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Abstract Aluminium Alloys AA5083 dispersed with varying fractions of reinforce-
ment was fabricated through the stir casting method. In varying weight percentage 
combinations, zinc oxide (ZnO) and coconut shell ash (CSA) particles were combined 
to create hybrid reinforcement particles. Using a pin-on-disc tribometer, the wear 
characteristics of the developed AA5083 hybrid composites were estimated. The 
volumetric proportion of hybrid reinforcement particles CSA (3, 6, 9 and 3 ZnO wt%), 
load (20, 30, 40 N), sliding velocity (2, 3, and 4 m/s), Cumulative Time (4.16, 5.55, 
and 8.33 min), and sliding distance are some of the experimental parameters (1000 m). 
Wear analysis revealed effective bonding and homogeneous dispersion of hybrid rein-
forcement particles onto the AA5083. Analysis of Specific Wear Rate (SWR) results 
showed that Specific Wear Rate rose with load, sliding velocity, and sliding dura-
tion while decreasing with hybrid particle dispersion. This research proposes the use 
of several intelligent classification techniques using Machine Learning (ML) and 
Artificial Neural Network (ANN) to predict the wear rate of an AA 5083 hybrid 
composite. For estimating wear quantities, the algorithms Random Forest (RF), 
Neural Network (NN), and k-nearest neighbours (kNN) are utilized. Six inputs are 
utilized to train and evaluate the Machine Learning (ML) algorithms: the Applied 
Load (N), Sliding Velocity, Sliding Speed, Cumulative Time, Percentage of Rein-
forcements, and Sliding Distance. The output is the Specific Wear Rate (SWR). The
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RF, NN, and KNN algorithms all produced success rates of correlation between 
experimental to anticipated of 0.90, 0.84, and 0.90, respectively. The same model 
data was utilised to train and evaluate Artificial Neural Networks (ANN), with the 
Multilayer Perceptron (MLP) network having the lowest Mean Square Error (MSE) 
to improve machine learning prediction accuracy. Maximum estimate error range 
of 0.1%, training and cross-validation of 0.00000496 and 0.0261, respectively, with 
linear correlation coefficient in testing of 0.9999 or 99.9% better prediction accuracy 
rate. The AA 5083 composites were designed and implemented using this machine 
learning and artificial neural network model for forecasting specific wear rate. 

Keywords AA 5083 · Stir casting · Hybrid composites · Wear · Machine learning 
(ML) · Artificial Neural Network (ANN) 

1 Introduction 

Aluminium Metal Matrix and Hybrid Composites (AMMHCs) are used in aerospace, 
automotive, ballistic, electrical, aviation, tribological, space and air vehicle, thermal, 
structure, defence industries, military, transportation, engineering, and mineral 
processing applications due to their high strength-to-weight ratio, good corrosion, 
oxidation, and wear resistance, and high thermal conductivity [1]. 

Due to extensive passivation, aluminium (Al) is one of the most frequently utilised 
metals in industries. It is a very strong, wear- and corrosion-resistant alloy that is 
lightweight. By changing their elemental compositions, aluminium alloys may have 
improved chemico-physical properties. To create varied concentrations of defect-
free and evenly dispersed aluminium composites, stir casting technology is often 
used. AA5083 Due to its light weight, fabricability, physical characteristics, corro-
sion resistance, and affordability, aluminium–magnesium alloys are often utilised in 
the aerospace, automotive, shipbuilding, and construction sectors. The majority of 
aluminium–magnesium alloys, nevertheless, seem to have minimal wear resistance. 
There have been some recent findings on the tribological behaviour of different 
aluminium alloys [2]. 

Zhang and Li investigated the impact of yttria addition on aluminum’s wear 
resistance in dry and corrosive environments. They discovered that the scattered 
yttria particles significantly improved the aluminium matrix composites resistance 
of aluminum to corrosion, corrosive and dry wear [3]. 

The use of agricultural waste (rice husk ash, coconut shell ash, bagasse ash, and 
corn cob ash), industrial waste (fly ash), or recycled materials has been a new break-
through in composite materials. Agro-waste products that have been reinforced have 
appealing qualities including cheap cost, low density, and less environmental contam-
ination. Coconut shell ash (CSA) particles are used extremely seldom, despite the 
fact that many studies have researched the improvement of mechanical characteristics 
of AMCs by the inclusion of agro-wastes. The authors’ decision to concentrate on
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creating high-performance aluminium matrix composites with reinforcements made 
from coconut shell ash was driven by the paucity of existing research [4]. 

