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Abstract 

A family of signalling proteins called sirtuins is involved in the control of 
metabolism. The sirtuin family of NAD+-dependent protein lysine deacylases 
controls a range of physiological processes, including stress reactions and energy 
metabolism. For ageing-related illnesses such type 2 diabetes, inflammatory 
diseases, gene repression, metabolic regulation, apoptosis and cell survival, 
DNA repair, and neurodegenerative disorders, the human sirtuin isoforms (1–7) 
are thought to be promising therapeutic targets. The search for small compounds 
that alter the activity of sirtuins is becoming more and more popular since it may 
have positive implications on treating human ailments. Here, we discussed the 
sirtuin synthesis, biological importance, potent and specific pharmacological 
sirtuin activators and inhibitors, isoforms, and the current status of sirtuin-
targeted therapeutic research. The rationale behind continued medication devel-
opment is based on the progressive understanding of the sirtuin modulation 
processes by such compounds. 
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15.1 Introduction 

Sirtuins are existing in both prokaryotes and eukaryotes, which are NAD+-dependent 
mono-ADP ribosylases and protein lysine deacylases. The sirtuin family in living 
things consists of seven isoforms, each with a unique subcellular location and 
biological functions (Alvarez et al. 2011; Fiorentino et al. 2022b). Sirtuins have 
established cumulative consideration in the past couple of decades specified their 
vital roles in a range of biological processes, including cytodifferentiation, transcrip-
tional control, cell cycle progression, apoptosis, swelling, breakdown, brain-related 
and heart physiology, and cancer. Thus, it has been noted that sirtuin activity 
regulation represents a prospective therapeutic approach for several illness 
(Fiorentino et al. 2022a). 

Since 2000, sirtuins (SIRT1–7) have drawn increasing interest for their 
associations with an extensive variety of biological functions, including the control 
of cellular metabolism, neuroprotection, apoptosis, inflammation, and the growth of 
cancer (Mellini et al. 2015). In particular, SIRT1 has received the greatest research 
attention, both for its involvement in calorie restriction and as an eventual path for 
the therapy of illnesses associated with aging (Yeong et al. 2020). SIRT suppression 
can have advantageous effects on aging-related conditions including metabolic, 
cardiovascular, and neurodegenerative illnesses, whereas SIRT inhibitors may be 
beneficial for the treatment of muscular disorders, HIV infection, or cancer (Mellini 
et al. 2015; Valente et al. 2016). 

The sirtuin route has drawn superior interest since it is linked to the advantages of 
calorie restriction for anti-aging (Mohamad Nasir et al. 2018). In aging-related 
laboratory models, pharmacological or genetically overexpression of the sirtuin 
system has also revealed encouraging outcomes. Mammalian sirtuins, which are 
related of the yeast Sir2 family, consist of seven members (SIRT1–SIRT7). 
ADP-ribosyltransferase and a deacetylase activity are two distinct actions that 
sirtuins have been discovered to exhibit (Liszt et al. 2005; Landry et al. 2000). 
Histones, transcription factors, and apoptosis modulators are just a few of the targets 
that sirtuins use to convey out their deacetylase activity (Youcef et al. 2007; Dai et al. 
2018). 

Similar to this, the revelation which are catalytic action requires NAD+ ,  a  
opposed to Zn2+ in the situations of other groups of deacetylases, suggests their 
potential significance in balancing management in the cell’s breakdown and its 
functional state. Seven sirtuin iso-forms regulate numerous metabolic, anxiety, and 
aging processes in living things. For illnesses associated with metabolism and aging, 
such as metabolic syndrome and neurodegenerative disorders, sirtuins are supposed 
to be promising therapeutic targets. Sirtuins are thought to be prospective therapeutic



targets for disorders of metabolism and aging, such as neurodegenerative illnesses 
and metabolic disorders. 

15 Sirtuin Modulator: Design, Synthesis, and Biological Evaluation 405

Few powerful and selective compounds have been produced despite intensive 
attempts to generate minor-molecule sirtuin inhibitors and activators, in part because 
of the limitations of currently available assays and a lack of mechanistic 
characterisation of discovered compounds (Schutkowski et al. 2014). 

15.2 Types of Sirtuin 

See Table 15.1. 

