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1 Introduction 

Computational multi-Fluid Dynamics (CmFD) is a branch of Computational Fluid 
Dynamics (CFD) which involves a study on multi-physics fluid dynamics, heat 
transfer, and phase change processes occurring among multiple fluids. For the CmFD, 
accurate prediction of the interface plays a vital role in simulating a variety of two-
phase phenomena like droplet breakup and coalescence, droplet evaporation, droplet 
combustion, spray atomization, etc. As compared to CFD for a single phase flow, 
CmFD for two-phase flow involves additional challenges on the discontinuity of 
material properties across the interface and mass, momentum, and energy trans-
port at the interface. Various CmFD methods have been developed to address these 
challenges which can be broadly classified as Lagrangian and Eulerian methods. 
The present work deals with the Eulerian approach, which involves capturing the 
interface on a fixed mesh. Common Eulerian methods are Volume Of Fluid (VOF) 
method [4], Level Set (LS) method [14], and Coupled Level Set and Volume Of Fluid 
(CLSVOF) method [13]. 

In CLSVOF method, the interface is represented by a level set function φ and the 
conservation of mass is guaranteed by a volume fraction field F . The key role of any 
VOF-type scheme is the numerical approximation of the advection fluxes to update 
the fluid volume fractions. Based on the computation of fluxes, there are two types of 
VOF method: algebraic and geometric methods. An algebraic VOF method, like that 
of Hirt and Nichols [4], does not require any explicit geometrical reconstruction of 
the interface in the solution procedure. Thus, these VOF methods are quite straight-
forward and easy to implement. A geometric VOF method, on the other hand, consists
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of two steps: advecting the interface, and, identifying its new position (geometrical 
reconstruction). These features make the computational implementation reasonably 
complex; the complexity increases further for 3D problems. 

An overall comparison between algebraic VOF methods [10] and geometric VOF 
methods reveal that the results obtained from algebraic methods are better than 
Simple Line Interface Calculation (SLIC) VOF method but inferior to most of the 
Piecewise Linear Interface Calculation (PLIC) VOF methods [8]; particularly for 
complex flow fields. However, development of new algebraic interface capturing 
methods are justified because they are relatively much simpler and robust than a 
PLIC type VOF scheme. 

An algebraic interface capturing scheme using the hyperbolic tangent function, 
Tangent of the Hyperbola for INterface Capturing (THINC) was first developed by 
Xiao et al. [15]. The smooth step-like nature of the hyperbolic tangent function 
makes it suitable for interpolating the advection fluxes of the volume fraction field 
and is effective in eliminating numerical diffusion and oscillations. Numerical exper-
iments [16] reveal that the THINC scheme coupled with the Weighted Line Inter-
face Calculation (WLIC) framework possesses adequate accuracy and has a more 
robust performance as compared to existing high-resolution scheme-based algebraic 
methods. 

Considering the advantages and disadvantages of algebraic and geometric type of 
CLSVOF methods, a direct comparison between them on a variety of multiphase flow 
problems is not available in the present literature. Therefore, the objective of this work 
is to present a numerical methodology of the PLIC-based geometric CLSVOF and 
WLIC-THINC scheme-based algebraic CLSVOF methods along with the incom-
pressible Navier–Stokes equations on a co-located grid using the balanced-force 
approach. An in-house code is developed and performance of both the numerical 
techniques are studied on standard CmFD benchmark problems like dam break and 
bubble rise. 

2 Governing Equations 

The present work considers two different fluids, separated by an interface, and each 
fluid is assumed to be incompressible and immiscible. A single fluid formulation is 
used, where the same set of mass and momentum conservation equations are used 
for both the fluids. To capture the interface, CLSVOF method requires solution of 
separate advection equations for the level set field φ and volume fraction field F . 
The advection equations are given as, 

∂⎡

∂t 
+ ∇  ·  (u⎡) − ⎡∇ ·  u = 0 (1)
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where ⎡ = φ for level set advection equation and ⎡ = χ, a characteristic function, 
for advection of volume fraction field. The volume fraction FP is defined as the cell 
averaged value of χ given as, 

