
Chapter 2 
Displacement and Velocity Analysis 

2.1 Introduction 

The motion of a lever is expressed in terms of the linear displacements, linear veloc-
ities, and linear accelerations of its individual particles. However, the motion of a 
lever can also be determined based on the angular displacements, angular velocities, 
and angular accelerations of moving lines with the desired rigid lever. No matter 
what method is used to analyze the leverage, it is always necessary to determine the 
angular positions of the members before analyzing the velocity. Similarly, we need 
the angular velocities of the members before acceleration analysis. The kinematic 
analysis of a lever should always be performed as follows: position analysis, velocity 
analysis, and acceleration analysis. In addition to displacement analysis, several 
methods for determining velocities in mechanisms will be presented in this chapter. 

2.2 Velocity Equations for the Curve Motion 

Measuring and describing the motion of objects relative to a stationary coordinate 
system is called absolute motion analysis. The motion analysis will be relative if 
this analysis is performed on a moving device. If we denote the position of a particle 
moving on a straight line from the origin of coordinates with . x, then we can write 

.V = �x

�t
(2.1) 

where .�x is the displacement in meters, . �t is the time interval in seconds, and 
. V is the average velocity in meters per second. 
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Fig. 2.1 A particle that moves continuously on a plane curve 

Also, if . V is the instantaneous velocity in meters per second, we have 

.V = lim
�t→0

�x

�t
= dx

dt
= ẋ (2.2) 

Note Velocity is the rate at which location changes relative to time. If the 
displacement is positive, the velocity is positive, and if it is negative, the velocity is 
negative. 

The motion of a particle that travels along a curved path is called a curved 
transmission. Consider a particle that moves continuously on a plane curve, as 
shown in Fig. 2.1. 

The average velocity of a particle between . A and . A’ is defined as .v = �r/�t , 
in which . r represents the location vector, and .�r represents the displacement of the 
particle over time . �t . Instantaneous velocity . v, by definition, is the limit of average 
velocity when the time interval . �t converges to zero. Therefore, 

.v = dr

dt
= ṙ (2.3) 

Note The value of . v, a scalar quantity, is called speed. 

In the orthogonal coordinate system .(x − y), the curve motion of the particle is 
determined by summing the . x and . y components of vectors of location, velocity, 
and acceleration. For this type of coordinate system, we have 

.r = xî + yĵ (2.4) 

.
−→v = −→̇

r = ẋî + ẏĵ (2.5)



2.2 Velocity Equations for the Curve Motion 39

In the vertical-tangential coordinate system .(n − t), where the unit vector . en is 
defined in the direction . n and the unit vector . et is defined in the direction . t , we can 
write 

.
−→v = vêt (2.6) 

Note that . t specifies the direction of motion and . n the direction perpendicular to 
the motion path. 

Also, in the polar coordinate system .(r − θ), where the unit vector . er is in the 
positive direction . r , and the unit vector . eθ is in the positive direction . θ , the velocity 
vector equation is as follows: 

.
−→v = ṙ êr + rθ̇ êθ (2.7) 

Note Component . v in direction . r represents the rate of increase of vector . r in 
direction . θ due to the rotation. 

Figure 2.2 shows the orthogonal and polar coordinate systems with unit vectors 
on the .x − y plane. 

These equations can also be generalized for spatial curve motion. Figures 2.2 
and 2.3 show the three coordinate systems of orthogonal .(x − y − z), cylindrical 
.(r − θ − z), and spherical .(R − θ − ∅) with unit vectors. 

For orthogonal coordinates in the three-dimensional motion, we only need to add 
coordinate . z and its derivatives to the equations of two-dimensional motion: 

.
−→
R = xî + yĵ + zk̂ (2.8) 

.v = Ṙ = ẋî + ẏĵ + żk̂ (2.9) 

Note that we show the location vector with the capital letter . R in three-
dimensional motion instead of . r . 

Fig. 2.2 Orthogonal and 
polar coordinate systems with 
unit vectors on the . x − y

plane
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Fig. 2.3 Cylindrical and 
spherical coordinate systems 
in 3D 

In the case of cylindrical coordinates, we only need to add coordinate . z to the 
equations of motion in polar coordinates. Therefore, 

.
−→v = ṙ êr + rθ̇ êθ + żk̂ (2.10) 

Spherical coordinates also use a radial distance and two angles to determine 
the position of a particle. Unit vector . eR is in the direction of motion in which 
. R increases but . θ and . ∅ are constant. Unit vector . e∅ is in the direction of motion 
in which . ∅ increases, but . R and . θ remain constant. Finally, unit vector . e∅ is in the 
direction of motion in which . ∅ increases and . R and . θ are constant. So we have 

.
−→v = ṘêR + Rθ̇ cos∅ê∅ + R∅̇ê∅ (2.11) 

Example In Fig. 2.4, the piston shaft of the hydraulic jack moves to the left at a 
constant velocity of . v. We denote .OA by . r . The values of . ̇r and . θ̇ are 

1) .ṙ = −v cos θ , .θ̇ = v
r

cos θ 2) .ṙ = v sin θ , . θ̇ = v
r

cos θ

3) .ṙ = −v cos θ , .θ̇ = v
r

sin θ 4) .ṙ = −v cos θ , .θ̇ = −v
r

sin θ
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Fig. 2.4 A hydraulic jack 

Fig. 2.5 Polar coordinate 

Solution The motion is of the plane type. Using the motion equations in polar 
coordinate, we can plot the known velocity . v of point . A in directions . r and . θ
(Fig. 2.5). 

. 
−→v = vr êr + vθ êθ = −v cos θ êr + v sin θ êθ

−→v = ṙ êr + rθ̇ êθ (velocity equation for polar coordinates)

From the above two equations, we have 

. ̇rêr + rθ̇ êθ = −v cos θ êr + v sin θ êθ ⇒
{

ṙ = −v cos θ

θ̇ = v
r

sin θ

Option (3) is correct. 

2.3 Angular Motion 

Angular velocity and acceleration are the first and second derivatives of angular 
displacement . θ of a line relative to time . t , respectively. In machine analysis, the 
angular motion of each lever is expressed by the angular motion of a hypothetical 
line connected to it. 

Note The angular motion of a lever may be similar to or different from the angular 
motion of the radius of the path curvature of individual particles of the lever.
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An important concept in mechanisms is that only transmission is possible for a 
particle that is a point of infinitesimally small size, and the particle cannot rotate. 
Angular motion is the motion of a line, and since a particle is a point and not a line, 
angular motion is inconceivable for it. This concept must be well understood to 
understand the relative motion between particles. In the following, various methods 
of velocity analysis are examined. 

2.4 Analytical Method of Velocity Analysis 

It is not possible or appropriate to use a fixed coordinate system to study all 
motions. There are many geometric problems in which motion analysis is easier 
using measurements obtained from a moving coordinate system. By combining 
these measurements with the absolute motion of the moving coordinate system, the 
desired absolute motion can be determined. This method is called relative motion 
analysis. 

Note An object only has relative motion relative to another object when their 
absolute motions are different from each other. 

The position of an object like . A relative to an object like . B is equal to the 
absolute position . A minus the absolute position . B. A similar interpretation is used 
for velocity and acceleration. Thus, for velocity, we can write 

.VA/B = VA − VB (2.12) 

or in other words 

.VA = VB + VA/B (2.13) 

This study relative to the moving device is limited to devices with a transmission 
motion and no rotational motion. If the moving device also has a rotation velocity 
of . ω, we will have 

.VA = VB + ω × r + Vrel (2.14) 

.Vrel has no rotation velocity relative to the moving device, and to find it, stop the 
device’s rotation and find .VA/B . 

Note The difference between the relative velocities in rotating and non-rotating 
axes is in .ω × r . 