15.3 Pharmacological Sirtuin Modulation 

Sirtuins have fascinated attention as possible therapeutic targets, therefore much 
work has been put into developing specialised sirtuin agonist and inhibitors, both are 
utilised in research for understanding sirtuin function and as potential anti-ageing 
medications. Recent growths in sirtuin biochemistry, analytical test, and crystal 
structures of sirtuin/modulator composite, which disclose a challenging relationship 
between numerous chemicals and the structure and function of the enzyme, are 
currently assisting in the discovery of pharmacological sirtuin modulators (Dai et al. 
2018). 

15.3.1 Sirtuin Activators 

Since more than 75 years ago, it has been recognised that calorie restriction 
(CR) increases mammalian longevity and promotes better health. When sirtuins 
were eliminated, it had been assumed that food restriction did not increase lifespan 
(Rogina and Helfand 2004; Lin et al. 2000) and that calorie restriction might 
lengthen mammalian lifetime by bringing SIRT1 expression (Cohen et al. 2004) 
led researchers to study sirtuins and to discover and develop molecules that could 
stimulate them. 

Despite the fact that the function of sirtuins in enhancing lifespan is currently 
being called into doubt, based on the beneficial effects of calorie restriction on 
mammalian health and the consequent rises in SIRT1 (Cohen et al. 2004), sirtuins 
are gaining a lot of attention and compounds that can activate them due to the 
identification and formation of medicines that activate SIRT1. 

15.3.1.1 Resveratrol 
Two phenyl rings of the polyphenol resveratrol (RSV), which are connected by a 
methylene bridge (Fig. 15.1a), was the primary substance to be found that can 
imitate calorie restriction via activating sirtuins (Howitz et al. 2003; Wood et al. 
2004). The primary substance identified that may imitate calorie restriction through
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activating sirtuins is resveratrol, a polyphenol comprising two phenyl rings split 
apart by a methylene bridge (Fig. 15.1a) (Howitz et al. 2003; Wood et al. 2004).
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Fig. 15.1 Sirtuin activators. (a) Resveratrol (3,5,4′-Trihydroxy-trans-stilbene) (b) SRT1720; (c) 
Oxazolo[4,5-b]pyridines derivative; (d) Imidazo[1,2-b]thiazole derivatives; (e) 
1,4-Dihydropyridine (DHP) derivatives are a few examples 

RSV significantly reduced ageing symptoms without altering the pattern of 
expression of any sirtuin genetic factor and mimicked CR-induced gene expression 
patterns in several organs (Barger et al. 2008; Pearson et al. 2008). RSV’s



bioavailability and pharmacokinetics have been updated and reported in the past 
(Alcain and Villalba 2009; Vang et al. 2011). It has been shown that RSV, in in vivo 
testing to significantly slow down the ageing process in mice fed a diet loaded with 
calories (Baur et al. 2006). The occurrences of cataracts and albuminuria are 
reduced, vascular endothelium inflammation and apoptosis are decreased, aortic 
flexibility is increased, motor coordination is enhanced, and bone mineral density 
is maintained (Pearson et al. 2008). RSV’s limited bioavailability has led to 
modifications to boost bioavailability. A nutraceutical product called resVida, 
which contains 150 mg of resveratrol daily, has demonstrated success in lowering 
intrahepatic lipid levels, moving glucose, fatty acids, alanine-aminotransferase, or 
signs of inflammation in healthy obese males. These outcomes are identical to CRs 
(Timmers et al. 2011). 
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Severe dose-sensitive improvements in vasodilation mediated by the endothelium 
were also seen by oral RSV supplementation, and these improvements were 
associated with higher plasma RSV concentrations (Wong et al. 2011). After 
3 months of treatment, RSV administered when nutritional preparation Longevinex® 

increased dilatation mediated by flow, but 3 months later Longevinex® was stopped. 
This option went back to its default value. The medication had no effect on 
inflammatory markers, lipid profiles, blood pressure, insulin resistance, or any of 
these parameters (Fujitaka et al. 2011). 

15.3.1.2 Sirtuin Activators Structurally Unrelated to Resveratrol 
The hunt for new compounds that may activate sirtuins more efficiently than RSV 
has gained attention because sirtuins are important for maintaining metabolic 
activities and disorders linked to ageing. Milne et al., in 2007 found small molecule 
SIRT1 activators that are structurally different from RSV but 100 times more 
powerful. 

The most efficient substance was SRT1720, which at 10 M increased SIRT1 
activity by 750%. Due to additive SIRT1 activation caused by medication combina-
tion, it was shown that SRT1720 (Fig. 15.1b) binds to and activates the enzyme at 
the same molecular site as RSV. The key domain’s nitrogen-terminal protein 
sequences 183–225 were significant in identifying the chemical attaching region. 

