and the loss is scaled
squared error. For the most part, the estimators we study are spherically symmetric
shrinkage estimators, often corresponding to generalized Bayes estimators relative
to spherically symmetric (in μ) priors.

Due to space limitations, we do not cover the rich literature of estimation in
restricted parameter spaces; estimation of loss (other than the SURE); loss functions
or priors that are not spherically symmetric; or predictive density estimation. In
particular, restricting attention to the spherically symmetric case allows a (relatively)
direct and compact treatment of admissibility, and avoids the necessity to develop
the deeper and more general, but somewhat more complex, development of Brown
(1971).

We thank Yasuyuki Hamura for his helpful and constructive comments on an
earlier version of this book. We are grateful to our families who have supported us
during the preparation of this book.

Kobe, Japan
Tokyo, Japan
Piscataway, NJ, USA
June 2023

Yuzo Maruyama
Tatsuya Kubokawa

William E. Strawderman
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Chapter 1
The Stein Phenomenon

1.1 Problem Setting

In this book, we consider estimation of the mean vector of a multivariate nor-
mal distribution. Specifically, we consider i.i.d. p-variate normal random variables
Z1, Z2, . . . , Zm ∼ Np(μ, σ 2 I ), where the mean vector μ is to be estimated. The
sample mean vector is given by

X = Z̄ = 1

m

m∑

i=1

Zi ∼ Np(μ, I/η), (1.1)

where η = m/σ 2. When the scale is known, we can set η = 1 without the loss of
generality, that is,

X ∼ Np(μ, I ),

where X is a complete sufficient statistic for μ. When σ 2, or equivalently η, is
unknown, {X, S} is a complete sufficient statistic for {μ, η}, where

S = 1

m

m∑

i=1

‖Zi − Z̄‖2 ∼ χ2
n

η
, for η = m

σ 2
and n = p(m − 1). (1.2)

Note that X and S are mutually independent and that η is a nuisance parameter. We
will consider the known scale case and the unknown scale case, in Chaps. 2 and 3,
respectively.

Much of this book is devoted to investigation of decision-theoretic properties of
estimators in the two cases. While there are many similarities in the results, there
are also some important differences. In order to help clarify the differences, for the
unknown scale case, the mean vector μ is replaced by θ , and we use following
notation:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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2 1 The Stein Phenomenon

X ∼ Np(θ, I/η) and ηS ∼ χ2
n

in (1.1) and (1.2). In each case the loss function for estimation is assumed to be the
scaled quadratic loss function;

L(δ;μ) = ‖δ(x) − μ‖2, L(δ; θ, η) = η‖δ(x, s) − θ‖2, (1.3)

respectively.

1.2 Some Concepts of Statistical Decision Theory

In this section, we review some concepts of statistical decision theory, primarily for
the known scale case. Denote the probability density function of Np(μ, I/η) by

φ(x − μ; η) = ηp/2

(2π)p/2
exp

(
−η‖x − μ‖2

2

)
.

We simply write φ(x − μ) when η = 1.
The risk function of an estimator δ(x) is given by

R(δ;μ) = E[‖δ(X) − μ‖2] =
∫

Rp

‖δ(x) − μ‖2φ(x − μ)dx .

We say that an estimator δ dominates δ0 if

R(δ;μ) ≤ R(δ0;μ) for all values of μ,

R(δ;μ) < R(δ0;μ) for at least one value of μ.
(1.4)

Any estimator (such as δ0 is in (1.4)) which is dominated by another estimator is
said to be inadmissible. An estimator δ is admissible if it is not dominated by
any other estimator. Admissibility is a relatively weak optimality property, while
inadmissibility is often a compelling reason not to use a particular estimator.

An estimator δM of μ, which minimizes the maximum risk,

sup
μ∈Rp

R(δM ;μ) = inf
δ

sup
μ∈Rp

R(δ;μ)

is called a minimax estimator.
Bayes and generalized Bayes estimators also play an important roll in our devel-

opment. For a proper prior density π(μ) which satisfies
∫
Rp π(μ)dμ = 1, (but for

most of the development,
∫
Rp π(μ)dμ < ∞ suffices), the Bayes risk is defined by
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r(δ;π) =
∫

Rp

R(δ;μ)π(μ)dμ.

Let the marginal density of x and the posterior density of μ given x be

m(x) =
∫

Rp

φ(x − μ)π(μ)dμ and π(μ | x) = φ(x − μ)π(μ)

m(x)
, (1.5)

respectively. Then the Bayes risk of δ(x), r(δ;π), is defined as

r(δ;π) =
∫

Rp

{ ∫

Rp

‖δ(x) − μ‖2φ(x − μ)dx

}
π(μ)dμ

=
∫

Rp

{ ∫

Rp

‖δ(x) − μ‖2π(μ | x)dμ
}
m(x)dx .

The minimizer of r(δ;π) with respect to δ is called the Bayes estimator under
π , and is given uniquely (a.e.) by

δπ (x) = argmin
d

∫

Rp

‖d − μ‖2π(μ | x)dμ (1.6)

=
∫

Rp

μπ(μ | x)dμ =
∫
Rp μφ(x − μ)π(μ)dμ∫
Rp μφ(x − μ)π(μ)dμ

.

Further, from (1.6), the equality

r(δ;π) − r(δπ ;π) =
∫

Rp

{ ∫

Rp

‖δ(x) − δπ(x)‖2π(μ | x)dμ
}
m(x)dx (1.7)

follows. By (1.7), we have the following result.

Theorem 1.1 The proper Bayes estimator δπ given by (1.6) is admissible.

Proof Suppose the Bayes estimator δπ is inadmissible, that is, there exists an esti-
mator δ such that δ �= δπ on a set of positive measure and

R(δ;μ) ≤ R(δπ ;μ) for all values of μ.

Then ∫

Rp

{
R(δπ ;μ) − R(δ;μ)

}
π(μ)dμ = r(δπ ;π) − r(δ;π) ≥ 0,

which contradicts (1.7), by uniqueness of δπ . �
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Even if the prior is improper,
∫
Rp π(μ)dμ = ∞, the posterior density given by

(1.5) is typically well-defined and hence the minimizer of (1.6) is also well-defined.
Theminimizer of (1.6) under an improper prior is called a generalizedBayes estima-
tor. Unlike Theorem1.1, a generalizedBayes estimator is not necessarily admissible.
Parameter dimension often play a critical role in the determination of admissibility.
A striking example of the effect of parameter dimension on admissibility is that of
estimating a normal mean vector, which we tackle in this book. The natural esti-
mator X , which is the maximum likelihood estimator and the uniformly minimum
variance unbiased estimator, is also the generalized Bayes estimator with respect to
the (improper) uniform prior on R

p, since

∫
Rp μφ(x − μ)dμ∫
Rp φ(x − μ)dμ

= x +
∫
Rp (μ − x)φ(x − μ)dμ∫

Rp φ(x − μ)dμ
= x .

As noted in Theorems 1.4 and 1.7, X is admissible for p = 1, 2. However, for p ≥ 3,
it is inadmissible (Stein 1956, Theorems 1.5 and 1.8). This effect is called the Stein
phenomenon since it was not at all expected at the time of its discovery.

Blyth (1951) method, given in Theorem 1.2 below, is applied to establish admis-
sibility of a class of generalized Bayes estimators. Suppose π(μ) is improper,

π(μ) > 0 for all μ, (1.8)

and δπ is the generalized Bayes estimator under π(μ). Suppose πi (μ), i = 1, 2, . . . ,
is an increasing (in i) sequence of proper priors such that

lim
i→∞ πi (μ) = π(μ) and π1(μ) > 0 for all μ. (1.9)

Note that the integral
∫
Rp πi (μ)dμ is not necessarily equal to 1, but must be finite for

each i . Let δi be the proper Bayes estimator under πi . Then the Bayes risk difference
between δπ and δi , with respect to πi (μ), is

	i =
∫

Rp

{R(δπ ;μ) − R(δi ;μ)} πi (μ)dμ. (1.10)

The following formofBlyth’s sufficient condition shows that limi→∞ 	i = 0 implies
admissibility.

Theorem 1.2 The generalized Bayes estimator δπ is admissible if limi→∞ 	i = 0.

Proof Suppose that δπ is inadmissible and hence that there exists a δ′ which satisfies

R(δ′;μ) ≤ R(δπ ;μ) for all values of μ,

R(δ′;μ0) < R(δπ ;μ0) for some μ0.
(1.11)

By (1.11), we have
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∫

Rp

‖δπ (x) − δ′(x)‖2φ(x − μ0)dx > 0.

Further we have
∫

Rp

‖δπ (x) − δ′(x)‖2φ(x − μ)dx =
∫

Rp

‖δπ (x) − δ′(x)‖2 φ(x − μ)

φ(x − μ0)
φ(x − μ0)dx .

Since the ratio φ(x − μ)/φ(x − μ0) is continuous in x and positive, it follows that

∫

Rp

‖δπ (x) − δ′(x)‖2φ(x − μ)dx > 0

for all μ. Set δ′′ = (δπ + δ′)/2. Then we have

‖δ′′ − μ‖2 = ‖δπ − μ‖2 + ‖δ′ − μ‖2
2

− ‖δπ − δ′‖2
4

,

and

R(δ′′;μ) = E
[‖δ′′ − μ‖2] < (1/2)E

[‖δ′ − μ‖2] + (1/2)E
[‖δπ − μ‖2]

= 1

2

{
R(δ′;μ) + R(δπ ;μ)

} ≤ R(δπ ;μ),

for all μ. Then we have

	i =
∫

Rp

{R(δπ ;μ) − R(δi ;μ)} πi (μ)dμ ≥
∫

Rp

{
R(δπ ;μ) − R(δ′′;μ)

}
πi (μ)dμ

≥
∫

Rp

{
R(δπ ;μ) − R(δ′′;μ)

}
π1(μ)dμ > 0,

which contradicts 	i → 0 as i → ∞. �

Remark 1.1 In our version of Blyth’s lemma, we assume (1.8) and (1.9), that is,
π(μ) > 0 and π1(μ) > 0 for any fixedμ, which are satisfied by all priors we assume
in this book. In fact, the theorem still is true with essentially the same proof with
the weaker assumption that π1(C) > 0 for some compact set C. See Theorem 1.1 of
Fourdrinier et al. (2018) for details.

When we apply Blyth’s method in proving admissibility of δπ , in some cases includ-
ing Theorem 1.4 with (1.33), we bound 	i from above as 	i < C/ log(i + 1) for
some positive constant C , which immediately implies limi→∞ 	i = 0. However, in
most cases, the use of Blyth’s method in proving admissibility of δπ , consists of first
noting that the integrand of 	i in (1.10) tends to 0 as i tends to infinity. The proof
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is completed by showing that the integrand is bounded by an integrable function.
Then, by the dominated convergence theorem, limi→∞ 	i = 0 is satisfied so that δπ

is admissible.

1.3 The Organization of This Book

In Sects. 1.5 and 1.6, we give some preliminary results for the known scale and
unknown scale cases, respectively. In both cases, the natural estimator X with the
constant risk, p, is shown to be minimax for any p ∈ N (Theorems 1.3 and 1.6).
Further the estimator X is shown to be admissible for p = 1, 2 (Theorems 1.4 and
1.7). However, for p ≥ 3, the James–Stein estimator

μ̂JS =
(
1 − p − 2

‖X‖2
)
X, θ̂JS =

(
1 − p − 2

n + 2

S

‖X‖2
)
X, (1.12)

dominates X for the known scale case and the unknown scale case, respectively,
which implies that the estimator X is inadmissible in both cases (Theorems 1.5
and 1.8). In this section, we preview the principal admissibility/inadmissibility and
minimaxity results, which will be given in Chaps. 2 and 3.

In Chap. 2, we consider admissibility, inadmissibility and minimaxity of (gener-
alized) Bayes estimators for the known scale. In particular, we mainly focus on a
class of the (generalized) Bayes estimators with respect to an extended (Strawderman
1971)-type prior

π(‖μ‖2) =
∫ ∞

0

g−p/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
π(g; a, b, c)dg

where π(g; a, b, c) = 1

(g + 1)a

( g

g + 1

)b 1

{log(g + 1) + 1}c ,
for a > −p/2 + 1, b > −1 and c ∈ R.

(1.13)

Strawderman (1971) original parameterization is λ = 1/(g + 1) ∈ (0, 1). In partic-
ular, the case a = b = c = 0 as well as p ≥ 3 corresponds to the Stein (1974) prior

πS(‖μ‖2) = ‖μ‖2−p (1.14)

since ∫ ∞

0

g−p/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
dg = �(p/2 − 1)2p/2−1

(2π)p/2
‖μ‖2−p.
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For the behavior of π(g; a, b, c) around the origin, we have limg→0 π(g; a, b, c)/
gb = 1 and ∫ 1

0
gbdg = 1

b + 1
< ∞ (1.15)

if b > −1, which we assume through this book. For the asymptotic behavior of
π(g; a, b, c), we have limg→∞ π(g; a, b, c)(g + 1)a{log(g + 1)}c = 1 and

∫ ∞

1

dg

(g + 1)a{log(g + 1)}c < ∞ (1.16)

if
either {a > 1, c ∈ R} or {a = 1, c > 1}. (1.17)

The integrability conditions (1.15) and (1.16) imply that π(g; a, b, c) is proper if
b > −1 and {a, c} satisfy (1.17). As in (2.5) in Sect. 2.1, if

a > −p/2 + 1, b > −1 and c ∈ R,

the posterior density (and hence) the corresponding generalized Bayes estimator is
well-defined.

For the corresponding (generalized) Bayes estimator, we have the following
results:

Admissibility (Corollary 2.2 and Theorem 2.5)

provided p ≥ 1 and either {a > 0, c ∈ R} or {a = 0, c ≥ −1}, (1.18)

Inadmissibility (Corollary 2.1)

provided p ≥ 3 and either {−p/2 + 1 < a < 0, c ∈ R} or {a = 0, c < −1},

Minimaxity (Corollary 2.3)

provided p ≥ 3, −p/2 + 1 < a ≤ p/2 − 1, b ≥ 0, c ≤ 0.

Minimaxity results, under {b ≥ 0 and c > 0} and {−1 < b < 0 and c = 0}, are
also provided in Corollary 2.3 and Theorem 2.7, respectively. Further we find a
generalized Bayes estimator improving on the James–Stein estimator μ̂JS given by
(1.12).
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Improving on the James–Stein estimator (Theorem 2.8)

provided p ≥ 3, a = b = c = 0. (1.19)

A particularly interesting case when the scale is known seems deserving of atten-
tion. When a = b = c = 0, the prior corresponds to the Stein (1974) prior πS given
by (1.14). As in (1.3), (1.18) and (1.19), the corresponding generalized Bayes esti-
mator is minimax, admissible, and, as first established byKubokawa (1991), superior
to the James–Stein estimator.

In Chap. 3, we treat the unknown scale case.We first consider admissibility within
the class of (scale) equivariant estimators of the form {1 − ψ(‖x‖2/s)}x . A joint prior
of the form ηνηp/2q(η‖θ‖2) for ν ∈ R, gives rise to such an invariant generalized
Bayes estimator. We show that the choice ν = −1 is special in the sense that a joint
prior of the form

η−1ηp/2q(η‖θ‖2),

where q(‖μ‖2) is proper on μ ∈ R
p, gives a generalized Bayes estimator which

is admissible within the class of equivariant estimators. Further, we investigate the
properties of the generalized Bayes estimators under η−1ηp/2π(η‖θ‖2) with π(·) by
(1.13). Here are some of the main results:

Admissibility among all equivariant estimators (Corollary3.1 andTheorem3.5)

provided p ≥ 1 and either {a > 0, c ∈ R} or {a = 0, c > −1}

Admissibility among all estimators (Theorem 3.6)

provided p ≥ 1, 0 < a < n/2 + 2, c = 0. (1.20)

Inadmissibility (Corollaries 3.3 and 3.4)

provided p ≥ 3 and either {−p/2 + 1 < a < 0, c ∈ R} or {a = 0, c < −1},

As in (1.18), the choice

either {a > 0, c ∈ R} or {a = 0, c ≥ −1},

implies admissibility for the known scale case. We conjecture that the choice (1.18)
implies admissibility for the unknown scale case as well.
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We also find minimax generalized Bayes estimators:

Minimaxity (Corollary 3.5)

provided p ≥ 3, b ≥ 0, c ≤ 0, −p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
. (1.21)

The minimaxity results, under {b ≥ 0, c > 0} and {−1 < b < 0, c = 0 } are
also provided in Corollary 3.5 and Theorem 3.13, respectively. Further we find a
generalized Bayes estimator improving on the James–Stein estimator θ̂JS given by
(1.12).

Improving on the James–Stein estimator (Theorem 3.14)

provided p ≥ 3, a = b = c = 0. (1.22)

Two interesting cases when the scale is unknown seem deserving of attention.
When a = b = c = 0, the prior corresponds to the joint (Stein 1974) prior

η−1 × ηp/2πS(η‖θ‖2) = η−1 × ηp/2
{
η‖θ‖2}1−p/2 = ‖θ‖2−p, (1.23)

where πS is given by (1.14). As in (1.20), (1.21) and (1.22), the corresponding gen-
eralized Bayes estimator is admissible among all equivariant estimators, minimax,
and superior to the the James–Stein estimator, respectively, where the last result was
first established by Kubokawa (1991).

Another interesting case is a variant of the James–Stein estimator of the simple
form

(
1 − α

‖x‖2/s + α + 1

)
x,

which is generalized Bayes under π(g; a, b, c) with c = 0, b = n/2 − a, α =
(p/2 − 1 + a)/(n/2 + 1 − a), as shown in Sect. 3.5. By (1.20) and (1.21), this esti-
mator with (p − 2)/(n + 2) < α ≤ 2(p − 2)/(n + 2) is minimax and admissible.

1.4 Stein Identity

The following identity is called the (one dimensional) (Stein 1974) identity (or Stein’s
lemma). The identity not only provides a much easier proof of the initial results on
the Stein phenomenon, but also has been the most powerful technique for further
developments in this area.
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Lemma 1.1 (Stein 1974) Let X ∼ N (θ, 1/η), and let f (x) be a function such that

f (b) − f (a) =
∫ b

a
f ′(x)dx (1.24)

for all a, b ∈ R. Further suppose E[| f ′(X)|] < ∞. Then we have

η E[(X − θ) f (X)] = E[ f ′(X)].

Proof We have

η E[(X − θ) f (X)] = η E[(X − θ){ f (X) − f (θ)}] (1.25)

= η

( ∫ ∞

θ

+
∫ θ

−∞

)
{ f (x) − f (θ)}(x − θ)

η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dx

= η

∫ ∞

θ

∫ x

θ

f ′(y)(x − θ)
η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dydx

− η

∫ θ

−∞

∫ θ

x
f ′(y)(x − θ)

η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dydx,

where the third equality follows from (1.24). Note

{(x, y) | θ < x < ∞, θ < y < x} = {(x, y) | y < x < ∞, θ < y < ∞} , (1.26)

for the first term of the right-hand side of (1.25) and

{(x, y) | − ∞ < x < θ, x < y < θ}
= {(x, y) | − ∞ < x < y, −∞ < y < θ} , (1.27)

for the second term of the right-hand side of (1.25). By (1.26), (1.27), and Fubini’s
theorem justifying the interchange of order of integration, we have
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η E[(X − θ) f (X)]
=

∫ ∞

θ

∫ ∞

y
f ′(y)η(x − θ)

η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dxdy

−
∫ θ

−∞

∫ y

−∞
f ′(y)η(x − θ)

η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dxdy

=
∫ ∞

θ

f ′(y)
{∫ ∞

y
η(x − θ)

η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dx

}
dy

−
∫ θ

−∞
f ′(y)

{∫ y

−∞
η(x − θ)

η1/2

(2π)1/2
exp

(
− η(x − θ)2

2

)
dx

}
dy

=
( ∫ ∞

θ

+
∫ θ

−∞

)
f ′(y)

η1/2

(2π)1/2
exp

(
− η(y − θ)2

2

)
dy

= E[ f ′(X)],

which completes the proof. �

In higher dimensions, let f = ( f1, . . . , f p) be a function from R
p into Rp. Also,

for any x = (x1, . . . , xp) ∈ R
p and for fixed j = 1, . . . , p, set x− j = (x1, . . . , x j−1,

x j , . . . , xp), and, with a slight abuse of notation, x = (x j , x− j ). Then, using the
independence of Xi and X− j , we have

η E[(X j − μ j ) f j (X)] = E[η E[(X j − μ j ) f j (X j , X− j )] | X j ]
= E[E[{∂/∂x j } fi (X j , X− j )] | X j ] = E[{∂/∂x j } f j (X)]. (1.28)

Amore careful treatment of (1.28) can be seen in Chap. 2 of Fourdrinier et al. (2018),
where the development is extended to weakly differentiable functions which will be
useful in the rest of this book.

Stein’s lemma can also be used to establish a useful identity for Chi-square vari-
ables which are helpful in extending shrinkage estimation results from the known
variance case to the unknown variance case. Let Y1, . . . ,Yn be independent normal
random variables with Yi ∼ N (0, 1/η), and let S = ∑n

i=1 Y
2
i . Then ηS ∼ χ2

n . The
following was proposed as the Chi-square identity by Efron and Morris (1976).

Lemma 1.2 (Chi-square identity) Let ηS ∼ χ2
n . Then

η E [S f (S)] = E[n f (S) + 2S f ′(S)].

Proof Lemma 1.1 and (1.28) gives
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η E

[
Y 2
j f

( n∑

j=1

Y 2
j

)]
= η E

[
Y j

{
Y j f

( n∑

j=1

Y 2
j

)}]

= E

[
f

( n∑

j=1

Y 2
j

)
+ 2Y 2

j f
′
( n∑

j=1

Y 2
j

)]
.

Then we have

η E [S f (S)] = η E

[ n∑

j=1

Y 2
i f

( n∑

j=1

Y 2
j

)]

=
n∑

j=1

E

[
f

( n∑

j=1

Y 2
j

)
+ 2Y 2

j f
′
( n∑

j=1

Y 2
j

)]
= E[n f (S) + 2S f ′(S)],

which completes the proof. �

1.5 Preliminary Results: The Known Scale Case

In this section we consider admissibility and minimaxity of the estimator X for all
dimensions, p, in the case of a known scale. We first address minimaxity.

Theorem 1.3 The estimator X is minimax for all p ∈ N.

Proof Recall R(X;μ) = E[‖X − μ‖2] = p. Consider the normal prior with mean
0 and covariance i I ,

πi (μ) = 1

(2π i)p/2
exp

(
−‖μ‖2

2i

)
. (1.29)

Then, by Lemma A.1 and (1.6), the Bayes estimator under πi (μ) is

μ̂i (x) =
∫
Rp μφ(x − μ)πi (μ)dμ∫
Rp φ(x − μ)πi (μ)dμ

= i

i + 1
x, (1.30)

where the risk of μ̂i is given by

R(μ̂i ;μ) = E
[‖μ̂i − μ‖2] =

( i

i + 1

)2
p +

( 1

i + 1

)2‖μ‖2. (1.31)

For the prior (1.29), we have

∫

Rp

‖μ‖2πi (μ)dμ = i p
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and hence, with the risk (1.31), the Bayes risk of μ̂i under πi (μ) is

r(μ̂i , πi ) =
∫

Rp

R(μ̂i ;μ)πi (μ)dμ =
( i

i + 1

)
p.

Therefore, for any estimator δ,

sup
μ

R(δ;μ) ≥
∫

Rp

R(δ;μ)πi (μ)dμ = r(δ, πi ) ≥ r(μ̂i , πi ) =
( i

i + 1

)
p,

for all i ∈ N. Hence

sup
μ

R(δ;μ) ≥ p = R(X;μ) = sup
μ

R(X;μ),

which completes the proof of minimaxity of X for any p. �

The estimator X is the generalized Bayes estimator with respect to the improper
uniformprior onRp. Since the estimator X is themaximum likelihood, and uniformly
minimum variance unbiased estimator, and is also minimax, it is natural to expect
that it is also admissible. It was, therefore, very surprising when Stein (1956) showed
that X is inadmissible when p ≥ 3. It is however, admissible for p ≤ 2.

In order to establish the admissibility of the estimator X through theBlythmethod,
let

ki (g) = 1 − log(g + 1)

log(g + 1 + i)
. (1.32)

Clearly ki (g) is increasing in i for fixed g, and decreasing in g for fixed i . Further
limi→∞ ki (g) = 1 for fixed g ≥ 0. Some properties of ki will be given in Lemma
A.6 in Sect. A.2. In particular, for p = 1, 2, Part 2 of Lemma A.6 guarantees the
integrability

∫

Rp

k2i (‖μ‖2)dμ = π p/2

�(p/2)

∫ ∞

0
gp/2−1k2i (g)dg

≤ π p/2

�(p/2)

(∫ 1

0
g−1/2dg +

∫ ∞

0
k2i (g)dg

)
≤ π p/2

�(p/2)
{2 + (1 + i)} < ∞,

where the first equality follows from Part 1 of Lemma A.2. Using the sequence
k2i (‖μ‖2) for (1.32) and the Blyth method (Theorem 1.2), we have the following
result.

Theorem 1.4 The estimator X is admissible for p = 1, 2.
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Proof The Bayes estimator with respect to the prior density k2i (‖μ‖2) is

μ̂i (x) =
∫
Rp μφ(x − μ)k2i (‖μ‖2)dμ∫
Rp φ(x − μ)k2i (‖μ‖2)dμ = x +

∫
Rp (μ − x)φ(x − μ)k2i (‖μ‖2)dμ∫

Rp φ(x − μ)k2i (‖μ‖2)dμ

= x +
∫
Rp φ(x − μ)∇{k2i (‖μ‖2)}dμ∫

Rp φ(x − μ)k2i (‖μ‖2)dμ ,

where the last equality follows from Lemma 1.1 and (1.28). By the identity

‖x − μ‖2 − ‖μ̂i − μ‖2 = −‖μ̂i − x‖2 + 2(μ̂i − x)T(μ − x),

the non-scaled Bayes risk difference is

	i =
∫

Rp

(
E[‖X − μ‖2] − E[‖μ̂i (X) − μ‖2]) k2i (‖μ‖2)dμ

=
∫

Rp

‖ ∫
Rp φ(x − μ)∇{k2i (‖μ‖2)}dμ‖2∫

Rp φ(x − μ)k2i (‖μ‖2)dμ dx

=
∫

Rp

‖4 ∫
Rp μφ(x − μ)ki (‖μ‖2)k ′

i (‖μ‖2)dμ‖2∫
Rp φ(x − μ)k2i (‖μ‖2)dμ dx .

By the Cauchy-Schwarz inequality (Part 2 of Lemma A.3) and Part 1 of Lemma A.2,
we have

	i ≤ 16
∫

Rp

∫

Rp

φ(x − μ)‖μ‖2{k ′
i (‖μ‖2)}2dμdx

= 16
π p/2

�(p/2)

∫

Rp

φ(x)dx
∫ ∞

0
gp/2−1g{k ′

i (g)}2dg

= 16
π p/2

�(p/2)

∫ ∞

0
gp/2{k ′

i (g)}2dg.

Note, for p = 1, 2, gp/2 ≤ g + 1 for all g ≥ 0. Hence, by Part 4 of Lemma A.6,

	i ≤ 16
π p/2

�(p/2)

∫ ∞

0
(g + 1){k ′

i (g)}2dg ≤ 32π p/2

�(p/2)

1

log(1 + i)
. (1.33)

Thus we have 	i → 0 as i → ∞, which completes the proof. �
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Remark 1.2 Blyth (1951) showed the admissibility of X for p = 1, by using the
Gaussian sequence (1.29). Stein (1956) showed the admissibility of X for p = 2, not
by the Blyth method, but by the information inequality method, mainly because the
Blyth method, using the Gaussian sequence (1.29), does not work for p = 2. James
and Stein (1961) showed the admissibility of X for p = 2 by the Blyth method with
a proper sequence somewhat similar to ki given by (1.32). Our sequence ki , which is
always strictly positive, is regarded as a more sophisticated version of the sequence
of James and Stein (1961) as well as Brown and Hwang (1982), Maruyama and
Takemura (2008) and Maruyama (2009).

We next address the inadmissibility of X for p ≥ 3. The risk function of an
estimator of the form δψ(x) = {1 − ψ(‖x‖2)}x is given by

R(δψ ;μ) = E
[‖δψ(X) − μ‖2]

= E
[‖X − μ‖2] + E

[‖X‖2ψ2(‖X‖2)] − 2
p∑

i=1

E
[
(Xi − μ)Xiψ(‖X‖2)] .

(1.34)
Then the Stein identity (Lemma 1.1 and (1.28)) gives

E
[
(Xi − μi )Xiψ(‖X‖2)] = E

[
ψ(‖X‖2) + 2X2

i ψ
′(‖X‖2)] ,

and
p∑

i=1

E
[
(Xi − μi )Xiψ(‖X‖2)] = E

[
pψ(‖X‖2) + 2‖X‖2ψ ′(‖X‖2)] .

(1.35)

By (1.34) and (1.35), we have R(δψ ;μ) = E
[
R̂ψ(‖X‖2)

]
, where R̂ψ(‖x‖2) is called

the SURE (Stein Unbiased Risk Estimate) and is given by

R̂ψ(w) = p + wψ2(w) − 2pψ(w) − 4wψ ′(w). (1.36)

Now let ψJS(w) = (p − 2)/w for p ≥ 3, which corresponds to the James and Stein
(1961) estimator,

μ̂JS =
(
1 − p − 2

‖X‖2
)
X.

It follows that R̂JS(w) = p − (p − 2)2/w, which implies that the risk of the estimator
μ̂JS is

R(μ̂JS;μ) = E[R̂JS(‖X‖2)] = p − E
[ (p − 2)2

‖X‖2
]

≤ p = R(X;μ). (1.37)

Note that the above expectation exists and is finite for p ≥ 3, but not for p ≤ 2.
Hence we have the following result.

Theorem 1.5 The estimator X is inadmissible for p ≥ 3.
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Fig. 1.1 Pythagorean triangle of the James–Stein estimator

Two popular interpretations of the James–Stein estimator μ̂JS are as follows.

Remark 1.3 A geometric interpretation of the James–Stein estimator was provided
by Stein (1962) and explained in Brandwein and Strawderman (1990). In (1.37), we
have (p − 2)2 E[1/‖X‖2] = E[‖X − μ̂JS‖2] and hence

E[‖μ̂JS − μ‖2] + E[‖X − μ̂JS‖2] = E[‖X − μ‖2]. (1.38)

Let f (x) and g(x) be two p-variate vectors of functions of x . Suppose the inner
product of f (x) and g(x) is defined by

〈 f, g〉E = E[ f (X)Tg(X)] =
∫

Rp

f (x)Tg(x)φ(x − μ)dx,

and the norm of f is given by ‖ f ‖E = √〈 f, f 〉E. Then, as in Fig. 1.1, (1.38) can be
written as

〈X − μ〉2E = 〈μ̂JS − μ〉2E + 〈X − μ̂JS〉2E,

which is a Pythagorean triangle among X , μ and μ̂JS.