Zinc oxide (ZnO), an n-type semiconductor, is a very interesting material because 
it can be used to make solar cells, sensors, displays, gas sensors, varistors, piezoelec-
tric devices, electro-acoustic transducers, photodiodes, UV light emitting devices, 
and antibacterial materials [5]. Due to its distinctive mechanical, electrical, and 
optical characteristics as well as its many uses, zinc oxide (ZnO) is a significant 
substance in the metal oxide family [6]. The mechanical characteristics of the 
extruded Mg materials are improved by the addition of modest volume fractions of 
nano-particulate reinforcements such as nano-Al2O3, nano-ZnO, to pure Mg/alloys 
[7]. 

This study looked at how ZnO particles affected the stir-cast aluminium metallic 
matrix composite’s compressive strength, hardness, and wear properties. The rein-
forcement included various weight percentages of ZnO (0, 2, 4, 6, 8 and 10) with 
wear characteristics that improve as the weight percentage of ZnO rises. For speci-
mens of aluminium reinforced with 2, 4, 6, 8, or 10 weight percent ZnO particles, the 
increases in Brinell hardness are (15%), (25%), (35%), (40%), and (50%) accord-
ingly. It was discovered that by increasing the zinc oxide content and going above the 
composite minimum quantity, which reflects the overall percentage of zinc oxide, 
the volume loss was significantly decreased (10 percent) [8]. 

Aluminium matrix composite with graphite and Coconut Shell Ash (CSA). 
Modified stir-casting creates Al-1100 composites. Three more Aluminium with 
Aluminium oxide, Aluminium–Aluminium oxide–Graphite, and Aluminium-
Coconut Shell Ash composites were developed. The Al-CSA composite outperforms 
the other three composites in terms of mechanical and tribological characteristics 
including tensile strength and hardness. Gr incorporation aids in the hybrid Al-CSA-
Gr composite’s improved tribological characteristics while allowing for a somewhat 
lower specific strength [9]. 

Composites A and B with Al-5083 matrices reinforced with 5 and 10% wt% B4C 
particles were manufactured by cryomilling and consolidating. Composite pins were 
tested for dry sliding wear using a pinon-disc tribometer. Composite B (10 wt% B4C) 
wore 40% less than composite A (5 wt% B4C) under the identical circumstances. 
This experiment suggests that B4C particles improve composites wear resistance 
[10]. 

After ECAE, the alloy’s wear resistance rose with the least amount of mass loss 
and friction coefficient. As a result of ECAE processing, the alloy is now resistant 
to scratch deformation. The mechanical and wear characteristics of aluminium 5083 
alloy were improved via ECAE processing. The alloy may now be used in a variety 
of technical applications that call for high strength because to improvements in its 
mechanical and wear qualities [11]. 

According to wear experiments, the Al 5083/SiCp nanocomposite has a much 
lower specific wear rate than the nanostructured Al 5083 alloy. In contrast to Al5083/ 
SiCp, which showed a wear mechanism of adhesive wear to abrasive wear, nanos-
tructured Al5083 alloys had a mix of abrasive and delamination wear processes 
[12].
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There have not been many research specifically looking at coconut shells in metal 
matrix composite. A low-weight metal matrix composite with high thermal and wear 
resistance has been produced using CSAp in certain studies [13]. 

The Al 6063 alloy/coconut shell composites mechanical and corrosion character-
istics. They observed an improvement in hardness and tensile strength as coconut 
shell % weight increased and corrosion resistance decreased [14]. Similar results 
were obtained when coconut shell was used to enhance recycled scrap aluminium’s 
mechanical and wear qualities [15]. 

Machine-Learning (ML) techniques have recently been used to anticipate the 
characteristics of metallic materials. ML models, for instance, may be used to look 
for shape memory alloys with certain transition temperatures [16]. A method for 
designing materials that combine tests with ML models to create high-entropy alloys 
with high toughness. A deep neural network was used by Feng et al. to forecast the 
flaws in stainless steel. ML models to forecast the capacity of binary metallic alloys 
to make glass. The design of tailored metallic glasses was confirmed using commer-
cially feasible manufacturing techniques using a machine learning framework for 
speeding design. High-throughput experimentation and machine learning-based iter-
ation to quickly find novel glass-forming systems ML techniques have been used in 
many research to determine the relationships between an alloy’s capacity to produce 
glass and its empirically observed characteristics [17]. Thus, these experiments 
provided conclusive evidence that ML techniques were effective and dependable 
for identifying novel metal matrix composites and predicting their properties. 

