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Preface 

The two volumes “Quantum Mathematics I” and “Quantum Mathematics II” 
originate from the INdAM Intensive Period “INdAM Quantum Meetings (IQM22)”, 
that was held in Spring 2022 at the Department of Mathematics of Politecnico 
di Milano. The trimester was the perfect opportunity to restart the social aspects 
of research after the Covid restrictions, in the mathematical physics community 
working on the mathematical features of quantum mechanics. After almost two 
entire years of break due to the Covid 19 pandemia, the project was very successful 
since the first steps of the organization: almost all the invited scientists gladly 
accepted to participate, also showing the enthusiasm of meeting in person to form 
new collaborations as well as to renew existing ones. 

The main activities during IQM22 were:

• A kick-off workshop at the beginning of March 2022 focusing on the topics 
of many-body quantum mechanics, quantum statistical mechanics and open 
quantum systems;

• A series of short courses given throughout the period March - May 2022 
by Z. Ammari (Université de Rennes 1), C. Brennecke (Bonn Universität), J. 
Dereziński (University of Warsaw), M. Fraas (University of California Davis), 
M. Merkli (Memorial University of Newfoundland), F. Nier (Université Pais 13), 
N. Rougerie (ENS Lyon);

• Thematic lectures and seminars;
• A concluding workshop at the end of May 2022 focusing on the topics of semi-

classical analysis, quantum field theory, nonlinear PDEs of quantum mechanics 
and their derivation. 

More than 40 invited guests contributed to the activities of the period and gave 
rise to many fruitful collaborations among themselves and with the local members of 
the mathematical physics group. The participation of young researchers, postdocs 
and PhD students was very significant with more than 20 young people (some of 
which financially supported) showing interest in the scientific programme of the 
trimester and participating to the activities. Most of the contributions (talks, lectures, 
courses, etc.) were recorded and made available online.

v
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vi Preface

All the contributions collected in these volumes are linked to IQM22, either as 
proceedings of its activities, or as brand new works originating and benefiting from 
the interactions occurred at IQM22. The main theme is the mathematics of quantum 
mechanics in a broad sense, but the present volume is focused on the following more 
specific topics:

• Semiclassical analysis. The role of semiclassical techniques in the research of 
the mathematical aspects of quantum mechanics cannot be overstated, given the 
broad range of models and phenomena where a classical behavior may emerge. 
We present here some significant examples ranging from waves in random media 
and fermionic systems to models of spin-field interactions.

• Operator and spectral theory. Several key results in quantum mechanics rely on 
nontrivial investigations of the spectral theory of certain operators – typically but 
not exclusively, Schrödinger-type operators. Some examples are discussed here: 
Dirac operators and Schrödinger operators with (periodic, singular or strong) 
magnetic fields or with contact interactions.

• Effective nonlinear models. Both the derivation of effective nonlinear models 
and their accurate study are behind the mathematical understanding of many 
phenomena in quantum mechanics. Here the attention is mostly focused on 
fermionic systems but more general questions are also addressed. 

To conclude, we express our gratitude to INdAM and its scientific board for the 
support to IQM22, which made possible the organization of a very fruitful intensive 
period and the involvement of a large number of young participants. 

Milano, Italy Michele Correggi 
January 2023 Marco Falconi
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Part I 
Semiclassical Analysis



Waves in a Random Medium: Endpoint 
Strichartz Estimates and Number 
Estimates 

S. Breteaux and F. Nier 

1 Introduction 

The asymptotic analysis or random homogenization of wave propagation in a 
random medium, in a kinetic or diffusive regime has motivated several works in 
the recent decades. It is not our purpose here to give an exhaustive list but we 
think essentially of two different approaches: the one initiated by G. Papanicolaou 
and coauthors (see e.g. [11, 24, 26]) with a rather complete review by J. Garnier 
in [13] and the one proposed by L. Erdös, H.T. Yau and later with M. Salmhofer 
in [8–10] . Those two approaches formulate their results in terms of a kinetic (or 
diffusive) evolution equation for some weak limit of scaled Wigner functions. The 
main difference between the two approaches can be summarized as follows: The first 
approach presented in [13] modeled on the problem of randomly layered media (see 
[11]) focusses on space-time wave functions, by solving a space-time PDE (it can be 
a Schrödinger or a wave equation) with random coefficients but with a smooth and 
essentially deterministic right-hand side. With very strong assumptions on the right-
hand side of the equation, essentially deterministic and smooth, a kinetic equation is 
written for the distributional weak limit of the Wigner function associated with the 
space-time wave function. The work of [8–10] is concerned with Cauchy problems, 
at the quantum level for the Schrödinger equation and semiclassically at a classical 
level for a linear Boltzmann equation in [8] or a heat equation in [9, 10]. The strategy 
of this second approach consists after writing a Dyson expansion (the iteration of 
Duhamel’s formula), in making an accurate combinatorial analysis of Feynman 

S. Breteaux 
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diagrams which label all the random interaction terms of the expanded Dyson series. 
This Dyson expansion technique was actually already used for a similar problem by 
H. Spohn in [29]. The final step which gives the asymptotic behaviour of the Wigner 
transform, essentially relies on the accurate control and expression of the remaining 
terms of the series by using stationary phase asymptotic expressions for the many 
oscillating integrals. The results of this second approach always require strong 
assumptions on the initial data at the initial time .t = 0 and prove weak convergence 
results at the macroscopic time .t �= 0 . After the first preprint version of this text we 
were informed of more recent results by F. Hernandez in [18] with more accurate 
and general statements for this diagrammatic approach. With a more spectral point 
of view but with some conjectural statements about resonances, related problems 
were considered by M. Duerinckx and C. Shirley in the recent work [7]. 

The main difficulty in this problem is concerned with the control of recollisions 
and especially the proof that the asymptotic evolution is Markovian, or given by 
some semigroup associated to a kinetic or heat equation, although the multiple 
scattering process of waves could destroy this markovian aspect. Depending on the 
asymptotic regime, the effective asymptotic evolution could be affected by some 
memory or non local in time effect. In the considered asymptotic problems, it 
must be checked that those memory effects vanish asymptotically. In the approach 
reviewed in [13] which is concerned with rather general random fields, this is proved 
by estimating higher moments. In the approach of [8] the combinatorial accurate 
analysis of Feynman diagrams, is reminiscent of the accurate control of recollision 
terms by G. Gallavotti in [12] for the classical Lorentz gas problem (Wind tree 
model). Both approaches bring accurate information about a difficult problem in 
slightly different frameworks and with various range of applications. 

However those results remain unsatifactory from the mathematical point of view 
and for the following reason: The dynamics of (quantum) waves is given by a 
semigroup (actually a unitary group when there is no dissipation) and the asymptotic 
kinetic or diffusive limits are also given by well defined (semi)-groups. In the 
Cauchy problem approach, one does not yet understand the dynamically stable class 
of initial data which makes the derivation of a classical kinetic or heat equation 
possible. Actually the results of [8–10] are themselves puzzling because with very 
specific initial data at time .t = 0 , they prove the asymptotic expected behaviour at 
the macroscopic time .t �= 0 . But this means that the time evolved quantum state 
at the macroscopic time .t/2 �= 0 , enters in the class of admissible initial data for 
which the asymptotic evolution can be proved for a nonzero time interval (at the 
macroscopic scale). Such initial data do not enter in the very specfic class considered 
at time .t = 0 . In the recent work of F. Hernandez [18], the class of initial data has 
been significantly improved: Actually it works for any deterministic initial data. 
But they are still deterministic while the initial time .t/2 a priori allows stochastic 
initial data. So the general question remains unsolved. In the space time approach 
reviewed in [13] the strong assumptions on the right-hand side compared with the 
weak convergence results of the wave function, have been considered in a negative 
way. Actually what is called “statistical stability” is shown to fail with rough data 
(see [3]). But no positive answer for a general class of random right-hand side seems
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to emerge. Although the two approaches are about slightly different problems, they 
seem related at least for some basic random processes on which we will focus in 
this article. 

Our hope is that such an analysis about the propagation of random waves in a 
random medium should lead to results relying on dynamically stable hypotheses. 
We are led in this direction by the strategy followed by the second author with 
Z. Ammari in [1, 2] where they managed to give a general and robust class of 
initial data, dynamically stable, such that the quantum mean field dynamics can 
be followed. 

About this very technical question a first attempt was tried by the first author in 
[5]. The idea was to exploit the link between gaussian random fields (and possibly 
other fields like the poissonian random fields) with quantum field theory. It rapidly 
appears that the asymptotic problem, of waves in a random medium in a gaussian 
random field in the kinetic regime, cannot be thought as an infinite semiclassical 
problem like the bosonic mean field problem. It has some similarities but the 
strength of the free wave propagator and the translation invariance lead to non 
quadratic and non “semiclassical” Wick quantized operators. For this reason the 
coherent state method presented in [5] led to an accurate Ansatz, only for . O(h1/2)

macroscopic times, where .h > 0 is the chosen small parameter, and the derivation 
of a linear Boltzmann equation was possible only by forcing the markovian nature 
of the asymptotic evolution by reinitializing on some intermediate time scale the 
random potential. It was not at all satisfactory. Actually the number estimates that 
we prove in this article confirm that a coherent state approach cannot work for those 
problems. 

Another issue of this problem is the good understanding of the dispersive 
properties of the free wave propagator with the asymptotic behaviour of waves in 
a random medium. The different behaviours expected in small dimension, . d ≤ 2
for the Schrödinger equation in the kinetic regime compared to .d ≥ 3 , are closely 
linked with the time integrability of the dispersion relation (.L1 − L∞ estimates). 
In the community of nonlinear PDE’s, Strichartz estimates are known to be more 
robust and effective than the pointwise in time .L1−L∞ estimate. With the endpoint 
Strichartz estimates proved by Keel and Tao in [21], those inequalities are now well 
adapted for linear critical problems. This article shows that they actually lead to 
very accurate and somehow surprising “number estimates” with some non trivial 
consequences. 

Before giving the outline of this text, let us point out some limitations and 
features of the present analysis:

• We are not yet able to derive a full kinetic equation, except if one makes some 
connection with the existing results of [8]. The class of good initial data for which 
an asymptotic equation can be written is not yet identified.

• We work essentially with the Schrödinger equation in the presence of a gaussian 
random potential in the kinetic regime, as what we think to be the simplest, and 
richest model problem from the point of view of available structures.
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• Once the two previous points are made clear, the interested reader will realize that 
several argument, especially the one making use of Strichartz estimates, have 
been written in a sufficiently general framework in order to be transposed in 
another framework.

• Some results like the possibility to define Wigner measures for all times, the 
localization in energy of the propagation phenomena, the class of potential 
corresponding to the scale invariant potential for Strichartz estimates, definitely 
bring a partial but accurate information. 

Our main results are about accurate number estimates, stated in Proposition 4.3 
in a rather general abstract setting and in Theorem 5.1 for the case of our model 
problem of the Schrödinger equation with a gaussian translation invariant potential 
in the kinetic regime and dimension .d ≥ 3 . 

Outline of the Article 
(a) In Sect. 2 the link between gaussian Hilbert spaces and the bosonic Fock space 

is recalled and the equations in which we are interested are explicitely written. 
(b) In Sect. 3 the translation invariance is used in order to make appear in a crucial 

way the center of mass variable, with respect to the position of the field 
variable. The expression of the creation and annihiliation operators are given 
explicitely in the center of mass and relative variables and finally .Lp-estimates 
are carefully checked for those creation and annihilation operators under the 
suitable assumptions on the potential. 

(c) Section 4 reviews the known results about endpoint Strichartz estimates, and 
gives consequences in connection with the .Lp-estimate in the center of mass 
given in Sect. 3. Then a rather general fixed point is proved which combines 
endpoint Strichartz estimates with an adaptation of Cauchy-Kowalevski tech-
niques. 

(d) In Sect. 5, the general assumptions of Sect. 4 are checked in the framework of 
the Schrödinger equation with a gaussian random field in the kinetic regime and 
ambient dimension .d ≥ 3 . 

(e) Consequences and a priori information, for the asymptotic evolution of Wigner 
functions are given in Sect. 6, withouth computing them. 

(f) Finally various approximation or stability results are deduced as consequences 
of the general estimates proved in Sects. 4, 5, and 6. 

Before starting, be aware of the following assumed framework and conventions: 
All our Hilbert spaces, real or complex, are separable. All measures are 

assumed sigma-finite. On a set . X endowed with a sigma-set, a generic sigma-finite 
measure will be denoted . dx , while the normal calligraphy dx will be reserved 
for the Lebesgue measure on .X = R

d . When .(X,dx) and .(Y,dy) are two 
sigma-finite measured spaces, the notation .Lp

x L
q
y , .1 ≤ p, q ≤ +∞ , is used  

for .Lp(X,dx;Lq(Y,dy)) . However a more general version of .Lp
x L

q
y will be 

introduced in Sect. 3.2.
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2 Random Fields and Fock Space 

2.1 Gaussian Hilbert Space and Random Fields 

Let . G be the stochastic gaussian measure (see e.g. [20]) on the Lebesgue mea-
sured space .(Rd ,L, dy) . This defines a real Hilbert gaussian space indexed by 
.L2(Rd , dy;R) which is generated, as a Hilbert space, by the centered real gaussian 
variables .XA ∼ N(0, |A|) , with A measurable set of .Rd and .|A| = ∫

A
dy . By  

Minlös theorem (see [28]) the space .L2(�,G;R) which contains powers of those 
gaussian processes can be realized with .� = S′(Rd , dy;R) . 

Complex valued elements .F ∈ L2(�,G;C) are written .F = Re F + iIm F , 
.Re F, Im F ∈ L2(�,G;R) handled by the .R-linearity of the decomposition. 