Note The relative velocity of the points that match at the point of contact of two 
rolling members is zero.
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Fig. 2.6 A disk with pure 
rolling movement 

Fig. 2.7 A disk on the  
ground 

Example A disk with pure rolling moves in Fig. 2.6, and the bar .AB is jointed to it 
at point . A. Obtain velocity . B if the rotational velocity of the disk is . ω. 

. 
1) Zero 2) 2rω

3) (2r + l cos θ)ω 4) The information is not enough.

Solution At this point, the velocity of point . A is horizontal and equal to . 2rω. The  
velocity of point . B is also always horizontal due to ground contact. So since the 
direction of the velocity of two different points of a rigid body is the same, it can be 
said that the object has no angular velocity and only has a transmission motion at 
that moment. Therefore the velocity vectors of all its points are equal to each other. 
So .VB = VA = 2rω. 

Option (2) is correct. 

Note For two points located on a lever of a mechanism, .Vrel = 0. 

Example The disk’s center shown in Fig. 2.7 moves at a velocity .V0 = 1m/s. If  
the disk has a radius .R = 10cm and an angular velocity .ω = 20rad/s, what is the 
velocity of point . A at the top of the disk at the shown moment in meters per second? 

1) 1 2) 2 3) 3 4) 4
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Solution If we set the center of the moving device to . O, we will have 

. VA = VO + ω × r + Vrel

Given that the points . O and . A are on one object, .Vrel = 0 and we have 

. VA = VO + ω × |OA| ⇒ VA = 1î + (20 × 0.1) î = 3î

Note that the disk has a sliding motion on the ground, and its motion is not pure 
rolling. In the case of pure rolling, the velocity of point . O would be .2m/s. Also, if 
the velocity of the point of contact with the ground is calculated, this velocity will 
not be zero. 

Option (3) is correct. 

2.5 Graphical Method for Velocity Analysis 

Velocity polygons are good tools for determining the velocity of mechanisms. These 
polygons can be solved by drawing, analyzing, or combining the two. The main 
method used in graphical lever analysis is to work with one or two points at a 
known velocity to find one of the unknown velocities using the relation between the 
velocities of two points belonging to one lever in equation (2.14). Rotational joints 
form the transmission points because the mentioned points belong to two different 
members. Thus, the velocity of the rotating joint can be obtained by considering it 
as a point on one of the members to which it is attached. 

In the mechanisms studied in machine dynamics and the method used, because 
the two points under analysis belong to the same lever, .Vrel = 0, and this equation 
is simplified as follows: 

.
−→
V B = −→

V A + −→ω × −→
r B/A (2.15) 

Equation 2.15 can be graphically represented as a vector triangle, as shown in 
Fig. 2.8. 

Fig. 2.8 Vector triangle
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Fig. 2.9 Finding direction of the third vector 

Note This triangle can always be solved by knowing the direction and size of one 
of the three vectors and the direction of the other two vectors. This is a common 
situation in planar velocity analysis. 

According to Fig. 2.9, the vectors used in equation .−→ω × −→
r B/A are reciprocally 

orthogonal. Because we know the lines that the vectors must be in line with, the main 
issue is determining the direction of the lines and the size of each of the vectors. By 
knowing the direction of the two vectors, the direction of the third vector can be 
found by the rule of the right hand by observing the known directions. 

For example, suppose lever 2 moves in the four-bar mechanism in Fig. 2.10, and 
its uniform angular velocity . ω2 is known. We want to find the velocity .VB of point 
. B and the angular velocities . ω3 and . ω4. The known geometric parameters are also 
shown in the figure. 

Since each vector has size . m and direction . d, we can easily reflect the information 
and unknowns of a vector equation in a table. Two scalar (numerical) unknowns 

Fig. 2.10 Four-bar mechanism
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Length (m)

� �

�

�Direction (d) 

(I). VB VA VBA= +  

Fig. 2.11 Velocity calculation parameters 

can be obtained from a vector equation. The velocity equation can be written in 
Fig. 2.11. 

wherein 

. VA = along the perpendicular to O2A of known size VA = |O2A| ω2

VBA = along the perpendicular to BA of unknown size

VB = along the perpendicular to O4A with an unknown size

We can plot a velocity polygon with only two unknowns of the vector equation. 
First, we consider the desired origin .Ov and draw it with its size and direction . VA. 
On the other hand, the directions of .VB and .VBA are known. From the origin, we 
determine the direction of . VB with a dashed line. On the other hand, according to the 
equation .VBA = VB −VA, so the .VBA vector must start from the end of vector . A and 
be connected to the end of vector . B. So with the .VBA direction, we draw a dashed 
line from the end of the vector . VA in this direction. The intersection of the .VB and 
.VBA directions completes the polygons. Now we add the direction of the arrows . VB

and .VBA so that the sum of the polygons matches the sum of the sentences of the 
velocity Equation (I). We will mark the tip of the .VB vector with . B. The steps are 
shown in Fig. 2.12. 

Fig. 2.12 Steps of finding the relative speed
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Fig. 2.13 Image of velocities 

According to the figures, .ω3 and .ω4 can be obtained from .VBA and . VB , 
respectively. The size of .ω32 and .ω43 can also be determined. We have 

. ω3 = VBA

|BA| , ω4 = VB

|O4B| , ω32 = ω3 − ω2 , ω43 = ω4 − ω3

We should use Equations (II) and (III), which express the relation between . VC , 
. VA, and . VB to determine . VC . 

. (II) VC = VA + VCA

(III) VC = VB + VCB

The .VCA and .VCB extensions are known according to the shape of the mechanism 
and are perpendicular to the sides .CA and .CB, respectively. Equation (II) is used, 
and the extension of the vector .VCA from point . A is plotted in the following figure. 
Then, according to Equation (III), the extension of the vector .VCB is plotted from 
point 3. The intersection of the extensions .VCA and .VCB completes the polygon. 
The intersection of point . C gives . VC . It should be noted that the sum of the vectors 
of polygons must be compatible with equations (II) and (III) (Fig. 2.13). 

The hatched triangle .ABC is called the image (projection) of the velocity of lever 
3 and is similar to lever 3. By determining the position of any given point . D of lever 
3 on the velocity image, its velocity can be obtained. According to the figure, the 
vector drawn from .Ov to . D is . VD . The image of the velocity of lever 1 at origin 
is .Ov because lever 1 is fixed, and its velocity is zero. The images of velocities of 
levers 2 and 4 are the lines .OvA and .OvB, respectively, which correspond to the 
.O2A and .O4B of the mechanism, respectively. 

Note Having velocity images of all levers of a mechanism allows calculating the 
linear velocity of all lever points.
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Fig. 2.14 Crank-slider 
mechanism 

From the above analysis, we have 

. ω3 = VBA

|BA| , ω3 = VCA

|CA| = VCB

|CB| = VDA

|DA|
In other words, all the relative velocities of the points on a lever are proportional 

to the distances between these points. 

Example Given the mechanism in Fig. 2.14 for .ωAB angular velocity, which of the 
following is true? (.O2A is parallel to the motion path . B.) 

1) The direction of .ωAB is the same as the direction of . ω2, but .|ωAB | > |ω2|. 
2) When .O2A is in line with . AB, .ωAB is zero. 
3) .ωAB equals twice the velocity . B divided by the length . AB. 
4) .ωAB equals the difference of the absolute velocities . A and . B divided by the 

length . AB. 

Solution We draw the velocity polygon (Fig. 2.15) with a free scale using the  
relative velocity equations in the mechanisms. 