Random Forests are trained using bootstrapped datasets of the same size as the 
training set (RF). Randomly resampling the training set produces these datasets. 
Once a tree is generated, out-of-bag (OOB) samples are used as the test set. OOB 
generalization error estimate is all test sets’ categorization error rate. Bagged classi-
fiers have the same OOB error as using a training-set-sized test set. OOB estimation 
no longer requires a separate test set. Each CART tree votes for one class, and the 
forest predicts the class with the most votes to categorize input data [18]. 

A mathematical or computer model called a neural network replicates the structure 
and functionality of a biological neural network. It uses artificial neurons to process 
information in a connectionist manner. Modern neural networks are non-linear statis-
tical modelling tools that are often used for simulating intricate relationships between 
input and output while looking for patterns in data. The neural network approach is 
based on the same assumptions as how the human brain functions. The human brain 
has a vast network of neurons that link sensory and motor nerves. The majority of 
scientists thought that neurons in the brain communicate with one another by firing 
electrical impulses across synapses [19]. 

A broad family of algorithms used in classification, regression, and density estima-
tion is called artificial neural networks (ANN-s). A function known as a Multilayer 
Perceptron (MLP) may be imagined as a network made up of multiple layers of 
neurons coupled in a feedforward fashion. Input neurons are the neurons that repre-
sent input variables in the first layer. The output neurons in the top layer are those that 
deliver the function result value. Hidden layers are those layers that exist between 
the first and final levels. Every neuron in the network acts as a perceptron, accepting
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input values x1, x2, … xk and using the formula to calculate output value o; 

O = ∅  
k∑

i=1 

(wixi + b) (1) 

where wi, b are the neuron’s weights and bias, and is a nonlinear function. (x) is 1 / 
1 + e ax or tanh (x). The multilayer perceptron is trained by finding the weights and 
biases of all the neurons that will result in the network having the least amount of 
error on the training set. A nonlinear decision border between classes is modelled by 
the multilayer perceptron, a nonlinear classifier. Since the training data we employed 
was linearly separable, as was discussed in the preceding section, using a nonlinear 
decision boundary had little chance of enhancing generalization performance. As a 
consequence, the basic perceptron’s output is the best one we could hope for. Another 
issue in our situation is that a network with 20,000 input neurons makes it difficult 
to perform effective backpropagation learning. Therefore, reducing the number of 
features to a manageable number would be the only practical approach to deploying 
multilayer perceptron [20]. 

The k-NN method is the most fundamental ML technique, and it may be used 
for both classification and regression. To put it simply, k-NN uses the average of the 
object’s k-NNs as the property value for regression purposes. It is common practise 
to utilise K-NN to predict forest attributes from data collected across disciplines. The 
distance measure and closest neighbour weighting used in k-NN implementations 
are also factors. The accuracy and efficiency of computations depend on accurately 
determining k. To determine the best value for k, we employed a combination of 
the leave-one-out (LOO) cross-validation technique and the v-fold (dividing training 
samples into two v-fold halves, v − 1 for prototype and one fold for validation) 
(1–20). For the k-NN estimator, the LOO is a recognized technique for producing 
unbiased estimates of predicted classification or estimation error. In this method, 
the algorithm selects k with the lowest RMSE after computing RMSE in validation 
sample sets for each value of k [21]. 

To assess the wear resistance of abrasion-resistant tribological materials to be 
employed under various operating circumstances, several research are needed. These 
tests may take a long period. Thus, there has been a growing need to create machine 
learning algorithms, such as the ANN-MLP algorithm, which have recently been 
able to utilize experimental data to anticipate wear behaviours of materials in order 
to decrease the number of tests and lower the cost of experimental investigations.
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2 Materials and Methods 

2.1 Preparation of Coconut Shell Ash 

The surface skins of the coconut shells were cleaned and smoothed after they were 
purchased from a nearby market. The material was then crushed and ground in a 
ball mill and a jaw crusher, respectively. The ground material was separated using 
100 mesh-size screens. The powder was burned for three hours at 1200 °C (1473 K). 
Once again, a ball mill was used to grind the resulting ash. The material was screened 
to a 240 mesh size (50 μm). 

2.2 Preparation of AA5083-Based Hybrid Composites 

The matrix alloy chosen for the development of composite material is Al–Mg– 
Mn alloy and designated by the aluminium association as AA 5083. The chemical 
compositions of the matrix material are given in Table 1. 

Percentage of Zinc oxide and the chemical composition of coconut shell ash 
burned at 700 degrees Celsius were also identified by XRF, and the results are shown 
in Table 2.