In vivo and in vitro, SRT1720 boosted the deacetylation of SIRT1 substrates such 
p53, the transcriptional co-activator PGC-1α, and Foxo1a. Innately overweight mice 
(Lep ob/ob), DIO mice, and the Zucker fa/fa rat were used as in vivo disease models 
to examine the healing potential of SIRT1720 to cure insulin resistance and type-
2 diabetes (Smith et al. 2009). 

SRT1720 treatment significantly decreased fasting blood glucose in mice on a 
high-fat diet to levels close to normal, moderately controlling raised insulin amount, 
and protected mice from DIO and insulin resistance by improving oxidative metab-
olism in skeletal muscle, the liver, and brown adipose tissue through a general 
metabolic change that mimicked low energy levels (Feige et al. 2008). 

Mice fed a diet rich in fat received SRT1720, which significantly dropped their 
fasting blood glucose levels to levels that were almost normal, partially normalised 
their increased insulin levels, and reduced their feeding glucose levels (Messa et al.



2020). By increasing oxidative metabolism in skeletal muscle, the liver, and brown 
adipose tissue through a general metabolic adaptation imitating low energy levels, 
these results effectively protected mice from DIO and insulin resistance (Feige et al. 
2008). 
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Novel small molecule SIRT1 stimulants that are distinct from RSV have been 
identified, including a series of Oxazolo[4,5-b]pyridines (Fig. 15.1c). Additionally, 
a series of imidazo(1,2-b)thiazole derivatives bearing an oxazolopyridine core have 
been synthesised, and they may represent novel healing aims for the treatment of 
several illnesses. 

Compound 29 (Fig. 15.1d), the least effective homologue in this generation, 
demonstrated oral antidiabetic activity for three distinct forms of type-2 diabetes 
and had a significant oral bioavailability in mouse and rat models of type-2 diabetes. 
In the DIO model after 2 weeks of dosage, in the genetic Zucker fa/fa rat model after 
3 weeks, and in the ob/ob deficient mice after just 1 week of therapy, an intake of 
100 mg/kg of compound 29 administered per day resulted in a considerable drop in 
fasting blood glucose content. Compound 29 was capable to control a noticeably 
minor amount of administered insulin and glucose in the DIO mice even after 
10 weeks of dosage without having any effects on body weight, overall clinical 
chemistry, or haematology (Vu et al. 2009) (Fig. 15.2). 

15.3.2 Sirtuin Blockers 

Entirely sirtuins comprise the co-factor nicotinamide adenine dinucleotide (NAD+ ) 
(Landry et al. 2000). The acetyl-peptide remains bound by ADP-ribose, which 
causes the creation of a 0-alkylamidate intermediate, in the first stage of the 
suggested reaction process, which involves the cleavage of nicotinamide (NIC) 
from NAD+ . 

NIC is a powerful process product inhibitor due to its potential to re-bind the 
enzyme’s intermediate form the 0-alkylamidate and target the intermediate (Sauve 
and Schramm 2003). The NIC promotes megakaryocyte maturation and ploidy, in 
part, by inhibiting SIRT1 and by enhancing p53 binding to the NIC consensus DNA 
binding sequence (Giammona et al. 2009). 

Due to up-regulated SIRT1 being reported in cancer cell lines, sirtuin inhibitors 
may also be effective as therapeutic drugs. That opens up the possibility of sirtuin 
inhibition can restrict the tumorigenesis. In various animal models, increased SIRT1 
activity was discovered to be advantageous, which stimulated the creation of phar-
macological sirtuin activators, perhaps as CR mimics. Sirtuin blockers are also 
suggested for the therapy for other condition like Parkinson’s disease, leishmaniosis, 
or HIV in along with treatment of cancer (Pagans et al. 2005). It is also crucial to take 
into account that SIRT3, SIRT4, and SIRT5 are found in the mitochondria, wherever 
many mitochondrial proteins undergo run of acetylation/deacetylation (Verdin et al. 
2010) processes crucial for energy utilisation and apoptotic the beginning, as well as 
in the situation of certain illnesses such as cancer and the metabolic disorder (Pereira 
et al. 2012).
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Fig. 15.2 Sirt1 activation 
pathway by resveratrol 

High-throughput and computational analysis screens identified sirtuin inhibitors 
for SIRT1, SIRT2, SIRT3, and SIRT5, in contrast to the activators sector, where 
only SIRT1 activators have been discovered (Villalba and Alcaín 2012). The 
majority of sirtuin inhibitors that have been studied till now, only SIRT1 and/or 
SIRT2 have been inhibited; however, a few of them have lesser affinity inhibitory 
effects on SIRT3 and SIRT5. 

