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1 Introduction 

Except for the famous Wigner-von Neumann potentials [48], bound states of 
quantum systems are usually found below the energies of scattering states. The 
bound state energies and the scattering energies are separated by the ionization 
threshold corresponding to the essential spectrum threshold. Above this threshold, 
the particles cease to be bound and move to infinity. Below the threshold, the binding 
energy, i.e., the difference between the ionization threshold and the energy of the 
bound state, is positive. Since the minimal energy cost to move a particle to infinity 
is given by the binding energy and since regular perturbation theory predicts that 
the energy changes only little under small perturbations the quantum system is 
stable under small perturbations. As long as the binding energy stays positive the 
corresponding eigenfunctions are still bound, i.e., they do not suddenly disappear. 
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Imagine a parameter of the quantum system being tuned such that the energy of 
a bound state, e.g., the ground state energy, approaches the ionization threshold. At 
this critical value, the perturbation theory in the parameter breaks down. Moreover, 
at this threshold there is no energy penalty for moving the quantum particle to 
infinity anymore. So it is unclear what happens exactly at this binding–unbinding 
transition: Does the bound state disappear, i.e., the quantum particle can move 
to infinity and the eigenstate of the quantum system spreads out more and more 
and dissolves, or does the bound state still exist at the critical parameter and 
then suddenly disappears (see, for example, the discussion in [29]). Consider a 
Schrödinger operators of the form 

.Hλ = − 1

2m
� − Vλ(x) + U(x) (1) 

where .− 1
2m� is the kinetic energy, U a non-zero repulsive part of the potential and 

.−Vλ a compactly supported attractive part of the potential depending on a parameter 

. λ. This operator describes one-particle models, however with slight modifications 
it can also describe interacting many-particle systems. The well-known WKB 
asymptotics, see also the work of Agmon [2], shows that the eigenfunction . ψλ

corresponding to a discrete eigenvalue . Eλ of the operator (1) falls off exponentially 
with the distance to the origin, i.e., 

. ψλ ∼ exp
(
−√

2m�Eλ|x|
)

for .|x| → ∞ where .�Eλ ≥ 0 is the binding energy, i.e., the distance of the 
eigenvalue . Eλ to the bottom of the essential spectrum of . Hλ. Such a decay estimate 
does not provide any useful information at critical coupling when .�Eλ = 0. Even  
worse, all rigorous approaches for decay estimates of eigenfunctions usually provide 
upper bounds of the form 

.|ψ(x)| ≤ Cδ exp
(
−(

√
2m�Eλ − δ)|x|

)
(2) 

for all small enough .δ > 0 with a constant . Cδ which diverges in the limit . δ →
0, see e.g. [2]. Therefore, in order to be able to prove bounds on the asymptotic 
behavior of bound states, which still yields useful information when the binding 
energy vanishes, a new approach is needed. It can not require a gap between the 
eigenvalue and the threshold of the essential spectrum to work. 

The new method developed in [23], which is presented in the next section, can 
be viewed as a higher order correction to the WKB method. The main ingredient is 
still a suitable energy estimate. However, our approach to energy estimates is based 
on the idea that a positive long–range repulsive part of the potential can stabilize a 
quantum system. Such a long range positive part allows us to gain extra flexibility, in 
particular, it remove the necessity of positive binding energy, i.e., a safety distance 
with respect to the bottom of the essential spectrum. The underlying intuition is
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Fig. 1 Sketch of tunneling 
problem for the ground state 
at zero energy: black line 
corresponds to the potential, 
red line to the energy level, 
green to the eigenstate and 
grey area to classically 
forbidden region 0 
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that if the binding energy .�Eλ vanishes as the parameter . λ approaches a critical 
value, the bound state can only disappear when it tunnels through the positive tail 
of potential, see Fig. 1. If this tunneling probability is zero, the ground state cannot 
disappear, hence the quantum system stays bounded at the critical coupling. This 
behavior is also predicted by numerical calculations [12, 13, 19, 42]. Our method 
makes this intuition precise, including upper bounds on the asymptotic behavior of 
the corresponding eigenfunctions at the ionization threshold. 