Aluminium Alloy (grade AA5083) was cut from an ingot and preheated at 300 °C 
for 1 h. The material is in a 1073 K bottom-pouring furnace (800 °C). Inert Ar 
prevented oxidation during melting. The furnace’s stirrer was controlled by a PID 
rheostat. Slowly lowering the rotating spindle formed a vortex in the pool. Rein-
forcement particles were put into the liquid melt vortex at 1223 K (950 °C). The 
spindle was moved from top to bottom with such a 2-mm clearance. This ensured 
a smooth melt. Slowly decreasing the melt’s temperature between 1123 K (850 °C) 
and 1023 K (750 °C) increases its viscosity. This retained fine particles in the liquid 
melt. The liquid that contained the particles was put into a steel mould that had been 
warmed to 673 K (400 °C). The melting furnace is shown in Fig. 1. Four Aluminium 
alloy composites, namely AA5083, AA5083-3%CSA-3%ZnO, AA5083-6%CSA-
3%ZnO and AA5083-9%CSA-3%ZnO reinforcement were cast under different 
conditions were added separately with different casting in the form of Table 3.

Table 1 Chemical composition of aluminium (5083) alloy in weight percentage 

Constituent Al Mg Cr Cu Mn Fe Si Ti Zn Others 

Percentage 92.6 4.9 0.25 0.1 0.8 0.4 0.4 0.15 0.25 Max 0.20 
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Table 2 The wt% of CSA 
and ZnO in the chemical 
composition 

Elements CSA ZnO 

SiO2 45.05 – 

Cuo – 7.44 

TiO2 – 0.26 

Al2O3 15.6 – 

Fe2O3 12.4 5.68 

CaO 0.57 – 

MgO 16.2 0.50 

SO3 – – 

K2O 0.52 0.07 

Na2O 0.45 0.22 

ZnO 0.3 84.6 

MnO 0.22 0.33 

Others Balance Balance 

LOI 8.69 0.94

3 Experimental Work 

From the castings, ASTM test specimens were machined. Three of each test type were 
performed. Figure 2 demonstrates dry slide wear testing using DUCOM’s pin-on-disc 
apparatus [22].

The pin (workpiece) was against the disc’s 105 mm wear track. The disc’s pin 
was deadweight-loaded. Many samples were examined with 20, 30, and 40 N loads 
at 2, 3, and 4 m/s. Similar wear testing reveals a 1000-m sliding distance. 6 mm pins 
were 35 mm. Before the test, the pin worm surfaces were slid with an emery sheet 
to touch the steel disc. The sample and worn track were cleaned with acetone and 
weighed to 0.0001 g before and after each test [22]. 

3.1 Microstructure Analysis 

The microstructure of cast samples and wear debris surface morphology were 
examined using a LEICA S440i SEM equipped with an Oxford INCATM EDS 
system. Before placing the samples in the sample chamber, they were taped on using 
double-sided carbon tape. The SEM accelerated at 5 to 20 kV.
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Fig. 1 Melting furnace-stir casting 

Table 3 Percentage of AA 
5083 hybrid composites Samples Aluminium 5083% CSA % ZnO % 

1 100 0 3 

2 94 3 3 

3 91 6 3 

4 88 9 3

3.2 Architecture of Artificial Neural Networks 

An effective data modelling technique that can capture and depict complex input 
and output interactions is an artificial neural network. Identification of the network 
architecture, including the number of input and output neurons, hidden layers, and 
neurons in each hidden layer, as well as the network parameters, is necessary for the 
construction of ANN models (Activation Function and Learning Rate). Using both
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Fig. 2 Pin-on disc wear testing machine

supervised and unsupervised learning techniques, artificial neural networks include 
at least three layers, an input layer, several hidden layers, and an output layer. 

3.3 Inputs and Outputs for ML and MLP-ANN 

Six input neurons (Ni = 6) represent the variables of loads (L; N), sliding velocities 
(v; m/s), sliding speeds (N; RPM), reinforcement percentages (Reinforcement;%), 
cumulative time (t; mints), co-efficient of friction (μ) for AA 5083 CSA and ZnO 
hybrid composites. One neuron represents the value of the corresponding Specific 
Wear Rate (mm3/N.M) in the output layer. For predicting the Specific Wear Rate 
of AA 5083 composites, ANN (MLP) was tested. The experimental data sets for 
Specific Wear Rate are 36 samples. 

