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Abstract. Electro-erosion wear (EEW) is a significant problem in the mold steel
industry, as it can greatly reduce the lifespan of electrodes. This study presents a
machine-learning approach for predicting and modeling electrode and workpiece
wear on an electrical discharge machining (EDM) machine. In the experimental
design, EDM of CuCrZr and Cu electrodes of AISI P20 tool steel was carried
out at different pulse currents and duration levels. In addition, CuCrZr and Cu
electrodes used in the experimentwere cryogenically treated at a predefined degree
for multiple periods and then tempered. This study employed machine learning
algorithms such as decision trees, random forests, and k-nearest neighbors to
model the EEW of cryogenically treated electrodes made of mold steels. The
results were compared according to the coefficient of determination (R2), adjusted
R2, and root mean squared error. As a result, the decision trees outperformed the
other algorithms with 0.99 R2 performance. This study provides valuable insights
into the behavior of EEW in mold steel electrodes and could be used to optimize
the manufacturing process and extend the lifespan of the electrodes.

Keywords: electrical discharge machining · material removal rate · electrode
wear ratio · machine learning

1 Introduction

Electric discharge machining (EDM) is a widely used non-traditional method. The
amount of material removed from the workpiece per unit of time is called the mate-
rial removal rate (MRR). In contrast, the mass loss in the electrode material is referred
to as electrode wear rate (EWR). In an EDM method, improvement is desired in terms
of higher MRR, lower EWR, and better surface quality [1]. EWR is the most important

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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factor in determining the number of electrodes required to achieve the correct size and
dimensions of the desired form. When considering that electrodes are processed by wire
erosion, turning, or milling machines, it is seen that EWR is the most significant factor
affecting electrode costs. Therefore, studies on higher chip removal and lower electrode
wear have gained importance in the EDM process in recent years.

EDMmethod has been applied in recent years with traditional methods and machine
learning studies such as artificial neural networks (ANNs) and soft computing techniques
such as fuzzy logic for predicting output performance parameters such asMRRandEWR
based on optimum processing parameters such as discharge current, pulse duration, and
voltage. In their study investigating the machinability of EDM, Ramaswamy et al. [2]
performed a variance analysis to determine the significance of test parameters on exper-
imental results. In the second phase of their study, researchers identified optimal process
parameters and used regression analysis and ANNs to predict MRR and EWR. Simi-
larly, Sarıkaya and Yılmaz [3] developed a mathematical model based on ANNs that
successfully predicted outputs. In another study, Balasubramaniam et al. [4] used differ-
ent electrode materials, such as copper, brass, and tungsten, for EDM of Al-SiCp metal
matrix composites. MRR, EWR, and circularity (CIR) were considered as performance
metrics in their study. As a result of using artificial intelligence to optimize processing
parameters such as current, pulse duration, and flushing pressure, the most important
parameter was shown to be current, and Cu exhibited the best performance among the
three electrodes. In EDM, the effect of processing parameters such as peak current, pulse
interval, and pulse duration are important for the variation in MRR and EWR. Ong et al.
[5] developed a model based on the prediction of radial basis function neural networks
to predict the MRR and EWR of the EDM process. The researchers used the moth flame
optimization algorithm to determine the optimal processing parameters that maximize
MRR and minimize EWR [5]. Cakir et al. [6] investigated the capacity of adaptive
neuro-fuzzy inference systems, genetic expression programming, and ANNs in predict-
ing EDM performance parameters using experimental data. Arunadevi and Prakash [7]
used artificial intelligence to perform a performance analysis of experimental valueswith
five input parameters to increase the MRR value and reduce surface roughness (SR) in
their study. The model was evaluated using the R-squared value.

Machine learning techniques like electro-erosion wear have become increasingly
popular in modeling and optimizing complex material processing processes. Several
recent studies have examined the relationship between electro-erosionwear andmachine
learning. For example, Ulas et al. [8] used machine learning methods to estimate the
surface roughness of Al7075 aluminum alloy processed with wire electrical discharge
machining (WEDM) using different parameters, such as voltage, pulse-on-time, dielec-
tric pressure, andwire feed rate. They employed LM,W-ELM, SVR, andQ-SVRmodels
to process the samples and estimate the surface roughness values. Similarly, Jatti et al.
[9] investigated the prediction of material removal rate (MRR) using machine learn-
ing algorithms, including supervised machine learning regression and classification-
based approaches. They found that gap current, voltage, and pulse on time were the
most significant parameters affecting MRR. They concluded that the Gradient boosting
regression-based algorithm was the most effective for predicting MRR.
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Meanwhile, Nahak and Gubta [10] reviewed the developments and challenges of
EDM processes in 2019, emphasizing optimizing process parameters for effective and
economical machining. Finally, Cetin et al. [11] experimentally investigated the effect of
cryogenic treatment on the performance of CuCrZr alloy and Cu electrodes during EDM
of AISI P20 tool steel. They found that pulse current was the most effective parameter
in the EDM process and using cryogenically treated electrodes resulted in less wear and
decreased surface roughness values.