. VA = VA + VBA

ωBA = VBA

|BA|

From the polygon, velocity is .|VB | = |VBA|
2 , and by placing it in the above 

equation, we have 

.ωBA = VBA

|BA| = 2VB

|BA|
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Fig. 2.15 Velocity polygon 

So option (3) is correct. But about other options, 

. ωBA = VBA

|BA| = 2VB

|BA|
Therefore, option (1) depends on the numerical value of .|O2A|. Option (2) is 

also incorrect. If the two levers, .O2A and . AB, are in the same direction since the 
directions of velocities . A and . B will be different, there will also be angular velocities 
of .ωAB , and it will not be zero. But for option (4), we write from the polygon of 
velocity 

. ωAB = VBA

|BA| = VB − VA

|BA| = VB − VB cot 30

|BA| �= 2VB

|BA|
It is observed that the statement of the option (4) cannot always be correct. 
It should be noted that this question can be easily solved by finding the 

instantaneous center of rotation . A and . B. 
Option (3) is correct. 

Example If the velocity of point . A is 2.5(m/s), what is the velocity of point . B? 
(Fig. 2.16) 

1) 1.5 m/s 2) 2.5 m/s 3) 7.5 m/s 4) 5 m/s 

Fig. 2.16 Two points 
connected with one link
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Fig. 2.17 Velocity triangle 

Solution We have 

. VB = VA + VBA

Given that the directions of .VB and .VBA are known, then the equation has two 
unknowns, magnitude of . VB and .VBA. By drawing the velocity triangle (Fig. 2.17), 
since the resulting triangle is equilateral, 

. VB = 2.5 m/s

Option (2) is correct. 

2.6 Instantaneous Center of Rotation Method for Velocity 
Analysis 

2.6.1 Instantaneous Center of Velocity 

In the following discussion, another concept is used to determine the linear velocity 
of the mechanism particles, which is the concept of the instantaneous center of 
velocity. This concept is based on the fact that at a given moment, the velocities 
of a pair of matching points located on two moving levers are equal relative to a 
fixed lever, and therefore their relative velocities relative to each other are zero. At 
this point, each lever has only a pure rotation around the matching points relative to 
the other lever. A special case of this is when one lever is moving, and the other is 
fixed. Thus, the absolute velocity of a pair of matching points of these two levers 
is zero, and at this moment, the moving lever rotates around these matching points 
relative to the fixed lever. In both cases, the set of matching points is called the 
instantaneous center of velocity (or instantaneous center). Thus an instantaneous 
center is a point that 

(a) Is located on both objects. 
(b) The object has no relative velocity in it.
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(c) At a given moment, one object can be imagined rotating around it relative to 
another object. 

Note If a hinge connects two levers, their instantaneous center is the point of contact 
in the hinge because the velocity vector of the points of contact in the hinge is the 
same. 

Even if the two levers are not directly connected, there will be an instantaneous 
center (geometric position) for them in any desired state. 

Note As the mechanism passes through different positions of a motion cycle, the 
position of the instantaneous center of one lever relative to the other lever changes 
over time due to the polygonal deformation of velocity, except for levers that have a 
pure rotation whose instantaneous center is fixed points. 

The velocities of all points of the levers, which act as sliders in a single crank 
and slider mechanism and only have transmission, are parallel to each other. Also, 
their perpendiculars are parallel, and their intersection is at infinity. Thus the 
instantaneous center of a lever in the transmission is at an infinite distance from the 
lever and perpendicular to the transmission path. Therefore, if, as shown in Fig. 2.18, 
the slider (member 3) slides on a non-curved member (member 2), the instantaneous 
center of the two members is at an infinite distance from the point of sliding and on 
a line perpendicular from the sliding point to the member on which the slider slides 
(drawn dashed line). 

Note If two members have sliding contact with each other, the instantaneous center 
of the two members is somewhere on the common perpendicular line of the two 
members drawn at the point of contact (Fig. 2.19A and B), and if one of the two 
members is a slider, the instantaneous center is on the center of curvature of the 
other member (Fig. 2.19C). 

Note If two members have a pure rolling contact, their instantaneous center is at 
the same point of contact, because in pure rolling, the velocity vector of the contact 
points of the two members is the same. 

Fig. 2.18 Slider on the 
connecting points of two 
links



52 2 Displacement and Velocity Analysis

Fig. 2.19 Common perpendicular line of the two members drawn at the point of contact 

Example In a five-bar mechanism, according to Fig. 2.20, what are the locations of 
instantaneous centers (moments) between members (4 and 5), (3 and 4), and (1 and 
5)? 

1) The instantaneous center makes no sense in this type of mechanism. 
2) The instantaneous centers of 45, 34, and 15 are at infinity. 
3) The instantaneous center 45 is at point . B, 34 at point . A, and 15 on the 

perpendicular line at infinity. 
4) The instantaneous center 45 is at point . B, 34 on the line perpendicular to the 

member at infinity, and 15 at infinity. 

Solution The members 5 on 4, 3 on 4, and 5 on 1 have a straight sliding motion, so 
the instantaneous centers are at infinity. 

Option (2) is correct. 

The desired instantaneous center of lever 2 relative to lever 1 is denoted by 21 or 
12, and the instantaneous center of lever 4 relative to lever 3 is displayed with 43
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Fig. 2.20 Five-bar 
mechanism 

or 34. In general, the instantaneous center of lever . A relative to lever . B is displayed 
with .AB or . BA. Sometimes it is also indicated by .IAB or .IBA. 

Note The desired instantaneous center of lever . A relative to lever . B is on the desired 
instantaneous center of lever . B relative to lever . A. 

2.6.2 Kennedy’s Theorem 

Kennedy’s theorem for three independent objects with a generally planar motion 
states that their three instantaneous centers are on a common straight line. In a 
mechanism consisting of . n levers, there are .n − 1 instantaneous centers for each 
assumed lever. Thus for . n lever, there will be .n(n − 1) instantaneous centers. But 
since the position of each instantaneous center is assigned to two centers, the total 
number of positions .(N) is obtained from the following equation: 

.N = n(n − 1)

2
(2.16) 

To determine the instantaneous centers of a mechanism, we only need to write 
the numbers of all members on the perimeter of a circle at separate points. Then, 
if the instantaneous center of both members is known, connect the points related to 
those two members with a line so that with a simple look, it is determined which 
instantaneous centers are known and which are unknown. 

Example In the mechanism shown in Fig. 2.21, according to the coordinate axes 
specified in the figure at point . B, which square locates the instantaneous center . I36? 

1) First 2) Second 3) Third 4) Fourth
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Fig. 2.21 Mechanism with three sliders 

Solution According to the existing rotational and sliding joints, the instantaneous 
centers . I12, . I34, . I45, . I56, and . I16 are known. 

We draw a circle chart according to the available information (Fig. 2.22A). We 
use Kennedy’s theorem for centers that are a little harder to find. In Fig. 2.22B, a 
dashed line is used to find the instantaneous center . I13 that completes two triangles. 
Triangle 3.2.1 represents three centers (12, 23, and 13) of levers 1, 2, and 3, which 
are on a straight line according to Kennedy’s theorem. The intersection of the two 
lines of the mechanism determines the center 13 that should be on both of these 
lines. The corresponding dashed line must be converted to a full line (Fig. 2.22C) to 
show the unknown center. Figure 2.22D shows the next step in which the position 
of center 46 is determined using triangles 6.4.1 and 6.5.4. 

. I13
At the intersection of the connecting lines−−−−−−−−−−−−−−−−−−−−−−→

{
I12 − I23

I14 − I34

. I64
At the intersection of the connecting lines−−−−−−−−−−−−−−−−−−−−−−→

{
I16 − I14

I65 − I54

. I63
At the intersection of the connecting lines−−−−−−−−−−−−−−−−−−−−−−→

{
I34 − I64

I16 − I13

We see that . I63 is in the second area (Fig. 2.23). 

Option (2) is correct. 