Before we present our approach let us shortly mention some known results 
for the existence and non-existence of threshold eigenvalues. Early results on 
existence or non-existence of threshold eigenvalues go back to [1, 26, 28, 30– 
32, 37, 39, 40, 44, 49]. In [9] it was noted that a long range Coulomb part can create 
zero energy eigenstates, see also [36, 50]. An analysis of eigenstates and resonances 
at the threshold for the case of certain nonlocal operators recently appeared in [27]. 
The references presented above are by no means exhaustive. 

The main result of the paper, presented in Theorem 1, yields decay estimates for 
bound states of quantum systems which do not require that the binding energy . �Eλ

is positive if a suitable long-range repulsive part of the potential is present. 

2 The Method 

For simplicity of the exposition we will only consider one–particle Schrödinger 
operators . Hλ of the form (1) in the following. We also assume that the potentials 
. Vλ and the long range repulsive part U are in the Kato–class, see [4, 11] or [45] 
for the definition. This ensures that the potentials are infinitesimally form bounded 
with respect to the kinetic energy . −�, so the Schrödinger operator (1) is well– 
defined with the help of quadratic form methods, [41, 46]. The ionisation threshold 
.�λ = inf σess(Hλ) is given by the bottom of the essential spectrum. We also assume 
that the potential vanishes at infinity, in which case .σess(Hλ) = [0,∞), i.e., .�λ = 0.
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Theorem 1 Each normalized eigenfunction .ψλ corresponding to an eigenenergy 
.Eλ ≤ 0 of . Hλ satisfies 

.|ψλ| � exp

(
−F − 1

2
ln

(
�Eλ + U − |∇F |2

2m

))
(3) 

with .�Eλ = −Eλ being the binding energy, and F being any function which is 
bounded from below and satisfies 

.
|∇F |2
2m

< �Eλ + U (4) 

for all .|x| ≥ R > 0. Here .U ≥ 0 is the repulsive part of the potential. 

Remark 1 Choosing .F(x) = μ|x| yields .|∇F(x)|2 = μ2. Note that . �Eλ + U −
|∇F |2
2m ≥ �Eλ − μ2

2m since .U ≥ 0. Thus in the subcritical case, when the binding 
energy is positive, upper bounds of the form (2), which, for one–particle operators, 
coincide with the result of Agmon [2], follow immediately from Theorem 1. 

In the critical case, when the binding energy vanishes, a non-zero repulsive part 
U is indispensable since otherwise (4) can never be satisfied. However, in contrast 
to the usual WKB asymptotics our bound provides detailed information on how 
well the quantum system is localized at critical coupling, when a repulsive part 
U is present. The logarithmic expression in the exponent of (3) corresponds to a 
polynomial correction of the asymptotic behavior and in all relevant cases it is of 
smaller order than F . 

The existence of the eigenstate is a necessary assumption in Theorem 1. On the  
other hand, as shown in [23, 24], the existence of an eigenstate for the critical case 
follows from bounds of the form (3) together with tightness arguments in the form 
of, e.g., [21]. 

Proof In the following we will, for notational simplicity, drop the dependence of 
the Schrödinger operator, the wave function, and the eigenenergy on the parameter 
. λ. 

Starting Point Consider a self-adjoint operator H given in (1) with and a normal-
ized eigenvector . ψ satisfying 

. Hψ = Eψ

where E is the corresponding eigenvalue below or at the threshold of the essential 
spectrum. 

1st Step Let .0 ≤ χ ≤ 1 be a smooth real-valued function satisfying 

.χ(x) =
{
0 , for |x| ≤ 1

1 , for |x| ≥ 2
. (5)
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The scaled functions given by .χR(x) = χ(x/R) for .R > 0 smoothly localize in the 
region .{|x| ≥ R}. Note that .supp∇χR is localized in the annulus .{R ≤ |x| ≤ 2R}. 