15.3.2.1 Splitomicin and Its Derivatives 
Bedalov et al., discovered a substance called splitomicin (Fig. 15.3a) that produces a 
restricted phenocopy of a Sir2 deletions variant in Saccharomyces cerevisiae, 
provide a fresh method to study the vital function of Sir2 in vivo. IC50 for 
splitomicin’s inhibition of Sir2 is 60 μM (Bedalov et al. 2001). Splitomicin’s effects 
on human SIRT1 were, however, only moderately inhibited.



412 S. K. Kori et al.

Fig. 15.3 Sirtuin inhibitors. (a) Splitomicin, (b) HR73, (c) sirtinol, (d) AGK2, (e) cambinol, (f) 
salermide, (g) tenovin, (h) Suramin 

One of the two β-phenylsplitomicin stereoisomers was clearly preferred, as 
shown by docking and free energy computing, and a connection between enhanced 
enzyme inhibition and antiproliferative action in MCF-7 breast cancer cells was 
identified (Neugebauer et al. 2008). 

By heterochromatinizing the regulator and silencing the gene, SIRT1 contributes 
significantly to the amplification of the CGG�CCG-repeat tract that causes Fragile X 
syndrome, one of maximum prevalent genetic form of psychological illness. Its 
interesting to note that the Fragile X intellectual disabilities syndrome gene silence is 
reduced by splitomicin-mediated regulation of SIRT1 activity (Biacsi et al. 2008). 

The HIV Tat protein is controlled by process of acetylation and deacetylation. 
Through its acetyl group and the bromodomain of PCAF, acetylated Tat that is



linked to the expanding polymerase attracts the transcriptional coactivator PCAF. 
Tat’s separation from the expanding polymerase and PCAF might result from 
SIRT1’s deacetylation of the protein. A splitomicin analogue known as HR73 
(Fig. 15.3b) was shown by Pagans et al. to decrease SIRT1 functioning in vitro 
with an IC50 value less than 5 μM, confirming SIRT1 as a new therapeutic aim for 
HIV infection (Pagans et al. 2005). 
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The Tat protein of the HIV virus is controlled by processes of acetylation and 
deacetylation (Chen et al. 2020). Through the polymerases elongating domain and 
the bromodomain of PCAF, acetylated Tat attracts the transcriptional coactivator 
PCAF. Tat’s separation from the elongating polymerase and PCAF could occur if 
SIRT1 deacetylates Tat. A splitomicin analogue (Villalba and Alcaín 2012) 
identified as HR73 (Fig. 15.3b) was discovered by Pagans et al. (2005) and it 
suppressed SIRT1 action in vitro with an IC50 value of less than 5 μM, establishing 
SIRT1 as a new HIV infection treatment target (Pagans et al. 2005). 

15.3.2.2 Sirtinol 
An additional sirtuin antagonist, sirtinol (2-[(2-hydroxy-naphthalen-1-ylmethylene)-
amino]-N-(1-phenyl-ethyl)-benzamide) (Fig. 15.3c), was also found by Grozinger 
et al. (2001), in a cell-based screen. This substance decreased both yeast Sir2 and 
human SIRT2 action in vitro. It was proven that the 2-hydroxyl-1-napthol portion 
was enough to block (Grozinger et al. 2001). Sirtinol’s two derivatives, m- and p-
sirtinol, were two- to tenfold highly effective against human SIRT1 and SIRT-2 than 
sirtinol (Mai et al. 2005). The activation of SIRT1 may be crucial in fostering cell 
development. As a result of decrease in apoptosis in consequence of diverse 
genotoxic stimuli caused by deacetylation of p53, SIRT1 inhibitors like sirtinol 
have potential to treat cancer (Mirzayans et al. 2017). Sirtinol also led to 
senescence-like growth arrest in human breast cancer MCF-7 and lung cancer 
H1299 cells, in addition to raising chemosensitivity to camptothecin and cisplatin 
in PC3, DU145, and HeLa cells (Carafa et al. 2016). The result of an increase in 
programmed cell death, this led to a large decrease in viable cells (Kojima et al. 
2008; Peck et al. 2010). 

