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Preface 

Welcome to the world of dynamic machines! This book aims to provide a compre-
hensive understanding of the principles, analysis, and design of dynamic machines, 
covering a wide range of topics from displacement and velocity analysis to cams, 
gear trains, and balancing. Whether you are a student, an engineer, or a curious 
enthusiast, this book is designed to be your guide to unlocking the fascinating realm 
of machine dynamics. 

The study of dynamic machines plays a vital role in various fields, including 
mechanical engineering, robotics, automotive systems, and many more. Under-
standing the behavior and performance of machines in motion is essential for 
optimizing their design, ensuring their reliability, and achieving desired function-
ality. Through this book, we delve into the fundamental principles and techniques 
that govern the dynamics of machines, enabling you to analyze, evaluate, and design 
dynamic systems with confidence. 

The idea for this book was born in 2017. Originally intended as a supplement to 
my lectures, it was to fill a gap I had noticed: a book without a lot of text and with 
a sufficient number of practical examples to motivate students. It was also intended 
to help lecturers find easily useful examples with sufficient explanations. During 
my lectures, I learned that the areas to be covered in such a book had to be much 
more extensive than originally expected. As I outlined the topics, I realized that 
the book would be greatly enhanced by the contributions of specialists in various 
fields. Not only did the explicitly named authors contribute to the book, but also 
former and current colleagues were recruited for dedicated collaboration during the 
project. The initial inquiry with Springer, our preferred publisher, resulted in an 
impressively positive response and subsequently in constructive cooperation at all 
times. 

Our journey begins with an introduction to the motivation behind studying 
machine dynamics, setting the stage for the subsequent chapters. We explore the 
definitions and types of motion, providing a solid foundation for understanding 
the principles and concepts that follow. The discussion then progresses to various 
components and mechanisms, such as levers, cams, gear trains, and balancing, 
which form the building blocks of dynamic machines. Each topic is carefully
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vi Preface

explained, accompanied by illustrations, examples, and practical applications to 
enhance your comprehension. 

One of the strengths of this book lies in its balance between theoretical 
principles and practical applications. We have strived to strike a harmonious chord 
between theory and practice, allowing you to grasp the underlying concepts while 
appreciating their real-world implications. Theoretical derivations and mathematical 
analyses are presented in a clear and concise manner, supported by visual aids and 
diagrams to aid in visualization. Moreover, practical examples and case studies are 
included throughout the book, illustrating the application of the concepts in real-life 
scenarios. 

As authors, our aim has been to create a valuable resource that not only imparts 
knowledge, but also ignites your curiosity and passion for dynamic machines. We 
have drawn upon our collective expertise and experience in the field to ensure that 
the content is accurate, up-to-date, and relevant. We hope that this book serves as a 
trusted companion, empowering you to unravel the intricacies of dynamic machines 
and inspiring you to explore new horizons in your own endeavors. 

I would like to express my gratitude to the colleagues who have provided valuable 
feedback and suggestions during the development of this book. Their insights have 
undoubtedly enhanced its quality and clarity. I also extend my appreciation to the 
publishers and the editorial team for their support and guidance throughout the 
publication process. 

We encourage you to embark on this dynamic journey with an open mind, a thirst 
for knowledge, and a desire to unravel the mysteries of machines in motion. May 
this book serve as a stepping stone, unlocking new perspectives, and empowering 
you to become proficient in the captivating realm of dynamic machines. This book 
can be used as a reference book in the field of dynamic machines. This book 
provides a comprehensive explanation of mechanical systems and a wide range 
of examples to familiarize students with the concepts and practical applications of 
various mechanical systems. 

Thanks to the support of colleagues and my supervisors, especially Prof. Dr. 
Jochen Steil, Prof. Dr. Dardel, Prof. Dr. Farshid Najafi, and Prof. Dr. Majid 
Mohammadi Moghaddam, I was able to explore different design processes and find 
out what kinds of mechanisms and examples will be useful for students to write their 
thesis and implement the concept and useful designs in their projects. A big thanks 
also to Springer, Behzad Saeedi and Ege Hassürücü, for their support in preparing 
this book. 

As a last word, I should thank the person who gave me a lot of support in all 
directions, Prof. Dr.-Ing. Thorsten A. Kern, to whom I owe a lot and who encouraged 
me to pursue and finish this book. 

Best regards, 

Hamburg, Germany Alireza Abbasimoshaei 
June 2023
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Symbols 

This list includes the most relevant symbols used throughout the book. 

Symbol Description Unit 

a acceleration . m
s2

A area . m2

.α angle, Euler rotation (around the x-axis) degree, radian 

.β angle, Euler rotation (around the y-axis) degree, radian 

c spring constant – 

d damping/friction . N
m·s

d distance, diameter m 

F mechanism DoF – 

.ftot sum of all joint degrees of freedom of a mechanism – 

.fi,...,g degree of freedom of the ith joint in a mechanism – 

.fid sum of identical condition – 

.fid sum of all identical links in a mechanism – 

F bearing-/movement-DOF of a mechanism – 

F force – 

.�F force difference N 

.φ roll angle, rotation (around z-axis) degree, radian 

.ϕ angle degree 

g number of joints in a mechanism – 

g number of joints – 

.γ angle, Euler rotation (around the z-axis) degrees, radians 

h height m

(continued)
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xii Symbols

Symbol Description Unit 

I moment of inertia . m4

j , i imaginary unit, .i = √−1 ∈ C – 

k spring constant, mechanical stiffness N m−1 

k number of chains in a mechanism – 

l length m 

m mass . kg

M torque Nm 

n number of bodies – 

.ω,	 angular velocity . rad
s

.ψ yaw angle, rotation around x-axis degree, radian 

r distance, radius m 

t time/point in time s 

.τ torque Nm 

.θ pitch angle, rotation about the y-axis degree, radians 

v velocity m s−1 

x distance, displacement, translation, position m 

.x = (x, y, z) Cartesian coordinates – 

.�x position displacement m



Indices and Distinctions 

The usage of the most relevant indices and distinctions used throughout the book is 
shown using the replacement character . �. 

Index Description 

.�0 base or reference value 

.�E referring to the real or VR environment 

.�max maximum value 

.�min minimum value 

.�rot referring to a rotational value 

.δ� small change, differential 

.�� discretized element 

.�(t) time-depending value 

.�̇ derivative with respect to time

xiii



Chapter 1 
Motivation and Introduction to Machine 
Dynamics 

This chapter focuses on providing an introductory overview of machine dynamics. 
The chapter begins with an introduction, setting the stage for understanding the 
importance and relevance of machine dynamics in the study of mechanical systems. 
Then key terms and concepts are defined, laying the foundation for further explo-
ration. These definitions help establish a common understanding of the terminology 
used in machine dynamics. 

Next, the chapter discusses different types of motion, giving readers an under-
standing of the various ways machines can move. It also introduces the concept of 
levers and categorizes them into different types based on their characteristics and 
functionality. 

Furthermore, the concept of degree of freedom is explained, highlighting its 
importance in analyzing and understanding the motion capabilities of mechanical 
systems. Additionally, the chapter provides an overview of the four-bar linkage, a 
commonly used mechanism, discussing its structure, functionality, and applications. 

Overall, this chapter serves as a comprehensive introduction to machine dynam-
ics, providing readers with the necessary background and motivation to delve deeper 
into the subject and explore the dynamics of mechanical systems. 

1.1 Introduction 

Mechanics is a part of experimental science related to motion, force, and time. 
Mechanics divides into two parts: one part is static, that time does not affect it, 
and the other part is dynamic, that time has some effect on it. Dynamics itself 
consists of kinematic and kinetic, namely motion analysis and force analysis. These 
two analyses are usually performed together. But in machine dynamics with the 
assumption of rigid components, these two analyses can be performed separately. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. Abbasimoshaei, T. A. Kern, Machine Dynamics, 
https://doi.org/10.1007/978-981-99-6010-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6010-1protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1
https://doi.org/10.1007/978-981-99-6010-1_1


2 1 Motivation and Introduction to Machine Dynamics

Machine dynamics is the study and analysis of the forces acting on the components 
of a machine and the movements resulting from these forces. 

Movement in machines creates forces. Unwanted forces disrupt machine move-
ments or failure and breakdown of its components. The analysis of these forces 
and the reduction of unwanted forces are issues addressed in machine dynamics. To 
analyze the forces caused by motion, we first need to analyze the motion itself, 
regardless of its cause and the kinematics of the mechanism or machine. After 
the kinematic analysis, the forces are analyzed that is the kinetic analysis of the 
mechanism, and finally, a solution is thought to reduce or balance the forces. 

This chapter introduces the different mechanisms and explains the basic con-
cepts. In the following, we will discuss other topics. 

1.2 Definitions 

In exploring mechanisms, we frequently come across expressions such as mecha-
nism, machine, interface, etc., whose definitions are as follows. 

A mechanism is a combination of rigid and resistant objects interconnected 
to have a specific relative motion to each other. Crankshaft, piston, and piston 
assemblies in an internal combustion engine are examples of a mechanism. 

A machine is a mechanism or a set of mechanisms that transmit power from a 
power source to the consumer or the ultimate mechanical resistance. The internal 
combustion engine is an example of a machine. 

A lever or interface is the simplest member of a mechanism. By attaching it 
to adjacent members to move relative to each other, a specific task or action is 
performed. The joint is the junction of two levers that can move relative to each 
other. A kinematic diagram is a diagram in which the dimension or dimensions of 
an effective lever in a particular mechanism motion are plotted. Figure 1.1 shows 
the kinematic diagram of an internal combustion engine. 

When a kinematic lever diagram is drawn, no information about the actual shape 
is available, so any point on the page can be a part of that lever. 

The geometric shape of the relationship between two members of a mechanism 
that leads to the relatively consistent motion of the two members is called a pair. 
If the connection of two members has a contact surface like a pin connection, this 

Fig. 1.1 Kinematic diagram 
of an internal combustion 
engine 

t
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connection is called a lower pair. If the connection is made at a point or along a line, 
the connection is known as a higher pair. Motion linkage in bearings and contact of 
two gear teeth are examples of higher pairs. A pair that only allows relative rotation 
is called a turning or rolling pair, and a pair that only allows sliding is called a sliding 
pair. A rolling pair is a higher or lower pair, depending on having a pin connection 
or ball bearing. A sliding pair is a lower pair, like the motion of a piston on a wall 
of a cylinder. 

A kinematic chain is obtained by connecting some levers with some pairs. If the 
connection of these levers eliminates the possibility of movement, then a locking 
chain (structure) appears. If the levers are connected so that the relative motion of 
the levers is always the same regardless of the number of cycles completed, the 
resulting chain is called a bound chain. In addition, the levers can be connected 
in a way that an unbound chain is created, meaning a chain in which the pattern of 
movement changes depending on the amount of friction in the joints at any moment. 
If one of the levers of a bound chain is fixed, the resulting set will be a mechanism. 

Note A mechanism (bound cinematic chain) may consist of several cinematic 
chains, with the output of the first chain being the input of the second chain, and 
so on. 

If a fixed lever is allowed to move in a mechanism and another lever becomes 
fixed instead, the resulting mechanism is called reversing the previous mechanism. 

Note In reversing a mechanism, the relative motion of the levers does not change, 
but the absolute motions (relative to the ground) change. 

When the components of a mechanism start moving simultaneously from a 
given position set and return to the original position set after passing through all 
possible positions, these components have gone through a movement cycle. The 
time required to complete a movement cycle is called periodic time. The set of 
situations that the components of the mechanism pass through simultaneously at a 
particular moment of motion is called a state (phase) of motion. 

The ability to move or the number of degrees of freedom is one of the most 
fundamental concepts of cinematic science. By definition, the mobility of a mecha-
nism is the minimum number of independent parameters required to determine the 
position of each lever of the mechanism. 

In studying the mechanisms, it is necessary to examine how the motion is 
transferred from one member to another. 

Movement is transmitted in three ways: 

a) Direct contact between two members, such as the contact between a cam and a 
follower or two gears 

b) Transmission via an intermediate lever or a connecting rod 
c) By a flexible intermediate such as a belt or chain
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1.3 Types of Motion 

The change in position of an object (material particle or rigid object) relative to 
another object over time is called motion. 

1.3.1 Plane Motion 

An object moves in a plane if all its points move in planes parallel to a base 
plane. Movement on the plane can be one of three types: transition, rotation, and 
a combination of transition and rotation: 

• If the object moves in a way that all the straight lines located on it always have 
parallel positions to each other, the object will have a transfer. There are two 
types of transmission: direct line transfer and curve line transfer, which refer to 
the movement along a straight line and a curved line, respectively. 

• In rotation, the distance of all the points on the object will remain constant 
relative to the line perpendicular to the plane of motion. 

• Many objects have a motion composed of rotation and transmission simultane-
ously. 

1.3.2 Spiral Movement 

A point that rotates at a constant distance from an axis and moves simultaneously 
along this axis has a helical motion, such as the movement of a nut along a screw. 

1.3.3 Spherical Motion 

If the motion of an object is such that each point moves at a fixed distance around a 
fixed point, the object will have a spherical motion. 

1.3.4 Spatial Motion 

If an object rotates around three non-parallel axes and moves in three independent 
directions, it has general spatial motion.
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1.4 Types of Levers 

There are four types of levers in a mechanism: 

• The base lever, to which the reference coordinate is attached and the mechanism’s 
movement is analyzed relative to it (ground) 

• The input lever, which is usually connected to the base lever, and kinematic 
quantities are given to it 

• The output lever, which is often connected to the base lever and from which 
kinematic quantities are taken 

• The interface lever, which acts as the interface between the input and output 
levers 

In terms of oscillation range (movement), we also have two types of levers: 

• Crank lever, which can rotate 360 degrees during movement 
• The oscillator or rocker lever, which can travel part of a circular path but not the 

whole circle during movement, meaning it oscillates at an angle of fewer than 
360 degrees 

For example, in Fig. 1.2, for full rotation of lever two or crank, lever four or 
oscillator oscillates only in the range of . Δθ . 

Also, in another classification, levers are divided into two types, simple and 
compound: 

• If the lever has a maximum of two joints, it is called a simple lever. 
• If the lever has more than two joints, it is called a compound lever.

 1 

2 

3 
4 

Fig. 1.2 A normal four linkage mechanism
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1.5 Connection and Its Types 

A connection or joint is between two levers, through which motion or force is 
transmitted from one lever to another. Joints allow relative movement in some 
directions while restricting movement in other directions. The types of allowed 
movements depend on the freedom degrees of the joint. Freedom degrees of the joint 
are equal to the independent coordinates needed to determine the unique position of 
one part relative to other parts bound by the joint. In plane mechanisms, four types 
of joints are typically distinguishable: rotary (or hinged or pin), sliding (or linear 
or prismatic), rolling (each with one degree of freedom), and camshaft or sprocket 
(with two degrees of freedom). Figure 1.3 shows these joints. 

The rotary joint allows only a relative angular movement to the two interfaces, 
while in a sliding joint, there is only a relative transition motion between the two 

T 

Fig. 1.3 Different joint types
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interfaces. In one definition, if two objects do not have angular velocities relative to 
each other, the sliding motion is complete. 

Note In a direct contact mechanism, sliding occurs when the point of contact of two 
levers is located along their centerline. 

Note To have a joint and rolling contact, the linear velocities of the members must 
be the same at the point of contact with each other, and the point of contact must be 
located on the centerline. 

Note Locating the point of contact on the centerline is necessary, but it is not 
enough because the joint may only be rolling at one moment and not at other times. 

If there are rolling and sliding conditions in a joint, it is called a camshaft or 
sprocket or sliding–rolling joint. Then, two quantities are needed to determine the 
position of one lever relative to the other. 

The relative motion of two interfaces by three degrees of freedom connections 
will be three types of motion, angular, transitional, or a combination of the two 
of them. These connections are for spatial or three-dimensional mechanisms. 
Figure 1.4 shows some common connections with three degrees of freedom. 

Fig. 1.4 Some common three degrees of freedom connections
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1.6 Degree of Freedom 

A rigid body in a planar motion (two-dimensional) can have a maximum of three 
degrees of freedom in motion, which are two transient movements in horizontal 
and vertical directions and one rotational movement around the axis perpendicular 
to the plane of motion. When a set of rigid members are connected, the members’ 
connection to each other causes them to be bound and reduces the number of degrees 
of freedom of the system. 

Note Since the system is usually connected to the ground, the ground is also 
considered as a member of the system. 

Suppose the system has . n members considering the ground, assuming that the 
system has a planar movement. In that case, the maximum possible degree of 
freedom for the system is .3(n − 1) because all members except the ground have 
the possibility of three independent movements. On the other hand, each joint with 
one degree of freedom takes two degrees of freedom of the system. If we have . f1
joints with one degree of freedom, the degree of freedom of the system is reduced by 
. 2f1. Similarly, each joint with two degrees of freedom takes one degree of freedom 
of the system, and if we have . f2 joints with two degrees of freedom, the degree of 
freedom of the system is reduced by . f2. Thus, the mobility of the set is determined 
as follows from the Gruebler’s equation: 

.DOF = 3 (n − 1) − 2f1 − f2 (1.1) 

where .DOF is the ability to move or the number of degrees of freedom and . n is the 
total number of levers, including the ground lever. 

Example What is the number of degrees of freedom of Fig. 1.5 mechanism? 

1) 2 2) 3 3) 5 4) 6 

Solution By considering the bulldozer chamber as ground (member 1), the mech-
anism has 12 members and 15 connections with one degree of freedom. Therefore, 
according to Gruebler’s equation for .n = 12, .f1 = 15 and .f2 = 0, we have  

. DOF = 3 (n − 1) − 2f1 − f2 = 3 × (12 − 1) − 2 × 15 − 0 = 3

Note that members (3 and 4), (5 and 6), and (8 and 9) of the cylinder and piston 
are the bulldozer actuator jacks, which control the 3 degrees of freedom of the 
mechanism. 

Option (2) is correct.
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Fig. 1.5 Bulldozer arm mechanism 

Fig. 1.6 Slider joint 

If a point on one member is restricted to move within the groove created in the 
other member, it forms a connection with two degrees of freedom. In Fig. 1.6, the  
end point of member 1 is bound to move inside the groove of member 2. 

In this system, if we keep member 2 fixed, member 1 can rotate around the 
connection point, and the connection point itself can be moved inside the groove, 
meaning two degrees of freedom remain. 

Note Springs and jacks do not affect the degree of freedom of the system and can 
be removed. 

Example What is the degree of freedom of the mechanism shown in Fig. 1.7? 

1) 1 2) 2 3) 3 4) 4 

Solution According to the stated note, spring and jack do not affect the degree of 
freedom. By removing these two members from the mechanism, a set of 5-rod levers 
is obtained with 4 rotating hinges and a sliding joint (which are joints of one degree
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Fig. 1.7 A combined 
mechanism 

Fig. 1.8 A roller on the  
ground 

of freedom), and a rolling and sliding joint (a joint of two degrees of freedom). 
Thus: 

. n = 5 , f1 = 5 , f2 = 1

Using the Gruebler’s criterion, we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 × (5 − 1) − 2 × 5 − 1 = 1

Option (1) is correct. 

In camshaft or contact connections where pressure is possible between the 
contact points of the two members (common mode), if there is no slide between 
the two members and we have a pure rolling mode, the contact connection will be 
one degree of freedom because it only allows rolling between two levers. But if 
the members can slide on top of each other, the connection will be two degrees 
of freedom because, in addition to rolling, a degree of freedom caused by sliding is 
also added to the system. For example, in Fig. 1.8, if member 2 moves on the ground 
without sliding (just rolling), the connection will be one degree of freedom. If, in 
addition to rolling, member 2 can slide on the ground, the connection will be two 
degrees of freedom. 

Example In Fig. 1.9, if the wheels move in two horizontal directions without 
sliding, this system: 

1) Is a mechanism of one degree of freedom? 
2) Is a chain of two degrees of freedom?
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Fig. 1.9 Two wheels on two 
surfaces 

Fig. 1.10 Two contact 
members without pressure 

3) Is a structure? 
4) Is a chain system without constraint? 

Solution According to the figure, all constraints are of one degree of freedom 
because we have two hinged joints and two points of contact with the ground that 
form two rolling joints (without sliding). On the other hand, including the ground, 
the system has four members, and we have 

. n = 4 , f1 = 4 , f2 = 0

From the Gruebler’s equation, we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 × (4 − 1) − 2 × 4 − 0 = 1

Option (1) is correct. 

If, as in Fig. 1.10, there is no possibility of pressure between the two contact 
members, meaning discs 1 and 2 are not able to move horizontally and push each 
other because they are hinged to the ground in the center, in this case, if there is 
rolling contact, we will have a connection of two degrees of freedom that only takes 
the possibility of sliding (degree of freedom is limited). Still, if the contact is sliding, 
the connection does not create any restrictions, and in fact, bounding one of the disks 
cannot prevent the other disk from moving, meaning this type of connection is not 
considered a constraint. 

Note If a joint connects . k levers at one point, it must be considered .(k − 1) joints. 

Example In Fig. 1.11 mechanism for speed analysis: 

1) Only having . ω2 is enough. 
2) In addition to . ω2 value, . ω9 or . VD is also needed.
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Fig. 1.11 Combination of 
sliders and rotational joints 

Fig. 1.12 More than two 
parallel mechanism levers 

3) In addition to . ω2 value, . ω9 is also needed. 
4) In addition to . ω2 value, . ω9 and . VD are also needed. 

Solution The system shown has 9 members and 11 joints of one degree of freedom. 
In counting the joints according to the stated note, the rotating joint . E that connects 
three levers should be considered as 2 joints. 

. n = 9 , f1 = 11 , f2 = 0

DOF = 3 (n − 1) − 2f1 − f2 = 3 × (9 − 1) − 2 × 11 − 0 = 2

Therefore, the degree of freedom of the system is 2 and indicates that two inputs 
are needed for speed analysis, and given that . ω2 is known, another degree of freedom 
independent of . ω2, such as . ω9 or . VD , is needed. 

Option (2) is correct. 

Gruebler’s equation must be used with caution, as it does not apply to several 
specific mechanisms. These exceptional cases usually occur when more than two 
mechanism levers are parallel. Figure 1.12 shows one of these cases. 

In Fig. 1.12,.n = 5, .f1 = 6, .f2 = 0. By applying the Gruebler’s equation to this 
mechanism, we have 

. DOF = 3 (5 − 1) − 2(6) = 0

So it results in zero degrees of freedom. But the degree of freedom of this 
mechanism is one.
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Fig. 1.13 Rollers without pressure 

Fig. 1.14 Some normal four linkage mechanisms 

Also, for the mechanism of Fig. 1.13 with the assumption of rolling between the 
two disks .n = 5 and .f1 = 6 and from the Gruebler’s equation, we have 

. DOF = 3 (3 − 1) − 2(3) = 0

But the system can move and has one degree of freedom. 

Note If the mobility (degree of freedom) is zero or negative, we have a structural 
set. 

Note If the mobility is zero, the structure is statically determinate, and if the 
mobility is negative, the structure is statically indeterminate. 

Example Which option correctly describes types of levers in Fig. 1.14? 

.

1)

⎧
⎪⎪⎨

⎪⎪⎩

a − structure
b − mechanism
c − mechanism
d − structure

2)

⎧
⎪⎪⎨

⎪⎪⎩

a − structure
b − structure
c − mechanism
d − mechanism

3)

⎧
⎪⎪⎨

⎪⎪⎩

a − mechanism
b − mechanism
c − structure
d − structure

4)

⎧
⎪⎪⎨

⎪⎪⎩

a − mechanism
b − structure
c − structure
d − mechanism
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Fig. 1.15 A mechanism with 
two sliders 

Solution Lever (b) is one of the exceptions for which the Gruebler’s equation is 
not true, and as stated, this lever has one degree of freedom and is, therefore, a 
mechanism. For other levers, we have 

. a : = 5, f1 = 6, f2 = 0 =⇒ DOF = 0

c : = 4, f1 = 4, f2 = 0 =⇒ DOF = 1

d : = 5, f1 = 6, f2 = 0 =⇒ DOF = 0

Therefore, lever (c) that has a degree of freedom greater than zero is a 
mechanism, and levers (a) and (d) are structures. Note that in counting constraints 
for the lever (d), the joints that connect three levers at one point should be considered 
as two joints. 

Option (1) is correct. 

Note If the number of inputs of a lever is less than the number of degrees of 
freedom, the movement of the lever is unpredictable, and if the number of inputs 
is more than the number of degrees of freedom, the lever is locked in part of its 
movement. 

Example Which statement is correct about Fig. 1.15? 

1) The lever has one unpredictable movement. 
2) For input . ω2, the set has one degree of freedom. 
3) The lever will be locked in part of its movement. 
4) The set will have two different movements based on . ω2 or . ω9. 

Solution For this lever, we have .n = 8, .f1 = 10, .f2 = 0. It should be noted that 
the junction of the members (2, 3, 5) and also (4, 5, 7) each count as two joints. So, 
according to the Gruebler’s equation, we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 × (8 − 1) − 2 × 10 = 1

Therefore, the set will have one degree of freedom for one entry of . ω2. According 
to the stated point, if the number of inputs is more than one, the set will be locked 
in a part of the movement. 
Option (2) is correct.
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1.7 Four-Bar Linkage 

One of the simplest and most common mechanisms is the four-bar linkage. The 
design of this lever can be seen in Fig. 1.16. Lever 1 is frame or ground in this 
form, which is usually fixed. Lever 2 is the actuator, and its movement may be 
full rotation or oscillation. If lever 2 is in full rotation, the mechanism converts the 
rotational movement into an oscillating movement. If the crankshaft oscillates, the 
mechanism will create oscillating movement. 

Note When lever 2 has a full rotation, there is no risk of locking the linkage; 
otherwise, care must be taken in choosing the ratio of lengths so that the mechanism 
is not located at the dead points and does not stop moving at the end positions. 

Dead points are created when the line of action of the driving force is along with 
lever 4. The dashed line shows this position in Fig. 1.17. 

Note If the four-bar mechanism is designed so that lever 2 has a full rotation and 
lever 4 is actuated, it will create dead points, and to pass the mechanism through 
these points, it must be equipped with a flywheel. 

A four-bar linkage may take different positions, as shown in Fig. 1.18. 
The movement of the four-bar linkage is often expressed by the terms crank and 

oscillator, indicating that crank 2 has a full rotation and lever 4 oscillates according 
to Fig. 1.18A. Same way, the term double crank means that both levers 2 and 4 have 
a full rotation, as shown in Fig. 1.18B and C. The term double oscillator indicates 
that both levers 2 and 4 oscillate, as shown in Fig. 1.18D. 

Fig. 1.16 A normal four-bar 
linkage 

Fig. 1.17 Position for 
deadpoint creation A 
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Fig. 1.18 Different positions of a four-bar linkage 

Grashof’s law can determine the mode in which the four-bar linkage operates: 
crank and oscillator, double crank, or double oscillator. This rule states that if the 
sum of the lengths of the longest and shortest levers is less than the sum of the 
lengths of the other two levers, then: 

• If the shortest lever is a crank lever and one of the adjacent levers is fixed, two 
different crank and oscillator mechanisms are obtained. 

• If the shortest lever is a fixed lever, a double crank mechanism emerges. 
• If the lever facing the shortest lever is a fixed lever, the mechanism will be a 

double oscillator. 

Also, suppose the sum of the lengths of the longest and shortest levers is greater than 
the sum of the lengths of the other two levers. In that case, only double oscillator 
mechanisms will be obtained. Also, if the sum of the lengths of the longest and 
shortest levers is equal to the sum of the lengths of the other two levers, the possible 
modes will be similar to the above. But in this case, the centerline of the levers 
may be aligned and change the direction of rotation of the moving lever unless this 
change is somehow prevented. The lever of Fig. 1.18B is such that the levers are 
aligned along the .O2O4 centerline. In this case, if the set inertia does not cause 
lever 4 to pass through this point, the direction of rotation of the moving lever might 
reverse.
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Fig. 1.19 A crank-pendulum 
bar mechanism 
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Fig. 1.20 A mechanism with 
double rotary cranks 
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To move a crank-pendulum bar mechanism as Fig. 1.19, these relationships must 
be true: 

.

O2B + BC + O4C > O2O4

O2B + O2O4 + O4C > BC

O2B + BC − O4C < O2O4

BC − O2B + O4C > O2O4

(1.2) 

For a mechanism with double rotary cranks or crank–crank, according to 
Fig. 1.20, the ratio of the length of the bar is as follows: 

.

BC > O2O4 + O4C − O2B

BC < O4C − O2O4 + O2B
(1.3) 

These equations can be proved according to triangles .O2B
'
C

'
and .O2B

''
C

''
.
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Fig. 1.21 A normal four-bar 
mechanism 
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Example Which of the following equations is not a prerequisite for the operation 
of the shown four-bar mechanism in Fig. 1.21? 

1) .O2B + O2O4 + O4C > BC 2) . O2B + BC − O4C < O2O4
3) .O2O4 + O4C − O2B < BC 4) . BC − O2B + O4C > O2O4

Solution It is clear that equation (1.3) is not correct. 

In a quadrilateral, the sum of the lengths of the three sides is always greater than 
the fourth side, and therefore equation (1.1) is correct. In this mechanism, the sum 
of the longest and shortest levers (.BC and .O2B, respectively) is less than the sum 
of the other two levers, and equation (1.2) is also correct. 

But for equation (1.3), since .BC and .O2B are the longest and shortest levers, 
respectively, we have 

. 

(
BC > O2O4

O4C > O2B

)

⇒ BC + O4C > O2O4 + O2B

Which is the same as equation (4), so this equation is also correct. 

Option (3) is correct. 

1.8 Equivalent Mechanisms 

When acceleration analysis of a direct contact mechanism is desired, the problem 
can be simplified by replacing an equivalent multi-rod mechanism. An equivalent 
mechanism is a mechanism whose members’ angular velocity and acceleration are 
instantly equal to the angular velocity and acceleration of the members of the main 
mechanism. 

We proceed as follows to find an equivalent mechanism to a direct contact 
mechanism (Fig. 1.22), such as camshaft and follower. Assume that points . P2 and 
. P3 are the points of contact between members 2 and 3, and . C2 and . C3 are also the 
centers of curvature of members 2 and 3 at point P, respectively. We only need to 
connect the centers of curvature of two members at point P (connection of points .C2
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Fig. 1.22 A direct contact 
mechanism 

Fig. 1.23 Camshaft and 
follower 

and . C3) and then draw a line segment from the center of rotation of each object to the 
center of its curvature (connection of . O2 to . C2 and . O3 to . C3). Thus the equivalent 
mechanism to the main mechanism is created. 

Although the camshaft always rotates, the follower may move back and forth 
along a straight line instead of rotating (as shown in Fig. 1.23). In this case, we 
can create an equivalent mechanism by replacing the slider located in the center of 
curvature of path . P3 on member 2 and moving inside the groove on the equivalent 
of member 3. 

Note The direction of the groove should be parallel to the direction of the straight 
line of the slider’s path. 

Note The slider is located at the center of the curvature of the bent member, not at 
the point of contact with the member with a straight line. 

Example Figure 1.24 shows a three-bar direct contact mechanism. Which option is 
the four-bar mechanism equivalent to it with only low-level connections?
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Fig. 1.24 A three-bar direct 
contact mechanism 

1) 

3) 

2) 

4) 

Solution If . P2 and . P3 are the points belonging to members 2 and 3 at the point 
of contact, respectively, the path of . P3 on member 2 is a straight line. Simply 
place the intermediate slider member inside member 2 in the groove parallel to the 
corresponding straight line and at the center of curvature of . P2 path on member 3, 
the point equivalent to . C3. Note that the slider always moves on the member that 
has a straight line, so options (3) and (4) are wrong. On the other hand, since the 
location of the slider is at the center of curvature of the . P2 path on member 3 and 
not at point . P3, option (1) is also wrong. 

Option (2) is correct.
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Fig. 1.25 Equivalent mechanism with one slider 

Sometimes both surfaces in contact with each other are curves, but since one of 
the members is bound to a reciprocating motion, a slider must be used to provide 
this motion in the equivalent mechanism. In this case, unlike the previous case, the 
slider does not play the role of an intermediary member but is considered one of the 
members. Figure 1.25 shows this mode. 

Note If the surfaces in contact are both circles, or one of them is a circle, and the 
other is a straight line (a circle with infinite radius), the equivalent mechanism is no 
longer instantaneous and is permanent. 

Note Mechanisms are equivalent so that objects do not have relative velocity toward 
each other, and the Coriolis acceleration is zero. 

Some Examples of “Motivation and Introduction to Machine 
Dynamics” 

1. In the mechanism of Fig. 1.26, how many inputs are needed if we want the 
mechanism to move from the existing state to the new state in which the output 
block P has been moved to the right by one unit? 

1) 1 2) 2 3) 3 4) 4
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Fig. 1.26 A mechanism with 
three sliders 

Fig. 1.27 Room lighting 
switch 

2. Input movement is provided for the eighteen-bar mechanism of connecting and 
disconnecting the room lighting switch through lever 2 (Fig. 1.27), which is 
connected to the circular movement of the room door. Which statement about 
the degree of freedom of this mechanism is appropriate? (Two of the levers can 
be adjusted.)
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Fig. 1.28 Camshaft 
mechanism 

1) After adjustment, the degree of freedom of the mechanism is always one. 
2) The degree of freedom of the mechanism depends on the adjusted condi-

tions. 
3) The degree of freedom of the mechanism can be more than one. 
4) The degree of freedom of the mechanism varies between one and two. 

3. Determine the mechanism equivalent to the camshaft mechanism in Fig. 1.28. 

1) 

3) 4) 

2)
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Fig. 1.29 Camshaft 
mechanism 

4. Determine the mechanism equivalent to the camshaft mechanism in Fig. 1.29. 

2)1) 

3) 4) 

5. In the following mechanism in Fig. 1.30: 

1) Velocity C can only be obtained if VA is known. 
2) If VA and VB are known, velocity C can be obtained. 
3) In addition to VA, ω2 must also be known to obtain VC . 
4) Knowing VA and VB is not enough to determine VC .
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Fig. 1.30 Mechanism with two sliders 

Fig. 1.31 A pin connecting two grooved bars 

Fig. 1.32 Mechanism to be situated in a desired position 

6. A pin connects two grooved bars with the ability to slide on both bars 
(Fig. 1.31). What is the degree of freedom of the mechanism? 

1) −1 2) 0 3) +1 4) +2 

7. For the mechanism in Fig. 1.32 to be situated in the desired position, . . .. 

1) Bar 2 must be given a specific movement. 
2) This mechanism cannot have a movement. 
3) Bar 2 and slider 7 must have specific movements. 
4) Connections 2, 3, and another bar must have specific movements.
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Fig. 1.33 Mechanism with a 
slider as an input 

Fig. 1.34 Mechanism with a 
pin inside a groove 

8. According to Fig. 1.33, what is the degree of freedom of this mechanism? 

1) 1 2) 2 3) 3 4) 4 

9. What is the number of degrees of freedom of the mechanism according to 
Fig. 1.34? 

1) 1 2) 2 3) 3 4) 4
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Fig. 1.35 Equivalent 
mechanism 

10. What is the equivalent mechanism of the mechanism in Fig. 1.35? 

1) 

3) 
4) 

2) 

11. What is the number of degrees of freedom of the mechanism in Fig. 1.36? 

1) 1 2) 2 3) 3 4) 4 

12. What is the mechanism’s degree of freedom or mobility shown in Fig. 1.37? 

1) 3 2) 2 3) 1 4) 0 

13. In the mechanism in Fig. 1.38, if  ω2 is known, considering knowing the length 
and position of the levers at this moment, which of the given statements is 
correct? 

1) Velocity of block 6 or angular velocity of lever 5 can be specified in terms 
of ω2. 

2) All instantaneous centers of this mechanism can be specified. 
3) Options 1 and 2 are correct. 
4) It is impossible to specify the velocity of block 6 or the angular velocity of 

lever 5 in terms of ω2.
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Fig. 1.36 Mechanism with 
one roller and three sliders 

Fig. 1.37 A mechanism with 
a fork joint 

Slider 

Fork Joint 

F 

E 

B 

D 

C 

G0 

C0 

A 

Spring 

1 

Fig. 1.38 A combined 
mechanism 

Common Vertical 

1 

2 

3 

5 

4 

6
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Fig. 1.39 Mechanism for 
links position detection 

Fig. 1.40 Mechanism with 
gears 

O 

O2 
O3 2 3 

14. In the mechanism in Fig. 1.39, for determining the movement situation, at least 
how many members are needed to determine the complete position of the 
mechanism? 

. 
1) Zero member 2) One member
3) Two members 4) Three members

15. Which statement is correct about the mechanism in Fig. 1.40, including gears 2 
and 3? 

1) If an actuator force is applied to one of the mechanism members, the 
mechanism will not move. 

2) If an actuator force is applied to one of the mechanism members, the 
mechanism will have a very specific motion. 

3) An actuator force must be applied to the two members of the mechanism so 
that the mechanism has a very specific motion. 

4) No specific comment can be made about the possibility of movement in the 
mechanism due to the actuator force. 

16. What is the number of degrees of freedom in the mechanism in Fig. 1.41? 

1) 1 2) 2 3) 3 4) 4
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Fig. 1.41 Mechanism with 
rotational input 

Fig. 1.42 Equivalent 
mechanism linkage 

17. Which of the mechanisms is equivalent to the mechanism in Fig. 1.42? 

4) Option 2 and 3 are correct. 

18. In the system in Fig. 1.43, if the wheels move in two horizontal directions 
without sliding, which statement is correct? 

1) It is a mechanism with one degree of freedom. 
2) It is a chain with two degrees of freedom. 
3) It is a structure. 
4) It is an unrestricted chain system.
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Fig. 1.43 Wheels move in 
two horizontal directions 
without sliding 

Fig. 1.44 13 links 
mechanism 

19. What is the degree of freedom of the formed mechanism in Fig. 1.44? 

1) 2 2) 3 3) 4 4) 1 

Answers for the Examples of “Motivation and Introduction 
to Machine Dynamics” 

1. Option (1) is correct. 
The system has 6 members, 6 joints of one degree of freedom, and one joint 

of two degrees of freedom. Note that the middle joint that connects the three 
members counts as two joints. So, according to Gruebler’s equation, we have 

. 3 (n − 1) − 2f1 − f2 = 3 (6 − 1) − (2 × 6) − 1 = 2

Therefore, the degree of freedom of the system is two, and this means that 
for a movement with a known output, we need two specific input movements. 

