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1 Introduction 

Understanding water vapor condensation is of significant interest due to its consid-
erable influence on process efficiency in many applications [2]. Condensation of 
water vapor on a substrate can be broadly classified in filmwise and dropwise 
modes. The transitions between the two on the condensing substrate will depend 
on its thermophysical properties, the condensate and the condensing environment. 
The gravity-driven droplet removal phenomena of condensation lead to an order of 
magnitude higher heat transfer compared to filmwise condensation [3]. Most appli-
cations involve flow inside or outside tubes, such as shell-and-tube condensers and 
air-coupled condensers. Thus, condensation of pure water vapor on a convex-shaped 
substrate is of particular interest. Most dropwise condensation models are based on 
a flat surface’s equilibrium contact angle and are unsuitable for curved substrates. It 
is related to the inability to resolve the liquid–solid interface at the curved surfaces 
correctly. Hence, instead of quantifying the intrinsic contact angle θ ’, the apparent 
contact angle θ is measured in the radial plane, as shown in Fig. 1b. However, it is 
convenient to measure the intrinsic contact angle θ o, in the axial plane, as shown 
in Fig. 1a. Thus, the present droplet condensation model is based on the apparent 
contact angle θ, estimated from the intrinsic contact angle θ o by incorporating the 
tube curvature.
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Fig. 1 Schematic of the contact angle measured over orthogonal planes of a tubular surface 

2 Literature Review and Objectives 

Le Fevre and Rose [3] originally developed the classical steady-state dropwise 
condensation model for hemispherical drops. The authors integrated single droplet 
heat flux with the average distribution of drop sizes to estimate the overall heat flux at 
the condensing surface. Kim and Kim [4] developed the thermal resistance model for 
flat hydrophobic surfaces by defining the conduction resistance of droplets having 
non-hemispherical shapes. Here, the equilibrium contact angle was included in the 
model to predict the overall heat transfer rate. Based on the Kim and Kim model, 
Miljkovic et al. [5] studied the effect of droplet morphology on single droplet heat 
transfer for a flat surface. Drop size distributions for different wetting conditions 
were derived. Bahrami and Saffani [6] studied dropwise condensation heat transfer 
on structured tubular surfaces. However, the tube curvature effect on a single droplet 
growth rate and on the droplet number density was largely ignored. 

A mathematical model of growth of a liquid droplet on a hydrophobic concave 
surface has been reported in the literature [1]. The studied model includes the concave 
substrate curvature in the heat transfer model for a single droplet and subsequently 
partially in the growth rate. However, the droplet number density was calculated 
excluding the tube curvature. Xiang and Sun [7], using geometric relations, derived 
an expression for intrinsic contact angle in terms of the tube and drop radius. Exper-
imentally measured contact angles verified the derived expression. Zheng et al. [8] 
studied condensation characteristics on groups of non-wetting surfaces by including 
the dynamically changing nature of thermal resistances with droplet size.
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Although several experimental and numerical studies of dropwise condensation 
of steam on flat surfaces have been carried out, there are only a few on tubular 
surfaces. Condensation heat transfer rates for tubular surfaces are mostly based on 
the flat surface formulation. Also, the curvature effect of the convex substrate has 
not been systematically carried on the heat transfer rate. The current study aims 
to incorporate the tube curvature on a single droplet heat transfer and develop a 
mathematical framework for estimating a steady-state droplet number density during 
dropwise condensation of saturated water vapor. The effect of the tube curvature and 
the degree of sub-cooling on a single droplet heat flux and total heat transfer are 
presented. Also, dropwise condensation of water vapor over a vertical flat plate is 
used for comparison against the vertical tube. 

3 Mathematical Model Framework 

Droplet condensation begins with drop formation in the nanoscale size at the nucle-
ation site. The nucleated droplet grows on the condensing surface, coalesces with 
the adjacent drop and departs due to gravitational instability. Droplet growth can 
be broadly classified into two zones: growth by direct condensation for small size 
droplets and coalescence-dominated growth for large size droplets. The boundary 
between the small and large size drops is based on the effective droplet radius at 
which the coalescence activity initiates. The empirical relation, re = (4Ns)

−1/2 

calculates the effective drop size, where Ns is the nucleation site density [4]. 