Let F be another smooth and bounded real–valued function for which also . |∇F |
is bounded. With .ξ = χReF one calculates from the eigenvalue equation 

. Re〈(ξ)2ψ,Hψ〉 = E〈(ξ)2ψ,ψ〉 = E‖ξψ‖2 .

2nd Step Using a variant [11, 16] of the IMS localization formula [25, 35, 43], we 
obtain 

. E‖χReF ψ‖2 = Re〈(ξ)2ψ,Hψ〉 = 〈ξψ,Hξψ〉 − 1

2m
〈ψ, |∇ξ |2ψ〉 .

Clearly, .∇ξ = ∇(χReF ) = ∇χre
F + χR∇FeF , so  

. |∇ξ |2 ≤
(
|∇χR|2 + 2χR|∇χR||∇F |

)
e2F + |∇F |2ξ2 .

Note that the good part .G = (|∇χR|2 + 2χR∇χR · ∇F
)
e2F has compact support, 

because the support of .∇χR is compact for any .R > 0. Rearranging the terms, we 
obtain 

.

〈
χReF ψ,

(
H − E − 1

2m
|∇F |2

)
χReF ψ

〉
≤ 1

2m
〈ψ,Gψ〉 . (6) 

The usual argument now uses Persson’s theorem [38] for the bottom of the essential 
spectrum 

.� = inf σess(H) = lim
R→∞{〈ϕ,Hϕ〉 : ‖ϕ‖ = 1, supp (ϕ) ⊂ Bc

R} (7) 

where .Bc
R = {|x| ≥ R}. Thus, since we assume that .� = 0, for any .δ > 0 there 

exist .Rδ < ∞ such that 

. 〈ϕ,Hϕ〉 > (� − δ)〈ϕ, ϕ〉 = −δ〈ϕ, ϕ〉

for all . ϕ with support outside a centered ball of radius . Rδ . So with .R = Rδ , we get 
from (6) 

. 

〈
χReF ψ,

(
− δ − E − 1

2m
|∇F |2

)
χReF ψ

〉
≤ 1

2m
〈ψ,Gψ〉

but one needs positivity of .−δ − E − 1
2m |∇F |2 and this requires .E < −δ, i.e., a 

safety distance of the negative eigenvalue to the essential spectrum. 
Instead, we use the assumption that the potential is given by .−V + U , where V 

has compact support and U is positive. Chosing R so large that the support of V is
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contained in .{|x| ≤ R}, we have  

. 〈χReF ψ,HχReF ψ〉 = 〈χReF ψ, (−� + U)χReF ψ〉 ≥ 〈χReF ψ,UχReF ψ〉

and using this in (6) one arrives at 

.

〈
χReF ψ,

(
�E + U − 1

2m
|∇F |2

)
χReF ψ

〉
≤ 1

2m
〈ψ,Gψ〉 . (8) 

where .�E = −E is the binding energy. We want to use this energy inequality to 
prove exponential bounds on . ψ , but for this we need that F is growing. 

3rd Step In order to overcome the requirement that F is bounded, we regularize it. 
Let F be smooth, bounded from below and let .∇F be bounded. Adding a constant 
to F , we can assume that .F ≥ 0. This also does not change the gradient of F . Then 
for any .ε > 0 the function 

. Fε = F

1 + εF

is smooth and bounded. Since .∇Fε = (1 + εF )−2∇F also .∇Fε is bounded. Let . ξε

and . Gε be defined as above with F replaced by . Fε. Clearly .Fε ≤ F and . |∇Fε| ≤
|∇F | for all .ε ≥ 0. Hence .Gε ≤ G and 

. |∇ξε|2 ≤ Gε + |∇Fε|2ξ2ε ≤ G + |∇F |2ξ2ε
for all .ε ≥ 0. The argument leading to (8) then shows 

.