2. Option (1) is correct. 
Two levers are installed to adjust the mechanism to increase the mechanism’s 

compatibility with the conditions of the key and the door of the room. They can 
be considered two fixed and rigid levers after adjusting them to the desired goal.
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Using Gruebler’s equation and the parameters n, f1, and f2 in the lever, we have 

. n = 18 , f1 = 25 , f2 = 0

DOF = 3 (n − 1) − 2f1 − f2 = 3 × (18 − 1) − 2 × 25 = 1

3. Option (4) is correct. 
Point A is the center of the curve of contact of the camshaft with the 

follower. Because both members have non-flat surfaces at the contact point of 
the follower and the camshaft, the contact of the intermediate member between 
the rod O2A and the slider B must be non-sliding, which is provided in option 
(4) with a rod. While in options (1) and (2), slider B has a sliding contact with 
the rod O2A or the intermediate member, which cannot be accepted. 

4. Option (3) is correct. 
Since the contact surface of the slider with the camshaft is flat, there must be 

a groove parallel to the slider surface at the center of the curve of the camshaft. 
5. Option (4) is correct. 

The system, including land, has 7 members. Seven connections have one 
degree of freedom, and one connection has two degrees of freedom. Therefore: 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (7 − 1) − 2 (7) − 1 = 3

Therefore, the degree of freedom of the system is more than two, and by 
knowing the two velocity parameters in general, no other velocity parameter 
such as VC can be obtained. 

6. Option (4) is correct. 
Solution 1: If we keep one of the two bars fixed, the other bar will still be 

able to rotate. That is, a degree of freedom remains unchecked. Therefore, the 
desired mechanism has two degrees of freedom. 

Solution 2: We have a four-bar linkage so that the pin forms two degrees of 
freedom from the other two levers. On the other hand, the other two levers form 
two degrees of freedom and create a joint of one degree of freedom with the 
ground. So: 

. n = 4 , f1 = 2 , f2 = 3

From Gruebler’s equation, we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (3) − 2(2) − 3 = 2

7. Option (1) is correct. 
This mechanism has 7 members, 7 hinged connections, and a slider (sliding 

connection with two degrees of freedom). Since we have three members in 
contact on the hinge on member 4, we consider this hinge as two joints;
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therefore, f1 = 8 and f2 = 1. From Gruebler’s equation, we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (7 − 1) − (2 × 8) − 1 = 1

Therefore, the desired mechanism has one degree of freedom, and the status 
of the mechanism is determined by knowing the movement of the desired 
member. 

8. Option (1) is correct. 
We have two input members that are bound to move together in a groove in 

the vertical direction. Therefore, we consider them as a member. Thus we will 
have a mechanism with 10 members and f1 = 13 and f2 = 0. Using Gruebler’s 
criterion, we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (10 − 1) − (2 × 13) = 1

9. Option (2) is correct. 
The connection of the pin inside the groove is a connection of two degrees of 

freedom because the rod, assuming that the plate in which the groove is located 
is fixed, can rotate around an axis perpendicular to the plate and move in the 
direction of the groove. Using Gruebler’s criterion, we have 

. n = 6 , f1 = 6 , f2 = 1

DOF = 3 (n − 1) − 2f1 − f2 = 3 (6 − 1) − 2 × 6 − 1 = 2

10. Option (1) is correct. 
At point A, the path of the point belonging to the rod on the disk is the same 

as the curve of the disk, which is the center of curvature of the path at point C. 
Also, the path of the point belonging to the disk on rod AB is a straight line, 
so we put the slider located at point C and the groove parallel to the rod as the 
intermediate between the two members. 

11. Option (1) is correct. 
The disk’s motion on the rolling surface is pure, and therefore, it is a 

constraint with one degree of freedom. In addition, it should be noted that in 4 
nodes of the mechanism, we have a connection of 3 members, and each should 
be considered two joints. So from Gruebler’s criterion, we have 

. n = 12 , f1 = 16 , f2 = 0

DOF = 3 (n − 1) − 2f1 − f2 = 3 (12 − 1) − (2 × 16) = 1

12. Option (1) is correct. 
Since spring is not a rigid member, it does not affect the degree of freedom, 

so we do not consider it a member. The fork connection in A is a connection 
of two degrees of freedom because the rod has both rotational and transverse
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motions in the direction of the groove. Using Gruebler’s criterion, we have 

. n = 7 , f1 = 7 , f2 = 1

DOF = 3 (n − 1) − 2f1 − f2 = 3 (7 − 1) − (2 × 7) − 1 = 3

13. Option (4) is correct. 
Members 2 and 3 can slide relative to each other, as shown, so only one 

constraint is created at the point of contact (equality of the velocity components 
of the two points of contact in the direction of the common perpendicular), and 
therefore, we have a joint of two degrees of freedom. Therefore, 

. n = 6 , f1 = 6 , f2 = 1

DOF = 3 (n − 1) − 2f1 − f2 = 3 (6 − 1) − (2 × 6) − 1 = 2

Therefore, we need two inputs to determine the mechanism. Option (2) is 
also wrong because if it is correct, we can get the velocity of different points, 
which conflicts with the mechanism having two degrees of freedom. 

14. Option (2) is correct. 
The number of members to determine the status of the mechanism is the 

same as the degree of freedom of the mechanism. To determine the number of 
members, one must pay attention to the location of the joints. For example, the 
shape created from the connections of the joints H , E, and N , which consists 
of a rigid triangular body with a welded rod to it, is only one member. So we 
have 

. n = 8 , f1 = 10 , f2 = 0

DOF = 3 (n − 1) − 2f1 − f2 = 3 (8 − 1) − (2 × 10) = 1

15. Option (2) is correct. 
Assuming movement with sliding between two gears, we have 

. n = 7 , f1 = 8 , f2 = 1

DOF = 3 (n − 1) − 2f1 − f2 = 3 (7 − 1) − (2 × 8) − 1 = 1

Since the degree of freedom of the mechanism is one, according to the 
definition of the degree of freedom that is the number of inputs required to 
specify the mechanism, option (2) is correct. 

16. Option (2) is correct. 
According to Gruebler’s criterion, we have 

.n = 9 , f1 = 11 , f2 = 0

DOF = 3 (n − 1) − 2f1 − f2 = 3 (9 − 1) − (2 × 11) = 2
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17. Option (2) is correct. 
If D2 and D4 are points belonging to members 2 and 4 at the point of contact, 

the path of D4 on member 2 is a straight line, so the intermediate member is a 
slider in point C that is the center of the path curvature D2 on the member 4. 

18. Option (1) is correct. 
From Gruebler’s criterion, we have 

. n = 4 , f1 = 4 , f2 = 0

DOF = 3 (n − 1) − 2f1 − f2 = 3 (4 − 1) − (2 × 4) = 1

19. Option (4) is correct. 
Including land, the system has 10 members. There are also 13 constraints of 

one degree of freedom. Then: 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (10 − 1) − (2 × 13) = 1

Note that three members are connected in two joints, and these joints are 
each considered two. While there are eleven joints in total, we consider 11+2 = 
13 constraints of one degree of freedom.



Chapter 2 
Displacement and Velocity Analysis 

2.1 Introduction 

The motion of a lever is expressed in terms of the linear displacements, linear veloc-
ities, and linear accelerations of its individual particles. However, the motion of a 
lever can also be determined based on the angular displacements, angular velocities, 
and angular accelerations of moving lines with the desired rigid lever. No matter 
what method is used to analyze the leverage, it is always necessary to determine the 
angular positions of the members before analyzing the velocity. Similarly, we need 
the angular velocities of the members before acceleration analysis. The kinematic 
analysis of a lever should always be performed as follows: position analysis, velocity 
analysis, and acceleration analysis. In addition to displacement analysis, several 
methods for determining velocities in mechanisms will be presented in this chapter. 

2.2 Velocity Equations for the Curve Motion 

Measuring and describing the motion of objects relative to a stationary coordinate 
system is called absolute motion analysis. The motion analysis will be relative if 
this analysis is performed on a moving device. If we denote the position of a particle 
moving on a straight line from the origin of coordinates with . x, then we can write 

.V = �x

�t
(2.1) 

where .�x is the displacement in meters, . �t is the time interval in seconds, and 
. V is the average velocity in meters per second. 
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Fig. 2.1 A particle that moves continuously on a plane curve 

Also, if . V is the instantaneous velocity in meters per second, we have 

.V = lim
�t→0

�x

�t
= dx

dt
= ẋ (2.2) 

Note Velocity is the rate at which location changes relative to time. If the 
displacement is positive, the velocity is positive, and if it is negative, the velocity is 
negative. 

The motion of a particle that travels along a curved path is called a curved 
transmission. Consider a particle that moves continuously on a plane curve, as 
shown in Fig. 2.1. 

The average velocity of a particle between . A and . A’ is defined as .v = �r/�t , 
in which . r represents the location vector, and .�r represents the displacement of the 
particle over time . �t . Instantaneous velocity . v, by definition, is the limit of average 
velocity when the time interval . �t converges to zero. Therefore, 

.v = dr

dt
= ṙ (2.3) 

Note The value of . v, a scalar quantity, is called speed. 

In the orthogonal coordinate system .(x − y), the curve motion of the particle is 
determined by summing the . x and . y components of vectors of location, velocity, 
and acceleration. For this type of coordinate system, we have 

.r = xî + yĵ (2.4) 

.
−→v = −→̇

r = ẋî + ẏĵ (2.5)
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In the vertical-tangential coordinate system .(n − t), where the unit vector . en is 
defined in the direction . n and the unit vector . et is defined in the direction . t , we can 
write 

.
−→v = vêt (2.6) 

Note that . t specifies the direction of motion and . n the direction perpendicular to 
the motion path. 

Also, in the polar coordinate system .(r − θ), where the unit vector . er is in the 
positive direction . r , and the unit vector . eθ is in the positive direction . θ , the velocity 
vector equation is as follows: 

.
−→v = ṙ êr + rθ̇ êθ (2.7) 

Note Component . v in direction . r represents the rate of increase of vector . r in 
direction . θ due to the rotation. 

Figure 2.2 shows the orthogonal and polar coordinate systems with unit vectors 
on the .x − y plane. 

These equations can also be generalized for spatial curve motion. Figures 2.2 
and 2.3 show the three coordinate systems of orthogonal .(x − y − z), cylindrical 
.(r − θ − z), and spherical .(R − θ − ∅) with unit vectors. 

For orthogonal coordinates in the three-dimensional motion, we only need to add 
coordinate . z and its derivatives to the equations of two-dimensional motion: 

.
−→
R = xî + yĵ + zk̂ (2.8) 

.v = Ṙ = ẋî + ẏĵ + żk̂ (2.9) 

Note that we show the location vector with the capital letter . R in three-
dimensional motion instead of . r . 

Fig. 2.2 Orthogonal and 
polar coordinate systems with 
unit vectors on the . x − y

plane
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Fig. 2.3 Cylindrical and 
spherical coordinate systems 
in 3D 

In the case of cylindrical coordinates, we only need to add coordinate . z to the 
equations of motion in polar coordinates. Therefore, 

.
−→v = ṙ êr + rθ̇ êθ + żk̂ (2.10) 

Spherical coordinates also use a radial distance and two angles to determine 
the position of a particle. Unit vector . eR is in the direction of motion in which 
. R increases but . θ and . ∅ are constant. Unit vector . e∅ is in the direction of motion 
in which . ∅ increases, but . R and . θ remain constant. Finally, unit vector . e∅ is in the 
direction of motion in which . ∅ increases and . R and . θ are constant. So we have 

.
−→v = ṘêR + Rθ̇ cos∅ê∅ + R∅̇ê∅ (2.11) 

Example In Fig. 2.4, the piston shaft of the hydraulic jack moves to the left at a 
constant velocity of . v. We denote .OA by . r . The values of . ̇r and . θ̇ are 

1) .ṙ = −v cos θ , .θ̇ = v
r

cos θ 2) .ṙ = v sin θ , . θ̇ = v
r

cos θ

3) .ṙ = −v cos θ , .θ̇ = v
r

sin θ 4) .ṙ = −v cos θ , .θ̇ = −v
r

sin θ
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Fig. 2.4 A hydraulic jack 

Fig. 2.5 Polar coordinate 

Solution The motion is of the plane type. Using the motion equations in polar 
coordinate, we can plot the known velocity . v of point . A in directions . r and . θ
(Fig. 2.5). 

. 
−→v = vr êr + vθ êθ = −v cos θ êr + v sin θ êθ

−→v = ṙ êr + rθ̇ êθ (velocity equation for polar coordinates)

From the above two equations, we have 

. ̇rêr + rθ̇ êθ = −v cos θ êr + v sin θ êθ ⇒
{

ṙ = −v cos θ

θ̇ = v
r

sin θ

Option (3) is correct. 

2.3 Angular Motion 

Angular velocity and acceleration are the first and second derivatives of angular 
displacement . θ of a line relative to time . t , respectively. In machine analysis, the 
angular motion of each lever is expressed by the angular motion of a hypothetical 
line connected to it. 

Note The angular motion of a lever may be similar to or different from the angular 
motion of the radius of the path curvature of individual particles of the lever.
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An important concept in mechanisms is that only transmission is possible for a 
particle that is a point of infinitesimally small size, and the particle cannot rotate. 
Angular motion is the motion of a line, and since a particle is a point and not a line, 
angular motion is inconceivable for it. This concept must be well understood to 
understand the relative motion between particles. In the following, various methods 
of velocity analysis are examined. 

2.4 Analytical Method of Velocity Analysis 

It is not possible or appropriate to use a fixed coordinate system to study all 
motions. There are many geometric problems in which motion analysis is easier 
using measurements obtained from a moving coordinate system. By combining 
these measurements with the absolute motion of the moving coordinate system, the 
desired absolute motion can be determined. This method is called relative motion 
analysis. 

Note An object only has relative motion relative to another object when their 
absolute motions are different from each other. 

The position of an object like . A relative to an object like . B is equal to the 
absolute position . A minus the absolute position . B. A similar interpretation is used 
for velocity and acceleration. Thus, for velocity, we can write 

.VA/B = VA − VB (2.12) 

or in other words 

.VA = VB + VA/B (2.13) 

This study relative to the moving device is limited to devices with a transmission 
motion and no rotational motion. If the moving device also has a rotation velocity 
of . ω, we will have 

.VA = VB + ω × r + Vrel (2.14) 

.Vrel has no rotation velocity relative to the moving device, and to find it, stop the 
device’s rotation and find .VA/B . 

Note The difference between the relative velocities in rotating and non-rotating 
axes is in .ω × r . 

Note The relative velocity of the points that match at the point of contact of two 
rolling members is zero.
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Fig. 2.6 A disk with pure 
rolling movement 

Fig. 2.7 A disk on the  
ground 

Example A disk with pure rolling moves in Fig. 2.6, and the bar .AB is jointed to it 
at point . A. Obtain velocity . B if the rotational velocity of the disk is . ω. 

. 
1) Zero 2) 2rω

3) (2r + l cos θ)ω 4) The information is not enough.

Solution At this point, the velocity of point . A is horizontal and equal to . 2rω. The  
velocity of point . B is also always horizontal due to ground contact. So since the 
direction of the velocity of two different points of a rigid body is the same, it can be 
said that the object has no angular velocity and only has a transmission motion at 
that moment. Therefore the velocity vectors of all its points are equal to each other. 
So .VB = VA = 2rω. 

Option (2) is correct. 

Note For two points located on a lever of a mechanism, .Vrel = 0. 

Example The disk’s center shown in Fig. 2.7 moves at a velocity .V0 = 1m/s. If  
the disk has a radius .R = 10cm and an angular velocity .ω = 20rad/s, what is the 
velocity of point . A at the top of the disk at the shown moment in meters per second? 

1) 1 2) 2 3) 3 4) 4
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Solution If we set the center of the moving device to . O, we will have 

. VA = VO + ω × r + Vrel

Given that the points . O and . A are on one object, .Vrel = 0 and we have 

. VA = VO + ω × |OA| ⇒ VA = 1î + (20 × 0.1) î = 3î

Note that the disk has a sliding motion on the ground, and its motion is not pure 
rolling. In the case of pure rolling, the velocity of point . O would be .2m/s. Also, if 
the velocity of the point of contact with the ground is calculated, this velocity will 
not be zero. 

Option (3) is correct. 

2.5 Graphical Method for Velocity Analysis 

Velocity polygons are good tools for determining the velocity of mechanisms. These 
polygons can be solved by drawing, analyzing, or combining the two. The main 
method used in graphical lever analysis is to work with one or two points at a 
known velocity to find one of the unknown velocities using the relation between the 
velocities of two points belonging to one lever in equation (2.14). Rotational joints 
form the transmission points because the mentioned points belong to two different 
members. Thus, the velocity of the rotating joint can be obtained by considering it 
as a point on one of the members to which it is attached. 

In the mechanisms studied in machine dynamics and the method used, because 
the two points under analysis belong to the same lever, .Vrel = 0, and this equation 
is simplified as follows: 

.
−→
V B = −→

V A + −→ω × −→
r B/A (2.15) 

Equation 2.15 can be graphically represented as a vector triangle, as shown in 
Fig. 2.8. 

Fig. 2.8 Vector triangle
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Fig. 2.9 Finding direction of the third vector 

Note This triangle can always be solved by knowing the direction and size of one 
of the three vectors and the direction of the other two vectors. This is a common 
situation in planar velocity analysis. 

According to Fig. 2.9, the vectors used in equation .−→ω × −→
r B/A are reciprocally 

orthogonal. Because we know the lines that the vectors must be in line with, the main 
issue is determining the direction of the lines and the size of each of the vectors. By 
knowing the direction of the two vectors, the direction of the third vector can be 
found by the rule of the right hand by observing the known directions. 

For example, suppose lever 2 moves in the four-bar mechanism in Fig. 2.10, and 
its uniform angular velocity . ω2 is known. We want to find the velocity .VB of point 
. B and the angular velocities . ω3 and . ω4. The known geometric parameters are also 
shown in the figure. 

Since each vector has size . m and direction . d , we can easily reflect the information 
and unknowns of a vector equation in a table. Two scalar (numerical) unknowns 

Fig. 2.10 Four-bar mechanism
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Length (m)

� �

�

�Direction (d) 

(I). VB VA VBA= +  

Fig. 2.11 Velocity calculation parameters 

can be obtained from a vector equation. The velocity equation can be written in 
Fig. 2.11. 

wherein 

. VA = along the perpendicular to O2A of known size VA = |O2A| ω2

VBA = along the perpendicular to BA of unknown size

VB = along the perpendicular to O4A with an unknown size

We can plot a velocity polygon with only two unknowns of the vector equation. 
First, we consider the desired origin .Ov and draw it with its size and direction . VA. 
On the other hand, the directions of .VB and .VBA are known. From the origin, we 
determine the direction of . VB with a dashed line. On the other hand, according to the 
equation .VBA = VB −VA, so the .VBA vector must start from the end of vector . A and 
be connected to the end of vector . B. So with the .VBA direction, we draw a dashed 
line from the end of the vector . VA in this direction. The intersection of the .VB and 
.VBA directions completes the polygons. Now we add the direction of the arrows . VB

and .VBA so that the sum of the polygons matches the sum of the sentences of the 
velocity Equation (I). We will mark the tip of the .VB vector with . B. The steps are 
shown in Fig. 2.12. 

Fig. 2.12 Steps of finding the relative speed



2.5 Graphical Method for Velocity Analysis 47

Fig. 2.13 Image of velocities 

According to the figures, .ω3 and .ω4 can be obtained from .VBA and . VB , 
respectively. The size of .ω32 and .ω43 can also be determined. We have 

. ω3 = VBA

|BA| , ω4 = VB

|O4B| , ω32 = ω3 − ω2 , ω43 = ω4 − ω3

We should use Equations (II) and (III), which express the relation between . VC , 
. VA, and . VB to determine . VC . 

. (II) VC = VA + VCA

(III) VC = VB + VCB

The .VCA and .VCB extensions are known according to the shape of the mechanism 
and are perpendicular to the sides .CA and .CB, respectively. Equation (II) is used, 
and the extension of the vector .VCA from point . A is plotted in the following figure. 
Then, according to Equation (III), the extension of the vector .VCB is plotted from 
point 3. The intersection of the extensions .VCA and .VCB completes the polygon. 
The intersection of point . C gives . VC . It should be noted that the sum of the vectors 
of polygons must be compatible with equations (II) and (III) (Fig. 2.13). 

The hatched triangle .ABC is called the image (projection) of the velocity of lever 
3 and is similar to lever 3. By determining the position of any given point . D of lever 
3 on the velocity image, its velocity can be obtained. According to the figure, the 
vector drawn from .Ov to . D is . VD . The image of the velocity of lever 1 at origin 
is .Ov because lever 1 is fixed, and its velocity is zero. The images of velocities of 
levers 2 and 4 are the lines .OvA and .OvB, respectively, which correspond to the 
.O2A and .O4B of the mechanism, respectively. 

Note Having velocity images of all levers of a mechanism allows calculating the 
linear velocity of all lever points.
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Fig. 2.14 Crank-slider 
mechanism 

From the above analysis, we have 

. ω3 = VBA

|BA| , ω3 = VCA

|CA| = VCB

|CB| = VDA

|DA|
In other words, all the relative velocities of the points on a lever are proportional 

to the distances between these points. 

Example Given the mechanism in Fig. 2.14 for .ωAB angular velocity, which of the 
following is true? (.O2A is parallel to the motion path . B.) 

1) The direction of .ωAB is the same as the direction of . ω2, but .|ωAB | > |ω2|. 
2) When .O2A is in line with . AB, .ωAB is zero. 
3) .ωAB equals twice the velocity . B divided by the length . AB. 
4) .ωAB equals the difference of the absolute velocities . A and . B divided by the 

length . AB. 

Solution We draw the velocity polygon (Fig. 2.15) with a free scale using the  
relative velocity equations in the mechanisms. 

. VA = VA + VBA

ωBA = VBA

|BA|

From the polygon, velocity is .|VB | = |VBA|
2 , and by placing it in the above 

equation, we have 

.ωBA = VBA

|BA| = 2VB

|BA|
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Fig. 2.15 Velocity polygon 

So option (3) is correct. But about other options, 

. ωBA = VBA

|BA| = 2VB

|BA|
Therefore, option (1) depends on the numerical value of .|O2A|. Option (2) is 

also incorrect. If the two levers, .O2A and . AB, are in the same direction since the 
directions of velocities . A and . B will be different, there will also be angular velocities 
of .ωAB , and it will not be zero. But for option (4), we write from the polygon of 
velocity 

. ωAB = VBA

|BA| = VB − VA

|BA| = VB − VB cot 30

|BA| �= 2VB

|BA|
It is observed that the statement of the option (4) cannot always be correct. 
It should be noted that this question can be easily solved by finding the 

instantaneous center of rotation . A and . B. 
Option (3) is correct. 

Example If the velocity of point . A is 2.5(m/s), what is the velocity of point . B? 
(Fig. 2.16) 

1) 1.5 m/s 2) 2.5 m/s 3) 7.5 m/s 4) 5 m/s 

Fig. 2.16 Two points 
connected with one link
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Fig. 2.17 Velocity triangle 

Solution We have 

. VB = VA + VBA

Given that the directions of .VB and .VBA are known, then the equation has two 
unknowns, magnitude of . VB and .VBA. By drawing the velocity triangle (Fig. 2.17), 
since the resulting triangle is equilateral, 

. VB = 2.5 m/s

Option (2) is correct. 

2.6 Instantaneous Center of Rotation Method for Velocity 
Analysis 

2.6.1 Instantaneous Center of Velocity 

In the following discussion, another concept is used to determine the linear velocity 
of the mechanism particles, which is the concept of the instantaneous center of 
velocity. This concept is based on the fact that at a given moment, the velocities 
of a pair of matching points located on two moving levers are equal relative to a 
fixed lever, and therefore their relative velocities relative to each other are zero. At 
this point, each lever has only a pure rotation around the matching points relative to 
the other lever. A special case of this is when one lever is moving, and the other is 
fixed. Thus, the absolute velocity of a pair of matching points of these two levers 
is zero, and at this moment, the moving lever rotates around these matching points 
relative to the fixed lever. In both cases, the set of matching points is called the 
instantaneous center of velocity (or instantaneous center). Thus an instantaneous 
center is a point that 

(a) Is located on both objects. 
(b) The object has no relative velocity in it.
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(c) At a given moment, one object can be imagined rotating around it relative to 
another object. 

Note If a hinge connects two levers, their instantaneous center is the point of contact 
in the hinge because the velocity vector of the points of contact in the hinge is the 
same. 

Even if the two levers are not directly connected, there will be an instantaneous 
center (geometric position) for them in any desired state. 

Note As the mechanism passes through different positions of a motion cycle, the 
position of the instantaneous center of one lever relative to the other lever changes 
over time due to the polygonal deformation of velocity, except for levers that have a 
pure rotation whose instantaneous center is fixed points. 

The velocities of all points of the levers, which act as sliders in a single crank 
and slider mechanism and only have transmission, are parallel to each other. Also, 
their perpendiculars are parallel, and their intersection is at infinity. Thus the 
instantaneous center of a lever in the transmission is at an infinite distance from the 
lever and perpendicular to the transmission path. Therefore, if, as shown in Fig. 2.18, 
the slider (member 3) slides on a non-curved member (member 2), the instantaneous 
center of the two members is at an infinite distance from the point of sliding and on 
a line perpendicular from the sliding point to the member on which the slider slides 
(drawn dashed line). 

Note If two members have sliding contact with each other, the instantaneous center 
of the two members is somewhere on the common perpendicular line of the two 
members drawn at the point of contact (Fig. 2.19A and B), and if one of the two 
members is a slider, the instantaneous center is on the center of curvature of the 
other member (Fig. 2.19C). 

Note If two members have a pure rolling contact, their instantaneous center is at 
the same point of contact, because in pure rolling, the velocity vector of the contact 
points of the two members is the same. 

Fig. 2.18 Slider on the 
connecting points of two 
links
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Fig. 2.19 Common perpendicular line of the two members drawn at the point of contact 

Example In a five-bar mechanism, according to Fig. 2.20, what are the locations of 
instantaneous centers (moments) between members (4 and 5), (3 and 4), and (1 and 
5)? 

1) The instantaneous center makes no sense in this type of mechanism. 
2) The instantaneous centers of 45, 34, and 15 are at infinity. 
3) The instantaneous center 45 is at point . B, 34 at point . A, and 15 on the 

perpendicular line at infinity. 
4) The instantaneous center 45 is at point . B, 34 on the line perpendicular to the 

member at infinity, and 15 at infinity. 

Solution The members 5 on 4, 3 on 4, and 5 on 1 have a straight sliding motion, so 
the instantaneous centers are at infinity. 

Option (2) is correct. 

The desired instantaneous center of lever 2 relative to lever 1 is denoted by 21 or 
12, and the instantaneous center of lever 4 relative to lever 3 is displayed with 43
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Fig. 2.20 Five-bar 
mechanism 

or 34. In general, the instantaneous center of lever . A relative to lever . B is displayed 
with .AB or . BA. Sometimes it is also indicated by .IAB or .IBA. 

Note The desired instantaneous center of lever . A relative to lever . B is on the desired 
instantaneous center of lever . B relative to lever . A. 

2.6.2 Kennedy’s Theorem 

Kennedy’s theorem for three independent objects with a generally planar motion 
states that their three instantaneous centers are on a common straight line. In a 
mechanism consisting of . n levers, there are .n − 1 instantaneous centers for each 
assumed lever. Thus for . n lever, there will be .n(n − 1) instantaneous centers. But 
since the position of each instantaneous center is assigned to two centers, the total 
number of positions .(N) is obtained from the following equation: 

.N = n(n − 1)

2
(2.16) 

To determine the instantaneous centers of a mechanism, we only need to write 
the numbers of all members on the perimeter of a circle at separate points. Then, 
if the instantaneous center of both members is known, connect the points related to 
those two members with a line so that with a simple look, it is determined which 
instantaneous centers are known and which are unknown. 

Example In the mechanism shown in Fig. 2.21, according to the coordinate axes 
specified in the figure at point . B, which square locates the instantaneous center . I36? 

1) First 2) Second 3) Third 4) Fourth
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Fig. 2.21 Mechanism with three sliders 

Solution According to the existing rotational and sliding joints, the instantaneous 
centers . I12, . I34, . I45, . I56, and . I16 are known. 

We draw a circle chart according to the available information (Fig. 2.22A). We 
use Kennedy’s theorem for centers that are a little harder to find. In Fig. 2.22B, a 
dashed line is used to find the instantaneous center . I13 that completes two triangles. 
Triangle 3.2.1 represents three centers (12, 23, and 13) of levers 1, 2, and 3, which 
are on a straight line according to Kennedy’s theorem. The intersection of the two 
lines of the mechanism determines the center 13 that should be on both of these 
lines. The corresponding dashed line must be converted to a full line (Fig. 2.22C) to 
show the unknown center. Figure 2.22D shows the next step in which the position 
of center 46 is determined using triangles 6.4.1 and 6.5.4. 

. I13
At the intersection of the connecting lines−−−−−−−−−−−−−−−−−−−−−−→

{
I12 − I23

I14 − I34

. I64
At the intersection of the connecting lines−−−−−−−−−−−−−−−−−−−−−−→

{
I16 − I14

I65 − I54

. I63
At the intersection of the connecting lines−−−−−−−−−−−−−−−−−−−−−−→

{
I34 − I64

I16 − I13

We see that . I63 is in the second area (Fig. 2.23). 

Option (2) is correct. 

Example In the mechanism of Fig. 2.24, where is the location of the instantaneous 
center between members 1 and 3?
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Fig. 2.22 Instantaneous centers finding 

Fig. 2.23 Instantaneous centers 

Fig. 2.24 Mechanism with slider in between
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1) Along member 2 but not at infinity 
2) Along member 2 and at infinity 
3) On member 2 
4) On the instantaneous center of members 1 and 2 

Solution We know from Kennedy’s theorem that for three members (1, 3, and 4), if 
the instantaneous centers of .I34 and .I14 are known, the instantaneous center of . I13
will be somewhere on the connecting line of points . I34 and . I14. For members 3 and 
4, the instantaneous center is on a line perpendicular to the axis on which the slider 
slides and is at infinity (Fig. 2.25). 

The line connecting the instantaneous centers 14 and 34 starts from the hinge 
connecting the lever 4 to the ground (. I14) and continues until the perpendicular and 
member 4 and infinity. On the other hand, the instantaneous center 13 will be along 
the line connecting the instantaneous centers 12 and 23, which is the extension of 
member 2. According to Fig. 2.26, it can be seen that the instantaneous center 13 is 
along the member 2 but is not at infinity. 

Option (1) is correct. 

Fig. 2.25 Instantaneous centers of the mechanism with slider in between 

Fig. 2.26 Instantaneous center 13 is along member 2
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Fig. 2.27 A three-gear system 

Note The instantaneous center of two levers is a point that has the same velocity if 
placed on either of them. 

Example Where is the instantaneous center of rotation (24) in the three-gear system 
shown in Fig. 2.27? 

1) In the middle of the center line of circles (2) and (4) 
2) Point of contact of circles (2) and (3) 
3) Intersection of the center line with the common internal tangent of circles (2) 

and (4) 
4) Intersection of the center line with the common external tangent of circles (2) 

and (4) 

Solution According to Kennedy’s theorem, the instantaneous center 24 (. I24) is on  
the line connecting .I12 and . I14. On the other hand, according to Fig. 2.28 and the 
point expressed, if the instantaneous center is a point of member 2 (or its extension), 
its velocity must be equal to when it is a point of member 4 (or its extension). The 
location of the instantaneous center is found by forming the velocity triangles of 
two objects and obtaining the point of common velocity. 

Fig. 2.28 Instantaneous centers finding of the three-gear system
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Fig. 2.29 A rolling, slider, 
rotational joint mechanism 

Option (4) is correct. 

If the degree of freedom of the mechanism is more than one, determining 
all instantaneous centers is possible when the velocity characteristics of all its . n
members are known. For example, suppose the number of inputs is less than the 
number of degrees of freedom. In that case, the movement of the lever cannot be 
fully predicted, and only some of its instantaneous centers can be determined. 

Note For a system of one degree of freedom, it is always possible to determine all 
instantaneous centers. 

Example Which statement is correct for the shown mechanism in Fig. 2.29? 

1) According to the available information, all instantaneous centers can be deter-
mined. 

2) For this mechanism, more than three instantaneous centers of rotation are at 
infinity. 

3) For such a mechanism, the instantaneous center of rotation cannot be defined. 
4) According to the available information, some instantaneous centers can be 

determined. 

Solution For this mechanism .n = 7, .f1 = 8, and .f2 = 0 from Gruebler’s equation, 
we have 

. DOF = 3 (n − 1) − 2f1 − f2 = 3 (7 − 1) − (2 × 8) = 2

Only some instantaneous centers can be determined because the number of 
degrees of freedom is more than one. 

Option (4) is correct.
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Fig. 2.30 Rotating slider 
mechanism 

2.6.3 Determining the Velocity with the Help of Instantaneous 
Centers 

The Kennedy theorem can be used as a suitable tool to directly determine the 
absolute velocity of any point in a mechanism without determining the velocity 
of the midpoints (such as the velocity polygon method). 

Example According to the mechanism for angular velocity .ωAB shown in Fig. 2.30, 
which of the following statements is true? (.O2A is parallel to path . B.) 

1) The direction of .ωAB is equal to the direction of . ω2, but .|ωAB | > |ω2|. 
2) When .O2A is in line with . AB, .ωAB is zero. 
3) .ωAB equals twice the velocity . B divided by the length . AB. 
4) .ωAB is equal to the difference of the absolute velocities . A and . B divided by the 

length . AB. 

Solution Because the velocity direction is known at two points, . A and . B, the  
instantaneous center .I13 is also known, and it seems that object 3 is pinned around 
this point (Fig. 2.31). 

. VA = |CA| ωAB VA = |O2A| ω2 VB = |CB| ωAB

�⇒ ωAB = VB

|CB| = VB

|AB| sin 30
= 2VB

|AB|
The reason for the incorrectness of options (1), (2), and (4) was mentioned in 

solving this example in the drawing method for the velocity analysis. 

Option (3) is correct.
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Fig. 2.31 Velocity direction 
analyses 

2.7 Using the Transmission Line for Velocity Analysis 

The distance between the points on a rigid object is always the same and does not 
change. Therefore, the velocity component of any two desired points of a rigid 
object in line with the connection of these two points is equal to each other. For 
example, if point . A has the velocity component .VAt along the line .AB in Fig. 2.32, 
point . B must also have the same velocity component in this direction. It is said that 
the velocity component of .VAt is transmitted exactly to point . B along line .AB and 
line .AB is called the transmission line. 

The use of the transmission line is not limited to one member. When two rigid 
members are in contact with each other, the points of contact of both members must 
have the same velocity component in the direction of the common perpendicular at 
the point of contact. In this case, the common perpendicular of the two members 
at the point of contact is called the velocity transmission line between the two 
members. Using this concept in analyzing some problems is a much simpler and 
faster method than using velocity vector equations and other methods. 

Fig. 2.32 Velocity along the 
connection line
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Fig. 2.33 A crankshaft bar 
mechanism 

Example If the angular velocity of the .AC crankshaft is constant and equal to 
.1(rad/s) (Fig. 2.33), at the moment when .θ = 90◦, the angular velocity of the 
bar .DB is equal to 

1) . 14 rad/s 2) . 16 rad/s 3) . 18 rad/s 4) Neither 

Solution The velocity of point . C is known, and the line perpendicular to .BD at 
point . C acts as the transmission line (Fig. 2.34). Members 2 and 3 must have the 
same velocity component along the transmission line. We denote this component 
with . V ′. We have  

. 

VC = |AC| ω4

|AC| = 120 sin 30 = 60 mm
ω4 = 1 rad/s

⎫⎬
⎭ �⇒ VC = 60 mm/s

. V ′ = VC cos 60 = 30 mm/s

ω2 = V ′

|BC| = 30

120
= 1

4
rad/s

Option (1) is correct. 

Example Bar 3 makes an angle of .30◦ with the horizon surface and the ramp, and 
bar 5 is perpendicular to the ramp (Fig. 2.35). If .VA = 1 cm/s, then 

.
1) VB = VA = VA/B 2) VB = 1 cos 30◦ sin 30◦
3) VB = 1 cos 30◦ cos 30◦ 4) VB = 1 Parallel to the ramp
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Fig. 2.34 Two bars and one 
slider 

Fig. 2.35 Objects on the 
surface, connecting by two 
links 

Solution Method 1: If we consider bar 3 as a velocity transmission line between its 
end points . A and . B, the velocity components of points . A and . B in the direction of 
bar 3 must be the same. On the other hand, points A and B also belong to sliders 
2 and 4, so their velocity direction is parallel to their slide surface. Since the angle 
between the slide surfaces with bar 3 is both the same and equal to 30 degrees, 
therefore, 

. |VA| cos 30 = |VB | cos 30 �⇒ |VB | = |VA| = 1 cm/s

It is clear that velocity . B is also parallel to the ramp. 
Method 2: The instantaneous center of rotation of levers 2 and 4 with joints . A

and . B forms an equilateral triangle (Fig. 2.36), and it can be written as 

. VA = VB = VA/B = VB/A = 1 cm/s

Option (4) is correct.
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Fig. 2.36 Equilateral triangle 

Fig. 2.37 A roller movement 

Some Examples of “Displacement and Velocity Analysis” 

1. In the shown mechanism in Fig. 2.37, the velocity of the roller center is V . What 
is the velocity of slider B? 
1) 1 

2V 2) 0 3) V 4) 3 
2V 

2. In the formed four-bar mechanism in Fig. 2.38, if the point S is assumed to 
belong to the AB interface, the velocity value of this point relative to the O4B 
interface is equal to 
1) 0 2) O4S.ω4 3) SB(ω4 − ω2) 4) SBω4 

3. The eight-bar lever in Fig. 2.39 is under ω2. Given the degree of freedom, which 
of the following equations is true for the value of the rotational velocity of the 
levers? 

1) ω2 = ω3 = ω4 
2) ω5 = ω6 = ω7 = ω8 = 0 
3) ω2 = ω3 = ω4 = ω5 = ω6 = ω7 = ω8 
4) ω3 = ω5 = ω6 = ω7 = ω8 

4. In the six-bar mechanism in Fig. 2.40 for the positions θ2 = θ6 and 2O4P4 = 
O4Q4, the velocity of slider 5 relative to slider 3 is 
1) 0 2) 0.5 3) 2 4) 1
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Fig. 2.38 A four-bar mechanism for velocity analysis 

Fig. 2.39 An eight-bar lever 

5. In the mechanism of Fig. 2.41, where is the instantaneous center of rotation of 
slider B relative to the ground (frame)? 

. 
1) Along the (p) and at ∞ 2) At point Q

3) At point P 4) Along the (b) and at ∞

6. In the mechanism in Fig. 2.42, if the bar AB with a length of 10 cm moves with 
a clockwise rotational velocity of 1 rad/s, determine the velocity of the joint 
B and its direction at the shown moment. Do the rollers have both rolling and 
sliding movements? 

1) 8.7 cm/s to the right 
2) 5 cm/s to the left
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Fig. 2.40 A six-bar  
mechanism 

Fig. 2.41 Crank-slider 

3) 5 cm/s to the right 
4) It cannot be determined because the degree of freedom of the mechanism 

becomes 2. 