Once the complexification is fixed in this order (see [20] for an accurate descrip-
tion of various complex structures of gaussian measures), the chaos decomposition 
of elements in .F ∈ L2(�,G;C) can be written 

.F(ω) =
∞⊕

n=0

∫

Rdn

Fn(y1, . . . , yn) : Xy1 · · ·Xyn : dy1 · · · dyn , (1) 

where

• .Fn(yσ(1), . . . , yσ(n)) = Fn(y1, . . . , yn) for all .σ ∈ Sn and complex valued 
functions are treated by the .R-linearity of the decomposition . Fn = Re (Fn) +
iIm Fn ;

• the above symmetry can be written .Fn = SnFn where . Sn is the symmetrizing 
orthogonal projection on .L2(Rdn, dy1 · · · dyn;C) given by 

.(SnFn)(y1, . . . , yn) = 1

n!
∑

σ∈Sn

Fn(yσ(1), . . . , yσ(n)) ; (2)

• the family .(Xy)y∈Rd is made of jointly gaussian real centered random fields such 
that .E(XyXy′) = δ(y − y′) , which actually means 

. E[(
∫

Rd

f (y)Xy dy)(

∫

Rd

g(y′)Xy′dy′)] =
∫

Rd

f (y)g(y) dy

for all .f, g ∈ S(Rd ;C);1 

• products or Wick products of singular random variables .Xyj
, .j = 1 . . . J , must  

be considered in their weak formulation as well;
• .: Y1 · · ·Yn : stands for the Wick product of the random variables .Y1, . . . , Yn ; 

1 We follow the general probabilistic convention which omits the . ω argument with . Xy = Xy(ω)

e.g. in formula (1).
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• with the assumed symmetry of the . Fn components , 

. E(|F |2) =
∫

�

|F(ω)|2 dG(ω)

=
∞∑

n=0

n!
∫

Rdn

|Fn(y1, . . . , yn)|2 dy1 · · · dyn =
∞∑

n=0

n!‖Fn‖2L2 . (3) 

A field is a random function of .x ∈ R
d and we shall consider .F : Rd × � → C . 

A real gaussian centered translation invariant field can be written 

. V(x, ω) =
∫

Rd

V (y − x)Xy dy .

An element .F ∈ L2(Rd
x ×�, dx ⊗ G;C) has the chaos decomposition 

.F(x, ω) =
∞⊕

n=0

∫

Rdn

F̃n(x, y1, . . . , yn) : Xy1 · · ·Xyn : dy1 · · · dyn. (4) 

= 
∞⊕

n=0

∫

Rdn 
Fn(x, y1 − x, . . . , yn − x) : Xy1 · · ·  Xyn : dy1 · · · dyn (5) 

where .Fn(x, y1, . . . , yn) = F̃n(x, y1 + x, . . . , yn + x) shares the same symmetry 
in .(y1, . . . , yn) as . F̃n and 

. ‖F‖2
L2(Rd

x×�)
=
∫

Rd

E(|F(x, ·)|2) dx

=
∞∑

n=0

n!‖F̃n‖2L2(Rd×Rdn)
=
∞∑

n=0

n!‖Fn‖2L2(Rd×Rdn)
. (6) 

Assumptions on the real potential function V will be specified later but we can 
already compute the product .V(x, ω) F (x, ω) by making use of Wick formula (see 
e.g. [20]-Theorem 3.15) 

.Xy : Xy1 · · ·Xyn :

= : XyXy1 · · ·Xyn : +
n∑

j=1

δ(y − yj ) : Xy1 · · ·Xyj−1 Xyj︸︷︷︸
removed

Xyj+1 · · ·Xyn :
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which leads to the chaos decomposition of .V(x, ω)F (x, ω) as 

. 

∫

Rd(n+1)

1

(n+ 1)!
∑

σ∈Sn+1

V (yσ(n+1) − x) Fn(x, yσ(1) − x, . . . , yσ(n) − x)

: Xy1 · · ·Xyn+1 : dy1 · · · dyn+1

+
∫

Rd(n−1)

n

[∫

Rd

V (y) Fn(x, y, y1 − x, . . . , yn−1 − x) dy

]

: Xy1 · · ·Xyn−1 : dy1 · · · dyn−1 . (7) 

2.2 The Fock Space Presentation 

The chaos decomposition (1) provides the isomorphism between .L2(�,G;C) and 
the bosonic Fock space 

. �(L2(Rd , dy;C)) =
∞⊕

n=0

(L2(Rd , dy;C))�n

where for a (real or complex) Hilbert space . h , .h�n is the symmetric Hilbert 
completed tensor product, equal to . C (or . R) for .n = 0 , endowed with the norm 
such that 

.‖ϕ⊗n‖h�n = ‖ϕ‖nh , ‖fn‖L2(Rd ,dy;C)�n = ‖fn‖L2(Rdn,dy1···dyn;C) . (8) 

The above direct sum is also the Hilbert completed direct sum. Note that the 
Fock space norm (8) differs from the .h�n-norm chosen in [20] in adequation 
with Wick products by a factor .

√
n! . The unitary operator from .L2(�,G;C) to 

.�(L2(Rd
y , dy;C)) is thus given by 

. F �→
∞⊕

n=0

fn , fn =
√

n!Fn ,

since 

.‖F‖2
L2(�,G;C)

=
∞∑

n=0

n!‖Fn‖2L2(Rdn,dy1···dyn;C)
=
∞∑

n=0

‖fn‖2L2(Rd ,dy;C)�n .
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The Fock space .�(h) is endowed with densely defined Wick-quantized operators. 
For a monomial symbol .b(z) = 〈z⊗q , b̃z⊗p〉 with .b̃ ∈ L(h⊗p; h⊗q) , the Wick 
quantization .bWick is defined on .

⊕alg
n∈N h�n by 

. bWickfn+p =
√

(n+ p)!(n+ q)!
n! Sn+q(b̃ ⊗ Id⊗n)fn+p

where .Sm : h⊗m → h�m is the symmetrizing orthogonal projection given by 

.Sm(g1 ⊗ · · · ⊗ gm) = 1

m!
∑

σ∈Sm

gσ(1) ⊗ · · · ⊗ gσ(m) (9) 

already introduced in (2). 
Basic examples in our case .h = L2(Rd , dy;C) are given by 

. a(g) = (〈g , z〉)Wick ,

a(g)fn(y1, . . . , yn−1) = √n

∫

Rd

g(y)fn(y1, . . . , yn−1, y) dy ,

a∗(f ) = (〈z , f 〉)Wick ,

a∗(f )fn(y1, . . . , yn+1) =
√

n+ 1

(n+ 1)!
∑

σ∈Sn+1

f (yσ(1))fn(yσ(2), . . . , yσ(n+1)) ,

φ(V ) = (
√

2Re 〈V , z〉)Wick , φ(V ) = 1√
2
[a(V )+ a∗(V )] ,

d�(A) = (〈z,Az〉)Wick , d�(A) =
n−1∑

k=0

Id⊗k ⊗ A⊗ Id⊗n−1−k .

with 

. [a(g), a∗(f )] = a(g)a∗(f )− a∗(f )a(g) = 〈g , f 〉 Id ,

Remember also that more generally, if .(A,D(A)) generates a strongly continuous 
semigroup of contractions . etA, .t ≥ 0, then .�(etA)fn = [etA]⊗nfn defines a 
strongly continuous semigroup of contractions .�(etA) on .�(h) with generator 
denoted by .(d�(A),D(d�(A))) , which extends the above definition of .d�(A) . 
In particular this makes sense for .A = −iB with .(B,D(B)) self-adjoint on . h
and .(d�(B),D(d�(B))) is a self-adjoint operator on .�(h) when .(B,D(B)) is self-
adjoint on . h .
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According to (5) and (6), random .L2(Rd , dx;C) functions .F(x, ω) can be 
written as elements f of .L2(Rd , dx;C)⊗ �(L2(Rd , dy;C)) , 

. F(x, ω) �→ f (x, · − x) =
⊕

n∈N
fn(x, y1 − x, . . . , yn − x)

with fn ∈ L2
sym(Rd

x × R
dn, dxdy1 · · · dyn;C) ,

‖F‖2
L2(Rd×�,dx⊗G)

=
∞∑

n=0

‖fn‖2L2(Rd×Rdn,dxdy1···dyn)
,

and where .L2
sym refers to the exchange symmetry in the y-variables. 

When .V ∈ L2(Rd , dy;R) and .V(x, ω) = ∫
Rd V (y − x)Xy dy , the Wick 

product formula (7) for .V(x, ω)F (x, ω) is transformed into 

.V(x, ω)F (x, ω) �→ [a(V )+ a∗(V )]f (x, · − x) = [√2φ(V )f ](x, · − x) . (10) 

With the notation 

. Dy = 1

i
∂y =

⎛

⎜
⎝

1
i
∂y1

...
1
i
∂yd

⎞

⎟
⎠

the operator .(x · Dy,D(x · Dy)) , with .x · Dy = ∑d
k=1 xkDyk , is essentially self-

adjoint on .S(Rd , dy;C) for all .x ∈ R
d . This defines a strongly continuous unitary 

representation of the additive group .(Rd
x ,+) on .L2(Rd

x)⊗ �(L2(Rd
y)) given by 

. e−ix·d�(Dy)(

∞⊕

n=0

fn(x, y1, . . . , yn)) =
∞⊕

n=0

fn(x, y1 − x, . . . , yn − x) .

Therefore the above unitary correspondence .F(x, ω) �→ f (x, · − x) gives a unitary 
correspondence 

.F ∈ L2(Rd×�, dx⊗G;C) �→ f ∈ L2(Rd , dx;C)⊗�(L2(Rd , dy;C)) , (11) 

while (10) becomes for . V ∈ L2(Rd , dy;R)

.VF �→
[√

2
(V )f
]

. (12) 

We now translate a general pseudo-differential operator . aWeyl(x,Dx)⊗ IdL2(�,G;C)

in the x-variable, under the above transformation (11).
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When . h is a complex Hilbert space, we recall that .L2(Rd , dx;C) ⊗ h equals 
.L2(Rd , dx; h) and

• the Fourier transform, with the normalization 

. Fu(ξ) =
∫

Rd

e−iξ ·xu(x) dx , F−1v(x) =
∫

Rd

eix·ξ v(ξ)
dξ

(2π)d
,

is unitary from .L2(Rd , dx; h) to .L2(Rd ,
dξ

(2π)d
; h) ;

• .S(Rd; h) , .S′(Rd ; h) and the Fourier transform have the same properties as in the 
scalar case .h = C . 

Be aware that the behavior of the Fourier transform when . h is a general Banach 
space is more tricky according to [25]. So when . h is a Hilbert space, we con-
sider pseudo-differential operators in the x-variable of the form . aWeyl(x,Dx) =
aWeyl(x,Dx)⊗ Idh for a symbol .a ∈ S′(R2d

x,ξ ;C) given by its Schwartz’ kernel 

. [aWeyl(x,Dx)](x, y) =
∫

Rd

ei(x−y)·ξ a
(

x + y

2
, ξ

)
dξ

(2π)d
.

When .h = C , .aWeyl(x,Dx) is a continuous endomorphism of .S(Rd
x ;C) and 

.S′(Rd ;C) with the formal adjoint .aWeyl(x,Dx) and the alternative representa-
tions:

• When .v, u ∈ S(Rd ;C) , 

. 〈v , aWeyl(x,Dx)u〉 =
∫

R2d

a(x, ξ)W [v, u](x, ξ)
dx dξ

(2π)d

where .W [v, u] is the Wigner function of the pair .[v, u] (or the Weyl symbol of 
.|u〉〈v|), given by 

. W [v, u](x, ξ) =
∫

Rd

eiξ ·s u(x + s

2
) v(x − s

2
) ds ,

and which belongs to .S(R2d ;C) .
• By setting .�P,X� = pξ ·x−px ·ξ for .P = (px, pξ ) , .X = (x, ξ) in .R

2d = T ∗Rd , 
and 

. Fa(P ) =
∫

R2d

ei�P,X�a(X)
dX

(2π)d

we have .a = F(Fa) in .S′(R2d) . When .Fa ∈ L1(R2d ;C) , 

.aWeyl(x,Dx) =
∫

R2d

Fa(P ) τP

dP

(2π)d
,
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where .τP = ei(pξ ·x−px ·Dx) = [ei(pξ ·x−px ·ξ)]Weyl(x,Dx) is the unitary phase 
translation 

. τP u (x) = eipξ ·(x−px/2)u(x − px) .

In particular, the above integral is a .L(L2(Rd , dx;C))-integral when . Fa ∈
L1(R2d , dP ;C) and a fortiori when .a ∈ S(R2d;C) . 

With those two remarks, for a general .a ∈ S′(R2d;C) the integral 

. aWeyl(x,Dx) =
∫

R2d

Fa(P ) ei(pξ ·x−px ·Dx)
︸ ︷︷ ︸

=τP

dP

(2π)d

can be interpreted as the weak limit 

. aWeyl(x,Dx) = w− limn→∞
∫

R2d

Fan(P ) ei(pξ ·x−px ·Dx) dP

(2π)d
,

where .an ∈ S(R2d ;C) is any approximation of .a ∈ S′(R2d;C) . 
While considering the .aWeyl(x,Dx) ⊗ Idh , the same construction makes sense 

after noticing that for .u, v ∈ S(Rd; h) , the Wigner transform .W [v, u] belongs to 
. S(R2d

x,ξ ;L1(h))2 and 

. 〈v , aWeyl(x,Dx)u〉 = Tr
[
[aWeyl(x,Dx)⊗ Idh] |u〉〈v|

]

=
∫

R2d

a(x, ξ) Tr[W [v, u]](x, ξ)
dxdξ

(2π)d
.