Remark 1.4 Amotivation of the James–Stein estimator as an empirical Bayes esti-
mator is given by Efron andMorris (1972a, b). The (empirical) Bayesian framework,
uses the prior μ ∼ Np(0, gI ), with the variance g of the prior distribution treated
as an unknown parameter. By (1.5), the marginal distribution of X and the posterior
distribution of μ given X = x are

X ∼ Np(0, (g + 1)I ), and μ | x ∼ Np(μ̂B, {g/(g + 1)}I ), (1.39)
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respectively, where μ̂B is the posterior mean or the Bayes estimator under quadratic
loss, given by

μ̂B = E[μ | X = x] = x − 1

g + 1
x . (1.40)

Since g is unknown, we estimate 1/(g + 1) in (1.40) from the marginal distribution
given by (1.39). Noting that ‖X‖2/(1 + g) is distributed as χ2

p, we have

E
[1 + g

‖X‖2
]

= 1

p − 2
or E

[ p − 2

‖X‖2
]

= 1

1 + g
,

which implies that (p − 2)/‖X‖2 is an unbiased estimator of 1/(1 + g). Substitut-
ing the unbiased estimator into the Bayes estimator μ̂B gives the empirical Bayes
estimator which is identical to the James–Stein estimator.

As shown in Baranchik (1964), the James–Stein estimator is inadmissible since
it is dominated by the James–Stein positive-part estimator

μ̂+
JS = max

(
0, 1 − p − 2

‖X‖2
)
X.

In Sect. 2.6, we consider improving on the James–Stein estimator.
As mentioned above, this book focuses on the estimation of normal means, pri-

marily in the case of a covariance matrix equal to a multiple of the identity. Many
additional related problems on shrinkage/Stein estimation have been studied in the
literature. Fourdrinier et al. (2018) covers some of these additional problems.

1.6 Preliminary Results: The Unknown Scale Case

In this section we consider admissibility and minimaxity of the estimator X for all
dimensions, p, in the case of an unknown scale.

We first address minimaxity. In the unknown scale case, as in (1.3), the loss is
scaled as

L(δ; θ, η) = η‖δ(x, s) − θ‖2.

Let the density of S ∼ χ2
n /η be denoted by

fn(s; η) = ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)
.

Then, for the joint prior π(θ, η), the Bayes estimator minimizes the Bayes risk given
by



18 1 The Stein Phenomenon

r(δ;π) =
∫∫ { ∫∫

η‖δ(x, s) − θ‖2φ(x − θ; η) fn(s; η)dxds

}
π(θ, η)dθdη

=
∫∫ { ∫∫

‖δ(x, s) − θ‖2π̃(θ, η | x, s)dθdη
}
m̃(x, s)dxds,

where

m̃(x, s) =
∫∫

ηφ(x − θ; η) fn(s; η)π(θ, η)dθdη,

and π̃(θ, η | x, s) = ηφ(x − θ; η) fn(s; η)π(θ, η)

m̃(x, s)
.

Then, as in (1.6), the (proper) Bayes estimator, the minimizer of r(δ;π), is given by

δπ (x, s) =
∫∫

θπ̃(θ, η | x, s)dθdη =
∫∫

ηθφ(x − θ; η)π(θ, η)dθdη∫∫
ηφ(x − θ; η)π(θ, η)dθdη

, (1.41)

which is not the posterior mean of θ . Generalized Bayes estimators have the same
form provided the above integrals exist and are finite.

Theorem 1.6 The estimator X is minimax for all p ∈ N.

Proof Recall R(X; θ, η) = E[η‖X − θ‖2] = p. Assume the prior on (θ, η) with

πi (θ | η) × π(η), (1.42)

where π(η) is any proper prior and

πi (θ | η) = ηp/2

(2π i)p/2
exp

(
−η‖θ‖2

2i

)
.

As in (1.30), Lemma A.1 and (1.41) give the Bayes estimator under the prior (1.42),
as

θ̂i =
∫∫

ηθφ(x − θ; η) fn(s; η)πi (θ | η)π(η)dθdη∫∫
ηφ(x − θ; η) fn(s; η)πi (θ | η)π(η)dθdη

= i

i + 1
x .

Further, as in (1.31), the risk of θ̂i is

R(θ̂i ; θ, η) = E
[
η‖θ̂i − θ‖2

]
=

( i

i + 1

)2
p +

( 1

i + 1

)2
η‖θ‖2.

Note, under the prior πi (θ | η)π(η), we have

∫∫
η‖θ‖2πi (θ | η)π(η)dθdη = i p
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and hence the Bayes risk under πi (θ) is

r(θ̂i , πi ) =
∫∫

R(θ̂i ; θ, η)πi (θ | η)π(η)dθdη =
( i

i + 1

)
p.

Therefore, for any estimator δ, we have

sup
θ,η

R(δ; θ, η) ≥ r(δ, πi ) ≥ r(θ̂i , πi ) =
( i

i + 1

)
p,

for all i ∈ N and hence

sup
θ,η

R(δ; θ, η) ≥ p = R(X; θ, η) = sup
θ,η

R(X; θ, η),

which completes the proof of minimaxity of X . �

As in Theorem 1.4, we have the following admissibility result for p = 1, 2.

Theorem 1.7 The estimator X is admissible for p = 1, 2.

Proof Recall the joint probability density of X and S is

φ(x − θ; η) fn(s; η) = ηp/2

(2π)p/2
exp

(
−η‖x − θ‖2

2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)
.

The Bayes estimator with respect to the density π(η)ηp/2k2i (η‖θ‖2), where ki is
given by (1.32) and π(η) is any proper prior, is

θ̂i (x, s) =
∫∫

ηθφ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη∫∫
ηφ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη

= x +
∫∫

η(θ − x)φ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη∫∫
ηφ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη

= x +
∫∫

φ(x − θ; η) fn(s; η)π(η)ηp/2∇θk2i (η‖θ‖2)dθdη∫∫
ηφ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη , (1.43)

where the last equality follows from Lemma 1.1 and (1.28). Note the identity

‖x − θ‖2 − ‖θ̂i − θ‖2 = −‖θ̂i − x‖2 + 2(θ̂i − x)T(θ − x). (1.44)

Then, by (1.43) and (1.44), the non-scaled Bayes risk difference is
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	i =
∫∫ (

E[η‖X − θ‖2] − E[η‖θ̂i (X, S) − θ‖2]
)

π(η)ηp/2k2i (η‖θ‖2)dθdη

=
∫∫ ‖ ∫∫

φ(x − θ; η) fn(s; η)π(η)ηp/2∇θk2i (η‖θ‖2)dθdη‖2∫∫
ηφ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη dxds

=
∫∫ ‖4 ∫∫

θφ(x − θ; η) fn(s; η)π(η)ηp/2ηki (η‖θ‖2)k ′
i (η‖θ‖2)dθdη‖2∫∫

ηφ(x − θ; η) fn(s; η)π(η)ηp/2k2i (η‖θ‖2)dθdη dxds.

By the Cauchy-Schwarz inequality (Part 2 of Lemma A.3),

	i ≤ 16
∫∫∫∫

φ(x − θ; η) fn(s; η)π(η)ηp/2η‖θ‖2{k ′
i (η‖θ‖2)}2dθdηdxds

= 16
∫∫

φ(x − θ; η) fn(s; η)dxds
∫∫

π(η)ηp/2η‖θ‖2{k ′
i (η‖θ‖2)}2dθdη

= 16
π p/2

�(p/2)

∫ ∞

0
π(η)dη

∫ ∞

0
gp/2{k ′

i (g)}2dg

≤ 16
π p/2

�(p/2)

∫ ∞

0
(g + 1){k ′

i (g)}2dg.

It follows, as in (1.33) in the proof of Theorem 1.4, that 	i → 0 as i → ∞, which
completes the proof. �

We next address the issue of inadmissibility of X when p ≥ 3. The risk function
of an estimator of the form δψ(x, s) = {1 − ψ(‖x‖2/s)}x is

R(δψ ; θ, η) = E
[
η‖δψ(X, S) − θ‖2] (1.45)

= E
[
η‖X − θ‖2] + E

[
η‖X‖2ψ2(‖X‖2/S)

] − 2
p∑

i=1

E
[
η(Xi − θ)Xiψ(‖X‖2/S)

]
.

For the second term on the right hand side of (1.45), Lemma 1.2 gives

E
[
η‖X‖2ψ2(‖X‖2/S)

]
= E

[
ηS

(‖X‖2
S

ψ2(‖X‖2/S)
)]

(1.46)

= E
[
n
(‖X‖2

S
ψ2(‖X‖2/S)

)
+ 2S

{
−‖X‖2

S2

}

×
{
ψ2(‖X‖2/S) + 2

‖X‖2
S

ψ(‖X‖2/S)ψ ′(‖X‖2/S)
}]

.

For the third term of the right hand side of (1.45), Lemma 1.1 implies
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p∑

i=1

E
[
η(Xi − θ)Xiψ

(‖X‖2
S

)]
= E

[
pψ

(‖X‖2
S

)
+ 2

‖X‖2
S

ψ ′
(‖X‖2

S

)]
. (1.47)

By (1.45), (1.46), and (1.47), we have R(δψ ; θ, η) = E
[
R̂ψ(‖X‖2/S)

]
, where

R̂ψ(w) is called the SURE (Stein Unbiased Risk Estimate) and is given by

R̂ψ(w) = p + (n − 2)wψ2(w) − 4w2ψ(w)ψ ′(w) − 2pψ(w) − 4wψ ′(w).

(1.48)
Let ψJS(w) = (p − 2)/{(n + 2)w} for p ≥ 3, which corresponds to the James and
Stein (1961) estimator

θ̂JS =
(
1 − p − 2

n + 2

S

‖X‖2
)
X.

Then,

R̂JS(w) = p − (p − 2)2

n + 2

1

w
,

which implies that the risk of the estimator θ̂JS is smaller than p, as

R(θ̂JS; θ, η) = E[R̂JS(‖X‖2/S)] = E
[
p − (p − 2)2

n + 2

S

‖X‖2
]

≤ p = R(X; θ, η). (1.49)

Hence we have the following result.

Theorem 1.8 The estimator X is inadmissible for p ≥ 3.

Further the James–Stein estimator is inadmissible since it is dominated by the James–
Stein positive-part estimator

θ̂+
JS = max

(
0, 1 − p − 2

n + 2

S

‖X‖2
)
X.

In Sect. 3.8, we consider improvements of the James–Stein estimator.
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Chapter 2
Estimation of a Normal Mean Vector
Under Known Scale

2.1 Introduction

In this chapter, we consider estimation of the mean of a multivariate normal distri-
bution when the scale is known. Without essential loss of generality, we take η = 1
in this chapter unless otherwise specified. For estimation of μ, the loss function is
quadratic loss L(δ; θ, η) = ‖δ − μ‖2.

Let �(dμ) and m� be the prior measure and the corresponding marginal density
given by

m�(x) =
∫
Rp

φ(x − μ)�(dμ). (2.1)

Then the (generalized) Bayes estimator under �(dμ) is given by

μ̂� =
∫
Rp μφ(x − μ)�(dμ)∫
Rp φ(x − μ)�(dμ)

= x +
∫
Rp (μ − x)φ(x − μ)�(dμ)∫

Rp φ(x − μ)�(dμ)

= x + ∇xm�(x)

m�(x)
= x + ∇x logm�(x). (2.2)

The identity in the second line is known as Brown (1971) identity or Tweedie’s
formula (Efron 2011).

In Sect. 2.3, we present a sufficient condition for inadmissibility of generalized
Bayes estimators under this general prior �(dμ).

When considering admissibility in Sect. 2.4, we assume the prior density is given
by

π(μ) =
∫ ∞

0

g−p/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
�(dg), (2.3)
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for a non-negative measure � on g. We determine admissibility/inadmissibility of
generalized Bayes estimators for a certain subclass of mixture priors in terms of �.
The proof is self-contained allowing us to avoid the complexity of the deeper and
more general development inBrown (1971). If� is finite or proper, the corresponding
Bayes estimator is admissible. While we are mainly interested in the case of infinite
�, we do not exclude the case of a finite measure �.

By Lemma A.1, the marginal likelihood mπ is

mπ (‖x‖2) =
∫
Rp

φ(x − μ)π(μ)dμ

=
∫ ∞

0

1

(2π)p/2
exp

(
− ‖x‖2
2(g + 1)

) �(dg)

(g + 1)p/2
, (2.4)

which is finite for all x if ∫ ∞

0

�(dg)

(g + 1)p/2
< ∞. (2.5)

Throughout this chapter, we assume the prior � satisfies (2.5). By (2.2), together
with mπ given in (2.4), the generalized Bayes estimator under π(μ) given by (2.3)
is written as

μ̂π = x + ∇x logmπ (‖x‖2)

=
(
1 −

∫ ∞
0 (g + 1)−p/2−1 exp(−‖x‖2/{2(g + 1)})�(dg)∫ ∞
0 (g + 1)−p/2 exp(−‖x‖2/{2(g + 1)})�(dg)

)
x .

(2.6)

We give a sufficient condition for admissibility of (generalized) Bayes estimators
(2.6) under the prior (2.3) in Sect. 2.4.2.

In order to explore the boundary between admissibility and inadmissibility,�(dg)
in (2.3) is assumed to have a regularly varying density of the form

π(g; a, b, c) = 1

(g + 1)a

( g

g + 1

)b 1

{log(g + 1) + 1}c , (2.7)

for a > −p/2 + 1, b > −1, c ∈ R, (2.8)

where (2.8) is sufficient for (2.5). We provide a sufficient condition for admissibility
of generalized Bayes estimators (2.6) under the prior (2.7) in Sect. 2.4.3.

Remark 2.1 The term 1/(g + 1)a in (2.7) comes from Strawderman (1971) and
Berger (1976). The term {g/(g + 1)}b in (2.7) comes from Alam (1973) (−1 < b <

0) and Faith (1978) (b ≥ 0). The term 1/ {log(g + 1) + 1}c comes from Maruyama
and Strawderman (2020).
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When minimaxity is considered in Sect. 2.5, we assume that �(dg) in (2.3) has
a regularly varying density π(g) = (g + 1)−aξ(g), where ξ(g) satisfies

AS.1 ξ(g) is continuously differentiable.

AS.2 ξ(g) is slowly varying with lim
g→∞ g

ξ ′(g)
ξ(g)

= 0.

We provide a sufficient condition for minimaxity of (generalized) Bayes estimators.
Sect. 2.6 considers improvements over the James–Stein estimator.

2.2 Review of Admissibility/Inadmissibility Results

We are interested in determining admissibility/inadmissibility of generalized Bayes
estimators, for which Brown (1971) has given an essentially complete solution.
Among the many results of Brown (1971), the following result seems to be the
most often quoted.

Theorem 2.1 (Theorem 6.3.1 of Brown 1971) Suppose � (and hence also m�(x))
is spherically symmetric, and let m�(‖x‖2) := m�(x). If

∫ ∞

1

dt

t p/2m�(t)
< ∞, (2.9)

then μ̂� is inadmissible. If the integral is infinite and the risk of μ̂� is bounded or
equivalently

sup
μ

E[‖∇x logm�(‖X‖2)‖2] < ∞, (2.10)

then μ̂� is admissible.

Suppose�(dg) in (2.3) is assumed tohave a regularly varyingdensityπ(g; a, b, c)
given by (2.7). Then a Tauberian theorem (see, e.g., Theorem 13.5.4 in Feller 1971)
gives

lim
t→∞

t p/2−1mπ (t; a, b, c)

π(t; a, b, c)
= 	(p/2 − 1 + a)2p/2−1+a

(2π)p/2
(2.11)

where

mπ (‖x‖2; a, b, c) =
∫ ∞

0

1

(2π)p/2
exp

(
− ‖x‖2
2(g + 1)

)π(g; a, b, c)

(g + 1)p/2
dg.

Hence the integrability (or non-integrability) of (2.9) is equivalent to integrability
(or non-integrability) of
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I (a, b, c) =
∫ ∞

1

dg

gπ(g; a, b, c)
, (2.12)

where, as in Lemma A.8 in Sect. A.3,

I (a, b, c)

{
< ∞ either a < 0 or {a = 0 and c < −1},
= ∞ either a > 0 or {a = 0 and c ≥ −1}.

Further the risk of the corresponding (generalized) Bayes estimator is bounded since

sup
x

‖∇x logmπ (‖x‖2; a, b, c)‖2 < ∞,

which is shown in Lemma A.7 in Sect. A.3. Hence, given the result of Brown (1971),
we have the following result.

Theorem 2.2 Suppose the prior �(g) has a regularly varying density, π(g; a, b, c)
given by (2.7). Then admissibility/inadmissibility of the the corresponding (gen-
eralized) Bayes estimator with π(g; a, b, c) is determined by non-integrability/
integrability of I (a, b, c) given by (2.12).

In this book, we will provide a self-contained proof of Theorem 2.2, based on
Maruyama and Strawderman (2023b). Further, our more general sufficient condi-
tion for admissibility in Theorem 2.4,

∫ ∞

0

�(dg)

g + 1
< ∞

includes the case where the risk of the estimator is not bounded. See Remark 2.4.

2.3 Inadmissibility

For the inadmissibility part of Brown’s theorem, the following proof is essentially
due to Dasgupta and Strawderman (1997), which relates inadmissibility to solving
Riccati differential equations. Following Brown (1971) and Dasgupta and Strawder-
man (1997), we do not assume (2.3) but just spherical symmetry of �. Hence the
result is presented in terms of m� (2.1) and μ̂� (2.2), not mπ (2.4) and μ̂π (2.6).
With

−xψ(x) = ∇ logm�(‖x‖2) = 2x
m ′

�(‖x‖2)
m�(‖x‖2)

in (1.36), the SURE of μ̂� given by (2.2), is
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R̂�(‖x‖2) = p − 4w

(
m ′

�(w)

m�(w)

)2

+ 4p
m ′

�(w)

m�(w)
+ 8w

m ′′
�(w)

m�(w)
, (2.13)

where w = ‖x‖2. Using (2.13), we have the following result.

Theorem 2.3 The generalized Bayes estimator μ̂� under the spherically symmetric
prior �(dμ) given by (2.2), is inadmissible if

∫ ∞

1

dt

t p/2m�(t)
< ∞,

where m�(‖x‖2) := m�(x).

Notice that the statement of Theorem 2.3 is equivalent to the inadmissibility con-
dition of Brown (1971). Hence, by (2.11), the inadmissibility part of Theorem 2.2
follows. More concretely, by Lemma A.8, the integrability of I (a, b, c) given by
(2.12) corresponds to the case either a < 0 or {a = 0 and c < −1} and hence we
have the following corollary.

Corollary 2.1 The generalized Bayes estimator with mixing density π(g; a, b, c) is
inadmissible if

either {−p/2 + 1 < a < 0, b > −1, c ∈ R} or {a = 0, b > −1, c < −1}.

For these values of a and c, the integral (2.9) and I (a, b, c) given by (2.12) converges.

Proof (Theorem 2.3) As in (2.13), the SURE of the estimator μ̂� given by (2.2) is

R̂�(‖x‖2) = p − 4w

(
m ′

�(w)

m�(w)

)2

+ 4p
m ′

�(w)

m�(w)
+ 8w

m ′′
�(w)

m�(w)
,

where w = ‖x‖2. Similarly the SURE of the estimator

μ̂�,q = μ̂� − 2
q(‖x‖2)
m�(‖x‖2) x (2.14)

is R̂�,q(‖x‖2) = R̂�(‖x‖2) + �(‖x‖2; q) where

�(w; q) = 4w
q2(w)

m�(w)

( 1

m�(w)
− pq(w) + 2wq ′(w)

wq2(w)

)
.

Now let r(w) = w p/2q(w). Then

1

m�(w)
− pq(w) + 2wq ′(w)

wq2(w)
= 2w p/2

{ 1

2w p/2m�(w)
+ d

dw

( 1

r(w)

)}
.



28 2 Estimation of a Normal Mean Vector Under Known Scale

Assume

γ =
∫ ∞

1

dt

t p/2m�(t)
< ∞. (2.15)

Then a solution of the differential equation �(w; q) = 0 is given by

1

r∗(w)
= −1

2

∫ w

1

dt

t p/2m�(t)
+ γ.

Hence, under (2.15), the estimator

μ̂�,q∗ = μ̂� − 2
q∗(‖x‖2)
m�(‖x‖2) x

with q∗(w) = w−p/2r∗(w) has the same risk as that of μ̂�. Since quadratic loss is
strictly convex, the estimator given by the average of μ̂� and μ̂�,q∗ ,

μ̂� − q∗(‖x‖2)
m�(‖x‖2) x, (2.16)

strictly improves on μ̂�. �

Remark 2.2 Suppose
∫ ∞
1 dt/{t p/2m�(t)} = ∞ in (2.15). Then a solution of

�(w; q) = 0 is
1

r(w)
= −1

2

∫ w

1

dt

t p/2m�(t)
+ C

where 1/r(w) is decreasing with

lim
w→0

1

r(w)
= +∞ and lim

w→∞
1

r(w)
= −∞.

Hence 1/r(w) takes the value 0 once. Let 1/r(w�) = 0. Then we see that the
corresponding q(w) satisfies limw→w�

q(w) = ∞ and thus the SURE is not defined
for such a q(w) in (2.14).

Remark 2.3 Note

lim
w→0

wq∗(w) = lim
w→0

w−p/2+1

−(1/2)
∫ w

1 dt/{t p/2m�(t)} + γ

= lim
w→0

(−p/2 + 1)w−p/2

−1/{2w p/2m�(w)} = (p − 2)m�(0),
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where the second equality follows from l’Hôpital’s rule. Then the shrinkage factor
of μ̂� − {q∗(‖x‖2)/m�(‖x‖2)}x , defined by

1 + 2
m ′

�(‖x‖2)
m�(‖x‖2) − q∗(‖x‖2)

m�(‖x‖2) ,

approaches −∞ as ‖x‖2 → 0, which implies that the average estimator (2.16) is
dominated by its positive-part estimator. Hence the average estimator improves on
μ̂�, but is still inadmissible.

Generally speaking, for an inadmissible generalized Bayes estimator μ̂�, it is
difficult to find an admissible estimator which dominates μ̂�. On page 863 of Brown
(1971), there is some interesting related discussion on this topic.

2.4 Admissibility

In this section we establish conditions for admissibility of a subclass of generalized
Bayes estimators using Blyth’s method as presented in Theorem 1.2.

2.4.1 The Bayes Risk Difference

Let a sequence of (non-normalized) proper priors be of the form

πi (μ) =
∫ ∞

0

g−p/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
k2i (g)�(dg)

where ki (g) satisfies
∫ ∞
0 k2i (g)�(dg) < ∞ for any fixed i and limi→∞ ki (g) = 1 for

any fixed g. Specific choice of ki (g) will be given by (2.23) in Sect. 2.4.2 and (2.26)
in Sect. 2.4.3.

Under the prior πi (μ), we have

mi (‖x‖2) =
∫
Rp

φ(x − μ)πi (μ)dμ

=
∫ ∞

0

1

(2π)p/2
exp

(
− ‖x‖2
2(g + 1)

) k2i (g)

(g + 1)p/2
�(dg) (2.17)
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and

μ̂i = x + ∇x logmi (‖x‖2)

=
(
1 −

∫ ∞
0 (g + 1)−p/2−1 exp(−‖x‖2/{2(g + 1)})k2i (g)�(dg)∫ ∞
0 (g + 1)−p/2 exp(−‖x‖2/{2(g + 1)})k2i (g)�(dg)

)
x . (2.18)

The Bayes risk difference between μ̂π and μ̂i , with respect to πi (μ), is

�i =
∫
Rp

{
R(μ̂π ;μ) − R(μ̂i ;μ)

}
πi (μ)dμ,

which is rewritten as

�i =
∫
Rp

∫
Rp

{‖μ̂π − μ‖2 − ‖μ̂i − μ‖2}φ(x − μ)πi (μ)dμdx

=
∫
Rp

{(‖μ̂π‖2 − ‖μ̂i‖2
)
mi (‖x‖2) − 2(μ̂π − μ̂i )

T

∫
Rp

μφ(x − μ)πi (μ)dμ
}
dx

=
∫
Rp

‖μ̂π − μ̂i‖2mi (‖x‖2)dx . (2.19)

By (2.6), (2.17) and (2.18), the integrand of �i given in (2.19) is

‖μ̂π − μ̂i‖2mi (w)

= w

(∫ ∞
0 (g + 1)−1F(g;w)k2i (g)�(dg)∫ ∞

0 F(g;w)k2i (g)�(dg)
−

∫ ∞
0 (g + 1)−1F(g;w)�(dg)∫ ∞

0 F(g;w)�(dg)

)2

×
∫ ∞

0
F(g;w)k2i (g)�(dg), (2.20)

where w = ‖x‖2 and

F(g;w) = (g + 1)−p/2

(2π)p/2
exp

(
− w

2(g + 1)

)
. (2.21)

2.4.2 A General Admissibility Result for Mixture Priors

This subsection is devoted to establishing the following result.

Theorem 2.4 (Maruyama and Strawderman 2023b) The (generalized) Bayes esti-
mator μ̂π given by (2.6) is admissible if
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∫ ∞

0

�(dg)

g + 1
< ∞. (2.22)

Clearly any proper prior on g satisfies (2.22). Further, even if the prior is improper,
i.e.,

∫ ∞
0 �(dg) = ∞, the corresponding generalized Bayes estimator is admissible

under (2.22). Further, by Part 3 of Lemma A.8, we have the following corollary.

Corollary 2.2 The (generalized) Bayes estimator with mixing density π(g; a, b, c)
given by (2.7) is admissible if

either a > max(−p/2 + 1, 0) or {a = 0 and c > 1}.

For these values of a and c, the integral (2.9) and I (a, b, c) given by (2.12) both
diverge.

Proof (Proof of Theorem 2.4) Let

k2i (g) = i

g + i
, (2.23)

which is increasing in i and is such that limi→∞ ki (g) = 1, for any fixed g. The prior
πi (μ) is proper for any fixed i since the mixture distribution is proper, because

∫ ∞

0
k2i (g)�(dg) ≤ i

∫ ∞

0

�(dg)

g + 1
< ∞.

Applying the Cauchy-Schwarz inequality (Part 3 of Lemma A.3), to ‖μ̂π − μ̂i‖2
mi (w) given by (2.20), we have

‖μ̂π − μ̂i‖2mi (w)

≤ 2w

( {∫ ∞
0 (g + 1)−1F(g;w)k2i (g)�(dg)}2∫ ∞

0 F(g;w)k2i (g)�(dg)
+ {∫ ∞

0 (g + 1)−1F(g;w)�(dg)}2∫ ∞
0 F(g;w)�(dg)

)
,

(2.24)

where F(g;w) is given by (2.21). Further applying the Cauchy–Schwarz inequality
(Part 1 Lemma A.3) to the first and second terms of (2.24), we have

‖μ̂π − μ̂i‖2mi (w) ≤ 4w
∫ ∞

0

F(g;w)

(g + 1)2
�(dg).

This is precisely the bound required in order to apply the dominated convergence
theorem to demonstrate that �i → 0, since
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lim
i→∞ μ̂i = μ̂π and hence lim

i→∞ ‖μ̂π − μ̂i‖2 = 0 for fixed w,

and
∫
Rp

‖μ̂π − μ̂i‖2mi (‖x‖2)dx

≤ 4
∫
Rp

∫ ∞

0

(2π)−p/2‖x‖2
(g + 1)p/2+2

exp
(
− ‖x‖2
2(g + 1)

)
�(dg)dx

=
∫
Rp

4‖y‖2 exp(−‖y‖2/2)dy
(2π)p/2

∫ ∞

0

�(dg)

g + 1
= 4p

∫ ∞

0

�(dg)

g + 1
< ∞,

where the second equality follows from Part 2 of Lemma A.2. �

Remark 2.4 The prior μ ∼ Np(0, gI ) corresponds to the point prior on g in (2.3).
The proper Bayes estimator is gX/(g + 1) with unbounded risk

g2 p + ‖μ‖2
(g + 1)2

.

Theorem 2.4 covers this case whereas (2.10) of Brown (1971) result is not satisfied
by the proper Bayes admissible estimator gX/(g + 1).

2.4.3 On the Boundary Between Admissibility
and Inadmissibility

By (2.6), the (generalized) Bayes estimator with mixing density π(g; a, b, c) is

μ̂π =
(
1 −

∫ ∞
0 (g + 1)−p/2−1 exp(−‖x‖2/{2(g + 1)})π(g; a, b, c)dg∫ ∞
0 (g + 1)−p/2 exp(−‖x‖2/{2(g + 1)})π(g; a, b, c)dg

)
x . (2.25)

Corollaries 2.1 and 2.2 settle the issue of admissibility/inadmissibility of μ̂π given
by (2.25) for all values of a and c except for the cases {a = 0 and |c| ≤ 1}. For
these cases, non-integrability of I (a, b, c) given by (2.12) holds. Hence Theorem
2.2 implies that for these values, near the boundary between admissibility and inad-
missibility, the generalized Bayes estimator is admissible.

Theorem 2.5 (Maruyama and Strawderman 2023b)Assume themeasure�(dg) has
the density π(g; a, b, c) with

a = 0, b > −1, |c| ≤ 1.
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Then the corresponding generalized Bayes estimator μ̂π given by (2.25) is admissi-
ble.

In Sect. A.4, we prove Theorem 2.5, using the sequence

ki (g) =
⎧⎨
⎩
1 − log(log(g + 1) + 1)

log(log(i + 1) + 1)
0 < g < i

0 g ≥ i.
(2.26)

The proof is based onMaruyama and Strawderman (2023b), where b ≥ 0 in Theorem
2.5 was assumed. In this book, we include the case −1 < b < 0.

2.5 Minimaxity

In this section we study minimaxity of generalized Bayes estimators corresponding
to priors of the form π(g) = ξ(g)/(g + 1)a , where ξ(g) satisfies AS.1 and AS.2
given in the end of Sect. 2.1. The marginal density (2.4) is

mπ (‖x‖2) =
∫
Rp

φ(x − μ)π(μ)dμ

=
∫ ∞

0

1

(2π)p/2
exp

(
− ‖x‖2
2(g + 1)

) ξ(g)dg

(g + 1)p/2+a
. (2.27)

The SURE of the estimator given by (2.2), is given by

R̂(‖x‖2) = p + 4
m ′

π (w)

mπ (w)

(
p − 2w

m ′′
π (w)

−m ′
π (w)

+ w
−m ′

π (w)

mπ (w)

)
.

Since m ′
π (w) ≤ 0, R̂(w) ≤ p, for all w ≥ 0, a sufficient condition for minimaxity,

is equivalent to �(v) ≥ 0 for all v ≥ 0 where v = w/2 where

�(v) = p − 2
v

∫ ∞
0 (g + 1)−p/2−2−aξ(g) exp(−v/(g + 1))dg∫ ∞
0 (g + 1)−p/2−1−aξ(g) exp(−v/(g + 1))dg

+ v
∫ ∞
0 (g + 1)−p/2−1−aξ(g) exp(−v/(g + 1))dg∫ ∞
0 (g + 1)−p/2−aξ(g) exp(−v/(g + 1))dg

.

(2.28)

We consider, separately, the cases where ξ(g) is bounded or unbounded in a neigh-
borhood of the origin in the next two subsections.
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2.5.1 ξ(g) Bounded Near the Origin

Let

�(g) = (g + 1)
ξ ′(g)
ξ(g)

.

In this subsection, in addition to AS.1 and As.2, we assume the following.