FP = χ P =
1

ΔxΔy 

xe∫

xw 

yn∫

ys 

χdxdy (2) 

The mass and momentum conservation equations are given as 

∇ ·  u = 0 (3)  

∂(ρu) 
∂t 

+ ∇  ·  (ρuu) = −∇  p + 2∇ ·  [μ D] + ρ g + σ k∇ F (4) 

where u is the velocity vector, ρ is the density, μ is the viscosity, p is the hydrody-
namic pressure, g is the acceleration due to gravity, σ is the surface tension coef-
ficient, k is the curvature of the interface, and D is the rate of deformation tensor 
defined as

(∇u + ∇uT
)
/2. 

Following the work of Hong and Walker [5], a piezometric pressure P is defined 
as 

P = p − ρ g · x (5) 

Implementing this in Eq. 4, the modified Navier–Stokes equation is given as 

∂(ρu) 
∂t 

+ ∇  ·  (ρuu) = −∇  P + 2∇ ·  [μD] + {(ρ0 − ρ1)g · x + σ k}∇ F (6) 

Due to the piezometric formulation, the pressure and gravity forces appear as 
gradient quantities and can be treated identically in the discrete level. This treat-
ment allows a perfect force balance between them in the scenarios where they are 
competing against each other. The fluid properties are represented as a function of 
volume fraction given by 

ρ = ρ1 F + ρ0(1 − F), (7) 

μ = μ1 F + μ0(1 − F) (8) 

where the subscripts 1 and 0 represent fluid 1 and 0, respectively.
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3 Numerical Methodology 

Finite volume method is used to discretize the governing equations, presented in 
Sect. 2. A co-located grid arrangement is followed, where all the solution variables 
(velocity, pressure, volume fraction, and level set) are defined at the centroid of each 
control volume (cell). 

3.1 CLSVOF Advection Equations 

The generalized CLSVOF advection equation (Eq. 1) is discretized using an operator 
splitting algorithm [13], given as

⎡
∗ 
P = ⎡

n 
P − 

Gn 
xe  − Gn 

xw

Δx
Δt + ⎡

∗ 
P 

ue − uw

Δx
Δt, (9)

⎡
n+1 
P = ⎡

∗ 
P − 

G∗
yn − G∗

ys

Δy
Δt + ⎡

∗ 
P 

vn − vs
Δy

Δt (10) 

The flux for the volume fraction advection equation in the x direction Gxe is given 
as 

Gxe = −  
yn∫

ys 

xe−ueΔt∫

xe 

χPup (x, y)dxdy (11) 

where Pup is defined as 

Pup =
{
P if ue ≥ 0 
E if ue < 0 

(12) 

Similarly advection fluxes in the y direction can be obtained. For the level set 
advection equation, a second-order ENO scheme [14] is used to determine the 
advection fluxes. Finally, Strang-splitting [13] is employed to minimize the error 
by dimensional splitting. 

For the PLIC-CLSVOF method, the characteristic function (χ ) for the volume 
fractions is the sharp unit Heaviside function given as 

χ (x, y) =
{
1 for fluid 1 at the point (x, y) 
0 for fluid 1 at the point (x, y) 

(13)
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A piecewise linear segment is geometrically constructed which defines the inter-
face between the two fluids. The orientation and position of the interface are deter-
mined by the normal vector (calculated from the smooth level set field) and the 
volume fraction field, respectively. The advection fluxes are obtained by calculating 
the area under the linear interface segment. A detailed description of the method is 
presented in the literature [12, 13]. 