We apply this with .h = L2(�,G;C) and .h = �(L2(Rd , dy;C)): We start from 

. aWeyl(x,Dx) = aWeyl(x,Dx)⊗ IdL2(�,G;C)

= w− limn→∞
∫

R2d

Fan(P )ei(pξ ·x−px ·Dx) dP

(2π)d
,

the correspondance 

. aWeyl(x,Dx)F �→ eix·d�(Dy)aWeyl(x,Dx)e
−ix·d�(Dy)f ,

and 

.eix·λei(pξ ·x−px ·Dx)(e−ix·λ×) = ei(px ·x−px ·(Dx−λ)) for all λ ∈ R
d

2 .Lp(h) denotes the Schatten space of compact operators for .1 ≤ p ≤ +∞. 
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which gives by the functional calculus, the equality of unitary operators 

. eix·d�(Dy)ei(pξ ·x−px ·Dx)(e−ix·d�(Dy)) = ei(px ·x−px ·(Dx−d�(Dy))) .

We deduce that for .a ∈ S′(R2d ;C) , .aWeyl(x,Dx)F ∈ S′(Rd
x ;L2(�,G;C)) is 

transformed into 

. aWeyl(x,Dx) F �→ aWeyl(x,Dx − d�(Dy)) f ∈ S′(Rd ;�(L2(Rd , dy;C))) .

(13) 

with 

. aWeyl(x,Dx−d�(Dy))=w− limn→∞
∫

R2d

Fan(P )ei(pξ ·x−px ·(Dx−d�(Dy))) dP

(2π)d
.

Let us continue by applying the Fourier transform in the x-variable with 

. Fxu(ξ) =
∫

Rd

e−iξ ·xu(x) dx , F−1
x u(x) =

∫

Rd

eix·ξ u(ξ)
dξ

(2π)d

and set for . f ∈ S′(Rd
x ;�(L2(Rd , dy;C)))

. f̂ = Fxf ∈ S′(Rd;�(L2(Rd , dy;C))) .

With 

. Fx aWeyl(x,Dx) F−1
x = aWeyl(−Dξ, ξ)

where the functional calculus leads to . Fx aWeyl(x,Dx − d�(Dy)) F−1
x =

aWeyl(−Dξ, ξ − d�(Dy)) , we obtain the unitary correspondence 

. F ∈ L2(Rd ×�, dx ⊗ G;C) �→ f̂ = Fxf ∈ L2(
R

d ,
dξ

(2π)d
;�(L2(Rd , dy;C))

)
,

(14) 

with 

. F(x, ω) =
∞∑

n=0

∫

Rdn

1√
n!fn(x, y1 − x, . . . , yn − x) : Xy1 · · ·Xyn : dy1 · · · dyn ,

(15)
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and where (12) and (13) become 

.VF �→ √2φ(V ) f̂ , . (16) 

aWeyl(x, Dx)F
︸ ︷︷ ︸
∈S′(Rd 

ξ ;L2(�,G;C))

�→ aWeyl(−Dξ , ξ  − d�(Dy)) f̂
︸ ︷︷ ︸
∈S′(Rd 

ξ ;�(L2(Rd ,dy;C))) 

. (17) 

From this point of view, the Fock space and functional analysis presentation is 
simpler than sticking with the usual chaos decomposition (4) where Fourier trans-
forms and pseudo-differential operators do not seem to have simple probabilistic 
interpretation. 

Remark 2.1 As a final remark, all the above constructions can be tensorized with 
an additional separable Hilbert space .h′ = L2(Z,dz;C) . 

2.3 Our Problem 

We aim at studying the stochastic partial differential equation 

.

{
i∂tF = −�xF +

√
hVF ,

F (t = 0) = F0 ,
(18) 

where

• . V is the translation invariant gaussian random field 

. V(x, ω) =
∫

Rd

V (y − x)Xy dy ,

with .V ∈ L2(Rd ;R) ;
• the solution .F(t, x, ω, z) is seeked in .C0(R;L2(Rd ×�×Z, dx⊗G⊗dz;C)) ;
• .h > 0 is a small parameter which will tend to 0 . 

In particular we will consider the asymptotic behavior of quantities 

. 〈F(
t

h
) , aWeyl(hx,Dx)F (

t

h
)〉L2(Rd×�×Z)

=
∫

Z

E

[

〈F(
t

h
, z) , aWeyl(hx,Dx)F (

t

h
, z)〉L2(Rd ,dx)

]

dz(z) (19) 

for .a ∈ S(1, dx2+dξ2) and .t ∈ [0, T ] . Remember that the symbol class . S(1, dx2+
dξ2) is the set of .C∞-functions on .R2d with all derivatives bounded on .R2d .
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Note that the variable .z ∈ Z does not appear in the equation. The dynamics 
is thus well defined when it is defined for .Z = {z0} and .dz = δz0 . A sufficient 
condition was provided in [5] by making use of Nelson commutator method. 

Lemma 2.1 Proposition 4.4 in [5]: Assume .V ∈ H 2(Rd;R). Then the operator 
.−�x +

√
hV is essentially self-adjoint on .

⊕alg
n∈NS(Rd

x ; (L2(Rd , dy;C))�n) which 
is a dense subset of .L2(Rd

x , dx;L2(�,G;C)) = L2(Rd ×�, dx ⊗ G;C) by (4). 

Remark 2.2 A side corollary of our analysis says that the dynamics is well defined 
under the assumption .V ∈ Lr ′σ (Rd;R) with .r ′σ = 2d

d+2 in dimension .d ≥ 3, See 
Sect. 7.4 at the end of the article. 

Lemma 2.1 provides a natural self-adjoint realization of .−�x +
√

hV in . h =
L2(Rd × � × Z, dx ⊗ G ⊗ dz;C) and any initial datum .F0 ∈ h defines a unique 
solution .F ∈ C0(R; h) . 

There are various reasons for introducing an additional variable .z ∈ Z , and this 
trick will be used repeatedly. One of them is the following: Starting with . Z = {z0}
and .dz = δz0 , one may consider instead of .F( t

h
) = UV( t

h
)F0 with . UV(t) =

exp(−it (−�x +
√

hV)) , the evolution of a state 

. �(
t

h
) = UV(

t

h
)�0U

∗
V(

t

h
)

with .�0 ∈ L1(L2(Rd×�;C)) , .�0 ≥ 0 , .Tr[�0] = 1 possibly replacing .‖F0‖L2 = 1 . 
By writing .�0 = �

1/2
0 �

1/2
0 one gets 

. �(
t

h
) = [UV(

t

h
)�

1/2
0 ][UV(

t

h
)�

1/2
0 ]∗

where .F(t) = UV(t)�
1/2
0 is the solution to (18) in 

. L2(L2(Rd ×�, dx × G;C)) � L2(Rd ×�× Z, dx ⊗ G⊗ dz)

with Z = R
d ⊗�, dz = dx ⊗ G ,

while the trace to be computed at time . t
h

equals 

. Tr

[

aWeyl(hx,Dx)�(
t

h
)

]

=
∫

Z

E

[

〈F(
t

h
, z) , aWeyl(hx,Dx)F (

t

h
, z)〉L2(Rd ,dx)

]

dz(z) .

Thus considering the evolution of non negative trace class operators instead of 
projectors on wave functions, becomes the same problem by introducing the suitable 
additional parameter .z ∈ Z .
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The unitary correspondence (14), (15), with (16), (17) and Remark 2.1, trans-
forms the dynamics (18) into 

.

{
i∂t f̂ = (ξ − d�(Dy))

2f̂ +√2hφ(V )f̂ ,

f̂ (t = 0) = f̂0 ,
(20) 

and the quantity (19) into 

.〈f̂ (
t

h
) , aWeyl(−hDξ , ξ − d�(Dy)) f̂ (

t

h
)〉

L2(Rd×�×Z,
dξ

(2π)d
⊗G⊗dz)

. (21) 

We will see that the variable .ξ ∈ R
d and even some part . Y ′ of the variable . Y =

(y1, . . . , yn), when the total number is fixed to n , can be taken as another parameter 
like .z ∈ Z for some points of the analysis. This leads to a parameter .z′-dependent, 
.z′ = (ξ, Y ′, z) ∈ R

d ×R
dn′ ×Z , analysis in .L2(Rd(n−n′), dY ′′) . Those parameters 

appear in Sect. 3 by introducing the center of mass .Y ′′ = yG = y1+···+yn

n
and the 

relative coordinates .y′j = yj − yG , a general functional framework for parameter 
dependent Strichartz estimates and their consequences are presented in Sect. 4 and 
finally those are detailled in Sect. 5 for (20). 

3 The Fock Space and the Center of Mass 

According to (20) our stochastic dynamics has been translated in a parameter 
dependent dynamics in the Fock space. We shall consider an additional unitary 
transform using the center of mass and the relative variables 

. yn
G =

y1 + · · · + yn

n
, y′j = yj − yn

G

in the n-particles sector, .n ≥ 1 . It trivializes the free dynamics when . V ≡ 0
or .V ≡ 0 . The expression of the interaction term .

√
2hφ(V ) becomes more tricky 

but various general estimates are given here. 

3.1 The Unitary Transform Associated with the Center of Mass 

We shall use the following notations for .n ≥ 1:

• A generic element of .Rdn will be written 

.Yn = (y1, . . . , yn) with |Yn|2 =
n∑

j=1

|yj |2 . (22)
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• The center of mass of .Yn ∈ R
dn will be written 

.yG = yn
G =

y1 + · · · + yn

n
(23) 

and the relative coordinates .y′j = yj − yn
G will be gathered into 

.Y ′n = (y′1, . . . , y′n) = (y1 − yn
G, . . . , yn − yn

G) . (24) 

The vector . Y ′n actually belongs to the subspace . Rn = {Yn ∈ R
dn ,

∑n
j=1 yj = 0

}

and we recall 

. |Yn|2 = n|yn
G|2 +

∣
∣Y ′n
∣
∣2 = n|yn

G|2 +
n∑

j=1

|y′j |2 . (25) 

With those notations the map . Rdn � Yn �→ (yn
G, Y ′n) ∈ R

d × Rn ⊂ R
d × R

dn

is a measurable map and the image measure of the Lebesgue measure . |dYn| =∏n
j=1 |dyj | is nothing but 

.dyG ⊗ dμn(Y
′
n) = dyG ⊗ [nddy1 · · · dynδ0(y1 + · · · + yn)] . (26) 

For .n ≥ 2 we can write .dμn(Y
′
n) = nd

∏
j �=j0

dy′j for any fixed .j0 ∈ {1, . . . , n} by 
taking the linear coordinates .(y′j )j �=j0 on . Rn where .y′j0

= −∑j �=j0
y′j . For .n = 1 , 

.R1 = {0} and integrating with respect to .Y ′1 = y′1 ∈ R1 is nothing but the evaluation 
at .y′1 = 0 . 

Definition 3.1 On .�∞n=1R
dn the measure . μ carried by .R = �∞n=1R

n is defined by 

. 

∫

Rn
gn(Y

′) dμn(Y
′) =

∫

Rdn

gn(y1, . . . , yn)δ0(y1 + · · · + yn) nd dy1 · · · dyn

n≥2=
∫

Rd(n−1)

gn(y
′
1, . . . , y

′
n−1,−

n−1∑

j=1

y′j ) nd dy′1 · · · dy′n−1

for all . gn in .C0
c(R

dn). 
For .1 ≤ p < +∞ , the space .Lp(R, dμ) is the direct sum . 

⊕∞
n=1L

p(Rn, dμn)

completed with respect to the norm 

.

∥
∥
∥
∥
∥

∞⊕

n=1

gn

∥
∥
∥
∥
∥

Lp

=
( ∞∑

n=1

‖gn‖pLp(Rn,dμn)

)1/p

.
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The closed subspace of symmetric functions, . gn(y
′
σ(1), . . . , y

′
σ(n)) = gn(y

′
1, . . . , y

′
n)

for all .σ ∈ Sn and for all .n ≥ 1 , is then denoted by .Lp
sym(R, dμ(Y ′)) . 

For .gn ∈ L2(Rdn × Z, dYn ⊗ dz;C) , .n ≥ 1 , the function 

.gG,n(yG, Y ′n, z) = UGgn(yG, Y ′n, z) = gn(yG + Y ′n, z) (27) 

belongs to .L2(Rd × Rn × Z, dyG ⊗ dμn ⊗ dz;C) with 

. ‖UGgn‖L2(Rd×Rn×Z,dyG⊗dμn⊗dz) = ‖gn‖L2(Rdn×Z,dYn⊗dz)

and gn(Yn, z) = (U−1
G gG,n)(Yn, z) = gG,n(y

n
G, Yn − yn

G, z) .

Additionally 

. UG : L2(Rd , dy)�n → L2(Rd , dyG;L2
sym(Rn, dμn))

= L2
sym(Rn, dμn;L2(Rd , dyG))

is unitary and the same result holds for the parameter .z ∈ Z version. 

Proposition 3.1 The map .UG extended by .UGg0(z) = g0(z) for .n = 0 , defines a 
unitary map 

. UG : L2(Z, dz;�(L2(Rd , dy;C)))

→ L2(Z;C)⊕ L2
sym(Z × R, dz⊗ dμ;L2(Rd , dyG;C)) . (28) 

When .d�G(A) = UG[d�(A) ⊗ IdL2(Z,dz)]U−1
G for a self-adjoint operator 

.(A,D(A)) in .L2(Rd
y , dy) , the case .A = Dy gives 

.d�G(Dy) = UG d�(Dy)U−1
G = DyG

. (29) 

For any bounded measurable function . φ on .R × Z the multiplication by 
.φ(Y ′, z)

∣
∣
Rn = φn(Y

′
n, z) for .n ≥ 1 , while .φ0 : Z → C , commutes with 

.d�G(Dy) = DyG
according to 

. ∀t ∈ R
d ,∀u ∈ L2(Z, dz;C)⊕ L2

sym(Z × R, dz⊗ dμ;L2(Rd , dyG,C)) ,

eit ·DyG (φu) = φ(eit ·DyG u) .