It has also been discovered that sirtinol, nicotinamide, and SIRT3 down-
regulation reduced cell proliferation and expansion in oral squamous cell carcinoma 
(OSCC) cell lines in vitro and in vivo, whereas SIRT3 is abundantly expressed 
comparison to other sirtuins, and triggered apoptosis. Additionally, SIRT3 
downregulation increased OSCC cells susceptible to radiotherapy and cis-platin’s 
cytotoxic effects (Alhazzazi et al. 2011). 

Oculopharyngeal muscular dystrophy is modeled using nematodes, a condition 
brought on via polyalanine increase in the nuclear protein PABPN1, sirtinol therapy 
proved protective, by boosting the dose of Sir2/SIRT1, increased muscle prognosis 
(Pasco et al. 2010). Furthermore, sirtinol treatment decreased pain and swelling in 
human superficial microvascular endothelial cells, modulated the appearance of 
binding molecules and monocyte sticking in main human cutaneous microvascular 
endothelial cells and induced cell death in Leishmania infantum, greatly reducing 
this axenic amastigote’s in vitro proliferation (Orecchia et al. 2011).
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15.3.2.3 AGK2 
According to reports, neuroprotection is provided by inhibiting SIRT2 activity. The 
protein α-synuclein (α-syn) is found in Lewy bodies which are the most prevalent 
histological characteristic of Parkinson disease (PD). The inhibition of SIRT2 with 
short interfering RNA or including AGK2 (Fig. 15.3d) prevented the impairment of 
dopaminergic nerve cells caused on by α-syn toxicity in a Drosophila PD model and 
lessened the neurotoxicity generated by mutant α-syn in rat primary dopamine-
positive neurons (Outeiro et al. 2007). 

Treatment with AGK2 increased the amounts of acetylated tubulin, but it also 
made PC12 cells more susceptible to necrosis without changing autophagy and 
caused C-6 glioma cells to undergo caspase-3-dependent apoptosis (He et al. 
2012; Nie et al. 2011). Additionally, through down-regulated the RNAs necessary 
for sterol production. In both animal and cell-based models of Huntington’s disease 
(HD), sirt2 inhibition produced neuroprotection (Luthi-Carter et al. 2010). In con-
trast to the neuroprotective effects of SIRT2 suppression in PD and HD models, 
pharmacological inhibition of SIRT1/2 by nicotinamide, AGK2, or cambinol 
increased multiplication in cultivated megakaryocytic cells, boosting acetylation of 
nucleosomes and p53 (Giammona et al. 2009). 

15.3.2.4 Cambinol 
The chemically stable molecule cambinol (Fig. 15.3e), which suppresses both SIRT1 
and SIRT2 in vitro with IC50 values of 56 and 59 μM, consequently, is known as 
β-naphtol. It shares a pharmacophore with sirtinol and splitomicin. Cambinol has 
individual marginal suppression effect (42% suppression at 300 μM) against SIRT5 
(Heltweg et al. 2006). Mice showed good tolerance to cambinol and prevented the 
spread of Burkitt lymphoma xenografts by triggering apoptosis through 
hyperacetylation of the BCL6 oncoprotein and p53 (Heltweg et al. 2006). 

Although the efficacy against SIRT2 improved in vitro when the substituent at the 
N1-position was utilised or this was not the case for SIRT1, changes to the phenyl 
ring of cambinol improved activity and increased selectivity for SIRT1, leading to 
the identification of a variety of SIRT2 selective analogues (Medda et al. 2009). 