4 Result and Discussion 

4.1 Tribological Behaviour 

The tribological behaviour of the hybrid composite with the AA 5083 matrix was 
followed through several phases. The tests were performed in conditions without 
lubrication on samples with the best structural, mechanical, and anti-corrosion char-
acteristics. The wear loss was measured during the testing. The wear loss, one of the 
major parameters for wear monitoring, was estimated based on the volume of worn 
material, sliding velocity, sliding time, and a constant1000 m sliding distance.
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Tribological Sample, Table 4 provides the specific wear rate values for the tested 
materials based on the loads, sliding velocity, and sliding speed. Due to the exten-
siveness of the obtained results, a partial number of experimental values of wear loss 
is shown in Table 4. First, the testing of the base material aluminium alloy AA 5083, 
was performed, and then 3 wt% CSA, 6 wt% CSA 9 wt% CSA with 3 wt% ZnO 
was added in the base. The Specific Wear Rate decreased by increasing CSA with 
3% percentage reinforcements and increasing load and sliding velocity to the base 
material of the hybrid composites. The coefficient of friction of the AA 5083 hybrid 
composites was significantly reduced by adding only 6 wt% CSA and 3% ZnO. With 
the addition of 3 and 9% CSA, the co-efficient of friction increased while increasing 
loads and Sliding velocity at certain intervals, while in others it decreased.

4.2 Effect of Applied Loads and Sliding Velocities on Specific 
Wear Rate and Co-efficient of Friction 

The applied load is one of the most important determinants of the specific wear 
rate of the composites. The unreinforced aluminium 5083 alloy is shown to have a 
higher specific wear rate than hybrid composites. This is mainly because the hard 
dispersoids on the surface of the composites function as protrusions and protect the 
matrix from hard interaction with the counter surfaces, causing hybrid composites to 
wear less gradually than alloys under all loads. Figure 3 shows that the specific wear 
rate of the composites decreases with increasing load at a constant sliding distance 
(1000 m).

At 20 and 40 N loads, the composites containing 6% CSA and 3% ZnO had 
the lowest specific wear rate. At 30 and 40 N, composites containing 6% CSA and 
3% ZnO hybrids exhibited an essentially same specific wear rate. When the load 
is increased from 20 to 40 N, composites with percentage increases reveal a lower 
specific wear rate than all the hybrid composites. 

From Fig. 4, composites with more reinforcements have stronger wear resistance 
at 3 m/s sliding velocity, constant sliding distance, and constant load 20 N. This 
might be because CSA and ZnO particles are easily ploughed away from the matrix’s 
surface, increasing wear at 4 m/s sliding velocity. In hybrid composites containing 
zinc oxide particles, the particles fragment into small pieces and continue to inhibit 
particle removal, decreasing wear.

Figures 5 and 6 By incorporating weight percentages of CSA and ZnO, the 
composites coefficient of friction was significantly lowered. The co-efficient of fric-
tion increased in certain periods and decreased in others with the addition of weight 
percent of reinforcements, increasing load, and sliding velocity.
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4.3 Wear Mechanism 

Multiple factors contribute to the specimens effective wear. Increased load causes 
hard asperities of the counter surface to penetrate the softer pin surface, micro 
cracking of the subsurface, and deformation and fracture of softer asperities. Beyond 
each composite critical load, the wear rate increases dramatically. The transition load 
is when a specific wear rate suddenly increases [23].



Prediction of Tribological Behaviour of AA5083/CSA-ZnO Hybrid … 199

0.45 

0.55 

0.65 

0.75 

0.85 

20 30 40 

C
oe

ffi
ci

en
t o

f f
ri

ct
io

n 

Load (N) 

AA 5083 

AA 5083+ 3% 

CSA + 3% ZnO 

AA 5083 + 6% 

CSA + 3% ZnO 

AA 5083 + 9% 

CSA + 3% ZnO 

Fig. 5 Variation of aluminium alloy 5083 based composite coefficient of friction with Load 

0.45 

0.55 

0.65 

0.75 

0.85 

2 3 4  

C
oe

ffi
ci

en
t o

f f
ri

ct
io

n 

Sliding Velocity (m/s) 

AA 5083 

AA 5083+ 3% 

CSA + 3% ZnO 

AA 5083 + 6% 

CSA + 3% ZnO 

AA 5083 + 9% 

CSA + 3% ZnO 

Fig. 6 Variation of aluminium alloy 5083 based composite coefficient of friction with sliding 
velocity

4.4 SEM Worn-Out Sample Images of AA 5083 Hybrid 
Composites 

After Wear test worn-out samples were tested are shown in Fig. 7a AA 5083, Fig. 7b 
AA 5083 with 3% CSA + 3%ZnO, Fig. 7c AA 5083 with 6% CSA + 3%ZnO, 
Fig. 7d AA 5083 with 9% CSA + 3%ZnO.