〈
χReFεψ,

(
�E + U − 1

2m
|∇F |2

)
χReFεψ

〉
≤ 1

2m
〈ψ,Gψ〉 ≤ K‖ψ‖2 . (9) 

with .K = 1
2m supR≤|x|≤2R G(x) < ∞, since G is supported inside .{R ≤ |x| ≤ 2R}. 

Note that 

. 

〈
χReFεψ,

(
�E + U − 1

2m
|∇F |2

)
χReFεψ

〉
=

∥∥∥∥χRe
Fε+ 1

2 ln
(
�E+U− 1

2m |∇F |2
)
ψ

∥∥∥∥
2

.

The monotone convergence theorem and (9) yield 

.

∥∥∥∥χRe
F+ 1

2 ln
(
�E+U− 1

2m |∇F |2
)
ψ

∥∥∥∥
2

= lim
ε→0

〈
χReFεψ,

(
�E + U − 1

2m
|∇F |2

)
χReFεψ

〉
≤ K‖ψ‖2 < ∞ .
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for any normalized eigenfunction . ψ with energy .E ≤ 0. This proves an . L2

exponential bound on . ψ , i.e., the function 

. x �→ exp

(
F(x) + 1

2
ln

(
�E + U − 1

2m
|∇F |2)

)
ψ(x)

is in . L2 under the condition that all exponential weights F satisfy (4). The claimed 
pointwise bound on . ψ then follows from such an . L2 bound using subsolution 
estimates of [45], see, e.g., the discussion in [23, Corollary 5.4]. 

3 Examples 

In this section we consider illustrative examples of a quantum particle in a potential 
well with a long range Coulomb repulsion term. In the first example the tunable 
parameter is the depth of the potential well. We will see that the bound from 
Theorem 1 fits very well with the explicitly calculated asymptotic behavior of the 
ground state of such a system. In a second example we tune the strength of the 
repulsion term. In the last example we illustrate that a long range repulsion term is 
crucial at critical coupling. 

First Example In dimension 3 let us consider 

.Hλ = −� − λ 1{|x|≤1} + 1{|x|>1}
|x| . (10) 

Here we chose .m = 1
2 for convenience. In this case .U(x) = 1/|x| for .|x| ≥ 1. It can 

be easily shown that there exists a critical value . λcr s.t. for .λ > λcr, the Hamiltonian 
. Hλ has at least one bound state and for .λ < λcr there are none. Furthermore, for this 
system we have .� = 0 and .λcr ≈ 0.634366. 

Take .F(x) = 2b|x|1/2. Then .∇F(x) = b|x|−1/2 and 

. U(x) − |∇F(x)|2 = 1 − b2

|x| > 0

whenever .b2 < 1 and .|x| ≥ 1. Thus Theorem 1 shows the upper bound 

.|ψλ| � e−2b|x|1/2+ 1
2 ln |x| (11) 

for large . |x| and all eigenstates with energy .Eλ ≤ 0 and all .0 < b < 1. This is a  
stretched exponential decay. 

One can make the bound tighter by choosing a more general radial weight 
function. With a slight abuse of notation, we set .F(x) = F(|x|). Then .∇F(x) =
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F ′(|x|)x/|x| and the borderline case allowed, or better, just not allowed by 
condition (4) is 

. �E + U(r) − |F ′(r)|2 = 0

with .r = |x|. Hence we want to solve the equation .F ′(r) = √
�E + U(r). For  

.a, b ≥ 0 let .Fa,b be given by 

.

Fa,b(r) =
∫ r

0

(
a + b

s

)1/2

ds

=
(

a + b

r

)1/2

r + b√
a
arcsinh

[√
ar

b

]
.

(12) 

It is easy to check that the derivative in r of the right hand side is given by integrand 
.(a + b/r)1/2. Splitting .U(r) = 1/|r| = δ/r + (1− δ)/r , for .0 < δ < 1, suggests to 
take .a = �Eλ and .b = 1 − δ. Theorem 1 then gives the upper bound 

.|ψλ(x)| � e−F�Eλ,1−δ(|x|)+ 1
2 ln |x| . (13) 

for the ground state of . Hλ with .�Eλ ≥ 0 and any .0 < δ < 1. In the subcritical 
case, where the binding energy .�Eλ > 0, the first part on the right hand side of (12) 
corresponds to exponential fall-off with exponential weight .