15.3.2.5 Suramin 
Suramin, which has an IC50 value of 22 M, is a more powerful blocker of SIRT5 
NAD+-dependent deacetylase activity than cambinol (Fig. 15.3h). Suramin has a 
strong inhibitory effect on SIRT1 and SIRT2 (IC50 = 0.297 μM and 1.15 μM, 
respectively) (Trapp et al. 2007). In addition to its antiproliferative and antiviral 
properties, the polyanionic naphthylurea known as suramin was first used to treat 
trypanosomiasis (Perabo and Müller 2005). A stronger inhibition of SIRT5 NAD+-
dependent deacetylase activity than cambinol is suramin (Fig. 15.3h), with an IC50 
value of 22 μM. SIRT1 and SIRT2 are both significantly inhibited by suramin (IC50 
values of 0.297 μM and 1.15 μM, respectively) (Trapp et al. 2007). Originally used 
to treat trypanosomiasis, suramin is a polyanionic naphthylurea that also has 
antiproliferative and antiviral properties (Perabo and Müller 2005).
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15.3.2.6 Tenovin 
Two SIRT1 inhibitors were discovered by Lain et al. (2008) looking for tiny 
molecules that might stimulate p53 and stop cancer development utilising a cell-
based screening method: tenovin-1 and its more water-soluble counterpart, tenovin-6 
(Fig. 15.3g). Both substances inhibited tumour development in vivo at one-digit 
micromolar doses in vitro, all without producing appreciable over-all toxicity. In 
chronic myelogenous leukaemia (CML), SIRT1 activation enhances cell survival, 
and proliferation was linked to the deacetylation of many SIRT1 substrates, includ-
ing FOXO1, p53, and KU70. Tenovin-6, an inhibitor of SIRT1, was administered to 
mice to stop the course of the illness (Yuan et al. 2012). 

Tenovin-1 and tenovin-6 have recently undergone a series of more water-soluble 
counterparts that, generally, kept the required biological activity. In the presence of a 
solution, tenovin-1 analogues take on a preferred shape that includes an intramolec-
ular hydrogen bond necessary for SIRT1 binding. Additionally, When the 4-tert-
butyl substituent in tenovin-6 was replaced with shorter alkyl chains (4-propyl or 
4-iso-propyl substituent), analogues with longer n-alkyl chains (4-n-butyl or 4-n-
pentyl substituent) showed hazardous or ineffective in cells (Mccarthy et al. 2012). 

15.3.2.7 Salermide 
A reverse amide with a strong in vitro inhibitory effect on SIRT1 and SIRT2 is 
salermide is (N-{3-[(2-hydroxy-1-naphthalenylmethylene)-amino]-phenyl2}-phe-
nyl-propionamide) (Fig. 15.3f). At dosages up to 100 μM, salermide was tolerated 
effectively by mice and induced p53-independent apoptosis in cancer cells but not in 
healthy cells. This was accomplished by regenerating proapoptotic genes that SIRT1 
had been epigenetically suppressed in cancer cells (Lara et al. 2009). A further 
SIRT1 and SIRT2 inhibitor called sirtinol requires p53, as well as salermide-induced 
apoptosis, according to a different research utilising breast cancer cell lines and 
p53-insufficient mice fibroblasts (Peck et al. 2010). The salermide impact in human 
non-small cell lung cancer cells could be mediated by an increase in death receptor 
5 expression (Liu et al. 2012). 

15.3.2.8 Other Inhibitors of Human Sirtuins 
There are many of other SIRT1 and SIRT2 inhibitors that have been found and 
thoroughly explored. Tripeptide analogues based on lysine, N-thioacetyl lysine 
found in non-peptides, thiobarbiturates, indole derivatives (EX-527), and other 
inhibitors with various structural cores are among them. 

15.4 Natural Sirtuin Inhibitors and Modulators Beneficial 
Effects on Health 

See Table 15.2.
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Table 15.2 Sirtuin inhibitors and modulators 

Compound Medical advantages Mode of action References 

Fisetin Against cardiovascular 
disease and anti-aging

• Senotherapeutic action 
is demonstrated in mice 
and human tissue
• Lowers the 
concentrations of p25, the 
p35 cleavage product of 
the cyclin-dependent 
kinase 5 (Cdk5) activator, 
in the brains of patients 
with Alzheimer’s disease 
and control subjects
• Increases the p25/p35 
ratio, which raises p25 
concentrations and leads 
to a dysregulation of Cdk5 
activity, which culminates 
in neuroinflammation and 
neurodegeneration 

Heltweg et al. 
(2006), Trapp et al. 
(2007), Perabo and 
Müller (2005) 

Chemopreventive/ 
chemotherapeutic agent 

Activates caspases
• Boosts Bak synthesis 
and causes its 
oligomerization in the 
mitochondria
• Akt/mTOR signalling 
blockers 

Lain et al. (2008), 
Yuan et al. (2012) 

Antioxidant agent Unknown Mccarthy et al. 
(2012) 

Antidiabetic Reduces glycation of 
methylglyoxal-dependent 
proteins 

Lara et al. (2009) 