For the THINC-CLSVOF method, a hyperbolic tangent function is used as the 
characteristic function; given as 

χx P  = 
1 

2

[
1 + αx tanh

{
β

(
x − xw

Δx 
− x̃P

)}]
(14) 

where αx represents the direction of the interface; given as 

αx =
{

1 if  nxp  ≥ 0 
−1 if  nxp  < 0 

(15) 

where n is the interface normal and β is a smoothness parameter for the character-
istic function. A larger value of β results in a sharp function thereby reducing the 
thickness of the diffused interface. In the present work, β = 2.3 which corresponds 
to three mesh smoothing. Further, x̃PΔx is the distance between xw and the inter-
face, indicating position of the interface in a two-fluid cell. The value of x̃P can be 
obtained from the cell volume fraction as 

Fn 
P = 

1

Δx 

xe∫

xw 

χP (x, x̃P )dx (16) 

By using such a smoothened characteristic function χ , the volume fraction field 
F becomes smoother than that of the PLIC-CLSVOF method. This feature is useful 
for the implementation of interfacial body forces in a continuum framework. Also, 
interface reconstruction is not required because the fluxes for volume fraction advec-
tion equation can be directly obtained by analytically integrating χx within the 
required limits. The accuracy of the present THINC-based algebraic method is further 
improved by coupling it with a WLIC framework, where the shape of the interface 
is weighted by using the weights calculated from the interface normal n given as, 

χP = ωx P  (nP )χxp  + ωyP  (nP )χyp (17) 

where 

ωi P  = |ni P | 
|nxP | + ||nyP

|| (18)
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are the weights, and χx and χy are the characteristic functions of the vertical and 
horizontal interface, respectively. nx and ny are the x and y component of the interface 
normal n. Further details are available in [16]. 

After the solution of level set advection equation, the level set field is reinitialized 
to preserve it as the signed distance function. This is achieved by solving an Eikonal 
equation, given as 

|∇φ| = 1 (19) 

where the above equation is solved by using a fast sweeping method [18]. 

3.2 Navier–Stokes Equations 

The Navier–Stokes equation is solved using a semi-explicit projection method, 
wherein the pressure and interfacial body force terms are considered implicitly with 
all other terms as explicit. The discretized momentum equation is given as 

(ρu)n+1 
P − (ρu)n P

Δt
= −∇  ·  (ρuu)n − ∇  Pn+1 

+ ∇  ·  (2μD)n + {(ρ0 − ρ1)g · x + σ k}∇ Fn+1 (20) 

In the predictor step of the pressure projection method, the pressure and body 
force terms are not considered in the momentum equation; and the predicted cell 
center velocity u∗ 

P is given as 

ρ 
u∗ 
P − un 

P

Δt 
+ ∇  ·  (ρuu)n = ∇  ·  (2μD)n (21) 

Momentum advection of the interfacial cells is achieved by the product of volume 
fraction-based advected mass and corresponding velocity at the donor cell face [1]. 

Subtracting Eq. (21) from Eq. (20), the corrected cell center velocity un+1 
P is given 

as 

ρ 
un+1 
P − u∗ 

P

Δt
= −∇  Pn+1 + {(ρ0 − ρ1)g · x + σ k}∇Fn+1 (22) 

A proper balance between the interfacial and pressure forces in the co-located 
grid arrangement is achieved by using a balanced-force method [2]. The pressure 
field for the next time step is obtained from the pressure Poisson equation, which 
is derived from the divergence of Eq. (22) utilizing the continuity equation (Eq. 3); 
given as
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∇ ·
(

Δt 

ρ 
∇ P

)n+1 

= ∇  ·
[
u∗ + Δt 

ρn+1 
{(ρ0 − ρ1)g · x + σ k}∇ Fn+1

]
(23) 

3.3 Solution Algorithm 

A generalized solution algorithm for the present algebraic and geometric CLSVOF 
methods is presented as follows. 

1. Initialize the velocity, pressure, volume fraction, and level set fields. 
2. Calculate the geometric properties of the interface (normal and curvature). 
3. Solve the prediction equation (Eq. 21) for the predicted velocity u∗ 

P at the cell 
centers. 

4. Solve the pressure Poisson equation (Eq. 23) for the pressure field P . 
5. Solve the correction equation (Eq. 22) for the final velocity un+1 

P at the cell 
centers. 

6. Advect the interface by solving the advection equations for the characteristic 
function χ and level set function φ. 

7. Reinitialize the level set field. 
8. Stop the simulations if the termination criteria is satisfied, or else repeat the 

process from step 2. 