7. In the six-bar lever, according to Fig. 2.43, if the velocity of point D, VD is 
known, which of the following statements is correct? 

1) At this point, the velocity of slider 6 is smaller than VD . 
2) At this point, the velocity of slider 6 is the same as the velocity of point D. 
3) It is evident from the figure that the velocity of slider 6 is greater than VD . 
4) Because bar 4 carries a slider and is along the slider 6, the lever locks at this 

point.
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Fig. 2.42 Rollers with 
rolling and sliding 
movements 

Fig. 2.43 A six-bar lever  
mechanism 

8. In the four-bar mechanism in Fig. 2.44, if point C is the center of curvature of 
bar 2 at the point of contact with 3, which option is correct for instantaneous 
center 13? 
1) Point A 2) Point B 3) Point C 4) Point D 

9. In the six-bar mechanism, according to Fig. 2.45, if  VQ is known for this 
moment, which of the following statements is correct? 

1) The velocities of sliders 4 and 6 are fractions of the velocity vector VQ. 
2) The velocity of slider 4 depends on VQ, but the velocity of slider 6 is 

independent. 
3) The velocity of slider 4 is equal to VQ, and the velocity of slider 6 is 

determined by it.
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Fig. 2.44 A four-bar 
mechanism with a curved link 

Fig. 2.45 A six-bar  
mechanism with two sliders 

4) Sliders 4 and 6 have a rotational motion around the center at infinity, and 
their velocity has nothing to do with VQ. 

10. The value of ω2 in the mechanism in Fig. 2.46 is equal to 10 rad/s and 
counterclockwise. Find the value of ω4. 

. 
1) 8.3, counterclockwise 2) 10.7, moving counterclockwise
3) 15.9, counterclockwise 4) 20.6, clockwise

11. In a four-bar mechanism, according to Fig. 2.47, if bar 2 provides input 
movement, where is the center that slider 3 rotates around? 

1) In terms of the type of lever, at point B 
2) At the intersection of bar 4 with a line perpendicular to the groove from 

point O2 
3) At the intersection of bar 4 with a line perpendicular to the groove from 

point B 
4) In terms of the lever type, it only has a sliding motion, and this center does 

not exist.
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Fig. 2.46 A mechanism with counterclockwise input 

Fig. 2.47 A four-bar mechanism with rotating link in between 

12. According to Fig. 2.48, the ascent velocity of the follower at the shown moment 
in centimeters per second is equal to N = 120 rpm, and the dimensions are in 
centimeters. 
1) 31.416 2) 37.25 3) 37.7 4) 43.53 

13. In the mechanism in Fig. 2.49, if  ω2 is known, the mechanism has 21 instanta-
neous centers. How many of them can be determined? 
1) All 2) 9 3) 11 4) 10 

14. In Fig. 2.50, obtain ωAB in rad/s. 
1) 56.6 CCW 2) 56.6 CW 3) 34.1 CCW 4) 28.3 CCW 

15. In the OAC slider-crank mechanism (Fig. 2.51), which answer is correct for 
the slider’s velocity? 

1)|VC | = ω2.BC 2)|VC | = OA.BC 
AB .ω2 

3)|VC | = OA.AC 
BC .ω2 4)|VC | = BC.AC 

OA .ω2 
16. In the shown mechanism in Fig. 2.52, which statement is correct for the location 

of the instantaneous center of the velocity of members 4 and 5? 

1) It is along member 4. 
2) It is at point A.
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Fig. 2.48 A cam-follower mechanism 

Fig. 2.49 Mechanism with 21 instantaneous centers 

3) It is along the line perpendicular to member 4 from point A and at an infinite 
distance. 

4) It is along the line perpendicular to member 4 from point A and at a finite 
distance.
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Fig. 2.50 Link AB rotational velocity 

Fig. 2.51 A slider-crank mechanism 

17. The bar AB rotates clockwise (Fig. 2.53) with angular speed ω = 3 rad/s. The 
speed of slider D and angular speed of bar DB are 

. 
1) θ̇ = 3 rad/s, VD = 2 m/s 2) θ̇ = 3 rad/s, VD = 4 m/s
3) θ̇ = 20

3 rad/s, VD = 2 m/s 4) θ̇ = 20
3 rad/s, VD = 4 m/s

18. According to Fig. 2.54, the parallel plates are in contact with the cylinder, mov-
ing at certain velocities without sliding. Which of the following is incorrect? 

. 
1) Point VO = V1

4 2) Pointω = 3
2

V2
R

3) Point ω = 3
4

V1
R

4) Point ω = |V1|−|V2|
2R

19. According to Fig. 2.55, what is the ascent velocity of the follower at the shown 
moment in centimeters per second? (N = 120rpm and sizes are in centimeters.) 
1) 25.133 2) 29.25 3) 37.7 4) 45.533
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Fig. 2.52 A mechanism with 
some sliding members 

Fig. 2.53 Bar AB rotates 
clockwise as input 

Fig. 2.54 Two parallel plates 
in contact with the cylinder 

20. According to Fig. 2.56, what is the magnitude of the angular velocity of bar 3 
at this moment in terms of radians per second? 1) 4.45 2) 6.36 3) 7.22 4) 8 

21. In the mechanism shown in Fig. 2.57, the velocity of point A is given. Point A 
is marked on the center of the slider. The velocity of point B is equal to 1) 1.9 
m/s 2) 2.9 m/s 3) 3.9 m/s 4) 4.9 m/s
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Fig. 2.55 Cam-slider 
mechanism 

Fig. 2.56 Rod 3 has a slider 

O3 

y 

xO2 

A 2 A 3 

Rod 3
 

r
=

33
 m

m
 

r2 = 50.8 mm 

Fig. 2.57 Point A is sliding 
on the surface 

22. What equation is correct for the four-bar mechanism in Fig. 2.58? 

. O2A = 1 O4B = 4 O2O4 = 4

1) ω2 = 4ω4 2) ω4 = 4ω2 3) ω2 = 2ω4 4) ω4 = 2ω2 
23. Given the angular velocity of the arm OB (member 2) (Fig. 2.59), which of the 

following equations is correct for finding the angular velocity of the arm BD 
(member 3)? 

1) V D = V B + V D/B, ωBD = VD/B 
DB 

2) V C3 = V B + V C3/B, ωBD = VC3/B 
BC3
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Fig. 2.58 Four-link mechanism 

Fig. 2.59 Angular velocity of the arm OB is given 

Fig. 2.60 Two sliding motions in two sides 

3) V C3 = V B + V C4/B, ωBD = VC4/B 
C4B 

4) V C4 = V C3 + V C4/C3 , ωBD = VC4/C3 
C4C3 

24. What are the two points of the instantaneous centers of the non-primary rotation 
(other than 12, 13, and 14) in the mechanism of Fig. 2.60? 

1) A and B 2) C and D 3) F and G 4) F and E
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Fig. 2.61 A crank mechanism 

2 

3 
b 

(A) (B) 

Fig. 2.62 Two crank-slider mechanisms 

25. In the crank mechanism of Fig. 2.61, point B is a point on interface 3. In the 
shown state in the figure, what is the velocity of point B? (AB = BC) 

1) Zero 
2) Half the velocity of point A. 
3) Equal to the velocity of point A. 
4) Twice the velocity of point A. 

26. If the angular velocity equation ω3 = −b 
c 

cos θ2 
cos θ3 

ω2 is correct for the sliding crank 
mechanism of Fig. 2.62A, which of the following equations about the rapid 
return mechanism of Fig. 2.62B is correct? 

1) ω2 = 
−b 
c 

cos θ2 

cos θ3 
ω2 2) ω3 = ω1 

1 + b 
c 

cos θ2 
cos θ3 

3) ω1 = ω3 

1 + b 
c 

cos θ2 
cos θ3 

4) ω3 = 
−b 
c 

cos θ2 

cos θ3 
ω2 

27. For the shown mechanism in Fig. 2.63, if the velocity of point D is known, 
which group of the following equations is sufficient to obtain the angular 
velocity of member 2? 

1) VE = VC4 + VE/C4 VB = VE + VB/E VE = VD + VE/D
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Fig. 2.63 Consider the 
velocity of point D is known 

Fig. 2.64 An elliptical 
compass 

2) VC4 = VC3 + VC4/C3 VB = VC4 + VB/C4 VE = VD + VE/D 
3) VB = VC3 + VB/C3 VE = VD + VE/D VB = Vx + VB/x VC3 = 

VC4 + VC3/C4 

4) VB = VC3 +VB/C3 VE = VD+VE/D VC3 = Vx+VC3/x VC3 = VC3/C4 

28. Which of the following statements is true about the elliptical compass 
(Fig. 2.64)? 

1) It is a lever with four bars, one degree of freedom, and four instantaneous 
centers. 

2) It is a lever with six instantaneous centers, three of which are at infinity. 
3) The elliptical compass cannot be used to draw a circle. 
4) The elliptical compass can be used to draw a circle if the degree of freedom 

of the mechanism is changed. 

29. In the mechanism in Fig. 2.65, the instantaneous centers 2 and 4 are 

1) Placed on component 3 
2) Along component 3 and at infinity 
3) Along component 3 but not at infinity 
4) Not defined for this mechanism
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Fig. 2.65 Objects 2 and 4 are 
on the surface 

Fig. 2.66 A six-bar  
mechanism 

30. Which of the following equations is not true about the six-bar mechanism in 
Fig. 2.66? 

1)

{ − VC/H − VE/C + VG/E = 0 

− VB/F − VD/B − VE/D + VG/E = 0 

2)

{ − VC/H − VE/C + VE/G = 0 

− VB/F − VD/B − VE/D + VE/G = 0 

3)

{
VD = VE + VD/E 

VD = VC + VD/C 

4)

{
VC = VH + VC/H 

VC = VD + VC/D 

31. According to Fig. 2.67, a pin with diameter d is installed around disk A, and 
four grooves with width d have been created on the other disk. Disc A rotates 
evenly every second, and the motion is transferred to Disc B. In this case, 

1) Disc B rotates only half a turn each time Disc A rotates.
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Fig. 2.67 Disc A rotates 
evenly every second 

Fig. 2.68 Angular velocity 
of the member AB is equal to 
20rad/s 

2) Disc B Continues to rotate for only half a second for each rotation of disc 
A. 

3) When disk B rotates, its angular velocity at any moment is equal to the 
angular velocity of disk A. 

4) None. 

32. In the previous problem, when the pins are in line with the centers of disks A 
and B, the angular velocity of disk B is equal to 

1) 2π rad/s 2) 2π√
2−1 

rad/s 3) 4π rad/s 4) 1√
2−1 

rad/s 

33. In the mechanism of Fig. 2.68, if the angular velocity of the member AB is 
equal to 20rad/s, the angular velocity of the member BC will be equal to 

1) 5 rad/s 2) 10 rad/s 3) 15 rad/s 4) None
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Fig. 2.69 Link 3 connects 
objects 2 and 4 

Fig. 2.70 A normal four-bar 
mechanism 

34. In the mechanism shown in Fig. 2.69, the instantaneous centers 2 and 4 are 

1) Located on component 3 
2) Along component 3 but not at infinity 
3) Along component 3 and at infinity 
4) Not defined for this mechanism 

35. Which equation is true in the four-bar mechanism in Fig. 2.70? 

. O2A = 1 O4B = 4 O2O4 = 4

1) ω2 = 2ω4 2) ω4 = 4ω2 3)ω4 = 0 4)ω2 = 4ω4 

Answers for the Examples of “Displacement and Velocity 
Analysis” 

1. Option (2) is correct. 
The angular velocity of the roller is equal to ω = V 

R
. If its rolling point is 

called O, we have  

.VA = VO + ω × r = 0 +
(

V

R

)
r = V
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−→
V A is perpendicular to OA and has no component in the direction OA. 

Since OA and AB are also aligned, 
−→
V A has no component in the direction 

AB. Therefore, 
−→
V B also has no component in the direction AB. Note that the 

direction of velocity B must be in the direction of sliding (vertical direction). 

And since the component of this velocity in the direction AB is zero,
−→
V B itself 

is also zero. That is, the velocity of slider B is zero. 
2. Option (1) is correct. 

O4 is the instantaneous center 14, B is the instantaneous center 34, A is 
the instantaneous center 23, and O2 is the instantaneous center 12. It is easy 
to conclude from Kennedy’s theorem that S is the instantaneous center 13, and 
therefore its instantaneous velocity is zero. 

3. Option (4) is correct. 
To have a certain movement, the degree of freedom of the mechanism must 

be one, because otherwise, the calculation of all velocity parameters will not be 
possible. The contact of the sliders and bars is with weld, and it is possible to 
move through the sliders. Members 2, 3, and 4 form a four-bar mechanism that, 
with ω2, the values of ω3 and ω4 will also be known. The rotation of member 3 
moves bars 5 and 7 at the same rotational velocity (ω), and so bars 6 and 8 will 
rotate at the same rotational velocity. So we have 

. ω3 = ω5 = ω6 = ω7 = ω8

4. Option (2) is correct. 
First method: 
The velocity of member 5 in the direction perpendicular to member 4 is 

twice the velocity of member 3 in the direction perpendicular to member 4. It 
is equal to O4Q4 = ω4 and O4P4 = ω4, respectively. On the other hand, the 
velocities of both sliders 5 and 2 are parallel. Since the length of member 6 is 
twice the length of member 2 (according to the similarity of the triangles), the 
velocity of member 5 in the direction perpendicular to member 6 is twice the 
velocity of member 3 in the direction perpendicular to member 2. Therefore, 
their image along member 4 has the same ratio. 

Second method: 

. VP2 = VP4 + VP2/P4

VQ6 = VQ4 + VQ6/Q4

It can be shown that these two vector equations form two similar triangles 
with a similarity ratio of 2. Therefore VQ6 = 2VP2 and therefore VQ5 = 2VP3 . 

5. Option (4) is correct. 
Using Kennedy’s theorem, we can find the instantaneous center of rotation 

of slider B relative to the ground. According to Fig. 2.71,



80 2 Displacement and Velocity Analysis

Fig. 2.71 Finding the instantaneous rotation centers 

I12 is connected to I23, which is a line in the direction (b). The junction of 
I14 and I34 is also at infinity. Thus the instantaneous center I13 is located along 
(b) and at infinity. 

6. Option (2) is correct. 

. VA = VB + ω × RBA

�⇒ VAĵ = VBî + (1k̂) × 10(

√
3

2
î − 1

2
ĵ )

Since the component ĵ of the velocity B is zero, we consider only the 
component î, and from the above equation, we have 

. VB = −5î

7. Option (3) is correct. 
According to the transmission line discussion, the velocity component of 

the two ends of member 5 in the direction of connection of these two points is 
the same. On the other hand, point D has only one velocity component in the 
direction of member 5. Still, the other end of member 5 (the head connected to 
lever 6) and this component of velocity have another component in the direction 
perpendicular to member 5. Therefore, part of the velocity of slider 6 is equal 
to the total velocity of point D. It can be said that the total velocity of slider 6 
is greater than the velocity D. 

8. Option (1) is correct. 
Instantaneous center 13 is located at the intersection of the connecting line 

between instantaneous centers 23–12 (O2C) and instantaneous centers 34–43 
(member 4). This intersection is point A.
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Fig. 2.72 Line connecting 
instantaneous centers of links 
2 and 3 and links 1 and 2 

9. Option (3) is correct. 
Point Q is located along the virtual extension of member 2. This point is 

located along the connecting line of I12 and I14. On the other hand, this point 
is along the connecting line of I34 and I23. Thus, this point is the instantaneous 
center of rotation 24 (I24) according to Kennedy’s theorem. So its velocity is 
equal to the velocity of slider 4. 

10. Option (2) is correct. 
Due to the lack of dimensions and sizes, an exact solution cannot be pro-

vided. But considering Fig. 2.72, the distance of I12 to slider 3 is approximately 
equal to the distance of I14 to this slider. On the other hand, I12, I14, and slider 
3 are approximately in the same direction. Therefore, the velocity of slider 3 
perpendicular to this direction is calculated from the following equations: 

. 
V3 = ω4 × r4

V3 = ω2 × r2

}
�⇒ ω4 
 ω2

11. Option (2) is correct. 
Instantaneous center I13 is located along the line connecting instantaneous 

centers I23 and I12, as well as instantaneous centers I14 and I34. 
12. Option (3) is correct.
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Fig. 2.73 Camshaft and 
follower at the point of 
contact 

Assuming that P1 and P2 are the points belonging to the camshaft and the 
follower at the point of contact (Fig. 2.73), respectively: 

. VP1 = |OP1| ω1 ω1 = 120 × 2π

60
= 12.57 rad/s

|OP1| = 3

sin60
= 3.46cm

VP1 = 3.46 × 12.57 = 43.49cm/s

The image of the velocities of points P1 and P2 along the common vertical 
must be equal and in the same direction. And on the other hand, because the 
direction of VP2 is also in the direction of the common vertical, 

. VP2 = VP1 cos 30 = 43.49 cos 30 = 37.7cm/s

Test method: The desired answer is the multiplication of the horizontal 
distance of the point of contact from the point O (3cm) with ω1. 

. VP2 = 3 × 12.57 = 37.7

10. Option (3) is correct. 
By knowing w and ω2, the velocity characteristics of members 2, 3, and 

4 can be obtained. Therefore, all instantaneous centers related to the 4-3-2-1 
mechanism, which are 6, can be calculated. 

Also, due to the pure rotation of the disk, the instantaneous center I17 is 
the point of contact of the disk with the ground. Also, I67, I56, I35, and I45 
are quite clear. Then the other 5 instantaneous centers of the system are also 
identified. Because the system has two degrees of freedom, it is impossible to



2.7 Using the Transmission Line for Velocity Analysis 83

determine all instantaneous centers by knowing only one velocity quantity (ω2). 
So 6 + 5 = 11 instantaneous centers can be determined. 

11. Option (4) is correct. 
The velocity component of points B and C along the BC transmission line 

must be the same, so 

. VC/BC = 40 cos 45◦ = 40√
2

= 28.28

This component is the velocity in the direction of BC, from  C to B. But  
the velocity vector of point B is perpendicular to AB. Therefore due to the 
perpendicularity of BC to AB, it is in the direction of BC (away from C). 

. VB/BC = VB = 28.28 m/s

On the other hand, 

. VB = |AB| ωAB = 100

100
ωAB �⇒ ωAB = VB = 28.3

12. Option (2) is correct. 
Point B is the instantaneous center of rotation and the instantaneous center 

of the bar AC with the ground, and it looks like this bar is pinned to the point 
B, so  

. 

(
VA = |AB| ωAC

VA = |OA| ω2

)
�⇒ ωAC = |OA| ω2

|AB|

VC = |BC| ωAC = |BC| |OA|
|AB| ω2

Note that the dot symbol does not mean internal multiplication in this 
question. 

13. Option (3) is correct. 
Member 5 slides on member 4, and this slide is a straight line. So the 

instantaneous center is on the line perpendicular to member 4 and is at infinity. 
14. Option (3) is correct. 

You can see the directions of the velocities in Fig. 2.74. 

. |VB | = |AB| ω |VB | = 0.5 × 3 = 1.5 m/s VD = VB + VD/B
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Fig. 2.74 Directions of 
velocities 

Fig. 2.75 Velocity triangle 

According to the velocity triangle drawn in Fig. 2.75, we can write 

. 
∣∣VD/B

∣∣ = |VB |
cos 53.13

= 2.5 m/s

θ̇ =
∣∣VD/B

∣∣
|DB| = 2.5

0.375
= 20

3
rad/s

VD = |VB | tan 53.13 = 2 m/s

15. Option (4) is correct. 
The planes have non-slide contact with the disk, so their velocity is the same 

as the disk velocity at points A and B (Fig. 2.76). By obtaining the center of 
rotation C, 

. ω =
∣∣VA/B

∣∣
|AB| = 3V2

2R
= 3V1

4R

V1 = |CA| ω �⇒ |CA| = 4R

3
�⇒ |CO| = R

3

V0 = |CO| ω = R

3
.
3

4

V1

R
= V1

4

So options (1), (2), and (3) are correct and option (4) is incorrect.
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Fig. 2.76 Velocities of points 
A and B  

Fig. 2.77 Transmission line 
and common vertical 
direction 

16. Option (3) is correct. 
Assuming that P1 and P2 are the points belonging to the camshaft and the 

follower (Fig. 2.77) at the point of contact, respectively: 

. VP1 = |OP1| ω1

|OP1| = 3

sin 60
= 3.46 cm ω1 = 120 × 2π

60
= 12.57 rad/s

VP1 = 3.46 × 12.57 = 43.49 cm/s

The image of the velocities of points P1 and P2 in the common vertical 
direction must be equal and in the same direction. And on the other hand, 
because the direction of VP2 is also in the common vertical direction, 

. VP2 = ∣∣VP1

∣∣ cos 30 = 43.49 cos 30 = 37.7 cm/s

17. Option (2) is correct.
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Fig. 2.78 The velocity of the 
center of the roller 

The velocity of point A2 in the center of the roller is as in Fig. 2.78: 

. 
∣∣VA2

∣∣ = r2.ω2
∣∣VA2

∣∣ = 50.8 × 10 = 508 mm/s

The image of the velocity of point A2 in the common vertical direction 
(transmission line) gives us the velocity of point A3 belonging to bar 3 at the 
point of contact. 

. 
∣∣VA3

∣∣ = ∣∣VA2

∣∣ cos 65.6 = 508 cos 65.6 = 209.85 mm/s

ω3 =
∣∣VA3

∣∣
r3

= 209.85

33
= 6.36 rad/s

18. None of the options is correct. 
If point D belongs to member 3, its velocity direction is known. On the other 

hand, points D and A belong to a rigid body, so the velocity components are 
the same along the connecting line (Figs. 2.79 and 2.80) (see the text of the 
transmission line section). 

.VD cos 33.6 = VA �⇒ VD = 2.4 m/s

VD/A = VD sin 33.6 = 1.33 m/s

ω3 = VD/A

|AD| = 1.33

0.144
= 9.24 rad/s cω

VB = VD + VB/D
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Fig. 2.79 Velocity 
components of points A and 
D 

Fig. 2.80 Velocity of point D 
relative to point B 

VB/D = |DB| ω = 0.06 × 9.24 = 0.55 m/s 

VB =
√

V 2 
D + V 2 

B/D =
√

2.42 + 0.552 = 2.46 m/s 

19. Option (1) is correct. 
The velocities of points A and B from member 3 are in the same direction, 

so ω3 is zero. 

. VB/A = |AB| ω3 = 0

VB = VA + VB/A �⇒ VB = VA

|O2A| ω2 = |O4B| ω4ω2 = 4ω4

20. Option (2) is correct. 
In the given mechanism, the velocity of point B and the velocity direction 

of point C3 are known. At the same time, the velocity direction of VC3/B is also 
known, so by solving the following equation, the size of VC3/B and VC3 can be 
obtained. 

.VC3 = VB + VC3/B



88 2 Displacement and Velocity Analysis

Fig. 2.81 Auxiliary circle 

By obtaining VC3/B , 

. ωBD = VC3/B

|BC3|
So option (2) is correct. 
Option (1) is wrong because we know nothing about point D, the equations 

of option (3) are also wrong, and option (4) does not give us any specific 
information. 

21. Option (2) is correct. 
First, note that the velocities of components A and B must be equal at 

the instantaneous center IAB . Therefore, I23 and I34 must be located on the 
common vertical (3,2) and (4,3), respectively. 

By drawing an auxiliary circle (Fig. 2.81) and considering the direct contact 
of 2 to 3 and 3 to 4, we can conclude 

I34 
At the intersection−−−−−−−−−−→

{
I14 − I13 The connecting line 

Common vertical
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I23 
At the intersection−−−−−−−−−−→

{
I12 − I13 The connecting line 

Common vertical 
So C and D are the instantaneous centers. 

22. Option (3) is correct. 
The direction of velocity at points A and C is clear. Because the two 

velocities are parallel, the instantaneous center of I13 is at infinity, meaning 
that all points on member 3 have the same velocity: 

. VB = VA

23. Option (3) is correct. 
We must first note the difference between the two sets. The difference is in 

the fixed position of hinge 23 and the consequent fixing of bar 2. On the other 
hand, due to the similarity of the geometry of the two sets, the relative angular 
velocity between the members must remain constant. The given equation of 
angular velocity in relative terms is as follows: 

. (ω3 − ω1) = −b

c

cos θ2

cos θ3
(ω2 − ω1)

Because for the first mechanism, ω1 = 0. 
In the second mechanism, ω2 = 0, so from the placement of ω2 = 0 in the  

above equation, we have 

. ω3 − ω1 = +b

c

cos θ2

cos θ3
ω1 �⇒ ω1 = ω3

1 + b
c

cos θ2
cos θ3

24. Option (3) is correct. 
If C3 and C4 are points corresponding to C belonging to members 3 and 4, 

respectively: 
In option (1) between E and C4, in option (2) between B and C4, and in 

option (4) between x and C3, where the points belong to two different objects, 
the written velocity equations are not correct, but if the two points coincide, 
such as C4 and C3, the equation between the velocities is correct. The equations 
of the option (3), while regarding this note, use the points about which we have 
information, such as points B, D, and C3, the velocity of which is known to us, 
while the last equation is an additional equation and there is no need for it. 

25. Option (2) is correct. 

.n = 4 �⇒ Number of instantaneous centers = n(n − 1)

2
= 4(4 − 1)

2
= 6

n = 4, f1 = 4, f2 = 0 �⇒ DOF = 3 (n − 1) − 2f1 − f2

= 3 (4 − 1) − (−2 × 4) = 1
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Fig. 2.82 Circle is a kind of ellipse 

Option (3) is wrong because the circle is a kind of ellipse (Fig. 2.82). It 
should be noted that if the tip of the pen is in the middle of the distance between 
joints 23 and 34 (meaning when the pen P is at point C), the equation of the 
circle is obtained, and there is no need to change the degree of freedom of the 
mechanism. 

26. Option (3) is correct. 
According to Kennedy’s theorem, I24 is at the intersection of the connecting 

line of I23 and I34 with the connecting line of I12 and I14, but  I14 and I12 are 
at infinity, so the instantaneous center I24 is along component 3 and at infinity 
(Fig. 2.83). 

27. Option (1) is correct. 
Options (3) and (4) represent the velocity equations between two points on 

a rigid body, so they are correct. In option (2), since points F , H , and G are 
fixed, 

.VB/F = VB VE/G = VE VC/H = VC

− VC/H − VE/C + VE/G = −VC − VE + VC + VE = 0

− VB/F − VD/B − VE/D + VE/G = −VB − VD + VB − VE + VD + VE = 0
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Fig. 2.83 Intersection of the 
connecting lines 

Option (2) equations are also correct, so option (1) is wrong. Option (1) 
equations can be checked like option (2). Note that these equations are vectors. 

28. Option (4) is correct. 
In the Genoa wheel mechanism, for one rotation of disc A, disc  B rotates a 

quarter, and then disc B continues to rotate for a quarter of a second. 
29. Option (2) is correct. 

The pin is a moving point pin on the coordinate system connected to disk B 
(Fig. 2.84). When the pin is aligned with the disc centers A and B, its relative 
velocity relative to the groove is zero. So if P1 and P2 are points belonging to 
disks 1 and 2 at the point of contact, then 

. VP = VP1 = VP2 + VP1/P2 VP1/P2 = 0

VP1 = VP2 Rω1 = |C2P | ω2

|C1C2| = √
2R |C2P | =

(√
2 − 1

)
R

ω1 = 2π rad/s

Rω1 =
(√

2 − 1
)

Rω2 �⇒ ω2 = 2π√
2 − 1

rad/s

30. Option (1) is correct.
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Fig. 2.84 P is the contact 
point 

Fig. 2.85 Points B and C 
velocities 

The direction of velocity VC is known. Using vector equations and the 
geometry of the object (Fig. 2.85), 

. |AB| = 40 mm

VB = |AB| ω = 40 × 20 = 800 mm/s

VB = VC + VB/C

sin 67.38

|VB | = sin 36.9∣∣VB/C

∣∣
∣∣VB/C

∣∣ = 520.36 mm/s

ωBC =
∣∣VB/C

∣∣
|BC | = 520.36

104
= 5 rad/s

31. Option (3) is correct.
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According to Kennedy’s theorem, I24 is at the intersection of the connecting 
line of I23 and I34 with the connecting line of I12 and I14. But  I12 and I14 are 
at infinity. So I24 is along lever 3 and at infinity. 

32. Option (4) is correct. 
The velocities of points A and B, from member 3, are in the same direction, 

so ω3 = 0. So we have 

.
−→
V B = −→

V A + −→
V B/A, VB/A = |AB| ω3 = 0 �⇒ VB = VA

�⇒ |O2A| ω2 = |O4B| ω4 �⇒ ω2 = 4ω4



Chapter 3 
Acceleration Analysis 

This chapter delves into the study of acceleration in different motions. It presents an 
overview of the subject along with various analytical and drawing methods for its 
examination. The chapter begins with an introduction, highlighting the significance 
of acceleration analysis, followed by an exploration of acceleration equations specif-
ically tailored for curved motions. Additionally, it discusses an analytical method 
employed for the study of acceleration, providing valuable insights. Furthermore, 
a drawing method is presented, which serves as a practical tool for verifying 
acceleration calculations. Overall, this chapter offers a comprehensive and detailed 
account of acceleration analysis, laying the foundation for further understanding and 
application in relevant fields. 

3.1 Introduction 

In the previous chapters, we learned how to determine the instantaneous velocity 
of any point of the mechanism. In this chapter, we will study the determination 
of acceleration at different points of the mechanism. Because of the effect of 
acceleration on inertial forces, which in turn affect the resulting stresses in the 
components of a machine, bearing loads, vibration, noise, etc., acceleration in a 
mechanism is of particular importance. Analysis of acceleration in a mechanism 
can be performed by summing the relative accelerations. The method is similar to 
that used for relative velocities. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. Abbasimoshaei, T. A. Kern, Machine Dynamics, 
https://doi.org/10.1007/978-981-99-6010-1_3

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6010-1protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3
https://doi.org/10.1007/978-981-99-6010-1_3


96 3 Acceleration Analysis

3.2 Acceleration Equations for Curved Motions 

If we denote the velocity by . V , the average acceleration of the particle between 
two points . A and . A' on a curve is defined as .Δv/Δt , which is a vector in the . Δv

direction. The value of the average acceleration is equal to the value of . Δv divided 
by the value of . Δt . The instantaneous acceleration of the particle . a is by definition 
the limit of the average acceleration when the time interval . Δt tends to zero. This 
means: 

.a = Δv

Δt
(3.1) 

So, according to the definition of the derivation, we can write 

.a = dv

dt
= v̇ (3.2) 

The acceleration equation for the plane motion of the curved line in the 
orthogonal coordinate system .(x − y) is 

.a = v̇ = r̈ = ẍî + ÿĵ (3.3) 

where . r is the location vector. 
If . ρ is the radius of curvature of the object’s path and . v is its velocity, in the 

vertical-tangent coordinate system .(n − t), we have  

.a = v2

ρ
ên = v̇êt , (3.4) 

where .at = v̇ represents the tangential acceleration and .an = v2

ρ
represents the 

vertical acceleration. The vertical component of the acceleration . an is always in 
the direction of the center of curvature of the motion path. Note that the tangential 
component of the acceleration . at is in the positive direction of . t as the value of . v
increases, and in the negative direction of . t as it decreases. 

Note A circular motion is a special case of motion on a plane curved line where the 
radius of curvature . ρ is a fixed distance and is equal to the radius . r of the circle. 

The acceleration equation for this type of motion in the polar coordinate system 
.(r − θ) is 

.a =
(
r̈ − rθ̇2

)
êr + (rθ̈ + 2ṙ θ̇ )êθ (3.5) 

where .ar = r̈ − rθ̇2, .aθ = rθ̈ + 2ṙ θ̇ , and .|a| =
/

a2r + a2θ .
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Fig. 3.1 Three coordinate 
systems 
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Figure 3.1 shows three coordinate systems, orthogonal (x. − y . −z), cylindrical (r 
.−θ−z ), and spherical (R.−θ − Ф ) along with the unit vectors. 

The acceleration equation for spatially curved line motion in orthogonal . (x−y−
z), cylindrical .(r − θ − z), and spherical .(R − θ − ϕ) coordinate systems is 

.a = v̇ = R̈ = ẍî + ÿĵ + z̈k̂ (orthogonal coordinate system) 

.a =
(
r̈ − rθ̇2

)
êr + (

rθ̈ + 2ṙ θ̇
)
êθ + z̈k̂ (cylindrical coordinate system) 

.a = aRêR + aθ êθ + aϕêϕ (spherical coordinate system) 

which in the last equation we have 

.aR = R̈ − Rϕ̇2 − Rθ̇2 cos2 ϕ

aθ = cosϕ

R

d

dt
(R2θ̇ ) − 2Rθ̇ϕ̇ sinϕ

aϕ = 1

R

d

dt

(
R2ϕ̇

)
+ Rθ̇2 sinϕ cosϕ
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3.3 Analytical Method for the Study of Acceleration 

In the following, different methods of acceleration analysis are investigated. 
To determine the equation of relative acceleration from the equation of relative 

velocity .VA = VB + VA/B , we take a derivative with respect to time and have 

.aA = aB + aA/B (3.6) 

This equation states that the acceleration of point . A is equal to the sum of the 
acceleration vectors of point . A and . B from the point of view of a non-rotating 
observer who is moving along with . B. 

Example Car . A is driving on a curved path with a radius of curvature of .60m with 
a constant speed of .50 km/h. When car . A is in the position shown in Fig. 3.2, car 
. B is .30m away from the intersection and has an acceleration of .1.2m/s2 in the 
south direction (toward the intersection). Calculate the acceleration of car . A from 
the point of view of the passenger of car . B at the given time. 

1) .2.8 m/s2, 17◦ 2) .3.1 m/s2, 31◦ 3) .4.3 m/s2, 22◦ 4) . 2.7 m/s2, 57◦

Solution Since the velocity of car . A is constant, the only component of acceleration 
is the acceleration perpendicular to the direction of motion (in the direction of . OA) 

and equal to . 
V 2

A

R
. Thus: 

. 
−→
a A = V 2

A

R

−→
AO

AO
=

(
50

3.6

)2

× 1

60
×

(
− sin 30î + cos 30ĵ

)
= −1.6î + 1.6

√
3ĵ

(3.7) 

Fig. 3.2 Cars A and B
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The acceleration of car . B is also .1.2 m/s2 downward. This means: 

. 
−→
a B = −1.2ĵ

The acceleration of . A from the point of view of . B is equal to the relative 
acceleration vector of .aA/B . Therefore, 

. 
−→
a A/B = −→

a A − −→
a B = −1.6î + 3.97ĵ

||aA/B

|| =
√
1.62 + 3.972 = 4.28 m/s2

The angle of this vector with respect to the vertical line (on which . B lies) is 
denoted by . θ and is equal to 

. tan θ = 1.6

3.97
= 0.403 ⇒ θ = 21.95◦

Option (3) is correct. 

Considering the relative accelerations of .an
A/B and .at

A/B , the above equation is 
written as follows: 

.aA = aB + an
A/B + at

A/B (3.8) 

or 

.aA = aB + ω × (ω × r) + α × r (3.9) 

where . ω and . α are the angular velocity and acceleration, respectively. 

Note The equations of relative acceleration depend on absolute angular velocity 
and absolute angular acceleration. 

Example A roller with a radius of . r on the ground with a constant angular velocity 
of . ω is in a pure rolling state. In the case shown in Fig. 3.3, the angular acceleration 
of the bar .AB is desired. 

1) .αAB = 0 2) .αAB = ω2

2 3) .αAB = ω2 4) . αAB = 2ω2

Fig. 3.3 A roller with pure 
rolling movement
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Solution Points . B and . O have only horizontal motion, so their acceleration in the 
vertical direction is zero. If we denote the vertical direction by . y and considering 
the equation of relative acceleration between points . O and . A, we have  

.aA = aO + aA/O ⇒ (aA)y = (aO)y + (aA/O)y = 0 − rω2 = −rω2 (I) 

Now, if we consider two points . A and . B belonging to the rigid rod, we have 

.
−→
a A = aB + aA/B = −→

a B + −→ω AB × (−→ω AB × −→
r AB

) + αAB × −→
r AB (II) 

⇒ (aA)y = (aB)y + 0 − |AB| αAB = 0 + 0 − 2rαAB = −2rαAB 

We note that according to the direction of .−→ω AB and .−→r A/B , the expression 
.
−→ω AB × (−→ω AB × −→

r AB

)
in the above equation has no components in the direction 

. y. 

. (I ) , (II ) ⇒ 2rαAB = rω2 ⇒ αAB = ω2

2

Option (2) is correct. 

Equation 3.9 was calculated for the non-rotating coordinate system. The equation 
of relative acceleration under the general condition that the motion is with respect 
to the rotating axes is 

.aA = aB + ω̇ × r + (ω × r) + 2ω × Vrel + arel (3.10) 

The resulting equation is a general vector equation giving the absolute accelera-
tion of particle . A in terms of its relative acceleration . arel , from the point of view of 
a moving coordinate system rotating with an angular velocity of . ω and an angular 
acceleration of . ω̇. 

Note The expression .2ω × Vrel , also called Coriolis acceleration, shows the 
difference in acceleration of point . A compared to other points from the viewpoint 
of a rotating and a non-rotating coordinate system. 

Example In which of the following situations is the Coriolis force less than zero (it 
is assumed that the absolute and relative velocities are not equal to zero)? 

1) Acceleration is zero. 
2) Velocity and angular acceleration vectors are parallel. 
3) Relative velocity and angular velocity vectors are parallel. 
4) Angular acceleration is zero.
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Fig. 3.4 C is the contact 
point with support 

Solution The Coriolis force is obtained by multiplying the mass of the particle by 
its Coriolis acceleration. The Coriolis acceleration is also obtained from the external 
multiplication of the apparent relative velocity vector and the angular velocity of the 
device in which the relative velocity is measured. 

. ac = 2ω × Vrel

The external multiplication of two parallel vectors is zero. Thus, for . ac to be zero, 
it is sufficient that . ω is parallel to . Vrel . 

Option (3) is correct. 

Example In the mechanism shown in Fig. 3.4, the angular velocity of limb 2 is 
. ω2 and constant. From which equation can the angular acceleration of limb 4 be 
derived? (The point . C on the rod .BD is next to the support . P , and the rod is always 
in contact with this support.) 