Orientin Anti-inflammatory • Reduces cytokine 
production and 
myeloperoxidase (MPO) 
activity in rats
• Suppresses the 
translocation of NF-κB 
p65, the activity of 
NF-κB-luciferase, and the 
expression of NF-κB 
target genes
• By blocking TLR4 and 
deactivating the NF-κB 
and MAPK pathways, it 
lessens the severity of 
experimental 
inflammatory bowel 
disease (IBD) in rats 

Peck et al. (2010) 

Antioxidant and antiaging Decreases the 
β-galactosidase activity 
generated by H2O2 

Liu et al. (2012)
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Table 15.2 (continued)

Compound Medical advantages Mode of action References 

Antiviral and antibacterial 
agent

• Shows a moderate to 
strong antiviral response 
to the para 3 virus
• On Hep-2 cells, it was 
demonstrated that the 
flavonoid combination, 
which contains orientin, 
rutin, quercetin, and 
kaempferol, completely 
inhibited Herpes Simplex 
Virus Type 2 (HSV-2) of 
various viral titres (1, 10, 
and 100 TCID50) 

Yousefzadeh et al. 
(2018), Currais 
et al. (2014), Zhu 
et al. (2017) 

Anti-inflammatory agent • HMGB1-mediated 
cytoskeletal 
rearrangements as well as 
lipopolysaccharide (LPS)-
induced elevation of the 
protein level of HMGB1 
are both prevented in 
umbilical vein endothelial 
cells (HUVECs)
• Suppresses the effects 
of LPS on membrane 
rupturing, monocyte 
movement, cell adhesion 
molecule (CAM) 
expression, and EPCR 
detachment 

Syed et al. (2013), 
Lall et al. (2016), 
Tripathi et al. 
(2011) 

Anticancer effects • Controls the 
expression of the p53 and 
bcl-2 genes that are 
involved to apoptosis
• Oesophageal cancer 

Khan et al. (2013) 

Weight loss • Prevents the formation 
of intracellular 
triglycerides (TG) in 
mouse adipocyte 3T3-L1 
cells
• Reduces the mRNA 
levels of the genes 
involved in adipogenesis, 
lipogenesis, lipolysis, and 
the generation of TG, 
inhibits glycerol from 
being released, and 
inhibits the release of 
glycerol
• Reduces the 
expression of adipogenic 

Maher et al. (2011)



master transcription
factors like C/EBP and
PPAR in the early stages
of adipogenesis by
downregulating the
CCAAT/enhancer
binding protein (C/EBP)
gene
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Table 15.2 (continued)

Compound Medical advantages Mode of action References 

Protect bone marrow Decreases bone marrow 
cells with chromosomal 
aberrations 

Sun et al. (2016), 
Nayak and Uma 
(2006) 

Other (e.g., vasodilatation, 
cardioprotective, 
radioprotective, 
neuroprotective, 
antidepressant-like, 
antiadipogenesis, 
antinociceptive)

• Blocks the production 
of PPAR γ and C/EBPα 
proteins in proteins
• Reduces the writhing 
and discomfort that 
capsaicin and glutamate in 
mice cause
• Acetylsalicylic acid 
(commonly known as 
aspirin), a popular 
analgesic, and 
indomethacin, a common 
anti-inflammatory 
medicine, were shown to 
be 20 times more 
powerful and 3.5 times 
more dynamic, 
respectively, than orientin 

Lin et al. (2004) 

Piceatannol Anticancer effects • Prevents prostate 
cancer cells from 
migrating and invading, 
potentially through 
reduced interleukin-6 
signalling
• Inhibits 
CSN-associated kinase 
and COX-1/2 

Li et al. (2002), 
Boominathan et al. 
(2014) 

Metabolic diseases Inhibits adipogenesis
• Restricts the growth of 
clonal mitotic
• Non-competitive 
binding to the insulin 
receptor slows down 
insulin signalling
• Reduces lipid buildup 
during the last phases of 
differentiation 

Yoo et al. (2014)
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Table 15.2 (continued)

Compound Medical advantages Mode of action References 

Cardiovascular diseases • Peroxisome 
proliferator-activated 
receptor alpha (PPAR-) 
isoform is activated on rat 
hepatoma (H4IIEC3 cells) 
in vitro
• Reduces cholesterol 
and lipoprotein levels 

Bae (2015), An 
et al. (2015) 

Quercetin Cancer treatment Tyrosine kinase inhibition Nagai et al. (2018), 
Nayak and Devi 
(2005) 

Colitis and gastric ulcer 
therapy 

Unknown Uma Devi et al. 
(1999) 