AS.3 �(g) has at most finitely many local extrema for g ∈ (0, 1).

AS.4 lim
g→0

�(g) = lim
g→0

ξ ′(g)
ξ(g)

> −∞.

Under AS.3, �(g) does not oscillate excessively around the origin. By Part 6 of
Lemma A.5 under AS.4, we have 0 ≤ ξ(0) < ∞. Thus the assumptions suffice to
guarantee that ξ is bounded in a neighborhood of the origin.

Let

�1(g) := sup
t≥g

{
(t + 1)

ξ ′(t)
ξ(t)

}
, �2(g) := �1(g) − �(g). (2.29)

Then we have the following result.

Lemma 2.1 1. �1(g) is monotone non-increasing and lim
g→∞ �1(g) = 0.

2. �2(g) ≥ 0 for all g ≥ 0, lim
g→∞ �2(g) = 0 and there exists �2∗ such that

0 ≤ �2(g) ≤ �2∗ for all g ≥ 0. (2.30)

Proof Bydefinition,�1(g) ismonotone non-increasing and�2(g) ≥ 0 for all g ≥ 0.
By AS.2, lim supg→∞ �(g) = limg→∞ �1(g) = 0. Further

lim
g→∞ �2(g) = 0 (2.31)

follows.
By AS.3, there exists g0 such that �(g) is monotone for g ∈ (0, g0). If it is

monotone non-increasing, �1(g) = �(g) and

�2(g) ≡ 0 for g ∈ (0, g0). (2.32)

If it is monotone non-decreasing, �1(g) = �(g0) for g ∈ (0, g0) and hence

�2(g) = �1(g) − �(g) = �(g0) − �(g)

≤ �(g0) − lim
g→0

�(g) < ∞ for g ∈ (0, g0), (2.33)

where the inequality follows from the monotonicity of �(g) and the boundness
follows from AS.4. By AS.1, �(g), �1(g) and �2(g) are all continuous. Hence, by
(2.31), (2.32) and (2.33), there exists �2∗ as in (2.30). �
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A version of the following result is given in Fourdrinier et al. (1998).

Theorem 2.6 (Fourdrinier et al. 1998) Assume AS.1–AS.4 on ξ(g). Then the corre-
sponding (generalized) Bayes estimator is minimax if −p/2 + 1 < a ≤ p/2 − 1 −
2�2∗.

Proof Note (d/dg) exp(−v/(g + 1)) = v(g + 1)−2 exp(−v/(g + 1)). Then

v

∫ ∞

0

ξ(g) exp(−v/(g + 1))

(g + 1)p/2+2+a
dg

=
[ξ(g) exp(−v/(g + 1))

(g + 1)p/2+a

]∞
0

+ (p/2 + a)

∫ ∞

0

ξ(g) exp(−v/(g + 1))

(g + 1)p/2+1+a
dg

−
∫ ∞

0

ξ ′(g) exp(−v/(g + 1))

(g + 1)p/2+a
dg

= − ξ(0)

exp(v)
+ (p/2 + a)

∫ ∞

0

q(g; v)

g + 1
dg −

∫ ∞

0

�(g)q(g; v)

g + 1
dg, (2.34)

where

q(g; v) = π(g) exp(−v/(g + 1))

(g + 1)p/2
= ξ(g) exp(−v/(g + 1))

(g + 1)p/2+a
.

Similarly

v

∫ ∞

0

ξ(g) exp(−v/(g + 1))

(g + 1)p/2+1+a
dg

= − ξ(0)

exp(v)
+ (p/2 − 1 + a)

∫ ∞

0
q(g; v)dg −

∫ ∞

0
�(g)q(g; v)dg. (2.35)

By (2.28), (2.34), and (2.35), we have

�(v) = −a + p

2
− 1 + ξ(0)

exp(v)

( 2∫ ∞
0 (g + 1)−1q(g; v)dg

− 1∫ ∞
0 q(g; v)dg

)

+ 2

∫ ∞
0 (g + 1)−1�(g)q(g; v)dg∫ ∞

0 (g + 1)−1q(g; v)dg
−

∫ ∞
0 �(g)q(g; v)dg∫ ∞

0 q(g; v)dg
. (2.36)

In (2.36), we have

2∫ ∞
0 (g + 1)−1q(g; v)dg

− 1∫ ∞
0 q(g; v)dg

≥ 1∫ ∞
0 (g + 1)−1q(g; v)dg

≥ 0. (2.37)
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Then, by (2.29), (2.36) and (2.37), we have

�(v) ≥ −a + p

2
− 1 + �1(v) − �2(v)

where

�i (v) = 2

∫ ∞
0 (g + 1)−1�i (g)q(g; v)dg∫ ∞

0 (g + 1)−1q(g; v)dg
−

∫ ∞
0 �i (g)q(g; v)dg∫ ∞

0 q(g; v)dg
.

Since �1(g) is monotone non-decreasing, the correlation inequality (Lemma A.4)
gives

�1(v) ≥
∫ ∞
0 (g + 1)−1�1(g)q(g; v)dg∫ ∞

0 (g + 1)−1q(g; v)dg
≥ 0.

Further we have �2(v) ≤ 2�2∗. Hence we have

�(v) ≥ −a + p

2
− 1 − 2�2∗ ≥ 0,

which completes the proof. �

An interesting example is provided by the mixing density ξ(g) = {g/(g +
1)}b {log(g + 1) + 1}−c, for c ∈ R. In this case, b ≥ 0 is necessary for AS.4. Here
is the result.

Lemma 2.2 Suppose ξ(g) = {g/(g + 1)}b {log(g + 1) + 1}−c, for b ≥ 0 and c ∈
R. Then

�2∗ =
{
0 c ≤ 0

c/{log(b/c + 1) + 1} c > 0.

Proof We have

�(g) = b

g
− c

log(g + 1) + 1
and

d

dg
�(g) = − b

g2
+ c

g + 1

1

{log(g + 1) + 1}2 .

For b ≥ 0 and c ≤ 0, �(g) itself is decreasing in g and we can set

�1(g) := �(g) and �2(g) ≡ 0.

For b ≥ 0 and c > 0,

d

dg
�(g) = − b

g2
+ c

g + 1

1

{log(g + 1) + 1}2 .
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Let α = b/c and g∗ = α{1 + log(α + 1)}. Then
d

dg
�(g) = c

g2

(
−α + g

g + 1

g

{1 + log(g + 1)}2
)

which is negative for g ∈ (0, g∗). Hence let

�3(g) =
{

�(g) 0 < g < g∗
�(g∗) g ≥ g∗,

which is decreasing and �1(g) ≤ �3(g). Then, for g ≥ g∗, we have

�2(g) = �1(g) − �(g) ≤ �3(g) − �(g) = �(g∗) − �(g)

= c
( α

g∗
− α

g
− 1

log(g∗ + 1) + 1
+ 1

log(g + 1) + 1

)
≤ cα

g∗
= c

log(b/c + 1) + 1
,

which completes the proof. �

The next corollary follows immediately.

Corollary 2.3 Suppose b ≥ 0. Then the corresponding (generalized) Bayes estima-
tor with π(g; a, b, c) given by (2.7) is minimax if

−p/2 + 1 < a ≤
⎧⎨
⎩
p/2 − 1 c ≤ 0

p/2 − 1 − 2c

log(b/c + 1) + 1
c > 0.

2.5.2 ξ(g) Unbounded Near the Origin

In this subsectionwegive an example of a class of priors forwhich ξ(g) is not bounded
in a neighborhood of 0, but for which the generalized Bayes estimator is minimax.
Suppose ξ(g) = {g/(g + 1)}b for −1 < b < 0. Then ξ ′(g)/ξ(g) = b/{g(g + 1)}
approaches −∞ as g → 0, which does not satisfy AS.4. Further limg→0 ξ(g) = ∞
and ξ(g) is unbounded on g ∈ (0, 1). For such ξ(g), we have the following result.

Theorem 2.7 (Maruyama 1998, 2001) Assume −1 < b < 0 and c = 0 in
π(g; a, b, c). The corresponding (generalized) Bayes estimator is minimax if

−p/2 + 1 < a < p/2 − 1 and − p/2 − 1 − a

3p/2 + a − 1
≤ b < 0.

Maruyama (1998) proved this theorem by expressing the marginal density (2.27) in
terms of the confluent hypergeometric function. Here is a more direct proof.



38 2 Estimation of a Normal Mean Vector Under Known Scale

Proof Let F(g; v) = exp(−v/(g + 1)) − exp(−v). Then

∂

∂g
F(g; v) = v

(g + 1)2
exp

(
− v

g + 1

)
,

lim
g→0

F(g; v)

g
= lim

g→0
exp

(
− v

g + 1

)1
g

{
1 − exp

(
− vg

g + 1

)}
= v

exp(v)
,

and hence
lim
g→0

F(g; v)ξ(g) = 0. (2.38)

Note
d

dg

{ ξ(g)

(g + 1)p/2+a

}
=

{−(p/2 + a)

g + 1
+ b

g(g + 1)

} ξ(g)

(g + 1)p/2+a
.

Then an integration by parts for (2.28) gives

v

∫ ∞

0

ξ(g) exp(−v/(g + 1))

(g + 1)p/2+2+a
dg

=
[F(g; v)ξ(g)

(g + 1)p/2+a

]∞
0

−
∫ ∞

0

F(g; v)ξ(g)

(g + 1)p/2+2+a

{
− p/2 + a

g + 1
+ b

g(g + 1)

}
dg

= (p/2 + a)

∫ ∞

0

ν(g)dg

(g + 1) exp(v/(g + 1))
− p/2 + a

exp(v)

∫ ∞

0

ν(g)

g + 1
dg

− b
∫ ∞

0

F(g; v)ν(g)

g(g + 1)
dg, (2.39)

where ν(g) = ξ(g)/(g + 1)p/2+a = π(g)/(g + 1)p/2. Similarly,

v

∫ ∞

0

ξ(g) exp(−v/(g + 1))dg

(g + 1)p/2+1+a
= (p/2 − 1 + a)

∫ ∞

0

ν(g)dg

exp(v/(g + 1))

− p/2 − 1 + a

exp(v)

∫ ∞

0
ν(g)dg − b

∫ ∞

0
F(g; v)

ν(g)

g
dg. (2.40)

Then, by (2.39) and (2.40),

�(v) = p

2
− 1 − a + �1(v)

exp(v)
+ 2b�2(v) − b

∫ ∞
0 g−1F(g; v)ν(g)dg∫ ∞

0 ν(g) exp(−v/(g + 1))dg
,

(2.41)
where



2.6 Improvement on the James–Stein Estimator 39

�1(v) = 2(p/2 + a)
∫ ∞
0 (g + 1)−1ν(g)dg∫ ∞

0 (g + 1)−1ν(g) exp(−v/(g + 1))dg
− (p/2 − 1 + a)

∫ ∞
0 ν(g)dg∫ ∞

0 ν(g) exp(−v/(g + 1))dg
,

�2(v) =
∫ ∞
0 g−1(g + 1)−1F(g; v)ν(g)dg∫ ∞

0 (g + 1)−1ν(g) exp(−v/(g + 1))dg
.

Since (g + 1)−1 and exp(−v/(g + 1)) are decreasing and increasing in g, respec-
tively, the correlation inequality (Lemma A.4) gives

∫ ∞
0 (g + 1)−1ν(g)dg∫ ∞

0 (g + 1)−1ν(g) exp(−v/(g + 1))dg
≥

∫ ∞
0 ν(g)dg∫ ∞

0 ν(g) exp(−v/(g + 1))dg
,

and hence �1(v) ≥ 0 in (2.41). Let

J (g; v) = exp(vg/(g + 1)) − 1

g/(g + 1)
=

∞∑
j=1

( g

g + 1

) j−1 v j

j ! .

Then, exp(v)F(g; v) = exp(vg/(g + 1)) − 1 and

�2(v) ≤
∫ ∞
0 J (g; v)(g + 1)−2ν(g)dg∫ ∞
0 J (g; v)g(g + 1)−2ν(g)dg

. (2.42)

Further since J (g; v) is increasing in g, the correlation inequality (Lemma A.4)
gives

�2(v) ≤
∫ ∞
0 (g + 1)−2ν(g)dg∫ ∞

0 g(g + 1)−2ν(g)dg
= B(p/2 + 1 + a, b + 1)

B(p/2 + a, b + 2)
= p/2 + a

b + 1
. (2.43)

Then, by (2.41), (2.42) and (2.43),

�(v) ≥ p/2 − 1 − a + 2b
p/2 + a

b + 1
= b(3p/2 − 1 + a) + (p/2 − 1 − a)

b + 1
≥ 0,

which completes the proof. �

2.6 Improvement on the James–Stein Estimator

In this section, we construct a class of estimators improving on the James–Stein
estimator. From (1.36) and (1.37), the risk difference of two estimators μ̂JS and
μ̂φ = {1 − φ(‖x‖2)/‖x‖2}x can be expressed as
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�(λ) = R(μ̂JS;μ) − R(μ̂φ;μ)

= −E
[ {φ(W ) − (p − 2)}2

W

]
+ 4 E[φ′(W )],

(2.44)

for W = ‖X‖2 and λ = ‖μ‖2. The development in Kubokawa (1994) is particularly
useful for deriving conditions on φ which suffice to imply �(λ) ≥ 0.

Theorem 2.8 (Kubokawa 1994) The James–Stein estimator μ̂JS is improved on by
the shrinkage estimator μ̂φ if φ satisfies the following conditions. (a) φ(w) is non-
decreasing in w; (b) limw→∞ φ(w) = p − 2 and φ(w) ≥ φ0(w) where

φ0(w) = w

∫ ∞
0 (g + 1)−p/2−1 exp(−w/{2(g + 1)})dg∫ ∞
0 (g + 1)−p/2 exp(−w/{2(g + 1)})dg .

Proof We evaluate the first term −E[{φ(W ) − (p − 2)}2/W ] in (2.44). It follows
from condition (b) that

− {φ(w) − (p − 2)}2 = [{φ((g + 1)w) − (p − 2)}2]∞g=0

=
∫ ∞

0

d

dg
{φ((g + 1)w) − (p − 2)}2dg

= 2w
∫ ∞

0
{φ((g + 1)w) − (p − 2)}φ′((g + 1)w)dg, (2.45)

so that the first term may be written as

− E
[ {φ(W ) − (p − 2)}2

W

]

= 2
∫ ∞

0

∫ ∞

0
{φ((g + 1)w) − (p − 2)}φ′((g + 1)w)dg f p(w; λ)dw

= 2
∫ ∞

0

∫ ∞

0
{φ(v) − (p − 2)}φ′(v)

f p(v/(g + 1); λ)

g + 1
dgdv, (2.46)

where f p(w; λ) is the probability density function of noncentral chi-square distribu-
tion χ2

p(λ) with noncentrality λ.
Replacing v with w in (2.46) gives

�(λ)

= 2
∫ ∞

0
φ′(w)

{
{φ(w) − (p − 2)}

∫ ∞

0

f p(w/(g + 1); λ)

g + 1
dg + 2 f p(w; λ)

}
dw

= 2
∫ ∞

0
φ′(w)

{
φ(w) − (p − 2) + 2Fp(w; λ)

}{∫ ∞

0

f p(w/(g + 1); λ)

g + 1
dg

}
dw,

where
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Fp(w; λ) = f p(w; λ)∫ ∞
0 (g + 1)−1 f p(w/(g + 1); λ)dg

.

Note that Fp(w; λ) ≥ Fp(w; 0) since
1

Fp(w; λ)
− 1

Fp(w; 0)
=

∫ ∞

0

1

g + 1

{ f p(w/(g + 1); λ)

f p(w; λ)
− f p(w/(g + 1); 0)

f p(w; 0)
}
dg

=
∫ ∞

0

1

g + 1

f (w/(g + 1); 0)
f p(w; λ)

{ f p(w/(g + 1); λ)

f p(w/(g + 1); 0) − f p(w; λ)

f p(w; 0)
}
dg ≤ 0, (2.47)

where the inequality follows from the fact that

f p(w; λ)

f p(w; 0) =
∞∑
i=0

(λ/2)i

eλ/2i !
	(p/2)2p/2

	(p/2 + i)2p/2+i

w p/2+i−1e−w/2

w p/2−1e−w/2

=
∞∑
i=0

(λ/2)i

eλ/2i !
	(p/2)

	(p/2 + i)2i
wi

is increasing in w. Hence �(λ) ≥ 0 if φ′(w) ≥ 0 and φ(w) ≥ φ0(w), where

φ0(w) = p − 2 − 2Fp(w; 0), (2.48)

which may be expressed as

φ0(w) = p − 2 − 2 exp(−w/2)∫ ∞
0 (g + 1)−p/2 exp(−w/{2(g + 1)})dg (2.49)

= (p − 2)
∫ ∞
0 (g + 1)−p/2 exp(−w/{2(g + 1)})dg − 2 exp(−w/2)∫ ∞

0 (g + 1)−p/2 exp(−w/{2(g + 1)})dg

= w

∫ ∞
0 (g + 1)−p/2−1 exp(−w/{2(g + 1)})dg∫ ∞
0 (g + 1)−p/2 exp(−w/{2(g + 1)})dg , (2.50)

where the last equality follows from an integration by parts. This completes the
proof. �

Note that

Fp(w; 0) = 1∫ ∞
0 (g + 1)−p/2 exp(wg/{2(g + 1)})dg ,

which is decreasing in w and approaches 0 as w → ∞. Thus, by (2.48) and (2.49),



42 2 Estimation of a Normal Mean Vector Under Known Scale

φ′
0(w) ≥ 0, lim

w→∞ φ0(w) = p − 2.

Hence the function φ0(w) satisfies conditions (a) and (b) of Theorem 2.8. Comparing
φ0(w) with (2.25), it is clear that

(
1 − φ0(‖X‖2)

‖X‖2
)
X

can be characterized as the generalized Bayes estimator under π(g; a, b, c) with
a = b = c = 0 or, equivalently, the Stein (1974) prior πS(‖μ‖2) = ‖μ‖2−p given
by (1.14). It follows from Theorems 2.8 and 2.5 that this is estimator is minimax,
and admissible, and also improves on the James–Stein estimator.

It follows from (2.50) that φ0(w) ≤ w. Hence the the truncated function

φ+
JS = min(w, p − 2)

corresponding to the James–Stein positive-part estimator

μ̂+
JS = max

(
1 − (p − 2)/‖X‖2, 0)X,

also satisfies conditions (a) and (b) of Theorem 2.8, and dominates the James–Stein
estimator. See Baranchik (1964) and Lehmann and Casella (1998) for the original
proof of the domination.
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Chapter 3
Estimation of a Normal Mean Vector
Under Unknown Scale

3.1 Equivariance

In this chapter, we consider estimation of the mean of a multivariate normal distri-
bution when the scale is unknown. Let

X ∼ Np(θ, I/η) and ηS ∼ χ2
n ,

where θ and η are both unknown. For estimation of θ , the loss function is scaled
quadratic loss L(δ; θ, η) = η‖δ(x, s) − θ‖2.

The first three sections cover issues of Bayesianity, admissibility and minimaxity
among estimators which are both orthogonally and scale equivariant. The remaining
sections consider these issues among all estimators.

Consider a group of transformations,

X → γ�X, θ → γ�θ, S → γ 2S, η → η/γ 2, (3.1)

where � ∈ O(p), the group of p × p orthogonal matrices, and γ ∈ R+. Equivariant
estimators for this group (3.1) satisfy

θ̂ (γ �x, γ 2s) = γ�θ̂(x, s). (3.2)

The following result gives the form of such equivariant estimators.

Theorem 3.1 Equivariant estimators for the group (3.1) are of the form

θ̂ψ = {
1 − ψ(‖X‖2/S)

}
X, where ψ : R+ → R.

Proof Let the orthogonal matrix � ∈ O(p) satisfy

� = (x/‖x‖ z2 . . . z p)
T and �x = (‖x‖ 0 . . . 0)T = ‖x‖e1, (3.3)

where unit vectors z2, . . . , z p ∈ R
p satisfy

zTi z j = 0 for i �= j, zTi x = 0 for i = 2, . . . , p
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and e1 := (1, 0, . . . , 0)T ∈ R
p. Further let γ = 1/

√
s. Then, by (3.2), the equivariant

estimator θ̂ (x, s) satisfies

θ̂ (x, s) = 1

γ
�Tθ̂ (γ �x, γ 2s) = √

s�Tθ̂ ({‖x‖/√s}e1, 1)

= θ̂1({‖x‖/√s}e1, 1)
‖x‖/√s

x + √
s

p∑

i=2

θ̂i

(‖x‖√
s
e1, 1

)
zi , (3.4)

where θ̂i is the i th component of θ̂ .
For the orthogonal matrix �1� where �1 = diag(1,−1, 1, . . . , 1), we have

�1� = (x/‖x‖ − z2 z3 . . . z p)
T and �1�x = ‖x‖e1.

Hence the estimator (3.4) should be also expressed by

θ̂ (x, s) = 1

γ
(�1�)Tθ̂ (γ (�1�)x, γ 2s)

= θ̂1({‖x‖/√s}e1, 1)
‖x‖/√s

x − √
sθ̂2

(‖x‖√
s
e1, 1

)
z2 + √

s
p∑

i=3

θ̂i

(‖x‖√
s
e1, 1

)
zi . (3.5)

By (3.4) and (3.5), θ̂2({‖x‖/√s}e1, 1) = 0. Similarly, θ̂i ({‖x‖/√s}e1, 1) = 0 for
i = 3, . . . , p. Therefore, in (3.4), we have

θ̂ (x, s) = θ̂1({‖x‖/√s}e1, 1)
‖x‖/√s

x,

where the coefficient of x is a function of ‖x‖2/s. This completes the proof. �

Let f (t) = {(2π)p/2�(n/2)2n/2}−1 exp(−t/2). Then the joint probability density of
X and S is given by

ηp/2+n/2sn/2−1 f (η{‖x − θ‖2 + s})
= ηp/2

(2π)p/2
exp

(
−η‖x − θ‖2

2

)
× ηn/2sn/2−1

�(n/2)2n/2
exp(−ηs/2).

Also, the generalized Bayes estimator of θ with respect to a prior of the form

Q(θ, η; ν, q) = ηνηp/2q(η‖θ‖2) (3.6)

for ν ∈ R is given by

θ̂q,ν(x, s) =
∫∫

θη(2p+n)/2+ν+1 f (η{‖x − θ‖2 + s})q(η‖θ‖2)dθdη
∫∫

η(2p+n)/2+ν+1 f (η{‖x − θ‖2 + s})q(η‖θ‖2)dθdη . (3.7)
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The value of the estimator θ̂q,ν(x, s) evaluated at x = γ�x and s = γ 2s where � ∈
O(p), the group of p × p orthogonal matrices, and γ ∈ R+, is given by

θ̂q,ν(γ �x, γ 2s)

=
∫∫

θη(2p+n)/2+ν+1 f (η{‖γ�x − θ‖2 + γ 2s})q(η‖θ‖2)dθdη
∫∫

η(2p+n)/2+ν+1 f (η{‖γ�x − θ‖2 + γ 2s})q(η‖θ‖2)dθdη . (3.8)

By the change of variables θ = γ�θ∗ and η∗ = γ 2η, this may be rewritten as

θ̂q,ν(γ �x, γ 2s) = γ�

∫∫
θ∗η

(2p+n)/2+ν+1
∗ f (η∗{‖x − θ∗‖2 + s})q(η∗‖θ∗‖2)dθ∗dη∗

∫∫
η

(2p+n)/2+ν+1
∗ f (η∗{‖x − θ∗‖2 + s})q(η∗‖θ∗‖2)dθ∗dη∗

= γ�θ̂q,ν(x, s). (3.9)

By (3.2), θ̂q,ν(x, s) is equivariant.
In the next section, we show that the case ν = −1 is special within this class.

3.2 Proper Bayes Equivariant Estimators

In this section we first show that the risk of an estimator that is equivariant under the
group (3.1), depends only on the one dimensional parameter λ = η‖θ‖2 ∈ R+. We
then consider Bayes estimators among the class of equivariant estimators relative to
proper priors on λ. We show that such estimators are admissible among equivariant
estimators and are also generalized Bayes estimators relative to Q(θ, η; ν, q) with
ν = −1 given by (3.6).

Theorem 3.2 The risk function of an equivariant estimator for the group (3.1),

θ̂ψ = {
1 − ψ(‖X‖2/S)

}
X

depends only on λ = η‖θ‖2 ∈ R+.

Proof As in (3.3), let the orthogonal matrix � be of the form

�T = (θ/‖θ‖ z2 . . . z p)
T and �Tθ = (‖θ‖ 0 . . . 0)T. (3.10)

By the change of variables, y = η1/2�Tx and v = ηs, we have
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R(θ̂ψ ; θ, η)

=
∫∫

η
∥∥{1 − ψ(‖x‖2/s)}x − θ

∥∥2
sn/2−1η(p+n)/2 f (η{‖x − θ‖2 + s})dxds

=
∫∫ ∥∥{1 − ψ(‖y‖2/v)}�y − η1/2θ

∥∥2
vn/2−1 f ({‖�y − η1/2θ‖2 + v})dydv

=
∫∫ ∥∥{1 − ψ(‖y‖2/v)}y − �Tη1/2θ

∥∥2
vn/2−1 f ({‖y − �Tη1/2θ‖2 + v})dydv

=
∫∫ {({1 − ψ(‖y‖2/v)}y1 − η1/2‖θ‖)2 + {1 − ψ(‖y‖2/v)}2

p∑

i=2

y2i
}

× vn/2−1 f
((

y1 − η1/2‖θ‖)2 +
p∑

i=2

y2i + v
)
dydv,

where the last equality follows from (3.10). This completes the proof. �

By Theorem 3.2, the risk function may be expressed as

R(θ̂ψ ; θ, η) = R̃(θ̂ψ ; η‖θ‖2). (3.11)

Now assume that λ = η‖θ‖2 ∈ R+ has the prior density π̄(λ), which, in this section,
we assume to be proper, that is,

∫ ∞
0 π̄(λ)dλ = 1. For an equivariant estimator θ̂ψ ,

we define the Bayes equivariant risk as

r̃(θ̂ψ ; π̄) =
∫ ∞

0
R̃(θ̂ψ ; λ)π̄(λ)dλ. (3.12)

In this book, the estimator θ̂ψ whichminimizes r̃(θ̂ψ ; π̄ ), is called a (relative to π̄(λ)).
In the following, let

π(λ) = �(p/2)

π p/2
λ1−p/2π̄(λ) (3.13)

so that π(‖μ‖2) is a proper probability density on R
p, that is,

∫

Rp

π(‖μ‖2)dμ = 1. (3.14)

Let the Bayes equivariant estimator, which minimizes r̃(θ̂ψ ; π̄ ), be denoted by θ̂π .
Theorem 3.3 below shows that θ̂π is equivalent to the generalized Bayes estimator of
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θ with respect to the joint prior density η−1ηp/2π(η‖θ‖2), and that it is admissible
among equivariant estimators.

Theorem 3.3 (Maruyama and Strawderman 2020) Assume that π̄(λ) is proper.

1. The Bayes equivariant risk, r̃(θ̂ψ ; π̄) given by (3.12) is

r̃(θ̂ψ ; π̄ ) =
∫

Rp

ψ(‖z‖2)
{
ψ(‖z‖2) − 2

(
1 − zTM2(z, π)

‖z‖2M1(z, π)

)}

× ‖z‖2M1(z, π)dz + p,

where

M1(z, π) =
∫∫

η(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη,

M2(z, π) =
∫∫

θη(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη.

(3.15)

2. Given π̄(λ), the minimizer of r̃(θ̂ψ ; π̄) with respect to ψ is

ψπ(‖z‖2) = argmin ψ r̃(θ̂ψ ; π̄ ) = 1 − zTM2(z, π)

‖z‖2M1(z, π)
, (3.16)

and the Bayes risk difference under π̄(λ) is

r̃(θ̂ψ ; π̄) − r̃(θ̂π ; π̄ )

=
∫

Rp

{
ψ(‖z‖2) − ψπ(‖z‖2)}2 ‖z‖2M1(z, π)dz. (3.17)

3. The Bayes equivariant estimator

θ̂π = {
1 − ψπ(‖X‖2/S)

}
X

with ψπ by (3.16), is equivalent to the generalized Bayes estimator of θ with
respect to the joint prior density η−1ηp/2π(η‖θ‖2) where π(λ) is given by (3.13).

4. The Bayes equivariant estimator θ̂π is admissible within the class of estimators
equivariant under the group (3.1).
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Proof (Parts 1 and 2) The Bayes equivariant risk given by (3.12) is

r̃(θ̂ψ ; π̄ ) =
∫

Rp

R̃(θ̂ψ ; ‖μ‖2)π(‖μ‖2)dμ

=
∫

Rp

R̃(θ̂ψ ; η‖θ‖2)ηp/2π(η‖θ‖2)dθ =
∫

Rp

R(θ̂ψ ; θ, η)ηp/2π(η‖θ‖2)dθ,

where the third equality follows from (3.11). Further, expanding terms, r̃(θ̂ψ ; π̄ )may
be expressed as

r̃(θ̂ψ ; π̄ ) =
∫

Rp

E
[
η‖X‖2ψ2(‖X‖2/S)

]
ηp/2π(η‖θ‖2)dθ

− 2
∫

Rp

E
[
η‖X‖2ψ(‖X‖2/S)

]
ηp/2π(η‖θ‖2)dθ

+ 2
∫

Rp

E
[
ηψ(‖X‖2/S)X Tθ

]
ηp/2π(η‖θ‖2)dθ

+
∫

Rp

E
[
η‖X − θ‖2] ηp/2π(η‖θ‖2)dθ.

(3.18)

Note that, by the propriety of the prior given by (3.14), the third term is equal to p,
that is,

∫

Rp

E
[
η‖X − θ‖2] ηp/2π(η‖θ‖2)dθ =

∫

Rp

pπ(‖μ‖2)dμ = p. (3.19)

The first and second terms of (3.18) with ψ j (‖x‖2/s) for j = 2, 1 respectively,
may be rewritten as

∫

Rp

E
[
η‖X‖2ψ j (‖X‖2/S)

]
ηp/2π(η‖θ‖2)dθ

=
∫∫∫

η‖x‖2ψ j (‖x‖2/s)η(2p+n)/2sn/2−1 f (η{‖x − θ‖2 + s})π(η‖θ‖2)dθdxds

=
∫∫∫

ηs‖z‖2ψ j (‖z‖2)η(2p+n)/2s(p+n)/2−1 f (η{‖√sz − θ‖2 + s})
× π(η‖θ‖2)dθdzds (z = x/

√
s, J = s p/2)

=
∫∫∫

ηs‖z‖2ψ j (‖z‖2)η(2p+n)/2s(2p+n)/2−1 f (sη{‖z − θ∗‖2 + 1})
× π(ηs‖θ∗‖2)dθ∗dzds (θ∗ = θ/

√
s, J = s p/2)

=
∫∫∫

‖z‖2ψ j (‖z‖2)η(2p+n)/2
∗ f (η∗{‖z − θ∗‖2 + 1})

× π(η∗‖θ∗‖2)dθ∗dzdη∗ (η∗ = ηs, J = 1/η)
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=
∫

Rp

‖z‖2ψ j (‖z‖2)M1(z, π)dz, (3.20)

where z = x/
√
s, J is the Jacobian, and

M1(z, π) =
∫∫

η(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη.