AA 5083 HBMMCs are susceptible to delamination and adhesive wear as wear 
mechanisms. Here, it is described how surface morphology relates to each of the 
processes. Analyzed is a comparative research of hybrid composites made of 3%, 
6%, and 9% CSA and 3% ZnO and 5083 aluminium. Unreinforced 5083 alloy and 
AA5083/CSA/ZnO hybrid composites are evaluated under constant load (40 N), 
sliding velocity (4 m/s), sliding time (4.16 min), and sliding distance conditions.
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Fig. 7 SEM Images of AA 5083 and its hybrid composites

The results of these tests are photographed in scanning electron microscope (SEM) 
images (1000 m). 

Figure 7a–d shows SEM micrographs and enlarged morphologies of AA 5083 
matrix, CSA, and ZnO/AA 5083 hybrid composites at 40 N. AA5083/CSA/ZnO 
hybrid composites scratch less than AA5083. At 40 N, composites wear with large
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Fig. 7 (continued)

grooves and debris. The magnified morphology shows the AA5083/CSA/ZnO hybrid 
composites low applied load wear mechanism. Figure 7b–d reveal that micro-cutting 
and abrasive wear are the primary wear mechanisms Fig. 7d. The rather minor 
delamination layer occurrence of AA 5083/9% CSA/3% ZnO hybrid composite
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demonstrated significantly increased wear resistance, which is comparable to Fig. 7d 
[24]. 

When the increased load is 40 N, layers of delamination attach to worn surfaces, 
as seen in Fig. 7a–d. At 40 N and 4 m/s sliding velocity, AA5083/CSA/ZnO hybrid 
composites show substantial to wear. Figure 7b–d show the enlarged morphology of 
the worn surfaces of AA5083/CSA/ZnO hybrid composites under 40 N loads. 

CSA hard reinforcement changed pin and disc contact characteristics. The AA 
5083 matrix was worn out first due to the hardness difference between the rein-
forcement and matrix. Grooves are formed as a result of debris being removed and 
pushed into ridges along the direction of sliding during the wear process. The defi-
ciency of AA 5083 matrix increased the load-bearing function of CSA and ZnO 
particles and desquamation. Desquamated CSA/ZnO and AA 5083 matrix altered 
wear behaviours and generated abrasive wear. As sliding speed increased, AA5083/ 
CSA/major ZnO wear mechanism changed from abrasion to adhesion. In the pin 
and disc counter body wear system, shear stress desquamated the AA5083 matrix, 
causing periodic plastic deformation of the AA5083/CSA/ZnO hybrid composite. 
Adhesion wear and a delamination layer were generated as a result of stress concen-
tration between the pin and the disc. These features provided to shield the composite 
from further friction and to increase its wear resistance [25]. 

Figure 7 AA5083/CSA/ZnO hybrid composite is economical, efficient, and 
high wear resistant. Figure 7b–d Co-efficient of friction and Fig. 7b wear loss of AA 
5083 matrix and AA5083/CSA/ZnO hybrid composite at various loads and sliding 
velocities. CSA and ZnO changed the pin-disc interaction properties. Due to the hard-
ness discrepancy between the reinforcement, The adhesion wear delamination layer 
improved the composites wear resistance. Considering its economy, efficiency, and 
good wear resistance, the hot-press sintered AA5083/CSA/ZnO hybrid composite 
can be widely utilized in wear resistance applications. 

4.5 Machine Learning (ML) 

Open source ML and data visualisation system evaluated data. These metrics repre-
sent ANNs and provided outputs in terms of Specific Wear Rate (SWR). Per sample, 
the algorithm estimated Specific Wear Rate (SWR) using RF, NN, and kNN. Table 5 
displays ML training parameters.

Random Forest (RF) is the most suitable assessment method, the estimate that was 
created by (just) the NN methodology was provided in that figure. This is because 
the Standard Deviation percentage (σ%) of Table 6 indicates that the RF is the most 
appropriate evaluation method. The NN demonstrates a good connection between 
the experimental dataset and the predicted Specific Wear Rate with a value of 32% 
and 37% for AA 5083 hybrid composites. However, this correlation is not perfect 
(SWR).
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Table 5 Parameters for 
machine learning methods Random Forest 

Number of trees 15 

Fixed seed for random generator 32 

Do not split subset smaller than 5 

Neural network 

Learning speed 0.6 

Inertial coefficient 0.5 

Test mass tolerance 0.02 

Tolerance of the learning set 0.03 

Number of layers 8 

k-Nearest Neighbours (kNN) 

Metric Chebyshev 

Number of neighbor 2 

Weight Uniform

Table 6 displays the Mean value (μ), the Standard Deviation (σ), and the Relative 
Standard Deviation (σ %) to illustrate the variability of the overall value and compare 
the various techniques. 

