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Cn Cahn number 
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μr Relative magnetic permeability 
Re Reynolds number 

Subscripts 
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e Suspending medium
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1 Introduction 

Immense industrial and biomedical applications (e.g., polymer processing, magneti-
cally controlled optics, ferrofluid-based sensors, biomedical imaging, drug delivery, 
and diagnosis of malignant tumors) make the droplet magnetohydrodynamics an 
emerging area of research for the last few decades [1–5]. 

In the case of the flow field, the droplet deformation depends on the nondimen-
sional capillary number (Ca), which signifies the ratio between viscous force (that 
tries the droplet to deform) and the interfacial force (that maintains the droplet to its 
initial spherical shape). Following the pioneering research (on the droplet dynamics 
of Newtonian fluid under the governance of background flow in a small deformation 
regime) of Taylor [6], Han and Chin [7] experimented to show the deformation and 
breakup characteristics of the droplet in extensional flow. Here they considered both 
the droplet phase and continuous phase to be viscoelastic and showed the effects 
of different fluid properties (such as viscosity, elasticity, and interfacial tension) on 
the deformation dynamics. Moreover, droplet breakups in linear flows have been 
adequately examined numerically as well as experimentally by Stone [8]. Further-
more, Delaby et al. [9] experimentally exhibited the importance of the viscosity ratio 
on the deformation dynamics of a droplet in immiscible molten polymer blends for 
higher Ca limits. Minale [10] analytically shows the droplet deformation considering 
(i) both the phases are Newtonian, (ii) one of the phases is non-Newtonian, and (iii) 
considering the confined system where wall effects have been considered. 

Similarly, the sole impact of a uniform magnetic field on the ferro-droplet has 
been thoroughly addressed in the literature [11–13]. On a brief note, the appear-
ance of a magnetic field makes the ferro-droplet unstable and expands along with 
the applied magnetic field orientation [14]. In this context, Afkhami et al. [12, 13] 
analytically showed the dependency of the aspect ratio (ratio between the length of 
major and minor axes) of the deformed droplet on the magneto-physical properties 
of the ferrofluid. A complete numerical study on hysteresis phenomena for the ferro-
droplet deformation in a uniform magnetic field has been studied by Lavrova et al. 
[15]. 

The dynamics of a neutrally buoyant droplet in the presence of the magnetic field 
or extensional flow are independently reported in the literature. The droplet dynamics 
in the combined effect of magnetic field and uniaxial extensional flow can provide 
many physical imaginations on the fluid mixing controllability. Motivated by this, 
here we propose to see the impact of the uniform magnetic field in the background 
uniaxial extensional flow on the ferro-droplet dynamics. Considering Stokes flow, 
the magnetohydrodynamic problem is solved by following numerical simulations in 
the small deformation limit.
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2 Problem Formulation 

Here, we considered a Newtonian ferrofluid droplet of radius ri, density ρ, viscosity 
ηi, and magnetic susceptibility χ i, placed in another Newtonian, non-magnetic fluid 
of viscosity ηe and density ρ (neutrally buoyant) as shown in Fig. 1. The droplet is 
directed by an externally employed magnetic field H0 = H0ez and uniaxial exten-
sional flow U0 = T0 · X . Here, H0 is the magnitude of the applied magnetic field, 
T0 is the rate of the strain tensor, and X is the position vector. The far-field strain 
rate tensor T0 can be defined as: 

T 0 = 
G0 

2 

⎡ 

⎣ 
−1 0  0  
0 −1 0  
0 0  2  

⎤ 

⎦ (1) 

where G0 is the rate of strain. Further, we considered the surface tension σ is uniform 
along with the droplet interface. 

2.1 Governing Equations 

The velocity field for an incompressible flow satisfies the continuity and Navier– 
Stokes equation as [16, 17]: 

∇ ·  u = 0 

ρ

(
∂u 
∂t 

+ u ∇ u
)

= −∇  p + η ∇ · (∇u + (∇u)T
) + FST + FM 

⎫⎪⎬ 

⎪⎭ 
(2)

Fig. 1 Schematic 
representation of the 
problem description 
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Here FST and FM represent the force due to surface tension and magnetic force, 
respectively. The surface tension force, FST can be described as [18]: 

FST = ∇  · [
σ I + (−nnT )

δ
[

(3) 

where I, δ, and n are the second-order identity tensor, Dirac delta function, and unit 
normal to the interface. Similarly, the force due to magnetic field, FM can be defined 
as [18]: 

FM = ∇  ·  τ M = ∇  ·
(
μmHHT − 

μm 

2 
(H ·H)I

)
(4) 

In the above equation, H, τ M, and μm are the strength of the applied magnetic 
field, magnetic stress tensor, and the magnetic permeability of the fluid, respectively. 
To find the magnetic stress tensor, we need to solve the magneto-static Maxwell 
equations as given below [18]. 