Similarly, the third term of (3.18) may be rewritten as

∫

Rp

E
[
ηψ(‖X‖2/S)X Tθ

]
ηp/2π(η‖θ‖2)dθ =

∫

Rp

ψ(‖z‖2)zTM2(z, π)dz, (3.21)

where

M2(z, π) =
∫∫

θη(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη.

Hence, by (3.19), (3.20) and (3.21), we have

r̃(θ̂ψ ; π̄ ) =
∫

Rp

{
ψ2(‖z‖2)‖z‖2M1(z, π)

−2ψ(‖z‖2){‖z‖2M1(z, π) − zTM2(z, π)}} dz + p. (3.22)

Then the Bayes equivariant solution, or minimizer of r̃(θ̂ψ ; π̄ ), is

ψπ(‖z‖2) = argmin ψ r̃(θ̂ψ ; π̄ ) = 1 − zTM2(z, π)

‖z‖2M1(z, π)
(3.23)

and hence the corresponding Bayes equivariant estimator is

θ̂π = zTM2(z, π)

‖z‖2M1(z, π)
x, (3.24)

where z = x/
√
s. Parts 1 and 2 follow from (3.22), (3.23) and (3.24).

[Part 3] Note that for � ∈ O(p), the group of p × p orthogonal matrices,
M2(�z, π) = �M2(z, π). Hence, as in (3.8) and (3.9), M2(z, q) is proportional to z
and the length of M2(z, q) is zTM2(z, q)/‖z‖, which implies that

M2(z, π) = zTM2(z, q)

‖z‖
z

‖z‖ . (3.25)

By (3.25),
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θ̂π = zTM2(z, π)

‖z‖2M1(z, π)
x = √

s
zzTM2(z, q)

‖z‖2M1(z, q)
= √

s
M2(z, π)

M1(z, π)

= √
s

∫∫
θη(2p+n)/2 f (η{‖x/√s − θ‖2 + 1})π(η‖θ‖2)dθdη

∫∫
η(2p+n)/2 f (η{‖x/√s − θ‖2 + 1})π(η‖θ‖2)dθdη .

By the change of variables θ∗ = √
sθ and η∗ = η/s, we have

θ̂π =
∫∫

θ∗η
(2p+n)/2
∗ f (η∗{‖x − θ∗‖2 + s})π(η∗‖θ∗‖2)dθ∗dη∗

∫∫
η

(2p+n)/2
∗ f (η∗{‖x − θ∗‖2 + s})π(η∗‖θ∗‖2)dθ∗dη∗

,

which is the generalized Bayes estimator of θ with respect to η−1ηp/2π(η‖θ‖2), as
in (3.7).

[Part 4] Since the quadratic loss function is strictly convex, the Bayes solution is
unique, and hence Part 4 follows. �

As in (3.9), the generalized Bayes estimator of θ with respect to Q(θ, η; ν, π) for
any ν ∈ R, given by (3.6), is equivariant under the group (3.1). Part 3 of Theorem
3.3, however, applies only to the special case of

ν = −1. (3.26)

This is the main reason that we focus on the case of ν = −1 in this book. It should be
noted, however, that Theorem 3.3 implies neither admissibility or inadmissibility of
generalized Bayes estimators within the class of equivariant estimators, if ν �= −1.

3.3 Admissible Bayes Equivariant Estimators Through
the Blyth Method

Even if π̄(λ) on R+ (and hence π(‖μ‖2) on R
p) is improper, that is

∫

Rp

π(‖μ‖2)dμ =
∫ ∞

0
π̄(λ)dλ = ∞,

the estimator θ̂π discussed in the previous section can still be defined if M1(z, π)

and M2(z, π) given by (3.15) are both finite. The admissibility of such θ̂π within the
class of equivariant estimators can be investigated through Blyth (1951) method.
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3.3.1 A General Admissibility Equivariance Result
for Mixture Priors

Suppose

π̄(λ) =
∫ ∞

0

λp/2−1g−p/2

2p/2�(p/2)
exp

(
− λ

2g

)
�(dg)

or equivalently

π(‖μ‖2) =
∫ ∞

0

g−p/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
�(dg), (3.27)

where
∫ ∞
0 �(dg) = ∞. Then, for (3.15), we have

M1(z, π) =
∫∫

η(2p+n)/2 f (η{‖z − θ‖2 + 1})π(η‖θ‖2)dθdη

= 1

q1(p, n)

∫∫∫
η(2p+n)/2 exp

(
−η{‖z − θ‖2 + 1}

2

)

× 1

(2π)p/2gp/2
exp

(
−η‖θ‖2

2g

)
�(dg)dθdη

= 1

q1(p, n)

∫∫
η(p+n)/2

(g + 1)p/2
exp

(
−η{‖z‖2/(g + 1) + 1}

2

)
�(dg)dη

= �((p + n)/2 + 1)

q1(p, n)2−(p+n)/2−1

∫ ∞

0

(g + 1)−p/2�(dg)

{1 + ‖z‖2/(g + 1)}(p+n)/2+1
, (3.28)

where the third equality follows from Lemma A.1, and

q1(p, n) = (2π)p/2�(n/2)2n/2. (3.29)

Similarly, for (3.15), we have

M2(z, π) = �((p + n)/2 + 1)

q1(p, n)2−(p+n)/2−1

∫ ∞

0

gz

g + 1

(g + 1)−p/2�(dg)

{1 + ‖z‖2/(g + 1)}(p+n)/2+1
. (3.30)

Then, by (3.16), (3.28) and (3.30), the (improper or generalized) Bayes equivariant
estimator is

θ̂π = {
1 − ψπ(‖z‖2)} x

=
(
1 −

∫ ∞
0 (g + 1)−p/2−1{1 + ‖z‖2/(g + 1)}−(p+n)/2−1�(dg)
∫ ∞
0 (g + 1)−p/2{1 + ‖z‖2/(g + 1)}−(p+n)/2−1�(dg)

)
x, (3.31)
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where ‖z‖2 = ‖x‖2/s. For some k2i (g), assume the propriety of k2i (g)�(dg) as∫ ∞
0 k2i (g)�(dg) < ∞. Then

π̄i (λ) =
∫ ∞

0

λp/2−1

gp/22p/2�(p/2)
exp

(
− λ

2g

)
k2i (g)�(dg) (3.32)

is also proper. Let θ̂π i = {1 − ψπ i (‖x‖2/s)}x be the proper Bayes equivariant esti-
mator under π̄i (λ). By (3.17), the Bayes risk difference between θ̂π and θ̂π i under π̄i

is

r̃(θ̂π ; π̄i ) − r̃(θ̂π i ; π̄i )

=
∫

Rp

{
ψπ(‖z‖2) − ψπ i (‖z‖2)

}2 ‖z‖2M1(z, πi )dz. (3.33)

For w = ‖z‖2, the integrand of (3.33) is expressed as

{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

= w

(∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1�(dg)
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1�(dg)

−
∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)

)2

× �((p + n)/2 + 1)2(p+n)/2+1

q1(p, n)

∫ ∞

0

(g + 1)−p/2k2i (g)�(dg)

{1 + w/(g + 1)}(p+n)/2+1
. (3.34)

As in Sect. 2.4.2, with the sequence k2i (g) = i/(g + i), we have the following result
on admissibility within the class of equivariant estimators.

Theorem 3.4 (Maruyama and Strawderman 2020) The estimator θ̂π is admissible
within the class of equivariant estimators if

∫ ∞

0

�(dg)

g + 1
< ∞.

Proof Under the above assumption, k2i (g) = i/(g + i) gives an increasing sequence
of proper priors since

∫ ∞

0
k2i (g)�(dg) = i

∫ ∞

0

�(dg)

g + i
≤ i

∫ ∞

0

�(dg)

g + 1
< ∞,

for fixed i . Applying the inequality (Part 3 of Lemma A.3) to (3.34), we have
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q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1
{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

≤ 2w

( {∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1�(dg)}2
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1�(dg)

+ {∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)}2
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1k2i (g)�(dg)

)
,

where q1(p, n) is given by (3.29). Further, applying the Cauchy-Schwarz inequality
(Part 1 of Lemma A.3) to the first and second terms, we have

q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1
{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

≤ 4‖z‖2
∫ ∞

0

(g + 1)−p/2−2�(dg)

{1 + ‖z‖2/(g + 1)}(p+n)/2+1
.

Hence, we have

q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1

∫

Rp

{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )dz

≤ 4
∫

Rp

∫ ∞

0

‖z‖2
{1 + ‖z‖2/(g + 1)}(p+n)/2+1

�(dg)

(g + 1)p/2+2
dz

= 4
π p/2

�(p/2)

∫ ∞

0

∫ ∞

0

t p/2

(1 + t)(p+n)/2+1

�(dg)

g + 1
dt

= 4
π p/2

�(p/2)
B(p/2 + 1, n/2)

∫ ∞

0

�(dg)

g + 1
< ∞,

where the equalities follow from Part 1 of Lemma A.2 and Part 3 of Lemma A.2,
respectively.

Then by the dominated convergence theorem, we have

lim
i→∞

{
r̃(θ̂π ; π̄i ) − r̃(θ̂π i ; π̄i )

}
= 0

which, by the Blyth method, implies the admissibility of θ̂π within the class of
equivariant estimators. �

As in Sect. 2.4.3, suppose �(dg) in (3.27) has a regularly varying density of the
form

π(g; a, b, c) = 1

(g + 1)a

( g

g + 1

)b 1

{log(g + 1) + 1}c . (3.35)

Then, by (3.31), the corresponding generalized Bayes estimator is of the form
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θ̂π =
(
1 −

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1π(g; a, b, c)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1π(g; a, b, c)dg

)
x .

(3.36)
As a corollary of Theorem 3.4, using the argument in the admissibility proofs of
Sect. 2.4.3, we have the following result.

Corollary 3.1 The generalized Bayes estimator θ̂π given by (3.36) is admissible
within the class of equivariant estimators if

either {a > 0, b > −1, c ∈ R} or {a = 0, b > −1, c > 1}.

3.3.2 On the Boundary Between Equivariant Admissibility
and Inadmissibility

For the class of densitiesπ(g; a, b, c)given by (3.35),with either−p/2 + 1 < a < 0
or {a = 0 and c > 1}, Corollaries 3.3 and 3.4 in Sect. 3.6 show the inadmissibility
of the corresponding generalized Bayes estimator by finding an improved estimator
among the class of equivariant estimators. Hence, together with Corollary 3.1, the
issue of admissibility/inadmissibility within the class of equivariant estimators for
all values of a and c except for the cases {a = 0 and |c| ≤ 1}, has been settled. The
following result addresses this case.

Theorem 3.5 (Maruyama and Strawderman 2020) Assume the measure �(dg) in
(3.27) has the density π(g; a, b, c) given by (3.35) with

a = 0, b > −1, −1 < c ≤ 1.

Then the corresponding generalized Bayes estimator is admissible within the class
of equivariant estimators.

Proof See Appendix A.6. �

Our proof unfortunately does not cover the case c = −1, although we conjecture
that admissibility holds within the class of equivariant estimators as well. The proof
of Theorem 3.5 is based on Maruyama and Strawderman (2020), where b ≥ 0 was
assumed. In this book, we also include the case −1 < b < 0.

While this section considers admissibility only within the class of equivariant esti-
mators, the next section broadens the discussion and considers admissibility among
all estimators.
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3.4 Admissibility Among All Estimators

3.4.1 The Main Result

In this section, we consider admissibility of generalized Bayes estimators among all
estimators for a broad class of mixture priors. In particular, we consider the following
class of joint prior densities:

π∗(θ, η) = 1

η
× ηp/2π(η‖θ‖2)

where

π(‖μ‖2) =
∫ ∞

0

gp/2

(2π)p/2
exp

(
−‖μ‖2

2g

)
π(g; a, b, 0)dg, (3.37)

and where π(g; a, b, c) is given in (3.35). We note that all such priors are improper
because each is non-integrable in η for any given θ . Then, as in (3.36), the corre-
sponding generalized Bayes estimator is

{1 − φ(‖x‖2/s)/{‖x‖2/s}}x

where

φ(w) = w

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1π(g; a, b, 0)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1π(g; a, b, 0)dg

. (3.38)

Here is the main theorem of this section.

Theorem 3.6 (Maruyama and Strawderman 2021, 2023a) The generalized Bayes
estimator under π∗(θ, η) is admissible among all estimators if

max(−p/2 + 1, 0) < a < n/2 + 2, b > −1, c = 0.

Remark 3.1 As far as we know, Theorem 3.6 is the only known result on admissi-
bility of generalized Bayes estimators of the form

{
1 − φ(‖x‖2/s)/(‖x‖2/s)} x . As

in Corollary 3.5 in Sect. 3.7, the generalized Bayes estimator under π∗(θ, η) is also
minimax if

−p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
, b ≥ 0, c = 0.

Strawderman (1973) considered the truncatedproper prior onη,ηc I(γ,∞) with c < −1
and γ > 0 instead of the invariant prior on η. Under this prior, a class of proper Bayes,
and hence admissible estimators dominating the usual unbiased estimator for p ≥ 5
was found. However, because of the truncation of the prior on η, such estimators are
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not scale equivariant of the form
{
1 − φ(‖x‖2/s)/(‖x‖2/s)} x , but instead have the

form
{
1 − φ(‖x‖2/s, s)/(‖x‖2/s)} x .

Recall π(g; a, b, c) given by (3.37) is proper for a > 1 and c ∈ R. In order to prove
the result, we construct a sequence of proper priors πi (θ, η) converging to π∗(θ, η)

of the form

πi (θ, η) = h2i (η)

η

∫ ∞

0

ηp/2

(2π)p/2gp/2
exp

(
− η

2g
‖θ‖2

)
π(g)k2i (g)dg (3.39)

where

hi (η) = log(i + 1)

log(i + 1) + | log η| ,

ki (g) =
⎧
⎨

⎩
1 − log(g + 1)

log(g + 1 + i)
max(−p/2 + 1, 0) < a ≤ 1,

1 1 < a < n/2 + 2.

Note that log(1 + 1) < 1 < log(2 + 1). For this technical reason, the sequence starts
at i = 2. Properties of hi (η) and ki (g) are provided in Lemmas 3.1 and A.6. In
particular, we emphasize that h2i (η)/η and π(g)k2i (g) are both proper by Part 2 of
Lemma 3.1 and Part 5 of Lemma A.6, respectively, which implies that πi (θ, η) given
by (3.39) is proper.

Lemma 3.1 Let

hi (η) = log(i + 1)

log(i + 1) + | log η| .

1. hi (η) is increasing in i and limi→∞ hi (η) = 1 for all η > 0.

2.
∫ ∞

0
η−1h2i (η)dη = 2 log(i + 1).

Proof (Part 1) This part is straightforward given the form of hi (η).
[Part 2] Let j = log(i + 1). The results follow from the integrals,

∫ ∞

0

h2i (η)

η
dη =

∫ 1

0

j2dη

η( j − log η)2
+

∫ ∞

1

j2dη

η( j + log η)2

=
[ j2

j − log η

]1

0
+

[ − j2

j + log η

]∞
1

= 2 j.

�
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3.4.2 A Proof of Theorem 3.6

We start by developing expressions for Bayes estimators and risk differences which
are used to prove Theorem 3.6. We make use of the following notation. For any
function ψ(θ, η), let

m(ψ(θ, η))

=
∫∫

ψ(θ, η)
ηp/2

(2π)p/2
exp

(
−η

‖x − θ‖2
2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)
dθdη.

Then, under the loss (1.3), the generalized Bayes estimator under the improper prior
π∗(θ, η) is

θ̂∗ = m(ηθπ∗(θ, η))

m(ηπ∗(θ, η))

and the proper Bayes estimator under the proper prior πi (θ, η) is

θ̂i = m(ηθπi (θ, η))

m(ηπi (θ, η))
.

The Bayes risk difference under πi is

�i =
∫

Rp

∫ ∞

0

{
E

[
η‖θ̂∗ − θ‖2

]
− E

[
η‖θ̂i − θ‖2

]}
πi (θ, η)dθdη.

Note that ‖θ̂∗ − θ‖2 − ‖θ̂i − θ‖2 = ‖θ̂∗‖2 − ‖θ̂i‖2 − 2θ T(θ̂∗ − θ̂i ). Then �i can be
re-expressed as

�i =
∫∫∫∫

η
(
‖θ̂∗‖2 − ‖θ̂i‖2 − 2θ T(θ̂∗ − θ̂i )

)

× ηp/2

(2π)p/2
exp

(
−η

‖x − θ‖2
2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)
πi (θ, η)dxdsdθdη

=
∫∫ {

m(ηπi )(‖θ̂∗‖2 − ‖θ̂i‖2) − 2m(ηθ Tπi )(θ̂∗ − θ̂i )
}
dxds

=
∫∫

‖θ̂∗ − θ̂i‖2m(ηπi (θ, η))dxds. (3.40)

Next, we rewrite θ̂∗, θ̂i and ‖θ̂∗ − θ̂i‖2m(ηπi (θ, η)), the integrand of (3.40). By
Lemma A.1, we have
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m(ηπi ) =
∫∫∫

η
ηp/2

(2π)p/2
exp

(
−η

‖x − θ‖2
2

) ηn/2sn/2−1

�(n/2)2n/2
exp

(
−ηs

2

)

× ηp/2

(2π)p/2gp/2
exp

(
− η

2g
‖θ‖2

)h2i (η)

η
π(g)k2i (g)dθdgdη

= sn/2−1

q1(p, n)

∫∫
F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη, (3.41)

where w = ‖x‖2/s, q1(p, n) = (2π)p/2�(n/2)2n/2, and

F(g, η;w, s) = ηp/2+n/2

(g + 1)p/2
exp

(
−ηs

2

(
1 + w

g + 1

))
.

Similarly we have

m(ηθπi ) = sn/2−1

q1(p, n)

∫∫
gx

g + 1
F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη. (3.42)

By (3.41) and (3.42), the Bayes estimator under πi is

θ̂i = m(θηπi )

m(ηπi )
=

(
1 − φi (w, s)

w

)
x, (3.43)

where

φi (w, s) = w

∫∫
(g + 1)−1F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη∫∫

F(g, η;w, s)h2i (η)π(g)k2i (g)dgdη
. (3.44)

With hi ≡ 1 and ki ≡ 1 in (3.44), we have

φ∗(w, s) = w

∫∫
(g + 1)−1F(g, η;w, s)π(g)dgdη

∫∫
F(g, η;w, s)π(g)dgdη

(3.45)

and our target generalized Bayes estimator given by

θ̂∗ =
(
1 − φ∗(w, s)

w

)
x . (3.46)

Note that

∫ ∞

0
F(g, η;w, s)dη = �(p/2 + n/2 + 1)

(g + 1)p/2

( 2s−1

1 + w/(g + 1)

)p/2+n/2+1

which implies

φ∗(w, s)

w
=

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1π(g)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1π(g)dg

. (3.47)
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In the following development, however, we utilize (3.45) not (3.47) as the expression
of φ∗(w, s).

By (3.41), (3.43) and (3.46), we have

q1(p, n)

‖x‖2sn/2−1

∥∥∥θ̂∗ − θ̂i

∥∥∥
2
m(ηπi ) = q1(p, n)

sn/2−1

(φ∗(w, s)

w
− φi (w, s)

w

)2
m(ηπi )

= A(w, s; i),

where

A(w, s, i) =
(

∫∫
Fπ

g + 1
dgdη

∫∫
Fπdgdη

−

∫∫
Fh2i πk

2
i

g + 1
dgdη

∫∫
Fh2i πk

2
i dgdη

)2 ∫∫
Fh2i πk

2
i dgdη.

(3.48)
Applying the inequality (Part 3 of Lemma A.3) to (3.48), we have

1

3

(∫∫
(g + 1)−1Fπdgdη

∫∫
Fπdgdη

−
∫∫

(g + 1)−1Fh2i πk
2
i dgdη∫∫

Fh2i πk
2
i dgdη

)2

≤
(∫∫

(g + 1)−1Fπdgdη
∫∫

Fπdgdη
−

∫∫
(g + 1)−1Fh2i πdgdη∫∫

Fh2i πdgdη

)2

+
(∫∫

(g + 1)−1Fh2i πdgdη∫∫
Fh2i πdgdη

−
∫∫

(g + 1)−1Fh2i πk
2
i dgdη∫∫

Fh2i πdgdη

)2

+
(∫∫

(g + 1)−1Fh2i πk
2
i dgdη∫∫

Fh2i πdgdη
−

∫∫
(g + 1)−1Fh2i πk

2
i dgdη∫∫

Fh2i πk
2
i dgdη

)2

.

Hence we have

A(w, s; i)
3

≤ A1(w, s; i) + A2(w, s; i) + A3(w, s; i),

where

A1(w, s; i) =
{∫∫ ∣∣∣

1
∫∫

Fπdgdη
− h2i∫∫

Fh2i πdgdη

∣∣∣
Fπdgdη

g + 1

}2
∫∫

Fh2i πdgdη,

A2(w, s; i) =

(∫∫
(g + 1)−1Fh2i π(1 − k2i )dgdη

)2

∫∫
Fh2i πdgdη

,

A3(w, s; i) =
(∫∫

(g + 1)−1Fh2i πk
2
i dgdη

)2

(
∫∫

Fh2i πdgdη)2
∫∫

Fh2i πk
2
i dgdη

(∫∫
Fh2i π(1 − k2i )dgdη

)2

.

In Sects. A.7.1–A.7.3, we prove that
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lim
i→∞

∫∫
‖x‖2sn/2−1A�(‖x‖2/s, s; i)dxds = 0, for � = 1, 2, 3,

which implies that �i → 0 as i → ∞. Thus the corresponding generalized Bayes
estimator is admissible among all estimators, as was to be shown.

3.5 Simple Bayes Estimators

Interestingly, and perhaps somewhat surprisingly, suitable choices of the constants
a and b (with c = 0) lead to admissible minimax generalized Bayes estimators of a
simple form. Further, this form represents a relatively minor adjustment to the form
of the James–Stein estimator. Here are the details. Consider the case b = n/2 − a in
(3.38). For the numerator of (3.38), we have

∫ ∞

0

(g + 1)−p/2−a−1{g/(g + 1)}bdg
{1 + w/(g + 1)}p/2+n/2+1

=
∫ ∞

0

gn/2−adg

(g + 1 + w)p/2+n/2+1

= 1

(1 + w)p/2+a

∫ ∞

0

tn/2−adg

(1 + t)p/2+n/2+1
= B(n/2 + 1 − a, p/2 + a)

(1 + w)p/2+a+2
.

Similarly, for the denominator of of (3.38), we have

∫ ∞

0

(g + 1)−p/2−a{g/(g + 1)}bdg
{1 + w/(g + 1)}p/2+n/2+1

=
∫ ∞

0
(1 + g)

(g + 1)−p/2−1−a{g/(g + 1)}bdg
{1 + w/(g + 1)}p/2+n/2+1

= B(n/2 + 1 − a, p/2 + a)

(1 + w)p/2+a
+ B(n/2 + 2 − a, p/2 − 1 + a)

(1 + w)p/2−1+a

= B(n/2 + 1 − a, p/2 + a)

(1 + w)p/2+a

(
1 + n/2 + 1 − a

p/2 − 1 + a
(w + 1)

)
.

Thus the generalized Bayes estimator is of the form

θ̂SB
α =

(
1 − α

‖x‖2/s + α + 1

)
x,

where α = (p/2 − 1 + a)/(n/2 + 1 − a). This estimator was discovered and stud-
ied in Maruyama and Strawderman (2005). By Theorem 3.6, provided

α >
p − 2

n + 2
⇔ a > 0,

θ̂SB
α is admissible among all estimators. Also, by Theorem 3.5, θ̂SB

α with α = (p −
2)/(n + 2) is admissible within the class of equivariant estimators. Additionally, by
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Corollary 3.5, in Sect. 3.7 below, minimaxity of θ̂SB
α holds for

0 < α ≤ 2
p − 2

n + 2
⇔ −p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
.

3.6 Inadmissibility

3.6.1 A General Sufficient Condition for Inadmissibility

This section is devoted to the question of inadmissibility of shrinkage estimators of
the form θ̂φ = (1 − φ(w)/w)x where w = ‖x‖2/s. Note that such estimators are
equivariant. By (1.48) in Chap. 1, withψ(w) = φ(w)/w, the SURE for an estimator
of the form θ̂φ is

R̂φ = p + (n + 2){φ(w) − 2cp,n}φ(w)

w
− 4φ′(w) {1 + φ(w)} , (3.49)

where cp,n = (p − 2)/(n + 2). For a competing estimator of the form

θ̂φ+ν =
(
1 − φ(w) + ν(w)

w

)
x,

the difference in the SURE between θ̂φ and θ̂φ+ν is

R̂φ − R̂φ+ν = ν(w){�1(w;φ) + �2(w;φ, ν)} (3.50)

where

�1(w;φ) = 2(n + 2)
cp,n − φ(w)

w
+ 4φ′(w),

�2(w;φ, ν) = −(n + 2)
ν(w)

w
+ 4ν ′(w) + 4

ν ′(w)

ν(w)
{1 + φ(w)}.

Our approach to finding an estimator dominating θ̂φ is to find a non-zero solution
ν(w) to the differential inequality R̂φ − R̂φ+ν ≥ 0. Here is the result.

Theorem 3.7 (Maruyama and Strawderman 2017) Let cp,n = (p − 2)/(n + 2).
Suppose

lim sup
w→∞

φ(w) ≤ cp,n

and lim inf
w→∞ logw

{
(n + 2){cp,n − φ(w)} + 2wφ′(w)

}
> 2(1 + cp,n).

(3.51)

Then the estimator θ̂φ = (1 − φ(w)/w)x with w = ‖x‖2/s is inadmissible.
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Proof By (3.51), there exist

w1 > exp(1) and 0 < ε < 1 (3.52)

such that for all w ≥ w1,

φ(w) − cp,n ≤ 1 + cp,n
6

ε

and

logw
{
(n + 2){cp,n − φ(w)} + 2wφ′(w)

} − 2(1 + cp,n)(1 + ε) ≥ 0,

or equivalently �1(w;φ) − 4
(1 + cp,n)(1 + ε)

w logw
≥ 0,

(3.53)

Let q(w;w2) be the cumulative distribution function of Y + w2, wherew2 > w1 will
be precisely determined later and Y is a Gamma random variable with the probability
density function y exp(−y)I(0,∞)(y), that is,

q(w;w2) =
{
0 for 0 ≤ w < w2∫ w−w2

0 y exp(−y)dy for w ≥ w2.

Then q(w;w2) is non-decreasing, differentiable with q ′(w)|w=w2 = 0 and q(∞) =
1.

Let ν(w) for the competing estimator be given by

ν(w;w2) = q(w;w2)

(logw)1+ε/2
, (3.54)

with ε satisfying (3.52) and (3.53). Then, for all w ≥ w2, we have

�2[w;φ, ν(w;w2)] + 4
(1 + cp,n)(1 + ε)

w logw

= −(n + 2)
q(w;w2)

w(logw)1+ε/2
− 4(1 + ε/2)q(w;w2)

w(logw)2+ε/2
+ 4q ′(w;w2)

(logw)1+ε/2

+ 4
{q ′(w;w2)

q(w;w2)
− 1 + ε/2

w logw

}
{1 + φ(w)} + 4

(1 + cp,n)(1 + ε)

w logw
.

Note that q ′(w;w2) ≥ 0, q(w;w2) ≤ 1, (logw)2+ε/2 ≥ (logw)1+ε/2 and

4(1 + ε/2){1 + φ(w)} ≤ 4(1 + ε/2)
(
1 + cp,n + 1 + cp,n

6
ε
)

= (1 + cp,n)
(
4 + 2ε + 2

3
(1 + ε/2)ε

)
≤ (4 + 3ε)(1 + cp,n).
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Hence

�2[w;φ, ν(w;w2)] + 4
(1 + cp,n)(1 + ε)

w logw

≥ −4(1 + cp,n)(1 + 3ε/4)

w logw
− 4(1 + ε/2) + n + 2

w(logw)1+ε/2
+ 4

(1 + cp,n)(1 + ε)

w logw

= (1 + cp,n)ε

w logw

(
1 − 4(1 + ε/2) + n + 2

(1 + cp,n)ε

1

(logw)ε/2

)

≥ (1 + cp,n)ε

w logw

(
1 − 4(1 + ε/2) + n + 2

ε

1

(logw)ε/2

)
.

(3.55)

Now let

w2 = max
{
exp

({4(1 + ε/2) + n + 2

ε

}2/ε)
, w1

}
.

Then, by (3.53) and (3.55), we have

�1(w;φ) + �2[w;φ, ν(w;w2)]
=

{
�1(w;φ) − (1 + cp,n)(1 + ε)

(1/4)w logw

}
+

{
�2[w;φ, ν(w;w2)] + (1 + cp,n)(1 + ε)

(1/4)w logw

}

≥ 0, (3.56)

for all w ≥ w2. Hence, by (3.50), (3.54) and (3.56),

R̂φ − R̂φ+ν = ν(w){�1(w;φ) + �2(w;φ, ν(w;w2))}
{

= 0 for w < w2

≥ 0 for w ≥ w2,

which completes the proof. �

As a corollary of Theorem 3.7, we have the following result.

Corollary 3.2 The estimator θ̂φ is inadmissible if φ(w) satisfies either

lim sup
w→∞

φ(w) <
p − 2

n + 2
and lim

w→∞ wφ′(w) = 0 (3.57)

or

lim
w→∞ φ(w) = p − 2

n + 2
, lim

w→∞ w logw
φ′(w)

φ(w)
= 0,

and lim inf
w→∞ logw

{ p − 2

n + 2
− φ(w)

}
>

2(p + n)

(n + 2)2
.

(3.58)
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3.6.2 Inadmissible Generalized Bayes Estimators

In this subsection, we apply the results of the previous subsection to a class of
generalized Bayes estimators. As in Sect. 2.5, we assume that �(dg) in (3.27) has a
regularly varying density π(g) = (g + 1)−aξ(g)where ξ(g) satisfies AS.1 and AS.2
given in the end of Sect. 2.1. The corresponding generalized Bayes estimator is of
the form (1 − φ(w)/w)x where

φ(w) = w

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

,

In addition to AS.1 and AS.2, we assume the following mild assumptions on the
asymptotic behaviors on ξ(g);

A.S.5 lim sup
g→∞

{
(g + 1) log(g + 1)

ξ ′(g)
ξ(g)

}
is bounded,

A.S.6 ξ(g) is ultimatelymonotone i.e., ξ(g) ismonotone on (g0,∞) for some g0 > 0.

Under AS.1, AS.2, AS.5 and AS.6, we have the following result on the properties of
φ(w).

Lemma 3.2 Suppose−p/2 + 1 < a < n/2 + 1. AssumeAS.1,AS.2,AS.5 andAS.6.
Then φ(w) satisfies the following;

1. lim
w→∞

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

w−p/2+1−aξ(w)B(p/2 − 1 + a, n/2 − a + 2)
= 1.

2. lim
w→∞ φ(w) = p/2 − 1 + a

n/2 + 1 − a
.

3. lim
w→∞ w

φ′(w)

φ(w)
= 0.

Proof See Sect. A.10. �
By (3.57) of Corollary 3.2 and Parts 2 and 3 of Lemma 3.2, we have the following
result.