This prediction ensures a substantial coincidence in SWR averages (0.98 vs. 0.96) 
and variability. 

Additionally, it seems that any Random Forest (RF) approach under examination 
may provide a reliable estimate. Figure 8 illustrates this feature by showing values 
from the various approaches (RF, NN, and kNN) in the context of, for instance, 
AA5083 hybrid composites.

Even though the specimens were taken from identical tribological conditions, 
this result may be seen as being more than suitable since the experimental results 
were subject to some inherent variability (σ = 0.96). Even while it is also clear that 
there is a trend toward a decrease overall, this variability was translated via the ML 
procedure. Neither as a structure nor during training, ML algorithms have not been 
optimized. Without going into specifics of AI Methods, this decision is tied to an 
investigative technique that aims to demonstrate their universal applicability. 

The correlation between measurements and estimates as predicted by RF, NN, and 
KNN is shown point by point in Fig. 9. It demonstrates the ability of the Machine 
Learning technique to identify correlation (r = 0.92 on RF, r = 0.84 on NN, and r 
= 0.90 on kNN). This excellent match is shown by the clustering of data around the 
diagonal. They also demonstrate that there are values that significantly vary from this 
linearity. The distribution of points above and below the line suggests no systemic 
errors in the estimate.

Table 7 Showed Random Forest (RF) R-square value is more than 0.92 and 0.90 
on KNN and 0.84 on NN algorithms in machine learning. Compared with the least 
values of error MSE, MAE and RMSE, RF model is less and a good prediction 
algorithm in Machine Learning.
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Table 6 Parameters in machine learning 

S. No. SWR RF NN KNN 

1 1.46 1.41 1.53 1.56 

2 1.20 1.27 1.23 1.23 

3 0.99 1.02 1.02 1.03 

4 1.02 1.22 0.93 0.94 

5 0.99 1.05 0.81 0.90 

6 0.95 0.61 0.69 0.73 

7 1.48 1.61 1.82 1.95 

8 1.04 0.92 0.99 1.43 

9 1.05 0.81 0.85 1.55 

10 1.35 1.57 1.53 1.50 

11 1.16 1.34 1.23 1.22 

12 0.98 1.03 1.02 1.01 

13 0.97 1.14 0.93 0.91 

14 0.75 1.02 0.81 0.73 

15 0.72 0.63 0.69 0.64 

16 1.19 1.40 1.82 1.69 

17 0.44 0.95 0.99 0.55 

18 0.47 0.47 0.85 0.15 

19 1.37 1.45 1.46 1.43 

20 1.16 1.18 1.19 1.15 

21 0.94 0.95 0.96 0.90 

22 0.96 1.02 0.86 0.81 

23 0.73 0.92 0.71 0.70 

24 0.71 0.63 0.67 0.69 

25 1.40 1.38 1.60 1.51 

26 0.43 0.70 0.53 0.51 

27 0.66 0.43 0.10 0.06 

28 1.33 1.14 1.41 1.39 

29 1.16 0.83 1.15 1.14 

30 0.98 0.67 0.89 0.88 

31 0.81 0.71 0.78 0.75 

32 0.68 0.75 0.69 0.67 

33 0.70 0.53 0.66 0.63 

34 1.31 1.05 1.48 1.46 

35 0.43 0.53 0.40 0.28 

36 0.44 0.04 0.05 0.04 

Mean (μ) 0.96 0.96 0.98 0.96

(continued)
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Table 6 (continued)

S. No. SWR RF NN KNN

St Dev (σ) 0.31 0.36 0.42 0.47 

St Dev (σ%) 32 37 43 49
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Fig. 8 Experimental SWR versus ML for AA 5083 and its hybrid composite

4.6 Artificial Neural Network (MLP Model) 

The experimental data on AA 5083 composites was used to produce the data for 
training the ANN Multilayer Preceptron (MLP) model. A dataset consisting of a 
total of (9 × 4 = 36) samples were collected, 3 for each combination of sample 
materials, specific wear rate and other parameters with six different inputs Load, 
Sliding velocity, Sliding speed, coefficient of friction, Cumulative time and % rein-
forcement as inputs and Specific Wear Rate as output (26 Samples) was used to train 
the ANN-MLP model. 15% (5 Samples) of total input data was used for test data and 
cross-validation (5 Samples). Cross-validation stops network training. This approach 
detects data error and stops training when it increases. The best generalization occurs 
here. Figure 12 specifies cross-validation and testing data sets. Figure 10 shows the 
MLP structure design, output, input, transfer functions, and hidden layers.