1) . aC = aB + an
C/B + at

C/B, aC = aP + arel
C/P + aCr

C/P

2) . aD = aC + an
D/C + at

D/C, aP = aC + acr
P/C + arel

P/C

3) . aD = aB + an
D/B + at

D/B, aC = aP + arel
C/P + aCr

C/P

4) . aC = aB + an
C/B + at

C/B, aP = aC + arel
P/C + aCr

P/C

Solution The acceleration of point . B is known, so one of our points in setting up 
the equations must be point . B. We know nothing about point . D, so options 2 and 3 
are wrong. Point . P behaves like a particle moving relative to the rotating coordinate 
system associated with the link . BD. Its relative motion path according to point . C
is in line with the rod, which is a straight line, so the radius of curvature of the path 
is infinite, and this means that the relative vertical acceleration is zero, according to 
the equations of the rotating axes, option (4) is correct. Option (1) is wrong, because 
if we put the observer on the ground, it sees the path of motion of . C as a curved line 
whose radius of curvature is not known to us, i.e., the relative vertical acceleration 
is not known. 

Option (4) is correct.
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3.4 Drawing Method for Checking Acceleration 

Similar to the determination of velocity, the acceleration of the points of a mech-
anism can also be determined by drawing acceleration polygons and acceleration 
images. The vector polygon associated with Eq. 3.9 is shown schematically in 
Fig. 3.5. When the lever velocity analysis is performed, the angular velocities of 
all elements are known, so the radial component .−→a r

B/A = −ω2rB/A can always be 
calculated and drawn. Thus, if one of the other vectors is known and the orientation 
of the other two is also known, the polygon can be drawn using a method similar to 
the vector triangle used in velocity analysis. 

The angular acceleration for the known element is determined in a similar way to 
the angular velocity, except that the tangential component of the relative acceleration 
is used instead of the linear velocity. To determine the value of . −→a , we need to 
know the tangential components of the relative acceleration between each of the 
two selected points on the element. For example, the equation of relative tangential 
acceleration for two points . A and . B can be written as .

−→
a t

B/A = −→
a × −→

r B/A. Since 
we need to know the lines along which the vectors are aligned, the main problem is 
to determine the direction of the lines and the magnitude of each vector. If we know 
the directions of one of the vectors, we can determine the third direction using the 
right-hand rule (Fig. 3.6). 

For example, consider the mechanism in Fig. 3.7, where the angular velocity . ω2
and angular acceleration . a2 and all geometric parameters are assumed to be known. 

Y 

r
B 

X 

A 

B 

r
BA 

r
A 

ω 
α 

ar 
BA 

at 
BA 

a’ 

b’ 

O’ 

a
B 

Fig. 3.5 Drawing method for checking acceleration
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Fig. 3.6 Tangential acceleration direction 
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Fig. 3.7 Mechanism with curved output 

To determine other unknown parameters, the velocity polygon must first be 
drawn. In this example:
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Fig. 3.8 Velocity and acceleration polygons 

Using a vector equation and two unknowns, the magnitude of . VB and .VBA can be 
determined. By solving two vector equations as below, the magnitude and direction 
of . VC , the magnitude of .VCA, and the magnitude of .VCB can then be determined. 

With the velocity values, we can now draw the acceleration polygon and 
determine the unknown acceleration values (Fig. 3.8). We have: 

We have a vector equation and two unknowns . At
B and .At

BA, which are easy to 
determine. In the same way, we obtain the following equations: 

. AC = AA + An
CA + At

CA

AC = AB + An
CB + At

CB

The velocity and acceleration polygons are as follows: 

Note The origin of the velocity polygon is given by . OV , and the origin of the 
acceleration polygon is given by . Oa .
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Example What is the acceleration polygon for the rod .AB of the below mecha-
nism? 

at 
A 

aB 

an 
A 

A 

B 

1) 

3) 

2) 

4) 

Solution From the diagram, it can be seen that the extent of the normal and 
tangential vector components of point . B with respect to . A is known. On the other 
hand, the acceleration vectors of points . A and . B are completely known (magnitude 
and direction). Therefore, the vector equation can be solved with two unknowns (the 
value of the normal and tangential acceleration components of . B with respect to . A), 
and the unknowns are obtained by drawing the acceleration polygons. 

Option (1) is correct. 

Instead of drawing a table to find out the known and unknown quantities and 
directions, we can briefly represent them with . + and . − signs above the velocity and 
acceleration equations. In this case, the . + sign means the parameter is known and 
the . − sign means it is unknown. The sign on the left represents the direction, and 
the sign on the right represents the magnitude. For example, . ±AD means that the 
direction of the acceleration of point D is known and its magnitude is unknown. 

It should be noted that the drawing method is also valid for the case when the 
Coriolis acceleration component is added and the procedure is similar. 

Some Examples of “Acceleration Analysis” 

1. What is the acceleration of the point P from link 2, when link 1 is stationary 
and link 2 rotates about it with a constant angular velocity of ω? (R1, R2 are 
the radii of links 1 and 2, respectively) (Fig. 3.9) 

1) R2ω
2 2) R1ω

2 3) (R1 + R2)ω
2 4) R1R2 

R1+R2 
ω2 

2. If we write down all the relative acceleration equations for the six-bar mecha-
nism, which of the following statements is true for the acceleration components 
(Fig. 3.10)?
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Fig. 3.9 Link 1 is stationary 

Fig. 3.10 A six-bar  
mechanism 

1) There are two non-zero components of the Coriolis acceleration and two 
zero components of the relative normal acceleration. 

2) All components of Coriolis acceleration and normal acceleration are non-
zero. 

3) There are three components of Coriolis acceleration that are non-zero and 
three components of relative normal acceleration that are zero. 

4) All components of the relative acceleration can be zero or non-zero 
depending on the type of joint. 

3. The diagram in Fig. 3.11 shows the direction of velocity and acceleration of two 
points A and B relative to a fixed reference point and their values. What are the 
velocity (in meters per second) and acceleration (in meters per second squared) 
of point B relative to point A? 

1) 30 and 253 2) 30 and 224 3) 28 and 115 4) 41 and 224 

4. The object shown is rolling on the ground without sliding with an angular 
velocity of ω and an angular acceleration of α (Fig. 3.12). The acceleration 
of the point A2 is: 

1) rα perpendicular to the motion path of point A2 
2) rα tangential to the motion path of point A2 
3) rω2 perpendicular to the motion path of point A2 
4) rω2 tangential to the motion path of point A2
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Fig. 3.11 Velocity and 
acceleration of two points A 
and B 

Fig. 3.12 Rolling on the 
ground without sliding 

Fig. 3.13 Car A and car B 

5. Car A is moving at a constant velocity of 50 kilometers per hour, and car B is 
moving at 1.2 meters per second. From the point of view of the passenger of car 
B, what is the acceleration of car A in meters per second squared (Fig. 3.13)? 

1) 1.2 2) 4.3 3) 6.3 4) 8.7 

6. Car A is moving on a curved path with a radius of curvature of 60 meters at a 
constant velocity of 50 kilometers per hour. When car A is in the position shown 
in Fig. 3.14, car B is 30 meters from the intersection and has an acceleration 
of 1.2 meters per second squared toward the south (toward the intersection). 
Calculate the acceleration of car A from the point of view of the passenger of 
car B at the shown moment.
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Fig. 3.14 Car A with a 
constant velocity 

Fig. 3.15 A lever  

1) 2.8 meters per second squared, 17◦ 

2) 3.1 meters per second squared, 31◦ 

3) 4.3 meters per second squared, 22◦ 

4) 2.7 meters per second squared, 57◦ 

7. Which statement about Coriolis acceleration is true about this lever (Fig. 3.15)? 

1) Since VP2 = VP4 , then A
C = 0. 

2) Since VP2 = VP4 , then A
C = 0. 

3) Since VP3 = 0, then AC = ω2 × VP4/P2 . 
4) Since VP2 = VP2/P4 , then A

C = ω4 × VP4/P2 . 

8. In the shown mechanism, the acceleration of point B is (Fig. 3.16): (the 
magnitude of AC is twice that of OA) 

1) 
V 2 C 

√
3 

3OA
2) 

V 2 C 
√
3 

OA
3) 

2V 2 C 
√
3 

3OA
4) 

V 2 C 
√
3 

2OA 

9. Which statement about the shown mechanism is correct (Fig. 3.17)? 

1) The acceleration of point A4 relative to point A3 has only a tangential 
component. 

2) The acceleration of point A4 relative to point A3 has a tangential component 
and a Coriolis component.
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Fig. 3.16 Calculate the 
acceleration of point B 

Fig. 3.17 A slider  
mechanism 

Fig. 3.18 Two rollers on a 
horizontal surface 

3) The acceleration of point A4 relative to point A3 has a vertical component 
and a Coriolis component. 

4) Because of the constant angular velocity of rod 5, point A4 has no 
acceleration relative to point A3. 

10. If rollers 2 and 4 move on a horizontal surface without sliding, and roller 2 has 
a constant angular velocity of ω, the angular acceleration of roller 4 is equal to 
what option (Fig. 3.18)? AB = 2R 

1) 
√
2Rω2 2) 

√
3Rω2 3) 

√
3 
3 Rω2 4) 

√
2 
2 Rω2 

11. In the shown mechanism, the angular velocity of element 2 is ω2 and constant. 
From which equation can the angular acceleration of element 4 be derived? 
(The point C on the rod BD is next to the support P , and the rod is always in 
contact with this support) (Fig. 3.19). 

1) aC = aB + an 
C/B + at 

C/B, aC = aP + arel 
C/P + acr 

C/P 
2) aD = aC + an 

D/C + at 
D/C, aP = aC + acr 

P/C  + arel 
P/C  

3) aD = aB + an 
D/B + at 

D/B, aC = aP + arel 
C/P + acr 

C/P 
4) aC = aB + an 

C/B + at 
C/B, aP = aC + arel 

P/C  + acr 
P/C
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Fig. 3.19 Link 2 has a 
constant velocity 

Fig. 3.20 Calculate the 
angular acceleration of AB 

Fig. 3.21 Weight A is 
moving downward 

12. In Fig. 3.20, O2A = AB. O2A rotates with constant velocity of ω. The angular 
acceleration of AB at this moment is: 

1) ω2 ⇑ 2) 2ω2 ⇑ 3) 3ω2 ⇑ 4) 0 

13. In the mechanism in Fig. 3.21, if weight A is moving downward at a constant 
velocity of 2(m/s), the velocity of point B on the circumference of the disk is 
. . .. 

1) 2 m/s and to the right 
2) 4.4 m/s and to the right 
2) 2 m/s and to the left 
3) 4.4 m/s and to the left 

14. A wheel is rolling on a flat ground, acceleration and velocity of point P are 
given, what is the radius of curvature of point P (Fig. 3.22)? 

.
1) rP = 179.6 mm 2) rP = 153.3 mm
3) rP = 127 mm 4) rP = 89.8 mm
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Fig. 3.22 Wheel is rolling on 
a flat ground 

Fig. 3.23 A link with two  
different accelerations 

in 

30° 

aA = 200 
s 

2 

3 in
 

30° 

A 

B 

in 
aB = 150 

s2 

45° 

Fig. 3.24 Angular velocity 
of element 2 is known C 

2 

B3 

3 

4 
B4 

B2 

O2 

O4 

15. The acceleration of the end points of AB link is given in Fig. 3.23. What is the 
angular acceleration of this link? 

1) α = 450 rad/s2 (CCW) 2) α = 45 rad/s2 (CCW) 
3) α = 45 rad/s2 (CW) 4) α = 450 rad/s2 (CW) 

16. In Fig. 3.24, knowing the angular velocity of element 2 and assuming it is 
constant, the acceleration of point C results from which equation? 

1) aC = aB3 + at 
C/B3 

+ an 
C/B3 

+ acr 
C/B3 

2) aC = aB4 + at 
C/B4 

and an 
B3 

= at 
B4 

+ an 
B4 

+ an 
B3/B4 

+ acr 
B4/B3 

3) aC = aB4 + aC/B4 and a
n 
B4 

+ at 
B4 

= an 
B3 

+ arel 
B4/B3 

4) aC = aB4 + aC/B4 and a
n 
B3 

= at 
B4 

+ an 
B4 

+ arel 
B3/B4 

+ acr 
B3/B4
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B 
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4 
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Fig. 3.25 Element 2 has a constant angular velocity 

Fig. 3.26 Pure rolling movement 

A 

A A A A 

B C D 

Fig. 3.27 Rolling on a horizontal surface 

17. Which answer is correct for the angular velocity and acceleration of element 3 
in Fig. 3.25 for the mechanism shown when element 2 has a constant angular 
velocity of ω2? 

1) ω3 = 0, α3 /= 0 2)  ω3 = 0, α3 = 0 
3) ω3 /= 0, α3 = 0 4)  ω3 /= 0, α3 /= 0 

18. What is the acceleration of point P in the mechanism in Fig. 3.26 in cm/s2? 

1) 108 2) 324 3) 341 4) 432 

19. A disk with a radius of 10 cm rolls on a horizontal surface without sliding, as 
shown in Fig. 3.27. Which option correctly indicates the relative acceleration of 
point A with respect to the center of rotation? 

1) A 2) B 3) C 4) D
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Fig. 3.28 Determine the acceleration of point C 

Fig. 3.29 Input velocity and acceleration and output velocity are known 

20. Using the scale of velocity and acceleration of point b2, determine the acceler-
ation of point C by drawing the velocity and acceleration diagram (Fig. 3.28). 

Oa 

C 

1) 

Oa 

C 

2) 

Oa 

C 
3) 

Oa 

C 

4) 

21. If ω2 and ω4 and α2 are known, which of the following vector equations should 
be used to analyze the acceleration of the mechanism in Fig. 3.29? 

1) aB3 = aB4 + aB3/B4 

2) aB4 = aB3 + aB4/B3 

3) aB4 = aB3 + arel 
B4/B3 

+ (2ω3) × (VB4/B3) 
4) aB3 = aB4 + arel 

B3/B4 
+ (2ω4) × (VB3/B4)



114 3 Acceleration Analysis

Fig. 3.30 Geneva wheel 
mechanism 

Moving Wheel 

Moving Wheel

ω
o 

o 

Fig. 3.31 Four-bar linkage 
with a slider 

22. Which statement about the determination of the angular acceleration of the 
moving wheel in the Geneva wheel mechanism is correct if the moving wheel 
rotates with constant angular velocity (Fig. 3.30)? 

1) The Coriolis acceleration is non-zero in all situations where the moving 
wheel is not fixed and should be considered. 

2) The Coriolis acceleration is zero at the beginning and end of the contact of 
the moving wheel and at the contact along both centers of the wheels. 

3) The Coriolis acceleration is considered only during the stationary phase of 
the moving wheel. 

4) The Coriolis acceleration is not considered in this mechanism. 

23. Which of the following equations is more appropriate for calculating α4 
(Fig. 3.31)? 

1) aB4 = aO4 + an 
B4/O4 

+ at 
B4/O4 

2) aB2 = an 
B4/O4 

+ at 
B4/O4 

+ at 
B2/O4 

+ 2VB2/B4ω4 

3) aB2 = aB4 + an 
B2/O4 

+ at 
B2/O4 

+ 2VB2/B4ω4 

4) aB2 = aO4 + an 
B4/O2 

+ at 
B4/O2 

24. Which of the following equations about velocity and acceleration of points A2 
and A3 is correct (Fig. 3.32)?
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Fig. 3.32 Output is a slider 

B 
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B 

A2 /O 
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Speed Extension 
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3 

A 

Fig. 3.33 A disk rolling on a 
surface 

1) V n 
A2 

= VA3 , aA3 = aA2 + acr 
A3/A2 

+ at 
A3/A2 

+ an 
A3/A

, all three values of 
vertical, tangential, and Coriolis acceleration are present. 

2) VA2 = VA3 , aA3 = aA2 + aA3/A2 , direction of aA3/A2 on the line BC. 
3) VA3 = VA2 + VA3/A2 , aA3 = aA2 + aA3/A2 , VA3/A2 is perpendicular to line 

BC. 
4) VB = VA2 + VB/A2 , VA2 = VA3 , aA2 = aA3 , aB = aA2 + aB/A2 . 

25. The Coriolis acceleration is caused by . . . . . . . . . . . .  . 

1) Change of the direction of motion of the object 
2) Change of the magnitude of the velocity of the object 
3) Change of the rotational velocity of the object 
4) Rotation of the plane of motion of the object 

26. What is the value in rad/s of the angular velocity of a disk with a radius of 20cm 
and the velocity of the center V0 = 2m/s, if the velocity of the point A above it 
is 4 m/s (Fig. 3.33)? 

1) 1 2) 4 3) 8 4) 10
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Answers for the Examples of “Acceleration Analysis” 

1. Option (2) is correct. 
The link 2 rotates about its center of rotation P with an angular velocity of 

ω. Therefore, its linear velocity and centripetal acceleration are 

. VC2 = R2ω ⇒ aC2 = (Vc2)
2

R1 + R2
= (R2ω)2

R1 + R2

The relative acceleration of aP/C2 is in the direction of the center C2 and has 
a value of R2ω. This is because if we hold C fixed, P rotates about C2 and has 
a centripetal acceleration in that direction. Therefore: 

. aP = aC2 + a P
C2

= R2
2ω

2

R1 + R2
− R2ω

2 =
(
R2
2 − R1R2 − R2

2

)

R1 + R2
ω2

⇒ ap = −R1R2

R1 + R2
ω2

2. Option (1) is correct. 
At points B and C, there is a rotary joint, so we can say that VB2 = VB3 and 

VC2 = VC3 and also AB2 = AB3 and AC2 = AC3 . Thus, at points B and C, both 
velocity and relative acceleration are zero, and therefore, the expressions 2ω × 
Vrel (in terms of relative normal acceleration) and Arel (in terms of Coriolis 
acceleration) are zero at these two points. For joints 5 and 6, the motion is a 
sliding motion, and the direction of the velocity of points P2 and P6 and Q3 
and Q5 is different. Therefore, the relative velocity at points P and Q is non-
zero. Accordingly, the relative acceleration at these points is also non-zero. 

3. Option (2) is correct. 

. VBA = VB − VA

= 30
(
cos (−30) î + sin (−30) ĵ

)
− 15

(
cos (45) î + sin (45) ĵ

)

. = 15.37î − 25.6ĵ

|VBA| = 29.86
m

s

ABA = AB − AA =
(
−100î

)
−

(
200ĵ

)
⇒ |ABA| = 223.6

m

s2

4. Option (3) is correct.
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Fig. 3.34 Acceleration diagram 

A2 is the point Alocated on the lever 2. The acceleration of the center of 
instant rotation A as the point of the object is given by the following equation: 

. aA = aO + a A
O

where O is the center of the circular arc and the components of the term 

of relative acceleration are
(
a A 

O

)
n 

= rω2, whose direction is from A to O 

and
(
a A 

O

)
t 

= rα, whose direction is to the right, which corresponds to the 

angular acceleration of the line A0 around the point O in the counterclockwise 
direction. We have summarized these theorems in the diagram in Fig. 3.34. 

It can be seen that aA = rω2 and is directed upward. 
5. Option (2) is correct. 

Since car B is moving in a straight line, the acceleration of A with respect to 
point B or with respect to the coordinate system associated with B is the same. 

. 
−→
a A = V 2

R

(
−sin30î + cos30ĵ

)
=

(
50
3.6

)2

60

(
− î

2
+

√
3

2
ĵ

)
= −1.6î + 2.87ĵ

This question is phrased as if B is moving at a constant velocity of 1.2 
(because of the unit meters per second), but the correct option is shown in the 
key as if the answer is obtained by assuming that B is moving downward at an 
accelerated velocity of 1.2: 

.
−→
a B = −1.2ĵ ,

−→
a A

B
= −→

a A − −→
a B = −1.6î + 3.98ĵ

|||−→a A
B

||| =
√
1.62 + 3.982 = 4.29
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It should be noted that this question is applied to the dynamics course and 
not to the autodynamics. In other words, the position of this question in the 
autodynamics course is not appropriate. 

6. Option (3) is correct. 
Car A has a centripetal acceleration relative to the ground. From this follows: 

. aA = v2A

R
⇒ aA = v2A

R
(− sin 30î + cos 30ĵ )

= ( 50
3.6 )

2

60

(
−1

2
î +

√
3

2
ĵ

)
⇒ −→

a A = 3.215(
−1

2
î +

√
3

2
ĵ )

−→
a A = −→

a B + −→
a A

B
⇒ −→

a A
B

= −→
a A − −→

a B = 3.215(
−1

2
î +

√
3

2
ĵ ) − (−1.2ĵ )

−→
a A = −1.6î + 3.98ĵ ⇒ ||−→a A

|| =
/

(−1.6)2 + (3.984)2 = 4.3 m/s2

. (β is the angle of −→
a A with y) tanβ = aAy

aAx

⇒ β = tan−1 1.6

3.98
= 22◦

7. Option (2) is correct. 
The slider 3 slides on the element 4. The points P2 and P3 coincide, and the 

Coriolis acceleration of the points P2 or P3 with respect to the element 4 is 

. ac = 2ω4 × VP2/P4

Since the common vertical connection of elements 3 and 4 is perpendicular 
to element 4 and in line with element 2, it is necessary that the velocity of P4 
and P3 in line with element 2 be equal, and since the velocity of points P2 or 
P3 in line with element 2 is zero, the velocity of P4 perpendicular to element 4 
is also zero. Then ω4 = 0 and the Coriolis acceleration becomes zero. 

8. Option (1) is correct. 
From the acceleration equation between A and C, we obtain 

. 
−→
a C = −→

a A = (−→ω AC × −→ω AC × −→
r AC

) + −→
a AC × −→

r AC

Since the directions of the velocity of points A and C are the same and both 
have no vertical velocity component, −→ω AC = 0. But since VC is constant, 
aC = 0. Therefore, 

.aA + −→
a AC × −→

r AC = 0 ⇒ {aAy + aAC × OC = 0aAx + aAC × OA = 0
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Fig. 3.35 Acceleration vectors 

On the other hand, aAy = −V 2 A 
OA ; therefore, 

. aAC = −V 2
A

OAOC
= −V 2

A(
OA

) (√
3OA

) = − V 2
A√

3
(
OA

)2

Now we write the acceleration equation between B and C: 

. 
−→
a B = −→

a C + −→
a BC × −→

r BC = 0 −
(
BCαACî

)

Since BC = OA and VA = VC , we thus have 

. 
−→
a B =

√
3V 2

C

3OA

9. Option (2) is correct. 
According to the explanation given in the discussion of the rotating coor-

dinate system, the point A4 behaves like a particle moving in the rotating 
device associated with the element 3, so it has a Coriolis acceleration. On the 
other hand, A4 moves in the direction of the groove with respect to element 3, 
and since the groove is a straight line, the radius of curvature is infinite, and 
consequently, the vertical component of the relative acceleration is zero. 

10. Option (3) is correct (Fig. 3.35). 

. aB = aA + aBA

. ⇒ Rα4 î = −Rω2ĵ + 2Rα3 cos 60î + 2Rα3 sin 60ĵ

. ⇒
⎛
direction î : Rα4 = Rα3 ⇒ α4 = α3 (1)

direction ĵ : Rω2 = √
3Rα3 (2)

. (1) , (2) ⇒ α4 =
√
3

3
ω2
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Fig. 3.36 Points A and B 
acceleration 

All options have an additional R, which makes the dimension of the options 
different from the dimension of the angular acceleration. 

11. Option (4) is correct. 
Since the acceleration of point B is known, one of our points must be point 

B when we write the equations, and we do not have any information about 
point D. Therefore, options (2) and (3) are incorrect. Point P behaves like a 
particle moving relative to the rotating coordinate system associated with the 
element BD. Its relative path of motion with respect to point C is in line with 
the rod, which is a straight line. Thus, the radius of curvature of the path is 
infinite, which means that the relative vertical acceleration is zero. According 
to the equations for rotating axes, option (4) is correct. Option (1) is incorrect 
because when we place the observer on the ground, he sees the motion path 
of C as a curved line whose radius is unknown to us, i.e., the relative vertical 
acceleration is unknown. 

12. Option (1) is correct. 
Point B moves along a horizontal path, so the vertical component of 

acceleration at B is zero. Point A also has a net rotation about O2, and since ω 
is constant, point A has only the vertical component of acceleration (Fig. 3.36). 

. aA = |O2A| ω2

α =

||||at
A
B

||||
|AB| = |O2A| ω2

|O2A| = ω2

13. Option (4) is correct. 
The velocity is the same at all points on the rope, including the point of 

contact with the disk, and the disk is rolling on the ground, i.e., VD = 0; thus: 

. ω = VC

|DC| = 2

0.25
= 8

VB = |DB| ω = 0.55 × 8 = 4.4 m/s

According to the direction of ω, the velocity of the point VB is directed to 
the left (Fig. 3.37). 

14. Option (1) is correct.
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Fig. 3.37 Point D has zero 
velocity 

Fig. 3.38 A and  B  
accelerations 

The center of curvature is on the line perpendicular to the velocity, and the 
acceleration component in the direction of the radius of curvature is equal to 
V 2 
ρ . 

. an = a cos 45 =
√
2

2
× 12.7 = 8.98 m/s2

an = V 2

ρ
= 1.272

ρ

1.61

ρ
= 8.98ρ = 179.3 mm

15. Option (3) is correct (Fig. 3.38). 

. α = at
B/A

|AB| = at
B − at

A

3

α = 150sin15 − 200cos30

3
= −44.8 ≈ −45 rad/s2

A negative number means at 
B < at 

A, which means angular acceleration is 
clockwise. 

16. Option (4) is correct. 
Point C is a point belonging to the rigid element 4; thus: 

.aC = aB4 + aC/B4
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If we assume that the coordinate system is associated with element 4, B3 is 
like a moving particle in this device. Now if we put an observer on the element 
4, he will see the motion path of B3 in line with the rod 4, so the radius of 
curvature of the path is infinite, and in other words, n 

a B3/B4 
is zero. 

. 
n

a B3/B4

= |Vrel |2
ρ = ∞

The velocity and acceleration of points B2 and B3 are equal, and since rod 2 
rotates about point O2 and the angular velocity of 2 is constant, the tangential 
acceleration of B3 is zero. 

According to the equations for rotating axes, option 4 is correct. It should be 
noted that option 3 is incorrect because this equation assumes that the rotating 
axes are connected to element 3, while an observer located on element 3 sees 
the motion path of B4 as a curved line whose radius of curvature is unknown to 
us. 

17. Option (1) is correct. 
Points B and C are the points belonging to a rigid body. The direction of the 

velocity is the same in these two points, so the motion is translational, which 
means that ω3 = 0. Since ω is constant, the acceleration of points C and B is 
only in the direction n, and since the accelerations are in different directions, α 
exists (Fig. 3.39). 

18. Option (3) is correct. 
Point B is moving on a circular path around point O2. If we call the point of 

contact with the ground O1, we have:  

Fig. 3.39 Different points 
acceleration and velocity
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. VB = |O2B| ω2 = 3 × 6 = 18 cm/s

VB = |O1B| ω3 → ω3 = 18 rad/s

aB = V 2

ρ
= 182

3
= 108 cm/s2

aP = aB + aP/BaP/B = |PB| ω2
3 = 324 cm/s2

aP =
/

a2B + a2P/B = 341.5 cm/s2

19. Option (2) is correct. 
If the disk is rolling on the horizon, the center of rotation is the point of 

contact (Fig. 3.40), so: 

. aA/O = an
A/O + at

A/O

an
A/O = rω2 = √

2Rω2 = √
2 × 0.1 × 102 = 14.14 m/s2

. at
A/O = rα = √

2Rα = √
2 × 0.1 × 50 = 7.07 m/s2

aA/O =
√
14.142 + 7.072 = 15.8 m/s2

According to the size of the components, option (2) is correct. 
20. Option (3) is correct. 

Using the equations for relative velocity and acceleration, the velocity and 
acceleration of point C can be obtained using two points D and E (Fig. 3.41): 

. VC = VD + VC/D, aC = aD + aC/D

VC = VE + VC/E, aC = aE + aC/E

The desired answer is obtained from the first equation. According to the 
drawn acceleration diagram, options (2) and (4) are automatically removed. On 
the other hand, between options (1) and (3), we find that the horizontal slope 
of aC is lower relative to aC/D (CD extension). Therefore, option (1) is also 
incorrect. 

Fig. 3.40 Acceleration of 
point A
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Fig. 3.41 Acceleration 
triangle 

21. Option (4) is correct. 
Point B3 behaves as a moving point in the rotating coordinate system 

associated with the element 4, and the observer on 4 sees the motion path of B3 
in the direction of motion of the rod, so that the radius of curvature is infinite 
and the relative vertical acceleration is zero because: 

. an = V 2
rel

ρ = ∞ = 0

Using the equations for rotating axes, option 4 is correct. Option 3 is a 
correct equation, but because the point B4 in moving on a curved path relative 
to B3 and the radius of curvature of the path is unknown, it is not an appropriate 
equation. Options (1) and (2) also do not include the Coriolis acceleration term. 

22. Option (2) is correct. 
The gripper behaves like a moving point moving in a rotating coordinate 

system associated with the moving wheel. Therefore, it has a Coriolis accelera-
tion. According to the corresponding equation, the Coriolis acceleration is zero 
when the angular velocity of the axes or Vrel is zero. Therefore, the Coriolis 
acceleration is zero at the beginning and at the end of the contact when the 
angular velocity of the moving wheel is zero and when the gripper is along the 
two centers of the wheel where Vrel is zero. 

. acr = 2ω × Vrel

23. Option (2) is correct. 
If we assume that the coordinate system is connected to the element 4, the 

point B2 in this system moves in the direction of the rod 4 relative to B4, so  
the radius of curvature is infinite, i.e., the relative vertical acceleration is zero, 
so according to the equations of rotating axes, option (2) is correct. Option (1) 
does not give us any specific information, option (4) states that aB2 = aB4 , 
which is incorrect, and option (3) does not take into account the fact that the 
vertical component of the relative acceleration is zero. 

24. Option (2) is correct.
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Fig. 3.42 Velocity triangle 

According to the following equations and the formation of the velocity 
triangle (Fig. 3.42): 

. VA3 = VB + VA3/B

VA2 = VO + VA2/O = VA2/O

We see that VA3 is equal to VA2/O , that is, it is equal to VA2 , or in other 
words, the points A2 and A3 roll over each other. On the other hand: 

. aA3 = aA2 + aA3/A2

If we consider the rotating axes associated with element 2, the motion path 
of point A3 on 2 is the cam curve, so an 

A3/A2 
is located in the direction of 

the radius of curvature, i.e., on the line BC, and at 
A3/A2 

is also zero, since the 
relative tangential velocity is zero at all times due to the rolling contact. 

. at
A3/A2

= d |Vrel |
dt

= 0

25. Option (1) is correct. 
For any arbitrary vector such as Q in two fixed and rotating coordinate 

systems, we can write 

. 
d
−→
Q

dt
)F ix = d

−→
Q

dt
)rot + −→ω × −→

A

In the same way, d
2−→Q 
dt2 

)F ix  can be calculated. Now if 
−→
Q = −→

r , we have  
d2

−→
r 

dt2 
)F ix  = d2

−→
r 

dt2 
)rot + 2−→ω × d

−→
r 

dt + d
−→ω 
dt × −→

r + −→ω × (−→ω × −→
r )  

In the above equation, the expression 2−→ω × d
−→
r 

dt is called Coriolis accelera-
tion, caused by the motion of the particle in the rotating coordinate system. 

26. Option (4) is correct. 

.VA = V0 + ω × R → 4 = 2 + ω × 0/2 → ω = 10



Chapter 4 
Force Analysis of Mechanisms 

This chapter explores the subject of force analysis in mechanical systems. The 
chapter begins with providing an overview of the importance of understanding and 
analyzing forces in mechanisms. It then delves into the concept of inertia force and 
torque, followed by a discussion on the determination of forces in mechanisms. 

The chapter proceeds to present various force analysis methods for linkages and 
covers the determination of the center of mass and moment of inertia in mechanisms. 
Furthermore, the chapter discusses dynamically equivalent masses and explores the 
role of flywheels in mechanical systems. Finally, it concludes with an examination 
of gyroscopic effects in mechanisms. 

Overall, this chapter provides a comprehensive and detailed analysis of force-
related aspects in mechanical systems, offering valuable insights and methodologies 
for force analysis in various applications. 

4.1 Introduction 

For the strength-based design of the components of a machine or mechanism, the 
forces and torques acting on the individual links must be determined. Inertia forces, 
which arise due to acceleration, are ignored in the analysis of static forces exerted 
on machine components. However, if inertia forces are incorporated, it turns into a 
dynamic analysis. The weights of machine components are often ignored in static 
analyses since they are small compared to the applied static forces. In high-speed 
machines, the accelerations and, then, the inertia forces can be very large relative to 
the static forces doing useful work. 
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4.2 Inertia Force and Torque 

The relationship between force and motion in kinetic studies is expressed by 
Newton’s second law: 

.
−→
F = m.

−→
a (4.1) 

where . 
−→
F represents the force exerted on the particle, m is the mass of the particle, 

and . −→a is the particle acceleration. For a rigid body with a distributed mass, the 
center of mass moves in such a way as if the whole body mass is concentrated at 
particles located at this point: 

.

∑ −→
F = m.

−→
a G (4.2) 

The rotational motion of a body is expressed using Euler’s equation of motion: 

.

∑ −→
MG = IG.−→α (4.3) 

where .
∑ −→

MG is the resultant torque of the force system exerted on the body around 
its center of mass, . IG is the inertia matrix with respect to a fixed coordinate system 
with its origin located at the center of mass, and . 

−→α shows the angular acceleration of 
the body relative to an identical fixed frame. On the other hand, if the body rotates 
around the fixed point P, the torques can be calculated about this point, and the 
inertia matrix can be expressed with respect to an identical frame with its origin 
located at P. In this case, Euler’s equation of motion can be expressed as follows: 

.

∑ −→
MP = IP .−→α (4.4) 

Note Rotation about a fixed point is the only case where the inertia matrix may be 
considered relative to a point other than the center of mass. 

In practice, it is easiest to describe the inertia matrix about a frame fixed on a rigid 
body in all cases, except for the rotation of a symmetric body around a fixed axis of 
symmetry. Three orthogonal axes are always fixed to a body relative to which the 
inertia matrix becomes diagonal. These axes are called the principal axes of inertia 
and constitute the main reference frame. If the inertia matrix . IG is expressed relative 
to the main reference frame and the angular velocity . 

−→ω and angular acceleration . 
−→α

are expressed relative to the same frame, Eq. (4.3) can be rewritten as follows: 

.

∑ −→
MG = IG.−→α + −→ω ∗ IG.−→ω (4.5)
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This relationship is a formulation of Euler’s equation of motion appropriate for 
spatial motion. 

In dynamic analysis, the solution method and free-body diagram concept used 
in Eqs. (4.2)–(4.5) are similar to the one used in static equilibrium. If the right-
hand sides of Eqs. (4.2) and (4.3) are set to 0, these equations will be identical to 
static equilibrium equations. Nevertheless, inertia terms on the right-hand sides of 
dynamic equilibrium problems make them more difficult to solve. 

The body’s motion in the system is known in most machine design problems. 
Therefore, the acceleration of the center of mass and the angular acceleration 
of every link are either known or can be determined using kinematic methods. 
Accordingly, the right-hand side of the dynamic equilibrium equations can be 
considered known quantities, and the equations are solved algebraically, similar to 
solving the static equilibrium equations. 

4.3 Determination of Forces 

For the force analysis of a complete mechanism, the free-body diagram of each link 
must be drawn to display the forces exerted on it. To determine the directions of 
these forces, several laws from statics are reviewed in the following: 

1. A rigid body under the effect of two forces will be in static equilibrium only if 
the forces are equal in magnitude and are in opposite direction (Fig. 4.1). 

2. In a rigid body acted upon by three forces and in static equilibrium, the lines of 
action of the three forces are concurrent at a point like k. Therefore, if the lines 
of action of two forces are known, the line of action of the third force must pass 
through its point of application and the point of concurrence k (Fig. 4.2). 

Fig. 4.1 Rigid body under 
the effect of two forces 

Fig. 4.2 A rigid body acted 
upon by three forces
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Fig. 4.3 A rigid body under 
the effect of a couple 

Fig. 4.4 A mechanism with 
static equilibrium 

Note If the number of forces is larger than three, it can be reduced to three by 
finding the resultants of the force vectors. 

3. A rigid body under the effect of a couple will be in static equilibrium if an equal 
and opposite couple acts in the same plane (Fig. 4.3). 

The advantage of using inertia forces is that dynamics problems can be treated 
statically. In both analyses, the vector equations can be solved both analytically and 
graphically to determine the unknown forces. 

Example Which of the following is true about the static equilibrium of the 
mechanism shown in Fig. 4.4? 

1) . 
∑

F=FA+FB+FC= 0
2) . 

∑
F=FA+FB+FC+F23+F43= 0

3) . 
∑

F=FA+FB+FC+F16+F12+F14= 0
4) . 

∑
F=FA+FB+FC+F12+F16+F23+F43= 0

Solution Since the system is assumed to be in static equilibrium, the members have 
zero acceleration and the inertia forces are zero. Therefore, the sum of the vector 
forces exerted on the system must be equal to 0 (.

∑
F = 0). The ground exerts a 

force on the system at the joint between the system and the ground (Link 1). Since
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Links 2, 4, and 6 are connected to the ground, the forces . F12, . F14, and .F16 must be 
considered in addition to the external forces . FA, . FB, and . FC. The forces between 
the other members (e.g., .F23 and . F43) are considered internal forces and must not 
be taken into account in the overall equilibrium of the system. Hence, choice (3) is 
correct. 

4.4 Force Analysis Methods for Linkages 

Two-force analysis methods are often used for mechanisms: a) the superposition 
method and b) the matrix method. Among superposition methods, two techniques 
have found widespread use. The first method involves the direct use of the inertia 
force and torque and is the best analytical method. The second method excludes the 
inertia torque analysis by deviating the inertia force by an amount shown by “e.” 

4.4.1 Superposition Method 

The superposition principle can be used in the force analysis of a rigid body in 
static equilibrium. This principle states that the effect of the resultant force is 
equivalent to the sum of the effects of individual forces. This method can be used to 
analyze a linkage acted on by several forces by considering the effect of each force 
individually. Subsequently, the effects of the individual forces are added together to 
find the total effect of all the forces on each joint of the linkage. The superposition 
principle can also be used to combine the static and inertia force analysis results 
obtained independently. 

Note Although this method is simple to use, the involved analysis must be 
performed numerous times, which leads to difficulty. Moreover, it will lose its 
accuracy in the presence of friction forces. 

Note The friction problem does not usually arise in linkages with revolute joints 
since friction forces can be ignored in this case. However, the superposition method 
is not suitable if friction is considered in prismatic joints, such as cylinders and 
pistons. 

The overall solution process is as follows: 

1. The position, velocity, and acceleration kinematics are solved to determine the 
translational accelerations of all the bodies with significant mass and the angular 
accelerations of all the bodies with a considerable moment of inertia. 

