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Abstract. Hands are the most used parts of the limbs while perform-
ing complex and routine tasks in our daily life. Today, it is an important
requirement to determine the user’s intention based on muscle activity in
exoskeletons and prostheses developed for individuals with limited mobil-
ity in their hands due to traumatic, neurologic injuries, stroke etc. In this
study, 5-finger movements were classified using surface electromyography
(EMG) signals. The signals were acquired from forearm via the 8-channel
Myo Gesture Control Armband. EMG signals from three participants
were analyzed for the movements of each finger, and the activity lev-
els of the channels were compared according to the movements. Follow-
ing, movement classification was performed using the Gaussian mixture
network, a statistical artificial neural network model. According to the
experimental results, it was seen that the model achieved an accuracy of
73.3% in finger movement classification.

Keywords: finger movement classification · sEMG · Gaussian Mixture
Model · artificial neural network

1 Introduction

Hands are used the most in daily life and are exposed to the biggest strain and
trauma. Complete or partial loss of function in the hands may occur due to
ageing, traumatic injuries and neurologic diseases. These movement limitations
are tried to be eliminated as much as possible with various surgical interventions
and rehabilitation processes. In amputation cases, solutions are found for the
problems of patients with individually designed prostheses. Evaluation of muscle
activities is extremely important both in treatment processes and in prosthesis
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applications. Measuring muscle contraction levels according to finger movements
during hand rehabilitation is important in determining target position and force
values. Especially in robotic rehabilitation, while the control parameters are
determined by the doctor according to the patient’s condition or automatically
selected by the system, the evaluation of muscle contraction levels and providing
optimum contraction of the muscles increase the effectiveness of the treatment.
In exoskeleton robots, which are also used for therapeutic purposes or as motion
supporters, movement classification is made with the signals received from the
muscles, and the limbs are moved with various actuation systems. In upper
limb prosthesis applications, the intended motion of the patient is determined
by the muscle contraction signals received from the forearm or upper arm, and
motors connected to the prosthetic fingers are moved accordingly. In order to
achieve high success in these applications, it is necessary to determine the muscles
and activity levels in each finger movement separately. After finding the critical
features in the raw EMG signal, finger movements can be detected from muscle
contraction levels with various classification algorithms [1].

There is a bundle of studies in the literature on movement classification from
muscle contraction levels. These studies differ in terms of the target limb, the
number of channels and the classification method preferred. While the num-
ber of channels is one of the most important parameters affecting classification
accuracy, it creates a negative effect in terms of cost and complexity [2]. In the
study conducted by Caesarendra et al. [3], the movement of the five fingers was
tried to be estimated using the adaptive neuro-fuzzy input system method over
an 8-channel EMG. In the system where the general classification accuracy is
72%, still, the accuracy of the thumb movement has a lower value of 20%. In the
study conducted by Lee et al. [4], the signals received from the three-channel
EMG device and nine different hand movements were classified with ANN-based
classifiers and the results were compared. In the study conducted with 10 dif-
ferent subjects, accuracy values ranging from 54.4% to 67.5% were obtained.
Bhattachargee et al. [5] used the dataset containing EMG data of 10 different
hand movements to classify movements with the Gradient Boosting method. In
this study, where an accuracy value of 98.5% was obtained, no experiment was
done with real subjects. In the study published by Tuncer et al. [6], using the
EMG dataset containing 15 different hand movements, classification was made
with the multi-centred binary pattern method and an accuracy value of 99% was
obtained. However, when the results are analysed in detail, it is seen that lower
accuracy values are obtained in real-time motion classification applications with
subjects.

In this study, activity levels of forearm muscles were determined during five
different finger movements. Using the Gaussian Mixture Model developed by
Tsuji et al. [7], the signals received from the 8-channel EMG device and finger
movements were classified. It was tested with three participants and an average
accuracy of 73.3% was obtained.

The paper is organized as follows. Section 2 contains a brief discussion of
the EMG device, signal pre-processing steps and details of the Log-Linearized
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Gaussian Mixture Network (LLGMN) model. Section 3 presents the experimen-
tal results along with relevant discussion. Lastly, Sect. 4 contains concluding
remarks and some recommendations regarding future developments.

2 Material and Method

In this study, the finger movements are detected using muscle contraction signals
from the forearm. LLGMN model [7] is used for the movement classification
process. MYO Armband device was used to measure muscle contraction levels
(Fig. 1).