3.1 Estimation of the Apparent Contact Angle 

The tube curvature on the apparent contact angle estimation is deduced here. Drop 
on the convex surface of the tube in radial and axial planes are shown, respectively, 
in Fig. 2a,b, while the geometrical construction details are shown in Fig. 2c,d. From 
geometry and the droplet projection, as shown in Fig. 2c,d, the expression for the 
apparent contact angle incorporating the curvature effect of the tube has been derived 
and presented as Eqs. (1) and (2). These expressions are non-linear and depend on 
the droplet size and the tube radius. Hence, estimating the apparent contact angle 
with varying droplet size and for a given intrinsic contact angle is iteratively solved. 
These equations are 

r (cos α − cos β) = R(1 − cos γ ) (1)
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Fig. 2 Geometrical construction of the droplet for estimating apparent contact angle (θ) from the  
readily available intrinsic contact angle (θ o) 
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3.2 Single Droplet Heat Transfer 

Heat conducted through droplets contributes to the overall heat flux at the condensing 
surface during droplet condensation. Thus, understanding the heat flow along a 
single droplet is essential. Figure 3 shows a geometrical construction of a drop with 
center O2 having radius r on the convex surface of the tube with center O1 having 
radius R. The apparent contact angle is θ, while Tsat and Tw are the saturated vapor 
and condensing wall surface temperatures, respectively. Droplet growth over a small 
time interval during condensation is represented as Δr. The vapor saturation and 
condensing wall surface temperatures are assumed to be constant and homoge-
neously distributed. Further, Hl represents the height from the apex of the tube to 
the line joining the two three-phase contact points in the radial plane. The latent heat 
released at the liquid–vapor interface during droplet condensation is transferred to 
the condensing surface through the droplet. The presence of non-condensable gas in 
the condensing environment is neglected for the present study. The total temperature
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Fig. 3 Schematic of a liquid drop with the thermal resistance network on the surface of a tube

drop from the vapor saturation temperature to the condensing wall is evaluated based 
on the heat transfer rate and thermal resistance. Interfacial resistance formed between 
the vapor phase and the liquid phase at the liquid–vapor interface is given by Eq. (3). 
The interfacial heat transfer rate is calculated from Eq. (4). Here, hfg is the latent 
heat of condensation, Rm is the specific gas constant and υ fg is the specific volume 
of vapor phase relative to the liquid phase. The accommodation coefficient α is the 
fraction of incoming vapor molecules that condenses at the liquid–vapor interface. 
In the present study, it is taken as unity which is an accepted value for pure steam. 

∆Ti = Tsat − Ti = q 

2πr2hi (1 − cos θ )
; Rint = ∆Ti 

q 
(3) 

hi =
[

2σ̂ 
2 − σ̂

](
h2 f g  

Tsat  v f g

)(
1 

2π RmTsat

)1/ 2[
1 − 

Psat v f g  
2h f g

]
(4) 

The curvature of the vapor–liquid interface is the source of curvature resistance 
Rcurv, which manifests as a depression in the interfacial saturation temperature and 
is calculated using Eq. (5). Here, rmin is the minimum drop radius at the time of 
nucleation.

∆Tc = 
2Tsat σ 
rρh f g  

= 
rmin 

r
∆T ; Rcurv = ∆Trmin 

qr 
(5) 

rmin = 
2Tsat σ 

ρh f g∆T 
(6) 

The droplet itself acts as a resistance to heat transfer between the liquid–vapor 
interface and the condensing wall and the temperature drop due to thermal resistance 
is modeled as Eq. (7). Here, ΔTd is the temperature drop due to conduction resistance 
and kc is thermal conductivity of the condensate [4]. The effect of tube curvature on
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the droplet heat transfer is incorporated by subtracting the half portion of cylinder 
with height Hl in calculating the drop volume and heat conduction through the 
droplet [1]. The spherical cap approximation is assumed for calculating the droplet 
volume and interfacial areas of liquid–vapor and liquid–solid. The droplet volume 
is estimated from Eq. (8), where, R is the radius of the tube. 