∇ ·  B = 0 
∇ ×  H = 0 
M = χmH 

B = μ0(H + M) 

⎫⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
(5) 

where μ0 (μ0 = 4π × 10−7 N/A2) is the permeability of the vacuum. B, M, and χ m 
are magnetic induction, magnetization, and magnetic susceptibility, respectively. 

2.2 Nondimensionalization 

To nondimensionalize, we have considered the following scales: length—ri, 
velocity—G0ri, magnetic field strength—H0, hydrodynamic stress—ηeG0, and 
magnetic stress—μ0H0 

2. Here we assumed that the viscous force is ruling over 
the inertia force, resulting in a low Reynolds number flow. We have tabulated all the 
dimensionless parameters and nondimensional numbers in Table 1.

3 Numerical Method 

In this study, we used the phase-field technique to resolve the two-phase interface 
features. Phase-field model for a system of two incompressible and immiscible fluids 
can be described as [19]: 

∂ψ(x, t) 
∂t

+ u ·∇ψ(x, t) = ∇(
Mψ(x,t)∇G

)
(6)
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Table 1 Different dimensionless parameters and nondimensional numbers associated with the 
present analysis 

Symbol Details 

λ Viscosity ratio defined as λ = ηi /ηe 
μr Relative magnetic permeability defined as μr,i = μi /μ0 (droplet phase) (we have 

considered the suspending medium as non-magnetic in this study, i.e., 
μr,e = μe/μ0 = 1) 

Re Reynolds number defined as Re = ρG0r2 i /ηe (ratio between inertial and viscous 
stress) 

Ca Capillary number defined as Ca = ηeG0ri /σ (magnitude of viscous stress relative 
to capillary stress) 

Bom Magnetic Bond number defined as Bom = ri μ0|H0|2/σ (magnitude of magnetic 
stress relative to capillary stress) 

M Mason number defined as M = μ0|H0|2/ηeG0 (magnitude of magnetic stress 
relative to viscous stress)

where Mψ(x,t) and G denote the interface mobility factor and chemical potential, 
respectively. Two fluids are distinguished by the definite values of the phase-field 
parameter ψ(x,t). The values of the phase-field parameter for suspending fluid phase 
and droplet phase are taken as −1 and +1, respectively; whereas it varies from −1 
to +1 at the two-phase interface. 

The magnetic potential follows Poisson’s equation in the following form [18]: 

∇ ·(μm∇φmag
) = 0 (7)  

where μm is the magnetic permeability of the fluid which can be presented in terms 
of the phase-field parameter as 

μm =
[
(1 + ψ(x, t)) 

2 
μi

]
+

[
(1 − ψ(x, t)) 

2 
μe

]
(8) 

For simulations, a square channel of size L × L is considered (here L = 10ri to 
neglect the effect of channel confinement), where the droplet is situated at the center 
of the left side (axis of symmetry) as shown in Fig. 2.

3.1 Grid Independence and Cahn Number Independence Test 

To check the precision of the simulation results, the grid independence and Cahn 
number (Cn) independence assessments are necessary. In our model, the grid size and 
the Cahn number are similar and close to the two-phase interface. So, an accurate grid 
independence study automatically confirms a correct Cahn number independence 
analysis [20]. For the Cahn number independence study, we have compared the
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Fig. 2 Schematic 
representation of the 
computational domain

Fig. 3 Alteration of the 
droplet deformation for 
different Cahn numbers (Cn) 
at Ca = 0.05, λ = 1 in the  
sole presence of uniaxial 
extensional flow 

temporal droplet deformation in presence of uniaxial flow as illustrated in Fig. 3. This  
figure confirms that the droplet deformation is almost the same for three different 
values of the Cahn number. Eventually, we considered Cn = 0.04 for the rest of our 
analysis. 

3.2 Model Validation 

For validation, we have compared the deformation parameter D [where D = (l − b)/ 
(l + b); l and b are the lengths of the major and minor axis of the deformed droplet,
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Fig. 4 Alteration of the droplet deformation at the steady-state (Dα) with a Capillary number Ca 
at λ = 1 in uniaxial extensional flow and b Magnetic Bond number Bom for (μr,i, μr,e) = (1.89, 1) 
in sole existence of uniform magnetic field 

respectively] with the previously reported results for two cases: (a) droplet deforma-
tion in existence of uniaxial extensional flow only and (b) droplet deformation in the 
sole presence of the uniform magnetic field. Figure 4a shows the steady-state droplet 
deformation (Dα) for different Ca values at λ = 1, which confirms that our numerical 
model is in harmony with the simulation of Stone and Leal [21]. Figure 4b depicts 
the alteration of droplet deformation at the steady-state (Dα) with the magnetic Bond 
number (Bom) for  μr,i = 1.89. After comparison, we found that our numerical model 
is in the same fashion as the experimental results of Afkhami et al. [13] for Bom < 
1.5. 