2. The inertia force and torque exerted on each body are calculated based on 
D’Alembert’s Principle. 

3. The inertia force and torque are applied to each member as an external force and 
torque.
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Fig. 4.5 A mechanism with 
an input of a constant angular 
speed 

4. The free-body diagram of each member includes the forces applied to the 
member and all the reaction forces applied by other members on the member 
in question. 

5. Three force and torque equations are written for each member, and the equations 
(including the unknown forces) are solved. 

For instance, the members of the mechanism in Fig. 4.5 have the following 
known inertia properties. Find the driving torque that must be exerted on the crank 
(Link 2) to maintain a constant clockwise angular speed of 60 rpm (ignore the 
friction in all the joints and mass and moments of inertia of Link 5). 

. DC = 2.25 in, BF = 2.75 in, DG6 = 1.5 in, FG3 = 1.82 in, AB = 1.5 in, DE =
3 in, BC = 0.75 in, CF = 2.75 in, k3 = 0.87 in, k6 = 0.87 in, λ = 7.84◦, α2 = 0,

ω2 = 60 rpm (CW), m3g = 0.5 lb, m4g = 1.0 lb, m6g = 0.5 lb.

It is of note that the velocity and acceleration are assumed to be known. 

. 

(Along 132
◦
- relative to the x-axis) aG3 = 43.2in/s2

(In the negative x - direction) aG4 = 13.9 in/s2

(Along 63
◦
- relative to the x-axis) aG6 = 20 in/s2

. α3 = 19.1 rad/s2 (CCW) , α6 = 13.3 rad/s2 (CCW)

In addition, we do not seek to find the acceleration of the mass center of link 2 
since there is insufficient information for determining it. In this respect, as long as 
the angular speed of link 2 is constant, the angular acceleration of the mass center of
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link 2 is not required as long as we are after the torque T only and we do not need to 
find the reaction force of A. The inertia force exerted on G. 3 is calculated as follows: 

. (Along 48◦- relative to the x direction-axis)
−→
F 13 = −m3.

−→
a G3 = 0.5

32.2
·

43.2

12
= 0.56 lb

Here, the direction of .F13 is determined by adding 180. ◦ to the direction of . aG3 . 
Similarly, the inertia force exerted on G. 6 is calculated as follows: 

. (Along 117◦- relative to the x direction-axis) −→
F 16 = −m3.

−→
a G6 = 0.5

32.2
·

20

12
= 0.26 lb

The inertia force applied to the translating mass 4 is as follows: 

. (In the x-direction)
−→
F 14 = −m4.

−→
a G4 = 1.0

32.2 · 13.9
12 = 0.36 lb

Also, the inertia force exerted on link 3 is computed as follows: 

. 
−→
M = −I3.

−→
a 3 = −m3.k

2
3 .

−→
a 3 = 0.5

32.2
·
(
0.87

12

)2

· 19.1 = 0.00156 ft-lb

= 0.018 in-lb(CW)

Now, we can move to step 4 of the previously mentioned procedure. The free-
body diagrams of the mechanism are shown in Fig. 4.6: 

Step 5 in the above procedure involves writing the dynamic equilibrium equa-
tions for each member. Beginning with link 2 gives 

. 
∑

MA = 0 ⇒ T + FBx ∗ 1.5 sin 60◦ = FBy ∗ 1.5 cos 60◦

Here, the torques about point A are arbitrary since this eliminates the components 
F. A and F. 12. Therefore, the force equilibrium leads to two equations, which are then 
solved for the components of F. A. They will not be written here since they are not 
desired.
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Fig. 4.6 Free-body diagrams of the mechanism 

Moving to Link 3: 

. 
∑

Fx = 0 ⇒ FCx + FFx ∗ 0.056 cos 48◦ = FBx

. 
∑

Fy = 0 ⇒ FCy + FFy ∗ 0.056 cos 48◦ = FBy

. 
∑

FG3 = 0 ⇒ FCx ∗ 0.83 + FCy ∗ 0.5 + 0.0187 = FBx ∗ 0.24 + FBy ∗ 0.94

+ FFx ∗ 1.06 + FFy ∗ 1.47

Here, the choice of the point about which the torque is considered is slightly 
different. Using G. 3 simplifies the equation by eliminating F. 13.
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Considering link 4 gives 

. 
∑

Fx = 0 ⇒ FFx = 0.036 N

. 
∑

Fy = 0 ⇒ FFy = 0.03 N

The torque equation is not written for this link since it is constrained with respect 
to rotation. 

Link 5 is a two-force member because its mass and moments of inertia are 
ignored. Therefore, F.C = F. D, and the two forces have the opposite direction. 

Extending the forces along the member requires satisfying the torque equation. 
As a result: 

. 
∑

Fx = 0 ⇒ FCx = FDx

. 
∑

Fy = 0 ⇒ FCy = FDy

. 
∑

MD = 0 ⇒ FCy ∗ 2.25 cos 84◦ = FCx ∗ 2.25 sin 84◦

or 

. FCy = FCx tan 84
◦, FDy = FDx tan 84

◦

Finally, for link 6, we have 

. 
∑

ME = 0 ⇒ 0.013 + FDx ∗ 3 sin 21◦ + 0.026 ∗ 1.5 sin 96◦ = FDy ∗ 3 cos 21◦

or 

. FCx = FDx = 0.002 lb

Then: 

. FCy = FDy = 0.002 · tan 84◦ = 0.0193 lb

Substituting the result in the rotation equations leads to the following: 

.0.03 = 0.24FBx + 0.94FBy + 1.06FFx + 1.47FFy

= 0.24 · 0.0755 + 0.94FBy + 1.06 · 0.036 + 1.47FFy
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or 

. 0 = 0.0263 + 0.94FBy + 1.47FFy

Eliminating .FFy results in the following: 

. 0 = 0.0263 + 0.94FBy + 1.47(FBy − 0.0609)

or 

. FBy = 0.0262 lb

The values obtained for .FBx and .FBy can be substituted in the torque equation of 
link 2 to obtain the following: 

. T + 0.0755 ∗ 1.5 sin 60◦ = 0.0262 ∗ 1.5 cos 60◦

or 

. T = −0.078 in-lb

As a result, when the system passes through this position, the torque .0.078 in-lb 
in the counterclockwise direction is required to prevent the acceleration of link 2 
and to maintain it at a constant angular speed. 

4.4.2 Matrix Method 

Although the superposition method is computationally simple, it is difficult due to 
the need to repeat the analysis for the linkage. On the other hand, the matrix method 
requires a single instant of analysis. However, since the results are in the form of 
a linear system of equations, from which the unknown forces and torques must be 
found, the superposition principle is still simpler. 

As an example of force analysis via the matrix method, consider the following 
four-bar linkage (Fig. 4.7). Note that the mass centers g2, g3, and g4 of the moving 
links are not necessarily along the line joining the joints. 

Note In the matrix method, the translational position and acceleration of the mass 
center and the angular acceleration of the moving link should have been determined 
from previous analyses, similar to the superposition method. 

In the matrix method, each link must be separately displayed in a free-body 
diagram. This process is depicted in Fig. 4.8.
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Fig. 4.7 A four-bar linkage for force analysis 

Fig. 4.8 Separate view of each link
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The equations of motion of each moving link can be written from the free-body 
diagrams in the following vector form: 

Link 2: 

. F32 − F21 = m2.Ag2

. r22 ∗ F32 − r21 ∗ F21 + Ts = I2.α2

Link 3: 

. F43 − F32 = m3.Ag3

. r33 ∗ F43 − r32 ∗ F21 = I3.α3

Link 4: 

. F14 − F43 = m4.Ag4

. r44 ∗ F14 − r43 ∗ F43 = I4.α4

where: 

.rij . = vector extending from the center of gravity of link i to joint j 

.Fik . = force exerted by link i on link k (note that .Fik = −Fki) 

. gi . = center of gravity of link i 

.Agi
. = acceleration of the center of gravity 

.αi . = angular acceleration of link i 

.mi . = mass of link i 

. Ii . = mass moment of inertia of link i about its center of gravity 

.Ts . = driving torque exerted on the input link 

The vector force equations are decomposed into components x and y, as follows: 

.F32x − F21x = M2.Ag2x

F32y − F21y = M2.Ag2y

F43x − F32x = M3.Ag3x

F43y − F32y = M3.Ag3y

F14x − F43x = M4.Ag4x

F14y − F43y = M4.Ag4y
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The expansion of the cross product of the vectors using the equation . r × F =
rx.Fy − ry.Fx gives 

. r22x.F32y − r22y.F32x − r21x.F21y + r21y.F21x = I2.α2 − Ts

. r33x.F43y − r33y.F43x − r32x.F32y + r32y.F32x = I3.α3

. r44x.F14y − r44y.F14x − r43x.F43y + r43y.F43x = I4.α4

The above nine equations form a system with nine linear equations and the nine 
unknowns .F21x , .F21y , .F32x , .F32y , .F43x , .F43y , .F14x , .F14y , and . Ts . These equations 
can be re-ordered into a matrix form. 

There are several other force analysis methods, which will be briefly introduced 
in terms of their application. 

4.4.3 Virtual Work Method 

The two-force analysis methods presented so far were based on force equilibrium. 
However, the virtual work method is based on the principle that the total work done 
by the external forces exerted on a rigid body at equilibrium is zero for infinitesimal 
displacements of the body. 

According to the concept of work, the work done by a force exerted on a body is 

.δU = F.δs. cos θ (4.6) 

where F is the force, . δs is the displacement, and . θ is the angle between them. The 
work done is the numerical product of the displacement and the force component 
along the displacement. In other words, 

.δU = F.δs (4.7) 

Sometimes, the virtual displacement is in the form of a rotation. Thus, we can 
write 

.δU = T .δθ (4.8) 

where T is the torque and . δθ is the angular displacement. 

Note Although virtual displacements are not real, they must be consistent with the 
constraints in the mechanism under study.
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Fig. 4.9 A normal four-bar 
linkage with torque as input 

According to the definition of virtual work, it must be zero for a virtual 
displacement assumed in a system at equilibrium under external forces and torques. 
In mathematical terms: 

.δU =
∑

Fn.δsn +
∑

Tn.δθn = 0 (4.9) 

For instance, consider Fig. 4.9, where a four-bar linkage is subjected to forces F. 3
and F. 4 at points C and D, respectively. Therefore, it is necessary to determine the 
torques . T2 required for the static equilibrium of the linkage. If we cause a virtual 
displacement . δθ2 in link 2, equations .δsC and .δsD are expressed as functions of . δθ2
to determine . T2 from Eq. 4.9. 

The virtual work method can also be used for dynamic analyses, provided that 
the inertia forces and torques are considered among the applied forces and torques. 
Equation 4.9 can be used for the dynamic case by dividing its terms by dt: 

.

∑
Fn.

δsn

dt
+

∑
Tn.

δθn

dt
= 0 (4.10) 

or 

.

∑
Fn.Vn +

∑
Tn.ωn = 0 (4.11) 

As a result, the virtual work of the external forces and torques is proportional to 
the velocities of points of action of the forces exerted on the links.
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4.4.4 Force Analysis of the Linkage Using Complex Numbers 

Another force analysis method is representing vectors as complex numbers. For 
instance, the following figure shows a four-bar linkage at a given position of its 
motion cycle. The torque . Ts is applied to the driving link at point O. 2. Assuming 
known translational and angular accelerations, the inertia forces . F0 related to the 
acceleration values represent the dynamic load exerted on the mechanism. The 
analysis aims to determine the bearing forces and the axis torque causing the 
dynamic loads. 

In the analysis of the linkage using complex numbers in Fig. 4.10, the inertia 
force .FO3 is the only force (load) affecting the mechanism. Thus, only the bearing 
forces and torque corresponding to .FO3 are calculated. Similar independent analyses 
with only .FO2 and .FO4 are performed, and the resultant of the bearing forces and 
torques is obtained via superposition. 

In the analysis performed with only . FO3 , the free-body diagram that must be 
initially examined is link 3 of Fig. 4.10C. Assuming the translational acceleration 
.Ag3 (expressed as .Ag3e

iB3 ) and the angular acceleration . α3 to be known, the inertia 
force vector .FO3 can be determined as follows: 

. FO3 = (m3.Ag3)e
i(β3+π)

where .(β3 + π) means that the sense of .FO3 is opposite to that of .Ag3 (the angular 
sense given by . β3). As shown in Fig. 4.10B, the line of action of .FO3 has a distance 
of .e3 = I3.α3�FO3 from that of .Ag3 due to the angular acceleration . α3. To simplify 
calculations, one can express the position of the line of action of .FO3 with the 
distance . l3 (Fig. 4.10C). 

. l3 = rg3 + e3

sin (β3 − θ3)
= rg3 +

I3.α3
FO3

sin (β3 − θ3)

Figure 4.10C depicts the three forces exerted on Link 3, where .FO3 is a known 
dynamic load, and . F ′

23 and . F ′
43 are unknown bearing forces that must be determined. 

The following relationship represents the static equilibrium: 

. F ′
23 + F ′

43 + FO3 = 0

. F ′
23(e

iγ ′
3) + F ′

43(e
iθ4) + FO3(e

i(β3−π)) = 0

Equating the real and imaginary parts of the above equation leads to the 
following: 

.F ′
23 cos γ ′

3 + F ′
43 cos θ4 + FO3 cos (β3 − π) = 0 . (I) 

F ′
23 sin γ

′
3 + F ′

43 sin θ4 + FO3 sin (β3 − π) = 0 (II)
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Fig. 4.10 Force analysis of the linkage using complex numbers
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As can be seen, three unknowns must be found, i.e., the magnitude of .F ′
23 and 

its direction . γ ′
3 and the magnitude of . F ′

43. The directions of .F
′
43 and . θ4 are known 

since link 4 is acted on by only two forces when only the effect of .FO3 is considered 
(Fig. 4.10B). Another equation must be added to the above to determine these three 
unknowns. The additional equation is a torque equation around point A or B. If we 
consider point A, the sum of the torques about this point must equal zero, as follows: 

. F ′
43r3 sin (θ4 − θ3) − FO3 l3 sin (β3 − θ3) = 0

. F ′
43 = FO3 l3

sin (β3 − θ3)

r3 sin (θ4 − θ3)

To determine .F ′
43 in the above equation, one can find the real and imaginary 

components of .F ′
23 from Eq. I and II as follows: 

. 

. 

where and symbols denote the real and imaginary components of the vector 
. F ′
23, respectively. The resultant of these components is the vector . F ′

23, the magnitude 
of which is determined as follows: 

. 

The direction of .F ′
23 along angle . γ3 is obtained by the following relationship: 

. 

Hence, the magnitude and direction of the bearing forces at A and B are deter-
mined from the above equations. The forces of the other links can be determined 
similarly. 

4.5 Determining the Center of Mass and Moment of Inertia 

To analyze the forces exerted on the links of a mechanism, the mass center of each 
link must be known. The center of mass of a body is a point on which the weight of 
the body acts regardless of the position and orientation of the body. If the center of
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mass of a set of material points is expressed by G, the coordinates of this center of 
mass relative to an arbitrary origin are determined as follows: 

.xG =
∑

mixi

M
.yG =

∑
miyi

M
. zG =

∑
mizi

M

where . mi represents the mass of each point and . xi , . yi , and . zi are the coordinates of 
the point. The total mass of the set of material points is equal to M . 

Note Most machine members have two axes of symmetry in their plane of motion, 
at the intersection of which lies their center of gravity. 

An experimental method for determining the center of mass of a body is as 
follows: the body is suspended from a point so that it can freely rotate. Next, a 
vertical line is drawn from the suspension point along the body. Next, the body is 
suspended from another point, and another line is drawn. Finally, the center of mass 
will be at the intersection of these two lines. 

Note In some bodies, the point of intersection of the vertical lines (i.e., the center 
of mass) lies outside the body. 

The moment of inertia of a body about a known axis is as follows: 

.I =
∑

mi.r
2
i (4.12) 

where . mi is the mass of every point on the body, and . ri is its distance from the 
above axis. Usually, it is desired to find the moment of inertia about the axis passing 
through the mass center. If we name this moment of inertia . IG, the moment of inertia 
about every axis parallel to the above axis is as follows: 

.Io = IG + M.d2 (4.13) 

where M is the total mass of the body, and d is the distance between the two parallel 
axes. This theorem is known as the parallel axis. 

Figure 4.11 represents an experimental method used to determine the moment of 
inertia of a body. As shown in Fig. 4.11, the body has been suspended from point O, 
which is different from the center of mass, on a sharp edge. If the body is displaced 
by a small angle . θ and released, it will oscillate about point O. The moment of 
inertia about point G can be determined based on the time required for a specific 
number of oscillations. The relationship between the torque around point O and the 
angular accelerations . α is expressed as follows: 

.To = Io.α or − M.g.r. sin θ = Io.
d2θ

dt2
(4.14)
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Fig. 4.11 A suspended body 

where .r sin θ is the moment arm corresponding to the force Mg. The negative sign 
expresses that the torque is opposite to the angle . θ . If the angle . θ is small, . sin θ

is almost equal to the angle in radians, and the above relationship is simplified as 
follows: 

. − M.g.r.θ = Io.
d2θ

dt2
or

d2θ

dt2
+ M.g.r

Io

θ = 0 (4.15) 

which represents the differential equation of motion. Solving this equation results 
in the following: 

.θ = θmax. cos

√
M.g.r

Io

t (4.16) 

where .θmax corresponds to the time .t = 0. This equation represents a cosine wave, 
which completes one cycle when 

.

√
M.g.r

Io

t = 2π (4.17)
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Solving this equation for t will determine the time required for completing a 
cycle, i.e., the period. 

.T = 2π

√
Io

M.g.r
(4.18) 

Solving this equation for . Io: 

.Io = M.g.r

(
T

2π

)2

(4.19) 

Next, the moment of inertia about the center of mass can be determined using the 
parallel axis theorem. Hence, 

.IG = Io − M.r2 = M.r

[(
T

2π

)2

g − r

]
(4.20) 

Note The accuracy in the calculation of . IG depends on the accuracy of T and r . 

Note To reduce the calculation error in . IG, one needs to select a large T and a 
small r . 

The moment of inertia of a body can also be found by placing it over a table 
suspended by several threads. To determine the moment of inertia of the body about 
the axis G–G passing through its center of gravity, it is placed on the table such that 
the axis G–G is parallel to and directly under the axis O–O. The period of small 
oscillations can be found by counting the number of oscillations (Fig. 4.12). 

The moment of inertia of the body about its center of mass or the axis G–G is as 
follows: 

.T = 2π

√
Ipo + Ito(

Mp.rp + Mt.rt
)
g

(4.21) 

where 

.Mp = weight of the body

Mt = weight of the table

rp = distance between Point O and the center of mass of the body

rt = distance between Point O and the center of mass of the table

Ipo = moment of inertia of the body about the axis O–O

T = oscillation period of the table with the body

Tt = oscillation period of the table without the body
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Fig. 4.12 Two suspended 
objects 

r = distance between O–O and the center of mass of the body 

and table combined 

The value of r can be obtained by considering the static torque about O–O as 
follows: 

.
(
Mp + Mt

)
r = Mp.rp + Mt.rt or r = Mp.rp + Mt.rt

Mp + Mt

(4.22) 

Substituting Eq. 4.22 into Eq. 4.21: 

.
T

2π
=

√
Ipo + Ito(

Mp.rp + Mt.rt
)
g

(4.23) 

Solving this equation for . Ipo: 

.Ipo =
(

T

2π

)2 (
Mp.rp + Mt.rt

)
g − Ito (4.24) 

From Eq. 4.19: 

.Ito = Mt.g.rt

(
Tt

2π

)2

(4.25)
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Substituting . Ito from Eq. 4.25 into Eq. 4.24: 

.Ipo =
(

Tt

2π

)2

Mp.g.ro + Mt.g.rt

4π2
(T 2 − T 2

t ) (4.26) 

On the other hand, from the parallel axis theorem: 

.Ipo = Ip + Mp.r2p (4.27) 

where . Ip denotes the moment of inertia of the body about the axis G–G passing 
through the center of mass. Substituting Eq. 4.26 into Eq. 4.27 gives 

.Ip = Mp.g.rp

[(
T

2π

)2

− rp

g

]
+ Mt.g.rt

4π2 (T 2 − T 2
t ) (4.28) 

Since the moment of inertia of a body about an arbitrary axis is equal to the 
product of the sum of the masses of the material points making up the body and 
the square of the distances between the axis and the material points, it can often be 
expressed as follows: 

.I = M.k2 (4.29) 

where M is the total mass of the body, and k is a constant known as the radius of 
gyration. 

Note If the whole body is concentrated at a distance of k from the axis, the moment 
of inertia of the set of points will be equal to the moment of inertia of the body. 

Example A flywheel of mass m is suspended horizontally from three cables of 
length L arranged at equal distances on a circle of radius R. If the period of 
oscillation about a vertical axis passing through the center of the flywheel is . tn, 
the gyration radius is equal to:
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. 

1) Ko = tn

2πR

√
L

g
3) Ko = tn

2R

√
g

L

2) Ko = tnR

2π

√
g

L
4) Ko = tn

√
L

g

Solution Merely a dimensional study of the choices reveals (2) as the correct 
choice. 

However, to properly solve the problem, based on the stated relationships, the 
period of a physical pendulum is 

. tn = 2π

√
Io

m.g.r

where . Io is the moment of inertia about an axis the body rotates around, and r is the 
distance of the body’s mass center from this axis. Also, 

. L = Io

m.r

where L is the length of a simple pendulum equivalent to the physical pendulum. 

. ⇒ r = I0

m.L
= m.R2

m.L
= R2

L
⇒ tn = 2π

√
Io

m.g R2

L

⇒ tn = 2π

√
To.L

m.g.R2

Moreover, based on the definition of the radius of gyration, .Ko =
√

Io

m
; therefore, 

. tn = 2π

√
L

g.R2

√
I

m
= 2πKo

√
L

g.R2

. ⇒ Ko = tn.R

2π

√
g

L

Choice (2) is correct. 

4.6 Center of Percussion 

Another important concept used in the study of dynamics is the center of percussion. 
If the pendulum is simple (Fig. 4.13A), its percussion center matches its center of 
mass at the end of the bar. However, if the pendulum’s mass is not lumped, as shown
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Fig. 4.13 A simple  
pendulum 

G 

P 

O 

A) B) 

in Fig. 4.13B (i.e., the pendulum is of the compound type), this will no longer be the 
case. Instead, the mass of the compound pendulum must be considered concentrated 
at a point such that its period remains constant. This point is called the center of 
percussion. 

The period of a simple pendulum is equal to 

.T = 2π

√
l

g
(4.30) 

For a compound pendulum, Eq. 4.18 gives 

.T = 2π

√
Io

M.g.r
= 2π

√√√√ M.k2o

M.g.r
= 2π

√
k2o

g.r
(4.31) 

where M is the mass of the compound pendulum, and . Io and . Io represent the 
moment of inertia and gyration of the compound pendulum about Point O. Assume 
that the period of the simple pendulum is equal to the period of the compound 
pendulum: 

.l = k2o

r
(4.32) 

Hence, the period of the displayed compound pendulum will not change if its 
mass is concentrated at a point such as P. Point P is called the center of percussion 
relative to point O. 

Note One may not refer to the center of percussion of a body as a single point; 
instead, it must be considered relative to another point on the body (the point of 
suspension).
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Fig. 4.14 Pendulum 

The distance between the center of mass and the center of percussion of a body 
is equal to 

.l − r = k2

r
(4.33) 

This distance can be readily computed from the parallel axis theorem. 
If a pendulum is given an acceleration of . α about its point of suspension, the 

inertia force and torque may be replaced by a force at the center of percussion. In 
the pendulum shown in Fig. 4.14A, the inertia force f is exerted at the center of mass 
G with a sense opposite to A.G = r. α. In addition, there is an inertia torque t with a 
direction opposite to . α. Figure 4.14B illustrates the compound pendulum equivalent 
to the pendulum of Fig. 4.14A, where the force f has replaced the force and torque 
in Fig. 4.14A. 

Since the torque is specified using the couple f h, we can write 

. t = f.h or I.α = M.AG.h ⇒ h = Iα

M.AG

= M.k2.α

M.r.α
= k2

r
(4.34) 

It can be seen that . h equals the distance GP. Since the two forces exerted at G 
are equal and opposite, they cancel out. Hence, the inertia effect can be expressed 
only by the force f exerted at the center of percussion. In other words, if a force 
perpendicular to OG is applied to the pendulum such that its line of action passes 
through the center of percussion, there will be no reaction force at the suspension 
point (Fig. 4.15). 

Example A bar with a length of L and a mass of m lies on a horizontal surface. A 
force F is exerted on the bar at a distance of h from the joint. How much should h 
be for the joint force to be zero (just after the force F is exerted)? 

1) L/3 2) L/3 3) L/2 4) L/6
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Fig. 4.15 A bar with a length 
of L 

Solution h is the distance between the center of percussion and the rotation axis. 
Based on Eq. 4.32: 

. h = k2o

r
=

L2

3
L
2

= 2

3
L

Here, the gyration radius of a uniform bar is equal to . L√
3
because its moment of 

inertia about the point of rotation is . 13mL2. If this expression is equated with .mk2o , 

then .k2o = L2

3 . 
Hence, Choice (2) is correct. 

4.7 Dynamically Equivalent Masses 

Any rigid link with a mass M and a moment of inertia I undergoing planar motion 
can be represented by a system composed of two point masses, the inertia of which 
is kinetically equivalent to that of the link. The following figure shows the inertia 
force F. 0 exerted on one link, which has been displaced by a distance of e from the 
center of mass g based on the angular acceleration . α (Fig. 4.16). 

This figure also displays the two point masses .Mp and . MQ, the resultant of the 
inertia forces of which .Fp = Mp.Ap and .FQ = MQ.AQ must be .Fo = M.Ag . 
Therefore, 

.Fp + FQ = Fo (4.35) 

Note The mass, center of mass, and moment of inertia equilibrium conditions must 
hold for Eq. 4.35 to be satisfied.
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Fig. 4.16 A rigid link with a mass M 

We will examine these three conditions in the following: 

1. Mass equilibrium: The sum of the point masses must be equal to the mass M of 
the link: 

.Mp + MQ = M (4.36) 

2. Center of mass equilibrium: The combined center of mass of the two point 
masses must coincide with the center of mass of the link. To this end, the 
point masses must lie along a line passing through g. Another outcome of this 
equilibrium is that the sum of the torques of the point masses about g will be 
equal to zero: 

.Mp.lp − MQ.lQ = 0 (4.37) 

3. Moment of inertia equilibrium: The sum of the moments of inertia of the point 
masses about g must equal the moment of inertia I of the link: 

.Mp.l2p − MQ.l2Q = I (4.38)
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To replace a link with the above equivalent set of two point masses, we must 
determine four related quantities, i.e., the masses .Mp and .MQ and the distances . lp
and . lQ. 

The simultaneous solution of Eqs. 4.36 and 4.37 results in the following: 

.Mp = M
lQ

lp + lQ
(4.39) 

.MQ = M
lp

lp + lQ
(4.40) 

Substituting these equations into Eq. 4.38 gives 

.lp.lQ = I

M
(4.41) 

Since four unknowns must be determined by three equations, one of the param-
eters can be selected arbitrarily. Usually, the distance . lp or . lQ is selected arbitrarily, 
and the other three parameters are determined by Eqs. 4.39, 4.40, and 4.41. 

The method of dynamically equivalent masses is commonly used in the analysis 
of engines and the design of crankshaft balance weights to reduce engine vibration. 

Example If the connecting rod is replaced by a dynamic system with two point 
masses such that the mass and center of mass of the system remain the same, the 
moment of inertia of the replaced system compared to that of the connecting rod: 

1) is less 2) is the same 
3) is more 4) may be more or less 

Solution We know that the moment of inertia of an element of mass dm rotating at 
a distance r about an axis is calculated from the integral .I = ∫

r2dm. If r is taken 
to be the distance from the mass center, the masses will be identical, and the center 
of mass remains at the same point; however, the whole mass moves to the furthest 
points of the connecting rod, increasing the moment of inertia (Fig. 4.17). 

Therefore, Choice (3) is correct. 

Fig. 4.17 A connecting rod 
replaced by a dynamic system
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4.8 Flywheel 

The flywheel is a rotating mass used to store energy in machines. The kinetic 
energy of a rotating body is . 12Iω2. Here, I is the mass moment of inertia about the 
rotation axis, and . ω is the angular velocity of the body. If the body’s angular velocity 
increases, energy will be stored in the flywheel. In contrast, if the angular velocity 
decreases, energy stored in the flywheel will be released. For instance, flywheels 
can be used in press machines. Press machines require high amounts of power, 
which must be provided by a motor in case of using no flywheel. However, with 
a flywheel, a smaller motor can be used since the flywheel stores energy between 
pressing operations and appropriately releases the stored energy during pressing 
operations. 

Example What is the role of flywheels in machines? 

1) Increasing the operating speed 
2) Decreasing the operating speed 
3) Increasing the power required for operation 
4) Decreasing the power required for operation 

Solution Choice (4) is correct. 

4.8.1 Coefficient of Fluctuation 

The coefficient of fluctuation expresses the permissible changes in speed. This 
coefficient is written as follows: 

.C = ωM − ωm

ωav

(4.42) 

where .ωM is the maximum angular speed of the flywheel, .ωm is the minimum 
angular speed of the flywheel, and .ωav is the mean angular speed or nominal speed 
of the flywheel. This coefficient can also be expressed as follows: 

.C = VM − Vm

Vav

(4.43) 

where . VM is the maximum translational speed of a point on the flywheel, . Vm is the 
minimum translational speed of this point, and .Vav is the mean speed of this point. 

Note The acceptable values of the coefficient of fluctuation range from 0.002 for 
generators to 0.2 for stone crushers.
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Fig. 4.18 A flywheel 

4.8.2 Mass of the Flywheel for a Known Coefficient 
of Fluctuation of Speed 

Imagine the flywheel shown in Fig. 4.18. Assume that the angular speed is variable, 
such that . VM , . Vm, and .Vav are the maximum, minimum, and mean speeds of the 
rim, respectively. Therefore: 

.Vav = VM + Vm

2
(4.44) 

Considering the definition of the coefficient of fluctuation of speed, one can write 

.C.Vav = VM − Vm (4.45) 

Let us assume the entire mass M of the flywheel to be concentrated at a distance 
equal to the mean radius R of the rim. In this case, the kinetic energy at speeds of 
. VM and . Vm will be equal to 

.K.EM = 1

2
M.V 2

M (4.46) 

.K.Em = 1

2
M.V 2

m (4.47) 

If energy changes are expressed by E: 

.E = 1

2
M(V 2

M − V 2
m) (4.48)
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Multiplying the two sides of Eq. 4.44 and 4.45 gives 

.2C.V 2
av = V 2

M − V 2
m (4.49) 

Substituting Eq. 4.49 into Eq. 4.48: 

.E = M.C.V 2
av (4.50) 

In the above equation, M is the effective mass of the flywheel at the rim, i.e., the 
mass of the rim of the flywheel plus the masses of the arms and the inner hub. 

Note In a real flywheel, the entire mass is not concentrated at the rim. A flywheel 
is usually designed such that most of its mass is concentrated at the rim so that its 
kinetic energy is higher for a known angular speed. 

Note In an armed flywheel, the actual mass of the rim is about 90. % of the effective 
mass M. 

Since the resultant stresses in the rim and arms are due to the centripetal forces 
(which are themselves functions of the speed), the translational speed limit of the 
rim is 30 m/s for cast iron and 40 m/s for steel. 

4.8.3 Flywheel of an Internal Combustion Engine 

Figure 4.19 displays a single-cylinder engine equipped with a flywheel. The 
free-body diagram of the flywheel shows the unbalanced torques exerted on and 
accelerating the flywheel. 

Fig. 4.19 A single-cylinder engine equipped with a flywheel
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The following equation of motion can be written for output torques T larger than 
the load torque T. L: 

.T − TL = I.α (4.51) 

where . I is the moment of inertia of the flywheel about the crankshaft, and . TL is the 
resistive torque. Also, . α is in the direction of the resultant torque. 

Note Under steady-state performance at a specific crankshaft speed, the average 
torque . Tav equals torque . TL of the load driven by the engine and the flywheel. 

Based on the relationship .α = ω(dω
dθ

) and after simplifying Eq. 4.51 and 
integrating: 

.

∫ θatωM

θatωm

(T − TL)dθ = I

∫ ωM

ωm

ω.dω = 1

2
I (ω2

M − ω2
m), (4.52) 

left-hand side of this equation is the work done on the flywheel, shown by the 
hatched surface under the torque graph. Moreover, the right-hand side equation 
represents the corresponding change in the flywheel’s kinetic energy due to a change 
in speed. Figure 4.20 shows the torque graph of an engine. 

The hatched surfaces on the positive side correspond to parts of the engine cycle 
where the work done increases the flywheel speed, and those on the negative side 

Fig. 4.20 Torque graph of an engine
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represent work that decreases the flywheel speed. The limits of the integral in 
Eq. 4.52 are specified such that to determine the largest change in the flywheel 
speed. In this equation, .ωM and . ωm, respectively, represent the maximum and 
minimum angular speeds of the flywheel. If the speed equals the reference value 
. ω0 at the beginning of the first loop, the positive surface .A1 = 7 at the end of 
the first loop will be larger than . ω0. Moreover, the speed at the end of the second 
loop (which is negative) is higher than at the end of the first loop and larger than . ω0
because the algebraic sum of the two surface areas is positive: .A1+A2 = 7−4 = 3. 
As shown in the figure, the sum of the surface areas of all the loops must be zero 
at the end of every loop since the average torque line is plotted at a position where 
the sum of the positive surfaces above it is equal to the sum of the negative surface 
below it. 

Note The maximum sum of the surface areas results in the location of . ωM , which 
is the maximum speed in the positive direction. 

Note Usually, .ωM is located after a large positive region, and . ωm is located after a 
large negative region. 

Note The sum of the surface areas between . ωm and . ωM represents the work done by 
the torque to change the kinetic energy of the flywheel from minimum to maximum. 

The integral term in Eq. 4.52 can be expressed by the surface area A: 

.A =
∫ θatωM

θatωm

(T − TL)dθ (4.53) 

which is the algebraic sum of the surface areas of the loops of one cycle and causes 
the largest change in the flywheel speed. 

With known mean torque (. T ) and mean engine angular speed (. ω), the engine 
power is determined as follows: 

.P = T .ω (4.54) 

Example An electric motor runs at 900 rpm and produces a power of 2 HP. How 
much is its torque? 

1) 15.8 N.m 2) 18.2 N.m 3) 12 N.m 4) 5.5 N.m 

Solution We know that one horsepower is equal to 746 watts (.1HP = 746W ). On 
the other hand, .P = T .ω. Hence, 

. T = P

ω
= 2 · 746

(900 · 2π
60 )

= 15.8N.m

It is of note that a unit conversion has been performed in the denominator of this 
term, resulting in the angular speed in rad/s. Therefore, Choice (1) is correct.
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Fig. 4.21 Flywheels used in 
vehicle engines 

Flywheels used in vehicle engines are usually of the solid disc type, and those 
used in steam engines or drilling press machines are of the rimmed type (Fig. 4.21). 

For rimmed flywheels, .I = Mk2, where k is the gyration radius. In this equation, 
k can be considered equal to the mean radius r. m without loss of accuracy. 

.I = M.r2m = W

4g
d2
m (4.55) 

Solving this equation for W only provides the weight of the rim. The weights 
of the hub and the arms contribute a small share to the moment of inertia of the 
flywheel. As a result, the speed fluctuations will be somehow smaller than the 
specified value. 

4.9 Gyroscopic Effects 

In vehicles where the engine consists of rotational components with a high moment 
of inertia, gyroscopic forces take effect when the vehicle changes direction. The 
figure below shows a rigid body rotating at the constant angular speed . ω about the 
axis passing through the center of mass. The angular momentum H of the rotating 
body is expressed by a vector whose magnitude is . Iω. Here, I is the moment of
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Fig. 4.22 A vector normal to 
the plane of rotation 

inertia of the body about a rotation axis passing through the center of mass. The 
body’s angular momentum, which is in a plane parallel to the plane of motion of the 
body’s individual particles, is expressed by a vector normal to the plane of rotation, 
as shown in Fig. 4.22. The direction of this vector is obtained via the right-hand rule 
and based on the angular speed . ω of the body. The length of this vector represents 
the magnitude of the angular momentum. 

From dynamics, we know that .H = I.ω and .T = I.α = d
dt

(I.ω). Therefore, 

.T = dH

dt
(4.56) 

In the state shown in the figure, a torque exerted in the direction of . ω in the 
plane of motion of the rotating body increases the angular momentum with the 
given rate. This increase can be expressed by elongating the vector. The rotation 
axis in the previous discussion was considered fixed. If the rotation axis undergoes 
an angular displacement similar to the case of motion on a curved planar path, shown 
in Fig. 4.23 A, gyroscopic forces will be generated. At a constant . ω, the magnitude 
of the angular momentum remains constant for a constant angular displacement . Δθ

of the rotation axis; however, the angular momentum changes since the direction of 
motion changes according to the momentum polygon in Fig. 4.23B.
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Fig. 4.23 A rotation axis undergoes an angular displacement 

A rotation axis undergoes an angular displacement. Thus, the time rate of change 
of angular momentum is as follows: 

.
dH

dt
= I.ω.ωP (4.57) 

From Eq. 4.56: 

.T = I.ω.ωP (4.58) 

where .ωP = dθ�dt is the angular speed of the spin axis or its angular displacement 
rate. In Fig. 4.23C, the x-axis represents the rotation axis, and the y-axis shows the 
spin axis. In this case, the z-axis will be the torque axis since the direction of the 
torque T is normal to the rotation axis and is in the x-z plane. 

Eq. 4.58 can be expressed in vector form as follows: 

.
−→
T = −→ω P ∗ I−→ω (4.59) 

T is known as the gyroscopic couple and represents the torque exerted on the 
body about the z-axis, i.e., the torque axis.
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Fig. 4.24 Gyroscopic effect is applied to the airplane 

Example If the gyroscopic effect is applied to the airplane, which of the following 
is true? 

1) The gyroscopic effect causes the plane to crash . ωP . 
2) The gyroscopic effect generates a torque that does not affect the horizontal 

equilibrium of the airplane. 
3) The gyroscopic effect generates a torque that causes the airplane’s nose to rise 

and its tail to fall. 
4) The gyroscopic effect does not influence an airplane moving at a constant speed 

(Fig. 4.24). 