Fig. 1. MYO Armband channels and placement on the arm

Raw signals were received through the 8-channel electrodes on the MYO
Armband and subjected to various pre-processing steps. In the first step, the
raw EMG signals from the 8 electrodes were amplified, rectified and filtered,
respectively. Since the amplitude of the raw EMG signals was very low; first,
the 20 dB amplification was performed. Then, the values in negative alter-
nance were converted into positive by rectification. Finally, filtering was done
to eliminate unwanted noise in the EMG signal. For this, a 2nd order low-pass
Butterworth filter was used. The corner frequency of the filter was chosen as
3 Hz. These filtered signals were sampled. The sampled signals were identified as
EMGi(t)(i = 1, 2, 3...8). The EMGi(t) parameter was normalized so that the
sum of the signals from the 8 channel electrodes was 1. The normalized EMG
signal was defined in Eq. 1.

EMG′
i(t) =

EMGi(t) − EMGrest
i

∑L
i=1(EMGi(t) − EMGrest

i )
(1)

Here, EMG′
i(t) represents normalised EMG signals, EMGrest

i represents the
mean value of EMGi(t) in the rest position of the relevant limb. The detailed
diagram for the processing of EMG signals was given in Fig. 2.
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Fig. 2. EMG signal processing steps

In order to perform the movement classification, the muscular contraction
level (MCL) must be calculated using the processed EMG signals. The equation
used for the MCL calculation is given in Eq. 2.

MCL(t) =
1
2

N∑

n=1

(
EMGn(t) − EMGrest

n

EMGmax
n − EMGrest

n

) (2)

Here, EMGrest
n and EMGmax

n represent the muscular contraction level at
rest and at maximum contraction, respectively. n is the number of channels (n =
8). For rest and maximum contraction, a 30 kg adjustable hand grip strengthener
was used. Pictures taken during maximum contraction and rest are shown in
Fig. 3.

Fig. 3. EMG measurement at maximum contraction and rest position

After signal processing, normalization and MCL calculation, motion clas-
sification was performed. Motion classification is the detection of human limb
motion using EMG signals. After the signal processing stages, the data was given
to LLGMN, a statistical artificial neural network model, where motion classifica-
tion was performed. With the movement information obtained at the output of
the network, it was decided which finger to move. The structure of the LLGMN
network is demonstrated in Fig. 4.
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Fig. 4. LLGMN network structure

3 Results and Discussion

EMG signals obtained via the defined system were analysed for the movement of
each finger, and which channels were more active in which movement, and move-
ments that could affect each other and negatively affect the result of movement
classification were determined. Data collection was done with 3 healthy subjects
with the permission of the Istanbul University-Cerrahpasa Ethical Committee
(ID: E-83045809). The exclusion criteria were having history of upper limb frac-
ture, upper limb nerve injury, upper limb peripheral neurophaty, diabetes mel-
litus, hypo or hyperthyroidism, cervical radiculopathy, rheumatologic diseases,
and kidney or liver failure. The personal information of the subjects is given in
Table 1.

Table 1. Personal information of the subjects

Subject A Subject B Subject C

Gender Male Male Male

Age (year) 34 26 21

Height (cm) 175 170 180

Weight (kg) 78 72 69

Dominant Hand Right Right Right

The 8-channel EMG signals from Subject A for each finger movement are
given in Figs. 5, 6, 7, 8 and 9.

When the figures were examined, it was seen that channels 3, 4 and 8 were
dominant in thumb movement. Also, channels 3, 4 and 8 are active in the index
finger, middle finger and ring finger movements, and channel 7 was also active
in addition to these. In the ring finger movement, channels 7 and 8 seemed more
dominant than the other fingers. In addition to channels 3, 4 and 8, channels 1,
2 and 5 were also dominant in the little finger movement. Root mean square-
RMS values of EMG signals from three subjects were calculated and averaged.
Thus, the activity levels of 8-channels were expressed numerically in each finger
movement. The results are in Table 2.
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Fig. 5. Muscle contraction levels during thumb flexion and extension movement

Fig. 6. Muscle contraction levels during index finger flexion and extension movement
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Fig. 7. Muscle contraction levels during middle finger flexion and extension movement

Fig. 8. Muscle contraction levels during ring finger flexion and extension movement
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Fig. 9. Muscle contraction levels during little finger flexion and extension movement