Computationally, the most expensive step in the above algorithm is solution of the 
pressure Poisson equation which is solved using a preconditioned GMRES method 
[11]. 

4 Results and Discussion 

For a relative performance study of the present PLIC-CLSVOF and WLIC-THINC-
CLSVOF methods, static droplet test for the surface tension model, and two suffi-
ciently different benchmark CmFD problems on dam-break simulation and bubble 
rise are considered. In the dam-break problem involving collapse of a liquid column, 
gravitational force plays the dominating role. Contrarily, in the bubble rise problem, 
both the capillary and gravitational forces dictate the shape of the rising bubble. 

4.1 Static Droplet 

To compare the performance of the surface tension model, standard benchmark test of 
a static drop in equilibrium without any external forces is considered. Parameters of 
the test problem are same as that of Francois et al. [2]. The computational domain is a
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Table 1 Magnitude of 
maximum spurious velocities 
|umax| obtained after one and 
50 time steps. The density 
ratio is 10 and the time step is 

10−3 

T PLIC WLIC-THINC Francois et al

Δt 6.4 × 10−3 9.6 × 10−3 4.87 × 10−3 

50Δt 1.38 × 10−1 2.73 × 10−1 1.63 × 10−1 

square of size 8 having a droplet of radius 2 at the center. Simulations are performed 
using a mesh size of 40× 40. The interface curvature is numerically calculated from 
the LS field. Table 1 depicts the comparison of maximum magnitude of spurious 
velocity computed after one and 50 time steps by both the CLSVOF methods with 
the work of Francois et al. [2]. It is observed from the table that the magnitude of 
spurious velocities obtained from the algebraic CLSVOF method is slightly more 
than the geometric method, although these results are well validated against the work 
of Francois et al. [2]. 

4.2 Dam Break 

In this problem, an initially static square water column confined in the corner of a 
rectangular cavity, as depicted in Fig. 1, collapses under the action of gravitational 
force. The parameters of the problem along with the boundary conditions are chosen 
according to the experimental setup of Martin and Moyce [7],  shown inFig.  1. Water is 
considered as the reference fluid 1 and air as the reference fluid 0. Physical properties 
for this problem (in SI units) are ρ1 = 1000, ρ0 = 1.2, μ1 = 1.139×10−2, and μ0 = 
1.78 × 10−4. An experimental investigation was done by Martin and Moyce [7] to  
measure the temporal evolution of the leading edge distance of the surge front which 
evolves to fill the container as the water column collapses. Simulations are performed 
using a 128 × 32 uniform mesh. The result of both the CLSVOF methods along with 
the experimental values are presented in Fig. 2 for various non-dimensional times, 
T = t 

√
g/a. Here, a is the initial width of the water column and Z is the leading 

edge distance from the left wall of the cavity. As compared to the experimental and 
numerical results in the literature [3, 9, 17], Fig. 2 shows an excellent performance 
of the present CLSVOF methods. Since the PLIC-CLSVOF method incorporates 
a sharp-interface formulation, while the interface is inherently diffused in WLIC-
THINC-CLSVOF method, their performance can be better analyzed in the scenarios 
where the topology of the interface will undergo rapid deformation. This is evident 
in the next test problem.
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Fig. 1 Computational setup 
of the dam-break simulation 
depicting initial 
configuration of the 
interface, size of the domain, 
and the boundary conditions 

Fig. 2 Comparison of 
temporal evolution of the 
leading edge distance 
between present CLSVOF 
methods and existing 
experimental and numerical 
results 