Example In the mechanism of Fig. 2.24, where is the location of the instantaneous 
center between members 1 and 3?
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Fig. 2.22 Instantaneous centers finding 

Fig. 2.23 Instantaneous centers 

Fig. 2.24 Mechanism with slider in between
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1) Along member 2 but not at infinity 
2) Along member 2 and at infinity 
3) On member 2 
4) On the instantaneous center of members 1 and 2 

Solution We know from Kennedy’s theorem that for three members (1, 3, and 4), if 
the instantaneous centers of .I34 and .I14 are known, the instantaneous center of . I13
will be somewhere on the connecting line of points . I34 and . I14. For members 3 and 
4, the instantaneous center is on a line perpendicular to the axis on which the slider 
slides and is at infinity (Fig. 2.25). 

The line connecting the instantaneous centers 14 and 34 starts from the hinge 
connecting the lever 4 to the ground (. I14) and continues until the perpendicular and 
member 4 and infinity. On the other hand, the instantaneous center 13 will be along 
the line connecting the instantaneous centers 12 and 23, which is the extension of 
member 2. According to Fig. 2.26, it can be seen that the instantaneous center 13 is 
along the member 2 but is not at infinity. 

Option (1) is correct. 

Fig. 2.25 Instantaneous centers of the mechanism with slider in between 

Fig. 2.26 Instantaneous center 13 is along member 2
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Fig. 2.27 A three-gear system 

Note The instantaneous center of two levers is a point that has the same velocity if 
placed on either of them. 

Example Where is the instantaneous center of rotation (24) in the three-gear system 
shown in Fig. 2.27? 

1) In the middle of the center line of circles (2) and (4) 
2) Point of contact of circles (2) and (3) 
3) Intersection of the center line with the common internal tangent of circles (2) 

and (4) 
4) Intersection of the center line with the common external tangent of circles (2) 

and (4) 

Solution According to Kennedy’s theorem, the instantaneous center 24 (. I24) is on  
the line connecting .I12 and . I14. On the other hand, according to Fig. 2.28 and the 
point expressed, if the instantaneous center is a point of member 2 (or its extension), 
its velocity must be equal to when it is a point of member 4 (or its extension). The 
location of the instantaneous center is found by forming the velocity triangles of 
two objects and obtaining the point of common velocity. 

Fig. 2.28 Instantaneous centers finding of the three-gear system
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Fig. 2.29 A rolling, slider, 
rotational joint mechanism 

Option (4) is correct. 

If the degree of freedom of the mechanism is more than one, determining 
all instantaneous centers is possible when the velocity characteristics of all its . n
members are known. For example, suppose the number of inputs is less than the 
number of degrees of freedom. In that case, the movement of the lever cannot be 
fully predicted, and only some of its instantaneous centers can be determined. 

Note For a system of one degree of freedom, it is always possible to determine all 
instantaneous centers. 

Example Which statement is correct for the shown mechanism in Fig. 2.29? 

1) According to the available information, all instantaneous centers can be deter-
mined. 

2) For this mechanism, more than three instantaneous centers of rotation are at 
infinity. 

3) For such a mechanism, the instantaneous center of rotation cannot be defined. 
4) According to the available information, some instantaneous centers can be 

determined. 

Solution For this mechanism .n = 7, .f1 = 8, and .f2 = 0 from Gruebler’s equation, 
we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (7 − 1) − (2 × 8) = 2

Only some instantaneous centers can be determined because the number of 
degrees of freedom is more than one. 

Option (4) is correct.
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Fig. 2.30 Rotating slider 
mechanism 

2.6.3 Determining the Velocity with the Help of Instantaneous 
Centers 

The Kennedy theorem can be used as a suitable tool to directly determine the 
absolute velocity of any point in a mechanism without determining the velocity 
of the midpoints (such as the velocity polygon method). 

Example According to the mechanism for angular velocity .ωAB shown in Fig. 2.30, 
which of the following statements is true? (.O2A is parallel to path . B.) 

1) The direction of .ωAB is equal to the direction of . ω2, but .|ωAB | > |ω2|. 
2) When .O2A is in line with . AB, .ωAB is zero. 
3) .ωAB equals twice the velocity . B divided by the length . AB. 
4) .ωAB is equal to the difference of the absolute velocities . A and . B divided by the 

length . AB. 

Solution Because the velocity direction is known at two points, . A and . B, the  
instantaneous center .I13 is also known, and it seems that object 3 is pinned around 
this point (Fig. 2.31). 

. VA = |CA| ωAB VA = |O2A| ω2 VB = |CB| ωAB

�⇒ ωAB = VB

|CB| = VB

|AB| sin 30
= 2VB

|AB|
The reason for the incorrectness of options (1), (2), and (4) was mentioned in 

solving this example in the drawing method for the velocity analysis. 

Option (3) is correct.
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Fig. 2.31 Velocity direction 
analyses 

2.7 Using the Transmission Line for Velocity Analysis 

The distance between the points on a rigid object is always the same and does not 
change. Therefore, the velocity component of any two desired points of a rigid 
object in line with the connection of these two points is equal to each other. For 
example, if point . A has the velocity component .VAt along the line .AB in Fig. 2.32, 
point . B must also have the same velocity component in this direction. It is said that 
the velocity component of .VAt is transmitted exactly to point . B along line .AB and 
line .AB is called the transmission line. 

The use of the transmission line is not limited to one member. When two rigid 
members are in contact with each other, the points of contact of both members must 
have the same velocity component in the direction of the common perpendicular at 
the point of contact. In this case, the common perpendicular of the two members 
at the point of contact is called the velocity transmission line between the two 
members. Using this concept in analyzing some problems is a much simpler and 
faster method than using velocity vector equations and other methods. 

Fig. 2.32 Velocity along the 
connection line
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Fig. 2.33 A crankshaft bar 
mechanism 

Example If the angular velocity of the .AC crankshaft is constant and equal to 
.1(rad/s) (Fig. 2.33), at the moment when .θ = 90◦, the angular velocity of the 
bar .DB is equal to 

1) . 14 rad/s 2) . 16 rad/s 3) . 18 rad/s 4) Neither 

Solution The velocity of point . C is known, and the line perpendicular to .BD at 
point . C acts as the transmission line (Fig. 2.34). Members 2 and 3 must have the 
same velocity component along the transmission line. We denote this component 
with . V ′. We have  

. 

VC = |AC| ω4

|AC| = 120 sin 30 = 60 mm
ω4 = 1 rad/s

⎫⎬
⎭ �⇒ VC = 60 mm/s

. V ′ = VC cos 60 = 30 mm/s

ω2 = V ′

|BC| = 30

120
= 1

4
rad/s

Option (1) is correct. 

Example Bar 3 makes an angle of .30◦ with the horizon surface and the ramp, and 
bar 5 is perpendicular to the ramp (Fig. 2.35). If .VA = 1 cm/s, then 

.
1) VB = VA = VA/B 2) VB = 1 cos 30◦ sin 30◦
3) VB = 1 cos 30◦ cos 30◦ 4) VB = 1 Parallel to the ramp
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Fig. 2.34 Two bars and one 
slider 

Fig. 2.35 Objects on the 
surface, connecting by two 
links 

Solution Method 1: If we consider bar 3 as a velocity transmission line between its 
end points . A and . B, the velocity components of points . A and . B in the direction of 
bar 3 must be the same. On the other hand, points A and B also belong to sliders 
2 and 4, so their velocity direction is parallel to their slide surface. Since the angle 
between the slide surfaces with bar 3 is both the same and equal to 30 degrees, 
therefore, 

. |VA| cos 30 = |VB | cos 30 �⇒ |VB | = |VA| = 1 cm/s

It is clear that velocity . B is also parallel to the ramp. 
Method 2: The instantaneous center of rotation of levers 2 and 4 with joints . A

and . B forms an equilateral triangle (Fig. 2.36), and it can be written as 

. VA = VB = VA/B = VB/A = 1 cm/s

Option (4) is correct.
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Fig. 2.36 Equilateral triangle 

Fig. 2.37 A roller movement 

Some Examples of “Displacement and Velocity Analysis” 

1. In the shown mechanism in Fig. 2.37, the velocity of the roller center is V . What 
is the velocity of slider B? 
1) 1 

2V 2) 0 3) V 4) 3 
2V 

2. In the formed four-bar mechanism in Fig. 2.38, if the point S is assumed to 
belong to the AB interface, the velocity value of this point relative to the O4B 
interface is equal to 
1) 0 2) O4S.ω4 3) SB(ω4 − ω2) 4) SBω4 

3. The eight-bar lever in Fig. 2.39 is under ω2. Given the degree of freedom, which 
of the following equations is true for the value of the rotational velocity of the 
levers? 