These studies have demonstrated the successful use of machine learning techniques
for modeling and optimizing the electro-erosion wear process. However, no studies
have been found on the evaluation of the performance of cryogenically treated and
untreated Cu and CuCrZr electrodes or the use of the artificial neural network (ANN)
predictions for material removal rate (MRR) and electro-erosion wear ratio (EWR).
This study aims to evaluate the performances of cryogenically treated and untreated
CuCrZr and Cu electrodes during the electrical discharge machining (EDM) of AISI
P20 tool steel in terms of EWR and MRR. By comparing the electrodes under different
processing parameters and applying cryogenic treatment in 10 different time intervals
ranging from 1/4 - 24 h, the study aims to contribute to the existing literature. The study
utilizes decision trees, random forests, and k-nearest neighbor algorithms from machine
learning techniques for regression analysis. The best algorithm is determined based on
the results obtained, and comments are developed accordingly.

2 Material and Methods

2.1 Test Materials

In this experimental study, CuCrZr and Cu electrode pieces with a diameter of 10 ×
30 mm were used as tool material. The values of the chemical compositions of CuCrZr
and Cu electrodes are given in Table 1. To observe the effects of CT (Cryogenic Treat-
ment), the electrodes were divided into 11 groups as treated and untreated electrodes.
Cryogenically treated electrodes were treated at −140 °C for 15, 30 min, and 0, 0.25,
0.5, 1, 2, 4, 8, 12, 16, 20, 24 h and then tempered at 175 °C for 1 h. For this study, a total
of 176 experiments were tested.
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Table 1. Chemical composition and some properties of electrode materials
(wt.%)

Material CuCrZr Cu

Chemical
Composition

Elements Cu Cr Zr Cu

(wt.%) Balance 1.00 0.10 100

Fig. 1.
AISI P20
and
Electrode

AISI P20 tool steel, widely used in plastic injection molds, was chosen as the work-
piece material of the experimental study. The diameter 14 × 20 mm AISI P20 material,
tool electrode dimensions, and technical drawings drawn in 3D design programs are as
in Fig. 1. Also, the chemical composition of AISI P20 tool steel is shown in Table 2.

Table 2. Chemical composition of AISI P20 steel (wt.%)

C Si Mn Cr Mo Ni S Fe

0.40 0.25 1.5 1.9 0.2 1.0 0.001 Balance

2.2 EDM Tests

EDM tests were performed at pulse currents of 4, 8, 12, and 16A and pulse times of 25µs
and 50 µs. In addition, the King ZNC K3200 model EDM machine seen in Fig. 2 was
used in the experimental studies. At each parameter change, other processing parameters
were kept constant for all tests.

Experimental conditions and parameters are given in Table 3. During the EDM tests,
Petrofer dielectricum 358 mineral-based oil compatible with electro-erosion processing
methods was used as the dielectric fluid. To obtain accurate values, EDM experiments
were repeated three times for each combination of processing conditions, and the average
values were considered the test result. EDM was performed for 20 min in each of the
176 experiments.
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Fig. 2. EDM machine and control panel

Table 3. Materials and EDM parameters AISI P20 tool steel

Workpiece material AISI P20 tool steel

Electrode materials CuCrZr and Cu

Dielectric fluid Petrofer dielectricum 358 mineral-based oil

Pulse current (A) 4, 8, 12, 16

Pulse-on-time (µs) 25, 50

Pulse-off time (µs) 2.5, 5

Duty factor (%) 90.9

Machining time (min) 20

2.3 Experimental Conditions

EWR and MRR values for Cu and CuCrZr electrodes were calculated considering mass
losses after an EDM process. To calculate the wear rates of the electrodes and the MRR
of the workpieces, samples were weighed before (MBT -Mass Before Testing) and after
(MAT -MassAfter Testing) EDMusing an analytical precision balancewith amaximum
capacity of 250 g and an accuracy of 0.0001 g. EWR and MRR were calculated using
the following equation:

EWR = (MBTelectrode −MATelectrode)

T
(g/min) (1)

MRR = (MBTworkpiece −MATworkpiece)

T
(g/min) (2)

In the above formulas (1) (2), T is the EDM process time. It was applied as T = 20
in the experiments.