4.3 Buoyant Rise of a Bubble 

A bubble, having a radius of 0.25 and centered at (x, y) = (0.5, 0.5), in an initially 
quiescent medium, is considered here as shown in Fig. 3. The size of the computa-
tional domain and the boundary conditions are also presented in the figure. Physical 
properties for this problem (in SI units) are ρ1 = 1000, ρ0 = 1, μ1 = 10, μ0 = 0.1, 
g = 0.98, and σ = 1.96. Further, the density and viscosity ratio are 1000 and 100, 
respectively, which are large enough for the shape of the bubble to be considered 
within the skirted and dimpled ellipsoidal-cap regimes indicating that breakup may 
occur. Simulations are performed using a 75 × 150 uniform mesh and the results 
are presented in Fig. 4 in terms of the temporal evolution of shape of the bubble 
and compared with the numerical work of Hysing et al. [6]. Contrasting results 
are obtained from the present CLSVOF methods, as can be expected, due to their 
dissimilar treatment of the interface. In the PLIC-CLSVOF method, the breakup of 
the droplet and resulting formation of the satellite drops occur naturally due to the 
sharp treatment of the interface. Consequently, the obtained results validate well with 
the work of Hysing et al. where a similar sharp treatment of the interface was used. 
For the WLIC-THINC-CLSVOF method, a delayed breakup of the droplet is seen in 
the figure since the interface is diffused within three to four mesh cells. This results
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in the formation of filament-like structures which tend to become an integral part of 
the bubble; thus, hampering its shape as it rises upward. To ascertain the efficacy of 
the CLSVOF methods quantitatively, Fig. 5 presents validation of the instantaneous 
rise velocity of the bubble with the work of Hysing et al. [6]. The performance of 
both the CLSVOF methods is in good agreement with the published results. 

Fig. 3 Computational setup of the bubble rise simulation depicting initial configuration of the 
interface, size of the domain, and the boundary conditions 

Fig. 4 Comparison of temporal evolution of the interface using the PLIC-CLSVOF (blue line) and 
WLIC-THINC-CLSVOF (green line) schemes at: (a) t = 1.2; (b)  t = 2.2; (c)  t = 2.6; (d)  t = 3.0. 
Red line represents the work of Hysing et al. [6]
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Fig. 5 Comparison of 
instantaneous rise velocity of 
the bubble between present 
CLSVOF methods and 
Hysing et al. [6] 

5 Conclusions 

Coupled Level Set and Volume Of Fluid (CLSVOF) methods can be broadly catego-
rized into two types: geometric type methods and algebraic type methods. Accurate 
interface construction is a crucial step of the geometric methods which involves 
significant numerical complexity. On the other hand, in an algebraic method the 
interface is numerically diffused within a few mesh cells which makes them rela-
tively straightforward to design and implement. In the present study, a framework of 
both geometric type Piecewise Linear Interface Calculation (PLIC) CLSVOF method 
and algebraic type Weighted Line Interface Calculation-Tangent of the Hyperbola 
for INterface Capturing (WLIC-THINC) CLSVOF method are presented along with 
the numerical technique for solution of the incompressible Navier–Stokes equation 
in a co-located grid using the balanced-force method. Relative performance of the 
two CLSVOF methods is studied on standard two-phase flow benchmark problems: 
dam break and bubble rise. The key observations are as follows. 

• For the dam-break problem, similar results are obtained from both the CLSVOF 
methods, which are in excellent agreement with the existing experimental and 
numerical results. 

• Simulations of the bubble rise problem, however, reveal discernible differences 
between the results; although validation against existing numerical results are 
quite satisfactory. 

• This is attributed to the fact that in the PLIC-CLSVOF method, a sharp interface 
is maintained which can accurately mimic the droplet breakup phenomenon; and 
thus, can capture the dynamics precisely. 

• For the WLIC-THINC-CLSVOF method, the interface is numerically diffused 
across three to four mesh cells causing a delayed breakup of the droplet; and thus, 
degrades the accuracy of the solution.
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Nomenclature 

D Rate of deformation tensor 
F Volume fraction 
g Acceleration due to gravity (ms−2) 
k Interface curvature (ms−1) 
P Piezometric pressure (Nm−2) 
u Velocity vector (ms−1) 
t Time (s) 
β Interface thickness parameter– 
Γ Advected property 
σ Surface tension coefficient (Nm−1) 
ϕ Level set 
χ Characteristic function 
Ω Interface weights 
( ) Volume-averaged quantity 
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