Theorem 3.8 Assume AS.1, AS.2, AS.5 and AS.6. Then the generalized Bayes esti-
mator, with respect to the regularly varying density π(g) = (g + 1)−aξ(g), is inad-
missible if −p/2 + 1 < a < 0.

As inSect. 2.4.3, suppose�(dg) in (3.27) has a regularly varyingdensityπ(g; a, b, c)
as given in (3.35). It is easily seen that ξ(g) = {g/(g + 1)}b{log(g + 1) + 1}−c, for
b > −1 and c ∈ R, satisfies AS.5 and AS.6 as well as AS.1, AS.2. Hence we have
the following corollary.

Corollary 3.3 Assume

−p/2 + 1 < a < 0, b > −1, c ∈ R,

inπ(g; a, b, c). Then the corresponding generalized Bayes estimator is inadmissible.
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When limw→∞ φ(w) = (p − 2)/(n + 2), recall that a sufficient condition for inad-
missibility is given by (3.58) of Corollary 3.2. The following lemma on the behavior
of φ(w) is helpful for providing an inadmissibility result for π(g; a, b, c) when
a = 0.

Lemma 3.3 Let a = 0, b > −1, and c �= 0 in π(g; a, b, c). Then

lim
w→∞ logw

{ p − 2

n + 2
− φ(w)

}
= −c

2(p + n)

(n + 2)2
, (3.59)

and lim
w→∞ w logw

φ′(w)

φ(w)
= 0. (3.60)

Proof See Sect. A.11. �

Then, by Parts 2 and 3 of Lemma 3.2, Lemma 3.3, and (3.58) of Corollary 3.2, we
have the following result.

Corollary 3.4 Assume
a = 0, b > −1, c < −1

inπ(g; a, b, c). Then the corresponding generalized Bayes estimator is inadmissible.

Note that Corollaries 3.3 and 3.4 correspond to Corollary 2.1 for the known scale
case.

3.7 Minimaxity

3.7.1 A Sufficient Condition for Minimaxity

In this section, we study the minimaxity of shrinkage estimators of the form

θ̂φ =
(
1 − φ(w)

w

)
x

where w = ‖x‖2/s and φ(w) is differentiable. The risk function of the estimator is

R(θ̂φ; θ, η) = p − 2
n∑

i=1

E
[
η
φ(W )

W
Xi (Xi − θi )

]
+ η E

[
S
φ2(W )

W

]
. (3.61)

As in (3.49) the SURE for an estimator θ̂φ is give by R(θ̂φ; θ, η) = E[R̂φ(W )], where

R̂φ(w) = p + {(n + 2)φ(w) − 2(p − 2)}φ(w)

w
− 4φ′(w) {1 + φ(w)} . (3.62)
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Hence, for a nonnegative φ(w), we have the following equivalence,

w{R̂φ(w) − p}
φ(w){1 + φ(w)} ≤ 0 ⇔ 2(p − 2) − (n + 2)φ(w)

1 + φ(w)
+ 4w

φ′(w)

φ(w)
≥ 0.

This implies the following result, which is Lemma 4.1 of Wells and Zhou (2008).

Theorem 3.9 Assume that for p ≥ 3 and a constant γ ≥ 0, the differentiable func-
tion φ(w) satisfies the conditions: for any w ≥ 0

wφ′(w)

φ(w)
≥ −γ and 0 ≤ φ(w) ≤ 2

p − 2 − 2γ

n + 2 + 4γ
.

Then, the estimator θ̂φ is minimax.

Kubokawa (2009) proposed an alternative expression for the risk function which
differs from the SURE estimator given by (3.62). We will use the result below to
strengthen Theorem 3.9.

Theorem 3.10 (Kubokawa 2009) The risk function is R(θ̂φ; θ, η) = p +
η E [(S/W )I(W )], where

I(w) = φ2(w) + 2φ(w) − (n + p)
∫ 1

0
zn/2φ(w/z)dz.

Proof Unlike the development of (3.62), we apply both Lemmas 1.1 and 1.2 to the
second term on the right hand side of (3.61). Define a function �(W ) by

�(w) = 1

2w

∫ 1

0
zn/2φ(w/z)dz = wn/2

2

∫ ∞

w

φ(t)

tn/2+2
dt,

where the third expression results from the transformation t = w/z. Using Lemma
1.2, we obtain

η ES | X [�(W )S] = ES | X
[
n�(W ) + 2S

∂

∂s
�(W )

]
= ES | X

[φ(W )

W

]
, (3.63)

where ES | X [·] denotes the conditional expectation with respect to S given X . Note
that all the expectations are finite since φ(w) is bounded.

By (3.63), we can rewrite the cross product term in (3.61) as

η

p∑

i=1

E
[φ(W )

W
Xi (Xi − θi )

]
= η2

p∑

i=1

E [S�(W )Xi (Xi − θi )] . (3.64)

Note
∂

∂xi
xi�(‖x‖2/s) = �(‖x‖2/s) + 2

x2i
s

�′(w)

∣∣∣∣
w=‖x‖2/s

, (3.65)
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where

�′(w) = 1

2

(n
2
wn/2−1

∫ ∞

w

φ(t)

tn/2+2
dt − φ(w)

w2

)
= 1

2

(
n
�(w)

w
− φ(w)

w2

)
. (3.66)

By Lemma 1.1, (3.65) and (3.66), we have

η

p∑

i=1

EX | S [�(W )Xi (Xi − θi )] = EX | S
[
(p + n)�(W ) − φ(W )

W

]

and, by (3.64)

η

p∑

i=1

E
[φ(W )

W
Xi (Xi − θi )

]
= η E

[
S
{
(p + n)�(W ) − φ(W )

W

}]
.

The proof is completed by combining the appropriate terms above. �

Suppose φ(w) is differentiable in Theorem 3.10. Then we have

φ(w/z) − zγ φ(w) = zγ

wγ
{(w/z)γ φ(w/z) − wγ φ(w)}

= zγ

wγ

∫ w/z

w

{ d

dt
tγ φ(t)

}
dt = zγ

wγ

∫ w/z

w

tγ−1φ(t)
{
γ + t

φ′(t)
φ(t)

}
dt,

and hence

I(w) = φ2(w) + 2φ(w) − (n + p)
∫ 1

0
zn/2 {φ(w/z) − zγ φ(w) + zγ φ(w)} dz

≤ φ2(w) + 2φ(w) − (n + p)φ(w)

∫ 1

0
zn/2+γ dz

= φ2(w) + 2φ(w) − 2
n + p

n + 2 + 2γ
φ(w)

= φ(w)
(
φ(w) − 2

p − 2 − 2γ

n + 2 + 2γ

)
,

where the inequality follows if φ(w) ≥ 0 andwφ′(w)/φ(w) + γ ≥ 0. Thenwe have
the following result.

Theorem 3.11 (Kubokawa 2009) Assume that for p ≥ 3 and a constant γ ≥ 0, the
differentiable function φ(w) satisfies the conditions for any w ≥ 0,

wφ′(w)

φ(w)
≥ −γ and 0 ≤ φ(w) ≤ 2

p − 2 − 2γ

n + 2 + 2γ
.

Then, the estimator θ̂φ is minimax.
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Note that the result given by Theorem 3.11 is slightly stronger than that in Theorem
3.9 since

2
p − 2 − 2γ

n + 2 + 4γ
≤ 2

p − 2 − 2γ

n + 2 + 2γ
.

For this reason we will use Theorem 3.11, to consider the minimaxity of generalized
Bayes estimator in Sect. 3.7.2.

3.7.2 Minimaxity of Some Generalized Bayes Estimators

Suppose π(g) = (g + 1)−aξ(g) where ξ(g) satisfies AS.1–AS.4 as in Sect. 2.5.1.
In this section, we investigate minimaxity of the corresponding generalized Bayes
estimators with

φ(w) = w

∫ ∞
0 (g + 1)−p/2−a−1{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

.

Recall that, in Sect. 2.5.1, �(g), �1(g), �2(g) and �2∗ were defined based on ξ(g)
and that the properties of these functions are summarized in Lemma2.1. These results
imply to the following properties for φ(w).

Lemma 3.4 Suppose −p/2 + 1 < a < n/2 + 1 − �2∗. Then

φ(w) ≤ p − 2 + 2a + 2�2∗
n + 2 − 2a − 2�2∗

and w
φ′(w)

φ(w)
≥ −�2∗. (3.67)

Proof Section A.12. �

Hence by Theorem 3.11 and Lemma 3.4, we have the following result.

Theorem 3.12 The generalized Bayes estimator is minimax if

p + 2 + 2a + 2�2∗
n − 2 − 2a − 2�2∗

≤ 2
p − 2 − 2�2∗
n + 2 + 2�2∗

.

For ξ(g) = {g/(g + 1)}b/{log(g + 1) + 1}c with b ≥ 0, the following corollary fol-
lows from Lemma 2.2 and Theorem 3.12.

Corollary 3.5 For π(g; a, b, c) given by (3.35) with b ≥ 0, the corresponding gen-
eralized Bayes estimator is minimax if either

−p/2 + 1 < a ≤ (p − 2)(n + 2)

2(2p + n − 2)
, c ≤ 0

or



3.8 Improvement on the James–Stein Estimator 71

− p/2 + 1 < a < + (p − 2)(n + 2)

2(2p + n − 2)
, c > 0,

(p − 2 + 2a){1 + log(b/c + 1)} + 2c

(n + 2 − 2a){1 + log(b/c + 1)} − 2c
≤ 2

(p − 2){1 + log(b/c + 1)} − 2c

(n + 2){1 + log(b/c + 1)} + 2c
.

Suppose

ξ(g) =
( g

g + 1

)b
for − 1 < b < 0,

as considered in Sect. 2.5.2. For this case, the behavior of the corresponding φ(w)

is summarized in the next result.

Lemma 3.5 Let −1 < b < 0. Then φ(w) of the corresponding generalized Bayes
estimator satisfies

φ(w) ≤ p − 2 + 2a

n + 2 − 2a + b(p + n)
and w

φ′(w)

φ(w)
≥ (p + 2a)b

2(b + 1)
.

Proof Section A.13. �

Thus Theorem 3.11 and Lemma 3.5, giveminimaxity under the following conditions.

Theorem 3.13 The generalized Bayes estimator is minimax if −1 < b < 0 and

p − 2 + 2a

n + 2 − 2a + b(p + n)
≤ 2

(p − 2)(b + 1) + b(p + 2a)

(n + 2)(b + 1) − b(p + 2a)
.

3.8 Improvement on the James–Stein Estimator

In this section we extend the discussion in Sect. 2.6 to the case of unknown variance.
As in (1.49) and Theorem 1.8, the James–Stein estimator

θ̂JS =
(
1 − p − 2

n + 2

S

‖X‖2
)
X

dominates the estimator X for p ≥ 3. Using the expression for the risk of θ̂φ given
by (3.49), the risk difference is given by

�(λ) =R(θ̂JS; θ, η) − R(θ̂φ; θ, η)

=E
[
−(n + 2)

{φ(W ) − cp,n}2
W

+ 4{1 + φ(W )}φ′(W )
]
,

where cp,n = (p − 2)/(n + 2), λ = η‖θ‖2 and W = ‖X‖2/S. Conditions on φ

which ensure that �(λ) ≥ 0 are provided in the following theorem.
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Theorem 3.14 (Kubokawa 1994) The shrinkage estimator θ̂φ improves on the
James–Stein estimator θ̂JS if φ satisfies the following conditions: (i) φ(w) is non-
decreasing in w; (ii) limw→∞ φ(w) = (p − 2)/(n + 2) and φ(w) ≥ φ0(w) where

φ0(w) = w

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1dg

.

Proof LetU = η‖X‖2 and V = ηS, and let f p(u; λ) and fn(v) be density functions
of χ2

p(λ) and χ2
n , respectively. ThenU ∼ χ2

p(λ) where λ = η‖θ‖2 and V ∼ χ2
n . The

expected value of a function ψ(‖x‖2/s) may be expressed as

E[ψ(‖X‖2/S)] = E[ψ({η‖X‖2}/{ηS})]
=

∫∫
ψ(u/v) f p(u; λ) fn(v)dudv =

∫∫
ψ(w)v f p(wv; λ) fn(v)dvdw

=
∫ ∞

0
ψ(w)

{∫ ∞

0
v f p(wv; λ) fn(v)dv

}
dw

=
∫ ∞

0
ψ(w)

∞∑

i=0

(λ/2)i

eλ/2i !
{∫ ∞

0
v
(wv)p/2+i−1 exp(−wv/2)

�(p/2 + i)2p/2+i

vn/2−1 exp(−v/2)

�(n/2)2n/2
dv

}
dw

=
∫ ∞

0
ψ(w) jp,n(w; λ)dw,

where

jp,n(w; λ) =
∞∑

i=0

(λ/2)i

eλ/2i !
w p/2−1(1 + w)−p/2−n/2

B(p/2 + i, n/2)

( w

w + 1

)i
.

Then, arguing as in (2.45) and (2.46), the first term of �(λ) may be expressed as
written as

− E
[
W−1(φ(W ) − cp,n)

2
]

= 2
∫ ∞

0
{φ(w) − cp,n}φ′(w)

{∫ ∞

0

jp,n(w/(g + 1); λ)

g + 1
dg

}
dw

and hence �(λ) may be written as
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�(λ) = 2
∫ ∞

0
φ′(w)

(
(n + 2){φ(w) − cp,n}

∫ ∞

0

jp,n(w/(g + 1); λ)

g + 1
dg

+ 2{1 + φ(w)} jp,n(w; λ)
)
dw

= 2
∫ ∞

0
φ′(w)

(
(n + 2){φ(w) − cp,n} + 2{1 + φ(w)}Jp,n(w; λ)

)

×
{∫ ∞

0

jp,n(w/(g + 1); λ)

g + 1
dg

}
dw,

where

Jp,n(w; λ) = jp,n(w; λ)
∫ ∞
0 (g + 1)−1 jp,n(w/(g + 1); λ)dg

.

Further, as in (2.47), Jp,n(w; λ) ≥ Jp,n(w; 0) holds where

Jp,n(w; 0) = jp,n(w; 0)
∫ ∞
0 (g + 1)−1 jp,n(w/(g + 1); 0)dg

= (1 + w)−p/2−n−2

∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2dg

. (3.68)

Hence we have �(λ) ≥ 0 if φ′(w) ≥ 0 and

(n + 2){φ(w) − cp,n} + 2{1 + φ(w)}Jp,n(w; 0) ≥ 0,

which is equivalent to φ(w) ≥ φ0(w) where

φ0(w) = p − 2 − 2Jp,n(w; 0)
n + 2 + 2Jp,n(w; 0) (3.69)

=
(p − 2)

∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
− 2

(1 + w)p/2+n/2

(n + 2)
∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
+ 2

(1 + w)p/2+n/2

. (3.70)

For the denominator of (3.70), an integration by parts gives
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(n + 2)
∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
+ 2

(1 + w)p/2+n/2

= (n + 2)
∫ ∞

0

(g + 1)n/2dg

(1 + g + w)p/2+n/2
+ 2

(1 + w)p/2+n/2

= 2
∫ ∞

0
(g + 1)n/2+1

{ (p + n)/2

(1 + g + w)p/2+n/2+1

}
dg

= (p + n)

∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2+1
. (3.71)

Similarly, for the numerator of (3.70), an integration by parts gives

(p − 2)
∫ ∞

0

(g + 1)−p/2dg

{1 + w/(g + 1)}p/2+n/2
− 2

(1 + w)p/2+n/2

= 2
∫ ∞

0
(g + 1)−p/2+1

{ w

(g + 1)2
(p + n)/2

{1 + w/(g + 1)}p/2+n/2+1

}
dg

= (p + n)w

∫ ∞

0

(g + 1)−p/2−1dg

{1 + w/(g + 1)}p/2+n/2+1
. (3.72)

By (3.70), (3.71) and (3.72), we have

φ0(w) = w

∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−p/2−n/2−1dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−p/2−n/2−1dg

, (3.73)

which completes the proof of Theorem 3.14. �

By (3.68), we have

Jp,n(w; 0) = 1
∫ ∞
0 (g + 1)n/2{(1 + w)/(1 + w + g)}p/2+n/2dg

,

which is decreasing in w and approaches 0 as w → ∞. It then follows directly from
the first line of (3.69) that

φ′
0(w) ≥ 0, lim

w→∞ φ0(w) = (p − 2)/(n + 2),

and hence the function φ0(w) satisfies conditions (i) and (ii) of Theorem 3.14. It
follows that the estimator associated with φ0(w) is a minimax estimator improving
on the James–Stein estimator. Further, comparing φ0(w) with (3.36), we see that

(
1 − φ0(‖X‖2/S)

‖X‖2/S
)
X
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can be characterized as the generalized Bayes estimator under π(g; a, b, c) in (3.35)
with a = b = c = 0, or equivalently, the joint Stein (1974) prior given by (1.23),

η−1 × ηp/2πS(η‖θ‖2) = η−1 × ηp/2
{
η‖θ‖2}1−p/2 = ‖θ‖2−p, (3.74)

where πS is given by (1.14).
Additionally, by (3.73), φ0(w) ≤ w and hence the the truncated function

φ+
JS = min{w, (p − 2)/(n + 2)}

corresponding to the James–Stein positive-part estimator

θ̂+
JS = max

(
0, 1 − p − 2

n + 2

S

‖X‖2
)
X,

also satisfies conditions (i) and (ii) of Theorem 3.14, which implies that the James–
Stein positive-part estimator dominates the James–Stein estimator, See Baranchik
(1964) and Lehmann and Casella (1998) for the original proof of the domination.

It seems that the choice a = b = c = 0 in π(g; a, b, c) is the only one which
satisfies the conditions (i) and (ii) of Theorem 3.14. Recall, however, that we have
concentrated on priors with ν = 1 in (3.6) when deriving minimaxity and admissi-
bility results in this chapter. As a choice of prior with ν �= −1 in (3.26), suppose the
joint improper prior

ηα(n+p)/2−1 ×
∫ ∞

0

ηp/2

(2π)p/2gp/2
exp

(
−η‖θ‖2

2g

) 1

(g + 1)α(p−2)/2
dg,

for α > 0. The choice α = 0 corresponds to the joint Stein prior (3.74). Then the
generalized Bayes estimator is given by

θ̂α =
(
1 −

∫ ∞
0 (g + 1)−(α+1)(p/2−1)−2{1 + w/(g + 1)}−(α+1)(p/2+n/2)−1dg

∫ ∞
0 (g + 1)−(α+1)(p/2−1)−1{1 + w/(g + 1)}−(α+1)(p/2+n/2)−1dg

)
x .

The following result is due to Maruyama (1999).

Theorem 3.15 (Maruyama 1999) The generalized Bayes estimator θ̂α for α > 0
dominates the James–Stein estimator θ̂JS. Further θ̂α approaches the James–Stein
positive-part estimator θ̂+

JS as α → ∞.

Proof Appendix A.14. �

We do not know whether θ̂α , for α > 0, is admissible within the class of equivariant
estimators.
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Appendix A
Miscellaneous Lemmas and Technical Proofs

A.1 Identities and Inequalities

In this section, we summarize some useful lemmas used in this book.

A.1.1 Identities

This identity, proved by by completing the square, is frequently used.

Lemma A.1 .‖x − μ‖2 + ‖μ‖2
i

= i + 1

i

∥
∥
∥μ − i

i + 1
x
∥
∥
∥

2 + ‖x‖2
i + 1

.

Proof

‖x − μ‖2 + ‖μ‖2
i

= i + 1

i
‖μ‖2 − 2μTx + ‖x‖2

= i + 1

i

∥
∥
∥μ − i

i + 1
x
∥
∥
∥

2 − i

i + 1
‖x‖2 + ‖x‖2 = i + 1

i

∥
∥
∥μ − i

i + 1
x
∥
∥
∥

2 + ‖x‖2
i + 1

.

. ��
These standard results on multiple integrals are also often used in this book.

Lemma A.2 1. .

∫

Rp

f (‖x‖2)dx = π p/2

�(p/2)

∫ ∞

0
t p/2−1 f (t)dt .

2. Assume .p/2 + α > 0 and .β > 0. Then

∫

Rp

(‖x‖2)α exp
(

−‖x‖2
β

)

dx = π p/2

�(p/2)
�(p/2 + α)β p/2+α.
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3. Assume .β > α > −p/2. Then

∫

Rp

(‖x‖2)α(1 + ‖x‖2)−p/2−βdx = π p/2

�(p/2)
B(p/2 + α, β − α).

A.1.2 Inequalities

Different forms of the Cauchy–Schwarz inequality are of use in several places
throughout the text.

Lemma A.3 (Cauchy–Schwarz inequality) Assume .m(x) ≥ 0 on .�.

1. .

{∫

�

f (x)g(x)m(dx)
}2 ≤

∫

�

{ f (x)}2m(dx)
∫

�

{g(x)}2m(dx).

2. Let .F(x) = ( f1(x), . . . , f p(x))T. Then

∥
∥
∥

∫

�

F(x)g(x)m(dx)
∥
∥
∥

2 ≤
∫

�

‖F(x)‖2m(dx)
∫

�

{g(x)}2m(dx).

3. .

(∑p

i=1
ai

)2 ≤ p
∑p

i=1
a2i .

Proof [Part 1] For .t ∈ R, we have

∫

�

{t f (x) + g(x)}2m(dx)

= t2
∫

�

{ f (x)}2m(dx) +
∫

�

{g(x)}2m(dx) + 2t
∫

�

f (x)g(x)m(dx)

=
∫

�

{ f (x)}2m(dx)

(

t +
∫

�
f (x)g(x)m(dx)

∫

�
{ f (x)}2m(dx)

)2

+
∫

�

{g(x)}2m(dx) − {∫
�
f (x)g(x)m(dx)}2

∫

�
{ f (x)}2m(dx)

.

Let .t∗ = −{∫
�
{ f (x)}2m(dx)}−1

∫

�
f (x)g(x)m(dx). Then

0 ≤
∫

�

{t∗ f (x) + g(x)}2m(dx) =
∫

�

{g(x)}2m(dx) − {∫
�
f (x)g(x)m(dx)}2

∫

�
{ f (x)}2m(dx)

,
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which completes the proof of Part 1.
[Part 2] By Part 1, we have

{∫

�

fi (x)g(x)m(dx)

}2

≤
∫

�

{ fi (x)}2m(dx)
∫

�

{g(x)}2m(dx)

for .i = 1, . . . , p and hence

p
∑

i=1

{∫

�

fi (x)g(x)m(dx)

}2

≤
p

∑

i=1

∫

�

{ fi (x)}2m(dx)
∫

�

{g(x)}2m(dx)

≤
∫

�

p
∑

i=1

{ fi (x)}2m(dx)
∫

�

{g(x)}2m(dx).

Then Part 2 follows.
[Part 3] Suppose .m(dx) is the counting measure at .x1, x2, . . . , xp. Let

f (x1) = a1, f (x2) = a2, . . . , f (xp) = ap, g(x1) = g(x2) = · · · = g(xp) = 1.

Then Part 1 gives Part 3. . ��
This standard correlation inequality is used frequently.

Lemma A.4 (Correlation inequality) Suppose . f (x) and .g(x) are both monotone
non-decreasing in .x. Let .X be a continuous random variable. Then

E[ f (X)g(X)] ≥ E[ f (X)]E[g(X)].
Proof Suppose .G = E[g(X)]. Let .x∗ satisfy

g(x)

{

≤ G x ≤ x∗
≥ G x > x∗.

Then

E[ f (X)g(X)] − E[ f (X)]E[g(X)] = E[ f (X){g(X) − G}]
= E[ f (X){g(X) − G}I(−∞,x∗](X)] + E[ f (X){g(X) − G}I(x∗,∞)(X)]
≥ E[ f (x∗){g(X) − G}I(−∞,x∗](X)] + E[ f (x∗){g(X) − G}I(x∗,∞)(X)]
= f (x∗)E[g(X) − G] = 0.. ��

These functional inequalities are also frequently useful.

Lemma A.5 1. For .x ∈ (0, 1), .(1 − x)α ≥ 1 − max(1, α)x.
2. For .x ≥ 0 and .α ∈ (0, 1), .(x + 1)α ≤ xα + 1.

3. Let .x > 0 and .α > −1. Then .

( x

x + 1

)α ≤ xα I(0,1](x) + 2I(1,∞)(x).
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4. For .x ∈ (0, 1) and .α > 0, .| log x | ≤ 1/(αxα).

5. For any .α > 0 and .β > 0 and all .x ∈ (0,∞), .| log x |β ≤ xαβ + x−αβ

αβ
.

6. Let. f (x) for.x ∈ (0, ∞) be positive and differentiable and.lim inf x→0 f ′(x)/ f (x) >

−∞. Then . f (0) < ∞.
7. For any .α > 0 and .β > 0 and all .x ∈ (0,∞), .xα exp(−βx) ≤ (α/β)α .

Proof [Part 1] For .α ≤ 1, we have .(1 − x)α ≥ 1 − x = 1 − max(1, α)x , since .0 <

1 − x < 1. For.α > 1,.(1 − x)α is convex in.x ∈ (0, 1) and the derivative of.(1 − x)α

at .x = 0 is .−α. Hence we have

(1 − x)α ≥ 1 + (−α)(x − 0) = 1 − max(1, α)x .

[Part 2] Let . f (x) = 1 + xα − (x + 1)α . Then . f (0) = 0 and

f ′(x) = αxα−1 − α(x + 1)α−1 = αxα−1
{

1 −
( x

x + 1

)1−α}

≥ 0,

and the result follows.
[Part 3] For .α ≥ 0, we have

{x/(x + 1)}α ≤ xα I(0,1](x) + I(1,∞)(x)

and the result follows. For .α ∈ (−1, 0),

( x

x + 1

)α =
( x + 1

x

)−α

I(0,1](x) +
( x + 1

x

)−α

I(1,∞)(x)

≤ {1 + (1/x)−α}I(0,1](x) + 2−α I(1,∞)(x)

≤ xα I(0,1](x) + 2I(1,∞)(x),

where the first inequality follows from Part 2. Thus Part 3 follows.
[Part 4] Recall .log x−α ≤ x−α − 1 for .x > 0. Then for .x ∈ (0, 1), we have

α log
1

x
≤ 1

xα
− 1 and | log x | ≤ 1

αxα
,

for .α > 0. Then Part 4 follows.
[Part 5] For .x ∈ (1,∞), we have .log xα ≤ xα − 1,

α log x ≤ xα − 1 and | log x | ≤ xα/α.

Then, together with Parts 4 and 5 follows.
[Part 6] By the assumption, there exists .M such that . f ′(x)/ f (x) ≥ M for all

.0 ≤ x ≤ 1. Thus we have
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∫ 1

x

f ′(t)
f (t)

dt ≥ M
∫ 1

x
dt,

which implies that . f (x) ≤ f (1)eM(x−1). This completes the proof.
[Part 7]

xα exp(−βx) = exp
(

α
{

log x − β

α
x
})

≤ exp
(

α
{

log
(β

α
x
)

−
(β

α
x
)

+ log
α

β

})

≤ exp
(

α {−1 + log(α/β)}
)

≤ (α/β)α.. ��

A.2 Some Properties of .ki

In this section, we investigate the function

ki (g) = 1 − log(g + 1)

log(g + 1 + i)
.

which is used for proving admissibility of X for .p = 1 and .2 through the Blyth
method in Sects. 1.5 and 1.6.

Lemma A.6 1. .ki (g) ≤ (1 + i) log(1 + i)

(g + 1 + i) log(g + 1 + i)
for fixed .i ≥ 1.

2. .

∫ ∞

0
k2i (g)dg ≤ 1 + i .

3. .k ′
i (g) ≤ 0 for all .g ≥ 0 and .{k ′

i (g)}2 ≤ 1

{(g + 1) log(g + 1 + i)}2 .

4. .

∫ ∞

0
(g + 1){k ′

i (g)}2dg ≤ 2

log(1 + i)
.

5. Assume .a ≥ 0, .b > −1 and .c = 0 in .π(g; a, b, c) given in (2.7). Then

.

∫ ∞

0
π(g; a, b, 0)k2i (g)dg ≤ 1

b + 1
+ 2(1 + i).

Proof [Part 1] The function .ki (g) may be rewritten as

ki (g) = iζ(i/(g + 1 + i))

(g + 1 + i) log(g + 1 + i)
,

where .ζ(x) = −x−1 log(1 − x) = 1 + ∑∞
l=1 x

l/(l + 1), which is increasing in .x .
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Hence

ki (g) ≤ iζ(i/(1 + i))

(g + 1 + i) log(g + 1 + i)
= (1 + i) log(1 + i)

(g + 1 + i) log(g + 1 + i)
.

[Part 2] By Part 1,

∫ ∞

0
k2i (g)dg ≤

∫ ∞

0

(1 + i)2{log(1 + i)}2dg
(g + 1 + i)2{log(g + 1 + i)}2 ≤

∫ ∞

0

(1 + i)2dg

(g + 1 + i)2
= 1 + i.

Then the result follows.
[Part 3] The derivative is

k ′
i (g) = − 1

(g + 1) log(g + 1 + i)
+ log(g + 1)

(g + 1 + i){log(g + 1 + i)}2 .

Then we have

log(g + 1 + i)k ′
i (g) = − 1

g + 1
+ log(g + 1)

(g + 1 + i) log(g + 1 + i)

= − 1

g + 1
+ 1 − ki (g)

g + 1 + i
, (A.1)

where

1

g + 1
>

1 − ki (g)

g + 1 + i
> 0. (A.2)

Hence .k ′
i (g) ≤ 0.

By (A.1) and (A.2), we have .hi (g) ≤ 0 and

{log(g + 1 + i)k ′
i (g)}2 ≤ 1

(g + 1)2
.

[Part 4] By Part 3, we have

(g + 1){k ′
i (g)}2 ≤ 1

(g + 1){log(g + 1 + i)}2 .

Then we have

∫ i

0
(g + 1){k ′

i (g)}2dg ≤ 1

{log(1 + i)}2
∫ i

0

dg

g + 1
= 1

log(1 + i)
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and ∫ ∞

i
(g + 1){k ′

i (g)}2dg ≤
∫ ∞

i

dg

(g + 1){log(g + 1)}2 = 1

log(1 + i)
.

Then the result follows.

[Part 5] By assumption, .π(g; a, b) ≤ {g/(g + 1)}b. Further by Part 3 of Lemma
A.5,

π(g) ≤
( g

g + 1

)b ≤ gb I(0,1)(g) + 2I(1,∞)(g). (A.3)

Note .k2i (g) ≤ 1 by definition. Hence, by (A.3) and Part 1 of this lemma, we have

∫ ∞

0
π(g)k2i (g)dg ≤

∫ 1

0
gbdg + 2

∫ ∞

0
k2i (g)dg ≤ 1

b + 1
+ 2(1 + i),

which completes the proof of Part 5. . ��

A.3 Some Properties Under .π(g; a, b, c)

This section gives properties of functions related to.π(g; a, b, c), given in (2.7), and
used throughout the text.

Lemma A.7 .sup
x

‖∇x logmπ (‖x‖2; a, b, c)‖2 < ∞.