To make the substrate non-wetting, a coating is applied and adds thermal resistance 
to heat transfer, Eq. (7), where, δhc is the hydrophobic coating layer thickness and 
khc is its thermal conductivity. The total thermal resistance for a single droplet is 
estimated as the arithmetic sum of the four resistances, Eq. (10).

∆Td = qθ 
4πrkc sin θ 

− 
q
(
R −

√
R2 − (r sin θ )2

)

2πr2kc(sin θ )2
; Rdrop = ∆Td 

q 
(7) 

V = 
πr3 

3

(
2 − 3 cos θ + cos3 θ

)−
(

π (r sin θ )2 ×
(
R −

√
R2 − (r sin θ )2 

2

)) (8)

∆Tcoat = qδhc 

πr2khc sin2 θ 
; Rcoat = ∆Tcoat 

q 
(9) 

Rtotal  = 
Ts − Tw 

q
= Rint + Rcurv + Rdrop + Rcoat (10) 

Thus, the heat transfer rate q through a single droplet of radius r is estimated from 
Eqs. (3, 5, 7 & 9) yielding the final form 

q(r ) = ∆T πr2
(
1 − rmin 

r

)

⎡ 

⎢⎢⎢ 
⎣ 

1 

2hi (1 − cos θ ) 
+ 

rθ 
4kc sin θ 

−
(
R −

√
R2 − (r sin θ )2

)

2kc(sin θ )2
+ δhc 

khc sin2 θ 

⎤ 

⎥⎥⎥ 
⎦ 

(11) 

3.3 Drop Size Distribution 

Dropwise condensation starts with droplet nucleation at preferential nucleation sites. 
At each initial nucleation site, a drop grows by direct deposition of vapor onto the 
liquid surface. As the drop grows, the distance between the neighboring droplets 
diminishes and initiates coalescence. Upon reaching a size, where body force due 
to gravity exceeds the surface tension, the drop becomes unstable and departs the
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surface. The falling droplets expose the substrate for renucleation and the cycle 
continues. The growth process can be divided into two regimes—direct condensation 
growth and coalescence dominant growth. The boundary between the small and large 
size drops is defined on the basis of effective droplet radius at which the coalescence is 
initiated, and is given by the expression, re = (4Ns)

−1/2 [4]. The population balance 
theory is used to determine the droplet number densities for small size drop (r < re). 
At steady state, the number of drops in a particular size range is conserved. In other 
words, equal number of droplets will enter and leave a certain drop size interval. 
Consider drop size in the range r1 to r2 having a droplet growth rate represented 
as, G = dr/dt . The number density of the drop, n(r) is defined as the number of 
droplets of radius r per unit area. The number of droplets entering and leaving the 
size interval (r1, r2) in an infinitesimally small interval of time dt can be denoted as 
An1G1dt  and An2G2dt , respectively, where A is the area of any condensing surface. 
While the number of droplets that are swept away by the departing droplets in the 
interval (r1, r2) can be written as, Sn1−2∆rdt , where, S is the sweeping rate, n1−2 is 
the average population density and ∆r is the drop size interval. Thus, the population 
balance theory will lead to Eq. (12). As ∆r approaches zero, the number density 
n2 is infinitesimally close to n1 and becomes a point value n, Eq.  (12) is reduced to 
Eq. (13), where τ is the sweeping period defined as τ = A/S. 