√
�Eλ|x| (recall that 

we put .m = 1/2), which is exactly the prediction of the WKB method, and the 
second one is the polynomial correction since .arcsinh[y] = ln(y + √

y2 + 1). 
Note that 

. lim
a→0

Fa,b(r) = 2
√

br

so in the limit where the binding energy vanishes we recover the bound (11) 
from (13). See Fig. 2 for an illustration. 

One can further improve upon the upper bound, by trying an ansatz of the form 

.F(r) = Fa,b(r) − K|x|κ (14) 

for any .K > 0 and .0 < κ < 1/2. It is straigtforward to check that with . a = �Eλ

and .b = 1, this ansatz satisfies (4) for all large . |x| and all .�Eλ ≥ 0. 
For vanishing binding energy, i.e., at .λ = λcr, a matching lower bound for the 

ground state, which can be chosen to be strictly positive, of the form 

.e−2
√|x|−K|x|κ � ψλcr(x)
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Fig. 2 Scaled plot of normalized ground states for the Hamiltonian (10) with varying parameter . λ
for .x ∈ [0, 1600]. The convergence of the ground states for .λ ↘ λcr ≈ 0.63 is visible. Note that 
in this choice of scale the parabolic curves correspond to the ground state decaying asymptotically 
as .exp(−c|x|), as is predicted by the WKB method, when the parameter .λ > λcr. For .λ = λcr the 
nearly straight line indicates that the ground state decays like . exp(−2

√|x|)

for any .K > 0 and .0 < κ < 1/2, was obtained in [23] using a subharmonic 
comparison lemma [3, 17]. Explicit calculations show that the eigenfunction has 
asymptotic behavior in the form 

. ψλcr(x) ∼ C
e−2

√|x|

|x|3/4

for large . |x| which is in perfect agreement with our result. 

Remark 2 In general the existence or non–existence of ground states at critical 
coupling depends crucially on the dimension of the considered problem, see [24] 
for more details. 

Second Example We consider again an operator describing a quantum particle in a 
potential well with a repulsion term everywhere outside that well. However we do 
not decrease the depth of the well but increase the repulsion term. We start with an 
operator having a long range Coulomb repulsion term in three dimensions 

.Hc = −� − 1{|x|≤1}(|x|) + 1{1<|x|}(|x|) c

|x| . (15) 

Increasing the repulsive term, i.e., increasing the parameter c, the eigenfunctions 
become more localized up to the numerically calculated critical value . ccr ≈
3.11693, see Fig. 3.
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Fig. 3 Plot of the normalized 
ground state eigenfunction for 
the model (15) for several 
values of c 
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This operator has essential spectrum .σess(H) = [0,∞) for any c and it has 
negative energy ground state for sufficiently small positive .c < ccr. The argument 
from Example 1 shows that eigenfunctions . ψc of . Hc with energy .Ec ≤ 0 decay as 

. |ψc(x)| � exp
(−F|Ec|,c(x) + κ|x|δ)

for any .κ > 0 and .0 < δ < 1/2, where .F|Ec|,c is given by (12) with the choice 
.a = |Ec| and .b = c. 

At critical coupling .c = ccr the operator (15) has a normalizable ground state 
with eigenvalue 0. For this it is crucial to have a long range repulsive term. Without 
long range repulsion the eigenfunctions will delocalize more and more for .c ↗ ccr, 
as is illustrated in the next example. 

