
Remaining Useful Life Prediction of Machinery
Equipment via Deep Learning Approach Based

on Separable CNN and Bi-LSTM
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Abstract. Predictive maintenance occupies a significant role to drop the opera-
tion and maintenance costs in production systems. Remaining useful life (RUL)
prediction is one of the most preferred tasks in predictive maintenance decisions.
Recently, deep learning techniques are extensively employed to accurately and
effectively predict remaining useful life (RUL) by examining the past deterioration
data of machinery and equipment failures. In this study, a deep learning approach
that includes multiple separable convolutional neural networks (CNN), a bidi-
rectional long short-term memory (Bi-LSTM) and fully-connected layers (FCL)
are proposed to ensure more effective predictive maintenance planning. Separa-
ble CNN layers are applied to learn the nonlinear and sophisticated dependencies
from the raw degradation data while the Bi-LSTM layer is employed to capture
the long-short temporal characteristics. Besides, the dropout method and L2 reg-
ularization are used in the training stage of the proposed deep learning approach
to achieve more accurate learning. The effectiveness of the proposed approach is
verified by the popular FEMTO-bearing dataset presented by NASA. Finally, it is
aimed that the experimental results provide better prognostic prediction compared
with the benchmark models.

Keywords: Predictive maintenance · deep learning · prognostic prediction ·
separable convolution

1 Introduction

Maintenance of machine equipment is of paramount importance in the industrial and
manufacturing sectors, as it directly impacts the efficiency, productivity, and profitability
of an organization. Through the implementation of regular and systematic maintenance
practices, machinery and equipment can operate at their optimal performance levels,
reducing downtime and minimizing the risk of unexpected breakdowns [1].

Predictive maintenance is an advanced technology-based approach that focuses on
predicting the future health and performance of equipment or systems, as well as detect-
ing and diagnosing faults and failures in real-time [2]. It is an integrated process that
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involves the collection, analysis, and interpretation of data from various sources, such
as sensors, diagnostics, and modelling, to provide insights into the condition of equip-
ment or systems. Predictive maintenance is a proactive approach to predicting the future
performance and health of a system, such as a machine, based on real-time data analy-
sis. This approach involves the use of sensors, data analytics, and machine learning to
monitor the health of a system and predict when maintenance is needed, which allows
maintenance personnel to take corrective action before a failure occurs. The goal of
predictive maintenance is to improve the reliability, availability, and safety of systems
by detecting and diagnosing problems early before they result in downtime or failure,
which can significantly reduce costs and increase efficiency [3].

Traditional predictive maintenance techniques rely on statistical and machine learn-
ing algorithms to analyze historical and real-time data to predict equipment failures
and recommend maintenance actions. However, these techniques can be limited by the
complexity and variability of data, which can make it difficult to identify patterns and
relationships. Deep learning can overcome these limitations by automatically discover-
ing patterns and relationships in complex data sets, including data from sensors, logs,
and other sources. By training deep neural networks on large data sets, Deep learning
algorithms can learn to identify patterns and relationships that are not easily detected
by traditional machine learning techniques. This can lead to more accurate predictions
of equipment failures and better recommendations for maintenance activities. Another
advantage of deep learning is its ability to adapt to changing conditions. These algo-
rithms can learn from new data as it becomes available, allowing them to adapt to
changes in equipment performance and environmental conditions. This can help ensure
that predictive models remain accurate and effective over time.

Predicting impending failure and estimating remaining useful life (RUL) is essential
to avoid abrupt breakdown and schedule maintenance [4]. Increasing the accuracy of
RUL prediction depends on determining the fundamental relationship between bear-
ing deterioration progression and the current state of health. Therefore, the relation-
ship between the two is also very important. To determine this relationship, effective
feature compression and optimum feature selection are required. Similarly, it is diffi-
cult to determine a failure threshold since the health indicators of different machines
are often different at the time of a failure [5]. Shen and Tang [3] proposed a novel
data-driven method to address the challenge of data redundancy and initial prediction
time in RUL prediction. This method involves extracting time-frequency features of
vibration signals, constructing a nonlinear degradation indicator, and applying an atten-
tion mechanism called Multi-Head Attention Bidirectional-Long-Short-Term-Memory
(MHA-BiLSTM). In the model proposed by Jiang et al. [6], a convolutional neural
network (CNN) and an attention-based long short-term memory (LSTM) are used to
partition a time series into multiple channels and improve performance by different
deep learning approaches. Ren et al. [7] introduced a new method for the prediction of
bearing RUL based on deep convolution neural network (CNN) and a new feature extrac-
tionmethod called the spectrum-principal-energy-vector. Yang et al. [8] addressed a new
deep learning-based approach for predicting the remaining useful life (RUL) of rolling
bearings based on long-short termmemory (LSTM)with uncertainty quantification. The
proposed method includes a fusion metric and an improved dropout method based on
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nonparametric kernel density to accurately estimate the RUL. Gupta et al. [9] addressed
a deep learning approach for the real-time condition-based monitoring of bearings. A
CNN-BILSTM model with attention mechanism for predicting an automatic RUL of
bearings is developed by Xu et al. [10].