4 Results and Discussion 

In external flow conditions, the viscosity ratio plays a pivotal role in the deformation 
dynamics of a droplet. Figure 5 confirmed the impact of the viscosity ratio on the 
droplet deformation in the Stokes flow regime (here, Re = 0.01). It can be seen that at 
a fixed Ca value (here, Ca = 0.05), as the viscosity ratio (λ) increases from 0.01 to 5, 
the deformation parameter (D) also increases. Contrariwise, the time taken to reach 
steady-state deformation is smaller at the lower viscosity ratio. Another important 
observation is that for λ ≤ 1, the temporal evolution of the droplet deformation is 
almost independent of the viscosity ratio. More precisely, the droplet deformation 
plot at λ = 0.01 almost coincides with that at λ = 0.1. Considering these aspects, 
we considered λ = 1 to see the droplet deformation characteristics for the rest of the 
analysis.

Figure 6a illustrates the transient droplet deformation for (μr,i, μr,e) = (2, 1) and 
λ = 1 for different Mason numbers and α = 90°. In absence of a magnetic field 
(i.e., M = 0), the drop deforms into a prolate shape due to the hydrodynamic stress
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Fig. 5 Effect of viscosity 
ratio (λ) on the droplet 
deformation (D) for Ca  = 
0.05, M = 0, and Re = 0.01

distribution. For all M > 0 at  α = 90°, both the magnetic stress and the hydrodynamic 
stress are acting in the same direction which assists the droplet to deform into a 
prolate shape. Moreover, the deformation increases with increasing magnetic field 
strength. Figure 6b depicts the alteration of transient deformation of the ferro-droplet 
for (μr,i, μr,e) = (2, 1) and λ = 1 with different Mason numbers at α = 0°. Here the 
magnetic stress tries to resist the prolate deformation aided by hydrodynamic stress. 
For this reason, the deformation for all M > 0 is less when compared with M = 0. 
Fascinatingly, here we observed two distinct droplet shape deformations. For M = 
0, 1, and 5, it forms a prolate shape, whereas, for higher values of M (= 10, 20), it 
deforms into an oblate shape. The prolate shape formation is because of the higher 
viscous force compared with the magnetic force. While, for M = 10 and 20, the 
magnetic stress becomes relatively high so that it overcomes the viscous force and 
deformed the droplet into an oblate shape. 

Fig. 6 Alteration of droplet deformation (D) with time for (μr,i, μr,e) = (2, 1) and λ = 1 for different 
Mason numbers. a α = 90°and b α = 0°. Other parameters are Ca = 0.05 and Re = 0.01
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Fig. 7 Alteration of droplet deformation (D) with time for different relative magnetic permeability 
of the droplet phase (μr,i) for  a (M, α) = (1, 90°) and b (M, α) = (1, 0°). Other parameters are μr,e 
= 1, Ca = 0.05, λ = 1, and Re = 0.01 

The relative magnetic permeability of a material represents the ability of that mate-
rial to be magnetized in presence of an external magnetic field. The magnetic force 
exerted on a ferrofluid droplet directly depends on its relative magnetic permeability. 
Hence, the relative magnetic permeability has a key role in droplet morphology 
alteration. Figure 7a represents that for a system with α = 90°, the droplet defor-
mation (D) increases monotonically with the relative magnetic permeability at a 
fixed magnetic field strength. This observation follows a similar trend as reported 
in the literature [22]. This is because the magnetic stress attributed to the droplet 
pole increases with an increase in relative magnetic permeability. Consequently, the 
magnetic force dominates the surface tension force and thus the droplet becomes 
more elongated along the direction of the magnetic field and forms a prolate shape 
with a high aspect ratio. Interestingly, for the system (M, α) = (1, 0°) as shown 
in Fig. 7b, the droplet morphology evolved from prolate to oblate shape with the 
increase of relative magnetic permeability from 1 to 10. This is because with the 
increase of μr,i, the magnetic stress becomes high and it governs the flow dynamics. 
As a result, the droplet follows the magnetic field direction and formed an oblate 
shape. 

5 Conclusions 

In summary, the transient dynamics of a ferro-droplet guided by the uniform magnetic 
field in background uniaxial extensional flow has been studied numerically. Based 
on the outcomes, the major findings are as follows: 

• The droplet deforms into a prolate shape for α = 90°. On the contrary, for α = 
0°, the droplet may deform into either a prolate or oblate shape depending on the 
Mason number.
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• For the system with α = 90°, the droplet elongates more with the higher relative 
magnetic permeability and forms the prolate shape. Whereas, an enhancement 
of relative magnetic permeability can change the droplet morphology from the 
prolate to an oblate shape at α = 0°. 
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