Solution Based on the above equations, one can write the following for the 
airplane: 

. 
−→
T = −→ω P ∗ I−→ω s

The direction of . 
−→
T is easily determined from the right-hand rule. It can be seen 

that . 
−→
T is along the radius of curvature of the path and pointing outward. Therefore, 

Choice (3) is correct (Figs. 4.25, 4.26, 4.27, and 4.28).
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Fig. 4.25 A mechanism with 
static equilibrium 

Fig. 4.26 A mechanism 
moving in the vertical plane 

Fig. 4.27 Output torque 
diagram of a four-stroke 
single-cylinder engine
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Fig. 4.28 Static forces 
analysis in a four-bar linkage 

Some Examples of “Force Analysis of Mechanisms” 

1. Which of the following is true about the static equilibrium of the mechanism 
shown below? 

1) F + G + P = 0 
2) F12 + F14 + P + G + F16 + F = 0 
3) F12 + F14 + F34 + F16 + F + G + P = 0 
4) F12 + F34 + F53 + F65 + F23 + F25 + G + P + F = 0 

2. The following mechanism moves in the vertical plane. Bar BC is horizontal at 
the instant shown: 
The mass moment of inertia of CD is negligible. The driving torque T is equal 
to: 

1) 208 N.m 2) 186 N.m 3) 186 N.m 4) 175 N.m 

3. The output torque diagram of a four-stroke single-cylinder engine is shown 
below. The resisting torque on the crankshaft is constant, and the mean angular 
speed is 1000 rpm. How many kilowatts is the engine power? 

1) 0.25 2) 2.62 3) 15 4) 1.57
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4. Which of the following equations is false in the static forces analysis in a four-bar 
linkage? 

1)
∑

F = F34 + F32 + P = 0 3)
∑

F4 = F34 + P + F14 = 0 
2)

∑
Mo4 = RB.F34+RC.P = 0 4)

∑
MO2 = M12+RA.F32 = 0 

5. One reason for selecting larger rear wheels for tractors is . . . : 

1) To increase the force of friction 
2) To reduce the engine rpm and, hence, increase the engine power 
3) To increase the tractor’s speed for a lower engine rpm 
4) To prevent slipping due to the large couple exerted on the rear wheels 

Answers for the Examples of “Force Analysis of Mechanisms” 

1. Choice (2) is correct. 
The resultant of the external forces exerted on the system (including the forces 
applied by the ground, i.e., F12, F14, and F16) must equal zero. 

2. Choice (4) is correct. 
The equilibrium equation can be written based on the free-body diagram of each 
link. 
Torque equilibrium about point A: 

.AB : T − Bx.AB = IAB.αAB (4.60) 

Torque equilibrium about point G: 

.BC : By.BG + Cy.CG = IBC.αBC (4.61) 

Force equilibrium along the y-direction: 

.BC : By − Cy = mBC.aG sin 45
◦

(4.62) 

Force equilibrium along the x-direction: 

.BC : Bx − Cx = mBC.aG cos 45
◦

(4.63) 

Torque equilibrium about point D: 

.CD : Cy

Cx

= tan 60
◦

(4.64)
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By and Cy are determined from Eq. 4.61 and 4.62: 

. By = 803.55 N, Cy = 96.46 N

Substituting Cy in Eq. 4.64 leads to the following: 

. Cx = 55.69 N

Substituting Cx in Eq. 4.63 results in Bx = 762.79 N, which can be substituted 
into Eq. 4.60 to determine the driving torque T: T = 174.4 N.  

3. Choice (4) is correct. 
While torque is changing, we compute the mean torque as follows: 

. T = 1

4π

∫ 4π

0
T dθ = 1

4π

(
−20π + 200π

2
− 20π

)
= 15 N.m

Power P = T .ω = 15 · 1000 · 2π
60

= 1.57 kW

4. Choice (1) is correct. 
In the resultant of forces exerted on the mechanism in Choice (1), the support 
forces at points O2 and O4 are ignored. On the other hand, F34 and F32 are 
internal forces that must not appear in the equation, although the sum of these 
forces is zero in this mechanism. 
Choice (2) represents the resultant of the torques exerted on Bar 4 about point 
O4. Also, Choice (3) is the resultant of forces exerted on this bar, which are true. 
Also, Choice (4) represents the torque resultant for bar 2 about point O2, which 
is true. 

5. Choice (2) is correct. 
The power transferred from the engine to the differential and from the differential 
to the wheels is constant. On the other hand, the rpm decreases when the 
wheel diameter increases, and thus the transferred torque increases. P = T .ω  
(Figs. 4.29 and 4.30).
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Fig. 4.29 Free-body diagram of each link 

Fig. 4.30 Forces on each link



Chapter 5 
Cams 

This chapter begins with an introduction, providing an overview of cams and their 
classification. The chapter further delves into various cam mechanisms, including 
disk cams with radial flat-faced followers, cams with positive return followers, 
cylindrical cams, and inverse cams. Each type of cam mechanism is described, 
highlighting their unique features and applications. Also, the aspect of dynamic 
loading in cams is addressed. 

Overall, this chapter provides a comprehensive exploration of cams, covering 
their classification, mechanisms, displacement diagrams, and dynamic loading. It 
offers readers valuable insights into the design, analysis, and application of cams in 
mechanical systems. 

5.1 Introduction 

Cams are machine members with an irregular shape that act as a driver by transfer-
ring motion to another member named follower. In general, both rolling and sliding 
exist in cam-follower contact. Cams are among the important mechanisms regarding 
their capability to create any motion in the follower despite their simplicity. In this 
mechanism, the motion of the cam (which is usually rotational) is converted to an 
oscillating or translational motion or a combination of these in the follower. The 
cam design problem can take two forms: (A) the follower motion is known, and a 
cam must be designed to create this motion or (B) the cam shape is known, and the 
problem involves determining the resulting displacement, velocity, and acceleration. 
Case (A) is discussed in detail in the mechanism design. Here, we will study Case 
(B). Gruebler’s equation can be used to create numerous hybrid mechanisms from 
cam pairs. However, in practice, the most common application of cam pairs is in 
simple cam-follower mechanisms, which consist of three links, i.e., a cam pair and 
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the ground link. This chapter only addresses three-link cam-follower sets, which are 
mostly called simple cam mechanisms. 

5.2 Classification of Cams 

Cam mechanisms can be classified in terms of cam-type or follower shape, motion, 
and position. The most common cam shapes are disk (or plate) cams, translating 
cams, and cylindrical cams. Figure 5.1A, B, and C displays disk, translating, and 
cylindrical cams, respectively. 

Fig. 5.1 Different types of 
cams
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Fig. 5.2 Several categories 
of followers 

Disk cams with reciprocating or oscillating followers are the simplest and most 
common cam mechanisms. Also, followers are divided into several categories in 
terms of motion type, cam-follower contact type, etc. Fig. 5.2 displays common 
followers. 

Figure 5.2A shows a disk cam with a radial knife-edge follower. Although this 
mechanism is theoretically interesting, it is of little practical use due to the contact 
stresses involved. 

Note The follower is called radial when its centerline passes through the center of 
rotation of the cam. 

Figure 5.2B and C depict a disk cam with a radial roller follower and a disk 
cam with an offset roller follower, respectively. In all the cam mechanisms shown 
in Fig. 5.2A, B, and D, the cam rotates while the follower reciprocates. Figure 5.2D 
displays a disk cam with an oscillating roller follower. Also, Fig. 5.2E represents a 
disk cam with a reciprocating flat-faced follower. 

Note The distinction between radial and offset flat-faced followers is unimportant 
since they are kinematically equivalent. In other words, any follower whose axis 
is parallel to that shown in the figure undergoes the same motion. However, offset 
followers may require modifying the length of the follower’s face. 

Figure 5.2F shows a disk cam with an oscillating flat-faced follower and Fig. 5.3 
displays the general terms used for cam mechanisms. 

The trace point is a point on the follower that corresponds to the point of contact 
in knife-edge followers. 

Note The trace point of a roller follower is at the center of the roller.
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Fig. 5.3 General vocabulary used for cam mechanisms 

The pitch curve is a path traveled by the trace point on the cam. The base circle 
is the smallest circle drawn around the center of rotation of the cam tangent to its 
surface. The pressure angle is the angle between the direction of motion of the trace 
point and the common normal of the contact surfaces (line of action). This angle 
varies during cam rotation. The pitch point is a point on the pitch curve with the 
maximum pressure angle. 

Note The pressure angle is a measure of the instantaneous force transfer and 
represents the ability of the cam to transfer motion to the follower. 

Example The pressure angle of a cam is: 

1) The angle between the common tangent of the cam and the follower and the 
follower’s path. 

2) The angle between the common normal of the cam and the follower and the 
follower’s path. 

3) The angle between the common normal of the cam and the follower and the 
normal to the follower’s path. 

4) The angle between the common tangent of the cam and the follower and the 
normal to the follower’s path. 

Solution Choice (2) is correct. 
The distance between the two extreme positions of the follower is known as the lift 
or travel.
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5.3 Cam Mechanisms 

Different cam mechanisms have different characteristics and applications. In the 
following, some of these mechanisms are introduced in brief. 

In circular cams, where the center of rotation is at a distance e from the center of 
the cam, the position of the follower is determined as follows: 

.y = e(1 − cos θ) (5.1) 

In this equation, .θ = 0 corresponds to the state where the cam is at the base 
height .y = 0, i.e., its lowest position. 

Note In eccentric circular cams, if .θ = 0 relates to the lowest position of the cam, 
the maximum pressure angle occurs at .θ = 90

◦
. 

Example Calculate the maximum pressure angle in the cam-follower mechanism 
shown in Fig. 5.4. 

1) .arcsin e
R2+R3

2) .arctan e√
R2
2+e2

3) .arctan h√
R2
2−e2

4) . arctan d√
R2
2−e2

Solution As mentioned previously, the maximum pressure angle occurs at .θ = 90
◦
; 

hence, it suffices to plot the cam geometry corresponding to .θ = 90
◦
(Fig. 5.5). 

From the geometry: 

. sinφ = e

R2 + R3
�⇒ φ = arcsin(

e

R2 + R3
)

Choice (1) is correct. 

Fig. 5.4 A cam-follower 
mechanism
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Fig. 5.5 The cam-follower mechanism analysis 

Fig. 5.6 A cam profile 

5.3.1 Disk Cams with Radial Flat-Faced Followers 

Figure 5.6 represents a disk cam with a radial flat-faced follower. When the cam 
rotates clockwise at a constant angular speed, the follower will lift 1 inch for half a 
rotation of the cam. The reverse motion occurs in the same manner. 

Note To determine the cam profile graphically, the mechanism must be reversed, 
and the follower must be traveled around the fixed cam. These actions do not affect 
the relative motion between the cam and the follower.
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Fig. 5.7 A cam-follower to 
determine the follower lift 
speed 

A similar procedure is used for disk cams with roller followers, except that the 
cam profile is obtained by plotting the curve tangent to the different positions of the 
roller follower. 

The pressure angle of the above follower, the base surface of which is normal 
to its leg, is zero. Also, the lateral force exerted on it is negligible compared to the 
force exerted on a roller follower. 

Example Based on Fig. 5.7, how much is the lift speed of the follower in cm/s at 
the instant shown? 

1) 25.133 2) 29.25 3) 37.7 4) 43.533 

Solution We need only to find the vertical component of the cam’s velocity at point 
A. Since the cam and the follower move together, the follower’s lift speed will be 
the same as the obtained speed. 

. ω = 2πN

60
= 2π ∗ 120

60
= 4π rad/s

On the other hand, based on the trigonometry and geometry of OA (Fig. 5.8): 

. |OA| = 3

sin 60
= √

12

VA = |OA| ∗ ω = (4π)
(√

12
)
cm/s

Follower lift speed = VA ∗ sin 60◦ = (4π)
(√

12
)
sin 60◦ = 37.68 cm/s

Choice (3) is correct. 

For a disk cam with a roller follower, a large pressure angle causes a significant 
lateral force on the follower, which may lead to the bending and gripping of the 
follower’s leg.
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Fig. 5.8 Speed analysis 

Note The maximum pressure angle, i.e., the angle between the line of action and 
the centerline of the follower, must be as small as possible. 

In most cases, this angle must not exceed 30. ◦ to achieve acceptable performance. 

Note The pressure angle of all radial flat-faced followers is a fixed value. 

Pressure angles can be increased by increasing the minimum radius of the cam. 
Thus, the follower would travel longer on the cam for a given lift. 

Reducing the overall follower lift, changing the follower offset, changing the 
follower motion (such as constant speed or constant acceleration), increasing the 
cam rotation for a given follower displacement, and increasing the diameter of the 
base circle are among the methods to lower pressure angles in cams. 

Note In a cam with a roller follower, the curvature radius of the pitch surface must 
be larger than that of the roller; otherwise, the cam profile will become sharp. 

Sometimes, flat-faced or roller followers are of the offset type. These types 
may be used for structural reasons or, in the case of a roller follower, to reduce 
the pressure angle during the upward stroke. Nevertheless, although the pressure 
angle decreases during the upward stroke in this case, it still increases during the 
downward stroke. 

5.3.2 Cams with Positive Return Follower 

In disk cams with radial followers, the driver must have more impact than only by 
spring or gravity. Figure 5.9 shows an example of this cam, where the cam controls 
the follower motion both in the upward and downward strokes. In this cam, the 
downward stroke is the same as the upward stroke but in the opposite direction. 
This cam is also known as the constant-breadth cam. 

Such a cam can be designed using two roller followers instead of a single flat-
faced follower. If the downward stroke is independent of the upward stroke, two
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Fig. 5.9 A constant-breadth 
cam 

disks must be used, one for the upward stroke and one for the downward stroke. 
These dual-disk cams can be used with both roller and flat-faced followers. 

5.3.3 Cylindrical Cams 

In a machine where the axis of rotation of the cam needs to be parallel to the 
direction of motion, cylindrical cams can be used to avoid complex gear systems 
needed when using a disk cam. This type of cam consists of a rotating cylinder, the 
motion of which is transferred to a follower via a slot embedded in the cylinder. 

Note These cams are commonly used in fishing reel mechanisms. 

Figure 5.10 illustrates a cylindrical design that transfers its rotation to a follower 
placed in the slot on the cylinder.
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Fig. 5.10 A cylindrical design 

5.3.4 Inverse Cams 

The roles of the cam and the follower are sometimes reversed, and the follower 
drives the cam. This reverse mechanism is used in sewing machines and other 
mechanisms with similar functionality. Figure 5.11 shows a plate cam where the 
arm oscillations result in the reciprocating motion of a block via a roller in the slot. 

5.4 Cam Displacement Diagrams 

The displacement diagram is a curve representing the follower’s displacement as 
a function of time. Since this curve ideally shows displacement versus time, the 
speed and acceleration diagrams can be obtained via its consecutive differentiation. 
A sample cam displacement diagram is shown in Fig. 5.12. 

Degrees or radians instead of seconds are used for selecting the follower motion 
before considering the angular speed of the cam. 

Example Given the displacement diagram of the follower versus the angular 
displacement of the cam shown in Fig. 5.13, if the angular speed of the cam is . ω, 
which of the following will be the lift speed of the follower at a cam angle of . θ0? 

1) .ωtgθ 2) .ω sin θ 3) .OAω cos θ 4) .OAωtgθ
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Fig. 5.11 An inverse cam 

Fig. 5.12 Cam displacement 
diagrams
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Fig. 5.13 Displacement 
diagram of a follower versus 
the angular displacement of a 
cam 

Solution The speed of a follower is obtained by differentiating its displacement 
with respect to time. Therefore: 

. follower speed = dy

dt

∣∣∣∣
θ=θ0

= dy

dθ

∣∣∣∣
θ=θ0

· dθ

dt
= dy

dθ

∣∣∣∣
θ=θ0

· ω = ω tan θ

Choice (1) is correct. 

Before determining the diagram of a cam, the motion of the follower must be 
specified based on the system’s needs. If the operational speed is low, the follower 
motion may be a known type, such as parabolic (with constant acceleration and 
deceleration), parabolic with constant speed, simple harmonic, or cycloidal. 

Note Among these motions, parabolic motion theoretically produces the smallest 
acceleration for specific amounts of cam displacement and speed; thus, it is rarely 
used in low-speed applications. 

The displacement of a body moving from rest with a constant acceleration is 
equal to: 

.s = 1

2
At2 (5.2) 

where s is displacement, A is acceleration, and t is time. The graph of this equation 
is a parabola. Therefore, this motion is often called parabolic motion. 

Note In parabolic motion, the distance traveled after time t is proportional to . t2
since the acceleration is constant. 

Moreover, the acceleration and deceleration intervals may be unequal depending 
on the motion conditions. In addition, parabolic motion can be modified in such 
a way as to create constant-speed motion intervals between the acceleration and 
deceleration intervals. This speed is often known as the modified constant velocity. 

Motion at constant velocity means traveling the same distances at equal time 
intervals. Therefore, changes in the distance or displacement with respect to time
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Fig. 5.14 Displacement diagram of a follower traveling upward at constant speed 

represent a straight line. Figure 5.14 shows the displacement diagram of a follower 
traveling upward at constant speed between points B and C, stopping between points 
C and D, and traveling downward at constant speed between points D and E. 

Theoretically, this motion causes infinite acceleration at points B, C, D, and E, 
leading to impact loads. Hence, such a motion must be avoided. If these diagrams 
are used for a real cam mechanism, the elastic properties of the cam and the follower 
will cause the accelerations to be smaller. 

Note In the modified constant velocity, intervals of constant acceleration and 
deceleration are considered before and after the constant speed interval, respectively. 

A simple harmonic displacement diagram is displayed in Fig. 5.15. This diagram 
is plotted using the idea that projecting a point P that moves at a constant speed in a 
circular path onto the circle’s diameter creates a simple harmonic motion. 

As shown in Fig. 5.15, with the rotation of the radius OP through the angle . φ, the  
cam rotates by . θ , and the follower is displaced by s. According to the figure: 

.s = h

2
− h

2
cosφ = h

2
(1 − cosφ) (5.3)
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Fig. 5.15 A simple harmonic displacement diagram 

Since during a .π -radian rotation of the radius OP, the cam rotates by . β radians, 
.φ = πθ

β
. Substituting this into the above equation gives: 

.v = πhω

2β
sin(

πθ

β
) (5.4) 

A second differentiation with respect to time provides an equation for the 
acceleration: 

.a = π2hω2

2β2 cos(
πθ

β
) (5.5) 

Note In simple harmonic motion, the speed diagram is a sine curve with an 
amplitude of .πhω�2β, and the acceleration diagram is a cosine curve with an 
amplitude of .π2hω2�2β2. 

Example A follower is lifted L cm harmonically for every .β -radian rotation of the 
cam. If the cam rotates at N rpm, what will be the maximum acceleration of the 
follower (in cm.�s2)? 

. 
1)

(
2π4LN2

)
�β2 2) π4LN2�

(
1800β2

)

3) π4L (πN�30)2 4) 2L
(

π
β

)2
(πN)2

Solution In harmonic motion, the equations of motion for a .β -radian rotation of 
the cam, L-cm translation of the follower, and an angular speed of N rpm will be as 
follows: 

.s = L

2

[
1 − cos

(
πθ

β

)]
, v = πLω

2β
sin

(
πθ

β

)
, a = π2lω2

2β2
cos(

πθ

β
)
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It must be noted that .θ = ωt and .ω = 2πN
60 . On the other hand, the maximum 

acceleration will be obtained by setting the cosine term equal to 1 in the acceleration 
equation. Therefore: 

. amax = π2Lω2

2β2
= π2L

2β2

(
2πN

60

)2

= π4LN2

1800β2

Choice (2) is correct. 

Figure 5.16 presents the specifications of various states in harmonic motion. 

Note The advantage of simple harmonic motion over parabolic and cycloidal 
motions is that the maximum pressure angle of the radial roller follower is smaller 
in this motion for equal time intervals. This property reduces the problems involved 
in the design of follower structures and makes it possible to use less rigid supports. 
In this case, less power would be required to drive the cam. 

While plotting the displacement-time diagram, if the motion is a modified 
parabolic one, the inflection point must be determined first. In simple harmonic 
and cycloidal motions, the inflection point is obtained automatically by plotting the 
motion curve. 

Note In parabolic motion, the inflection point will lie in the middle of the 
displacement and time scale if the time intervals are equal. 

The displacement diagram of a cycloidal motion is obtained from a cycloid that 
is the locus of a point on a circle that rolls on a straight line. In Fig. 5.17, the curve 
BDE represents a cycloidal displacement diagram, where a total displacement of h 
occurs for a .β -degree rotation of the cam. On the right-hand side, a circle with a 
perimeter of h is considered that rolls on a straight line FE. A point on the perimeter 
of this circle traverses the curve FHE, which is known as a cycloid. If the circle 
rotates by . φ, the cam will rotate by . θ . 

Based on Fig. 5.17, the displacement s (which is the coordinate of point P on the 
diagram) is equal to: 

.s = Rφ − P sinφ = R(φ − sinφ) (5.6) 

Since the circle rotates only once for a total lift of h: 

.φ = 2π
θ

β
(5.7) 

and 

.R = h

2π
(5.8)
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1 2 

43 

5 6 

Fig. 5.16 Specifications of various states in a harmonic motion 

Substituting . φ and R from Eqs. (5.8) and (5.9) into Eq. (5.7) gives:  

.s = h

2π

[
2π

θ

β
− sin(2π

θ

β
)

]
= h

θ

β
− h

2π
sin(2π

θ

β
) (5.9)
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Fig. 5.17 A displacement diagram of a cycloidal motion obtained from a cycloid 

Since the angular speed of the cam is considered constant, differentiating 
Eq. (5.9) provides the speed and acceleration equations: 

.v = h

β
ω

[
1 − cos(

2πθ

β
)

]
(5.10) 

.a = 2πh

β2 ω2 sin(
2πθ

β
) (5.11)
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1 2 

4 

65 

3 

Fig. 5.18 Various states of cycloidal motions 

Figure 5.18 presents the various states of cycloidal motion. 
Figure 5.19 displays the characteristics of the 8th-degree polynomial motion for 

use as the follower motion.
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Fig. 5.19 Various states of cycloidal motions with characteristics of 8th-degree polynomial 
motion 

5.5 Dynamic Loading 

For cams operating at higher speeds, the follower must be selected not only based 
on displacement but also based on the forces exerted on the system due to the 
selected motion. Given the requirement for high-speed machines in the industry, 
it is necessary to pay attention to the system’s dynamic properties and select a cam 
profile that minimizes the dynamic load and prevents cam-follower separation. 

Let us consider a parabolic motion to demonstrate the importance of dynamic 
loads. This motion is desirable in terms of inertia forces since it produces a 
small acceleration. However, the increase in acceleration from zero to the constant 
value occurs almost instantaneously, leading to a high loading rate. The rate of 
acceleration changes, which is obtained from the third derivative of displacement, 
is known as the jerk and represents the impact characteristic of the load. The impact 
can act as a measure of changes in the inertia force with respect to time. 

Note The jerk (also known as jolt) of an impact is infinite.
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Infinite jerk causes vibration in the follower assembly, thereby affecting the 
cam’s service life. It is noteworthy that the flexibility and clearances in the assembly 
increase the effect of impact loading. 

Note In parabolic motion, where the jerk is infinite, every cycle has two impacts. 
These result in sudden impacts on the assembly, which may cause undesired 
vibrations and damage to the mechanism. 

The acceleration diagram in simple harmonic motion is continuous only when the 
ascent and descent times are equivalent to 180. ◦. If these times are not equal or are 
accompanied by stops before and after, steps will appear in the acceleration diagram, 
leading to infinite jerk. Cycloidal motion causes the largest maximum acceleration 
among the studied motions for a given lift. However, it can be related to another 
cycloidal diagram without causing steps in the acceleration curve and can also be 
preceded or followed by a stop. Therefore, this motion is the most suitable for high 
speeds. In this respect, the 8th-degree exponential motion is another type of motion 
suitable for high speeds. 

Example Which of the following displacement equations is appropriate for use in 
a radial cam-follower system at high speeds? S is the follower displacement, . θ is the 
cam rotation angle, H is the maximum follower displacement, and . β is the rotation 
angle of the cam corresponding to the maximum follower displacement. 

. 
1) S = H

2 (1 − cos πθ
β

) 2) S = H
π

(πθ
β

− 1
2 − sin 2πθ

β
)

3) S = H
2

[
(1 − cos πθ

β
) − 1

4 (1 − cos 2πθ
β

)
]
4) S = H θ2

β2 (3 − 2θ
β

)

Solution Choice (2) represents the cycloidal motion and is the most appropriate for 
high speeds, according to previous discussions. 

Choice (2) is correct. 

To avoid infinite jerk and its adverse effects on cam mechanisms, profiles satisfying 
special motion conditions are selected via the following criteria: 

1. The cycloidal motion generates zero acceleration at the two endpoints of the 
motion (start and end points). Therefore, it can be connected to a stop (pause) 
from both points. No two cycloidal motions must follow each other as it increases 
the pressure angle and undesirably returns the acceleration to zero. 

2. From among cycloidal, harmonic, and 8th-degree polynomial motions, the 
harmonic motion leads to the minimum peak and pressure angle. Therefore, it 
is preferable, wherever it is possible, to match its start and end accelerations to 
those of the endpoints of the previous or subsequent intervals. On the other hand, 
since the acceleration is zero in the middle interval of the semi-harmonic motion, 
this motion is used whenever a constant-speed lift occurs after an acceleration 
motion.
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3. The acceleration graph is an asymmetric 8th-degree polynomial, and the peak 
acceleration and the related pressure angle are between the corresponding values 
in the harmonic and cycloidal graphs. 

Some Examples of “Cams” 

1. If the angular speed ω of the cam in Fig. 5.20 is considered constant, the 
acceleration of the follower will be equal to . . . 

1) 
√
2 
2 OCω2 2) CP .ω2 3) Zero 4) OP .ω2 

2. In the displayed cam and follower mechanism in Fig. 5.21, the cam rotates at an 
angular speed of ω. What will be the speed of the follower? 

1) rω 
2 2) rω

√
2 
2 3) rω 4) 2rω 

Fig. 5.20 Acceleration of a 
follower with a cam with 
constant angular speed 

Fig. 5.21 Cam-follower 
mechanism with a constant 
speed cam
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Fig. 5.22 Determine the lift 
speed of the follower 

Fig. 5.23 Determine the 
exerted torque on the cam 

3. Based on Fig. 5.22, how much is the lift speed of the follower in cm/s at the 
instant shown (N = 120 rpm, and the lengths are in cm)? 

1) 31.416 2) 37.25 3) 37.7 4) 43.53 

4. The torque T1 to exert on the camshaft in Fig. 5.23 for the static equilibrium of 
the cam and follower mechanism is equal to: 

. 

1) 14.1 N.cm (CCW) 2) 14.1 N.cm (CW)

3) 20 N.cm (CCW) 4) 20 N.cm (CW)

5. In the system shown in Fig. 5.24, the cam has a radius R, the distance O1O2 is 
equal to 2R 

3 , and the angular displacement, speed, and acceleration of the cam 
are θ , ω, and A, respectively. So, what will be the follower travel? 

.

1) R
2 (ω2 cos θ + α sin θ) 2) R

3 (ω2 cos θ + α sin θ)

3) 3R
2 (ω2 sin θ + α cos θ) 4) 2R

3 (ω2 cos θ + α sin θ)
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Fig. 5.24 Determine the 
follower travel 

Fig. 5.25 A symmetric cam 

6. The plate cam in Fig. 5.25 is symmetric with respect to the line δ. This cam 
consists of four tangent circular arcs. Which of the following is true about points 
A and B? 

1) The follower has a continuous and differentiable speed and an infinite jerk. 
2) The speed is continuous, but the acceleration is discontinuous. 
3) The speed and acceleration are both continuous and differentiable. 
4) The speed and acceleration of the follower are both continuous, but its jerk is 

discontinuous.
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Fig. 5.26 Find the resulting energy 

Fig. 5.27 Find the acceleration of the follower 

7. When the circular cam rotates 180◦ from the position shown in Fig. 5.26, which 
of the following will be equal to the resulting energy? The resistive force is 
proportional to the displacement, and x = e(1 − cosθ). 

1) ke2 2) 1 2ke 3) 2ke2 4) 2k 

8. In the cam and follower system in Fig. 5.27, the cam rotates at the constant 
angular speed ω. At the position where the side circle of radius r2 is in contact 
with the follower, the acceleration of the follower will be equal to . . . 

.

1) r2ω
2 sin θ 2) (r2 − r1)ω

2 sin θ

3) r2ω
2 cos θ 4)(r2 − r1)ω

2 cos θ
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Fig. 5.28 Determine the resulting energy 

9. When the circular cam rotates 180◦ from the position shown in Fig. 5.28, which 
of the following will be equal to the resulting energy? The resistive force is 
proportional to the displacement, and x = e(1 − cosθ). 

1) ke2 2) 1 2ke 3) 2ke2 4) 2ke 

Answers for the Examples of “Cams” 

1. Choice (1) is correct. 
The displacement of the follower and, hence, its speed and acceleration are 
obtained as follows: 

. y = OC sin θ + PC

⇒ ẏ = OCθ̇ cos θ

⇒ ÿ = −OCθ̇ sin θ

Substituting θ = 45◦ 
and θ̇ = ω, the acceleration will be equal to: 

√
2 
2 OCω2. 

2. Choice (2) is correct. 
If ω is the angular speed of the cam, the speed of the follower will be: 

. 

dy

dt
= dy

dθ
∗ dθ

dt
= dy

dθ
∗ ω

y = r cos θ ⇒ dy

dθ
= r sin θ

⎫
⎪⎪⎬
⎪⎪⎭
follower speed = dy

dt
= rω sin θ

3. Choice (3) is correct.
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Fig. 5.29 Speed of the point 
of contact 

Assume P1 and P2 in Fig. 5.29 to be the points belonging to the cam and the 
follower, respectively, coinciding at the point of contact: 

. Vp1 = |OP1| ω1ω1 = 120 ∗ 2π

60
= 12.57

(
rad

s

)
|OP1| = 3

sin 60◦ = 3.46cm

Vp1 = 3.46 ∗ 12.57 = 43.49(
cm

s
)

The projections of the speeds of points P1 and P2 along the common normal 
must be equal and in the same direction. Besides, since the direction of Vp2 is 
along the common normal: 

. Vp2 = Vp1 cos 30 = 43.49 cos 30◦ = 37.7(
cm

s
)

Shortcut: The solution is the product of the horizontal distance between the point 
of contact and point O (3 cm) and ω1. 

. Vp1 = 3 ∗ 12.57 = 37.7(
cm

s
)

4. Choice (1) is correct. 
Since the follower is in equilibrium, a force of 20 N is exerted on the cam at 
point B. 

. T = F· |O1C| cos 45 = 20 ∗ 1 ∗
√
2

2
= 14.1 N.cm (CW)

To neutralize this torque, a torque of equal magnitude but in the opposite 
direction must be applied to the camshaft (Fig. 5.30).
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Fig. 5.30 Force exerted on 
the cam 

5. Choice (4) is correct. 
According to the equation mentioned for circular cams: 

. y = e(1 − cos θ)

e is the offset, which is equal to 2R 
3 in this problem. 

. y = 2R

3
(1 − cos θ)

ẏ = 2R

3
θ̇ sin θ

ÿ = 2R

3
θ̇ sin θ + 2R

3
θ̇2 cos θ = 2R

3
(ω2 cos θ + α sin θ)

6. Choice (4) is correct. 
The motion type of the follower is determined by the cam profile. In this profile, 
the follower lift (characteristic curve) is a continuous curve whose derivatives 
(speed and acceleration) are also continuous. However, given the change in the 
radius of curvature of the cam at points A and B, the acceleration derivatives 
(jerk) can be discontinuous. 

7. Choice (3) is correct. 
According to the equation mentioned for circular cams: 

.y = e(1 − cos θ)

yθ = 180 = e (1 − (−1)) = 2e

Energy = E = 1

2
kx2 = 1

2
k(2e)2 = 2ke2
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Fig. 5.31 Cam analysis 

8. Choice (4) is correct (Fig. 5.31). 

. y = r2 − r1 − (r2 − r1) cos θ

ẏ = (r2 − r1) θ̇ sin θ

ÿ = (r2 − r1) θ̇2 cos θ = (r2 − r1) ω2 cos θ

9. Choice (4) is correct. 
The displacement due to a 180◦ rotation is equal to: 

.x = e(1 − cos θ) = e (1 − cs (180)) = 2e

U =
∫

Fdx =
∫

(kx) dx = 1

2
kx2

U |x=2e = 1

2
k (2e)2 = 2ke2



Chapter 6 
Gear Trains 

This chapter provides a comprehensive exploration of gears and their applications in 
mechanical systems. The chapter begins with an introduction, offering an overview 
of gear trains and their significance in transmitting motion and power. Then, the 
vocabulary associated with gears, terminology, and definitions are presented that 
are essential for understanding gear systems. 

Different types of gears are discussed in detail, and their unique characteristics, 
advantages, and limitations are presented. The chapter further delves into gear 
trains, which are arrangements of multiple gears that work together to transmit 
motion and power. Simple and hybrid gear trains are explained, showcasing various 
configurations and their functionalities. 

Overall, this chapter provides a comprehensive overview of gears and gear trains, 
covering their vocabulary, types, rotation directions, and configurations. It serves as 
a valuable resource for understanding the principles and applications of gear systems 
in engineering. 

6.1 Introduction 

When the load exerted on the mechanism exceeds a specific value, cam systems 
can no longer meet our needs. Therefore, teeth are devised on the contact surface to 
create a positive drive. The resulting members are known as gears. Gears are used 
to transfer rotational motion from one shaft to another or transfer rotational motion 
from a shaft to a translating member that is assumed to rotate around an axis located 
at infinity. 

Different types of gears, their components, and stress analysis in their teeth are 
discussed in detail in mechanical design courses. Sometimes, it is necessary to use 
a combination of several gears, which is called a gear set. In this case, one must find 
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the angular speed and rotation direction of the output gear given the input angular 
speed. This topic is discussed in the present chapter. 

6.2 Gear Vocabulary 

The general geometric principles of all gears are the same. Therefore, we will only 
state the expressions used for spur gears. These gears are of the simplest form and 
transfer motion between two parallel shafts. Different parts of this gear are named 
in Fig. 6.1. 

The pitch circle is a hypothetical circle used as the basis for all the calculations. 
The pitch circles of a pair of engaged gears are tangent. The smaller gear in the pair 
is named the pinion, while the larger is named the gear. 

The circular pitch is the distance measured from a point one tooth to the 
corresponding point on the next tooth on the pitch circle. Hence, the circular pitch 
is equal to the sum of the tooth thickness and the distance between two teeth. 

The module m is the pitch diameter ratio (in mm) to the number of teeth. The 
module is the tooth measure index in SI. 

Note A pair of gears must have equal modules to engage well. 

The diametral pitch is the inverse of the module and is equal to the ratio of the 
number of teeth to pitch circle diameter (in inches). 

Addendum Circle 

Addendum 

Dedendum 

Face W
idth 

Clearance 

Dedendum Circle

 Circular Pitch 

Top Land 

Pitch Circle 

Face 

Base Circle 

Fillet Radius 

Flank 

Fig. 6.1 Different parts of a gear



6.2 Gear Vocabulary 199

Since the diametral pitch is expressed only in inches, it is also known as the 
number of teeth per inch. The addendum is the radial distance between the top of 
the tooth and the pitch circle. In addition, the dedendum is the radial between the 
bottom of the tooth and the pitch circle. The clearance circle is a circle tangent to 
the addendum circle of the engaged gear, and the top clearance is the difference 
between the dedendum of a gear and the addendum of its mating gear. 

Note The introduced parameters depend on the characteristics of each gear, not 
their engagement manner. 

When the tooth profiles or cams are designed to maintain a constant angular 
speed during the engagement, they are said to be conjugate. One such profile is 
known as the involute profile, which is used for all gears, with a few exceptions. An 
involute is a curve obtained from the points on a taut thread that is unwound from 
around a base circle (Fig. 6.2A). 

Note Two curves can conjugate: one is the epicyclic curve, which is difficult to 
construct, and the other is the involute curve. 

Note The involute profile minimizes slipping. 

An important advantage of the involute shape over others is that it provides easy 
conjugation when the center distances of the shafts are not accurate. 
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Fig. 6.2 Curves capable of conjugation



200 6 Gear Trains

6.3 Types of Gears 

Based on shaft connection and application, the different types of gears are as 
follows: 

1. Face gears (including spur gears, helical gears, and herringbone gears) to transfer 
motion between parallel shafts (Fig. 6.3A, B, and C). 

2. Bevel gears in different types, such as straight and zerol, are used on orthogonal 
and skew shafts. An example is shown in Fig. 6.3D. 

3. Worm gears and worm shafts are used to transfer motion between orthogonal 
shafts (Fig. 6.3E). 

4. Helical gears have teeth that are angled with respect to the axis of rotation and 
are used in the same applications as spur gears but produce less noise. When 
transferring motion between two parallel shafts, these gears are considered a type 
of face gears. They can also be used to transfer motion between two skew shafts 
(Fig. 6.3B). 

A) B) C) 

D) E) 

Fig. 6.3 Different types of gears
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6.4 Rotation Direction of Engaged Gears 

In gear set problems, the aim is usually to find the speed and rotation direction of 
the output gear from the speed and rotation direction of the input gear. The ratio of 
the input angular speed to the output angular speed is known as the angular velocity 
ratio and is expressed by . 

ωin

ωout
. 

Figure 6.4 shows pinions driving an external spur gear and an internal spur gear. 
The angular speed is proportional to the number of teeth in both cases. 

The external gear rotates opposite the direction of the pinion rotation, while the 
internal gear rotates in the same direction as the pinion. Positive and negative signs 
with respect to speed express the same and opposite directions of rotations. A simple 
method to identify the rotation direction of bevel gears is to detect whether rolling 
occurs at the pitch point (the end of the line tangent to the pitch surfaces) and 
whether the speeds of the two gears are identical at the pitch point. Accordingly, 
the rotation direction can be obtained from the simple speed equation: 

.
−→
V p2 = −→

V p3 = −→ω 2 ∗ −→
r 2 = −→ω 3 ∗ −→

r 3 (6.1) 

where the directions of the pitch radius vectors (r. 2 and r. 3) for gears 2 and 3 are 
from the axis of rotation toward the pitch point. 

Note For bevel gears, the pitch radius is measured from the larger side of the gear. 

Sometimes, it is necessary to reverse the gear’s rotation direction without a 
change in its angular speed. To this end, an idler gear is placed between the driving 
and driven gears. In this case, the direction of motion changes without changing the 
angular velocity ratio. 

When two spur gears are engaged, their pitch circles roll over each other without 
slipping. If the pitch radii are represented by r. 1 and r. 2 and the angular speeds by 
.ω2 , ω1: 

.V = |r2ω2| = |r3ω3| (6.2) 

2 

3 
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= v p 3 3 2  

v p 2 
= v p 3 

p 
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=
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External GearsInternal GearsBevel Gears 

Fig. 6.4 Different engagements of gears
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A) B) 

C) D) 
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Fig. 6.5 Different arrangements for cross-helical gears with orthogonal shafts 

A) B) 

Fig. 6.6 Right- or left-hand helical 

where V is the pitch line velocity, the following equation holds between the 
radius and angular speeds: 

.

|
|
|
|

ω2

ω3

|
|
|
|
= r3

r2
(6.3) 

When dealing with helical gears, the process is slightly more complicated since 
the direction of the helical teeth (left or right hand) affects the gear’s rotation 
direction. Figure 6.5 shows different arrangements for cross-helical gears with 
orthogonal shafts. 