1) ω2 = ω3 = ω4 
2) ω5 = ω6 = ω7 = ω8 = 0 
3) ω2 = ω3 = ω4 = ω5 = ω6 = ω7 = ω8 
4) ω3 = ω5 = ω6 = ω7 = ω8 

4. In the six-bar mechanism in Fig. 2.40 for the positions θ2 = θ6 and 2O4P4 = 
O4Q4, the velocity of slider 5 relative to slider 3 is 
1) 0 2) 0.5 3) 2 4) 1
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Fig. 2.38 A four-bar mechanism for velocity analysis 

Fig. 2.39 An eight-bar lever 

5. In the mechanism of Fig. 2.41, where is the instantaneous center of rotation of 
slider B relative to the ground (frame)? 

. 
1) Along the (p) and at ∞ 2) At point Q

3) At point P 4) Along the (b) and at ∞

6. In the mechanism in Fig. 2.42, if the bar AB with a length of 10 cm moves with 
a clockwise rotational velocity of 1 rad/s, determine the velocity of the joint 
B and its direction at the shown moment. Do the rollers have both rolling and 
sliding movements? 

1) 8.7 cm/s to the right 
2) 5 cm/s to the left
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Fig. 2.40 A six-bar  
mechanism 

Fig. 2.41 Crank-slider 

3) 5 cm/s to the right 
4) It cannot be determined because the degree of freedom of the mechanism 

becomes 2. 

7. In the six-bar lever, according to Fig. 2.43, if the velocity of point D, VD is 
known, which of the following statements is correct? 

1) At this point, the velocity of slider 6 is smaller than VD . 
2) At this point, the velocity of slider 6 is the same as the velocity of point D. 
3) It is evident from the figure that the velocity of slider 6 is greater than VD . 
4) Because bar 4 carries a slider and is along the slider 6, the lever locks at this 

point.
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Fig. 2.42 Rollers with 
rolling and sliding 
movements 

Fig. 2.43 A six-bar lever  
mechanism 

8. In the four-bar mechanism in Fig. 2.44, if point C is the center of curvature of 
bar 2 at the point of contact with 3, which option is correct for instantaneous 
center 13? 
1) Point A 2) Point B 3) Point C 4) Point D 

9. In the six-bar mechanism, according to Fig. 2.45, if  VQ is known for this 
moment, which of the following statements is correct? 

1) The velocities of sliders 4 and 6 are fractions of the velocity vector VQ. 
2) The velocity of slider 4 depends on VQ, but the velocity of slider 6 is 

independent. 
3) The velocity of slider 4 is equal to VQ, and the velocity of slider 6 is 

determined by it.
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Fig. 2.44 A four-bar 
mechanism with a curved link 

Fig. 2.45 A six-bar  
mechanism with two sliders 

4) Sliders 4 and 6 have a rotational motion around the center at infinity, and 
their velocity has nothing to do with VQ. 

10. The value of ω2 in the mechanism in Fig. 2.46 is equal to 10 rad/s and 
counterclockwise. Find the value of ω4. 

. 
1) 8.3, counterclockwise 2) 10.7, moving counterclockwise
3) 15.9, counterclockwise 4) 20.6, clockwise

11. In a four-bar mechanism, according to Fig. 2.47, if bar 2 provides input 
movement, where is the center that slider 3 rotates around? 

1) In terms of the type of lever, at point B 
2) At the intersection of bar 4 with a line perpendicular to the groove from 

point O2 
3) At the intersection of bar 4 with a line perpendicular to the groove from 

point B 
4) In terms of the lever type, it only has a sliding motion, and this center does 

not exist.
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Fig. 2.46 A mechanism with counterclockwise input 

Fig. 2.47 A four-bar mechanism with rotating link in between 

12. According to Fig. 2.48, the ascent velocity of the follower at the shown moment 
in centimeters per second is equal to N = 120 rpm, and the dimensions are in 
centimeters. 
1) 31.416 2) 37.25 3) 37.7 4) 43.53 

13. In the mechanism in Fig. 2.49, if  ω2 is known, the mechanism has 21 instanta-
neous centers. How many of them can be determined? 
1) All 2) 9 3) 11 4) 10 

14. In Fig. 2.50, obtain ωAB in rad/s. 
1) 56.6 CCW 2) 56.6 CW 3) 34.1 CCW 4) 28.3 CCW 

15. In the OAC slider-crank mechanism (Fig. 2.51), which answer is correct for 
the slider’s velocity? 

1)|VC | = ω2.BC 2)|VC | = OA.BC 
AB .ω2 

3)|VC | = OA.AC 
BC .ω2 4)|VC | = BC.AC 

OA .ω2 
16. In the shown mechanism in Fig. 2.52, which statement is correct for the location 

of the instantaneous center of the velocity of members 4 and 5? 

1) It is along member 4. 
2) It is at point A.
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Fig. 2.48 A cam-follower mechanism 

Fig. 2.49 Mechanism with 21 instantaneous centers 

3) It is along the line perpendicular to member 4 from point A and at an infinite 
distance. 

4) It is along the line perpendicular to member 4 from point A and at a finite 
distance.
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Fig. 2.50 Link AB rotational velocity 

Fig. 2.51 A slider-crank mechanism 

17. The bar AB rotates clockwise (Fig. 2.53) with angular speed ω = 3 rad/s. The 
speed of slider D and angular speed of bar DB are 

. 
1) θ̇ = 3 rad/s, VD = 2 m/s 2) θ̇ = 3 rad/s, VD = 4 m/s
3) θ̇ = 20

3 rad/s, VD = 2 m/s 4) θ̇ = 20
3 rad/s, VD = 4 m/s

18. According to Fig. 2.54, the parallel plates are in contact with the cylinder, mov-
ing at certain velocities without sliding. Which of the following is incorrect? 

. 
1) Point VO = V1

4 2) Pointω = 3
2

V2
R

3) Point ω = 3
4

V1
R

4) Point ω = |V1|−|V2|
2R

19. According to Fig. 2.55, what is the ascent velocity of the follower at the shown 
moment in centimeters per second? (N = 120rpm and sizes are in centimeters.) 
1) 25.133 2) 29.25 3) 37.7 4) 45.533
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Fig. 2.52 A mechanism with 
some sliding members 

Fig. 2.53 Bar AB rotates 
clockwise as input 

Fig. 2.54 Two parallel plates 
in contact with the cylinder 

20. According to Fig. 2.56, what is the magnitude of the angular velocity of bar 3 
at this moment in terms of radians per second? 1) 4.45 2) 6.36 3) 7.22 4) 8 

21. In the mechanism shown in Fig. 2.57, the velocity of point A is given. Point A 
is marked on the center of the slider. The velocity of point B is equal to 1) 1.9 
m/s 2) 2.9 m/s 3) 3.9 m/s 4) 4.9 m/s
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Fig. 2.55 Cam-slider 
mechanism 

Fig. 2.56 Rod 3 has a slider 

O3 

y 

xO2 

A 2 A 3 

Rod 3
 

r
=

33
 m

m
 

r2 = 50.8 mm 

Fig. 2.57 Point A is sliding 
on the surface 

22. What equation is correct for the four-bar mechanism in Fig. 2.58? 

. O2A = 1 O4B = 4 O2O4 = 4

1) ω2 = 4ω4 2) ω4 = 4ω2 3) ω2 = 2ω4 4) ω4 = 2ω2 
23. Given the angular velocity of the arm OB (member 2) (Fig. 2.59), which of the 

following equations is correct for finding the angular velocity of the arm BD 
(member 3)? 