Third Example To see the importance of long range behavior of the repulsive 
potential we consider next a Hamiltonian with only a finite size repulsive barrier 

.H̃c = −� − 1{|x|≤1}(|x|) + c1{1<|x|<2}(|x|) , (16) 

again in dimension three. Note that the value 2 is artificial and has no particular 
importance. If we start to increase the parameter c up to the critical value . ̃ccr ≈
2.7938776, we see that far away from the critical value the increase of c leads to 
the localization of the wavefunction even by a short range potential. However for 
.c ≥ 2.5 the wavefunction starts to spread further and further and for .c = 2.78 the 
fall-off of the function is hardly visible, see Fig. 4. Using results of [24] it is easy to  
see that 0 is not an eigenvalue of the operator given in (16) for .c = c̃cr. 

The presented plots highlight the physical intuition that the wavefunction has 
to tunnel through the repulsive barrier in order to leave the potential well and 
delocalize. However the long range Coulomb repulsion is too sticky for the 
wavefunction to delocalize even at the critical value and hence we are able to prove 
fall-off behavior at the threshold of the essential spectrum.
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Fig. 4 Plot of the normalized 
ground state eigenfunction for 
the model (16) for several 
values of c. It illustrates, that 
as . c approaches . ̃ccr the 
wavefunction delocalizes 

4 Outlook 

Our method is not restricted to a Coulomb type long range part of the potential nor 
to the case of one-particle models. A variety of physical systems can be handled. 
For example, it is easy to check that for a long range repulsive potential U , which is 
radial, say, any exponential weight F of the form 

.F(r) = δ

∫ r

r0

√
U(s) ds (17) 

for some .r0 ≥ 0 and .0 < δ < 1 will satisfy (4). To yield a useful upper bound 
one need that .limr→∞ F(r) = ∞, i.e., the integral .

∫ r

r0

√
U(s) ds should diverge in 

the limit .r → ∞. For power law repulsive potentials of the form . U(r) = c1r
−α

this shows that one needs .α ≤ 2. Since for vanishing binding energy .�E = 0, the  
correction term satisfy 

. − 1

2
ln

(
U(r) − |∇F(r)|2

2m

)
∼ c2 ln r

for some (computable) constant . c2 and all large r , we get a useful upper bound for 
any .c1 > 0 when .α < 2. If  .α = 2, i.e., the repulsive part .U(r) decays like a Hardy 
type potential, we also need that . c1 is large enough. 

Of particular importance are multi–particle systems, such as N electron atoms 
with a nucleus of charge Z. For such atomic systems ground states exist once . N <

Z +1, due to a classical result by Zhislin [51]. For .N > 2Z +1, no such states exist 
[33]. Hence, for any fixed number N there is a critical charge .Zc(N) such that for 
.Z > Zc(N) bound states exist and for charges .Z < Zc(N) the quantum system has 
no bound state. Note that .Zc(N) does not have to be a whole number. 

For helium-like systems, a variational calculation of Bethe[8] shows that . Zc(2) <

1. Numerically, it is known [5] that .Zc(2) ∼ 0.91. The existence and absence of an



270 D. Hundertmark et al.

eigenstate for the simplest nontrivial example of helium-like systems for .Z = Zc(2), 
was studied extensively by M. and T. Hoffmann-Ostenhof and Simon [18]. They 
derived the existence of an eigenstate at critical coupling .Zc(2) for a singlet state 
and conjectured its fall-off behavior to be subexponential [18]. This conjectured 
fall-off behavior of threshold eigenstates was used for example in [10, 14, 20, 34]. 
Using our method we recently proved in [23] that the conjecture made in [18] is  
correct. 

For general atoms, the existence of a ground state at critical coupling was studied 
in the Born-Oppenheimer approximation in [7] and without it under the additional 
condition .Zc(N) ∈ (N − 2, N − 1) in [15]. These results establish the existence 
of an eigenstate, but the derived decay bounds are far from what is physically 
expected [20]. 

Our approach relies mostly on energy estimates which, when combined with 
a geometrically inspired lower bounds for the multiparticle potentials of atomic 
systems, see e.g. [47], are also applicable to many-particle systems. In particular, 
our method is applicable to atomic systems under the additional assumption that 
.N − K > Zc(N), where K is the number of electrons leaving the atom as Z 
decreases below .Zc(N). A preprint with a proof of concept is available on the arXiv 
[22]. 