A particular case is .φn(Y
′
n, z) = ϕ(n) for a bounded function .ϕ : N→ C .
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Proof The unitarity of .UG comes at once from (27) and the componentwise 
unitarity already checked. For .d�G(Dy) = DyG

, simply write 

. ∂yG
gG,n(yG, Y ′n) = ∂yG

gn(yG + y′1, . . . , yG + y′n)

=
n∑

j=1

(∂yj
gn)(yG + y′1, . . . , yG + y′n) .

The commutation statement comes from the separation of variables, . yG and .(Y ′, z) . 
��

Introducing the center of mass thus simplifies the free transport part of (20). It is not 
so for the interaction term .

√
2hφ(V ) = √h[a(V )+ a∗(V )] . An explicit and useful 

expression is nevertheless possible for 

.aG(V ) = UG a(V )U−1
G and a∗G(V ) = UG a∗(V )U−1

G . (30) 

Proposition 3.2 The operator .aG(V ) and .a∗G(V ) for .V ∈ L2(Rd , dy;C) have the 
following action on .fG,n ∈ L2

sym(Rn × Z, dμn ⊗ dz;L2(Rd , dyG;C)) for . n ≥ 1

and .fG,0 ∈ L2(Z, dz;C) where we omit the transparent variable .z ∈ Z: 

.aG(V )fG,0 = 0 , [aG(V )fG,1] =
∫

Rd

V (y1)fG,1(y1) dy1 , and. (31) 

[aG(V )fG,n](yG, Y ′n−1) =
√

n

∫

Rd 
V (yG + yn)fG,n(yG + 

yn 
n 

, Yn − 
yn 
n 

) dyn , 

(32) 

for all .n > 1, with .Yn = (y′1, . . . , y′n−1, yn) ∈ R
dn , .Y ′n−1 ∈ Rn−1 , . Yn − yn

n
∈ Rn ,

.a∗G(V )fG,0(yG) = V (yG)fG,0 , and. (33) 

a∗G(V )fG,n(yG, Y ′n+1) 

= √n+ 1Sn+1[V (yG + y′n+1)fG,n(yG − 
y′n+1 

n 
, Yn + 

y′n+1 

n 
)] , 

(34) 

for all .n > 0, with. Yn = (y′1, . . . , y′n) ∈ R
dn , .Y ′n+1 ∈ Rn+1 , . Yn +

y′n+1

n
∈ Rn ,

and 

.Sn+1[v(y′n+1)u(y′1, . . . , y′n+1)]=
1

(n+ 1)!
∑

σ∈Sn+1

v(y′σ(n+1))u(y′σ(1), . . . , y
′
σ(n+1)) .
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Proof Write for .n > 1 , 

. [aG(V )fG,n](yn−1
G , Y ′n−1) = [a(V )U−1

G fG,n](Y ′n−1 + yn−1
G )

= √n

∫

Rd

V (ỹn)[U−1
G fG,n](Y ′n−1 + yn−1

G , ỹn) dỹn .

By setting .ỹn = yn−1
G + yn the formula .(U−1

G gG,n)(·) = gG,n(y
n
G, · − yn

G) with 

. yn
G =

y1 + · · · + yn−1 + ỹn

n
= n− 1

n
yn−1
G + ỹn

n
= yn−1

G + yn

n

leads to 

. [aG(V )fG,n](yn−1
G , Y ′n−1)

= √n

∫

Rd

V (yn−1
G + yn)fG,n(y

n−1
G + yn

n
, Y ′n−1 −

yn

n
, yn − yn

n
) dyn

= √n

∫

Rd

V (yn−1
G + yn)fG,n(y

n−1
G + yn

n
, Yn − yn

n
) dyn

with .Yn = (y′1, . . . , y′n−1, yn) . 
The computation of .a∗G(V )fG,n is done by duality: 

. 〈a∗G(V )fG,n−1 , gG,n〉
= 〈fG,n−1 , aG(V )gG,n〉

=
∫

Rd×Rn−1
fG,n−1(y

n−1
G , Y ′n−1)×

[√
n

∫

Rd

V (yn−1
G + yn)gG,n(y

n−1
G + yn

n
, Yn − yn

n
) dyn

]

dyn−1
G dμn−1(Y

′
n−1) .

Remember .Yn = (y′1, . . . , y′n−1, yn) and .Ỹ ′n = Yn − yn

n
∈ Rn . The change of 

variables 

.Ỹ ′n = Yn − yn

n
, yn

G = yn−1
G + yn

n
, yn−1

G = yn
G −

ỹn

n− 1

Y ′n−1 = Ỹn−1 + yn

n
= Ỹn−1 + ỹn

n− 1
,



22 S. Breteaux and F. Nier

with 

. dyndyn−1
G dμn−1(Y ′n−1) = dyn−1

G δ0(y
′
1 + · · · + y′n−1)(n− 1)ddy′1 · · · dy′n−1

= dyn
G

nd

(n− 1)d
(n− 1)dδ0(ỹ

′
1 + · · · + ỹ′n)dỹ′1 · · · dỹ′n

= dyn
Gdμn(Ỹ

′
n) ,

gives 

. 〈a∗G(V )fG,n−1 , gG,n〉

= √n

∫

Rd ×Rn
V (yn

G + ỹ′n)fG,n−1(y
n
G −

ỹn

n− 1
, Ỹ ′n−1 +

ỹ′n
n− 1

)×

gG,n(y
n
G, Ỹ ′n) dyn

G dμn(Ỹ
′
n) .

Replacing n by .n + 1 , while remembering that .a∗G(V )fG,n is symmetric in the 
variables .(y′1, . . . , y′n+1) yields 

. [a∗G(V )fG,n](yG, Y ′n+1) =
√

n+ 1Sn+1[V (yG+y′n+1)fG,n(yG−
y′n+1

n
, Yn+

y′n+1

n
)]

with .Yn = (y′1, . . . , y′n) . ��

3.2 General L p 
xL q 

y Spaces 

When .(X,dx) and .(Y,dy) are sigma-finite measured spaces .Lp
x L

q
y , . 1 ≤ p, q ≤

+∞ , denotes the space .Lp
x L

q
y = Lp(X,dx;Lq(Y,dy)) . This shortened notation 

is especially useful when estimates are written in those spaces, like in Strichartz 
estimates (see Sect. 4). However the final space of the unitary map .UG in (28) 
shows already that the product space .X×Y is too restrictive. Below is a convenient 
generalization. 

Definition 3.2 Let .(Xn,dxn)n∈N and .(Yn,dyn)n∈N be at most countable families 
(.N ⊂ N) of sigma-finite measured spaces. Let .X = �n∈NXn and . Y = �n∈NYn

be endowed with the measures .dx = �n∈Ndxn and .dy = �n∈Ndyn . In this  
framework, the space .Lp

x L
q
y , .1 ≤ p, q ≤ +∞ , will denote the closed subspace 

of .Lp(X,dx;Lq(Y,dy)) given by 

.L
p
x L

q
y =

{
f ∈ Lp(X,dx;Lq(Y,dy)) , f (x, y)

=
∑

n∈N
1Xn(x)1Yn

(y) f (x, y) a.e.
}

.
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The above definition is coherent with the specific product case, which is the 
particular case .N = {0} . The differences will be clear from the different frameworks 
when .(Xn,dxn)n∈N and .(Yn,dyn)n∈N will be specified. 

The two following properties of the product case are still valid in this extended 
framework:

• The dual of .L
p
x L

q
y , .1 ≤ q, p < +∞ is .L

p′
x L

q ′
y with .

1
q ′ + 1

q
= 1 and .

1
p′ + 1

p
= 1 .

• Minkowski’s inequality says 

.‖f ‖Lp
x L

q
y
≤ ‖f ‖Lq

yL
p
x

for 1 ≤ q ≤ p ≤ +∞ . (35) 

Below are examples, associated with the decomposition associated with the intro-
duction of the center of mass (23) and the relative coordinates (24), where those 
notations will be used

• .N = {n} , .n ≥ 1 , .Xn = Rn×Z′ , .dxn = dμn⊗dz’ , .Yn = R
d , .dyn = dyG and 

. L
p

(Y ′n,z′)L
q
yG
= L

p
xn

L
q
yG
= Lp(Rn × Z′, dμn ⊗ dz’;Lq(Rd , dyG)) .

The notation .Lp

(Y ′n,z′),symL
q
yG

will stand for the closed subspace of functions 

which are symmetric with respect to the variables .Y ′n ∈ Rn .
• .N = {0, 1} with 

. X0=Z′ , X1=R× Z′ = (�∞n=1Rn)× Z′ , dx0=dz’ , dx1= dμ⊗ dz’ ,

Y0= {0} , Y1=R
d , dy0= δ0 , dy1= dyG ,

where 

. L
p

(Y ′,z′)L
q
yG
= Lp(Z′,dz’)⊕ Lp(R× Z′, dμ⊗ dz’;Lq(Rd , dyG)) .

With the same convention as above for .Lp

(Y ′,z′),symL
q
yG

, which refers to the 
symmetry for the .Y ′ ∈ R variable, the formula (28) becomes 

. UG : L2(Z′,dz’;�(L2(Rd , dy;C)))→ L2
(Y ′,z′),symL2

yG
.

The general spaces .L2
(Y ′,z′),symL

p
yG

, .1 ≤ p ≤ +∞ , will be especially useful 
after Sect. 4.

• The previous example can be written with .N = N and 

. X0 = Z′ , Xn>0 = Rn × Z′ , dx0 = dz’ , dxn>0 = dμn ⊗ dz’ ,

Y0 = {0} , Yn>0 = R
d , dy0 = δ0 , dyn>0 = dyG .
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3.3 L p 
yG
-Estimates for aG(V ) and a∗ 

G (V ) 

General .Lp-esptimates, or more precisely .L2
(Y ′,z),symL

p
yG

-estimates, are proved in 
this paragraph for the operators .aG(V ) and .a∗G(V ) . The use of the center of mass 
and the .Lp

yG
spaces, will be extremely useful for the application of Strichartz 

estimates in Sect. 4. 
Let us start with a simple application of Young’s inequality. 

Lemma 3.1 For any .q ′, p′ ∈ [1, 2] such that .q ′ ≤ p′ , let  .r ′ ∈ [1, 2] be defined 
by .

1
r ′ = 1

2 + 1
q ′ − 1

p′ . The inequality 

. ‖V (yG + y′)ϕ(yG)‖
L2

y′L
q′
yG

≤ ‖V ‖
Lr′ ‖ϕ‖Lp′ ,

holds for all .V ∈ Lr ′(Rd , dy;C) and all .ϕ ∈ Lp′(Rd , dy;C) . 

Proof The conditions . 1
r ′ + 1

p′ = 1
2 + 1

q ′ , .1 ≤ q ′ ≤ p′ ≤ 2 , ensure 

. 
1

r ′
= 1

2
+ 1

q ′
− 1

p′
∈ [1

2
, 1] and r ′ ∈ [1, 2] .

Young’s inequality with . 1
r̃
+ 1

p̃
= 1

2
q′
+ 1 and .r̃ , p̃, 2

q ′ ≥ 1 yields 

. ‖V (yG + y′)ϕ(yG)‖
L2

y′L
q′
yG

≤ ‖|V |(yG − y′)|ϕ|(yG)‖
L2

y′L
q′
yG

= ‖|V (−·)|q ′ ∗ |ϕ|q ′ ‖1/q ′
L2/q′ ≤ ‖|V |q

′ ‖1/q ′
Lr̃ ‖|ϕ|q

′ ‖1/q ′
Lp̃ .

By taking .p̃ = p′
q ′ ∈ [1, 2] and .r ′ = r̃q ′ we obtain 

. ‖V (yG + y′)ϕ(yG)‖
L2

y′L
q′
yG

≤ ‖V ‖
Lr′ ‖ϕ‖Lp′ .

��
The first result concerns the action of .aG(V ) and .a∗G(V ) on a fixed finite particles 

sector. 

Proposition 3.3 For any .p′, q ′ ∈ [1, 2] such that .q ′ ≤ p′ , .2 ≤ p ≤ q ≤ +∞ , 
let .r ′ ∈ [1, 2] be defined by . 1

r ′ = 1
2 + 1

q ′ − 1
p′ like in Lemma 3.1. For any . V ∈

Lq ′(Rd , dy;C) ∩ Lr ′(Rd , dy;C) , the creation and annihilation operators satisfy
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the following estimates: 

.∀fG,0 ∈ L2
z , ‖a∗G(V )fG,0‖

L2
zL

q′
yG

≤ ‖V ‖
Lq′ ‖fG,0‖L2

z
, . (36) 

∀n >  0,∀fG,n ∈ L2 
(Y ′n,z),symL p

′
yG ,

‖a∗G(V ) fG,n‖
L2 

(Y ′
n+1,z) L q

′
yG 
≤ ‖V ‖

Lr′
√

n+ 1‖fG,n‖
L2 

(Y ′n,z) L p
′

yG 
, . 

(37) 

∀fG,1 ∈ L2 
zL q 

yG , ‖aG(V )fG,1‖L2 
z 
≤ ‖V ‖

Lq′ ‖fG,1‖L2 
zL q 

yG 
, . (38) 

∀n >  1,∀fG,n ∈ L2 
(Y ′n,z),symL q 

yG ,

‖aG(V ) fG,n‖L2 
(Y ′

n−1,z) L p 
yG 
≤ ‖V ‖

Lr′
√

n‖fG,n‖L2 
(Y ′n,z) L q 

yG 
. (39) 

A notable case is when .q ′ = r ′ and .p′ = p = 2 . 

Proof The variable .z ∈ Z is actually a parameter which can be forgotten because 
our estimates are uniform w.r.t. .z ∈ Z . 