Proof By (2.6), let

f (‖x‖2) = ‖∇x logmπ (‖x‖2; a, b, c)‖ (A.4)

= ‖x‖
∫ ∞
0 (g + 1)−p/2−1 exp

(−‖x‖2/{2(g + 1)}) π(g; a, b, c)dg
∫ ∞
0 (g + 1)−p/2 exp

(−‖x‖2/{2(g + 1)})π(g; a, b, c)dg
,

where

mπ (‖x‖2; a, b, c) =
∫ ∞

0

(g + 1)−p/2

(2π)p/2
exp

(

− ‖x‖2
2(g + 1)

)

π(g; a, b, c)dg.

Clearly . f (0) = 0 since

f (0) = 0 ×
∫ ∞
0 (g + 1)−p/2−1π(g; a, b, c)dg
∫ ∞
0 (g + 1)−p/2π(g; a, b, c)dg

= 0.
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Note, as in (2.11),

lim
t→∞

t p/2−1mπ (t; a, b, c)

π(t; a, b, c)
= �(p/2 − 1 + a)2p/2−1+a

(2π)p/2
. (A.5)

Similarly,

lim
t→∞

t p/2
∫ ∞

0

π(g; a, b, c)dg

(g + 1)p/2+1 exp(t/2(g + 1))
π(t; a, b, c)

= �(p/2 + a)2p/2+a . (A.6)

Hence, by (A.4), (A.5) and (A.6), we have .limt→∞ t1/2 f (t) = 2(p/2 − 1 + a),
which implies that .limt→∞ f (t) = 0. Together with . f (0) = 0, . f (t) is bounded.
. ��
Lemma A.8 1. For either .a < − or {.a = 0 and .c < −1}, .

∫ ∞
1

g−1dg

π(g; a, b, c)
< ∞.

2. For either .a > 0 or {.a = 0 and .c > 1}, .
∫ ∞

0

π(g; a, b, c)

g + 1
dg < ∞.

3. For either .a > 0 or {.a = 0 and .c ≥ −1}, .
∫ ∞

1

dg

gπ(g; a, b, c)
= ∞.

Proof [Part 1] Let .γ = 2 for .a < 0 and .γ = −c for .a = 0. Further let

f1(g) = {log(g + 1) + 1}γ+c

(g + 1)−a

(g + 1

g

)b+1
,

which is bounded for .g ∈ (1,∞), for either .a < 0 or {.a = 0 and .c < −1}, since
. f1(1) < ∞ and . f1(∞) < ∞. Then

∫ ∞

1

dg

gπ(g; a, b, c)
=

∫ ∞

1

f1(g)dg

(g + 1) {log(g + 1) + 1}γ

≤ max
g≥1

f1(g)
∫ ∞

1

dg

(g + 1) {log(g + 1) + 1}γ = max
g≥1

f1(g)
(log 2 + 1)1−γ

γ − 1
,

which completes the proof of Part 1.
[Part 2] For .0 < g < 1,

π(g; a, b, c)

g + 1
= gb {log(g + 1) + 1}−c

(g + 1)a+(b+1)
≤ max{1, (log 2 + 1)−c}gb. (A.7)

For .g ≥ 1, let .γ = 2 for .a > 0 and .γ = c for .a = 0. Further let

f2(g) = (g + 1)−a
( g

g + 1

)b{log(g + 1) + 1}−c+γ ,
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which is bounded for.g ∈ (1,∞) since. f1(1) < ∞ and. f1(∞) < ∞. Then, for.g ≥ 1,
we have

π(g; a, b, c)

g + 1
= f2(g)

(g + 1){log(g + 1) + 1}γ ≤ maxg≥1 f2(g)

(g + 1){log(g + 1) + 1}γ . (A.8)

By (A.7) and (A.8), we have

∫ ∞

0

π(g; a, b, c)

g + 1
dg

≤ max{1, (log 2 + 1)−c}
∫ 1

0
gbdg +

∫ ∞

1

maxg≥1 f2(g)

(g + 1){log(g + 1) + 1}γ dg

= max{1, (log 2 + 1)−c}
b + 1

+ (log 2 + 1)1−γ

γ − 1
,

which completes the proof of Part 2.
[Part 3] Let

f3(g) = {log(g + 1) + 1}1+c

(g + 1)−a

(g + 1

g

)b+1
,

which is positive and bounded away from.0, for either.a > 0 or {.a = 0 and.c ≥ −1}.
Then

∫ ∞

1

dg

gπ(g; a, b, c)
=

∫ ∞

1

f3(g)dg

(g + 1) {log(g + 1) + 1}
≥ min

g≥1
f3(g)

∫ ∞

1

(g + 1)−1dg

log(g + 1) + 1
= min

g≥1
f3(g)

[

log({log(g + 1) + 1})]∞
1 = ∞,

which completes the proof of Part 3. . ��

A.4 Proof of Theorem 2.5

For the proof of Theorem 2.5, recall.a = 0. Hence it is convenient to use the notation

ξ(g) = π(g) =
( g

g + 1

)b 1

{log(g + 1) + 1}c .

A.4.1 The Sequence .ki

Let .L(g) = log(g + 1) + 1. Then the non-integrability
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∫ ∞

0

dg

(g + 1)L(g)
=

∫ ∞

0

dz

z + 1
= ∞

follows. Let

ki (g) =
⎧

⎨

⎩

1 − log(L(g))

log(L(i))
0 < g < i

0 g ≥ i.

For fixed .g, .ki (g) is increasing in .i and .limi→∞ ki (g) = 1. Since .ki (g) = 0 for
.g ≥ i , .

∫ ∞
0 π(g)k2i (g)dg < ∞ even if .

∫ ∞
0 π(g)dg = ∞. Note .ki (g) is piecewise

differentiable as

k ′
i (g) =

⎧

⎨

⎩

− 1

(g + 1)L(g) log(L(i))
0 < g < i

0 g ≥ i.

Then.k2i (g) is continuously differentiable since.{k2i (g)}′ = 2ki (g)k ′
i (g) and.ki (i) = 0.

Further we have

sup
i

∣
∣k ′

i (g)
∣
∣ {(g + 1)L(g)} ≤

{

1/ log(L(1)) 0 < g < 1

1/ log(L(g)) g ≥ 1,

and hence

sup
i

{k ′
i (g)}2(g + 1)L(g) ≤

⎧

⎨

⎩

1/{log(L(1))}2 0 < g < 1
1

(g + 1)L(g){log(L(g))}2 g ≥ 1,
(A.9)

which will be used in Sect. A.4.4.

A.4.2 Re-Expression of the Risk Difference

Let .v = w/2 = ‖x‖2/2 and

F (g; v) = 1

(2π)p/2

(

exp
(

− v

g + 1

)

− exp(−v)

)

,

which, for .b > −1, gives

lim
g→0

F (g; v)
( g

g + 1

)b = 0

as in (2.38). Let
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ν(g) = ξ(g)

(g + 1)p/2
. (A.10)

Then an integration by parts for .μ̂i given by (2.18) gives

v

∫ ∞

0

(g + 1)−p/2−1

(2π)p/2
exp

(

− v

g + 1

)

ξ(g)k2i (g)dg (A.11)

=
[F (g; v)ξ(g)k2i (g)

(g + 1)p/2−1

]∞
0

−
∫ ∞

0

F (g; v)

(g + 1)p/2−1

{

− p/2 − 1

g + 1
+ d

dg
{ξ(g)k2i (g)}

}

dg

= (p/2 − 1)mi (2v) − p/2 − 1

(2π)p/2

∫ ∞

0

ν(g)k2i (g)

exp(v)
dg

− b
∫ ∞

0

ν(g)k2i (g)

g
F (g; v)dg + c

∫ ∞

0

ν(g)k2i (g)

L(g)
F (g; v)dg

− 2
∫ ∞

0
(g + 1)ν(g)ki (g)k

′
i (g)F (g; v)dg.

For .μ̂π , let .ki ≡ 1 in (A.11). Then .‖μ̂π − μ̂i‖2mi (2v) given in (2.19) is

‖μ̂π − μ̂i‖2mi (2v) = 4
mi (2v)

2v

{

A1(v) + 2A2(v) + bA3(v) − cA4(v)
}2

,

where

A1(v) = p/2 − 1

exp(v)

(
∫ ∞
0 ν(g)k2i (g)dg

(2π)p/2mi (2v)
−

∫ ∞
0 ν(g)dg

(2π)p/2mπ (2v)

)

− c

exp(v)

(
∫ ∞
0 {ν(g)/L(g)}k2i (g)dg

(2π)p/2mi (2v)
−

∫ ∞
0 {ν(g)/L(g)}dg
(2π)p/2mπ (2v)

)

+ b
(
∫ 1/2
0 g−1F (g; v)ν(g)k2i (g)dg

mi (2v)
−

∫ 1/2
0 g−1F (g; v)ν(g)dg

mπ (2v)

)

,

A2(v) =
∫ ∞
0 (g + 1)ν(g)ki (g)k ′

i (g)F (g; v)dg

mi (2v)
,

A3(v) =
∫ ∞
1/2 ν(g)k2i (g)g

−1F (g; v)dg

mi (2v)
−

∫ ∞
1/2 ν(g)g−1F (g; v)dg

mπ (2v)
,

A4(v) =

∫ ∞

0

ν(g)k2i (g)dg

L(g) exp(v/(g + 1))
(2π)p/2mi (2v)

−

∫ ∞

0

ν(g)dg

L(g) exp(v/(g + 1))
(2π)p/2mπ (2v)

.

Further, by the inequality (Part 3 of Lemma A.3), we have
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‖μ̂π − μ̂i‖2mi (2v) ≤ 16
mi (2v)

2v

{

A2
1(v) + 4A2

2(v) + b2A2
3(v) + c2A2

4(v)
}

.

As noted earlier, the proof is completed by proving dominated convergence for each
of these 4 terms.

A.4.3 Dominated Convergence for the Term Involving .A1

Since .mi (2v) ≤ mπ (2v) and .0 ≤ k2i ≤ 1, we have

|A1(v)| ≤ p − 2

(2π)p/2

∫ ∞
0 ν(g)dg

exp(v)mi (2v)
+ 2|c|

(2π)p/2

∫ ∞
0 {ν(g)/L(g)}dg
exp(v)mi (2v)

+ 2|b|
∫ 1/2
0 ν(g)g−1F (g; v)dg

mi (2v)
.

For .g ∈ (0, 1/2), we have

(2π)p/2
F (g; v)

g
= exp

( −v

g + 1

)1

g

{

1 − exp
( −gv

g + 1

)}

≤ exp
(

−2v

3

) v

g + 1

≤ v exp
(

−2v

3

)

,

where the first inequality follows from the general inequality,.1 − e−y ≤ y for.y ∈ R.
Further by Part 7 of Lemma A.5, we have

v exp
(

−2v

3

)

=
{

v exp
(

−2v

21

)}

exp
(

−4v

7

)

≤ 21

2
exp

(

−4v

7

)

,

and hence

A1(v)

≤ (p − 2)
∫ ∞
0 ν(g)dg

exp(v)(2π)p/2mi (2v)
+ 2|c| ∫ ∞

0 {ν(g)/L(g)}dg
exp(v)(2π)p/2mi (2v)

+ 21|b| ∫ 1/2
0 ν(g)dg

exp(4v/7)(2π)p/2mi (2v)

≤ A1

exp(4v/7)(2π)p/2mi (2v)
,

where

A1 = (p − 2)
∫ ∞

0
ν(g)dg + 2|c|

∫ ∞

0

ν(g)

L(g)
dg + 21|b|

∫ 1/2

0
ν(g)dg.

Note .m1(2v) ≤ mi (2v) for .i ∈ N and
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exp(v)(2π)p/2m1(2v) =
∫ ∞

0
ν(g)k21(g) exp

( gv

g + 1

)

dg ≥
∫ ∞

0
ν(g)k21(g)dg.

Hence

mi (2v)A2
1(v) ≤ A2

1 exp(−8v/7)

(2π)pmi (2v)
≤ 1

(2π)p/2

A2
1 exp(−v/7)

exp(v)(2π)p/2m1(2v)

≤ 1

(2π)p/2

A2
1 exp(−v/7)

∫ ∞
0 ν(g)k21(g)dg

.

Recall .v = w/2 = ‖x‖2/2. By Part 2 of Lemma A.2, we have

1

(2π)p/2

∫

Rp

1

‖x‖2 exp
(

−‖x‖2
2β

)

dx = β p/2−1

p − 2
. (A.12)

Then we have

∫

Rp

mi (‖x‖2)
‖x‖2 A2

1(‖x‖2/2)dx ≤ A2
1

∫ ∞
0 ν(g)k21(g)dg

∫

Rp

exp(−‖x‖2/14)dx
(2π)p/2‖x‖2

= 7p/2−1A2
1

(p − 2)
∫ ∞
0 ν(g)k21(g)dg

< ∞.

A.4.4 Dominated Convergence for the Term Involving .A2

Note .0 ≤ F (g; v) ≤ (2π)−p/2 exp(−v/(g + 1)) and hence

|A2(v)| ≤
∫ ∞
0 (g + 1)ν(g)ki (g)|k ′

i (g)| exp(−v/(g + 1))dg

(2π)p/2mi (2v)
.

The Cauchy-Schwarz inequality (Part 1 of Lemma A.3) gives

(∫ ∞

0

(g + 1)ν(g)ki (g)|k ′
i (g)|

exp(v/(g + 1))
dg

)2

≤ (2π)p/2mi (2v)

∫ ∞

0

(g + 1)2ν(g){k ′
i (g)}2

exp(v/(g + 1))
dg.

Recall .ν(g) = ξ(g)/(g + 1)p/2 as in (A.10). Then, we have
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mi (2v)A2
2(v) ≤ 1

(2π)p/2

∫ ∞

0

(g + 1)2ξ(g){k ′
i (g)}2

(g + 1)p/2 exp(v/(g + 1))
dg

≤ 1

(2π)p/2

∫ ∞

0

(g + 1)2L(g){k ′
i (g)}2

(g + 1)p/2 exp(v/(g + 1))

( g

g + 1

)b
dg,

where the second inequality follows from the fact

ξ(g) =
( g

g + 1

)b 1

{log(g + 1) + 1}c ≤
( g

g + 1

)b
L(g)

for .|c| ≤ 1. Then, by (A.12), we have

∫

Rp

mi (‖x‖2)
‖x‖2 A2

2(‖x‖2/2)dx ≤
∫ ∞

0

g + 1

p − 2

( g

g + 1

)b
L(g) sup

i
{k ′

i (g)}2dg.

By Part 3 of Lemma A.5 and (A.9), we have

(p − 2)
∫

Rp

mi (‖x‖2)
‖x‖2 A2

2(‖x‖2/2)dx ≤
∫ ∞

0
(g + 1)

( g

g + 1

)b
L(g) sup

i
{k ′

i (g)}2dg

≤
∫ 1

0

gbdg

{log L(1)}2 + 2
∫ ∞

1

{log(L(g))}−2dg

(g + 1)L(g)

= (b + 1)−1

{log L(1)}2 + 2

log L(1)
< ∞. (A.13)

A.4.5 Dominated Convergence for the Term Involving .A3

For.g ∈ (1/2,∞),.F (g; v) ≤ (2π)−p/2 exp(−v/(g + 1)),.g ≥ (g + 1)/3 and hence

(2π)p/2
F (g; v)

g
I(1/2,∞)(g) ≤ 3

g + 1
exp

( −v

g + 1

)

.

Then

(2π)p/2mi (2v)A2
3(v) ≤ 18

( {∫ ∞
0 (g + 1)−1ν(g)k2i (g) exp(−v/(g + 1))dg}2

mi (2v)

+ {∫ ∞
0 (g + 1)−1ν(g) exp(−v/(g + 1))dg}2

mπ (2v)

)

≤
∫ ∞

0

36ν(g)dg

(g + 1)2 exp(v/(g + 1))
, (A.14)
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where the second inequality follows from the Cauchy–Schwarz inequality (Part 1 of
Lemma A.3). Recall .ν(g) = ξ(g)/(g + 1)p/2 as in (A.10). By (A.12) and (A.14),
we have

∫

Rp

mi (‖x‖2)
‖x‖2 A2

3(‖x‖2/2)dx ≤ 36

p − 2

∫ ∞

0

ξ(g)

(g + 1)3
dg < ∞.

A.4.6 Dominated Convergence for the Term Involving .A4

We rewrite .{(2π)p/2mi (w)}2A2
4(v) as

{(2π)p/2mi (w)}2A2
4(v)

=
(∫ ∞

0

ν(g)k2i (g)

exp(v/(g + 1))

{ 1

L(g)
− 1

mπ (2v)

∫ ∞

0

ν(g){L(g)}−1dg

exp(v/(g + 1))

}

dg
)2

.

By the Cauchy-Schwarz inequality (Part 1 of Lemma A.3), we have

(2π)p/2mi (2v)A2
4(v) (A.15)

≤
∫ ∞

0

ν(g)k2i (g)

exp(v/(g + 1))

{ 1

L(g)
−

∫ ∞
0 {L(g)}−1ν(g) exp(−v/(g + 1))dg

mπ (2v)

}2
dg

≤
∫ ∞

0

ν(g)

exp(v/(g + 1))

{ 1

L(g)
−

∫ ∞
0 {L(g)}−1ν(g) exp(−v/(g + 1))dg

mπ (2v)

}2
dg

=
∫ ∞

0

ν(g)dg

exp(v/(g + 1))L2(g)
− {∫ ∞

0 {L(g)}−1ν(g) exp(−v/(g + 1))dg}2
∫ ∞
0 ν(g) exp(−v/(g + 1))dg

,

where the second inequality follows from the fact .k2i (g) ≤ 1.
When .−1 < c ≤ 1, we have

(2π)p/2mi (w)A2
4(v) ≤

∫ ∞

0

ν(g)dg

exp(v/(g + 1))L2(g)

=
∫ ∞

0

( g

g + 1

)b exp(−v/(g + 1))

(g + 1)p/2L2+c(g)
dg

and, by (A.12) and Part 3 of Lemma A.5,

(p − 2)
∫

Rp

mi (‖x‖2)
‖x‖2 A2

4(‖x‖2/2)dx ≤
∫ ∞

0

( g

g + 1

)b dg

(g + 1)L2+c(g)

≤
∫ 1

0

(g + 1)−1gbdg

L2+c(g)
+ 2

∫ ∞

0

(g + 1)−1dg

L2+c(g)
≤ 1

b + 1
+ 2

1 + c
< ∞,



92 Appendix A: Miscellaneous Lemmas and Technical Proofs

which completes the proof for the case .−1 < c ≤ 1.
When .c = −1, a more careful treatment is needed. In (A.15) we have

∫ ∞

0

ν(g)dg

L(g) exp(v/(g + 1))

=
∫ ∞

0
(g + 1)−p/2 exp

(

− v

g + 1

)(

1 − 1

g + 1

)b
dg

≥
∫ ∞

0
(g + 1)−p/2 exp

(

− v

g + 1

)(

1 − max(b, 1)

g + 1

)

dg

= v−p/2+1
∫ v

0

t p/2−2

exp(t)

(

1 − t
max(b, 1)

v

)

dt

≥ v−p/2+1
(

�(p/2 − 1) −
∫ ∞

v

t p/2−2

exp(t)
dt − max(b, 1)

�(p/2)

v

)

,

where the first inequality follows from Part 1 of Lemma A.5. Hence there exist
.Q1 > 0 and .v1 > exp(2Q1) such that

∫ ∞

0

ν(g)dg

L(g) exp(v/(g + 1))
≥ �(p/2 − 1)

v p/2−1

(

1 − Q1

L(v)

)

≥ 1

2

�(p/2 − 1)

v p/2−1
, (A.16)

for all .v ≥ v1. Further we have

∫ ∞

0

ν(g)dg

exp(v/(g + 1))
(A.17)

=
∫ ∞

0
(g + 1)−p/2 exp

(

− v

g + 1

)(

1 − 1

g + 1

)b{log(g + 1) + 1}dg

=
∫ ∞

0
(g + 1)−p/2 exp

(

− v

g + 1

)(

1 − 1

g + 1

)b{log v − log{v/(g + 1)} + 1}dg

= L(v − 1)
∫ ∞

0

ν(g)dg

L(g) exp(v/(g + 1))
− 1

v p/2−1

∫ v

0

(log t)t p/2−2

exp(t)
(1 − t/v)bdt

≤ L(v)

∫ ∞

0

ν(g)dg

L(g) exp(v/(g + 1))
+ max(1, {1 − 1/v1}b)

v p/2−1

∫ 1

0

| log t |t p/2−2

exp(t)
dt,

where the last inequality follows under all .v ≥ v1. By (A.16) and (A.17), for all
.v ≥ v1, we have

∫ ∞
0 ν(g) exp(−v/(g + 1))dg

∫ ∞
0 {ν(g)/L(g)} exp(−v/(g + 1))dg

≤ L(v) + Q2 (A.18)

where

Q2 = 2max
(

1, {1 − 1/v1}b
)

∫ 1
0 | log t |t p/2−2 exp(−t)dt

�(p/2 − 1)
.
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Further, for all .v ≥ max(v1, exp(Q2)), we have .Q2/L(v) < 1 and hence

L(v) + Q2 = L(v)
{

1 + Q2

L(v)

}

≤ L(v)

1 − Q2/L(v)
. (A.19)

Then, by (A.16), (A.18) and (A.19), we have

{∫ ∞
0 {ν(g)/L(g)} exp(−v/(g + 1))dg}2

∫ ∞
0 ν(g) exp(−v/(g + 1))dg

(A.20)

≥ �(p/2 − 1)

v p/2−1L(v)

(

1 − Q1 + Q2

L(v)

)

,

for all .v ≥ max(v1, exp(Q2)). Let .v2 = max(v1, exp(Q2)) and .Q3 = Q1 + Q2.
Then, by (A.20), we have

1

(2π)p/2

∫

Rp

{∫ ∞
0 {ν(g)/L(g)} exp(−‖x‖2/{2(g + 1)})dg}2
‖x‖2 ∫ ∞

0 ν(g) exp(−‖x‖2/{2(g + 1)})dg dx

≥ 1

(2π)p/2

∫

‖x‖2>2v2

1

‖x‖2
2p/2−1�(p/2 − 1)

(‖x‖2)p/2−1L(‖x‖2/2)
(

1 − Q3

L(‖x‖2/2)
)

dx

= 1

p − 2

(∫ ∞

v2

dg

gL(g)
−

∫ ∞

v2

Q3dg

g{L(g)}2
)

. (A.21)

By (A.12), (A.15) and (A.21), we have

(p − 2)
∫

Rp

mi (‖x‖2)
‖x‖2 A2

4(‖x‖2/2)dx

≤
∫ ∞

0

dg

(g + 1)L(g)
−

∫ ∞

v2

dg

gL(g)
+

∫ ∞

v2

Q3dg

g{L(g)}2

=
∫ v2

0

dg

(g + 1)L(g)
−

∫ ∞

v2

dg

g(g + 1)L(g)
+

∫ ∞

v2

Q3dg

g{L(g)}2

=
∫ v2

0

dg

(g + 1)L(g)
+

∫ ∞

v2

Q3dg

g{L(g)}2 < ∞.

We conclude then, by dominated convergence, that .�i → 0, which completes the
proof.
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A.5 Properties of .ϕ(g;w)

This section gives properties of the function .ϕ(g;w) used in the proof of Theorem
3.5 in Sect. A.6.

Lemma A.9 1. .w
(n/2 + 1 − a)(g + 1)−p/2−a−1

{1 + w/(g + 1)}p/2+n/2+1

=

⎧

⎪⎨

⎪⎩

d

dg

{(

1 − w

g + 1 + w

)n/2+1−a}

(g + 1 + w)−p/2+1−a

d

dg

{(

1 − w

g + 1 + w

)n/2+1−a
ϕ(g;w)

}

(g + 1 + w)−p/2+1−a,

where

ϕ(g;w) = 1 −
( g + 1 + w

(g + 1)(w + 1)

)n/2+1−a
. (A.22)

2. Let .n ≥ 2, .b > −1, .−p/2 + 1 < a ≤ n/2 in .ϕ(g;w) given by (A.22). Then
.ϕ(g;w) satisfies

ϕ(g;w) ≤ max(1, n/2 + 1 − a)
g

g + 1
and 1 − ϕ(g;w) ≤ 1

g + 1
+ 1

w1/8
.

Proof [Part 1]

w
(n/2 + 1 − a)(g + 1)−p/2−a−1

{1 + w/(g + 1)}p/2+n/2+1

= w(n/2 + 1 − a)
(

1 − w

g + 1 + w

)n/2−a
(g + 1 + w)−p/2−a−1

=

⎧

⎪⎨

⎪⎩

d

dg

{(

1 − w

g + 1 + w

)n/2+1−a}
(g + 1 + w)−p/2+1−a

d

dg

{(

1 − w

g + 1 + w

)n/2+1−a −
(

1 − w

1 + w

)n/2+1−a}
(g + 1 + w)−p/2+1−a,

where

(

1 − w

g + 1 + w

)n/2+1−a −
(

1 − w

1 + w

)n/2+1−a =
(

1 − w

g + 1 + w

)n/2+1−a
ϕ(g;w).

[Part 2] By Part 1 of Lemma A.5,.(1 − x)n/2+1−a ≥ 1 − max(n/2 + 1 − a, 1)x and

ϕ(g;w) ≤ max(n/2 + 1 − a, 1)
w

w + 1

g

g + 1
≤ max(n/2 + 1 − a, 1)

g

g + 1

follows. Further, .1 − ϕ(g;w) for .a ≤ n/2 is bounded as follows:
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1 − ϕ(g;w) ≤
( g + 1 + w

(g + 1)(w + 1)

)n/2+1−a ≤ g + 1 + w

(g + 1)(w + 1)

≤ 1

g + 1
+ 1

w + 1
≤ 1

g + 1
+ 1

w1/8
.

. ��

A.6 Proof of Theorem 3.5

By the assumptionof the theorem, themeasure.(dg) in (3.27) has the density.ξ(g) =
{g/(g + 1)}b{log(g + 1) + 1}−c. Then the Bayes risk difference (3.33) between .θ̂π

given by (3.31) with .ξ(g) above and .θ̂π i under .π̄i given by (3.32) with .ξ(g) above
and with

ki (g) =
⎧

⎨

⎩

1 − log(log(g + 1) + 1)

log(log(i + 1) + 1)
0 < g < i

0 g ≥ i,

is

r̃(θ̂π ; π̄i ) − r̃(θ̂π i ; π̄i ) =
∫

Rp

{

ψπ(‖z‖2) − ψπ i (‖z‖2)
}2 ‖z‖2M1(z, πi )dz,

where the integrand is

{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi ) (A.23)

= w

(∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1ξ(g)dg

−
∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−(p+n)/2−1k2i (g)ξ(g)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1k2i (g)ξ(g)dg

)2

× �((p + n)/2 + 1)2(p+n)/2+1

q1(p, n)

∫ ∞

0

(g + 1)−p/2k2i (g)ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1
,

where .w = ‖z‖2.
Part 1 of Lemma A.9 with .a = 0 gives

w
(n/2 + 1)(g + 1)−p/2−1

{1 + w/(g + 1)}p/2+n/2+1
(A.24)

= d

dg

{(

1 − w

g + 1 + w

)n/2+1 −
(

1 − w

1 + w

)n/2+1}

(g + 1 + w)−p/2+1

= d

dg

{(

1 − w

g + 1 + w

)n/2+1
ϕ(g;w)

}

(g + 1 + w)−p/2+1,

where

ϕ(g;w) = 1 −
( g + 1 + w

(g + 1)(w + 1)

)n/2+1
. (A.25)
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By (A.24), an integration by parts gives

(n/2 + 1)w
∫ ∞

0

k2i (g){g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2+1{1 + w/(g + 1)}(p+n)/2+1
dg (A.26)

= (p/2 − 1)
∫ ∞

0

k2i (g){g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg

−
∫ ∞

0
ϕ̃(g;w)

k2i (g){g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg

+ c
∫ ∞

0
ϕ(g;w)

1 + w/(g + 1)

log(g + 1) + 1

k2i (g){g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg

−
∫ ∞

0
ϕ(g;w)

2ki (g)k ′
i (g)(g + 1 + w){g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg,

where

ϕ̃(g;w) = b
g + 1 + w

g + 1

ϕ(g;w)

g
+ (p/2 − 1){1 − ϕ(g;w)}. (A.27)

Similarly, by (A.24), we have

(n/2 + 1)w
∫ ∞

0

{g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2+1{1 + w/(g + 1)}(p+n)/2+1
dg (A.28)

= (p/2 − 1)
∫ ∞

0

{g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg

−
∫ ∞

0
ϕ̃(g;w)

{g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg

+ c
∫ ∞

0
ϕ(g;w)

1 + w/(g + 1)

log(g + 1) + 1

{g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
dg.

Let

F (g;w) = {g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)p/2{1 + w/(g + 1)}(p+n)/2+1
.

Then, by (A.26) and (A.28), the multiple of the integrand given by (A.23) is
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(n/2 + 1)−2q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1
{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

= 1

w

(∫ ∞
0 ϕ̃(g; w)k2i (g)F (g;w)dg

∫ ∞
0 k2i (g)F (g;w)dg

−
∫ ∞
0 ϕ̃(g;w)F (g; w)dg

∫ ∞
0 F (g;w)dg

− c

∫ ∞
0 {1 + w/(g + 1)}{log(g + 1) + 1}−1k2i (g)F (g;w)ϕ(g;w)dg

∫ ∞
0 k2i (g)F (g; w)dg

+ c

∫ ∞
0 {1 + w/(g + 1)}{log(g + 1) + 1}−1F (g;w)ϕ(g;w)dg

∫ ∞
0 F (g;w)dg

+ 2

∫ ∞
0 {k′

i (g)/ki (g)}(g + 1 + w)F (g;w)ϕ(g;w)dg
∫ ∞
0 k2i (g)F (g;w)dg

)2
×

∫ ∞
0

k2i (g)F (g;w)dg.

Note.0 ≤ ϕ(g;w) ≤ 1. Further, by the Cauchy-Schwarz inequality (Parts 3 and 1 of
Lemma A.3), we have

(n/2 + 1)−2q1(p, n)

�((p + n)/2 + 1)2(p+n)/2+1
{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )

≤ 5

w

∫ ∞
0

{

2ϕ̃2(g;w) + 2c2
( 1 + w/(g + 1)

log(g + 1) + 1

)2 + 4{k′
i (g)}2(g + 1 + w)2

}

F (g;w)dg.

For .ϕ̃2(g;w), by Part 3 of Lemma A.3 and Part 2 of Lemma A.9, we have

ϕ̃2(g;w) ≤ 3
( {|b|(n/2 + 1) + (p/2 − 1)}2

(g + 1)2
+ |b|2(n/2 + 1)2w2

(g + 1)4
+ (p/2 − 1)2

w1/4

)

.