Note To determine the right- or left-hand helical gear, one needs only to view it 
from the side. If it looks like Fig. 6.6A, it is right hand, and if it looks like Fig. 6.6B, 
it is left hand. 

Note The tooth direction is the same in two engaged cross-helical gears.
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Worm gear systems consist of the worm and the worm gear. The worm acts like 
a screw and can be single-threaded, double-threaded, or triple thread. On the other 
hand, the worm gear sets are used in non-intersecting and perpendicular shafts. The 
helix and teeth directions of a worm and worm gear pair are identical, similar to 
those of cross-helical gears. However, the two helix angles are different. 

Note The worm usually acts as the driver in the worm gear set. 

One can considerably reduce the speed and increase the torque using worm and 
worm gear systems. 

Note In a worm and worm gear pair, the speed ratio does not depend on the gear 
diameters but on the number of threads of the worm and the number of teeth of the 
worm gear. 

Note We perform the same procedure as for the helical gear to determine a worm’s 
right- or left-handedness. 

We need only to view it from the side: If it looks like Fig. 6.7A, it is right hand; 
if it looks like Fig. 6.7B, it is left-handed. 

In worm gears, the rotation direction depends on the directions of the threads 
and the rotation direction of the worm. Figure 6.8 shows the worm gear’s rotation 
direction under different conditions. 

There is no need to plot the worm gear teeth in these figures. We should simply 
note that a worm gear pair (worm and worm gear) is either both left hand or right 
hand. In other words, a right-hand worm rotates with a right-hand worm gear, and a 
left-hand worm rotates with a left-hand worm gear. 

(A) (B) 

Fig. 6.7 Right- or left-handedness of a worm 

(A) (B) (C) (D) 

Fig. 6.8 Direction of rotation of a worm gear under different conditions
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6.5 Gear Trains 

For designers, gears act as a motion transfer or force conversion pair. Gear pairs 
can be combined in different ways to reach the desired input–output relationship. 
As discussed in the following, all complex gear trains consist of simple, compound, 
and epicyclic gear sets. 

6.5.1 Simple and Hybrid Gear Trains 

Simple gear trains can be divided into two groups depending on the presence of idler 
gears. A simple gear train has only one gear on every shaft. These shafts rotate on 
bearings connected to a single frame. The gears may be of any type, such as spur, 
bevel, hypoid, or worm. Figure 6.9 shows different types of simple gear trains. 

A) B)  
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C) 

Fig. 6.9 Simple and hybrid gear trains
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Idler gears in simple gear trains can have two objectives. One is to change the 
rotation direction of the output gear, and the other is to fill gaps when two gears 
cannot be directly engaged due to the locations of their shafts. The second case 
occurs when there is a size limit, but the shaft locations are constrained for non-
kinematic reasons. 

Note Increasing the number of idler gears reduces the system efficiency. 

Although the simple gear train can contain any number and type of gear, each 
gear in the system must be able to engage with another gear. 

Note If the gears in a simple gear train are engaged correctly, all the gears must 
have a normal pitch and identical modules. 

The speed ratio is constrained for all gear types based on practical considerations 
for each engagement. For instance, the speed ratio in each engagement must not 
exceed 5:1 for a simple gear train. For further speed reduction, compound gear trains 
must be used. A compound gear train is distinguished by the presence of more than 
one gear on a shaft. 

Note Unlike simple gear trains, the gears in compound gear trains are generally of 
different types. 

Example Which of the following is false about gears? 

1) In a simple gear train, the gears can rotate about independent shafts, and the 
system can transfer motion from one gear to another. 

2) The intermediate gears whose size does not affect the speed ratio of the gear 
trains are called idler gears. 

3) Idler gears are used when we tend to change the rotation direction of gears or 
when there is a large distance between the input and output gears. 

4) In compound gear trains, one or more gears rotate about different shafts but with 
equal angular speeds. 

Solution Choice (4) is correct. 

Let us consider the following gear train. Gear A drives gear B, B drives C, C 
drives D, and D drives E. We assume that the number of teeth on the gears is 
.NE,ND,NC,NB,NA, respectively. Therefore, 

.
ωA

ωB

= −NB

NA

,
ωB

ωC

= −NC

NB

,
ωC

ωD

= −ND

NC

,
ωD

ωE

= −NE

ND

(6.4) 

The negative sign in the above equations shows that the rotation directions of two 
engaged gears are opposite (Fig. 6.10). 

Note The angular velocity ratio of every mating gear pair is the inverse of the ratio 
of their number of teeth.
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E 

Fig. 6.10 A mating gear pair 
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Fig. 6.11 Two spur gears 

Example Assume two gears with an angular velocity ratio of 1:1.4 and with shafts 
at a distance of 6 cm. If the diametral pitch of these two gears is 3, determine the 
number of teeth of each gear: 

1) 21 and 15 2) 18 and 21 3) 24 and 18 4) 15 and 9 

Solution In Fig. 6.11, we consider the two spur gears 1 and 2, which rotate at speeds 
of .x2 , x1 about fixed parallel shafts .ω2andω1: 

. 
ω2

ω1
= −N1

N2
= −D1

D2

where .Di , Ni are the number of teeth and diameter of gear number i, respectively. 
Therefore, since .ω2

ω1
= 1.4, the ratio . N1

N2
must also be 1.4, which is reflected by 

choice (1). 

Choice (1) is correct. 

The velocity ratio (VR) of a gear set is equal to the ratio of the angular velocity 
of the first gear to that of the last gear in the set. For the system shown, 

.V R = ωA

ωE

= ωA

ωB

∗ ωB

ωC

∗ ωC

ωD

∗ ωD

ωE

(6.5)
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substituting Eq. 6.4 into this relationship gives 

.V R = ωA

ωE

= NB

NA

∗ NC

NB

∗ ND

NC

∗ NE

ND

= NE

NA

(6.6) 

It can be seen that the VR between the input and output shafts is a function of 
only the number of teeth of the input and output gears and is independent of the size 
and number of idler gears. 

Note Idler gears merely affect the sign of VR, not its value. In other words, they 
influence only the direction of the output motion. 

In general, one can write for both simple and compound gear trains: 

. 
ωin

ωout

= ωdriving

ωdriven

= product of the numbers of teeth of driving gears

product of the number of teeth of driven gears
∗ (−1)n

(6.7) 

where n is the number of driven (or driving) gears in the system, provided that all 
the gears are external. 

Note The contact between an internal and an external gear does not change the 
rotation direction. 

Note An idler gear is driven by the gear it receives motion from and drives the gear 
it transfers motion to. Therefore, it is counted twice among the gears, once as a 
driving and once as a driven gear. 

Note In simple and compound gear trains, the numbers of driving and driven gears 
are equal. 

Example Which of the following is true for a compound gear train, such as a simple 
gearbox? 

1) The sum of the input angular speed and the driving gear’s angular speed is equal 
to the sum of the output angular speed and the driven gear’s angular speed. 

2) The product of the input angular speed and the driven gear’s angular speed is 
equal to the product of the output angular speed and the driving gear’s angular 
speed. 

3) The ratio of the input angular speed to the output angular speed equals the ratio 
of the driven gear’s angular speed to the driving gear’s angular speed. 

4) The input angular speed is equal to the sum of the angular speeds of the driving 
and driven gears. 

Solution According to Eq. 6.7, the product of the input angular speed and the driven 
gear’s angular speed is equal to the product of the output angular speed and the 
driving gear’s angular speed. 

Choice (2) is correct.
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Fig. 6.12 A gear train 

In 

Out 

A B 
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EF 

Example The output-to-input angular speed ratio in a gear train with the following 
number of gears is . . . 

. NF = NA = 30, NB = 60, NC = 20, ND = 40, NE = 20

. 

1) 1/3 2) 1/5

3) 1/6 4) None of the answers

Solution In the system shown, more than one gear is installed on some of the shafts; 
hence, the gears form a compound gear train (Fig. 6.12). Therefore, 

. 
ωin

ωout

= NANCNE

NBNDNF

∗ (−1)3 = −30 ∗ 20 ∗ 20

60 ∗ 40 ∗ 30
= −1

6

In this question, the magnitude of the speed is enough, and there is no need for a 
negative sign. 

Therefore, choice (3) is correct. 

6.5.2 Epicyclic Gear Train 

Both simple and compound gear trains suffer from the constraint that the shafts 
must rotate within bearings fixed in a certain frame. This constraint prevents a 
change in the gear train. If one or more shafts can rotate around another shaft in 
addition to their own axes, the resulting system is called an epicyclic or planetary 
gear train. These gear trains are widely used in compact gear reduction systems. In 
these systems, the gear motion causes the driven shaft (or the arm) to rotate along 
with the rotation of the gears relative to the arm. 

Figure 6.13 shows two epicyclic gear trains. Gear 1 is often called the sun gear, 
and gear 2 is called the planet gear. As can be seen, Arm 3 turns gear 2 around gear
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Fig. 6.13 Two epicyclic gear trains 
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Fig. 6.14 Planetary gears represented graphically 

1. In addition, gear 2 rotates about its center, i.e., B, while the center of B turns 
about the center of A. 

Sometimes, planetary gears are graphically represented as in Fig. 6.14. This  
schematic gives the designer a simple representation of the planetary gear structure. 

Two methods can be used to analyze planetary gear trains. 
A. Algebraic or tabular method
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Fig. 6.15 A gear train 
rotating clockwise 
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This method begins with a table in which each column corresponds to a member 
in the gear train, and each row corresponds to each of the following steps: 

1) The whole set is locked to the arm, and the arm is rotated one turn clockwise. 
2) The arm is held fixed, and the gear that is supposed to be fixed (usually the sun 

gear) is rotated one turn counterclockwise to return to its initial orientation. 
3) The results of Steps 1 and 2 for each member are added to the table. 

Note The ratio of the number of teeth of two mating gears is equal to the ratio of 
their diameters. 

Example The gear train shown in Fig. 6.15 rotates clockwise at an angular speed of 
.ω2= 10 rad/s via arm 2. Determine the angular speed of the output shaft connected 
to gear 3 (solve with tabular method): 

1) .ω3 = 30 rad/s 2) .ω3 = 20 rad/s 3) .ω3 = 10 rad/s 4) . ω3 = 5 rad/s

Solution Since mating gears must have the same module, the number of teeth of 
each gear is proportional to its diameter. Hence, based on the figure, the diameter of 
gear 3 is half that of the fixed inner gear, and the diameter of gear 4 is half that of 
gear 3. Therefore, the number of teeth of gear 4 is half that of gear 3, i.e., 5. 

The internal large gear is the sun gear, and gear 4 is the planet gear, which rotates 
around gear 3 via arm 2. Using this information, we draw Table 6.1 and implement 
the corresponding steps. 

Table 6.1 Steps in the tabular method 

Members Arm Sun 3 4 

The set is locked to the arm and revolves once clockwise +1 +1 +1 +1 

The arm is fixed, and the sun gear revolves once counterclockwise 0 . −1 +2 . −4 

Resultant +1 0 +3 . −3
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Fig. 6.16 Find shaft A speed 

A 

B 

18T 

24 T 

18T 

42 T 

20 T 

40 T 

C 

2 

3 

4 

5 

6 

7 

8 

Table 6.2 Table for finding shaft A speed 

Members Arm 5 7 and  6  8 2 

The set is locked to the arm and revolves once clockwise. +1 +1 +1 +1 . − 24
18

The arm is fixed, and the sun gear revolves once 
counterclockwise. 

0 . −1 . 2418 . −4 0 

Resultant +1 0 +3 . −3 0 

It can be seen that the ratio of the rotation of gear 3 to that of the arm is 3. Thus, 
if .ω3 = 10 rad/s, the angular speed of gear 3 will be .ω3 = 30 rad/s. 

Example In Fig. 6.16, shaft B is fixed, and shaft C rotates clockwise at 380 rpm. 
Which of the following represents the angular speed of shaft A, regardless of 
direction? 

1) 645 rpm 2) 273 rpm 3) 932 rpm 4) 745 rpm 

Solution It can be seen that gear 3 forms a single part with the arm and is in contact 
with gear 2. Moreover, the arm passes through the shafts of gears 6 and 7. Gear 5 
acts as a sun gear and is attached to shaft B. Let us now plot the table and implement 
the steps (Table 6.2). 

It is worth noting that gear 2 is independent of the planetary system and can 
revolve only with the rotation of gear 3.
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Gear 2 is attached to shaft A, and gear 8 is attached to shaft C. With the velocity 
ratio known from the table, an angular speed of 380 rpm for shaft C, and using a 
simple proportionality, we have 

. 

Shaft C ⇒ +11

14
⇒ 380

Shaft A ⇒ −24

18
⇒ x

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

x = 644.84 CCW

The following formula can also be used to solve this problem. 
Therefore, choice (1) is correct. 
It can be seen that this method is time-consuming. When the initial and final 

gears revolve on fixed bearings (fixed shafts) and their axes of rotation are parallel, 
a simple method called the “relative velocity” can be used. 

B. Relative velocity method 
If . ωF , . ωL, and . ωA are the angular speeds of the first gear, last gear, and arm 

relative to the fixed member, respectively, one can write 

.
ωLA

ωFA

= ωL − ωA

ωF − ωA

(6.8) 

where .ωLA is the angular speed of the last gear relative to the arm, .ωFA is the 
angular speed of the first gear relative to the arm, and .ωLA

ωFA
is the speed ratio of the 

last gear to the first gear relative to the arm. 

Note To find the ratio . ωLA

ωFA
, we only need to assume that the arm is fixed and treat 

the gears as simple and compound systems. 

Note Regarding the application of this equation, it must be noted that the first and 
last gears mate with the planet gear or gears. 

Example The gear train shown in Fig. 6.17 rotates clockwise at an angular speed of 
.ω2= 10 rad/s via Arm 2. Determine the angular speed of the output shaft connected 
to gear 3 (solve with formula): 

1) .ω3 = 30 rad/s 2) . ω3 = 20 rad/s 3) .ω3 = 10 rad/s 4) . ω3 = 5 rad/s

Solution Assume that the internal gear of gear 1 is considered the first gear, and 
gear 3 is the last gear. From the above equation, we will have 

.
ωLA

ωFA

= ωL − ωA

ωF − ωA

⇒ ω3 − ω32

ω1 − ω2
= ω32

ω12
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Fig. 6.17 A gear train 
rotating clockwise 
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Fig. 6.18 Find the angular 
speed of shaft A 
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If the arm is fixed, the ratio .ω32
ω12

= N1
N3

will be obtained. Substituting this ratio in 
the above equation gives 

. 
ω3 − ω2

ω1 − ω2
= N1

N3
⇒ ω3 − 10

0 − 10
= −2

1
⇒ ω3 = 30

Therefore, choice (1) is correct. 

Example In Fig. 6.18, shaft B is fixed, and shaft C rotates clockwise at 380 rpm. 
Which of the following represents the angular speed of shaft A, regardless of 
direction? 

1) 645 rpm 2) 273 rpm 3) 932 rpm 4) 745 rpm
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Solution Gear 5 attached to shaft B and gear 8 attached to shaft C are engaged via 
the planetary system. Therefore, 

. 
ωB − ωarm

ωC − ωarm

= ωB/arm

ωC/arm

= N8N6

N7N5

. ωB = 0 , ωC = 380 rpm ⇒ 0 − ωarm

380 − ωarm

= 40 ∗ 42

20 ∗ 18
⇒ ωarm = 483.5 rpm

Gear 3 is engaged with gear 2 and is also attached to the arm; hence, 

. ω3 = ωarm

ωA

ω3
= N3

N2
⇒ ωA

483.5
= 24

18
⇒ ωA = 645 rpm

Choice (1) is correct. 

Some Examples of “Gear Trains” 

1. Two planetary gear trains, known as the “differential” and with similar 
geometries, form a compound differential train with the inputs ω1 and ω9 
and the outputs ω3 and ω4 (Fig. 6.19). Which of the following is true ( 
N1 
N2

=N9 
N8 

, N3=N5, N4=N7)? 

. 

1) ω3= (ω9 − ω1) 2) ω3=N1
N2

(ω9 − ω1)

3) ω3=N1
N2

(ω9 + ω1) 4) ω3 = (ω9 + ω1)

2. In the planetary gear train shown in Fig. 6.20, ω3= 600 rpm CCW. What is the 
speed of C in rpm? 

.

1)
600

1 + 30·76
28·18

CCW 2)
600

1 − 28·18
30·76

CW

3)
600

1 + 28·18
30·76

CW 4)
600

1 − 30·76
28·18

CCW
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Input 

Fig. 6.19 Two planetary gear trains 

3. In the epicyclic gear train shown in Fig. 6.21, if the numbers of teeth of A, B, C, 
D, E, F, and G are identical, which of the following relationships holds between 
the speed of shaft I and the speed of gear D (A is constant)? 

1) nD = 1 3nI 2) nD = 1 2nI 3) nD = 2 3nI 4) None of them 

4. Consider the vehicle differential gear train. The arm and the ring gear are inte-
grated. If ωA= 0 (the right axle is locked), what gyroscopic torque (T=Iωsωp) 
will be exerted on gear B for one revolution of the arm? (DA=DC= 2DB and I 
is the moment of inertia of gear B.) (Fig. 6.22) 

1) I 2) 2I 3) 3I 4) 4I
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 7 

5 

4 

3 

2 

30 T 

28 T 

20 T 
18 T 

Fig. 6.20 A planetary gear train 

D 

C 

A 

B 

G 

F 

E 

H 

I 

Fig. 6.21 An epicyclic gear train 

5. Two planetary gear trains are joined to form a single gear train. The arm of the 
right set is connected to the left set’s sun ring, and the right set’s sun gear is 
connected to the arm of the left set. If all the geometric information is known, 
what will be the output revolution n1 for the two clockwise input revolutions 
n3=n6= 1 (Fig. 6.23)? 

.

1) − 1 2) The train will lock.

3) 1 4) The outcome is unpredictable.
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Fig. 6.22 A vehicle differential gear train 

6. In the epicyclic gear train shown (Fig. 6.24), gear D rotates at +1000 rpm, and 
the arm rotates at −1000 rpm. If the number of teeth is NBO= 57, ND= 57, and 
NA=NC= N, the speed of A will be . . . 

1) −10,000 rpm 2) −5000 rpm 3) +5000 rpm 4) +10,000 rpm 

7. In the gear train shown in Fig. 6.25, if  nC= 1500 rev min clockwise, the speed of 
arm R will be . . . 

. 

1) 100 rev/min (CCW) 2) 100 rev/min (CW)

3) 300 rev/min (CCW) 4) 300 rev/min (CW)

8. The gear system shown in Fig. 6.26 has two ω2= 500 and ω5= 300 rpm inputs 
in the same direction. Gear 5 is internal, and the number of teeth of each gear 
is written between brackets. Find the value and direction of ω6: 

1) 420 rpm in the same direction as ω5 
2) 1900 

3 rpm in the same direction as ω5 
3) 420 rpm opposite to the direction of ω5 
4) 1900 

3 rpm opposite to the direction of ω5
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0 
1 

2 

2 

0 

4 

5 

6 

0 

Fig. 6.23 Two planetary gear trains 
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Fig. 6.24 An epicyclic gear train
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Fig. 6.25 A gear train 

Fig. 6.26 A gear train with 
two inputs 

1 

2 

34 

5 

6 

1 

(27) 

(120) 

(45) 

(48) 

9. In the gearbox shown in Fig. 6.27, what is the rpm of gear 5 and shaft 6? To 
determine the direction of motion, view the gearbox from the right side. 

. 

1) ω5 = 3750 rpm (CW)
ω6 = 1200 rpm (CW)

2) ω5 = 2840 rpm (CW)
ω6 = 1500 rpm (CW)

3) ω5 = 3400 rpm (CW)
ω6 = 1350 rpm (CW)

4) ω5 = 1850 rpm (CW)
ω6 = 910 rpm (CW)

10. In Fig. 6.28, a speed of 60 rpm is input to gear A, and a speed of −60 rpm is 
input to gear B. The output of gear C in rpm is equal to . . . 

Number of teeth of A = 25, Number of teeth of B = 35 

1) −10 rpm 2) 60 rpm 3) 10 rpm 4) 0 

11. In the gear system in Fig. 6.29, gear A is fixed and has 20 teeth, gear B has 40 
teeth, and the internal gear C has 100 teeth and is attached to the output shaft. If
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Fig. 6.27 Find gear 5 and 
shaft 6 speed 
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34 
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6 

1 

(27) 
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(45) 

(48) 

(120) 

rpmcw 

Fig. 6.28 Gear A is input 
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C 

Fig. 6.29 Gear A is fixed 
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B D 

F 

E 
C 

25 
30 

1520 

Fig. 6.30 Find the output speed 

O 

A B C 

r1 
r2 

r3 

r4 

Fig. 6.31 Four gears mating in pairs 

the angular speed of the input arm is 1500 rpm, what will be the angular speed 
of the output shaft? 

1) 600 rpm 2) 1250 rpm 3) 1800 rpm 4) 3750 rpm 

12. In the planetary gear mechanism shown in Fig. 6.30, if shaft A rotates with a 
speed of 10 rad/s (CW) and shaft B rotates with a speed of 20 rad/s (CW), 
what will be the output speed ωO (in rad/s)? 

1) 4 2)  10 3)  28 4)  58  

13. Rod OC is pivoted at point O and is connected at points O, B, and C to four 
gears mating in pairs (Fig. 6.31). The gear with a radius of r1 is fixed. If the rod 
rotates at 1 revolution per second counterclockwise, which of the following is 
the angular speed of the gear with a radius of r4? 

.
1) ω4 = r2r1

r4r3
2) ω4 = r2

r4

(

1 − r1
r2

)

3) ω4 = r2
r4

(

1 + r1
r2

)

4) ω4 = r1
r4

(

1 + r1
r2

)
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Fig. 6.32 Find the angular velocity of shaft B

 N1N4 

N2 

N3 

5 

Fig. 6.33 All contacts are rolling type 

14. In Fig. 6.32, shaft A rotates at 100 rpm in the direction shown. The angular 
speed of shaft B is . . . 

1) In the same direction as shaft A and equal to 269.5 rpm 
2) In the same direction as shaft A and equal to 1333 rpm 
3) Opposite to the direction of shaft A and equal to 269.5 rpm 
4) Opposite to the direction of shaft A and equal to 1333 rpm 

15. If the counterclockwise motion is considered constant and all contacts in 
Fig. 6.33 are of the rolling type, how much will be ω4 

ω5 
? 

.
1)

(

1 − N3
N4

) (

1 − N3
N2

)

2)
(

1 + N3
N4

) (

1 + N3
N2

)

3) −
(

1 + N3
N4

) (

1 + N3
N2

)

4)
(

1 + N4
N3

) (

1 + N2
N3

)
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(120) 

(48) 

(27) 

2 

346 

5 

rpm 

7 

(45) 

(120) 

Fig. 6.34 A gear train 

16. If ω2 is known in the gear train shown in Fig. 6.34, which of the following is 
true about ω51? 

1) 600 rpm in the direction of ω2 
2) 1200 rpm opposite to the direction of ω2 
3) 3750 rpm opposite to the direction of ω2 
4) 5250 rpm in the direction of ω2 

17. The magnitude and direction of ω2, shown in Fig. 6.35, are specified. Which of 
the following is the magnitude and direction of the angular speed of Member C 
(Arm 10)? 

1) 133.3 rpm in the direction of ω2 
2) 157.3 rpm opposite to the direction of ω2 
3) 200 rpm opposite to the direction of ω2 
4) 400 rpm in the direction of ω2 

18. The gear system shown in Fig. 6.36 is used for speed reduction. The ratio ωF 
ωA 

must be determined to specify appropriate gears for F and G. Find this ratio. 

. B = 100T c = 20T D = 25T E = 105T

1) − 4 
21 2) − 1 

4 3) − 3 
21 4) 1 4 

19. In Fig. 6.37, if Arm 4 has an angular speed of 2 rad/s clockwise, and gear 2 has 
an angular speed of 5 rad/s counterclockwise, what will be the angular speed of 
gear 3 in rad/s? 

1) ω3 = 7 2)  ω3 = 11 3) ω3 = 19 4) ω3 = 29
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Fig. 6.35 Find the magnitude and direction of the angular speed of Member C 
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B E  

C D 

rpm 

Gear B Fixed 

rpm 

Fig. 6.36 A speed reduction gear system 

20. In the epicyclic gear train shown in Fig. 6.38, if Arm 4 rotates at 1 revolution 
per second clockwise and gear 1 rotates at 5 revolutions per second clockwise, 
the angular speed of the internal gear 3 will be . . . revolutions per second . . . 
(R1= 2R2) 

.

1) 1- clockwise 2) 1- counterclockwise

3) 5- clockwise 4) 5- counterclockwise
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Fig. 6.37 Find angular speed 
of gear 3 

2 

3 

4 

r2 = 3r3 

Fig. 6.38 An epicyclic gear 
train 

3 

Internal 

4 

1 
R1 

2 
R2 

21. The chain ring A of a bicycle has a diameter of 30 cm and rotates at 60 rpm, 
while its sprocket B has a diameter of 5 cm. If the diameter of the bicycle’s 
wheel is 70 cm, what is the bicycle’s speed in km/h (Fig. 6.39)? 

1) 35.7 2) 40.5 3) 47.5 4) 55.8 

22. A hand-operated crane is shown in Fig. 6.40. If the number of teeth ZD = 30, 
ZC = 80, and ZB = 20, how many teeth must E have for a gear ratio of 25:1 = 
nA:nB? 
1) 40 2) 80 3) 120 4) 180 

23. In the gear shown in Fig. 6.41, ω2= 12 ( rad s ) and α2= 48 ( rad 
s2 

). Which is α3? 

. 
1) 48

(
rad
s2

)

CCW 2) 144
(
rad
s2

)

CW

3) 152
(
rad
s2

)

CW 4) 288
(
rad
s2

)

CCW

24. In the planetary gear train shown in Fig. 6.42, a triple-thread left-handed screw 
E rotates at 1000 rpm clockwise, and shaft I rotates at 100 rpm clockwise when
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26 T 
9 T 
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B 

A 

70 cm 

Fig. 6.39 A bicycle system 

W 

18 mm 

18 mm 

E D 

C 
A 

B 

Fig. 6.40 A hand-operated crane 

viewed from the right. The speed of the output shaft O, when viewed from the 
right, is equal to . . . 

. 

1) 20
30 rpm counterclockwise 2) 20

30 rpm clockwise

3) 40
30 rpm counterclockwise 4) 40

30 rpm clockwise

25. In the gear train shown in Fig. 6.43, the link OBC rotates at 5 revolutions per 
second clockwise, and the gear centered at O rotates at 5 revolutions per second
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Fig. 6.41 A gear train
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C O  = 100,   NC I = 80,   NB = 20,   NA = 40  
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ArmI 

Fig. 6.42 A planetary gear train 

O B  C  

f 1 

f 2 

Fig. 6.43 Find the revolutions of the gear centered at C
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Out 

E 

R9119M 09O 

In 

B 

V91 K92 S91 T92 

Fig. 6.44 Find the output angular speed 

counterclockwise. How many revolutions will the gear centered at C rotate per 
second? 

1) 0 
2) 10 revolutions per second clockwise 
3) 10 revolutions per second counterclockwise 
4) 5 revolutions per second counterclockwise 

26. In the gear train shown in Fig. 6.44, find the output angular speed for an input 
angular speed of 2000 rpm: 

1) 200 rpm. 
2) 8281 rpm. 
3) The output speed is almost equal to the input speed. 
4) The output speed decreases to the extent that one revolution will take almost 

one month. 

27. In the mechanism in Fig. 6.45, a gear of radius r moves inside a fixed gear of 
radius R without slipping, creating a planetary gear train. Link OB of length 
r is fixed at point O and connected to the center of the gear of radius r via a 
revolute joint at B. Link CD is constrained to move along the x-direction and 
is connected to a point on the circumference of the gear of radius r at a point C 
via a revolute joint. The variable x is obtained as follows: 

.

1) x = R sin θ 2) x = R tan θ

3) x = R cos θ 4) x = R(sin θ + cos θ)
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O 

B 

r 

C 

X 

D 

Fig. 6.45 A gear of radius r moves inside a fixed gear of radius R

 N 1 
= 50  

N
2 =

75 

Fig. 6.46 Find the speed of the output shaft connected to the arm 

28. In the gear system in Fig. 6.46, the numbers of teeth on the left and right gears 
are N1 = 50 and N2 = 75, respectively. Also, the left and right gears rotate at 
2.49 rps clockwise and 1.66 rps counterclockwise, respectively. The speed of 
the output shaft connected to the arm will be . . . 

.

1) 2 rps 2) 0.5 rps

3) Zero rps 4) This design does not work.
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Fig. 6.47 Find the speed of 
the input shaft 

C 

D 

B A 

Arm 

Output 

Input 

29. In the gear system shown in Fig. 6.47, what should be the speed of the input 
shaft if the output shaft is to rotate at 1200 rpm (gear D is fixed)? 

. NA= 51 , NB= 50 , NC= 50 , ND= 50

. 

1) 46.6 rpm 2) 56.5 rpm

3) 82.5 rpm 4) None of the above

30. In the gear system shown in Fig. 6.48, gear 1 rotates at 24 rpm in the indicated 
direction. Determine the speed of Pinion 9 and the direction of motion of Rack 
10. 

. 

1) 0.75 rpm; upward 2) 768 rpm; downward

3) 0.75 rpm; downward 4) 768 rpm; upward

31. Which of the following relationships is correct for the speed ω6 
ω1 

of the 
compound gear system shown in Fig. 6.49? 

1) 
R6R4R2 

R5R3R1 
2) 

R6R5R3R1 

R4R2 
3) 

R5R3R1 

R6R4R2 
4) 

R4R2 

R6R5R3R1
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Rack 
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Fig. 6.48 Determine the speed of Pinion 9 and rack 10 motion 
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Fig. 6.49 Find the correct relationship 

Answers for the Examples of “Gear Trains” 

1. Choice (2) is correct. 
We will use the principle of superposition: 

.(1) ω1 = 0 ⇒ ω3 = ω9 ∗
(

N9

N8

)

∗
(

N5

N3

)

∗ (−1)2 = ω9 ∗
(

N1

N2

)

(2) ω9 = 0 ⇒ ω3 = ω1 ∗
(

N1

N2

)

∗ (−1)1 = −ω1 ∗
(

N1

N2

)

⇒ ω3 = ω3 (1) + ω3 (2) =
(

N1

N2

)

(ω9 − ω1)
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2. Choice (1) is correct. 

. ω2 = 600 rpm (CCW)

(1)
ωF − ωA

ωL − ωA

= ωFA

ωLA

⇒ ω2 − ωC

ω7 − ωC

= ω2C

ω7C

On the other hand, holding the arm fixed relative to ω2C 
ω7C 

: 

. (2)

(
ω2C

ω7C

)

=
(

ω2

ω7

)

=
(

ω2

ω3

)

∗
(

ω4

ω7

)

=
(

−N3

N2

)

∗
(

N7

N4

)

= −30

18
∗ 76

28

Substituting Equation (2) into Equation (1) gives 

. 
600 − ωC

0 − ωC

= − 30 ∗ 76

28 ÷ 18
⇒ ωC = 600

1 + 30∗76
28∗18

(CCW)

It must be noted that the number of teeth on the internal gear 7 is equal to the 
sum of the teeth of the external gears inside it, i.e., N7 = 28 + 20 + 28 = 76. 
The explanation is that the diameter of the outer gear 7 is equal to the sum of 
the diameters of the inner gears, and the modules of mating gears are identical. 

3. Choice (4) is correct. 
According to the tabular method: 

A D I 

+1 +1 +1 

−1 +1/3 0 

0 +4/3 +1 

. ⇒ nD

nI

= 4

3

According to the relative velocity method: 

. 
ωA − ωI

ωD − ωI

= ωAI

ωDI

= −3
ωA=0
︷︸︸︷⇒ ωD = 4

3
ωI

None of the choices is correct. 
4. Choice (4) is correct. 

As discussed in Chap. 4, the gyroscopic couple T is determined by the 
relationship T = Iωsωp, where ωs is the angular speed about the axis of 
rotation, and ωp is the angular speed about the spin axis.
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We will use the relative velocity method for planetary gear trains: 

. 
ωL − ωA

ωF − ωA

= ωLA

ωFA

⇒ ωC − ωArm

ωA − ωArm

= −DA

DC

⇒ ωC − 1

0 − 1
= −1 ⇒ ωC = 2

On the other hand: 

. 
ωB

ωC

= DC

DB

⇒ ωB

2
= 2DB

DB

⇒ ωB = 4

Therefore, gear B completes 4 revolutions about its rotation axis for every arm 
revolution. On the other hand, with the rotation of gear A, gear B makes one 
revolution about the right axle, i.e., ωp = 1. Therefore, 

. T = Iωsωp = 4I

5. Choice (2) is correct. 
First method: 
The rotation of Member 3 causes gear 5 to rotate. Since n3 = n5 = n6 = 1, 
all the members of the right-hand side system move together without relative 
motion. Hence, they all rotate clockwise at a speed of 1, including gear 4. The 
rotation of gear 4 causes gear 2 to rotate at a speed of 1. Due to the engagement 
of gears 2 and 3 and the equal rotation speeds of gear 3 and shaft 2, all the 
members on the left-hand side also rotate at a speed of 1, including gear 1. 
Second method: 
In the first case, we set ω6 equal to 0 and ω3 equal to 1 in the clockwise direction 
and determine ω1 from the following equations: 

. 
ω4 − ω3

ω6 − ω3
= ω43

ω63
,

ω1 − ω4

ω3 − ω4
= ω14

ω34

In the second case, we set ω3 equal to 0 and ω6 equal to 1 in the clockwise 
direction and calculate ω1 from the same equations. The output speed ω1 is 
obtained from the superposition principle: 

.ωtotal = (ω1)F irst case + (ω1)Second case = 1



234 6 Gear Trains

6. Choice (4) is correct. 

. 
ωB − ωarm

ωD − ωarm

= ND

NBi

= −2

4
⇒ ωB − (−1000)

1000 − (−1000)
= −2

4

⇒ ωB = −2000

ωA

ωB

= NBO

NA

= −5 ⇒ ωA = +10,000

It must be noted that 

. NBi = 4N, i.e.
NBi

ND

= NBi

ND

= ND + 2NC

ND

= 2DBi = DD + 2DC

7. Choice (3) is correct. 
The angular speed of gear B is clockwise and equal to 

. ωB = 1500 ∗ 10

150
= 100

ωB − ωarm

ωC − ωarm

= 1

2
⇒ 100 − ωarm

500 − ωarm

= +1

2
⇒ ωarm = −300

8. Choice (1) is correct. 
Member 6 is an arm; hence, Members 5, 6, and 2 form a planetary gear train. 
Therefore: 

. 
ω2 − ω6

ω5 − ω6
=

(+N3

N2

) (−N5

N4

)

=
(

+ 45

120

)(

−48

27

)

= −2

3

⇒ ω6 = 3(ω2 + 2
3ω5)

5
=

3
(

500 + 2
3 ∗ 300

)

5
= 420

Since the direction is positive, it has the same direction as ω5, which is positive. 
The engagement of gears 2 and 3 is internal for one and external for the other. 
Thus, a positive sign was used in +N3 

N2 
. In addition, the engagement of gears 4 

and 5 is external for both. Hence, a negative sign was used −N5 
N4 

. 
9. Choice (1) is correct. 

In Gears 2 and 7: 

.
ω2 − ω6

ω7 − ω6
=

(
N3

N2

)(
N7

N4

)

= 45

120
∗ 102

17
= 1.417

⇒ 500 − ω6

0 − ω6
= 1.417 ⇒ ω6 = −1200
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In Gears 5 and 7: 

. 
ω5 − ω6

ω7 − ω6
=

(−N4

N5

)

∗
(

N7

N4

)

= −N7

N5
= −102

48

. ⇒ ω5 − (−1200)

0 − (−1200)
= −102

48
⇒ ω5 = −3750

10. Choice (1) is correct. 
Gears A and B form a planetary system with Arm C. If we name the middle 
gear D: 

. 
ωB − ωarm

ωA − ωarm

= −NAND

NDNB

= −NA

NB

−60 − ωarm

60 − ωarm

= −25

35
⇒ ωarm = −10 rpm

The negative sign on the right-hand side is because if the arm is fixed and A 
rotates, B will rotate in a direction opposite to A. 

11. Choice (3) is correct. 
Gears A and C form a planetary system. The negative sign on the right-hand 
side is because if the arm is assumed to be fixed and A rotates, C will rotate in 
a direction opposite to A. 

. 
ωC − ωarm

ωA − ωarm

= −NANB

NBNC

= −NA

NC

ωC − 1500

0 − 1500
= −20

100
ωC = 1800 rpm

12. Choice (1) is correct. 
D and F are related through a planetary system. Therefore, 

. 
ωF − ωarm

ωD − ωarm

= ND.NE

NC.NF

⇒ ωo − 20

10 − 20
= 20 ∗ 30

25 ∗ 15
ωo = 4 rad/s

13. Choice (3) is correct. 
Gears 1 and 2 are related through a planetary system, and link OC acts as an 
arm (A). Therefore, 

.(1)
ω2 − ωA

ω1 − ω1A
⇒ ω2 − 1

0 − 1
= − r1

r2
⇒ ω2 = 1 + r1

r2
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On the other hand, gears 2 and 4 are related through a simple gear train. 
Therefore, 

. (2)
ω4

ω2
= r2

r4

Combining Equation (1) and (2): 

. ω4 = r2

r4
(1 + r1

r2
)

14. Choice (3) is correct. 
The chains 2-9-8-7 and 2-3-4-5 are simple. Gears 5 and 7 are related through a 
planetary system. If the rotation direction of shaft A is taken to be positive, 

. 
ω5

ω2
= N2 ∗ N3

N4 ∗ N3
,

ω5

100
= 40

30
, ω5 = 133.33 rpm

The rotation direction of gear 5 is positive. 

. 
ω7

ω2
= N9

N8

ω7

100
= 70

20
ω7 = 350 rpm

The rotation direction of gear 7 is negative. 
Now, for the planetary system 7-6-5: 

. 
ω5 − ωarm

ω7 − ωarm

= −N7N6

N6N5

+133.33 − ωB

−350−ωB

= −50

10
⇒ ω5 = −269.44 rpm

The sign is negative; hence, the rotation direction is opposite to that of A. 
15. Choice (2) is correct. 