1) V D = V B + V D/B, ωBD = VD/B 
DB 

2) V C3 = V B + V C3/B, ωBD = VC3/B 
BC3
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Fig. 2.58 Four-link mechanism 

Fig. 2.59 Angular velocity of the arm OB is given 

Fig. 2.60 Two sliding motions in two sides 

3) V C3 = V B + V C4/B, ωBD = VC4/B 
C4B 

4) V C4 = V C3 + V C4/C3 , ωBD = VC4/C3 
C4C3 

24. What are the two points of the instantaneous centers of the non-primary rotation 
(other than 12, 13, and 14) in the mechanism of Fig. 2.60? 

1) A and B 2) C and D 3) F and G 4) F and E
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Fig. 2.61 A crank mechanism 

2 

3 
b 

(A) (B) 

Fig. 2.62 Two crank-slider mechanisms 

25. In the crank mechanism of Fig. 2.61, point B is a point on interface 3. In the 
shown state in the figure, what is the velocity of point B? (AB = BC) 

1) Zero 
2) Half the velocity of point A. 
3) Equal to the velocity of point A. 
4) Twice the velocity of point A. 

26. If the angular velocity equation ω3 = −b 
c 

cos θ2 
cos θ3 

ω2 is correct for the sliding crank 
mechanism of Fig. 2.62A, which of the following equations about the rapid 
return mechanism of Fig. 2.62B is correct? 

1) ω2 = 
−b 
c 

cos θ2 

cos θ3 
ω2 2) ω3 = ω1 

1 + b 
c 

cos θ2 
cos θ3 

3) ω1 = ω3 

1 + b 
c 

cos θ2 
cos θ3 

4) ω3 = 
−b 
c 

cos θ2 

cos θ3 
ω2 

27. For the shown mechanism in Fig. 2.63, if the velocity of point D is known, 
which group of the following equations is sufficient to obtain the angular 
velocity of member 2? 

1) VE = VC4 + VE/C4 VB = VE + VB/E VE = VD + VE/D
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Fig. 2.63 Consider the 
velocity of point D is known 

Fig. 2.64 An elliptical 
compass 

2) VC4 = VC3 + VC4/C3 VB = VC4 + VB/C4 VE = VD + VE/D 
3) VB = VC3 + VB/C3 VE = VD + VE/D VB = Vx + VB/x VC3 = 

VC4 + VC3/C4 

4) VB = VC3 +VB/C3 VE = VD+VE/D VC3 = Vx+VC3/x VC3 = VC3/C4 

28. Which of the following statements is true about the elliptical compass 
(Fig. 2.64)? 

1) It is a lever with four bars, one degree of freedom, and four instantaneous 
centers. 

2) It is a lever with six instantaneous centers, three of which are at infinity. 
3) The elliptical compass cannot be used to draw a circle. 
4) The elliptical compass can be used to draw a circle if the degree of freedom 

of the mechanism is changed. 

29. In the mechanism in Fig. 2.65, the instantaneous centers 2 and 4 are 

1) Placed on component 3 
2) Along component 3 and at infinity 
3) Along component 3 but not at infinity 
4) Not defined for this mechanism
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Fig. 2.65 Objects 2 and 4 are 
on the surface 

Fig. 2.66 A six-bar  
mechanism 

30. Which of the following equations is not true about the six-bar mechanism in 
Fig. 2.66? 

1)

{ − VC/H − VE/C + VG/E = 0 

− VB/F − VD/B − VE/D + VG/E = 0 

2)

{ − VC/H − VE/C + VE/G = 0 

− VB/F − VD/B − VE/D + VE/G = 0 

3)

{
VD = VE + VD/E 

VD = VC + VD/C 

4)

{
VC = VH + VC/H 

VC = VD + VC/D 

31. According to Fig. 2.67, a pin with diameter d is installed around disk A, and 
four grooves with width d have been created on the other disk. Disc A rotates 
evenly every second, and the motion is transferred to Disc B. In this case, 

1) Disc B rotates only half a turn each time Disc A rotates.
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Fig. 2.67 Disc A rotates 
evenly every second 

Fig. 2.68 Angular velocity 
of the member AB is equal to 
20rad/s 

2) Disc B Continues to rotate for only half a second for each rotation of disc 
A. 

3) When disk B rotates, its angular velocity at any moment is equal to the 
angular velocity of disk A. 

4) None. 

32. In the previous problem, when the pins are in line with the centers of disks A 
and B, the angular velocity of disk B is equal to 

1) 2π rad/s 2) 2π√
2−1 

rad/s 3) 4π rad/s 4) 1√
2−1 

rad/s 

33. In the mechanism of Fig. 2.68, if the angular velocity of the member AB is 
equal to 20rad/s, the angular velocity of the member BC will be equal to 

1) 5 rad/s 2) 10 rad/s 3) 15 rad/s 4) None
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Fig. 2.69 Link 3 connects 
objects 2 and 4 

Fig. 2.70 A normal four-bar 
mechanism 

34. In the mechanism shown in Fig. 2.69, the instantaneous centers 2 and 4 are 

1) Located on component 3 
2) Along component 3 but not at infinity 
3) Along component 3 and at infinity 
4) Not defined for this mechanism 

35. Which equation is true in the four-bar mechanism in Fig. 2.70? 

. O2A = 1 O4B = 4 O2O4 = 4

1) ω2 = 2ω4 2) ω4 = 4ω2 3)ω4 = 0 4)ω2 = 4ω4 

Answers for the Examples of “Displacement and Velocity 
Analysis” 

1. Option (2) is correct. 
The angular velocity of the roller is equal to ω = V 

R
. If its rolling point is 

called O, we have  

.VA = VO + ω × r = 0 +
(

V

R

)
r = V
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−→
V A is perpendicular to OA and has no component in the direction OA. 

Since OA and AB are also aligned, 
−→
V A has no component in the direction 

AB. Therefore, 
−→
V B also has no component in the direction AB. Note that the 

direction of velocity B must be in the direction of sliding (vertical direction). 

And since the component of this velocity in the direction AB is zero,
−→
V B itself 

is also zero. That is, the velocity of slider B is zero. 
2. Option (1) is correct. 

O4 is the instantaneous center 14, B is the instantaneous center 34, A is 
the instantaneous center 23, and O2 is the instantaneous center 12. It is easy 
to conclude from Kennedy’s theorem that S is the instantaneous center 13, and 
therefore its instantaneous velocity is zero. 

3. Option (4) is correct. 
To have a certain movement, the degree of freedom of the mechanism must 

be one, because otherwise, the calculation of all velocity parameters will not be 
possible. The contact of the sliders and bars is with weld, and it is possible to 
move through the sliders. Members 2, 3, and 4 form a four-bar mechanism that, 
with ω2, the values of ω3 and ω4 will also be known. The rotation of member 3 
moves bars 5 and 7 at the same rotational velocity (ω), and so bars 6 and 8 will 
rotate at the same rotational velocity. So we have 

. ω3 = ω5 = ω6 = ω7 = ω8

4. Option (2) is correct. 
First method: 
The velocity of member 5 in the direction perpendicular to member 4 is 

twice the velocity of member 3 in the direction perpendicular to member 4. It 
is equal to O4Q4 = ω4 and O4P4 = ω4, respectively. On the other hand, the 
velocities of both sliders 5 and 2 are parallel. Since the length of member 6 is 
twice the length of member 2 (according to the similarity of the triangles), the 
velocity of member 5 in the direction perpendicular to member 6 is twice the 
velocity of member 3 in the direction perpendicular to member 2. Therefore, 
their image along member 4 has the same ratio. 