By Part 3 of Lemma A.2, we have

∫

Rp

1

‖z‖2+2α

(

1 + ‖z‖2
g + 1

)−p/2−n/2−1
dz = π p/2

�(p/2)

B(p/2 − 1 − α, n/2 + 2 + α)

(g + 1)−p/2+1+α
,

and hence
∫

Rp

1

‖z‖2+2α
F (g; ‖z‖2)dz

= π p/2

�(p/2)
B(p/2 − 1 − α, n/2 + 2 + α)

{g/(g + 1)}b {log(g + 1) + 1}−c

(g + 1)1+α
.
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As in (A.13), the integral

∫ ∞

0
(g + 1) sup

i
{k ′

i (g)}2
{g/(g + 1)}b

{L(g)}c dg,

for .b > −1 and .c > −1 is integrable. Further since all the integrals

∫ ∞

0

{g/(g + 1)}bdg
(g + 1)3{L(g)}c ,

∫ ∞

0

{g/(g + 1)}bdg
(g + 1)1+1/4{L(g)}c ,

∫ ∞

0

{g/(g + 1)}bdg
(g + 1){L(g)}2+c

,

for .b > −1 and .c > −1 are finite, it follows that

∫

Rp

{ψπ(‖z‖2) − ψπ i (‖z‖2)}2‖z‖2M1(z, πi )dz < ∞.

Then by the dominated convergence theorem, we have

lim
i→∞

{

r̃(μ̂π ;πi ) − r̃(μ̂π i ;πi )
} = 0

which, through the Blyth method, implies the admissibility of.μ̂π within the class of
equivariant estimators, as was to be shown.

A.7 Lemmas Used in the Proof of Theorem 3.6

This section is devoted to showing that the integral of each term involving .A1, .A2,
and .A3 respectively, in the proof of Theorem 3.6, approaches .0 as .i → ∞.

A.7.1 Proof for .A1

By the Cauchy-Schwarz inequality (Part 1 of Lemma A.3),

A1(w, s; i) (A.29)

≤
∫∫

Fπdgdη

(g + 1)2

∫∫ ( 1
∫∫

Fπdgdη
− h2i

∫∫

Fh2i πdgdη

)2
Fπdgdη

∫∫

Fh2i πdgdη.
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Note

(
1

∫∫

Fπdgdη
− h2i

∫∫

Fh2i πdgdη

)2
(A.30)

=
(

1
√

∫∫

Fπdgdη
− hi

√
∫∫

Fh2i πdgdη

)2( 1
√

∫∫

Fπdgdη
+ hi

√
∫∫

Fh2i πdgdη

)2

= 1
∫∫

Fπdgdη
∫∫

Fh2i πdgdη

(

1 −
hi

√
∫∫

Fπdgdη
√

∫∫

Fh2i πdgdη

)2(
√

∫∫

Fh2i πdgdη
√

∫∫

Fπdgdη
+ hi

)2

≤ 22
∫∫

Fπdgdη
∫∫

Fh2i πdgdη

(

1 −
hi

√
∫∫

Fπdgdη
√

∫∫

Fh2i πdgdη

)2
,

where the inequality follows from the fact .0 ≤ hi ≤ 1.
Further,

1

2
∫∫

Fπdgdη

∫∫

Fπ

(

1 −
hi

√
∫∫

Fπdgdη
√

∫∫

Fh2i πdgdη

)2

dgdη (A.31)

= 1 −
√

(
∫∫

Fhiπdgdη)2
∫∫

Fπdgdη
∫∫

Fh2i πdgdη
≤ 1 − (

∫∫

Fhiπdgdη)2
∫∫

Fπdgdη
∫∫

Fh2i πdgdη
,

where the inequality follows from the fact that

(
∫∫

Fhiπdgdη)2
∫∫

Fπdgdη
∫∫

Fh2i πdgdη
∈ (0, 1),

which follows from the Cauchy–Schwarz inequality (Part 1 of Lemma A.3). By
(A.29), (A.30) and (A.31), we have

A1(w, s; i) ≤ 8 Ã1(w, s; i)
∫∫

Fπ(g)dgdη

(g + 1)2
, (A.32)

where

Ã1(w, s; i) = 1 − (
∫∫

Fhiπdgdη)2
∫∫

Fπdgdη
∫∫

Fh2i πdgdη
. (A.33)

For (A.33), the following lemma is useful.

Lemma A.10 Assume .−p/2 + 1 < a < n/2 + 2. Then there exists a positive con-
stant .q2, independent of .i , .x and .s, such that

Ã1(w, s; i) ≤ q2(1 + | log s|)−2. (A.34)
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Proof See Sect. A.8. . ��
By (A.32), (A.34) and Lemma A.11 below, we have

∫∫

‖x‖2sn/2−1A1(‖x‖2/s, s; i)dxds ≤ 8q2

∫∫∫∫ ‖x‖2sn/2−1Fπ(g)dgdηdxds

(g + 1)2(1 + | log s|)2
≤ 16q3(0)q2B(a, b + 1) < ∞,

where .q3(β) is given by

q3(β) = 2p/2+n/2+1π p/2 �(p/2 + 1 − β)�(n/2 + β)

�(p/2)
. (A.35)

For all .w and .s, .limi→∞ A1(w, s; i) = 0. Thus, by the dominated convergence the-
orem,

lim
i→∞

∫∫

‖x‖2sn/2−1A1(‖x‖2/s, s; i)dxds = 0,

which completes the proof for .A1.

Lemma A.11 Assume .−n/2 < β < p/2 + 1. Then

∫∫∫

‖x‖2sn/2−1 F(g, η; ‖x‖2/s, s)
(1 + | log s|)2 dηdxds = 2q3(β)(g + 1),

where .q3(β) is given by (A.35).

Proof

∫∫∫

‖x‖2sn/2−1 F(g, η; ‖x‖2/s, s)
(1 + | log s|)2 dηdxds

=
∫∫∫

‖x‖2sn/2−1 ηp/2+n/2

(g + 1)p/2
exp

(

−ηs

2

{

1 + ‖x‖2/s
g + 1

}) dηdxds

(1 + | log s|)2

=
∫∫∫

s p/2+n/2−1‖y‖2(1 + g)s

(1 + g)−p/2

ηp/2+n/2

(g + 1)p/2
exp

(

−ηs

2

{

1 + ‖y‖2}
) dηdyds

(1 + | log s|)2

= �(p/2 + n/2 + 1)

2−p/2−n/2−1

∫ ∞

0

ds

s(1 + | log s|)2
∫

Rp

‖y‖2dy
(1 + ‖y‖2)p/2+n/2+1

(g + 1)

= 2q3(0)(g + 1),

where the second equality follows from change of variables

yi = xi√
1 + g

√
s

with Jacobian |∂x/∂y| = (1 + g)p/2s p/2

and the last equality follows from Part 3 of Lemma A.2. . ��
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A.7.2 Proof for .A2

For.A2, we have only to consider the case.max(−p/2 + 1, 0) < a ≤ 1. Let.ε = a/2.
Recall

A2(w, s; i) =

(∫∫

(g + 1)−1Fh2i π(1 − k2i )dgdη

)2

∫∫

Fh2i πdgdη
.

By the Cauchy-Schwarz inequality (Part 1 of Lemma A.3),

A2(w, s; i) ≤
∫∫

(1 − k2i )
2

(g + 1)2
Fh2i πdgdη. (A.36)

The two inequalities

1 − k2i = (1 + ki )(1 − ki ) ≤ 2(1 − ki ) = 2 log(g + 1)

log(g + 1 + i)
,

ε

2
log(g + 1) ≤ (g + 1)ε/2 − 1 ≤ (g + 1)ε/2,

give

1 − k2i ≤ 2 log(g + 1)

log(1 + i)
≤ 4(1 + g)ε/2

ε log(1 + i)
. (A.37)

By (A.36) and (A.37),

A2(w, s; i) ≤ 16

ε2{log(1 + i)}2
∫∫

Fh2i πdgdη

(g + 1)2−ε
.

Then, by Lemma A.12 below as well as Part 2 of Lemma 3.1, the integral involving
.A2 is bounded as follows:

∫∫

‖x‖2sn/2−1A2(‖x‖2/s, s; i)dxds ≤ 16q3(0)
∫ ∞
0 η−1h2i (η)dη

ε2{log(1 + i)}2
∫ ∞

0

π(g)dg

(g + 1)1−ε

= 32q3(0)B(a/2, b + 1)

ε2 log(i + 1)
< ∞,

where .q3(0) is given by (A.35). Hence, by dominated convergence,

lim
i→∞

∫∫

‖x‖2sn/2−1A2(‖x‖2/s, s; i)dxds = 0,

which completes the proof for .A2.
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Lemma A.12 Assume .−n/2 < β < p/2 + 1. Then

∫∫ ‖x‖2sn/2−1

(‖x‖2/s)β F(g, η; ‖x‖2/s, s)dxds = q3(β)

η(g + 1)β−1
.

Proof

∫∫ ‖x‖2sn/2−1

(‖x‖2/s)β F(g, η; ‖x‖2/s, s)dxds

=
∫∫ ‖x‖2sn/2−1

(‖x‖2/s)β
ηp/2+n/2

(g + 1)p/2
exp

(

− sη

2

(‖x‖2/s
1 + g

+ 1
))

dxds

=
∫∫

(g + 1)p/2s p/2
‖y‖2s(g + 1)sn/2−1

‖y‖2β(1 + g)β
ηp/2+n/2

(g + 1)p/2
exp

(

− sη

2

(‖y‖2 + 1
))

dyds

= �(p/2 + n/2 + 1)

2−p/2−n/2−1

∫

Rp

‖y‖2(1−β)dy

(1 + ‖y‖2)p/2+n/2+1

1

η(g + 1)β−1
= q3(β)

η(g + 1)β−1
.

. ��

A.7.3 Proof for .A3

For.A3, we have only to consider the case.max(−p/2 + 1, 0) < a ≤ 1. Let.ε = a/2.
Recall

A3(w, s; i) =
(∫∫

(g + 1)−1Fh2i πk
2
i dgdη

)2

(
∫∫

Fh2i πdgdη)2
∫∫

Fh2i πk
2
i dgdη

(∫∫

Fh2i π(1 − k2i )dgdη
)2

.

By the Cauchy–Schwarz inequality (Part 1 of Lemma A.3),

(∫∫
Fh2i πk

2
i

g + 1
dgdη

)2 ≤
∫∫

Fh2i πk
2
i dgdη

∫∫
Fh2i πk

2
i

(g + 1)2
dgdη

≤
∫∫

Fh2i πk
2
i dgdη

∫∫
Fh2i π

(g + 1)2
dgdη,

where the second inequality follows from.k2i ≤ 1. Further

(∫∫

Fh2i π(1 − k2i )dgdη
)2

∫∫

Fh2i πdgdη
≤

∫∫

(1 − k2i )
2Fh2i πdgdη

≤ 16

ε2{log(1 + i)}2
∫∫

(g + 1)εFh2i πdgdη,

where the second inequality follows from (A.37). The following lemma is useful in
completing the proof.
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Lemma A.13 There exists a positive constant .q4 such that

∫∫

(g + 1)εFh2i πdgdη
∫∫

Fh2i πdgdη
≤ q4(w

ε + 1).

Proof See Sect. A.9. . ��
By Lemma A.13, we have

A3(w, s; i) ≤ 16q4(wε + 1)

ε2{log(1 + i)}2
∫∫

Fh2i πk
2
i

(g + 1)2
dgdη.

Then, by Lemma A.12 as well as Part 2 of Lemma 3.1,

∫∫

‖x‖2sn/2−1A3(‖x‖2/s, w; i)dxds

≤ 32q4
ε2 log(i + 1)

(

q3(−ε)

∫ ∞

0

π(g)dg

(g + 1)1−ε
+ q3(0)

∫ ∞

0

π(g)dg

g + 1

)

≤ 32q4{q3(−ε) + q3(0)}
ε2 log(i + 1)

B(a/2, b + 1) < ∞.

Hence, again by dominated convergence,

lim
i→∞

∫∫

‖x‖2sn/2−1A3(‖x‖2/s, s; i)dxds = 0,

which completes the proof for .A3.

A.8 Proof of Lemma A.10

The proof of Lemma A.10 in Sect. A.7.1 is based on Lemmas A.14–A.16, whose
proofs are given in Sects. A.8.1–A.8.4.

First we re-express . Ã1(w, s; i) as follows.
Lemma A.14 Let .z = ‖x‖2/(‖x‖2 + s). Then

Ã1(‖x‖2/s, s; i) = 1 − {E[Hi (V/s) | z]}2
E[H 2

i (V/s) | z] , (A.38)

where the expected value is with respect to the probability density on .v ∈ (0,∞),

f (v | z) = v(p+n)/2

ψ(z)

∫ 1

0

t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
exp

(

− v

2(1 − zt)

)

dt, (A.39)
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with normalizing constant .ψ(z) given by

ψ(z) =
∫∫

t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
v(p+n)/2 exp

(

− v

2(1 − zt)

)

dvdt, (A.40)

and

Hi (η) = hi (η)

log(i + 1)
= 1

log(i + 1) + | log η| . (A.41)

The behavior of the probability density . f given in (A.39) is summarized in the
following lemma.

Lemma A.15 Suppose .−p/2 + 1 < a < n/2 + 2.

1. For .s ≤ 1 and for .k ≥ 0, there exist .C1(k) > 0 and .C2(k) > 0 such that

s−C1(k)
∫ s

0
| log v|k f (v | z)dv ≤ C2(k).

2. For .s > 1 and for .k ≥ 0, there exists .C3(k) > 0 such that

exp (s/4)
∫ ∞

s
| log v|k f (v | z)dv ≤ C3(k).

It follows from Lemma A.15 that

E
[| log V |k | z] < C2(k) + C3(k) := C4(k). (A.42)

UsingLemmaA.15,.{E[Hi (V/s) | z]}2 and.E[H 2
i (V/s) | z]with.Hi (·) given in (A.41)

are bounded as follows.

Lemma A.16 Let . j = log(i + 1).

1. There exist .0 < C5 < 1 and .C6 > 0 such that

( j − log s)2{E[Hi (V/s) | z]}2 ≥ 1 − 2
E[log V | z]
j − log s

− C6

(1 − log s)2

for all .0 < s < C5, all .z ∈ (0, 1) and all . j ≥ 1.
2. There exists .C7 > 0 such that

( j − log s)2 E[H 2
i (V/s) | z] ≤ 1 − 2

E
[

log V | z]
j − log s

+ C7

(1 − log s)2

for all .0 < s < 1, all .z ∈ (0, 1) and all . j ≥ 1.
3. There exist .C8 > 1 and .C9 > 0 such that
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( j + log s)2{E[Hi (V/s) | z]}2 ≥ 1 + 2
E

[

log V | z]
j + log s

− C9

(1 + log s)2

for all .s > C8, all .z ∈ (0, 1) and all . j ≥ 1.
4. There exists .C10 > 0 such that

( j + log s)2 E[H 2
i (V/s) | z] ≤ 1 + 2

E
[

log V | z]
j + log s

+ C10

(1 + log s)2

for all .s > 1, all .z ∈ (0, 1) and all . j ≥ 1.

Using Lemmas A.14–A.16, we now complete the proof of Lemma A.10. As in
Lemma A.16, we still assume. j = log(i + 1).

[Proof for smaller .s] We first bound . Ã1(w, s; i) for .0 < s < γ1 where .γ1 is
defined by

γ1 = min[C5, 1/ exp{4C4(1)}].

Note, for .0 < s < γ1,

1 − 2
E

[

log V | z]
j − log s

≥ 1 − 2
E

[| log V | | z]
− log s

≥ 1 − 2C4(1)

4C4(1)
= 1

2
, (A.43)

where the second inequality follows from (A.42). Further, by Parts 1 and 2 of Lemma
A.16, for .0 < s < γ1, we have

Ã1(‖x‖2/s, s; i) = 1 − {E[Hi (V/s) | z]}2
E[H2

i (V/s) | z] ≤ 1 −
1 − 2

E
[

log V | z]
j − log s

− C6

(1 − log s)2

1 − 2
E

[

log V | z]
j − log s

+ C7

(1 − log s)2

= C6 + C7

(1 − log s)2

(

1 − 2
E

[

log V | z]
j − log s

+ C7

(1 − log s)2

)−1 ≤ 2C6 + 2C7

(1 − log s)2

where the second inequality follows from (A.43).

[Proof for larger .s] Here we bound . Ã1(w, s; i) for .s > γ2 > 1 where .γ2 is
defined by

γ2 = max{C8, exp(4C4(1))}.

Note, for .s > γ2,

1 + 2
E

[

log V | z]
j + log s

≥ 1 − 2
E

[| log V | | z]
log s

≥ 1 − 2C4(1)

4C4(1)
= 1

2
, (A.44)

where the second inequality follows from (A.42). Further, by Parts 3 and 4 of Lemma
A.16, for .s > γ2, we have
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Ã1(‖x‖2/s, s; i) = 1 − {E[Hi (V/s) | z]}2
E[H2

i (V/s) | z] ≤ 1 −
1 + 2

E
[

log V | z]
j + log s

− C9

(1 + log s)2

1 + 2
E

[

log V | z]
j + log s

+ C10

(1 + log s)2

= C9 + C10

(1 + log s)2

(

1 + 2
E

[

log V | z]
j + log s

+ C10

(1 + log s)2

)−1 ≤ 2C9 + 2C10

(1 + log s)2

where the second inequality follows from (A.44).

By (A.38), . Ã1(w, s; i) ≤ 1 for all .x and .s and thus the bound for .γ1 ≤ s ≤ γ2 is
.1. With

C11 = 2max(C6 + C7,C9 + C10, 1/2) {1 + logmax(1/γ1, γ2)}2 ,

we have. Ã1(w, s; i) ≤ C11/(1 + | log s|)2 for all .s > 0 and this completes the proof
of Lemma A.10.

A.8.1 Proof of Lemma A.14

As in (A.41), .Hi (η) = hi (η)/j with . j = log(i + 1) and hence

j−�

∫∫

Fh�
i πdgdη

=
∫∫

ηp/2+n/2

(g + 1)p/2
exp

{

−ηs

2

( w

g + 1
+ 1

)}

H �
i (η)(g + 1)−a

( g

g + 1

)b
dgdη,

for .� = 0, 1, 2. Apply the change of variables

g = 1 − t

(1 − z)t
where z = w

w + 1

with

g + 1 = 1 − zt

(1 − z)t
, 1 + w

g + 1
= 1 + z/(1 − z)

g + 1
= 1

1 − zt
,

∣
∣
∣
dg

dt

∣
∣
∣ = 1

(1 − z)t2
.

Then
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{log(i + 1)}−�

∫∫

Fh�
i πdgdη (A.45)

=
∫∫ ( (1 − z)t

1 − zt

)p/2+a( 1 − t

1 − zt

)b ηp/2+n/2

(1 − z)t2
exp

(

− ηs

2(1 − zt)

)

H �
i (η)dtdη

= (1 − z)p/2−1+a
∫∫

t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
ηp/2+n/2 exp

(

− ηs

2(1 − zt)

)

H �
i (η)dtdη

= (1 − z)p/2−1+a

s p/2+n/2+1

∫∫
t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
v p/2+n/2 exp

(

− v

2(1 − zt)

)

H �
i (v/s)dtdv

= (1 − z)p/2−1+a

s p/2+n/2+1
ψ(z)E[H �

i (V/s) | z],

where .ψ(z) is given by (A.40), and the result follows.

A.8.2 Properties of .ψ(z) and . f (v | z)

This section presents preliminary results for Lemma A.15. We consider a function
more general than .ψ(z) given by (A.40). Let

ψ(z; �,m) =
∫∫

t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
v(p+n)/2+(n/2+2−a)� exp

(

− v

2m(1 − zt)

)

dvdt,

under the conditions

n/2 + 2 − a > 0, � > −1, m > 0. (A.46)

Clearly .ψ(z) given by (A.40) is

ψ(z) = ψ(z; 0, 1).

Lemma A.17 Assume assumption (A.46). Then

0 < ψ(0; �,m) < ∞ and 0 < ψ(1; �,m) < ∞. (A.47)

Further
T1(�,m) ≤ ψ(z; �,m) ≤ T2(�,m), (A.48)

where

T1(�,m) = min{ψ(0; �,m), ψ(1; �,m)} and

T2(�,m) = max{ψ(0; �,m), ψ(1; �,m)}.
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Proof Note

ψ(z; �,m) = �({p + n}/2 + 1 + {n/2 + 2 − a}�)(2m)(p+n)/2+1+(n/2+2−a)�

×
∫ 1

0
t p/2−2+a(1 − t)b(1 − zt)(n/2+2−a)(�+1)−b−1dt,

which is monotone in .z (either increasing or decreasing depending on the sign of
.(n/2 + 2 − a)(� + 1) − b − 1). Further,

ψ(0; �,m) = �({p + n}/2 + 1 + {n/2 + 2 − a}�)
(2m)−(p+n)/2−1−(n/2+2−a)�

B(p/2 − 1 + a, b + 1),

ψ(1; �,m) = �({p + n}/2 + 1 + {n/2 + 2 − a}�)
(2m)−(p+n)/2−1−(n/2+2−a)�

B(p/2 − 1 + a, (n/2 + 2 − a)(� + 1)),

which are positive and finite under the assumption (A.46). Thus (A.47) and (A.48)
follow. . ��
Lemma A.18 For any .ε ∈ (0, 1),

f (v | z) ≤ T3(ε)v
n/2+1−a−ε(b+1)

where

T3(ε) = {p − 2 + 2a + 2ε(b + 1)}p/2−1+a+ε(b+1)B(p/2 − 1 + a, (b + 1)ε)

T1(0, 1)
.

Proof Note, for .ε ∈ (0, 1),

(1 − t)b

(1 − zt)p/2+a+b
= (1 − t)(b+1)ε−1

( 1 − t

1 − zt

)(b+1)(1−ε)

(1 − zt)−p/2+1−a−ε(b+1)

≤ (1 − t)(b+1)ε−1(1 − zt)−p/2+1−a−ε(b+1).

Part 7 of Lemma A.5, gives

exp(−v/{2(1 − zt)})
(1 − zt)p/2−1+a+ε(b+1)

≤
( p − 2 + 2a + 2ε(b + 1)

v

)p/2−1+a+ε(b+1)
.

Further, by Lemma A.17,.ψ(z) ≥ T1(0, 1) for all.z ∈ (0, 1). Hence, by the definition
of . f (v | z) given by (A.39),

f (v | z) ≤ T3(ε)v
n/2+1−a−ε(b+1).. ��
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A.8.3 Proof of Lemma A.15

[Part 1] Let

ε∗ = 1

4
min

(n/2 + 2 − a

b + 1
, 2

)

∈ (0, 1)

in Lemma A.18. Then,

C1(0) := n/2 + 2 − a − ε∗(b + 1) = n/2 + 2 − a

4

{

4 − min
(

1, 2
b + 1

n/2 + 2 − a

)}

> 0

and hence ∫ s

0
f (v | z)dv ≤ T3(ε∗)

C1(0)
sC1(0) = C2(0)s

C1(0), (A.49)

where.C2(0) is defined by.C2(0) = T3(ε∗)/C1(0). Hence the lemma holds for.k = 0.
Now consider .k > 0. By Part 4 of Lemma A.5,

| log v|k ≤
( 4k

n/2 − a

)k
v−(n/2+2−a)/4,

for all .v ∈ (0, 1). Thus, for .k > 0,

C1(k) := n/2 + 2 − a − ε∗(b + 1) − 1

4
(n/2 + 2 − a)

= (n/2 + 2 − a)
{3

4
− 1

4
min

(

1, 2
b + 1

n/2 + 2 − a

)}

> 0.

Hence, for .k > 0, ∫ s

0
| log v|k f (v | z)dv ≤ C2(k)s

C1(k), (A.50)

where .C2(k) is defined by

C2(k) = T3(ε∗)
C1(k)

( 4k

n/2 + 2 − a

)k
.

By (A.49) and (A.50), Part 1 follows.
[Part 2] Note, for .v ≥ s,

exp
(

− v

2(1 − zt)

)

= exp
(

− v

4(1 − zt)

)

exp
(

− v

4(1 − zt)

)

≤ exp
(

− v

4(1 − zt)

)

exp
(

−v

4

)

≤ exp
(

− v

4(1 − zt)

)

exp
(

− s

4

)

.
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For .k = 0, by Lemma A.17,

exp(s/4)
∫ ∞

s
f (v | z)dv

≤
∫ ∞

s

v(p+n)/2

ψ(z; 0, 1)
∫ 1

0

t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
exp

(

− v

4(1 − zt)

)

dtdv

≤ ψ(z, 0, 2)

ψ(z; 0, 1) ≤ T2(0, 2)

T1(0, 1)
:= C3(0),

where the third inequality follows from Lemma A.17.
For .k > 0, note by Part 5 of Lemma A.5,

| log v|k ≤
( 2k

n/2 + 2 − a

)k (

v(n/2+2−a)/2 + v−(n/2+2−a)/2
)

.

Then

exp(s/4)
∫ ∞

s
| log v|k f (v | z)dv

≤
∫ ∞

s

( 2k

n/2 + 2 − a

)k (

v(n/2+2−a)/2 + v−(n/2+2−a)/2)

× v(p+n)/2

ψ(z; 0, 1)
∫ 1

0

t p/2−2+a(1 − t)b

(1 − zt)p/2+a+b
exp

(

− v

4(1 − zt)

)

dtdv

≤
( 2k

n/2 + 2 − a

)k ψ(z,−1/2, 2) + ψ(z, 1/2, 2)

ψ(z; 0, 1)
≤

( 2k

n/2 + 2 − a

)k T2(−1/2, 2) + T2(1/2, 2)

T1(0, 1)

:= C3(k),

where the third inequality follows from Lemma A.17. This completes the proof.. ��

A.8.4 Proof of Lemma A.16

[Part 1] Assume .s < 1 equivalently .− log s > 0. Then by Part 1 of Lemma A.19
below, we have
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( j − log s)E [Hi (V/s) | z]
=

∫ s

0

j − log s

j + log(s/v)
f (v | z)dv +

∫ ∞

s

j − log s

j + log(v/s)
f (v | z)dv

≥
∫ ∞

s

j − log s

j + log(v/s)
f (v | z)dv

≥
∫ ∞

s

(

1 − log v

j − log s
− | log v|3

(1 − log s)2

)

f (v | z)dv

≥ 1 −
∫ s

0
f (v | z)dv − E

[

log V | z]
j − log s

−
∫ s
0 | log v| f (v | z)dv

j − log s
− E

[| log V |3 | z]
(1 − log s)2

.

By Lemma A.15, there exists .T4 > 0 such that

∫ s

0
f (v | z)dv +

∫ s
0 | log v| f (v | z)dv

j − log s
+ E

[| log V |3 | z]
(1 − log s)2

≤ T4
(1 − log s)2

for all .s ∈ (0, 1) and hence .( j − log s)E [Hi (V/s) | z] ≥ g(s, z; i) where

g(s, z; i) = 1 − E
[

log V | z]
j − log s

− T4
(1 − log s)2

. (A.51)

Further
|E [

log V | z] |
j − log s

<
E

[| log V | | z]
1 − log s

≤ C4(1)

1 − log s
(A.52)

and hence.g(s, z; i) ≥ 0, for all.s < C5 = 1/ exp{C4(1) + T4}. Consider.{g(s, z; i)}2
for all .s < C5. By (A.51) and (A.52),

{g(s, z; i)}2 ≥ 1 − 2
E

[

log V | z]
j − log s

− 2T4|E
[

log V | z] |
(1 − log s)3

− 2T4
(1 − log s)2

≥ 1 − 2
E

[

log V | z]
j − log s

− C6

(1 − log s)2
,

where .C6 = 2T4{C4(1) + 1}. This completes the proof for Part 1.

[Part 2] Assume .s < 1 equivalently .− log s > 0. We consider .E
[

H 2
i (V/s) | z]

given by

E
[

H 2
i (V/s) | z] =

∫ s

0

f (v | z)
{ j + log(s/v)}2 dv +

∫ ∞

s

f (v | z)
{ j + log(v/s)}2 dv. (A.53)

Note
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( j − log s)2
∫ s

0

f (v | z)
{ j + log(s/v)}2 dv ≤ ( j − log s)2

j2

∫ s

0
f (v | z)dv

≤ (1 − log s)2
∫ s

0
f (v | z)dv = (1 − log s)4

∫ s
0 f (v | z)dv

(1 − log s)2
.

In the numerator above, by Lemma A.15, there exists .T5 > 0 such that

(1 − log s)4
∫ s

0
f (v | z)dv ≤ T5

for all .s ∈ (0, 1). Further, by Part 1 of Lemma A.19 below,

( j − log s)2
∫ ∞

s

f (v | z)dv
{ j + log(v/s)}2 ≤

∫ ∞

s

(

1 − 2 log v

j − log s
+ 4

∑6
�=2 | log v|�

(1 − log s)2

)

f (v | z)dv

≤
∫ ∞

0

(

1 − 2 log v

j − log s
+ 4

∑6
�=2 | log v|�

(1 − log s)2

)

f (v | z)dv

= 1 − 2
E[log V | z]
j − log s

+ 4

∑6
�=2 C4(�)

(1 − log s)2
. (A.54)

Then by (A.53) and (A.54),

( j − log s)2 E
[

H 2
i (V/s) | z] ≤ 1 − 2

E[log V | z]
j − log s

+ C7

(1 − log s)2
,

for all .s ∈ (0, 1), where.C7 = T5 + 4
∑6

�=2 C4(�). This completes the proof for Part
2.

[Part 3] Assume .s > 1 equivalently .log s > 0. Then by Part 2 of Lemma A.19
below,

( j + log s)E [Hi (V/s) | z]
=

∫ s

0

j + log s

j + log(s/v)
f (v | z)dv +

∫ ∞

s

j + log s

j + log(v/s)
f (v | z)dv

≥
∫ s

0

j + log s

j + log(s/v)
f (v | z)dv

≥
∫ s

0

(

1 + log v

j + log s
− | log v|3

(1 + log s)2

)

f (v | z)dv

≥ 1 −
∫ ∞

s
f (v | z)dv + E

[

log V | z]
j + log s

−
∫ ∞
s | log v| f (v | z)dv

j + log s
− E

[| log V |3 | z]
(1 + log s)2

.

By Lemma A.15, there exists .T6 > 0 such that
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∫ ∞

s
f (v | z)dv +

∫ ∞
s | log v| f (v | z)dv

j + log s
+ E

[| log V |3 | z]
( j + log s)2

≤ T6
(1 + log s)2

,

for all .s ∈ (1,∞) and hence

( j + log s)E [Hi (V/s) | z] ≥ g(s, z; i)

where

g(s, z; i) = 1 + E
[

log V | z]
j + log s

− T6
(1 + log s)2

.

Further, by (A.52), we have .g(s, z; i) ≥ 0, for all .s > C8 where .C8 = exp{C4(1) +
T6}. Now consider .{g(s, z; i)}2 for all .s > C8. By (A.51) and (A.52),

{g(s, z; i)}2 ≥ 1 + 2
E

[

log V | z]
j + log s

− 2T6 E
[

log V | z]
(1 + log s)3

− 2T6
(1 + log s)2

≥ 1 + 2
E

[

log V | z]
j + log s

− C9

(1 + log s)2
,

where .C9 = 2T6{C4(1) + 1}. This completes the proof for Part 3.
[Part 4] Assume.s > 1 equivalently.log s > 0.We consider.E

[

H 2
i (V/s) | z] given

by

E
[

H 2
i (V/s) | z] =

∫ s

0

f (v | z)
{ j + log(s/v)}2 dv +

∫ ∞

s

f (v | z)
{ j + log(v/s)}2 dv. (A.55)

Note

( j + log s)2
∫ ∞

s

f (v | z)
{ j + log(v/s)}2 dv ≤ ( j + log s)2

j2

∫ ∞

s
f (v | z)dv

≤ (1 + log s)2
∫ ∞

s
f (v | z)dv = (1 + log s)4

∫ ∞
s f (v | z)dv

(1 + log s)2
.