An1G1dt  = An2G2dt  + Sn1−2∆rdt (12) 

d(Gn) 
dr 

+ 
n 

τ 
= 0 (13) 

The heat transfer rate through a drop of the radius r is the amount of heat released 
during condensation at the free surface, which is calculated as the product of the rate 
of mass condensed and the latent heat of phase change. Thus, one can write 

q = ρl 
dV  

dt  
h f g (14) 

where, ρl is density and V is the volume of the liquid drop estimated from the Eq. (8). 
The derivative of a single droplet volume with respect to time is given by 
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dr 

dt  
(15) 

On substituting Eq. (15) in Eq.  (14) and comparing to Eq. (11) yields the single 
droplet growth rate
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where A1 = ∆T 
ρh f g  

; A2 = θ 
4kc A5 

; A3 = 1 
2hi (1−cos θ ) + δhc 

khc A2 
5 

A4 =
(
2 − 3 cos θ + cos3 θ

)
; A5 = sin θ . 

Drop size distribution N (r ) for large droplets (r > re) has been proposed by Le 
Fevre and Rose [3] in the  form  

N (r) = 1 

3πr2rmax

(
r 

rmax

)−2/ 3 
(17) 

The maximum droplet size at which it departs from the substrate is determined 
based on forces imbalance at the three phase contact boundary. The forces acting at 
the three phase contact lines are surface tension and the gravitational, body force. 
Since the condensing surface is a vertical tube, the gravitational force on the droplet 
acts along parallel to the condensing surface and is given by Eq. (18). The component 
of surface tension that holds the droplet to the condensing surface is calculated from 
the expression provided in [9]. This expression, Eq. 19, uses symbols θ o a and θ o r that 
are the intrinsic advancing and receding contact angles. 

Fg|| = ρg 

⎡ 

⎢⎢ 
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πr3 

3
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)− 

πr2 sin2 θ 
2
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⎥⎥ 
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Fr|| ≃ cDσ
(
cos θ o r − cos θ o a

) ≈ (a + b)σ
(
cos θ o r − cos θ o a

)

a = r sin θ o avg; b = r sin θ; θ o avg = 
1 

2

(
θ o a + θ o r

)
(19) 

Thus, the maximum droplet size at the inception of sliding can be estimated as 
given by a transcendental equation 

Fg|| − Fr|| = 0 (20)  

It is solved iteratively to get the rmax value. Equation (13) is the governing equation 
for the droplet density for small-sized droplets. Here, the droplet growth rate is a 
function of drop size, tube curvature and apparent contact angle, in turn, a function 
of the drop size. Thus, Eq. (13) cannot be analytically solved and, instead, it is
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numerically evaluated from the equation 

dn(r ) 
dr 

+ n(r )

[
1 

G(r ) 
dG(r) 
dr 

+ 1 

G(r)τ

]
= 0 (21) 

The above equation has two unknown, n(r) and τ . The required two conditions 
are the continuity in droplet densities and its slope at the effective droplet size (re) 
and are expressed as 

n(r )|r=re = N (r )|r=re =
1 

3πr2 e rmax

(
re 
rmax

)−2/ 3 
(22) 

d ln n(r ) 
d ln r

||||
r=re 

= −  
8 

3 
(23) 

3.4 Overall Condensation Heat Transfer Rate 

Once the droplet number densities are estimated, the condensation heat transfer rate 
per unit area at steady state is calculated by integrating the single droplet heat transfer 
with the drop size distribution as follows: 

q =
ʃ re 

rmin 

q(r )n(r )dr +
ʃ rmax 

re 

q(r )N (r )dr (24) 

4 Results and Discussion 

It may be noted that the proposed droplet condensation model is based on the apparent 
contact angle which depends on the droplet size r, in turn the drop volume V, the  
tube radius R and hence, the intrinsic contact angle θ o, Eq.  (2). 