For very large atoms, it is undoubtedly necessary to use, at least for the inner 
electrons, the corresponding relativistic equations to obtain the correct results. Our 
method relies mainly on the IMS localization formula. Thus using known results for 
pseudo-relativistic quantum systems [6], it should be possible to adapt our method to 
systems with pseudo-relativistic electrons. Moreover, calculations suggest that our 
method is also valid within Hartree-Fock and Density Functional Theory (DFT). 
This is especially interesting due to the fact that these theories are inherently 
nonlinear. 
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27. Kaleta, K., Lőrinczi, J.: Zero-energy bound state decay for non-local Schrödinger operators. 
Commun. Math. Phys. 374(3), 2151–2191 (2020). https://doi.org/10.1007/s00220-019-03515-
3 

28. Kenig, C.E.: Restriction theorems, Carleman estimates, uniform Sobolev inequalities and 
unique continuation. In: Harmonic Analysis and Partial Differential Equations (El Escorial, 
1987). Lecture Notes in Mathematics, vol. 1384, pp. 69–90. Springer, Berlin (1989). https:// 
doi.org/10.1007/BFb0086794 

29. Klaus, M., Simon, B.: Coupling constant thresholds in nonrelativistic quantum mechanics. I. 
Short-range two-body case. Ann. Phys. 130(2), 251–281 (1980). https://doi.org/10.1016/0003-
4916(80)90338-3 

30. Knowles, I.: On the location of eigenvalues of second-order linear differential operators. Proc. 
R. Soc. Edinb. A 80(1–2), 15–22 (1978). https://doi.org/10.1017/S030821050001009X 

31. Knowles, I.: On the number of L2-solutions of second order linear differential equations. Proc. 
R. Soc. Edinb. A 80(1–2), 1–13 (1978). https://doi.org/10.1017/S0308210500010088 

32. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 
603–641 (1981). https://doi.org/10.1103/RevModPhys.53.603 

33. Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 
29, 3018–3028 (1984). https://doi.org/10.1103/PhysRevA.29.3018 

34. Mirtschink, A., Umrigar, C.J., Morgan, J.D., Gori-Giorgi, P.: Energy density functionals from 
the strong-coupling limit applied to the anions of the he isoelectronic series. J. Chem. Phys. 
140(18), 18A532 (2014). https://doi.org/10.1063/1.4871018 

35. Morgan III, J.D.: Schrödinger operators whose potentials have separated singularities. J. Oper. 
Theory 1(1), 109–115 (1979) 

36. Nakamura, S.: Low energy asymptotics for Schrödinger operators with slowly decreasing 
potentials. Commun. Math. Phys. 161(1), 63–76 (1994) 

37. Newton, R.G.: Nonlocal interactions; the generalized Levinson theorem and the structure of 
the spectrum. J. Math. Phys. 18(8), 1582–1588 (1977). https://doi.org/10.1063/1.523466 

38. Persson, A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger 
operator. Math. Scand. 8, 143–153 (1960). https://doi.org/10.7146/math.scand.a-10602 

39. Ramm, A.G.: Sufficient conditions for zero not to be an eigenvalue of the Schrödinger operator. 
J. Math. Phys. 28(6), 1341–1343 (1987). https://doi.org/10.1063/1.527817 

40. Ramm, A.G.: Conditions for zero not to be an eigenvalue of the Schrödinger operator. II. J. 
Math. Phys. 29(6), 1431–1432 (1988). https://doi.org/10.1063/1.527935 

41. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. 
Academic, New York-London (1978) 

42. Sergeev, A.V., Kais, S.: Resonance states of atomic anions. Int. J. Quantum Chem. 82(5), 
255–261 (2001). https://doi.org/10.1002/qua.1047 

43. Sigal, I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very 
negative ions. Commun. Math. Phys. 85(2), 309–324 (1982) 

44. Simon, B.: Large time behavior of the Lp norm of Schrödinger semigroups. J. Funct. Anal. 
40(1), 66–83 (1981). https://doi.org/10.1016/0022-1236(81)90073-2 

45. Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (New Series) 7(3), 447–526 
(1982). https://doi.org/bams/1183549767 

46. Teschl, G.: Mathematical Methods in Quantum Mechanics. Graduate Studies in Mathematics, 
vol. 157, 2nd edn. American Mathematical Society, Providence (2014). https://doi.org/10. 
1090/gsm/157 

47. Uchiyama, J.: Finiteness of the number of discrete eigenvalues of the schrödinger operator for 
a three particle system. Publ. Res. Inst. Math. Sci. 5(1), 51–63 (1969). https://doi.org/10.2977/ 
prims/1195194752

https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/s00220-019-03515-3
https://doi.org/10.1007/BFb0086794
https://doi.org/10.1007/BFb0086794
https://doi.org/10.1007/BFb0086794
https://doi.org/10.1007/BFb0086794
https://doi.org/10.1007/BFb0086794
https://doi.org/10.1007/BFb0086794
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1016/0003-4916(80)90338-3
https://doi.org/10.1017/S030821050001009X
https://doi.org/10.1017/S030821050001009X
https://doi.org/10.1017/S030821050001009X
https://doi.org/10.1017/S030821050001009X
https://doi.org/10.1017/S030821050001009X
https://doi.org/10.1017/S030821050001009X
https://doi.org/10.1017/S0308210500010088
https://doi.org/10.1017/S0308210500010088
https://doi.org/10.1017/S0308210500010088
https://doi.org/10.1017/S0308210500010088
https://doi.org/10.1017/S0308210500010088
https://doi.org/10.1017/S0308210500010088
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/RevModPhys.53.603
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1103/PhysRevA.29.3018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.4871018
https://doi.org/10.1063/1.523466
https://doi.org/10.1063/1.523466
https://doi.org/10.1063/1.523466
https://doi.org/10.1063/1.523466
https://doi.org/10.1063/1.523466
https://doi.org/10.1063/1.523466
https://doi.org/10.1063/1.523466
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.7146/math.scand.a-10602
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527817
https://doi.org/10.1063/1.527935
https://doi.org/10.1063/1.527935
https://doi.org/10.1063/1.527935
https://doi.org/10.1063/1.527935
https://doi.org/10.1063/1.527935
https://doi.org/10.1063/1.527935
https://doi.org/10.1063/1.527935
https://doi.org/10.1002/qua.1047
https://doi.org/10.1002/qua.1047
https://doi.org/10.1002/qua.1047
https://doi.org/10.1002/qua.1047
https://doi.org/10.1002/qua.1047
https://doi.org/10.1002/qua.1047
https://doi.org/10.1002/qua.1047
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/10.1016/0022-1236(81)90073-2
https://doi.org/bams/1183549767
https://doi.org/bams/1183549767
https://doi.org/bams/1183549767
https://doi.org/bams/1183549767
https://doi.org/bams/1183549767
https://doi.org/10.1090/gsm/157
https://doi.org/10.1090/gsm/157
https://doi.org/10.1090/gsm/157
https://doi.org/10.1090/gsm/157
https://doi.org/10.1090/gsm/157
https://doi.org/10.1090/gsm/157
https://doi.org/10.1090/gsm/157
https://doi.org/10.2977/prims/1195194752
https://doi.org/10.2977/prims/1195194752
https://doi.org/10.2977/prims/1195194752
https://doi.org/10.2977/prims/1195194752
https://doi.org/10.2977/prims/1195194752
https://doi.org/10.2977/prims/1195194752
https://doi.org/10.2977/prims/1195194752


Quantum Systems at the Brink 273

48. von Neumann, J., Wigner, E.P.: Über merkwürdige diskrete Eigenwerte. In: The Collected 
Works of Eugene Paul Wigner, pp. 291–293. Springer, Berlin (1993) 

49. Yafaev, D.R.: The virtual level of the Schrödinger equation. Zap. Naučn. Sem. Leningrad. 
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