For (36) it suffices to notice .[a∗G(V )fG,0](yG) = fG,0 × V (yG) . 
The estimate of .a∗G(V )fG,n for .n > 0 relies on Lemma 3.1. We start from the 

expression (34) 

. (aG(V )∗fG,n)(yG, Y ′n+1)=
√

n+ 1 Sn+1 V (yG+y′n+1) fG,n(yG−
y′n+1

n
, Yn+

y′n+1

n
)

with .Y ′n+1 = (y′1, . . . , y′n, y′n+1) ∈ Rn+1 , .Yn = (y′1, . . . , y′n) ∈ R
dn , . Yn + y′n+1

n
∈

Rn . The symmetrization .Sn+1 simply takes the average of .n + 1-terms which have 
all the same form as 

. 
√

n+ 1V (yG + y′n+1) fG,n(yG −
y′n+1

n
, Yn +

y′n+1

n
) ,

after circular permutation of the variables . y′j which does not change the .L2
Y ′n+1

L
q ′
yG

-

norm. We can therefore forget the symmetrization .Sn+1 for proving the upper 
bound (37). When .n > 1 integrations must be performed with respect to the 
independent variables .(y′2, . . . , y′n) ∈ R

d(n−1) . Remember that . (y′2, . . . , y′n, y′n+1)

are coordinates on .Rn+1 such that .y′1 = −y′2 · · · − y′n − y′n+1 , . dμn+1(Y
′
n+1) =

(n+ 1)ddy′2 · · · dy′n+1 and that the quantity 

.

∥
∥
∥V (yG + y′n+1)fG,n(yG −

y′n+1

n
, Yn +

y′n+1

n
)

∥
∥
∥

L2
Y ′
n+1

L
q′
yG
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equals 

. (n+ 1)
d
2 ‖V (yG + y′n+1)

fG,n(yG −
y′n+1

n
, Yn +

y′n+1

n
)‖

L2(Rd ,dy′n+1;L2(Rd(n−1),dy′2···dy′n;Lq′
yG

))
.

When .y′n+1 ∈ R
d is fixed, setting .y′1 = −∑n

j=2(y
′
j +

y′n+1
n

) and . Y ′n =
Yn + y′n+1

n
, provides the coordinates .(y′2 +

y′n+1
n

, . . . , y′n + y′n+1
n

) on .Rn with 

.dμn(Y
′
n) = nd/2dy′2 · · · dy′n , and then . ‖V (yG + y′n+1) fG,n(yG − y′n+1

n
, Yn +

y′n+1
n

)‖
L2(Rd(n−1),dy′2···dy′n;Lq′

yG
)

equals 

. n−d/2‖V (yG + y′n+1)fG,n(yG −
y′n+1

n
, Y ′n)‖L2

Y ′n
L

q′
yG

=

n−d/2‖V (ỹG + n+ 1

n
y′n+1)fG,n(ỹG, Y ′n)‖L2

Y ′n
L

q′
ỹG

.

We deduce 

. 

∥
∥
∥V (yG + y′n+1)fG,n(yG −

y′n+1

n
, Yn +

y′n+1

n
)

∥
∥
∥

L2
Y ′
n+1

L
q′
yG

= (n+ 1)d/2

nd/2

∥
∥
∥‖V (ỹG + n+ 1

n
y′n+1)fG,n(ỹG, Y ′n)‖L2

Y ′n
L

q′
ỹG

∥
∥
∥

L2(Rd ,dy′n+1)

=
∥
∥
∥‖V (ỹG + y′)fG,n(ỹG, Y ′n)‖L2

Y ′n
L

q′
ỹG

∥
∥
∥

L2(Rd ,dy′)

=
∥
∥
∥‖V (ỹG + y′)fG,n(ỹG, Y ′n)‖L2(Rd ,dy′;Lq′

ỹG
)

∥
∥
∥

L2
Y ′n

,

after using the change of variable .y′ = n+1
n

y′n+1 in .Rd for the third line and 
.L2

y′L
2
Y ′n
= L2

Y ′n
L2

y′ for the last one. We now use Lemma 3.1 with 

.‖V (ỹG + y′)fG,n(ỹG, Y ′n)‖L2(Rd ,dy′;Lq′
ỹG

)
≤ ‖V ‖

Lr′ ‖fG,n(ỹG, Y ′n)‖Lp′
ỹG
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for almost all .Y ′n ∈ Rn and .1 ≤ q ′ ≤ p′ ≤ 2 , . 1
r ′ = 1

2 + 1
q ′ − 1

p′ . Integrating 
w.r.t. .Y ′n ∈ Rn gives 

. 

∥
∥
∥V (yG + y′n+1)fG,n(yG −

y′n+1

n
, Yn +

y′n+1

n
)

∥
∥
∥

L2
Y ′
n+1

L
q′
yG

≤ ‖V ‖
Lr′ ‖fG,n‖

L2
Y ′n

L
p′
yG

.

By multiplying by .
√

n+ 1 and with the symmetrization .Sn+1 , we have proved (37). 
The estimates with .aG(V ) follow by duality using 

. ‖aG(V )fG,n+1‖L2
Y ′
n+1

L
p
yG
= sup
‖fG,n‖

L2
Y ′n

L
p′
yG

=1
|〈aG(V )fG,n+1, fG,n〉| .

Indeed, if .‖fG,n‖
L2

Y ′n
L

p′
yG

= 1, then 

. |〈aG(V )fG,n+1, fG,n〉| = |〈fG,n+1, a
∗
G(V )fG,n〉|

≤ ‖fG,n+1‖L2
Y ′
n+1

L
q
yG
‖a∗G(V )fG,n‖

L2
Y ′n

L
q′
yG

≤
⎧
⎨

⎩

‖V ‖
Lq′ ‖fG,1‖Lq

yG
when n = 0 ,

‖V ‖
Lr′
√

n+ 1‖fG,n+1‖L2
Y ′
n+1

L
q
yG

, when n > 0 ,

which implies the bounds (38) and (39). ��
Remark 3.1 Instead of Young’s inequality one could use the more general 
Brascamp-Lieb inequality (see[4, 22]). This would not change the result (up 
to multiplicative constants). One may wonder whether it is possible to improve 
Lebesgue’s exponent, in particular the integrability by reaching exponents . p < 2
in (39) by strengthening the assumptions on V . Actually it is not. Take . V ∈ S(Rd)

and .ϕ ∈ L2(Rd , dy;C) , then .a(V )ϕ⊗n = √n〈V, ϕ〉ϕ⊗n−1 and . aG(V )U−1
G (ϕ⊗n)

cannot be put in .L2
z,Y ′n−1

L
p
yG

with .p < 2 in general. 

Proposition 3.4 Take .α, α′ ∈ R, .α < α′ and for .1 ≤ q ′ ≤ p′ ≤ 2 , . 2 ≤ p ≤
q ≤ +∞ , and let .r ′ ∈ [1, 2] be defined by . 1

r ′ = 1
2 + 1

q ′ − 1
p′ . For any . V ∈

Lr ′(Rd) ∩ Lq ′(Rd) , the following estimates hold 

. ∀f ∈ e−α′NL2
z,Y ′,symL

p′
yG

,

‖eαNa∗G(V )f ‖
L2

z,Y ′L
q′
yG

≤ max(‖V ‖
Lr′ , ‖V ‖Lq′ )eα′

2
√

α′ − α
‖eα′Nf ‖

L2
z,Y ′L

p′
yG

, . (40)
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∀f ∈ e−α′N L2 
z,Y ′,symL q 

yG ,

‖eαN aG(V )f ‖L2 
z,Y ′L p 

yG 
≤ 

max(‖V ‖
Lr′ , ‖V ‖Lq′ )e−α 

2
√

α′ − α
‖eα′N f ‖L2 

z,Y ′L q 
yG 

. 

(41) 

Again, a notable case is when .q ′ = r ′ and .p = p′ = 2 . 

Proof By writing 

. eαNa∗G(V )e−α′N(

∞⊕

n=0

fG,n) =
∞⊕

n=0

eα(n+1)−α′na∗G(V )fG,n ,

and eαNaG(V )e−α′N(

∞⊕

n=0

fG,n) =
∞⊕

n=1

eα(n−1)−α′naG(V )fG,n ,

Proposition 3.3 tells us that it suffices to bound 

. sup
n∈N

√
n+ 1e−(α′−α)(n+1)eα′ ≤ eα′

√
2e
√

α′ − α
≤ eα′

2
√

α′ − α
,

and sup
n∈N
√

ne−(α′−α)ne−α ≤ e−α

√
2e
√

α′ − α
≤ e−α

2
√

α′ − α
.

��

4 Strichartz Estimates in the Center of Mass Variable 

Here we review the celebrated results of Keel and Tao in [21] and adapt them to our 
framework. We shall use like those authors the short notations

• .a(z) � b(z) for the uniform inequality 

. ∀z ∈ Z , a(z) ≤ Cb(z) ,

where C is a constant which depends only on the following data: the dimension 
d or the free one particle evolution on . Rd ;

• for .1 ≤ p, q ≤ +∞ , various uses of the general notation .Lp
x L

q
y introduced in 

Definition 3.2 will be specified;

• except in specified cases, .Lp
x is used for .2 ≤ p ≤ +∞ while .Lp′

x is used 
for .1 ≤ p′ ≤ 2 .
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4.1 Endpoint Strichartz Estimates 

Keel and Tao’s results about endpoint Strichartz estimates (see [21]) written with 
uniform inequalities, obviously induce a parameter dependent version which will 
be needed. They start with a time-dependent operator . U(t) : hin → L2

x =
L2(X,dx;C) where .t ∈ R and .hin is a (separable) Hilbert space of initial data. 
We rather consider a parameter dependent operator .U(t, z1) : hin → L2

x defined for 
.(t, z1) ∈ R× Z1 such that 

. ‖U(t, z1)f ‖L2
x
� ‖f ‖hin , . (42)

‖U(t,  z1)U
∗(s, z)g‖L∞x �

‖g‖L1 
x 

|t − s|σ for all t �= s , (43) 

while .U∗(t, z1) may be defined only on a dense set of . L1
x . 

On the measured space .(Z1,dz1) the map .(t, z1) �→ U(t, z1)f ∈ L2
x is assumed 

measurable for all .f ∈ hin and .U(t) : Lw(Z1,dz1; hin) → Lw
z1

L2
x , where 

.Lw
z1

L2
x = Lw(Z1,dz1;L2(X,dx)) here, is defined by pointwise multiplication 

.(U(t)f )(z1) = U(t, z1)f (z1) . 
The set of sharp .σ -admissible space-time exponents is given by 

. q, r ≥ 2
1

q
+ σ

r
= σ

2
,

and the dual exponents are denoted by .q ′, r ′ , . 1
q
+ 1

q ′ = 1 , . 1
r
+ 1

r ′ = 1 with . 1 ≤
q ′, r ′ ≤ 2 , . 1

q ′ + σ
r ′ = σ+2

2 . 
We will consider cases where .σ > 1 and the endpoint Strichartz estimates 

for .P = (2, 2σ
σ−1 ) holds true. The results for sharp .σ -admissible pairs .(q, r) and 

.(q̃, r̃) are:

• the homogeneous estimate 

.‖U(t)f ‖Lw
z1

L
q
t Lr

x
� ‖f ‖Lw(Z1,dz1;hin)

; (44)

• the inhomogeneous estimate 

.‖
∫

U(s)∗F(s) ds‖Lw(Z1,dz1;hin) � ‖F‖Lw
z1

L
q̃′
t Lr̃′

x

; (45)

• the retarded estimate 

.‖
∫

s<t

U(t)U(s)∗F(s) ds‖Lw
z1

L
q
t Lr

x
� ‖F‖

Lw
z1

L
q̃′
t Lr̃′

x

, (46) 

where .s < t can be replaced by .s > t .
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Keel and Tao’s results are written in [21] with .Z1 = {z0} and .dz1 = δz0 , but the  
uniform inequalities with respect to .z1 ∈ Z1 can be integrated afterwards for data 
in .Lw

z1
. 

By requiring .σ > 1 , the endpoint estimate allows to take .q = q̃ ′ = 2 with the 
endpoint exponents .rσ = 2σ

σ−1 and .r ′σ = 2σ
σ+1 . This is a very convenient framework 

for fixed point and bootstrap method in our linear setting. 
Below are the typical inequalities which will be used. In our applications like in 

Sect. 3.3, the vaccuum sector plays a separate role and it is convenient to use the 
general Definition 3.2 for . Lw

z L
q
x

. N = {0, 1} , Z = Z0 � Z1

and X0 = {0} , X1 = X , dx0 = δ0 , dx1 = dx .

In particular the spaces .L2
zL

q
x for .1 ≤ q ≤ ∞ equal 

.L2
zL

q
x = L2(Z0,dz0)⊕ L2(Z1,dz1;L2(X,dx)) = L2

z0︸︷︷︸
vacuum

⊕L2
z1

L2
x . (47) 

At this level the action of the dynamics .U(t)U(s)∗ is considered only on the . Lw
z1

L
q
x

component . 

Proposition 4.1 Consider .L2
zL

q
x = L2

z0
⊕ L2

z1
L2

x like in (47) and according to 
Definition 3.2. 

Assume that there is a dense Banach space D in .L2
z1,x
= L2

z1
L2

x such that . D ⊂
L2

z1
L

rσ
x and .U(t)U(s)∗u ∈ L2

z1
L

rσ
x is measurable with respect to .t, s ∈ R for all . u ∈

D with the uniform estimate .‖U(t)U(s)∗u‖L2
z1

L
rσ
x

� ‖u‖D for almost all .t, s ∈ R . 