The resultswere evaluated in the following headings according to the EWRandMRR
values obtained with the experimental data according to the change of each parameter.

2.4 Machine Learning Algorithms

Decision trees from machine learning algorithms and random forest algorithms will
be tried on the data set where data analysis is performed. Brief information about the
algorithms can be given as follows:
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Decision Trees: Decision trees are a graphical method often used in classification
and regression from machine learning problems. The decision tree sets division rules
by performing branching operations on the dataset to solve the classification problem.
Each branch expresses a decision and has a class tag at the end. The most important
advantage of decision trees is that they are easy to understand and visualize. It can also
work with continuous or categorical data.

Random Forest: Popular machine learning algorithm Random Forest is a subset
of ensemble learning. It is well renowned for its capacity to manage huge and high-
dimensional datasets and is utilized for classification and regression issues. It builds
numerous decision trees and then combines their outputs. This procedure, known as an
ensemble, aids in decreasing overfitting and improving the model’s overall accuracy.
The Random Forest algorithm’s ability to randomly choose a subset of features for each
decision tree is the secret to its effectiveness. Random selection guarantees each tree’s
uniqueness, lessening the association between the trees. The results from all the trees are
combined to make the final projection. The Random Forest technique has established
itself as a standard in many data science applications because it provides more durable
and trustworthy models. The system also offers feature importance scores, which help
determine which elements in the data are most crucial.

k-Nearest Neighbors: The non-parametric, instance-based k-Nearest Neighbors (k-
NN) technique is used in machine learning. It is frequently employed for classification
and regression issues and is particularly helpful when the data cannot be separated
linearly. A fresh sample is compared to its k closest neighbors in the training data as
part of the algorithm’s operation, and a prediction is then made based on the dominant
class or average value of those neighbors. The k-NN algorithm’s simplicity and ease
of use are its key benefits. It can handle continuous and categorical features and does
not require any assumptions about how the data are distributed. However, the choice
of k significantly impacts how well it performs, and it might be sensitive to noise or
irrelevant elements in the data. Numerous methods, including feature scaling, feature
selection, and distance metric selection, have been developed to solve these problems.
The approach can also be computationally expensive for large datasets because it needs
to calculate the distances between all samples at the time of prediction. Nevertheless,
due to its ease of use and adaptability, k-NN continues to be a popular option for many
real-world applications.

3 Experimental Results and Comparisons

The data set contains 176 experiments performed in the Sakarya University of Applied
Sciences laboratory. The data set has variables such as the type of electrode material,
cryogenic process conditions, ampere, and pulse. The output variables affected by the
input variables are determined as electrode and workpiece wear. An example of the
dataset is shared in Table 4.

The relationships between the variables will be examined using data visualization
techniques to understand the data set better. The relationship between electrode and
workpiecewearwith the change ofCu andCuCrZrmaterials from the electrodematerials
is illustrated in Fig. 3. Accordingly, it should be noted that the Cu material has relatively
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Table 4. Sample data from experiments

Test
number

Electrode
material

Cryogenic
process
conditions
(Hour)

Current
(A)

Pulse durations
(millisecond)

Electrode
wear
(mg/min)

Workpiece
wear
(mg/min)

95 CuCrZr 12 4 25 1.925 46.685

121 CuCrZr 0 8 50 3.68 116.98

26 Cu 2 8 25 6.125 117.435

148 CuCrZr 4 12 50 16.435 208.69

172 CuCrZr 12 16 50 51.63 276.855

53 Cu 20 12 25 22.95 199.065

18 Cu 12 4 50 0.58 41.17

higher wear than CuCrZr. In the case of using the Cu material, the average workpiece
wear was 159.37, while the wear value was calculated as 149.93 with the use of CuCrZr
material. Similarly, in electrode wear, the CuCrZr average was 16.79 while the CuCrZr
was 16.15. Therefore, it has been observed that the effect of changing the material used
on the workpiece is greater than electrode wear.