Furthermore, Sun et al. [11] presented a hybrid deep learning-based technique com-
bining the convolutional neural network (CNN) and long short-term memory (LSTM)
network to predict the short-term degradation of a fuel cell system used for commercial
vehicles. Chang et al. [12] developed a LSTM network RUL prediction algorithm that
is based on multi-layer grid search (MLGS) optimization, which integrates feature data
and optimizes network parameters to ensure accuracy and effectively predict the non-
stationary degradation of the bearing. A new deep learning framework called MSWR-
LRCN for predicting the RUL of rolling bearings is presented by Chen et al. [13]. The
framework incorporates an attention mechanism, a dual-path long-term recurrent con-
volutional network, and polynomial fitting to improve the RUL prediction accuracy. The
DSCN proposed byWang et al. [14] directly takes monitoring data acquired by different
sensors as inputs, automatically learns high-level representations through separable con-
volutional building blocks, and estimates RUL through a fully-connected output layer.
A hybrid approach based on deep order-wavelet convolutional variational autoencoder
and a gray wolf optimizer for RUL prediction is proposed by Yan et al. [15].

In this research, a deep learning approach includingmultiple separable convolutional
neural networks (CNNs), a bidirectional long short-term memory (Bi-LSTM) and fully
connected layers (FCL) is adopted to accurately and efficiently estimate the remaining
useful life (RUL) and enable more effective predictive maintenance planning. The sepa-
rable CNN layers are deployed to learn non-linear and complex dependencies from raw
distortion data, while the Bi-LSTM layer is used to capture long-short temporal features.
Moreover, the dropout method and L2 regularization are used in the training phase of the
proposed deep learning approach to achieve more accurate learning. The performance
of the proposed approach is validated on the popular FEMTO Bearing dataset provided
by NASA.

The organization of the research is as follows. Section 2 describes the technical
background of the proposed approach for RUL prediction of machinery equipment via
deep learning approach. In Sect. 3, the experimental setting and results are presented.
Lastly, the conclusion is drawn in Sect. 4.

2 Materials and Method

In the proposed deep learning-based approach, separable CNN networks, Bi-LSTM,
attention mechanism and full-connected layers are used to learn spatial-temporal and
complex features in historical data of deterioration progressions. Detailed information
about the deep learning model is presented below.

2.1 Convolution Neural Network (CNN)

Convolutional Neural Network (CNN) is a class of deep learning algorithms widely
used to learn highly representative features from multi-sensor data. Recently, it has
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been used in image recognition, natural language processing, signal processing, and
object detection [16]. The architecture of the CNN consists of multiple layers, including
convolutional and pooling layers. The convolutional layers extract features from the
input data by convolving filters over it, while the pooling layers reduce the features and
reduce the number of parameters [17]. The convolution process is formulated as follows:

fi = δ(wf ⊗ xi + bf ) (1)

In the above formula, fi stands for the features extracted by CNN, wf for the kernel
weights, bf for the bias parameters and δ for the activation function. In addition, the
operator ⊗ covers the retrieval process.

2.2 Separable Convolution Neural Network

Deeply separable convolution, also called separable convolution, aims to efficiently
extract temporal and cross-channel relationships from different sensor data. Deeply sep-
arable convolutions have been widely applied in different fields because they reduce the
computation time and the number of network parameters and avoid unnecessary learn-
ing correlations [18]. Unlike the traditional convolutional network, the depth separable
convolution consists of two parts, including depth convolution and point convolution,
as shown in Fig. 1. After deep convolution, the number of input channels remains the
same [19].

Fig. 1. Separable convolution network.

2.3 Bidirectional LSTM

LSTM uses a memory cell, an input gate, an output gate and a forget gate to control
the flow of information through the network. The memory cell allows the network to
selectively remember or forget information, while the gates help regulate the flow of
information. In this study, unlike the traditional LSTM, bidirectional LSTM is used.
Traditional LSTM can only utilize previous data for sequential input data. In other
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words, no future data of the sequential data are taken into account in the estimation of
the current state. Bidirectional LSTM, on the other hand, utilizes the previous and future
state of time series data simultaneously [20]. The final output of the network is obtained
by combining the two hidden layers and can be calculated as follows:
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In the above equations,
−→
h t and

←−
h t represent the state information in the forward

and backward layers, respectively. The operator τ(·) represents the LSTM processing
steps, while g(·) is the activation function.

Fig. 2. General structure of the proposed approach.