Assume that the bounded operator .B∗t,s : L2
zL

2
x → L2

z1
L

r ′σ
x and its adjoint . Bt,s :

L2
z1

L
rσ
x → L2

zL
2
x are strongly measurable with respect to . (t, s) ∈ [0, T ] × [0, T ]

with the assumption 

. sup
t∈[0,T ]

∫ T

0
‖B∗t,s‖2 ds < +∞ , ‖B∗t,s‖ = ‖B∗t,s‖L2

z1
L

r′σ
x ←L2

zL
2
x

, . (48) 

resp. sup 
s∈[0,T ]

∫ T 

0
‖Bt,s‖2dt < +∞ , ‖Bt,s‖ = ‖Bt,s‖L2 

zL
2 
x←L2 

z1 
L rσ 

x . (49) 

The operator . A∗T (resp. . AT ) defined by 

. [A∗T f ](t) = 1Z1(z)

∫ T

0
U(t)U(s)∗B∗t,sf (s) ds , . (50) 

resp. [AT f ](t) =
∫ T 

0 
Bt,sU(t)U(s)∗1Z1(z)f (s) ds , (51)
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acts continuously on .L∞([0, T ];L2
zL

2
x) (resp. extends as a continuous operator on 

.L1([0, T ];L2
zL

2
x)) with 

. RanA∗T ⊂ L∞([0, T ];L2
z1,x

) , Ker (AT ) ⊃ L1([0, T ];L2
z0

) , (52) 

. ‖(A∗T )n‖L(L∞([0,T ];L2
zL

2
x))

�
(

sup
tn+1∈[0,T ]

∫

[0,T ]n
‖B∗tn+1,tn

‖2 . . . ‖B∗t2,t1‖2 dt1 · · · dtn

)1/2

, . 

(53) 

resp. ‖(AT )
n‖L(L1([0,T ];L2 

zL
2 
x))

�
(

sup 
t0∈[0,T ]

∫

[0,T ]n
‖Btn,tn−1‖2 . . . ‖Bt1,t0‖2 dt1 · · ·  dtn

)1/2 

, 

(54) 

for all non zero .n ∈ N . 
When .B�

t,s = B
�
t,s1s<t or .B

�
t,s = B

�
t,s1s>t (.B� = B∗ resp. .B� = B), the domain 

of integration .[0, T ]n can be replaced by the corresponding n-dimensional simplex 
.0 < t1 < . . . < tn < T or .T > t1 . . . > tn > 0 . 

Remark 4.1 The dense subspace D is introduced in order to get a dense domain 
of .L1([0, T ];L2

z1,x
) where .AT is well defined by its integral formula. The 

extension to the whole space .L1([0, T ];L2
z1,x

) is proved by using the fact that 
.L∞([0, T ];L2

z1,x
) is the dual of .L1([0, T ];L2

z1,x
) and it cannot be done in the other 

way. 
Examples where the dense subset D is easy to construct are when 

.L2(X,dx;C) = L2(Rd , dx;C) and . U(t)U(s)∗ : Hμ(Rd ;C) → Hμ(Rd ;C)

are measurable and uniformly bounded w.r.t. .t, s ∈ R for some .μ > d/2 . In this  
simple case, the set D can be .L2(Z1,dz1;Hμ(Rd ;C)) with .μ > d

2 . 

Proof Let us start with .A∗T . When .f ∈ L∞([0, T ], dt;L2
zL

2
x) the function . 1[0,T ]f

belongs to .L2
zL

2
t,x and, for almost all .t0 ∈ [0, T ] , the function . (z, s, x) �→

B∗t0,s1[0,T ](s)f (s) belongs to .L2
z1

L2
sL

r ′σ
x . The inhomogeneous endpoint Strichartz 

estimate implies for almost all . t0 ∈ [0, T ]

. ‖A∗T f (t0)‖2L2
zL

2
x
�
∫ T

0
‖B∗t0,sf (s)‖2

L2
z1

L
r′σ
x

ds

�
( ∫ T

0
‖B∗t0,s‖2 ds

)
‖f ‖2

L∞([0,T ];L2
zL

2
x)

. (55)
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This proves firstly that .A∗T acts continuously on .L∞([0, T ];L2
zL

2
x) . The property 

.Ran A∗T ⊂ L∞([0, T ];L2
z1,x

) comes from the assumption . B∗t,s : L2
zL

2
x →

L2
z1

L
r ′σ
x and the redundant multiplication by .1Z1(z) in (50). Secondly iterating (55) 

with .(t0, s) = (tn+1, tn) leads to (53) . 
Consider now .AT f when .f = 1Z1(z)f ∈ L1([0, T ];L2

z1,x
) . For  f in the 

dense subspace .L1([0, T ];D) of .L1([0, T ];L2
z1,x

) , our assumptions ensure that 
.AT f belongs to .L∞([0, T ];L2

zL
2
x) ⊂ L1([0, T ];L2

zL
2
x) with 

. ‖AT f ‖L1([0,T ];L2
zL

2
x) � CT ‖f ‖L1([0,T ];D) .

With 

. 

∫ T

0
〈v(t) , AT f (t)〉 dt =

∫ T

0
〈1Z1(z)

∫ T

0
U(s)U∗(t)B∗t,sv(t) dt , f (s)〉 ds

=
∫ T

0
〈(Ã∗T v)(s) , f (s)〉 ds ,

where .B∗t,s has simply been replaced by .B∗s,t in 

. Ã∗T v(t) = 1Z1(z)

∫ T

0
U(t)U(s)∗B∗s,t v(s) ds ,

we obtain 

. ∀v ∈ L∞([0, T ];L2
zL

2
x) ,

|〈v , AT f 〉| �
(∫ T

0
‖Bs,t‖2 ds

)1/2

‖v‖L∞([0,T ];L2
zL

2
x)‖f ‖L1([0,T ];L2

z1,x ) ,

while .L∞([0, T ];L2
zL

2
x) = (L1([0, T ];L2

zL
2
x))
′ . 

This proves that .AT extends as a continuous operator from . L1([0, T ];L2
z1,x

)

to .L1([0, T ];L2
zL

2
x) and the formula contains the extension by 0 on .L1([0, T ];L2

z0
) , 

with .L1([0, T ];L2
zL

2
x) = L1([0, T ];L2

z0
) ⊕ L1([0, T ];L2

z1,x
) . Its adjoint is 

.Ã∗T : L∞([0, T ];L2
zL

2
x) → L∞([0, T ];L2

zL
2
x) . The estimate (53) for .Ã∗T with 

.(‖B∗t,s‖, tk) replaced by .(‖B∗s,t‖ = ‖Bs,t‖, tn+1−k) yields (54) . ��
Note that when .B�

t,s = B
�
t,s1t>s or .B�

t,s = B
�
t,s1t<s with .‖B�

t,s‖ ≤ β , the upper 
bounds of (53) and (54) are below 

.

(
(β2T )n

n!
)1/2

�
(

eβ2T

n

)n/2

.
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This gives a hint of times scales with respect to . β , e.g. when .β2T ≤ C here, where 
iterative methods lead to convergent series or the associated fixed point methods can 
be used. We will use some refined versions of the scaling rule .β2T ≤ C . Although 
the .Lp

t spaces estimates are written with .p = +∞ and .p = 1 , this scaling really 
relies on the endpoint Strichartz estimate with .p = 2 . 

We complete our general corollaries of endpoint Strichartz estimates with a result 
which combines the action of operators like .Bt,s and .B∗t,s in Proposition 4.1. 

Proposition 4.2 Let .I,J be at most countable families of disjoint finite intervals, 
and set .UI = �I∈II and .UJ = �I∈JJ . For a given . ϕ∞ ∈ L∞(UJ ;L2

zL
2
x)

consider 

. ϕ1,I (t) = 1I (t)
∑

J∈J

∫ t

0
B1,IJ U(t)U(s)∗B∗2,IJ (s)ϕ∞,J (s) ds

with ϕ∞,J (s) = ϕ∞(s)1J (s) ,

and ‖B1,IJ ‖L2
zL

2
x←L2

z1
L

rσ
x
≤ β1,IJ , sup

s∈J
‖B∗2,IJ (s)‖

L2
z1

L
r′σ
x ←L2

zL
2
x

≤ β2,IJ ,

where .B1,IJ : L2
z1

L
rσ
x → L2

zL
2
x does not depend on .(t, s) ∈ I × J while 

.B∗2,IJ (s) : L2
zL

2
x → L2

z1
L

r ′σ
x does not depend on the time variable .t ∈ I and is 

strongly measurable with respect to .s ∈ J . Then the function . ϕ1 = ∑
I∈I ϕ1,I

belongs to .L1(UI, dt;L2
zL

2
x) with 

. ‖ϕ1‖L1(UI,dt;L2
zL

2
x) �

⎡

⎢
⎢
⎣

∑

I ∈ I, J ∈ J
inf J < sup I

|I |1/2β1,IJ β2,IJ |J |1/2

⎤

⎥
⎥
⎦ ‖ϕ∞‖L∞(UJ,dt;L2

zL
2
x) ,

as soon as .
[∑

I∈I,J∈J 1]0,+∞[(sup I − inf J )|I |1/2β1,IJ β2,IJ |J |1/2
]

< +∞ . 

Proof Every term of .ϕ1,I can be written 

. ψIJ (t) = B1,IJ

∫ t

0
U(t)U(s)∗φ2,IJ (s) ds

where .φ2,IJ = B∗2,IJ (·)ϕ∞,J (·) ∈ L2(R;L2
z1

L
r ′σ
x ) satisfies .φ2,IJ = 0 if . inf J ≥

sup I , and 

.‖φ2,IJ ‖
L2(R,dt;L2

z1
L

r′σ
x )
≤ |J |1/2β2,IJ ‖ϕ∞,J ‖L∞(J,dt;L2

zL
2
x)

≤ |J |1/2β2,IJ ‖ϕ∞‖L∞(UJ,dt;L2
zL

2
x) .
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The retarded endpoint Strichartz estimate with .‖B1,IJ ‖L2
zL

2
x←L2

zL
rσ
x
≤ β1,IJ implies 

. ‖ψIJ ‖L2(I,dt;L2
zL

2
x) � 1]0,+∞[(sup I − inf J )β1,IJ β2,IJ |J |1/2‖ϕ∞‖L∞(UJ,dt;L2

zL
2
x)

and therefore 

. ‖ψIJ ‖L1(I,dt;L2
zL

2
x)

�
[
1]0,+∞[(sup I − inf J )|I |1/2β1,IJ β2,IJ |J |1/2

]
‖ϕ∞‖L∞(UJ,dt;L2

zL
2
x) .

The finiteness of .
∑

I∈I,J∈J
[
1]0,+∞[(sup I − inf J )|I |1/2β1,IJ β2,IJ |J |1/2

]
ensures 

that .ϕ1,I =∑J∈J ψIJ belongs to .L1(I, dt;L2
zL

2
x) and finally 

. ‖ϕ1‖L1(UI,dt;L2
zL

2
x)

=
∑

I∈I
‖ϕ1,I‖L1(I,dt;L2

zL
2
x)

�
∑

I∈I,J∈J

[
1]0,+∞[(sup I − inf J )|I |1/2β1,IJ β2,IJ |J |1/2

]

‖ϕ∞‖L∞(UJ,dt;L2
zL

2
x) .

��

4.2 Fixed Point in Weighted Spaces 

In this section, we apply the general framework of Strichartz estimates for evolution 
equations in the spaces 

. F 2 = L2(Z′,dz’;�(L2(Rd , dy;C)))

= L2(Z′,dz’;C)⊕ L2
sym(R× Z′, dμ⊗ dz’;L2(Rd , dyG;C)) .

The measured space of parameters .(Z′,dz’) will be specified later and by following 
the notations of Definition 3.2 and (47) for the application of Strichartz estimates, 
we write 

. Z0 = Z′ , Z1 = R× Z′ , dz0 = dz’ , dz1 = μ⊗ dz’ ,

X0 = {0} , X1 = R
d , dx0 = δ0 , dx = dyG ,

F2 = L2
z,symL2

yG
= L2

z0
⊕ L2

z1,symL2
yG
= L2

z0
⊕ L2

(Y ′,z′),symL2
yG

, (56)
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where the second variable .x ∈ X = X0 � X1 has been replaced by . yG in order to 
recall its link with the center of mass on the non vacuum sector. 

We will use the .Lp
yG

,.1 ≤ p ≤ +∞ , version 

. L2
z,symL

p
yG
= L2

z0
⊕ L2

(Y ′,z′),symL
p
yG

with z1 = (Y ′, z′) .

In all the above identities the subscript .sym refers to the symmetry for the relative 
variable .Y ′ ∈ R . Because the symmetry is preserved by all our defined operators, 
this subscript will be forgotten when we write estimates. 

Only the useful conditions on the “free dynamics” .U(t) , or more precisely 
.U(t)U(s)∗ : F 2 → F 2 will be specified. Those will be checked for our model 
later in Sect. 5. The free dynamics or more precisely .U(t)U(s)∗ : F 2 → F 2 is 
assumed to preserve the number of particles 

. [U(t)U(s)∗, N] = 0

with the following decomposition: 

.U(t)U(s)∗ = (K0(t, z
′)K0(s, z′)×z′)⊕ (U1(t, Y

′, z′)U∗1 (s, Y ′, z′)×(Y ′,z′)). 
(57) 

in F 2 = L2(Z′,dz’; C)
︸ ︷︷ ︸
=L2 

z0 
(vacuum) 

⊕ L2 
sym(R× Z′, dμ⊗ dz’;L2(Rd , dyG; C))
︸ ︷︷ ︸

=L2 
(Y ′,z′),sym 

L2 
yG 

, (58) 

where .×z′ or .×(Y ′,z′) stands for the pointwise multiplication. So the operator 
.U1(t, Y

′, z′)U∗1 (s, Y ′, z′) is a one particle operator acting in the .yG-variable, 
parametrized by .z1 = (Y ′, z′) and we add the following conditions which make 
the results of Sect. 4.1 relevant:

• The measured space .(X1,dx1) is nothing but .(Rd , dyG) in the center of mass 
variable and the .z1 = (Y ′, z′)-dependent one particle operators . U1(t, z1) : hin →
L2(Rd , dyG;C) and its adjoint are assumed to satisfy the estimate (42)(43) with 
.σ > 1 . Remember .r ′σ = 2σ

σ+1 and .rσ = 2σ
σ−1 .