Gears 4 and 1 are related through a planetary system, and gear 1 is fixed, and 
thus: 

.
ω1 − ωarm

ω4 − ωarm

= −N4N2

N3N1

0 − ω5

ω4 − ω5
= −N4N2

N3N1
⇒ ω4 − ω5

ω5
= +N3N1

N4N2
⇒ ω4

ω5
= 1 + N3N1

N4N2

r1 = r3 + r2 + r4 ⇒ D1 = D3 + D2 + D4 ⇒ N1 = N3 + N2 + N4

ω4

ω5
= 1 + N3N1

N4N2
(N3 + N2 + N4) = (1 + N3

N4
)(1 + N3

N2
)
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16. Choice (3) is correct. 
Gears 2 and 7 are related through a planetary system. Also, gear 7 is fixed. 
Therefore, 

. 
ω7 − ωarm

ω2 − ωarm

= +N2N4

N3N7

0 − ωarm

500 − ωarm

= 120 ∗ 27

45 ∗ 102
⇒ ωarm = −1200 rpm

Now, for the planetary system 7-4-5: 

. 
ω5 − ωarm

ω7 − ωarm

= −N4N7

N5N4
= N7

N5
⇒ ω5 + 1200

0 + 1200
= −102

48
ω5 = −3750 rpm

The negative sign on the right-hand side shows that if the arm is assumed to be 
fixed and gear 7 rotates, gear 5 will rotate in a direction opposite to gear 7. 

. ω51 = ω5 − ω1 = ω5

17. Choice (2) is correct. 
Gears 2, 9, 8, and 7 form a simple gear train. If the rotation direction of shaft A 
is taken to be positive: 

. 
ω7

ω2
= N9

N8

ω7

100
= 60

30
ω7 = 200 rpm

The direction of ω7 is negative. 
Gears 2, 3, and 4 form a simple gear train. 

. 
ω4

ω2
= N2

N3

ω4

100
= 40

30
ω4 = 133.3 rpm

The direction of ω4 is negative. 
Gears 4 and 7 are related through a planetary system. 

.
ω7 − ωarm

ω4 − ωarm

= −N6N4

N7N45
⇒ −200 − ωarm

−133.3 − ωarm

= −64 ∗ 38

38 ∗ 36

ωarm = −157.3 rpm
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18. Choice (1) is correct. 
Gears E and B are related through a planetary system, and gear B is fixed; 
hence, assuming the direction of A as positive gives 

. 
ωB − ωarm

ωE − ωarm

= NENC

NDNB

0 − 1000

ωF − 1000
= 105 + 20

25 ∗ 100
ωF = −190.47 rpm

ωF

ωA

= −190.47

1000
= −4

21

19. Choice (3) is correct. 
Gears 3 and 2 are related through a planetary system: 

. 
ω2 − ωarm

ω3 − ωarm

= N3

N2
= r3

r2
⇒ −5 − 2

ω3 − 2
= 1

3
ω3 = −19 rad/s

20. Choice (2) is correct. 
Gears 3 and 1 are related through a planetary system. We take the clockwise 
direction to be positive. 

. 
ω3 − ωarm

ω1 − ωarm

= −N1N2

N2N3
= −N1

N3
= −R1

R3
R3 = R1 + 2R2 = 2R1

ω3 − 1

5 − 1
= −1

2
ω3 = −1 rev/s

The negative sign denotes an opposite direction. 
21. Choice (3) is correct. 

In the sprockets chain, the ratio of the speeds is the inverse of the ratio of the 
radii: 

.ωA = 60 ∗ 2π

60
= 6.28 rad/s

ωB

ωA

= RA

RB

ωB

6.28
= 15

2.5
⇒ ωB = 37.68

r = wheel radius

VB = r.ωB = 0.35 ∗ 37.68 = 13.18 m/s

VB = 47.5 km/h
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22. Choice (4) is correct. 
Gear E is fixed, and gears E and B are related through a planetary gear train: 

. 
ωB − ωarm

ωE − ωarm

= −NENC

NBND

ωB − ωA

0 − ωA

= −80 ∗ NE

20 ∗ 30
⇒ −ωB

ωA

+ 1 = −4

30
NE

− 25 + 1 = −4

30
NE NE = 180

The negative sign on the right-hand side shows that if the arm is assumed to be 
fixed and gear E rotates, gear B will rotate in a direction opposite to gear E. 

23. Choice (1) is correct. 
Given the stationary nature of point C and the center of rotation, 

. at
B = R2α2

at
B = R3α3 R3α3 = R2α2 α3 = α2

24. Choice (4) is correct. 
The screw E is engaged with the external side of gear C. 

. 
ωC

ωE

= Number of threads

NCO

ωC

1000
= 3

100

ωC = 30rpm

The internal side of gear C is connected to gear A through the planetary system. 
The positive direction is taken to be clockwise. If we assume the arm is fixed 
and A rotates, E must rotate opposite to A. Thus, a negative sign is added to the 
right-hand side of the equation. 

. 
ωCI − ωarm

ωA − ωarm

= −NB ∗ NA

NCI ∗ NB

= −NA

NCI

−30 − ωO

+100 − ωO

= −40

80
ωO = 40

3
rpm

Since ωO is positive, it rotates clockwise. 
25. Choice (4) is correct. 

Gears C and O are related through a planetary system: 

.
ωC − ωarm

ωO − ωarm

= NONB

NBNC

= 1
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Based on the figure, the radius or number of teeth of gears O and C are 
considered identical. 

. 
ωC − 5

−5 − 5
= 1 ωC = −5 rev/s

26. Choice (4) is correct. 
Gears L and M are related through a planetary gear train, and gear L is fixed. 
Therefore, 

. 
ωL − ωarm

ωm − ωarm

= NV NM

NLNK

0 − 2000

ωM − 2000
= 91 ∗ 91

90 ∗ 92
ωM = 0.24 rpm

Gears O and R are also connected through a planetary system, and gear O is 
fixed. Therefore, 

. 
ωO − ωarm

ωR − ωarm

= NSNR

NONT

ωarm = ωM

0 − 0.24

ωR − 0.24
= 91 ∗ 91

90 ∗ 92
ωR = 2.89 ∗ 10−5 rpm

Now, we convert the speed: 

. ωR = 2.89 ∗ 10−5 ∗ 30 ∗ 24 ∗ 60 = 1

24
revolutions/month

27. Choice (1) is correct. 
According to Fig. 6.50: 

. x = 2r sin θ

2r = R ⇒ x = R sin θ

Fig. 6.50 System analyzing 

r r 

X
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28. Choice (3) is correct. 

. 
ω2 − ωarm

ω1 − ωarm

= −N1

N2
⇒ − 1

66 − ωa

2
49 − ωa

= −50

75
⇒ ωa = 0

29. Choice (1) is correct. 
The system between A and D is a planetary system, and D is fixed. Thus, 

. 
ωD − ωarm

ωA − ωarm

= NANC

NBND

0 − 1200

ωA − 1200
= 51 ∗ 51

50 ∗ 50
ωA = 46.6 rpm

30. Choice (3) is correct. 
Gears 8 and 9 rotate together; hence, ω9 = ω8. On the other hand: 

. 
ω8

ω1
= N1 ∗ N3 ∗ N5 ∗ N7

N2 ∗ N4 ∗ N6 ∗ N8
= 60 ∗ 80 ∗ 60 ∗ 2

48 ∗ 120 ∗ 40 ∗ 80
= 0.75

The rotation direction of the gear can be easily found through a standard 
procedure: It must be noted that in the left-hand worm, according to the right-
hand rule, if the fingers of the right hand are curled in the rotation direction of 
the worm, the thumb represents the direction of motion of the surface on the 
worm gear tangent to the worm. For the right-hand worm, the thumb represents 
the opposite of the motion direction of this surface. 

31. Choice (3) is correct. 

.
ω6

ω1
= R5

R6
∗ R3

R4
∗ R1

R2



Chapter 7 
Balancing 

The focus of this chapter is on the concept of balancing rotating bodies and recip-
rocating masses. The chapter begins with an introduction, providing an overview of 
the importance of balancing in mechanical systems to minimize vibration, increase 
stability, and improve performance. 

Then, the effects of unbalanced masses and the resulting vibration are discussed. 
Various methods of balancing rotating bodies are explained, including balancing 
masses in a plane, balancing masses in several lateral planes, and the graphical 
method for balancing. These methods involve the placement of counterweights or 
the adjustment of mass distribution to achieve balance. 

Overall, this chapter provides a comprehensive understanding of balancing 
techniques for both rotating bodies and reciprocating masses. It emphasizes the 
importance of balancing in reducing vibration and improving the overall perfor-
mance of mechanical systems. The methods and concepts presented in this chapter 
serve as a valuable resource for engineers and designers involved in the development 
of balanced machinery. 

7.1 Introduction 

High-speed machinery with rotating or reciprocating masses constitutes a con-
siderable source of vibration. A major issue in machine dynamics and design 
is the attempt to minimize oscillating forces exerted by such machinery on the 
environment via their bases. Small imbalances in rapidly rotating masses, such as 
those used in generators, can produce significant oscillatory forces. A combination 
of rotating and reciprocating masses is observed in internal combustion engines, 
pumps, compressors, and other machinery. The above-mentioned are among the 
main factors causing oscillating forces, which can be partially balanced by using 
appropriate weights. 
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In dynamics, the equation of motion of a particle was studied in the form of 

.
∑ −→

F = m
−→
a and those of rigid body were studied in the form of . 

∑ −→
F = mG

−→
a G

(where .mG and . aG are the mass and acceleration vector of the center of gravity) 

and .
∑ −→

MG = IG
−→α (where . IG is the moment of inertia tensor about the center of 

gravity). A vector in the opposite direction of the vector .m
−→
a can be regarded as an 

external force and the opposite of the moment of inertia .IG
−→α as an external torque 

exerted on the system. Then, using D’Alembert’s Principle, one can examine the 
static equilibrium of the mechanism instead of its dynamic equations. 

7.2 Balancing of Rotating Bodies 

7.2.1 Masses in a Plane 

The masses . M1, . M2, etc. are lumped masses all located in a single plane of rotation 
and connected to point O (center of rotation) via lightweight links. In an arbitrary 
orientation, the angle of the link connecting mass i to point O with respect to the 
horizon is named . θi . The angle between the links is always constant. . Me is the mass 
that must be added at a radial distance of . re and an angular position of . θe to balance 
the system. 

Static Balance 

The set of masses . M1, . M2, etc. is said to be in static balance if the system does not 
rotate when left on its own. This requires that the center of mass of the system be 
coincident with the center of rotation (point O). Otherwise, the system will tend to 
rotate toward an orientation where the center of mass is directly below point O so 
that the torque exerted by the weight about this point becomes zero. In fact, static 
balance is a balance related to the gravitational effect. 

.Mere equals the product of the mass of the unbalanced system and the distance 
from its center of mass to point O, and .θe = θG + π , where . θG is the angle of 
the mass center of the unbalanced system relative to the horizon. After adding the 
balancing mass . Me, the center of mass of the new system coincides with O, and the 
system reaches static equilibrium. For balancing the system, the net torque of the 
masses about the vertical axis must equal zero (Fig. 7.1): 

.

n∑

i=1

Miri cos θi + Mere cos θe = 0 (7.1) 

Note For the static balance of a unique . θe, an infinite number of . Me and . re pairs 
can be found whose product satisfies Eq. 7.1.
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Fig. 7.1 Set of masses 
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Fig. 7.2 Inputting forces to the set of masses 

Rotary systems such as gears, pulleys, wheels, cams, fans, flywheels, and rotor 
blades that have a thin-disk shape are often balanced statically. 

Dynamic Balance 

If the system rotates around the center of rotation with an angular speed of . ω, 
the masses will possess centripetal acceleration. Based on D’Alembert’s Principle 
and Fig. 7.2, the inverse of the product of these accelerations and the mass can be 
considered a static force exerted on the system. When the resultant of these inertia 
forces is zero, no force is exerted on the support O during rotation. Under these 
conditions, the system is known to be in dynamic equilibrium.
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The system can reach dynamic balance if a mass is added at a suitable location. 
The condition for the dynamic balance of the system is that net inertia forces exerted 
on the system in the horizontal and vertical directions should be zero. 

.

n∑

i=1

Miri cos θi + Mere cos θe = 0 (7.2) 

.

n∑

i=1

Miri sin θi + Mere sin θe = 0 (7.3) 

Note If the dynamic balance condition is satisfied, the static balance condition 
will also be satisfied. However, if a rotor is statically balanced, one cannot directly 
conclude that it is also dynamically balanced. 

Note Similar to static balancing, dynamic balancing is not limited to one state. 
Although the angle . θe is unique, an infinite number of . Me and . re pairs can be used, 
the product of which equals the required value. 

Note Static balance is a reliable criterion for the dynamic balance test only when all 
the masses are in one lateral plane and the dynamic unbalance of torques is unlikely. 

7.2.2 Masses in Several Plane Lateral 

Under conditions where the masses are not in one plane, as shown below, the torque 
of the inertia forces must be considered relative to the case when they are all in one 
plane. 

This case is the most general state of mass distribution on a rigid rotor. To study 
such systems, we selected two arbitrary planes A and B perpendicular to the axis 
of rotation. First, we add the mass .MB at a suitable location in plane B to make the 
torques exerted on the system relative to plane A equal to zero. The condition for the 
torques becoming zero relative to plane A and about the x- and y-axes is as follows: 

.

n∑

i=1

Miriai sin θi + MBrBaB sin θB = 0 (7.4) 

.

n∑

i=1

Miriai cos θi + MBrBaB cos θB = 0 (7.5) 

where . ai is the distance between mass i and plane A, and . aB is the distance between 
plane B and plane A (Fig. 7.3).
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Fig. 7.3 Masses in several plane laterals 

Note . θB is unique; however, there are infinite choices for .MB and . RB . Moreover, 
there is an infinite number of choices for planes A and B. 

As Eqs. 7.4 and 7.5 are established, the z-axis will be the principal axis of the 
system. As such, the product moments of inertia . Izy and . Izy become zero, and the 
system balances in terms of torque during rotation. 

Example The necessary and sufficient conditions for the dynamic balance of a 
system are as follows: 

1) The center of mass must be on the axis of rotation. 
2) The axis of rotation must be the principal axis. 
3) Both conditions (1) and (2) must be satisfied. 
4) The angular momentum vector must be normal to the angular velocity vector. 

Solution First, a dynamically balanced system is also statically balanced. Hence, 
the center of mass must be on the axis of rotation. On the other hand, if the masses 
are not in one plane, the necessary condition for eliminating the torque effects is 
that the axis of rotation must be the principal axis. 

Choice (3) is correct. 

After balancing the system in terms of torque by adding the mass .MB in plane 
B, the mass .MA is added to plane A at a suitable location so that the system can be 
balanced also in terms of inertia forces. The condition for this is as follows: 

.

n∑

i=1

Miri cos θi + MBrB cos θB + MArA cos θA = 0 (7.6) 

.

n∑

i=1

Miri sin θi + MBrB sin θB + MArA sin θA = 0 (7.7)



248 7 Balancing

Fig. 7.4 Dynamically 
balancing set of masses 
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Example The system can be balanced . . . for dynamically balancing the set of 
masses shown on the axis (Fig. 7.4). 

1) Only in terms of force 
2) Only in terms of torque 
3) By adding a mass at a specific point 
4) By adding two masses at two specific points 

Solution In dynamic balancing, the inertia effects (inertia torques and forces) at the 
bearings must become zero. Given that the masses are in several planes, two masses 
are needed at two locations, one for balancing the forces and the other for balancing 
the torques. 

Choice (4) is correct. 

7.2.3 Graphical Method for Balancing 

Consider a plane state. The mathematical condition for the dynamic balance of 
masses can be written in the following vectorial form: 

. 
∑ −→

F =
∑

(M
−→
r ω2) =

∑
(
W

g

−→
r ω2) = ω2

g

∑
(W

−→
r ) ⇒

∑
(W

−→
r ) = 0

(7.8) 

Since .ω2/g is constant for all masses, balance is established by satisfying Eq. 7.8. 
The .W−→

r of each mass is vector with the same direction as the inertia force. In
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Fig. 7.5 Graphical method for balancing 

Fig. 7.5, the  .W−→
r of the three masses are known, and the .W−→

r of the balancing 
mass (. Me) must be determined in such a way that Eq. 7.8 is satisfied. 

. R =
∑ (

W
−→
r

)

We
−→
r e = −−→

R

In the polygon, the resultant R denotes the unbalance of three masses. Without a 
balancing mass, the resultant force of the rotating system is .Rω2/g, which causes 
bending in the shaft and results in forces being developed in the bearings. In Fig. 7.5, 
the left bearing carries a larger portion of the unbalance load. The shaft bending and 
bearing forces are minimized by adding a balancing mass (Fig. 7.6). 

Note Any number of masses rotating in a common radial plane can be balanced by 
adding only one mass. 

In cases where the masses of a rigid rotor are on the same axial plane, the inertia 
forces are parallel vectors. 

Also here, the inertia forces are balanced by satisfying Eq. 7.8; however, the 
torque of the inertia forces must also be balanced. 

For having balance in the torques, the torques from the inertia about any axis 
perpendicular to the plane should be zero. 

. 
∑

(Fa) =
∑

(
W

g
rω2a) = ω2

g

∑ (
W

−→
r a

) = 0 ⇒
∑(

W
−→
r a

) = 0

(7.9)
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Fig. 7.6 Add one mass to 
make balance 
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where a is the moment arm of each inertia force. The line of action of R is 
determined by the principle of moments, where the moments are taken about the 
center of moment O. In this case, . aR is obtained by dividing .

∑ (
W

−→
r a

)
by 

.
∑ (

W
−→
r

)
. 

For the general case below, the two conditions .
∑ (

W
−→
r

) = 0 and 
.
∑ (

W
−→
r a

) = 0 must be simultaneously satisfied. In other words, the vector 
polygons of .W−→

r and .W−→
r a must be closed. The procedure is similar to the 

analytical case. 
Figure 7.7C displays the torque polygon about the lateral plane A-A. Although 

the direction of the torque vectors is determined according to the right-hand rule, 
these vectors are displayed in the same direction as the inertia forces in Fig. 7.7C. 
In this figure, first the known torque vectors .(W−→

r a)2 and .(W−→
r a)3 are plotted, 

and the completing side .(W−→
r a)b of the polygon expresses the torque vector 

required for balancing. The direction .(W
−→
r a)b represents an axial plane where . Mb

must lie. The magnitude of the vector .(W−→
r a)b is obtained from the relationship 

.(W
−→
r a)b/ab and is plotted in the force polygon in Fig. 7.7B. A second mass, such 

as . Ma , is required to close the force polygon with .(W
−→
r )a in order to balance the 

forces. .(W−→
r )a and .(W−→

r )b create the resultant R. By placing .Ma in plane A-A, 
which causes the torque around A-A to become zero, the torque balance polygon 
(Fig. 7.7C) remains unchanged. As a result, both Eqs. 7.8 and 7.9 are satisfied. 
Figure 7.7D shows the torque polygon, in which the torques are considered about
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Fig. 7.7 Torque polygons 

plane B-B to determine the torque vector .(W−→
r b)a relative to . Ma in the plane A-A. 

The vector .(W
−→
r )a resulting from this polygon is similar to the previous solution. 

7.3 Balancing of Reciprocating Masses 

Balancing reciprocating mechanisms, such as the slider-crank mechanism, is widely 
used in machines such as internal combustion engines and compressors. Hence, 
extensive research has been conducted on balancing these mechanisms.
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Fig. 7.8 A piston-crank 
system 
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Fig. 7.9 A piston-crank 
system 

In the slider-crank mechanism shown below, the velocity and acceleration of 
point P are simply obtained by differentiating its position with respect to time, as 
follows: 

.VP = −Rω(sin θ + R

2L
sin 2θ) (7.10) 

.AP = −Rω2(cos θ + R

L
cos 2θ) (7.11) 

In this equation, . ω is the angular velocity of the crank. The other variables 
are shown below. The positive value of .AP in this equation shows that the piston 
accelerates away from O, and a negative value shows that the piston accelerates 
toward O (Fig. 7.8). 

Example Which of the following is true about the piston-crank mechanism 
(Fig. 7.9)? 

1) If the length of the piston rod is equal to that of the crank, the mechanism cannot 
work. 

2) The maximum acceleration of the piston occurs at .θ = 180
◦
, i.e., the bottom 

dead center. 
3) The longer the piston rod is, the closer the piston’s motion to simple harmonic 

motion will be. 
4) When the crank angle is . 90

◦
, the piston speed will be maximum. 

Solution If we differentiate the position vector of the piston with respect to time, 
we obtain the velocity, and if we differentiate the velocity vector with respect to
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time, we obtain the acceleration of the piston. These relationships are as follows: 

. VP = −Rω(sin θ + R

2L
sin 2θ)

AP = −Rω2(cos θ + R

L
cos 2θ)

According to the equations, the longer the piston rod (L) is, the smaller the 
second term will be, and the closer we will be to harmonic motion. Hence, Choice 
(3) is correct (Fig. 7.10). 

Choice (1) is incorrect since, based on the equations, if R=L, the mechanism will 
have a velocity. Choice (2) is incorrect since the maximum acceleration occurs at 
.θ = 0. Choice (4) is also incorrect since .θ = 90◦ does not make the derivative of 
velocity with respect to . θ zero: 

. 
dV P

dθ
= −Rω2

(

cos θ + R

L
cos 2θ

)

if θ = 90
dV P

dθ
= R2 ω

L
�= 0

Choice (3) is correct. 

This mechanism can be dynamically made equivalent to the following figure. 
.M ′′

C is the equivalent mass of link OC at point C, which is obtained by equating the 
inertia forces of the two states (Fig. 7.11). 
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x 

Fig. 7.10 Piston-crank mechanism analyze 
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x 

Fig. 7.11 Equivalent mechanism
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We can write 

.M ′′
CRω2 = MCR2ω

2 ⇒ M ′′
C = R2

R
MC (7.12) 

where .MC is the mass of link OC, . R2 is the distance of its mass center from point 
O, and R is the length of this link. Moreover, .M ′

C and .M ′
P are the equivalent masses 

of link PC at points C and P, which can be determined as follows: 

.

M ′
C + M ′

P = M

M ′
ChC = M ′

P hP

(7.13) 

where .MP is the slider mass, M is the mass of link PC, and . hP and . hC are 
the distances of the mass center of link PC from points P and C, respectively. 
Equation 7.13 considers the fact that the mass and mass center position are the same 
in the original and equivalent dynamic systems. 

The inertia force in the piston pin is always opposite to the acceleration and 
equals 

.fP = (
MP + M ′

P

)
Rω2 cos θ

︸ ︷︷ ︸
Primary

+ (
MP + M ′

P

)
Rω2R

L
cos 2θ

︸ ︷︷ ︸
Secondary

(7.14) 

In this equation, a positive value obtained for . fP indicates that the inertia force is 
positive away from point O, and a negative value means the opposite. The first part 
of the equation is a function of the angle . θ and is known as the initial inertia force. 
Since the second part is a function of . 2θ , it is known as the secondary inertia force. 

As such 

.fC = (M ′′
P + M

′′
C)Rω2 (7.15) 

The forces . θ and . fC affect point O for all values of . fP . Therefore, the vibratory 
force . Fs is exerted at the crankshaft bearings for all crank conditions, and 

.fO = fC + fP (7.16) 

Placing a balancing mass against link OC on the crank can balance the centrifugal 
force . fC and also partly balance the inertia force . fP . The optimal force of the 
balancing weight equals the centrifugal force . fC and a fraction of the inertia force 
. fP so that the maximum horizontal and vertical forces exerted on the bearing O are 
equal. 

The vibration of a piston engine is basically due to the inertia forces of 
reciprocating masses at the piston’s pin. The masses rotating with the crankshaft 
are usually balanced and do not transfer a vibratory force to the crankcase. Based 
on the free-body diagram of the slider-crank shown above (Fig. 7.12), the effect 
of the inertia force F of the reciprocating masses is the transfer of a force to the
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Fig. 7.12 Free-body diagram of a slider-crank 

crankcase at the cylinder wall and the main bearings. The vertical component of 
the main bearing force .Fx

12 and the cylinder wall force .F14 are equal in magnitude 
but opposite in direction. Since they are not codirectional, they generate the couple 
.F14h. 

As shown by the free-body diagram of the crankcase (Fig. 7.12), the effect of the 
reciprocating masses on the crankcase is in the form of the vibration force S = F and 
the vibration couple .F14h. Since the magnitude and direction of both vibration force 
and couple vary over the operating cycle of the engine, forced vibrations are applied 
to the crankcase. If the crankcase is installed on flexible mounts, its vibration modes 
are the upper and lower modes resulting from the force S and the lateral vibration 
due to the couple. 

Note One can reduce the resultant vibration force to zero by combining several 
slider-crank mechanisms and constructing a multi-cylinder engine. In this case, the 
individual vibration forces cancel each other out although the resultant vibration 
couple does not reduce to zero. 

Figure 7.13 shows an n-cylinder inline engine. The angle made by crank 1 with 
the vertical (cylinder axis) is . θ1. Since the crankshaft is rigid, the angles between the 
cranks are constant. The angle between cranks 2 and 1 is . φ2, that between cranks 3 
and 1 is . φ3, and so on. 

Attention . φ1 is equal to zero. 

Equation 7.14 determines the inertia forces exerted on various pistons, named 
.fn, . . . , f3, f2, f1.
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Fig. 7.13 An n-cylinder inline engine 

Hence 

.

f1 = (
MP + M ′

P

)
Rω2

[

cos θ (θ1 + φ1) + R

L
cos 2(θ1 + φ1)

]

f2 = (
MP + M ′

P

)
Rω2

[

cos θ (θ1 + φ2) + R

L
cos 2(θ1 + φ2)

]

.

.

.

fn = (
MP + M ′

P

)
Rω2

[

cos θ (θ1 + φn) + R

L
cos 2(θ1 + φn)

]

(7.17)
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The algebraic sum of the inertia forces equals the vibration force . Fs . Therefore 

.Fs = (
MP + M ′

P

)
Rω2

[
n∑

i=1

cos θ (θ1 + φi) + R

L

n∑

i=1

cos 2(θ1 + φi)

]

(7.18) 

Using trigonometric relationships, this equation can be expressed as follows: 

.

Fs = (MP + M ′
P )Rω2

[

cos θ1

n∑

i=1

cosφi − sin θ1

n∑

i=1

sinφi+

R

L
cos 2θ1

n∑

i=1

cos 2φi − R

L
sin 2θ

n∑

i=1

sin 2φi

] (7.19) 

For the balancing of the inertia forces, their resultant must be zero for all crank 
states . θ1, i.e., .Fs = 0. Therefore 

. 

∑n
i=1 cosφi = 0

∑n
i=1 sinφi = 0

⎫
⎬

⎭
(Necessary condition for the balance of the primary forces)

(7.20) 

. 

∑n
i=1 cos 2φi = 0

∑n
i=1 sin 2φi = 0

⎫
⎬

⎭
(Necessary condition for the balance of the secondary forces)

(7.21) 

The torque of the vibration forces can be determined by obtaining the torques of 
the inertia forces relative to a point in their plane. For instance, if we consider the 
torques relative to point P and assume the moment of the vibration force be equal to 
M, 

.M = f1a1 + f2a2 + f3a3 + . . . + fnan (7.22) 

This equation is equivalent to the product of each term in Eq. 7.19 and the 
relevant moment arm. Therefore 

.

M = (
MP + M ′

P

)
Rω2

[

cos θ1

n∑

i=1

ai cosφi − sin θ1

n∑

i=1

ai sinφi+

R

L
cos 2θ1

n∑

i=1

ai cos2φi − R

L
sin 2θ

n∑

i=1

ai sin2φi

] (7.23)
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For the torque of the vibration force to be zero, M must equal zero for all angular 
positions . θ1. Hence 

. 

∑n
i=1 cosφi = 0

∑n
i=1 sinφi = 0

⎫
⎬

⎭
(Necessary condition for the balance of the primary forces)

(7.24) 

. 

∑n
i=1 cos 2φi = 0

∑n
i=1 sin 2φi = 0

⎫
⎬

⎭
(Necessary condition for the balance of the secondary forces)

(7.25) 

The primary torques refer to the resultant of the torques of the primary forces of 
all the pistons about the location of piston 1. Similarly, the secondary torques refer 
to the resultant of the torques of the secondary forces of all the pistons about the 
location piston 1 (Fig. 7.14). 

Example Consider the cylinder engine shown in the following figure with a 
crankshaft containing cranks with equal relative angles and longitudinal positions. 
The masses of the reciprocating parts of the different cylinders are equal. The causes 
of unbalance in this engine are as follows: 

1) The primary force and primary torque 
2) The secondary force and secondary torque 

Fig. 7.14 A cylinder engine 
mechanism 
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3 4 
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4 

5
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3) Primary torque and secondary torque 
4) Primary and secondary forces and torques 

Solution 

. φ1 = 0 φ2 = 3

(
2π

5

)

φ3 = 2π

5
φ4 = 4

(
2π

5

)

φ5 = 2

(
2π

5

)

. a1 = 0 a2 = a a3 = 2a a4 = 3a a5 = 4a

Primary force balance: 

. 
∑

cosφi = cos (0) + cos (
6π

5
) + cos (

2π

5
) + cos (

8π

5
) + cos (

4π

5
) = 0

∑
sinφi = sin (0) + sin (

6π

5
) + sin (

2π

5
) + sin (

8π

5
) + sin (

4π

5
) = 0

Secondary force balance: 

. 
∑

cos 2φi = cos (0) + cos (
12π

5
) + cos (

4π

5
) + cos (

16π

5
) + cos (

8π

5
) = 0

∑
sin 2φi = sin (0) + sin (

12π

5
) + sin (

4π

5
) + sin (

16π

5
) + sin (

8π

5
) = 0

Primary and secondary forces are not the causes of unbalance. Therefore, choice 
(3) is correct since the rest of the choices contain primary or secondary forces. 

Choice (3) is correct. 

Some Examples of “Balancing” 

1. Three unbalanced masses m1= m , m2= m, and m3= 2m are arranged on the 
shaft so that static balance is established (Fig. 7.15). Which of the following is 
true? 

. r1=r2=r3= r

1) 2 sin α = sin (α + β) 2) cos α = 2cos(α + β) 
3) 2 cos α = cos (α + β) 4) sin α = 2sin(α + β) 

2. Three disks A, B, and C are installed on a rigid and homogeneous shaft, 
as shown in Fig. 7.16. If the equivalent unbalance of each disk equals
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Fig. 7.15 Set of masses on a shaft 
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Fig. 7.16 Disks on a shaft 

(mr)C , (mr)B , (mr)A and the system is statically balanced, which of the 
following equations is true? 

1) (mr)A cos θA − (mr)B cos θB − (mr)C cos θC = 0 
2) (mr)A cos θA − (mr)B sin θB − (mr)C cos θC = 0 
3) (mr)A + (mr)B cos (θB + θA) + (mr)C cos (θC + θA) = 0 
4) (mr)A + (mr)B sin (θB − θA) + (mr)C cos (θC − θA) = 0 

3. Which of the following is true about the engine vibratory forces in the mechanism 
shown? 

1) The vibratory forces are balanced in the x- and y-directions. 
2) The vibratory forces are balanced only in the x-direction. 
3) The vibratory forces are balanced only in y-direction. 
4) The vibratory forces are unbalanced in the x- and y-directions (Fig. 7.17). 

4. In the following rotating system, a = c = 300 mm, R1 = R2 = 60 mm, b = 
600 mm, m1 = 1 kg, and m2 = 3 kg. Determine the reaction force at support A 
if the speed of shaft AB is 100 rpm (Fig. 7.18). 
1) 8.8 kN 2) 23.5 kN 3) 13.15 kN 4) 10.15 kN
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Fig. 7.17 Engine vibratory force 
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y 

m2 
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O 

m1 

Fig. 7.18 Determine the reaction force at support A 

5. Which of the following is true about the two-cylinder engine shown below 
(Fig. 7.19)? 

1) The primary vibration moment is balanced. 
2) The secondary vibration moment is balanced.



262 7 Balancing
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Fig. 7.19 A two-cylinder engine 
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Fig. 7.20 A two-stroke three-cylinder engine 

3) The primary vibration force is balanced. 
4) The secondary vibration force is balanced. 

6. A two-stroke three-cylinder engine has the following piston arrangement 
(Fig. 7.20). Which of the following is true? 

1) Only the primary forces are balanced. 
2) The primary and secondary forces are balanced. 
3) Only the primary and secondary torques are balanced. 
4) None of the forces or torques is balanced.
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L = nR  
P 

d 

y 

C 
D 

B 

R 

O 

x 

Fig. 7.22 A slider-crank mechanism 

7. For the system to be balanced, which of the following angles and balancing 
masses seem more suitable (Fig. 7.21)? 
1) θ = tan−1(7.33) + 180 

m = 4.95 kg 

2) θ = tan−1(7.33) 

m = 6.6 kg  
3) θ = tan−1(7.33) + 180 

m = 6.6 kg  

4) None of them 

8. The necessary and sufficient conditions for the system to be dynamically 
balanced are as follows: 

1) The center of mass must be on the axis of rotation. 
2) The axis of rotation must be the principal axis of the system. 
3) Both conditions (1) and (2) must be satisfied. 
4) The angular momentum vector must be normal to the angular velocity vector. 

9. Which of the following pair of equations represent the velocity and acceleration 
of point C in the slider-crank mechanism shown (Fig. 7.22)?
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1) V = −Rω2(sin θ + 
1 

2n 
sin 2θ)  

A = −Rω2 
2(cos θ + 

1 

n 
cos 2θ)  

2) V = Rω2(cos θ + 
1 

2n 
sin 2θ)  

A = Rω2 
2(sin θ + 

1 

n 
cos 2θ)  

3) V = −Rω2(sin θ + 
1 

2n 
cos 2θ)  

A = Rω2 
2(cos θ + 

1 

n 
sin 2θ)  

4) V = −Rω2(cos θ + 
1 

2n 
cos 2θ)  

A = −Rω2 
2(sin θ + 

1 

n 
sin 2θ)  

Answers for the Examples of “Balancing” 

1. Choice (4) is correct. 
In static balance, the system does not tend to rotate regardless of its orien-

tation. Hence, by rotating the system 60◦ counterclockwise and applying static 
balance conditions, 

. 
∑

miri cos θi = 0

m1r1 cos
(π

2

)
+ m2r2 cos

(π

2
+ α

)
+ m3r3 cos

(π

2
+ α + β

)
= 0

r1 = r2 = r3 = r m1 = m2 = m m3 = 2m

sinα − 2 sin(α + β) = 0 ⇒ sinα = 2 sin (α + β)

2. Choice (4) is correct. 
In static balance, the system does not tend to rotate regardless of its orientation 

(Fig. 7.23). By rotating the system by θA clockwise and applying static balance 
conditions, 

. 
∑

miri cos θi = 0

In this state, the angles made by masses A, B, and C with the horizon are zero, 
(θB − θA), and (θC − θA), respectively. Therefore 

. (mr)A + (mr)B cos (θB + θA) + (mr)C cos (θC + θA) = 0

Hence, choice (4) is correct. 
3. Choice (1) is correct. 

In the reciprocating mechanism, the forces exerted on the bearing include the 
inertia force of the crank O1 and the inertia force O2 of the slider. These forces
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Fig. 7.23 Set of masses 

m3 

m1 

m2 

are opposite to each other. Therefore, the forces are balanced in both the x- and 
y-directions. 

4. Choice (3) is correct. 
f2 and f 1 are inertia forces and do not have components in the x-direction; 

thus, RA does not have a component in the x-direction. 

. ω = 2πN

60
= 2π ∗ 100

60
= 10.47 rad/s

∑
MB = 0 RA ∗ 1200 − f2 ∗ 900 + f1 ∗ 300 = 0 (1)

f1 = m1R1ω
2 = 1 ∗ 0.06 ∗ (10.47)2 = 6.57 N

f2 = m2R2ω
2 = 3 ∗ 0.06 ∗ (10.47)2 = 19.73 N

Substituting f2 and f into Equation (1) results in RA = 13.15 N. Its positive 
value validates the chosen direction. 

B 

f 1 

f 2 
RA 

5. Choice (4) is correct.
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φ is the angle between the cranks; therefore 

. φ1 = 0 φ2 = 90

a1 = 0 a2 = s

Primary force balance 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

∑
cos φi = cos 0 + cos 90 = 0

∑
sin φi = sin 0 + sin 90 = 1 �= 0 

Secondary force balance 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

∑
cos 2φi = cos 0 + cos 180 = 0

∑
sin 2φi = sin 0 + sin 180 = 0 

We can see that the secondary forces are balanced. Therefore, choice (4) is 
correct. 

The primary and secondary torques can be examined in the forms mentioned 
in the text. 

6. Choice (2) is correct. 

. φ1 = 0 φ2 = 2π

3
φ3 = 4

π

3

a1 = 0 a2 = a a3 = 2a

Primary force balance 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

∑
cos φi = cos 0 + cos 

2π 
3 

+ cos 
4π 
3 

= 0

∑
sinφi = sin 0 + sin 

2π 
3 

+ sin 
4π 
3 

= 0 

Secondary force balance 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

∑
cos 2φi = cos 0 + cos 

4π 
3 

+ cos 
8π 
3 

= 0

∑
sin 2φi = sin 0 + sin 

4π 
3 

+ sin 
8π 
3 

= 0 

It can be seen that the primary and secondary forces are balanced. 
7. Choice (4) is correct.
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Based on the equations required for static and dynamic balance, 

(1) 

. 

n∑

i=1

MiRi cos θi + MARA cos θA = 0

⇒ 2.5 + 260 ∗ cos 0 + 3.5 ∗ 300 ∗ cos 60 + 5 ∗ 225 ∗ cos 150

+ MARA cos θA = 0

(2) 

. 

n∑

i=1

MiRi cos θi + MARA sin θA = 0

⇒ 2.5 + 260 ∗ sin 0 + 3.5 ∗ 300 ∗ sin 60 + 5 ∗ 225 ∗ sin 150

+ MARA sin θA = 0

Taking the unknowns to one side and dividing the two equations, tan θA = 

7.33 ⇒
{

θA = tan−1 (7.33) 

θA = tan−1 (7.33) + 180 
However, based on Equation (2) and the fact that all the terms in this equation 

are positive, MARA sin θA must be negative to satisfy this equation; therefore, 
θA = tan−1 (7.33 ) + 180. However, according to the existing data and the 
absence of the radius of the balancing mass, it is impossible to calculate this 
mass. Therefore, none of the choices is correct. 

8. Choice (3) is correct. 
9. Choice (1) is correct. 

Based on the previous discussions for the slider-crank mechanism, 

. V = −Rω(sin θ + R

2L
sin 2θ)

A = −Rω2(cos θ + R

L
cos 2θ)

By substituting L=nR in the above equation, we obtain choice (1). 
This problem could also be solved without the above equations. This is 

because if the velocities in the choices are differentiated, only choice (1) provides 
the correct acceleration.
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