Table 2. RMS values of EMG signals according to finger movements

Thumb Index Finger Middle Finger Ring Finger Little Finger

Channel 1 0,0222 0,0332 0,0178 0,0329 0,0528

Channel 2 0,0546 0,0338 0,0494 0,0352 0,0816

Channel 3 0,1235 0,1337 0,1403 0,1557 0,1724

Channel 4 0,1624 0,1833 0,1186 0,1603 0,1432

Channel 5 0,0476 0,0327 0,0310 0,0333 0,0517

Channel 6 0,0284 0,0216 0,0259 0,0245 0,0251

Channel 7 0,0254 0,0588 0,0534 0,0928 0,0308

Channel 8 0,0579 0,0654 0,0457 0,1298 0,0761

In order to determine the movement classification performance of the devel-
oped system, subjects were asked to perform some targeted experiments. In the
test process, the subjects were informed about the project and the operation of
the system was explained. The MYO Armband was placed on the right forearm.
Each subject was asked to make 20 independent finger movements randomly.
It was ensured that each finger movement was applied for 3 s, waiting for 10 s
between movements. The timing was performed by the subjects themselves. Dur-
ing this test, the output of the LLGMN model for each movement of the subject
was noted. It was planned to record the movements of the subject with the flex
sensor, but it was not applied since it was thought that attaching any element
(sensor, glove, etc.) to the subject’s hand could affect the movement and muscle
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contractions [8,9], and it was recorded by observation. Accordingly, the move-
ment classification results obtained from the three subjects are given in Table 3.
The results shown in red in the table indicate the movements that the system
detected incorrectly.

Table 3. Movement classification test resultsm

Subject A Subject B Subject C

Movement Output Movement Output Movement Output

1 Ring Ring Thumb Thumb Thumb Thumb

2 Index Middle Little Little Middle Middle

3 Thumb Thumb Middle Index Little Little

4 Thumb Index Index Index Thumb Thumb

5 Middle Middle Thumb Thumb Index Middle

6 Little Little Ring Ring Ring Ring

7 Ring Ring Index Middle Middle Middle

8 Index Middle Little Little Little Little

9 Thumb Thumb Thumb Thumb Thumb Middle

10 Little Little Middle Middle Middle Middle

11 Little Index Ring Ring Little Little

12 Thumb Thumb Thumb Thumb Thumb Thumb

13 Index Index Little Little Index Index

14 Middle Middle Index Index Middle Middle

15 Ring Little Thumb Thumb Thumb Index

16 Little Little Ring Ring Ring Ring

17 Middle Middle Little Ring Little Little

18 Thumb Middle Index Index Middle Ring

19 Index Middle Middle Middle Ring Ring

20 Little Little Thumb Middle Index Middle

When the movement classification results in Table 3 were examined, it
revealed 13 correct, 7 wrong results for Subject A; 16 correct, 4 wrong results
for Subject B; 15 correct and 5 wrong results for Subject C. When the test
performance checked according to the movements for all subjects, 11 correct,
5 incorrect results for thumb; 5 correct, 6 incorrect results for index finger; 9
correct, 3 incorrect results for middle finger; 8 correct, 1 incorrect results for
ring finger and 11 correct, 1 incorrect results for little finger has been obtained.
When the results were examined according to the movements, it was seen that
the most incorrect output was in the index finger. The most incorrect results for
the index finger were given inappropriately as the middle finger. The reason for
this can be shown that the dominant channel numbers in Table 2 were similar
for the index and middle fingers. The most successful results were obtained for
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the little finger. Again, when Table 2 was examined, it was seen that the most
distinctive movement according to EMG channels was in the little finger. The
same was true for the ring finger. Accordingly, the similarity of dominant signals
in the EMG channels affected the results of the LLGMN model. Similar move-
ments could be confused with each other. As a solution, the number of channels
should be increased, and different muscles should be evaluated. When the overall
performance of the system regarding motion classification was calculated, it was
seen that an accuracy rate of 73.3% was obtained.

4 Conclusion

In this study, EMG signals from the forearm were examined according to different
finger movements, and the dominant muscle groups in each finger movement were
determined and compared. By measuring muscular contraction levels, movement
classification of the five fingers of the hand was made. According to the results
obtained in the experiments with three subjects, it was seen that the system
achieved an accuracy rate of 73.3% in the relevant classification. A high accuracy
rate could not be obtained in the classification of index finger movements due
to the nonlinearity of the human musculature, EMG measurements being made
from the forearm, and the inability to differentiate the muscle groups responsible
for the index and middle finger movements by the current system. In the next
study, measurements can be taken from points close to the hand by increasing
the number of EMG channels in order to increase the accuracy of movement
classification of the index finger. The classifier results have a big potential to be
transferred to an exoskeleton mechanism and used for therapeutic purposes at
the clinical site.
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