Fig. 3. Electrode and workpiece wear vs. electrode material

Graphs showing changes up to 24 levels are given in Fig. 4 (a-b-c-d) to examine the
relationships between abrasions on both the workpiece and the electrode obtained by
changing the cryogenic process conditions.Accordingly, there is no significant difference
between the wear of the workpiece under different processing conditions. It should only
be noted that under the process conditions taken as 12.0, CuCrZr causes significantly
less workpiece wear than the Cu material. No significant differences were observed in
other conditions. When the wear of the workpiece is examined, it is observed that the
wear increases relatively with the increase in the cryogenic process conditions.

Ampere values have a direct effect on wear. Increasing the ampere impacts both
electrode material and workpiece wear. The correlation rate between the ampere and the
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Fig. 4. Electrode and workpiece wear vs. cryogenic process control a and c) boxplots, b and d)
scatter plots

electrode material wear is 0.94. Moreover, the correlation between the workpiece and
the workpiece is 0.98. As the correlation coefficient shows, it has been observed that
wear varies highly with ampere changes (see Fig. 5).

Fig. 5. Ampere vs. A) electrode wear and B) workpiece wear

Thanks to the correlation heat map, an impression of the direction and severity of
the relationships between the variables can be obtained. In the heat map shown in Fig. 6,
it was determined that there was a high correlation between the ampere variable and the
abrasions. In addition, the correlations between the abrasions reach a value of 0.93.

When a regression study is performed for a more detailed analysis of correlation
relations, the relationship between abrasions according to wear types at p < 0.05 sig-
nificance level and electrode material types used is revealed in Fig. 7. Accordingly, it
can be said that the highest correlation is between the material Cu and the workpiece
wear. At the same time, a very high correlation was obtained in the CuCrZr alloy. Only
when the electrode material is CuCrZr can it be said that electrode wear is less affected
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Fig. 6. Correlation heatmap for variables

as the amperage increases. The relationships revealed in regression analysis are shown
in Fig. 7.

Finally, this study examined the relationships between the number of strokes and
abrasions. No significant changes were observed between the change in the number of
strokes and the abrasions according to the ampere value (see Fig. 8). The increase in
stroke time may cause a slight decrease in EWR and MRR.

The data set is divided into 80% training and 20% test set. Then, the one-hot encoding
transformation was applied to the data set due to the categorical data type of input
variables. This study applied the decision trees with high learning performance for both
workpiece and electrode wear. The resulting performance values for the entire dataset
are presented in Table 5. Accordingly, it has been shown that the decision trees model
gives better results than other algorithms. Although decision trees and random forest
algorithms give close results, the k-nearest neighbors algorithm performs poorer.

The regression plot of the test set for the wear on the electrode material is given in
Fig. 9.
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Fig. 7. Regression plots

Fig. 8. Pulse durations vs. A) electrode B) workpiece wears
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Table 5. Comparisons of machine learning algorithm performances

Model Adjusted R-Squared R-Squared RMSE CPU

Electrode Workpiece Electrode Workpiece Electrode Workpiece Electrode Workpiece

Decision Tree 0.9891 0.9612 0.9907 0.9668 1.3520 12.7681 0.0240 0.2059

Random Forest 0.9806 0.9556 0.9834 0.9620 1.8028 13.6568 0.1595 0.0156

k-Nearest Neighbors 0.8971 0.9186 0.9118 0.9302 4.1535 18.5029 0.0210 0.0201

Fig. 9. Performance results for A) electrode wear test set, B) train set, C) workpiece wear test
set, D) train set

4 Conclusions

The present experimental study has provided insights into the performance of cryogeni-
cally treated and untreated CuCrZr and Cu electrodes used in the EWR and MRR of
AISI P20 tool steel. By comparing the performance of treated and untreated electrodes
at different time intervals, we have shown that cryogenic treatment can improve the
performance of CuCrZr electrodes in terms of EWRwhen the treatment time is less than
8 h. However, when the treatment time exceeds 8 h, the EWR performance of CuCrZr
electrodes decreases significantly. On the other hand, the cryogenic treatment does not
significantly impact the performance of Cu electrodes in terms of electrode wear.

Moreover, our findings have shown that changes in current values of 4, 8, 12, and 16
lead to a significant increase in EWR and MRR values for both types of electrodes. We
have also demonstrated that decision trees, random forest, and k-nearest neighbors algo-
rithms from machine learning techniques can be adapted for regression analysis, which
can be useful for predicting the performance of electrodes in EDM processing. Overall,
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our study contributes to the literature on the use of cryogenic treatment and machine
learning techniques for improving the performance of electrodes in EDM processing.
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