Second method: 

. VP2 = VP4 + VP2/P4

VQ6 = VQ4 + VQ6/Q4

It can be shown that these two vector equations form two similar triangles 
with a similarity ratio of 2. Therefore VQ6 = 2VP2 and therefore VQ5 = 2VP3 . 

5. Option (4) is correct. 
Using Kennedy’s theorem, we can find the instantaneous center of rotation 

of slider B relative to the ground. According to Fig. 2.71,
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Fig. 2.71 Finding the instantaneous rotation centers 

I12 is connected to I23, which is a line in the direction (b). The junction of 
I14 and I34 is also at infinity. Thus the instantaneous center I13 is located along 
(b) and at infinity. 

6. Option (2) is correct. 

. VA = VB + ω × RBA

�⇒ VAĵ = VBî + (1k̂) × 10(

√
3

2
î − 1

2
ĵ )

Since the component ĵ of the velocity B is zero, we consider only the 
component î, and from the above equation, we have 

. VB = −5î

7. Option (3) is correct. 
According to the transmission line discussion, the velocity component of 

the two ends of member 5 in the direction of connection of these two points is 
the same. On the other hand, point D has only one velocity component in the 
direction of member 5. Still, the other end of member 5 (the head connected to 
lever 6) and this component of velocity have another component in the direction 
perpendicular to member 5. Therefore, part of the velocity of slider 6 is equal 
to the total velocity of point D. It can be said that the total velocity of slider 6 
is greater than the velocity D. 

8. Option (1) is correct. 
Instantaneous center 13 is located at the intersection of the connecting line 

between instantaneous centers 23–12 (O2C) and instantaneous centers 34–43 
(member 4). This intersection is point A.
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Fig. 2.72 Line connecting 
instantaneous centers of links 
2 and 3 and links 1 and 2 

9. Option (3) is correct. 
Point Q is located along the virtual extension of member 2. This point is 

located along the connecting line of I12 and I14. On the other hand, this point 
is along the connecting line of I34 and I23. Thus, this point is the instantaneous 
center of rotation 24 (I24) according to Kennedy’s theorem. So its velocity is 
equal to the velocity of slider 4. 

10. Option (2) is correct. 
Due to the lack of dimensions and sizes, an exact solution cannot be pro-

vided. But considering Fig. 2.72, the distance of I12 to slider 3 is approximately 
equal to the distance of I14 to this slider. On the other hand, I12, I14, and slider 
3 are approximately in the same direction. Therefore, the velocity of slider 3 
perpendicular to this direction is calculated from the following equations: 

. 
V3 = ω4 × r4

V3 = ω2 × r2

}
�⇒ ω4 
 ω2

11. Option (2) is correct. 
Instantaneous center I13 is located along the line connecting instantaneous 

centers I23 and I12, as well as instantaneous centers I14 and I34. 
12. Option (3) is correct.
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Fig. 2.73 Camshaft and 
follower at the point of 
contact 

Assuming that P1 and P2 are the points belonging to the camshaft and the 
follower at the point of contact (Fig. 2.73), respectively: 

. VP1 = |OP1| ω1 ω1 = 120 × 2π

60
= 12.57 rad/s

|OP1| = 3

sin60
= 3.46cm

VP1 = 3.46 × 12.57 = 43.49cm/s

The image of the velocities of points P1 and P2 along the common vertical 
must be equal and in the same direction. And on the other hand, because the 
direction of VP2 is also in the direction of the common vertical, 

. VP2 = VP1 cos 30 = 43.49 cos 30 = 37.7cm/s

Test method: The desired answer is the multiplication of the horizontal 
distance of the point of contact from the point O (3cm) with ω1. 

. VP2 = 3 × 12.57 = 37.7

10. Option (3) is correct. 
By knowing w and ω2, the velocity characteristics of members 2, 3, and 

4 can be obtained. Therefore, all instantaneous centers related to the 4-3-2-1 
mechanism, which are 6, can be calculated. 

Also, due to the pure rotation of the disk, the instantaneous center I17 is 
the point of contact of the disk with the ground. Also, I67, I56, I35, and I45 
are quite clear. Then the other 5 instantaneous centers of the system are also 
identified. Because the system has two degrees of freedom, it is impossible to
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determine all instantaneous centers by knowing only one velocity quantity (ω2). 
So 6 + 5 = 11 instantaneous centers can be determined. 

11. Option (4) is correct. 
The velocity component of points B and C along the BC transmission line 

must be the same, so 

. VC/BC = 40 cos 45◦ = 40√
2

= 28.28

This component is the velocity in the direction of BC, from  C to B. But  
the velocity vector of point B is perpendicular to AB. Therefore due to the 
perpendicularity of BC to AB, it is in the direction of BC (away from C). 

. VB/BC = VB = 28.28 m/s

On the other hand, 

. VB = |AB| ωAB = 100

100
ωAB �⇒ ωAB = VB = 28.3

12. Option (2) is correct. 
Point B is the instantaneous center of rotation and the instantaneous center 

of the bar AC with the ground, and it looks like this bar is pinned to the point 
B, so  

. 

(
VA = |AB| ωAC

VA = |OA| ω2

)
�⇒ ωAC = |OA| ω2

|AB|

VC = |BC| ωAC = |BC| |OA|
|AB| ω2

Note that the dot symbol does not mean internal multiplication in this 
question. 

13. Option (3) is correct. 
Member 5 slides on member 4, and this slide is a straight line. So the 

instantaneous center is on the line perpendicular to member 4 and is at infinity. 
14. Option (3) is correct. 

You can see the directions of the velocities in Fig. 2.74. 

. |VB | = |AB| ω |VB | = 0.5 × 3 = 1.5 m/s VD = VB + VD/B



84 2 Displacement and Velocity Analysis

Fig. 2.74 Directions of 
velocities 

Fig. 2.75 Velocity triangle 

According to the velocity triangle drawn in Fig. 2.75, we can write 

. 
∣∣VD/B

∣∣ = |VB |
cos 53.13

= 2.5 m/s

θ̇ =
∣∣VD/B

∣∣
|DB| = 2.5

0.375
= 20

3
rad/s

VD = |VB | tan 53.13 = 2 m/s

15. Option (4) is correct. 
The planes have non-slide contact with the disk, so their velocity is the same 

as the disk velocity at points A and B (Fig. 2.76). By obtaining the center of 
rotation C, 

. ω =
∣∣VA/B

∣∣
|AB| = 3V2

2R
= 3V1

4R

V1 = |CA| ω �⇒ |CA| = 4R

3
�⇒ |CO| = R

3

V0 = |CO| ω = R

3
.
3

4

V1

R
= V1

4

So options (1), (2), and (3) are correct and option (4) is incorrect.
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Fig. 2.76 Velocities of points 
A and B  

Fig. 2.77 Transmission line 
and common vertical 
direction 

16. Option (3) is correct. 
Assuming that P1 and P2 are the points belonging to the camshaft and the 

follower (Fig. 2.77) at the point of contact, respectively: 

. VP1 = |OP1| ω1

|OP1| = 3

sin 60
= 3.46 cm ω1 = 120 × 2π

60
= 12.57 rad/s

VP1 = 3.46 × 12.57 = 43.49 cm/s

The image of the velocities of points P1 and P2 in the common vertical 
direction must be equal and in the same direction. And on the other hand, 
because the direction of VP2 is also in the common vertical direction, 

. VP2 = ∣∣VP1

∣∣ cos 30 = 43.49 cos 30 = 37.7 cm/s

17. Option (2) is correct.
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Fig. 2.78 The velocity of the 
center of the roller 

The velocity of point A2 in the center of the roller is as in Fig. 2.78: 

. 
∣∣VA2

∣∣ = r2.ω2
∣∣VA2

∣∣ = 50.8 × 10 = 508 mm/s

The image of the velocity of point A2 in the common vertical direction 
(transmission line) gives us the velocity of point A3 belonging to bar 3 at the 
point of contact. 