4.1 Validation 

Figure 4 presents the variation in apparent contact angle with tube diameter and drop 
volume. Also, the intrinsic contact angle remains nearly constant [7] and an average 
value is used for the evaluating the expression in Eq. (2). The tube diameter is varied 
from 5 to 20 mm.
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Fig. 4 Comparison of the evaluated apparent contact angle to the measured value [7] for  a drop 
volume of 5 µl, b tube diameter of 10 mm. Red dot represents the measured intrinsic contact angle 

In the calculation of the overall condensation heat transfer rate, it is required to 
evaluate the drop number densities n(r) and N(r). First, rmax is estimated by solving 
Eq. (20) iteratively and drop size distribution for large droplets is evaluated from 
Eq. (17). The small size drop distribution is evaluated by a shooting technique. The 
continuity of first derivative of the drop size distribution at the effective radius (re) 
and the sweeping time (τ ) are estimated iteratively with Eq. (22). The small size 
droplet distribution is estimated numerically by a backward Euler method from drop 
size re to rmin . Thermal properties are evaluated at the wall surface temperature. 
Newton–Raphson method is used as the iterative algorithm for evaluating θ , rmax 

and τ . 
Single droplet heat transfer of the present model is compared to that of Zheng 

et al. [9], Fig. 5. The input parameters used in simulations are shown in Table 1.
The numerically calculated droplet size distribution is compared to Kim and Kim 

[4] and is shown in Fig. 6. The present model shows a good match in terms of single 
droplet heat transfer values and the droplet number densities.
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Fig. 5 Comparison of the single droplet heat flux and heat transfer rate to [9]. Solid lines show 
data of the present study while symbols are from [9] 

Table 1 Validation parameters 

Ts (K) ∆T θ o δhc(μm) khc 

Zheng et al. [8] 373.15 2 120o 1 0.25 

Kim and Kim [4] 345.0 5 120o 1 0.2

4.2 Curvature Effect of the Tube 

The proposed model incorporates the curvature effect of the tube. Single droplet heat 
flux is compared for various tube diameters, Fig. 7. When the droplets are small in 
the micrometer size, tube curvature is insignificant and droplets see the substrate as 
flat. However, for large droplets in the millimeter range, the curvature effect of the 
tube is to be seen. Arrow shows that as the tube radius increases, the heat transfer 
characteristics approach that of a flat surface.

4.3 Effect of Degree of Sub-Cooling 

Figure 8 shows the heat transfer characteristics of a single droplet with respect to 
the degree of sub-cooling ranging from 2 to 5 K. The overall qualitative nature of 
heat flux remains unchanged. However, there is a shift down in droplet size at the 
initiation of condensation upon an increment in sub-cooling. This is because of the
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Fig. 6 Numerically obtained droplet number densities compared to Kim and Kim [4]

Fig. 7 Effect of tube curvature on the single droplet heat flux and drop-scale heat transfer
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Fig. 8 The effect of degree of sub-cooling on single droplet heat transfer and drop-scale heat 
transfer 

reduction in the energy barrier for the nucleating droplet; that is, the droplets nucleate 
with a smaller number of vapor molecules at elevated levels of sub-cooling. The total 
heat flow gradually increases with droplet size. Also, there is a shift up in heat flow 
rate upon increase in degree of sub-cooling. This is due to higher driving potential 
for condensation at elevated sub-cooling. Heat flux values rise, attain a peak value 
at micron size drop and subsequently, diminish for large size drops. For very small 
droplets, curvature resistance is dominant and reduces with an increase in the drop 
size. Jointly, conduction resistance increases with the droplet size. Thus, the heat 
flux distribution qualitatively shows a rise and fall with respect to drop radius. 

5 Conclusions 

The present study proposes a mathematical model to calculate single droplet heat 
transfer rate and drop size distribution during dropwise condensation of water vapor 
on a tubular surface. The model includes the curvature effect of the tube to a point 
where the droplet condensation model can be applied to the outer surface of a tube 
down to a wire. The estimated heat flux and heat transfer rate along with the droplet 
number densities are in good agreement with the published theoretical models. 
Comparison to experimental data is in progress.
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Nomenclature 

Tsat Vapor saturation temperature[K]
∆T Degree of sub-cooling[K] 
θ o Intrinsic water contact angle(°) 
δhc Coating layer thickness [µm] 
khc Thermal conductivity of coating [W m−1 K−1 
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