• The additional assumption of Proposition 4.1 concerned with the dense subset D 
is also assumed for .U1(t, z1) .

• The vacuum component . K0 belongs to .L∞(R× Z′, dt ⊗ dz’;C) . 

The interaction terms will be 

. B∗t,s = c1(t, s)e
α(t,s)N

√
ha∗G(V1)e

−α′(t,s)N

and Bt,s = c2(t, s)
√

heα(t,s)NaG(V2)e
−α′(t,s)N

with .V1, V2 ∈ Lr ′σ (Rd , dy;C) (complex valued V are allowed here) and where . c1 , 
. c2 , . α and . α′ are real measurable functions of .(t, s) ∈ [0, T ]2 with .α − α′ < 0 .
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Those will be specified further and we shall check the estimates (48)(49). Because 
.Z0 = Z′ corresponds to the vacuum sector, .N = 0 , on which .aG(V ) vanishes 
while the range of .aG(V )∗ lies in the non vacuum sector .N ≥ 1 , the range .B∗t,s lies 

naturally in .L2
z1

L
r ′σ
yG

, .z1 = (Y ′, z′) , once the proper estimates are checked while it 
adjoints .Bt,s sends .L2

z1
L

rσ
yG

into .L2
zL

2
yG

and is naturally extended by 0 on the vacuum 

sector .L2
z0

. 
We will consider the following system 

.uh∞(t) = −i

∫ t

0
U(t)U∗(s)

(√
ha∗G(V1)u

h∞(s)+√huh
2(s)+ uh

1(s)
)
ds+f h∞(t) , . 

(59) 

uh 
2(t) = −i

∫ t 

0 
aG(V2)U(t)U(s)∗

√
huh 

2(s) ds +f h 
2 (t) , . 

(60) 

uh 
1(t) = −i

∫ t 

0 
aG(V2)U(t)U(s)∗

(
ha∗G(V1)u

h∞(s)+√huh 
1(s)

)
ds +f h 

1 (t) . 

(61) 

written shortly as 

.∀q ∈ {∞, 2, 1}, uh
q =

∑

p∈{∞,2,1}
Lqp(uh

p) + f h
q (62) 

or 

.

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠ = L

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠+
⎛

⎝
f h∞
f h

2
f h

1

⎞

⎠ , L =
⎛

⎝
L∞∞ L∞2 L∞1

0 L22 0
L1∞ 0 L11

⎞

⎠ . (63) 

This system will be studied in spaces with the number weight .eαN and we will use 
the following functional spaces. 

Definition 4.3 For .T > 0 , .h ∈]0, h0[ , . Ih
T denotes the interval .Ih

T =]−T/h, T /h[ . 
Fix .α0, α1 ∈ R , .α0 < α1 and set .Mα01 = max(eα1 ,e−α0 )

2 ≥ 1/2 . 

Assume .V1, V2 ∈ Lr ′σ (Rd , dy;C) with .max(‖V1‖Lr′σ , ‖V2‖Lr′σ ) < CV . 
For a parameter .γ > 0 and .α ∈ [α0, α1[ set 

.Tα = γ (α1 − α) .
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The space .Eh
α0,α1,γ

is the set of .(e−α0NL2
z,symL2

yG
)3-valued measurable functions 

. Ih
Tα0
� t �→

⎛

⎝
u∞(t)

u2(t)

u1(t)

⎞

⎠

such that for all . α in .[α0, α1[ , 

. |t |−1/2u∞ ∈ L∞(Ih
Tα

, dt; e−αNL2
zL

2
yG

) ,

u2 ∈ L2
loc(I

h
Tα

, dt; e−αNL2
zL

2
yG

) ,

|t |−1/2u1 ∈ L1
loc(I

h
Tα

, dt; e−αNL2
zL

2
yG

) .

and .M(u∞, u2, u1) < +∞ with 

.M(u∞, u2, u1) = M∞(u∞)+M2(u2)+M1(u1) , . (64) 

M∞(u∞) = sup 
α0≤α<α1

∥
∥
∥
∥
∥

(
Tα − |ht | 
|ht |

)1/2 

eαN u∞

∥
∥
∥
∥
∥

L∞(Ih 
Tα
;L2 

zL
2 
yG ) 

, . (65) 

M2(u2) = 1 

Mα01CV γ 1/2 sup 
α0≤α<α1 
τ∈[0,Tα[

√
Tα − τ

∥
∥
∥eαN u2

∥
∥
∥

L2(Ih 
τ ;L2 

zL
2 
yG ) 

, . 

(66) 

M1(u1) = 1 

Mα01CV γ 1/2 sup 
α0≤α<α1 
τ∈[0,Tα[

√
Tα − τ

∥
∥
∥
∥
eαN u1√|ht |

∥
∥
∥
∥

L1(Ih 
τ ;L2 

zL
2 
yG ) 

. 

(67) 

Endowed with the norm .M(u∞, u2, u1) , .Eh
α0,α1,γ

is a Banach space for all . h ∈
]0, h0[ . The .α-dependent time domain .Ih

Tα
where weighted .L∞t , . L2

t and . L1
t norms 

are evaluated is illustrated in Fig. 1. 
The constants .CV > 0 and .Mα01 = max(eα1 , e−α0)/2 ≥ 1/2 were chosen so 

that Proposition 3.4 applied with .q ′ = r ′σ and . p′ = 2 , gives  

. ‖eαNa∗G(V )e−α′Nϕ‖
L2

z1
L

r′σ
yG

≤ CV eα′

2
√

α′ − α
‖ϕ‖L2

zL
2
yG
≤ Mα01CV√

α′ − α
‖ϕ‖L2

zL
2
yG

,

‖eαNaG(V )e−α′Nϕ‖L2
zL

2
yG
≤ CV e−α

2
√

α′ − α
‖ϕ‖L2

z1
L

rσ
yG
≤ Mα01CV√

α′ − α
‖ϕ‖L2

zL
rσ
yG

,

for all .α, α′ ∈ [α0, α1[ , .α < α′ .
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00 

0 

1 

Fig. 1 The time interval .Ih
Tα
=
]
− γ (α1−α)

h
,

γ (α1−α)
h

[
according to . α

Finally the normalization of (66) and (67) was chosen in order to make the 
contraction statement simple. 

Proposition 4.3 Assume that the free dynamics . U1(t, z1) : hin → L2(Rd , dyG;C)

satisfies (42)(43) (uniformly w.r.t. .z ∈ Z) with .σ > 1 and the additional existence 
of the dense subset D assumed in Proposition 4.1. 

Let .h0 > 0 , .α0, α1 ∈ R , .α0 < α1 and .V1, V2 ∈ Lr ′σ (Rd , dy;C) be fixed. The 
positive constants .Mα01, CV , the space .Eh

α0,α1,γ
and its norm M are the ones of 

Definition 4.3. By choosing the parameter .γ > 0 small enough the linear operator 
L given by (63) is a contraction of the Banach space .(Eh

α0,α1,γ
,M) for all . h ∈]0, h0[

and the system (63), explicitely written (59)(60)(61), admits a unique solution for 
any .(f h∞, f h

2 , f h
1 ) ∈ Eh

α0,α1,γ
. 

More precisely there exists a constant .Cd,U determined by the dimension d and 
the free dynamics U , given by the pair . K0 and . U1 , such that 

. ∀h ∈]0, h0[ , ‖L‖L(Eh
α0,α1,γ ) ≤ Cd,UMα01CV γ 1/2 .

Taking e.g. .γ = 1
2C2

d,U M2
α01C

2
V

ensures .‖L‖L(Eh
α0,α1,γ

) ≤ 1
2 so that the solution to (63) 

satisfies 

. M(uh∞, uh
2, uh

1) ≤ 2M(f h∞, f h
2 , f h

1 ) .

Proof The non-vanishing entries of .L
(

u∞
u2
u1

)
, namely 

. L∞∞(u∞) , L∞2(u2) , L∞1(u1) , L22(u2) , L11(u1) and L1∞(u∞)

will be considered separately in this order of increasing difficulty. Additionally the 
symmetry .t �→ −t allows us to restrict the analysis to .t ≥ 0 , that is . t ∈ [0, Tα

h
[

for .α ∈ [α0, α1[ . Accordingly . Ih
T is, in this proof, the restricted interval .[0, T

h
[ .



Waves in a Random Medium: Endpoint Strichartz Estimates and Number Estimates 39

We use like in Sect. 4 the symbol . � for inequalities with constants which depend 
only on the dimension d and the free dynamics U . 
.L∞∞(u∞) For this term and up to the square root and the parameter .h ∈]0, h0[, 
we follow exactly the method of [23] for Cauchy-Kowalevski theorem. Write 
for .t ∈]0, Tα/h[, .ht ∈]0, Tα[ , .α < α1 − ht

γ
, and 

. 

(
Tα − ht

ht

)1/2

eαNL∞∞(u∞)(t)

= −i

∫ Tα/h

0
U(t)U(s)∗B∗t,s

(
Tαs − hs

hs

)1/2

eαsNu∞(s) ds

with 

.B∗t,s = 1s<t

(
Tα − ht

ht

)1/2

eαN
√

ha∗G(V )e−αsN

(
hs

Tαs − hs

)1/2

, (68) 

and .α < αs < α1 − hs
γ

. Hence .hs < Tαs and 

.

(
Tαs − hs

hs

)1/2

‖eαsNu∞(s)‖L2
zL

2yG
≤ M∞(u∞) (69) 

while .α < αs implies that .‖B∗t,s‖ = ‖B∗t,s‖L2
zL

r′σ
yG
←L2

zL
2
yG

satisfies 

. ‖B∗t,s‖2 ≤ h1s<t

M2
α01C

2
V

(αs − α)

(Tα − ht)(hs)

ht (Tαs − hs)
= h1s′<t ′

M2
α01C

2
V

(αs′/h − α)

(Tα − t ′)s′

t ′(Tαs′/h
− s′)

,

by setting .s′ = hs , .t ′ = ht . By choosing 

. αs = α1 + α − hs/γ

2
= α1 + α − s′/γ

2
,

we obtain 

. γ (αs − α) = γ (α1 − α)− s′

2
= Tα − s′

2
,

Tαs′/h
= γ (α1 − αs′/h) = γ (α1 − α)+ s′

2
, Tαs′/h

− s′ = Tα − s′

2
,

and 

.
(Tα − t ′)s′

(αs′/h − α)t ′(Tαs′/h
− s′)

= 4γ
(Tα − t)s′

t ′(Tα − s′)2
.
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This yields 

. 

∫ Tα/h

0
‖B∗t,s‖2 ds ≤ 4γM2

α01C
2
V

Tα − t ′

t ′

∫ t ′

0

s′

(Tα − s′)2 ds′ ≤ 4γM2
α01C

2
V .

(70) 

The inequalities (69) and (70) combined with the inequality (53) with .n = 1 of 
Proposition 4.1 imply 

. 

∥
∥
∥
∥
∥

(
Tα − ht

ht

)1/2

eαNL∞∞(u∞)

∥
∥
∥
∥
∥

L∞([0,Tα/h];L2
zL

2
yG

)

� 2γ 1/2Mα01CV M∞(u∞) .

(71) 

.L∞2(u2) The Cauchy-Schwarz inequality applied to 

. 

√
Tα − ht

ht
eαNL∞2(u2)(t) = −i

√
Tα − ht

1√
t

∫ t

0
U(t)U(s)∗eαNu2(s) ds ,

imply 

. 

∥
∥
∥

√
Tα − ht

ht
eαNL∞2(u2)(t)

∥
∥
∥

L2
zL

2
yG

≤ √Tα − ht
1√
t
‖eαNu2(s)‖L2

zL
1([0,t];L2

yG
)

≤ √Tα − ht‖eαNu2(s)‖L2([0,t];L2
zL

2
yG

)

≤ sup
τ∈]0,Tα[

√
Tα − τ‖eαNu2(s)‖L2([0,τ/h];L2

zL
2
yG

) .

Taking the supremum over .α ∈ [α0, α1[ yields 

.M∞(L∞2(u2)) � Mα01CV γ 1/2M2(u2). (72) 

.L∞1(u1) The expression 

.

√
Tα −ht

ht
eαNL∞1(u1)(t)=−i

√
Tα − ht

∫ t

0

√
hs√
ht

[
U(t)U(s)∗eαN 1√

hs
u1(s)

]
ds ,
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gives 

. 

∥
∥
∥
∥
∥

√
Tα − ht

ht
eαNL∞1(u1)(t)

∥
∥
∥
∥
∥

L2
zL

2
yG

≤ √Tα − ht‖eαN u1(s)√
hs
‖L1([0,t];L2

zL
2
yG

)

≤ sup
τ∈]0,Tα[

√
Tα − τ‖u1(s)√

hs
‖L1([0, τ

h
];L2

zL
2
yG

)

≤ Mα01CV γ 1/2M1(u1)

and 

.