. 
∣∣VA3

∣∣ = ∣∣VA2

∣∣ cos 65.6 = 508 cos 65.6 = 209.85 mm/s

ω3 =
∣∣VA3

∣∣
r3

= 209.85

33
= 6.36 rad/s

18. None of the options is correct. 
If point D belongs to member 3, its velocity direction is known. On the other 

hand, points D and A belong to a rigid body, so the velocity components are 
the same along the connecting line (Figs. 2.79 and 2.80) (see the text of the 
transmission line section). 

.VD cos 33.6 = VA �⇒ VD = 2.4 m/s

VD/A = VD sin 33.6 = 1.33 m/s

ω3 = VD/A

|AD| = 1.33

0.144
= 9.24 rad/s cω

VB = VD + VB/D
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Fig. 2.79 Velocity 
components of points A and 
D 

Fig. 2.80 Velocity of point D 
relative to point B 

VB/D = |DB| ω = 0.06 × 9.24 = 0.55 m/s 

VB =
√

V 2 
D + V 2 

B/D =
√

2.42 + 0.552 = 2.46 m/s 

19. Option (1) is correct. 
The velocities of points A and B from member 3 are in the same direction, 

so ω3 is zero. 

. VB/A = |AB| ω3 = 0

VB = VA + VB/A �⇒ VB = VA

|O2A| ω2 = |O4B| ω4ω2 = 4ω4

20. Option (2) is correct. 
In the given mechanism, the velocity of point B and the velocity direction 

of point C3 are known. At the same time, the velocity direction of VC3/B is also 
known, so by solving the following equation, the size of VC3/B and VC3 can be 
obtained. 

.VC3 = VB + VC3/B
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Fig. 2.81 Auxiliary circle 

By obtaining VC3/B , 

. ωBD = VC3/B

|BC3|
So option (2) is correct. 
Option (1) is wrong because we know nothing about point D, the equations 

of option (3) are also wrong, and option (4) does not give us any specific 
information. 

21. Option (2) is correct. 
First, note that the velocities of components A and B must be equal at 

the instantaneous center IAB . Therefore, I23 and I34 must be located on the 
common vertical (3,2) and (4,3), respectively. 

By drawing an auxiliary circle (Fig. 2.81) and considering the direct contact 
of 2 to 3 and 3 to 4, we can conclude 

I34 
At the intersection−−−−−−−−−−→

{
I14 − I13 The connecting line 

Common vertical



2.7 Using the Transmission Line for Velocity Analysis 89

I23 
At the intersection−−−−−−−−−−→

{
I12 − I13 The connecting line 

Common vertical 
So C and D are the instantaneous centers. 

22. Option (3) is correct. 
The direction of velocity at points A and C is clear. Because the two 

velocities are parallel, the instantaneous center of I13 is at infinity, meaning 
that all points on member 3 have the same velocity: 

. VB = VA

23. Option (3) is correct. 
We must first note the difference between the two sets. The difference is in 

the fixed position of hinge 23 and the consequent fixing of bar 2. On the other 
hand, due to the similarity of the geometry of the two sets, the relative angular 
velocity between the members must remain constant. The given equation of 
angular velocity in relative terms is as follows: 

. (ω3 − ω1) = −b

c

cos θ2

cos θ3
(ω2 − ω1)

Because for the first mechanism, ω1 = 0. 
In the second mechanism, ω2 = 0, so from the placement of ω2 = 0 in the  

above equation, we have 

. ω3 − ω1 = +b

c

cos θ2

cos θ3
ω1 �⇒ ω1 = ω3

1 + b
c

cos θ2
cos θ3

24. Option (3) is correct. 
If C3 and C4 are points corresponding to C belonging to members 3 and 4, 

respectively: 
In option (1) between E and C4, in option (2) between B and C4, and in 

option (4) between x and C3, where the points belong to two different objects, 
the written velocity equations are not correct, but if the two points coincide, 
such as C4 and C3, the equation between the velocities is correct. The equations 
of the option (3), while regarding this note, use the points about which we have 
information, such as points B, D, and C3, the velocity of which is known to us, 
while the last equation is an additional equation and there is no need for it. 

25. Option (2) is correct. 

.n = 4 �⇒ Number of instantaneous centers = n(n − 1)

2
= 4(4 − 1)

2
= 6

n = 4, f1 = 4, f2 = 0 �⇒ DOF = 3 (n − 1) − 2f1 − f2

= 3 (4 − 1) − (−2 × 4) = 1
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Fig. 2.82 Circle is a kind of ellipse 

Option (3) is wrong because the circle is a kind of ellipse (Fig. 2.82). It 
should be noted that if the tip of the pen is in the middle of the distance between 
joints 23 and 34 (meaning when the pen P is at point C), the equation of the 
circle is obtained, and there is no need to change the degree of freedom of the 
mechanism. 

26. Option (3) is correct. 
According to Kennedy’s theorem, I24 is at the intersection of the connecting 

line of I23 and I34 with the connecting line of I12 and I14, but  I14 and I12 are 
at infinity, so the instantaneous center I24 is along component 3 and at infinity 
(Fig. 2.83). 

27. Option (1) is correct. 
Options (3) and (4) represent the velocity equations between two points on 

a rigid body, so they are correct. In option (2), since points F , H , and G are 
fixed, 

.VB/F = VB VE/G = VE VC/H = VC

− VC/H − VE/C + VE/G = −VC − VE + VC + VE = 0

− VB/F − VD/B − VE/D + VE/G = −VB − VD + VB − VE + VD + VE = 0
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Fig. 2.83 Intersection of the 
connecting lines 

Option (2) equations are also correct, so option (1) is wrong. Option (1) 
equations can be checked like option (2). Note that these equations are vectors. 

28. Option (4) is correct. 
In the Genoa wheel mechanism, for one rotation of disc A, disc  B rotates a 

quarter, and then disc B continues to rotate for a quarter of a second. 
29. Option (2) is correct. 

The pin is a moving point pin on the coordinate system connected to disk B 
(Fig. 2.84). When the pin is aligned with the disc centers A and B, its relative 
velocity relative to the groove is zero. So if P1 and P2 are points belonging to 
disks 1 and 2 at the point of contact, then 

. VP = VP1 = VP2 + VP1/P2 VP1/P2 = 0

VP1 = VP2 Rω1 = |C2P | ω2

|C1C2| = √
2R |C2P | =

(√
2 − 1

)
R

ω1 = 2π rad/s

Rω1 =
(√

2 − 1
)

Rω2 �⇒ ω2 = 2π√
2 − 1

rad/s

30. Option (1) is correct.
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Fig. 2.84 P is the contact 
point 

Fig. 2.85 Points B and C 
velocities 

The direction of velocity VC is known. Using vector equations and the 
geometry of the object (Fig. 2.85), 

. |AB| = 40 mm

VB = |AB| ω = 40 × 20 = 800 mm/s

VB = VC + VB/C

sin 67.38

|VB | = sin 36.9∣∣VB/C

∣∣
∣∣VB/C

∣∣ = 520.36 mm/s

ωBC =
∣∣VB/C

∣∣
|BC | = 520.36

104
= 5 rad/s

31. Option (3) is correct.



2.7 Using the Transmission Line for Velocity Analysis 93

According to Kennedy’s theorem, I24 is at the intersection of the connecting 
line of I23 and I34 with the connecting line of I12 and I14. But  I12 and I14 are 
at infinity. So I24 is along lever 3 and at infinity. 

32. Option (4) is correct. 
The velocities of points A and B, from member 3, are in the same direction, 

so ω3 = 0. So we have 

.
−→
V B = −→

V A + −→
V B/A, VB/A = |AB| ω3 = 0 �⇒ VB = VA

�⇒ |O2A| ω2 = |O4B| ω4 �⇒ ω2 = 4ω4
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