In the numerator above, by Lemma A.15, there exists .T7 > 0 such that

(1 + log s)4
∫ ∞

s
f (v | z)dv ≤ T7

for all .s ∈ (1,∞). Further, by Part 2 of Lemma A.19 below,
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( j + log s)2
∫ s

0

f (v | z)
{ j + log(s/v)}2 dv

≤
∫ s

0

(

1 + 2 log v

j + log s
+ 4

∑6
�=2 | log v|�

(1 + log s)2

)

f (v | z)dv

≤
∫ ∞

0

(

1 + 2 log v

j + log s
+ 4

∑6
�=2 | log v|�

(1 + log s)2

)

f (v | z)dv

= 1 + 2
E[log V | z]
j + log s

+ 4

∑6
�=2 E[| log V |� | z]

(1 + log s)2
. (A.56)

Then by (A.55) and (A.56),

( j + log s)2 E
[

H 2
i (V/s) | z] ≤ 1 + 2

E[log V | z]
j + log s

+ C10

(1 + log s)2

for all .s ∈ (1,∞), where .C10 = T7 + 4
∑6

�=2 C4(�). This completes the proof for
Part 4.

Lemma A.19 Assume . j ≥ 1.

1. For .s < 1 and .v ≥ s,

j − log s

j + log v − log s
≥ 1 − log v

j − log s
− | log v|3

(1 − log s)2
,

j − log s

j + log v − log s
≤ 1 − log v

j − log s
+ | log v|2 + | log v|3

(1 − log s)2

and
( j − log s

j + log v − log s

)2 ≤ 1 − 2
log v

j − log s
+ 4

∑6
�=2 | log v|�

(1 − log s)2
.

2. For .s > 1 and .v ≤ s,

j + log s

j + log s − log v
≥ 1 + log v

j + log s
− | log v|3

(1 + log s)2

j + log s

j + log s − log v
≤ 1 + log v

j + log s
+ | log v|2 + | log v|3

(1 + log s)2
,

and
( j + log s

j + log s − log v

)2 ≤ 1 + 2
log v

j + log s
+ 4

∑6
�=2 | log v|�

(1 + log s)2
.
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Proof [Part 1] For .v ≥ s,

j − log s

j + log v − log s
= 1 − log v

j + log v − log s

= 1 − log v

j − log s
+ (log v)2

( j − log s)( j + log v − log s)

= 1 − log v

j − log s
+ (log v)2

( j − log s)2

− (log v)3

( j − log s)2( j + log v − log s)
.

Then, for . j ≥ 1, three inequalities follow from the inequality

∣
∣
∣

(log v)3

( j − log s)2( j + log v − log s)

∣
∣
∣ ≤ | log v|3

( j − log s)2
≤ | log v|3

(1 − log s)2
.

[Part 2] The proof of Part 2 is similar. . ��

A.9 Proof of Lemma A.13

The proof of Lemma A.13 in Sect. A.7.3 is based on Lemma A.16 in Sect. A.8. Note
.(g + 1)επ(g) = (g + 1)−a+ε{g/(g + 1)}b. By the definition of .Hi given by (A.41)
and (A.45), we have

∫∫

(g + 1)εFh2i πdgdη
∫∫

Fh2i πdgdη
= 1

(1 − z)ε
ψ(z; a − ε)

ψ(z; a)

E[H 2
i (V/s) | z, a − ε]

E[H 2
i (V/s) | z, a]

= (w + 1)ε
ψ(z; a − ε)

ψ(z; a)

{ j + | log s|}2 E[H 2
i (V/s) | z, a − ε]

{ j + | log s|}2 E[H 2
i (V/s) | z, a] . (A.57)

As in (A.57), in this subsection only, we write.ψ(z) and.E[H 2
i (V/s) | z] as a function

of .a unlike (A.45) in Lemma A.14. By (A.48) in Lemma A.17,

0 <
ψ(z; a − ε)

ψ(z; a)
< ∞, (A.58)

where both (finite) lower and upper bounds are independent of .z. Note

j + | log s|
j + | log v/s| ≥ j + | log s|

j + | log s| + | log v| ≥ 1

1 + | log v| ,

for . j ≥ 1. By Jensen’s inequality,
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{ j + | log s|}2 E[H 2
i (V/s) | z, a] ≥

( 1

1 + E[| log V ||z]
)2

≥
( 1

1 + maxz E[| log V ||z]
)2 =

( 1

1 + C4(1, a)

)2
(A.59)

where .C4(k, a) is given in (A.42). Further, by Parts 2 and 4 of Lemma A.16,

{ j + | log s|}2 E[H 2
i (V/s) | z, a − ε]

≤ 1 + 2 E[| log V | | z, a − ε] + max(C7(a − ε),C10(a − ε))

≤ 1 + 2C4(1, a − ε) + max(C7(a − ε),C10(a − ε)).

Part 2 of Lemma A.5 gives

.(w + 1)ε ≤ wε + 1 for 0 < ε < 1. (A.60)

Combining (A.57), (A.58), (A.59) and (A.60), completes the proof of Lemma A.13.

A.10 Proof of Lemma 3.2

[Part 1] Under the assumptions on .ξ(g), AS.5 and AS.6, there exist .M1 > 0 and
.w1 > 0 such that

0 ≤ (g + 1) log(g + 1)
ξ ′(g)
ξ(g)

≤ M1, or − M1 ≤ (g + 1) log(g + 1)
ξ ′(g)
ξ(g)

≤ 0,

for all .g ≥ w1. The representation theorem for slowly varying function (Theorem
1.5 of Geluk and de Haan 1987) guarantees that there exist measurable functions
.c1(·) and .c2(·) such that

lim
g→∞ c1(g) = c1∗ > 0, and lim

s→∞ c2(s) = 0

and

ξ(g) = c1(g) exp
(∫ g

1

c2(s)

s
ds

)

for .g ≥ 1. Recall .p/2 + a + 1 > 0. Hence there exists an .M2 > 0 such that

ξ(g) ≤ M2(g + 1)(p/2+a+1)/4 (A.61)

for .g ≥ 1. Let

ε = p/2 + a

p/2 + n/2 + 1
∈ (0, 1).
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For .w ≥ (w1 + 1)1/(1−ε), let

I1 = (0, 1], I2 = (1, w1−ε − 1],
I3 = (w1−ε − 1, w3/2 − 1], I4 = (w3/2 − 1,∞).

For the integral over .I1 we have

∫

I1

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
≤

∫ 1
0 ξ(g)dg

(1 + w/2)p/2+n/2+1
.

Since .p/2 + n/2 + 1 = (p/2 − 1 + a + 1/2) + (n/2 + 1 − a) + 1/2,

lim
w→∞ w p/2−1+a+1/2

∫

I1

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
= 0. (A.62)

For the integral over .I2, we have

∫

I2

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
≤ M2

∫

I2

(g + 1)−3(p/2−1+a)/4−1dg

(1 + wε)p/2+n/2+1

≤ 4M2

3(p/2 − 1 + a)

1

w p/2+a
,

where the first inequality follows from (A.61). Hence

lim
w→∞ w p/2−1+a+1/2

∫

I2

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
= 0. (A.63)

For the integral under .I4, by (A.61), we have

∫

I4

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
≤ M2

∫ ∞

w3/2−1

dg

(g + 1)3(p/2−1+a)/4+1

= 4M2

3(p/2 − 1 + a)

1

w9(p/2−1+a)/8
.

Hence

lim
w→∞ w p/2−1+a+(p/2−1+a)/9

∫

I4

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
= 0. (A.64)

For the integral over .I3, a change of variables gives
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∫

I3

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
(A.65)

= ξ(w)

w p/2−1+a

∫ wε

w−1/2

t p/2+a−2ξ(w/t − 1)

(1 + t)p/2+n/2+1ξ(w)
dt.

Since.ξ(g) is slowly varying,.limw→∞ ξ(w/t − 1)/ξ(w) = 1, for any fixed.t . Recall
.ξ(g) is ultimately monotone as in AS.5. Suppose .ξ(g) for .g ≥ (w1 + 1)1/(1−ε) is
monotone non-decreasing. Then we

.

∫ w3/2−1

w1−ε−1

ξ ′(g)
ξ(g)

dg ≤ M1

∫ w3/2−1

w1−ε−1

dg

(g + 1) log(g + 1)

which implies that
ξ(w3/2 − 1)

ξ(w1−ε − 1)
≤

(
3

2(1 − ε)

)M1

.

Similarly suppose .ξ(g) for .g ≥ (w1 + 1)1/(1−ε) is monotone non-increasing. Thus

ξ(w1−ε − 1)

ξ(w3/2 − 1)
≤

(
3

2(1 − ε)

)M1

.

Hence, for .t ∈ (w−1/2, wε),

ξ(w/t − 1)

ξ(w)
≤ max

( ξ(w3/2 − 1)

ξ(w1−ε − 1)
,
ξ(w1−ε − 1)

ξ(w3/2 − 1)

)

≤
(

3

2(1 − ε)

)M1

.

Then, by the dominated convergence theorem,

lim
w→∞

∫ wε1

w−1/2

t p/2−2+a

(1 + t)p/2+n/2+1

ξ(w/t − 1)

ξ(w)
dt =

∫ ∞

0

t p/2−2+adt

(1 + t)p/2+n/2+1

= B(p/2 − 1 + a, n/2 + 1 − a),

and hence, by (A.65),

lim
w→∞

w p/2−1+a

ξ(w)

∫

I3

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
= B

(
p

2
− 1 + a,

n

2
+ 2 − a

)

.

(A.66)
By (A.62), (A.63), (A.64) and (A.66),

lim
w→∞

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

w−p/2+1−aξ(w)B(p/2 − 1 + a, n/2 + 2 − a)
= 1,

which completes the proof of Part 1.
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[Part 2] As in Part 1 of this lemma,

lim
w→∞

∫ ∞
0 (g + 1)−p/2−a−1{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

w−p/2−aξ(w)B(p/2 + a, n/2 + 1 − a)
= 1.

Then

lim
w→∞ φ(w) = lim

w→∞ w

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1)ξ(g)dg

= B(p/2 + a, n/2 + 1 − a)

B(p/2 − 1 + a, n/2 + 2 − a)
= p/2 − 1 + a

n/2 + 1 − a
,

which completes the proof of Part 2.
[Part 3] Generally, for differentiable functions .A(w) and .B(w), we have

{wA(w)/B(w)}′
A(w)/B(w)

= 1 + w
A′(w)

A(w)
− w

B ′(w)

B(w)
. (A.67)

By the definition of .φ(w), we have

wφ′(w)

φ(w)
= 1 + mw

{

−
∫ ∞
0 (g + 1)−p/2−2−a{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

(A.68)

+
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

}

,

where .m = p/2 + n/2 + 1. By Part 1 of this lemma,

lim
w→∞ w

∫ ∞
0 (g + 1)−p/2−2−a{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

= B(p/2 + 1 + a, n/2 + 1 − a)

B(p/2 + a, n/2 + 1 − a)
= p/2 + a

p/2 + n/2 + 1
= p/2 + a

m

and

lim
w→∞ w

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

= B(p/2 + a, n/2 + 2 − a)

B(p/2 − 1 + a, n/2 + 2 − a)
= p/2 − 1 + a

p/2 + n/2 + 1
= p/2 − 1 + a

m
.

Hence

lim
w→∞

wφ′(w)

φ(w)
= 1 − (p/2 + a) + (p/2 − 1 + a) = 0,

which completes the proof of Part 3.
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A.11 Proof of Lemma 3.3

This section is devoted to proving the equalities in Lemma 3.3.
[Proof of (3.59) of Lemma 3.3] As in (A.25) and (A.27), let

ϕ(g;w) = 1 −
( g + 1 + w

(g + 1)(w + 1)

)n/2+1

ϕ̃(g;w) = b
g + 1 + w

g + 1

ϕ(g;w)

g
+ (p/2 − 1){1 − ϕ(g;w)}.

As in the identity (A.28), we have

(n/2 + 1)w
∫ ∞

0

(g + 1)−p/2−1ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1

= (p/2 − 1)
∫ ∞

0

(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1
−

∫ ∞

0

ϕ̃(g;w)(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1

+ c
∫ ∞

0
ϕ(g;w)

1 + w/(g + 1)

log(g + 1) + 1

(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1
,

and hence

(n + 2)φ(w) − (p − 2) (A.69)

= −2

∫ ∞
0 ϕ̃(g;w)(g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1ξ(g)dg

∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1ξ(g)dg

+ 2c

∫ ∞
0

1 + w/(g + 1)

log(g + 1) + 1

ϕ(g;w)(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−(p+n)/2−1ξ(g)dg

.

Part 2 of Lemma A.9 and Part 1 of Lemma 3.2 give

lim
w→∞ w1/9

∫ ∞

0

|ϕ̃(g;w)|(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1

∫ ∞

0

(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1

= 0. (A.70)

Further Part 1 of Lemma 3.2 gives
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lim
w→∞ logw

∫ ∞

0

1 + w/(g + 1)

log(g + 1) + 1

ϕ(g;w)(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1

∫ ∞

0

(g + 1)−p/2ξ(g)dg

{1 + w/(g + 1)}(p+n)/2+1

(A.71)

= 1 + B(p/2, n/2 + 1)

B(p/2 − 1, n/2 + 2)
= 1 + p − 2

n + 2
.

By (A.69), (A.70) and (A.71),

lim
w→∞ logw

{ p − 2

n + 2
− φ(w)

}

= −c
2(p + n)

(n + 2)2
,

thus proving (3.59).
[Proof of (3.60) of Lemma 3.3] Recall (A.68) as

wφ′(w)

φ(w)
= 1 + mw

{

−
∫ ∞
0 (g + 1)−p/2−2{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−mξ(g)dg

(A.72)

+
∫ ∞
0 (g + 1)−p/2−1{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2{1 + w/(g + 1)}−mξ(g)dg

}

,

where.m = p/2 + n/2 + 1 and.ξ(g) = {g/(g + 1)}b{log(g + 1) + 1}−c for.b > −1
and .c ∈ R. Note

mw

(g + 1)2
{1 + w/(g + 1)}−m−1 = d

dg

{{1 + w/(g + 1)}−m − (1 + w)−m
}

= d

dg

{{1 + w/(g + 1)}−mϕ(g;w)
}

,

where

ϕ(g;w) = 1 −
( g + 1 + w

(g + 1)(w + 1)

)m
,

and

lim
g→0

{1 + w/(g + 1)}−mϕ(g;w)
( g

g + 1

)b 1

{log(g + 1) + 1}c = 0,

for .b > −1 and .c ∈ R. Then an integration by parts gives
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mw

∫ ∞

0
(g + 1)−p/2−2{1 + w/(g + 1)}−m−1ξ(g)dg

= p

2

∫ ∞

0

(g + 1)−p/2−1ξ(g)dg

{1 + w/(g + 1)}m −
∫ ∞

0

(g + 1)−p/2−1ϕ̃(g;w)ξ(g)dg

{1 + w/(g + 1)}m

+ c
∫ ∞

0

(g + 1)−p/2−1ϕ(g;w)ξ(g)

{log(g + 1) + 1}{1 + w/(g + 1)}m dg,

where

ϕ̃(g;w) = b
ϕ(g;w)

g
+ p

2
{1 − ϕ(g;w)}.

Then, by Part 1 of this lemma,

lim
w→∞ logw

(

mw

∫ ∞

0

(g + 1)−p/2−2ξ(g)

{1 + w/(g + 1)}m+1
dg

∫ ∞

0

(g + 1)−p/2−1ξ(g)

{1 + w/(g + 1)}m dg

− p

2

)

= −c. (A.73)

Similarly,

lim
w→∞ logw

(

mw

∫ ∞

0

(g + 1)−p/2−1ξ(g)

{1 + w/(g + 1)}m+1
dg

∫ ∞

0

(g + 1)−p/2ξ(g)

{1 + w/(g + 1)}m dg

− p − 2

2

)

= −c. (A.74)

Combining (A.72), (A.73) and (A.74), completes the proof.

A.12 Proof of Lemma 3.4

By Part 1 of Lemma A.9, an integration by parts gives



Appendix A: Miscellaneous Lemmas and Technical Proofs 123

(n/2 + 1 − a)w

∫ ∞

0

(g + 1)−p/2−1−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1

=
[(

1 − w

g + 1 + w

)n/2+1−a ξ(g)

(g + 1 + w)p/2−1+a

]∞
0

+ (p/2 − 1 + a)

∫ ∞

0

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1

−
∫ ∞

0
(g + 1)

ξ ′(g)
ξ(g)

(

1 + w

g + 1

) (g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1

= − ξ(0)

(w + 1)(p+n)/2
+ (p/2 − 1 + a)

∫ ∞

0

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1

−
∫ ∞

0
�(g)

(

1 + w

g + 1

) (g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
.

By (2.29) and Lemma 2.1, we have .�(g) ≥ −�2(g) ≥ −�2∗,

(n/2 + 1 − a)w

∫ ∞

0

(g + 1)−p/2−1−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1

≤ (p/2 − 1 + a + �2∗)
∫ ∞

0

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1

+ �2∗w
∫ ∞

0

(g + 1)−p/2−1−aξ(g)dg

{1 + w/(g + 1)}p/2+n/2+1
,

and hence

(n/2 + 1 − a)φ(w) ≤ (p/2 − 1 + a + �2∗) + �2∗φ(w),

which completes the proof of the first equality.
As in (A.68),

wφ′(w)

φ(w)
= 1 + mw

{

−
∫ ∞
0 (g + 1)−p/2−2−a{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

(A.75)

+
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m−1ξ(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

}

,

where .m = p/2 + n/2 + 1. For the second term of the right hand side of (A.75),

mw

∫ ∞

0

(g + 1)−p/2−2−aξ(g)dg

{1 + w/(g + 1)}m+1
=

[ (g + 1)−p/2−aξ(g)

{1 + w/(g + 1)}m
]∞
0

(A.76)

+ (p/2 + a)

∫ ∞

0

(g + 1)−p/2−1−aξ(g)dg

{1 + w/(g + 1)}m −
∫ ∞

0

(g + 1)−p/2−aξ ′(g)dg
{1 + w/(g + 1)}m .
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Similarly, for the third term of the right hand side of (A.75), we have

mw

∫ ∞

0

(g + 1)−p/2−1−aξ(g)dg

{1 + w/(g + 1)}m+1
=

[ (g + 1)−p/2+1−aξ(g)

{1 + w/(g + 1)}m
]∞
0

(A.77)

+ (p/2 − 1 + a)

∫ ∞

0

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}m −
∫ ∞

0

(g + 1)−p/2+1−aξ ′(g)dg
{1 + w/(g + 1)}m .

Hence, by (A.75), (A.76) and (A.77),

wφ′(w)

φ(w)
= ξ(0)(1 + w)−m

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

(A.78)

− ξ(0)(1 + w)−m

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

+
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ ′(g)dg

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

−
∫ ∞
0 (g + 1)−p/2+1−a{1 + w/(g + 1)}−mξ ′(g)dg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

.

In the first and second terms of the right hand side of (A.78),

∫ ∞

0

(g + 1)−p/2−a−1ξ(g)dg

{1 + w/(g + 1)}m ≤
∫ ∞

0

(g + 1)−p/2−aξ(g)dg

{1 + w/(g + 1)}m

and hence

wφ′(w)

φ(w)
≥

∫ ∞
0 �(g)(g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

(A.79)

−
∫ ∞
0 �(g)(g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

.

Recall .�(g) = �1(g) − �2(g) where .�1(g) is monotone non-increasing and .0 ≤
�2(g) ≤ �2∗, as in (2.29) and Lemma 2.1, By the correlation inequality (Lemma
A.4),

∫ ∞
0 �1(g)(g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

(A.80)

−
∫ ∞
0 �1(g)(g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

≥ 0.

Further,
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−
∫ ∞
0 �2(g)(g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−mξ(g)dg

(A.81)

+
∫ ∞
0 �2(g)(g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−mξ(g)dg

≥ −�2∗.

Combining (A.79), (A.80) and (A.81), completes the proof.

A.13 Proof of Lemma 3.5

For

φ(w) (A.82)

= w

∫ ∞
0 (g + 1)−p/2−a−1{1 + w/(g + 1)}−(p/2+n/2+1){g/(g + 1)}bdg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−(p/2+n/2+1){g/(g + 1)}bdg ,

note .w/(1 + g) = −1 + {1 + w/(1 + g)} in the numerator of (A.82). Then

φ(w) = −1 +
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−m+1{g/(g + 1)}bdg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−m{g/(g + 1)}bdg , (A.83)

for .m = p/2 + n/2 + 1. Further

{1 + w/(g + 1)}−m+1

(1 + w)−m+1
=

(1 + w/(g + 1)

1 + w

)−m+1
(A.84)

=
(

1 − g

g + 1

w

w + 1

)−m+1 =
∞

∑

i=0

�(m − 1 + i)

�(m − 1)i !
( g

g + 1

w

w + 1

)i
.

Similarly
{1 + w/(g + 1)}−m

(1 + w)−m
=

∞
∑

i=0

�(m + i)

�(m)i !
( g

g + 1

w

w + 1

)i
. (A.85)

Then, by (A.83), (A.84) and (A.85), and using the hypergeometric function,

F(α, β; γ ; v) =
∞

∑

i=0

�(α + i)

�(α)

�(β + i)

�(β)

�(γ )

�(γ + i)

vi

i ! , (A.86)

we may express .φ(w) as

φ(w) = −1 + F(b + 1,m − 1; p/2 + a + b; v)

(1 − v)F(b + 1,m; p/2 + a + b; v)
,
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where .v = w/(1 + w). Further by Part 1 of Lemma A.20 below, we have

φ(w) = −1 + m − 1

n/2 + 1 − a + (p/2 − 1 + a)G(v)

= (p/2 − 1 + a){1 − G(v)}
n/2 + 1 − a + (p/2 − 1 + a)G(v)

≤ p/2 − 1 + a

n/2 + 1 − a + b(p/2 + n/2)
,

where the inequality follows from Part 2 of Lemma A.20, where

G(v) = F(b,m − 1; p/2 + a + b; v)

F(b + 1,m − 1; p/2 + a + b; v)
.

This completes the proof of the first inequality of the lemma.
By (A.67), we have

wφ′(w)

φ(w)
= 1 + mw

{

−
∫ ∞
0 (g + 1)−p/2−2−a{1 + w/(g + 1)}−m−1{g/(g + 1)}bdg
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m{g/(g + 1)}bdg

+
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m−1{g/(g + 1)}bdg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−m{g/(g + 1)}bdg

}

.

By.w/(1 + g) = −1 + {1 + w/(1 + g)}, (A.84), (A.85) and (A.86), it follows that

wφ′(w)

φ(w)
= 1 + m

{
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m−1{g/(g + 1)}bdg
∫ ∞
0 (g + 1)−p/2−1−a{1 + w/(g + 1)}−m{g/(g + 1)}bdg

−
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−m−1{g/(g + 1)}bdg
∫ ∞
0 (g + 1)−p/2−a{1 + w/(g + 1)}−m{g/(g + 1)}bdg

}

= 1 + m(1 − v)
{ F(b + 1,m + 1; � + 1; v)

F(b + 1,m; � + 1; v)
− F(b + 1,m + 1; �; v)

F(b + 1,m; �; v)

}

,

where .� = p/2 + a + b. By Part 1 of Lemma A.20,

wφ′(w)

φ(w)
= (p/2 + a)

F(b,m; � + 1; v)

F(b + 1,m; � + 1; v)
− (p/2 − 1 + a)

F(b,m; �; v)

F(b + 1,m; �; v)
.

Further
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(p/2 + a)
F(b,m; � + 1; v)

F(b + 1,m; � + 1; v)
− (p/2 − 1 + a)

F(b,m; �; v)

F(b + 1,m; �; v)

= p/2 + a

F(b + 1,m; � + 1; v)
+ (p/2 + a)

F(b,m; � + 1; v) − 1

F(b + 1,m; � + 1; v)

− p/2 − 1 + a

F(b + 1,m; �; v)
− (p/2 − 1 + a)

F(b,m; �; v) − 1

F(b + 1,m; �; v)

≥ (p/2 + a)
F(b,m; � + 1; v) − 1

F(b + 1,m; � + 1; v) − 1

≥ (p/2 + a)b

b + 1
,

where the last inequality follows from Part 2 of Lemma A.20 below. This completes
the proof of the Lemma’s second inequality.

Part 1 of LemmaA.20 below is the the formula number 15.2.18 ofAbramowitz and
Stegun (1964). Part 2 of the lemma is essentially due toMaruyama and Strawderman
(2009).

Lemma A.20 1. .(γ − α − β)F(α, β; γ ; z) − (γ − α)F(α − 1, β; γ ; z) + β(1 − z)
F(α, β + 1; γ ; z) = 0.

2. For .−1 < b < 0, .β > 0 and .γ > 0,

F(b, β; γ ; v)

F(b + 1, β; γ ; v)
≥ F(b, β; γ ; v) − 1

F(b + 1, β; γ ; v)
≥ F(b, β; γ ; v) − 1

F(b + 1, β; γ ; v) − 1
≥ b

b + 1
.

Proof [Part 1] The .i th component of the left hand-side is given by

zi

i !
�(α + i)

�(α)

�(β + i)

�(β)

�(γ )

�(γ + i)

{

(γ − α − β) − α − 1

α + i − 1
(γ − α)

+ (β + i) − i(γ + i − 1)

α + i − 1

}

.

The term

(γ − α − β) − α − 1

α + i − 1
(γ − α) + (β + i) − i(γ + i − 1)

α + i − 1

is zero, which completes the proof of Part 1.
[Part 2] By .−1 < b < 0,

F(b, β; γ ; v) − 1 < 0 and F(b + 1, β; γ ; v) − 1 > 0,

for all .v. Then
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F(b, β; γ ; v)

F(b + 1, β; γ ; v)
= 1

F(b + 1, β; γ ; v)
+ F(b, β; γ ; v) − 1

F(b + 1, β; γ ; v)

≥ F(b, β; γ ; v) − 1

F(b + 1, β; γ ; v)
≥ F(b, β; γ ; v) − 1

F(b + 1, β; γ ; v) − 1
.

Further

F(b, β; γ ; v) − 1

F(b + 1, β; γ ; v) − 1
=

∞
∑

i=1

�(b + i)

�(b)

�(β + i)

�(β)

�(γ )

�(γ + i)

vi

i !
∞

∑

i=1

�(b + 1 + i)

�(b + 1)

�(β + i)

�(β)

�(γ )

�(γ + i)

vi

i !

= b

b + 1

∞
∑

i=1

�(b + i)

�(b + 1)

�(β + i)

�(β)

�(γ )

�(γ + i)

vi

i !
∞

∑

i=1

�(b + 1 + i)

�(b + 2)

�(β + i)

�(β)

�(γ )

�(γ + i)

vi

i !

≥ b

b + 1
.

This completes the proof of Part 2. . ��

A.14 Proof of Theorem 3.15

Recall the estimator .θ̂α is .{1 − φα(w)/w}x where

φα(w) = w

∫ ∞
0 (g + 1)−(α+1)(p/2−1)−2{1 + w/(g + 1)}−(α+1)(p/2+n/2)−1dg

∫ ∞
0 (g + 1)−(α+1)(p/2−1)−1{1 + w/(g + 1)}−(α+1)(p/2+n/2)−1dg

.

As in (3.71) and (3.72), an integration by parts gives

(α + 1)(n + 2)
∫ ∞

0

(g + 1)−(α+1)(p/2−1)−1dg

{1 + w/(g + 1)}(α+1)(p/2+n/2)
+ 2

(1 + w)(α+1)(p/2+n/2)

= (α + 1)(n + 2)
∫ ∞

0

(g + 1)(α+1)(n/2+1)−1dg

(1 + g + w)(α+1)(p/2+n/2)
+ 2

(1 + w)(α+1)(p/2+n/2)

= 2
∫ ∞

0
(g + 1)(α+1)(n/2+1)

{ (α + 1)(p + n)/2

(1 + g + w)(α+1)(p/2+n/2)+1

}

dg

= (α + 1)(p + n)

∫ ∞

0

(g + 1)−(α+1)(p/2−1)−1dg

{1 + w/(g + 1)}(α+1)(p/2+n/2)+1

and
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(α + 1)(p − 2)
∫ ∞

0

(g + 1)−(α+1)(p/2−1)−1dg

{1 + w/(g + 1)}(α+1)(p/2+n/2)
− 2

(1 + w)(α+1)(p/2+n/2)

= 2
∫ ∞

0
(g + 1)−(α+1)(p/2−1)

{ w

(g + 1)2
(α + 1)(p + n)/2

{1 + w/(g + 1)}(α+1)(p/2+n/2)+1

}

dg

= (α + 1)(p + n)w

∫ ∞

0

(g + 1)−(α+1)(p/2−1)−2dg

{1 + w/(g + 1)}(α+1)(p/2+n/2)+1
.

Then

φα(w) = w

∫ ∞
0 (g + 1)−(α+1)P−2{1 + w/(g + 1)}−(α+1)(P+N )−1dg

∫ ∞
0 (g + 1)−(α+1)P−1{1 + w/(g + 1)}−(α+1)(P+N )−1dg

= P − Jα(w)

N + Jα(w)

where .P = p/2 − 1 and .N = n/2 + 1 and

1

Jα(w)
= (α + 1)

∫ ∞

0

dg

(g + 1)(α+1)P+1

( (1 + w)(1 + g)

1 + w + g

)(α+1)(P+N )

= (α + 1)
∫ ∞

0

dg

(g + 1)(α+1)P+1

(

1 − w

1 + w

g

1 + g

)−(α+1)(P+N )

= (α + 1)
∫ ∞

0

dg

(g + 1)(α+1)P+1

∞
∑

i=0

�((α + 1)(P + N ) + i)

�((α + 1)(P + N ))i !
( w

1 + w

g

1 + g

)i

= (α + 1)
∞

∑

i=0

B((α + 1)P, i + 1)
�((α + 1)(P + N ) + i)

�((α + 1)(P + N ))i !
( w

1 + w

)i

=
∞

∑

i=0

(α + 1)�((α + 1)P)

�((α + 1)P + i + 1)

�((α + 1)(P + N ) + i)

�((α + 1)(P + N ))

( w

1 + w

)i
.

For fixed .i , the coefficient of .1/Jα(w),

(α + 1)�((α + 1)P)

�((α + 1)P + i + 1)

�((α + 1)(P + N ) + i)

�((α + 1)(P + N ))

= 1

P + i/(α + 1)

P + N + 1/(α + 1)

P + 1/(α + 1)
× · · · × P + N + (i − 1)/(α + 1)

P + (i − 1)/(α + 1)
,

is increasing in .α. Then, by the monotone convergence theorem, we have

lim
α→∞

1

Jα(w)
= 1

P

∞
∑

i=0

( P + N

P

w

1 + w

)i =
⎧

⎨

⎩

1/
(

1 − (P + N )w

P(1 + w)

)

w < P/N ,

∞ w ≥ P/N ,

and hence
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lim
α→∞ φα(w) = φ+

JS(w) =
{

w w < (p − 2)/(n + 2),

(p − 2)/(n + 2) w ≥ (p − 2)/(n + 2).
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