Treatment of respiratory 
tract infection 

Unknown Lam et al. (2016) 

Treatment of type 
2 diabetes 

Increase the antioxidant 
level of type 2 diabetic 
individuals 

Syed et al. (2013), 
Kwon et al. (2012) 

Treatment of high blood 
pressure 

Unknown Kershaw and Kim 
(2017) 

Treatment of oral lichen 
planus

• Control of cytokines 
including IL12, INFγ, 
INFα, IL8, 
cyclooxygenase 2, and 
prostaglandin E 

Tang and Chan 
(2014) 

Other health benefits Unknown Rimando et al. 
(2005) 

Resveratrol Obesity treatment Modulation of sirtuin Yuan et al. (2006) 

Colon cancer prevention Inhibits signaling pathway 
involved in colon cancer 
initiation 

Ferry et al. (1996) 

Cardioprotection Reduce low-density 
lipoprotein (LDL) 
oxidation 

Hamdy and 
Ibrahem (2010) 

Trans-(-
)-ε-Viniferin 

Anti-inflammatory, 
antioxidant, platelet 
antiaggregatory, and 
anticarcinogenic properties 

Monoamine oxidase 
activity (MOA) 

Heinz et al. (2010) 

Rotaviral diarrhoea Intestine’s calcium-
activated chloride channel 
is blocked 

Mazloom et al. 
(2014) 

Alzheimer’s disease Induces the 
disaggregation of amyloid 
β (Aβ) peptide 

Zahedi et al. (2013)
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Table 15.2 (continued)

Compound Medical advantages Mode of action References 

Diabetes • Maintenance of Ca2+ 

and preservation of 
mitochondrial membrane 
potential (MMP) to 
prevent high glucose-
induced apoptosis 

Rezvan et al. 
(2017) 

Anticancer effects • Controls the 
expression of the 
apoptosis-related genes 
p53 and bcl-2
• Potential medicinal 
agents for oesophageal 
cancer therapy
• Specifically targeting 
U937 cell apoptosis 

Serban et al. 
(2016), 
Amirchaghmaghi 
et al. (2015) 

Anti-oxidant effects Effects of antioxidants 
reduces the action of the 
antioxidant enzymes in 
cells and the sulfhydryl in 
the protein of the red cell 
membrane, as well as 
oxygen free radicals 

Miles et al. (2014), 
Poulsen et al. 
(2013) 

Vitexin Anti-inflammatory effects • Prevent IL-1β, IL-6, 
IL-8, IL-17, and IL-33
• Prevent tumour 
necrosis factor-α (TNF-α) 
secretion
• Prevent COX-2
• Prevent NF-κB 
activation
• Prevent iNOS 
(inducible nitric oxide 
synthase)
• Prevent NO, PGE2, 
monocyte chemoattractant 
protein-1 (MCP-1), and 
neutrophil influx
• Increase in IL-10 and 
reduce the expression of 
p-p38, p-ERK and p-JNK 

Nguyen et al. 
(2009), Magyar 
et al. (2012), Yáñez 
et al. (2006) 

Anti-neoplastic effects Promotes autophagy Yu et al. (2018) 

Anti-microbial and anti-
viral effects

• Activity against anti-
H. pylori
• Anti-phytoviral 
activity against Tobacco 
mosaic virus 

Vion et al. (2018), 
Zhao et al. (2016)
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15.5 Conclusions 

Sirtuins are a significant group of histone deacetylases that take part in NAD+-
dependent deacetylation processes. Activation, inhibition, and regulation of sirtuins 
are engaged in a variety of key metabolic processes that are connected to conditions 
including type 2 diabetes, ageing, and inflammation. As a result, they have anti-
cancer, anti-oxidant, anti-microbial, and anti-viral effects and are a significant drug 
target class. Natural products are renowned for being significant sources of lead 
compounds. In this study, we’ve made an effort to give a quick rundown of the most 
current findings about natural products that have been found to interact with sirtuins. 

Natural sirtuin modulators and inhibitors may have positive effect on health in 
addition to well-recognised mechanisms of action and individuals being researched 
in clinical studies. Alkaloids, bichalcones, resveratrol, xanthone, tanikolide, and 
flavonoids are a few examples of natural substances and chemical types that have 
been demonstrated to have actions against sirtuins. The next generation sirtuins 
modulators are anticipated to be natural product derivates beginning from the 
discovered lead compounds. 
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