The input data of the proposed approach is two-dimensional,wt×ft .wt, represents the
time windows in the input data and ft represents the predetermined number of features.
The input data is first sent to two separable CNN networks with different kernel sizes.
Through this process, it is planned to learn the complex and non-linear features in the
input data. Then, the output of the CNN networks will be used by the self-attention
mechanism. From the complex features and discriminative information to be obtained
by CNN networks and attention mechanism, temporal dependencies will be extracted
by Bi-LSTM network. Finally, the extracted features will be used by full-layer networks
to predict the remaining lifetimes. Figure 2 shows the general structure of the proposed
deep learning-based approach.
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3 Experimental Setting and Results

3.1 Dataset

In this paper, we consider the FEMTO bearing dataset, which is widely used in the lit-
erature to predict the remaining life of machines and to evaluate the effectiveness of the
proposed deep learning approach. The FEMTO dataset was collected by the PRONOS-
TIA test rig andmade publicly available for the IEEEPHM2012prognostics competition
[21]. The test rig consists mainly of an induction motor, a shaft, a speed controller, an
assembly of two rollers and tested bearings. PRONOSTIA provides accelerated degra-
dation of the bearings under three different operating conditions, and a total of up to
seventeen failure operating datasets are provided, six training datasets and eleven test
datasets.

3.2 Experimental Setting

The presented bearing RUL prediction approach deployed two separable CNN layers
with kernel sizes of 5 and 3 as the first network component. The filter sizes of separable
CNNs are set to 16 and 32, respectively. In addition, a Bi-LSTM with 16 units and two
fully-connected layers with 32 and 1 units are used to accurately predict the bearing
RUL. The dot product attention layer is adopted as the attention mechanism in the
framework. To reduce the overfitting problem, a dropout method with a rate of 0.3 and
an L2 regularization technique with a rate of 1e-4 are implemented. Mean Square Error
(MSE) is handled as the loss function in this framework. The loss function minimization
uses the Adam algorithm with a learning rate of 0.001.

A DNN with two fully-connected layers are used to verify the RUL prediction per-
formance of the proposed method. Root mean square error (RMSE) is adopted as the
assessment criterion. The experiments are carried out by means of Python v3.8.5 and
TensorFlow v2.2.0.

3.3 Results

This section analysis the results of the proposed bearing RUL prediction approach based
on deep learning by comparing with DNN benchmark. As an initial evaluation, the
training loss curves of the proposed approach and DNN method are illustrated in Fig. 3.
Considering the starting epochs, it is seen that the training loss of each model in the last
epochs is at a low level. Therefore, the proposed framework and DNN produced less
training loss at the end of the training period.
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Fig. 3. Training loss curve derived by various techniques.

In this study, the effect of various time window sizes on the prediction accuracy of
the proposed approach has been analyzed. In order to predict RUL of the bearings, the
time window size is adjusted to 8, 16, and 32, respectively. Correspondingly, the box
plots of the MAE score of the Bearing1_3 are demonstrated in Fig. 4. From this box
plot, it is observed that MAE score of the proposed method at 16 gives better results
compared with the different time window sizes. It was seen that both the mean and the
variability of the MAE value were lower. The time window size in RUL prediction of
bearings is set to 16 based on this result.

Fig. 4. Box plot of MAE scores under various time window sizes.

In Figs. 5(a) and (b), theRULprediction results of the proposed andDNNapproaches
are compared with the actual RUL values of the Bearing1_3. In Fig. 5(a), it can be stated
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that, in spite of the local variations, the general pattern of degradation of the bearings
can be represented by the proposed method. Moreover, compared to DNN method, the
predictions of the proposed approach are very close to the actual values. On the other
hand, it can be seen in both graphs that there is an increase in fluctuations towards the
end of the time series.

Fig. 5. RUL prediction results of the different methods.

Furthermore, Table 1 reported the comparison of results obtained by the proposed
and DNN methods in terms of RMSE and MAE scores. According to these RMSE and
MAEvalues, the proposedmethod providesmore effective prediction performance in the
Bearing1_3, Bearing2_7, and Bearing3_3 compared DNN method. For other bearings,
DNN is better. In general, the proposed framework for RUL prediction is able to capture
the degradation behavior of the bearings, but an effective hyper-parameter tuning is
needed for better results.
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Table 1. Comparison of the prediction errors of different methods.

Testing Bearing Proposed DNN

RMSE MAE RMSE MAE

Bearing1_3 9.61 7.28 12.34 10.72

Bearing2_3 41.18 33.96 39.81 34.4

Bearing2_5 46.85 37.17 42.58 33.96

Bearing2_7 16.9 13.3 18.05 14.86

Bearing3_3 13.35 10.58 14.45 11.22

4 Conclusion

In this research, with the aim of prediction RUL using FEMTO bearing dataset, a hybrid
approach based on deep learning has been introduced. To extract the effective patterns
from the raw degradation data, the introduced framework consists of the combination of
two separable CNN layers, a Bi-LSTM layer and the fully connected layers. Compar-
isons with the DNN model, was performed to evaluate the effectiveness of the proposed
approach. Taking into account the experimental results, although the presented app-
roach gives remarkable results for bearing prognostics, hyperparameter tuning with a
meta-heuristic algorithm is required for more effective results.
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