A wide range of composites were tested for Specific Wear Rate. Data has been 
statistically and ML-analyzed. ANN-MLP method improved specific wear rate 
prediction.
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Fig. 9 The correlation between specific wear rate data and estimates is predicted by RF, NN, and 
kNN techniques
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Fig. 9 (continued)

Table 7 Comparison of test results ML 

Model MSE RMSE MAE R2 

Random Forest 0.040 0.201 0.099 0.92 

Neural network 0.064 0.254 0.198 0.84 

kNN 0.048 0.219 0.149 0.90

Fig. 10 Multilayer preceptron (MLP) network architecture design

4.7 ANN-MLP Training and Testing 

The training results indicate good functionality and a low inaccuracy of 0.00000496 at 
2991 epochs. 2991 epochs later, training is complete. Mean Square Error MSE curve
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shows weight decay, indicating superior functioning. The network’s functioning is 
further analyzed. Figure 11 shows training and cross-validation results. 

The testing operation’s MSE is 0.00001599 and MAE is 0.00276. This indicates 
good performance. NMSE is 0.0000749, while r is 0.99996. The reason that the 
components are so close to forming a straight line, as shown by the linear correla-
tion value of 0.99996, suggests that there is a strong link between them. Figure 12 
demonstrates the projected MLP Specific Wear Rate network output matches the 
actual rate. 

5 Conclusion 

The following are the findings of the present investigation:
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Coconut Shell Ash (CSA) can be utilised to manufacture Aluminium Metal Matrix 
Hybrid Composite. It can replace aluminum-heavy materials. CSA can be used to 
make composites from agricultural waste. This helps with CSA storage and disposal. 

Stir Casting successfully incorporates CSA and ZnO into aluminium alloy 5083. 
This approach produced hybrid composites with 3, 6, and 9 wt% CSA and 3 wt% 
ZnO. Stir Casting successfully incorporates CSA and ZnO into aluminium alloy 
5083. 

Specific wear rate reduces with increasing CSA weight%, and ZnO particles have 
outstanding tribological features, the least wear loss and coefficient of friction in 
all test settings. Increasing CSA and ZnO particles lowers Aluminium 5083 alloy 
friction. 6% CSA and 3% ZnO hybrid composites increase friction coefficient at 20 
N and 30 N, 2 m/s sliding speed. Poor interfacial bonding between the reinforcement 
and matrix alloy increases friction. 

At applied load 40 N, micro-cutting and abrasive wear were the major AA5083/ 
CSA/ZnO wear mechanisms. Load 40 N supported micro-cutting and adhesion wear. 
Adhesion wear created a delamination layer that increased composite wear resistance. 

Mchine learning methods predicted AA5083 hybrid composites wear rate. 
Using machine learning methods, the suggested model predicted wear. 

Machine learning uses RF, NN, and KNN to predict SWR. NN had the lowest 
success rate, but RF and KNN were equal; R-squared was 0.92 in RF, 0.84 in NN, 
and 0.90 in KNN. The RF method had improved RMSE and MAE values. The RF 
method developed the most efficient model among the presented machine learning 
techniques for predicting wear rate. 

To increase the prediction accuracy and R-square value ANN (MLP) Multilayer 
Perceptron neural network was used to train and test the network. 

Accuracy and error percentage compared in both results for the regression coef-
ficient of machine learning and artificial neural network with two models ML-NN 
design and ANN-MLP design Specific Wear Rate was adopted. 

The regression R-square values for this network were 0.84–0.99. An Error of 
0.16 to 0.01 and prediction accuracy of 84% to 99% and 15% improved by using this 
Multilayer Perceptron (MLP) network is more accurate for AA 5083 hybrid compos-
ites and any other types of materials. So, therefore the Artificial Neural Network can 
be used for predicting tribological parameters and showed good coincidence with 
the experimental results of these AA 5083 hybrid composites. 

This results in the conclusion that both ML and ANN may be useful in preparing 
an AA 5083 hybrid composite with the optimal ratio of reinforcing elements. 
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