∥
∥
∥

√
Tα − ht

ht
eαNL∞1(u1)

∥
∥
∥

L∞([0, Tα
h
];L2

zL
2
yG

)
≤ Mα01CV γ 1/2M1(u1) . (73) 

The entries .L22(u2), .L11(u1) and finally .L1∞(u∞) require some additional 
techniques. The proof, done in several steps for each of them, relies on a dyadic 
partition of the interval .[0, Tα[ around . Tα . In the two cases of .L22(u2) and .L11(u1) , 
the norms .M2(ϕ) and .M1(ϕ) are transformed into equivalent norms corresponding 
to this dyadic partition, the proof being given in Lemma 4.1 below. Finally the entry 
.L1∞(u∞) is treated via dyadic partitions around . Tα and 0 and happens to be a direct 
application of Proposition 4.2. 
Splitting the Interval .[0,T[ Fix .α ∈ [α0, α1[ and therefore .T = Tα . The intervals 
. Jn

T are defined for .n ∈ N by 

. Jn
T = T + 2−n[−T ,−T/2[= [(1− 2−n)T , (1− 2−n−1)T [ ,

J
≤n0
T = ∪

n≤n0
Jn

T for n0 ∈ N,

so that .[0, T ] = ∪n∈N Jn
T = J

≤n0
T ∪ (∪n>n0 Jn

T ) , see Figure 2. 
With the exponents 

. α′0 =
α1 + 6α

7
and α′n =

α1 + (2n+2 − 1)α

2n+2 for n ≥ 1

0 
0 

1 
1 

≤ 1  

Fig. 2 The time intervals . J n
T , .n ∈ N , with length . T

2n+1
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1 

1+ 
2 

1+3 
4 

0 
= 1+6 

7 

= 1+(2  
+2 −1)  

2 +2 

≤ 1  = ≤ 2  

0 

Fig. 3 The exponent . α′0 is determined by . 78 Tα′0 = 3
4 Tα while for .n > 1 , . α′n is determined by 

.Tα′n = (1− 2−n−1

2 )Tα = (1− 2−n−2)Tα . 

we note that 

. J
≤2
Tα′0
= 7

8
Tα′0 =

7

8

6

7
Tα = 3

4
Tα = J

≤1
Tα

,

and for n ≥ 1 Tα′n = Tα − 1

2

Tα

2n+1
= (1− 2−n−2)Tα .

By taking .δn = Tα

2n+2 and .2δn = Tα

2n+1 for .n > 1 , we obtain in particular 

. Jn
Tα
= [Tα − 4δn, Tα − 2δn[= [Tα′n − 3δn, Tα′n − δn[ with δn ≤

Tα′n
12

(n > 1)

as summarized in Fig. 3. 
The equivalence of norms 

.κ−1
2 N2,1(ϕ) ≤ N2,i (ϕ) ≤ κ2N2,1(ϕ) , 2 ≤ i ≤ 4 , (74) 

for some universal constant .κ2 > 1 is proved in Lemma 4.1 for 

.N2,1(ϕ) = sup
τ∈[0,T [

√
T − τ ‖ϕ‖L2([0, τ

h
];L2

zL
2
yG

) , . (75) 

N2,2(ϕ) = √T ‖ϕ‖
L2(J

≤1 
T/h;L2 

zL
2 
yG ) 
+ sup 

δ∈]0,T /8] 

√
δ ‖ϕ‖L2(h−1[T −2δ,T−δ];L2 

zL
2 
yG ) 

, . 

(76)
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N2,3(ϕ) = √T sup 
n∈N 

2−n/2 ‖ϕ‖L2(J n 
T/h;L2 

zL
2 
yG ) 

, . (77) 

N2,4(ϕ) = √T ‖ϕ‖
L2(J

≤2 
T/h;L2 

zL
2 
yG ) 
+ sup 

δ∈]0,T /12] 

√
δ ‖ϕ‖L2(h−1[T−3δ,T−δ];L2 

zL
2 
yG ) 

. 

(78) 

.L22(u2) For .α ∈ [α0, α1[, we seek an upper bound of .N2,1(ϕ) (with .T = Tα) for  

. ϕ(t) = eαNL22(u2)(t) = −i

∫ t

0
eαN
√

haG(V2)U(t)U(s)∗u2(s) ds .

By the equivalence of norms .N2,1 and .N2,3 this is the same as finding an upper 
bound for 

. 
√

Tα 2−n/2‖ϕ‖L2(h−1Jn
Tα
;L2

zL
2
yG

)

uniformly in both .α ∈ [α0, α1[ and .n ≥ 0 , or equivalently for 

. 
√

Tα‖ϕ‖L2(h−1J
≤1
Tα
;L2

zL
2
yG

)
and

√
Tα2−n/2‖ϕ‖L2(h−1Jn

Tα
;L2

zL
2
yG

) (n > 1) ,

with the same uniformity. 
For .t ∈ h−1J

≤1
Tα

we write 

. 
√

Tαϕ(t) = −i
√

TαeαNaG(V )e−α′0N
∫

s<t

U(t)U(s)∗
√

h w1(s) ds

with 

. w1(s) = eα′0N1
h−1J

≤1
Tα

(s)u2(s) = eα′0N1
h−1J

≤2
T
α′0

(s) u2(s) .

Then Proposition 3.4, the retarded Strichartz estimate (46) and the Cauchy-Schwarz 
inequality yield 

.

√
Tα‖ϕ‖L2(h−1J

≤1
Tα
;L2

zL
2
yG

)

�
√

Tα

CV Mα01√
α′0 − α

‖
∫

s<t

U(t)U(s)∗
√

hw1(s) ds‖
L2

zL
2
t (h
−1J

≤1
Tα
;Lrσ

yG
)

� CV Mα01
√

γ ‖√hw1‖L2
zL

1(h−1J
≤2
T
α′0
;L2

yG
)



44 S. Breteaux and F. Nier

� CV Mα01 
√

γ
√

Tα′0‖w1‖L2 
zL

2 
t (h
−1J

≤2 
T 
α′0 

;L2 
yG )

� CV Mα01 
√

γ
√

Tα′0‖eα′0u2‖L2 
t (h
−1J

≤2 
T 
α′0 

;L2 
zL

2 
yG ) 

. 

The equivalence between the norms .N2,1 and .N2,4 implies 

.

√
Tα‖ϕ‖L2(h−1J

≤1
Tα
;L2

zL
2
yG

)
� C2

V M2
α01γM2(u2) . (79) 

For .t ∈ h−1Jn
Tα

, .n > 1, write 

. 
√

Tα 2−n/2ϕ(t) =− i
√

Tα2−n/2eαNaG(V )e−α′0N
∫

s<t

U(t)U(s)∗
√

h w1(s) ds

− i
√

Tα2−n/2
n∑

m=2

eαNaG(V2)e
−α′mN

∫

s<t

U(t)U(s)∗
√

h wm(s) ds

︸ ︷︷ ︸
=ϕ̃

with for . m ≥ 2

. wm(s) = 1h−1Jm
Tα

(s)eα′mNu2(s) = 1
h−1

[
Tα′m−3δm,Tα′m−δm

](s)eα′mNu2(s) .

The first term is actually estimate as we did for (79) with the additional factor 
.2−n/2 ≤ 1 . It suffices to consider the application of Proposition 3.4, the retarded 
Strichartz estimate (46) and the Cauchy-Schwarz inequality to 

. 
√

Tα 2−n/2‖ϕ̃‖L2(h−1Jn
Tα
;L2

zL
2
yG)

�
√

Tα 2−n/2
n∑

m=2

CV Mα01√
α′m − α

∥
∥
∥
∥

∫

s<t

U(t)U(s)∗
√

hwm(s) ds

∥
∥
∥
∥

L2
zL

2
t (h
−1Jn

Tα
;Lrσ

yG
)

� CV Mα01
√

γ 2−n/2
n∑

m=2

2m/2
∥
∥
∥
√

hwm

∥
∥
∥

L2
zL

1
t (h
−1Jm

Tα
;L2

yG
)

� CV Mα01
√

γ 2−n/2
n∑

m=2

√
Tα ‖wm‖L2

zL
2
t (h
−1Jm

Tα
;L2

yG
) . (80)
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Thanks to the equivalence of the norms .N2,1 and .N2,4 (with .T = Tα′m ), we obtain 
for . m ≥ 2

. 
√

Tα ‖wm‖L2
zL

2
t (h
−1Jm

Tα
;L2

yG
)

= 2
m+2

2
√

δm

∥
∥
∥eα′mNu2(s)

∥
∥
∥

L2
t (h
−1
[
Tα′m−3δm,Tα′m−δm

]
;L2

zL
2
yG

)

� 2m/2CV Mα01
√

γM2(u2) . (81) 

Putting together (80) and (81) gives 

. 
√

Tα 2−n/2‖ϕ‖L2(h−1Jn
Tα
;L2

zL
2
yG

) � 2−n/2
n∑

m=0

2m/2C2
V M2

α01 γ M2(u2)

� C2
V M2

α01 γ M2(u2)

which, combined with (79) and the normalization of .M2(L22(u2)) , yields 

.M2(L22(u2)) � CV Mα01
√

γ M2(u2) . (82) 

The estimate of .L11(u1) starts with the same decomposition of the interval 
.[0, T /h] with the norms 

.N1,1(ϕ) = sup
τ∈[0,T [

√
T − τ

∥
∥
∥
∥

ϕ(t)√
ht

∥
∥
∥
∥

L1([0, τ
h
];L2

zL
2
yG

)

, . (83) 

N1,2(ϕ) =
∥
∥
∥
∥
∥

√
T 
ht 

ϕ

∥
∥
∥
∥
∥

L1(J
≤1 
T/h;L2 

zL
2 
yG ) 
+ sup 

δ∈]0, T 
8 ]

√
δ 
T
‖ϕ‖L1(h−1[T−2δ,T−δ];L2 

zL
2 
yG ) 

, . 

(84) 

N1,3(ϕ) =
∥
∥
∥
∥
∥

√
T 
ht 

ϕ

∥
∥
∥
∥
∥

L1(J
≤1 
T/h;L2 

zL
2 
yG ) 
+ sup 

n>1 
2−n/2 ‖ϕ‖L1(J n 

T/h;L2 
zL

2 
yG ) 

, . (85) 

N1,4(ϕ) =
∥
∥
∥
∥
∥

√
T 
ht 

ϕ

∥
∥
∥
∥
∥

L1(J
≤2 
T/h;L2 

zL
2 
yG ) 
+ sup 

δ∈]0, T 
12 ]

√
δ 
T
‖ϕ‖L1(h−1[T −3δ,T−δ];L2 

zL
2 
yG ) 

. 

(86) 

Those norms are equivalent according to 

.κ−1
1 N1,1(ϕ) ≤ N1,i (ϕ) ≤ κ1N1,1(ϕ) , 2 ≤ i ≤ 4 (87) 

with a universal constant .κ1 > 1. See Lemma 4.1 for the proof.
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.L11(u1)-Step 1, Decomposition of .L11(u1) For .α ∈ [α0, α1[ , we seek an upper 
bound of .N1,1(ϕ) for 

. ϕ(t) = eαNL11(u1)(t) = −i

∫ t

0
eαN
√

haG(V2)U(t)U(s)∗u1(s) ds .

By the equivalence of norms .N1,1 and .N1,3 this is the same as finding a uniform 
upper bound for 

. 

∥
∥
∥
∥
∥

(
Tα

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1J
≤1
Tα
;L2

zL
2
yG

)

and 2−n/2‖ϕ‖L1(h−1Jn
Tα
;L2

zL
2
yG

) for n > 1 .

Setting .ψ1(t) =
(

Tα

ht

)1/2
1
h−1J

≤1
Tα

(t)ϕ(t) and, for .n > 1, . ψn(t) = 2−n/21h−1Jn
Tα

(t)ϕ(t) gives 

. ψ1(t) = −i

∫ t

0

(
Tα

ht

)1/2

eαN
√

haG(V2)U(t)U(s)∗1
h−1J

≤1
Tα

(s)u1(s) ds ,

t ∈ h−1J
≤1
Tα

,

and, for .n > 1, 

. ψn(t) = −i

∫ t

0
2−n/2eαN

√
haG(V2)U(t)U(s)∗1

h−1J
≤1
Tα

(s)u1(s) ds

− i
∑

1<m≤n

∫ t

0

√
h2−n/2eαNaG(V2)U(t)U(s)∗1h−1Jm

Tα
(s)u1(s) ds

t ∈ h−1Jn
Tα

.

This allows to rewrite the above decomposition as 

.ψ1(t)
t≤ 3Tα

4h= −i

∫ 3Tα
4h

0
1[0,t](s)

√
Tα

Tα′0

√
hs

ht
eαN
√

haG(V2)e
−α′0N

︸ ︷︷ ︸
B11(t,s)

U(t)U(s)∗w1(s) ds ,
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and, for .n > 1, 

. ψn(t)
t∈h−1Jn

Tα=

− i

∫ Tα
h

0
1[0, 3Tα

4h
](s)2

−n/2eαN
√

haG(V2)e
−α′0N

√
hs

Tα′0︸ ︷︷ ︸
Bn1(t,s)

U(t)U(s)∗w1(s) ds

− i

n∑

m=2

∫ Tα
h

0
1[0,t]∩h−1Jm

Tα
(s)2−

n−m
2 eαN

√
haG(V2)e

−α′mN

︸ ︷︷ ︸
Bnm(t,s)

U(t)U(s)∗wm(s) ds ,

with .w1(s) = 1
h−1J

≤2
T
α′0

(s)

(
Tα′0
hs

)1/2

eα′0Nu1(s) and 

. wm(s)
m>1= 2−m/21h−1Jm

Tα
(s)eα′mNu1(s) = 2−m/21[ T

α′m−3δm

h
,
T
α′m−δm

h

](s)eα′mNu1(s) .

Proposition 4.1 tells us 

. ‖ψ1‖L1(h−1J
≤1
Tα
;L2

zL
2
yG

)
�

⎛

⎝ sup
s∈[0, 3Tα

4h
]

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt

⎞

⎠

1/2

‖w1‖L1(h−1J
≤2
T
α′0
;L2

zL
2
yG

)
,

and, for .n > 1, 

.‖ψn‖L1(h−1Jn
Tα
;L2

zL
2
yG

)

�

⎛

⎝ sup
s∈[0, 3Tα

4h
]

∫

h−1Jn
Tα

‖Bn1(t, s)‖2 dt

⎞

⎠

1/2

‖w1‖L1(h−1J
≤2
T
α′0
;L2

zL
2
yG

)

+
n∑

m=2

⎛

⎝ sup
s∈h−1Jm

Tα

∫

h−1Jn
Tα

‖Bnm(t, s)‖2 dt

⎞

⎠

1/2

‖wm‖
L1([

T
α′m−3δm

h
,
T
α′m−δm

h
];L2

zL
2
yG

)
.
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From the comparison between the norms .N1,1 and .N1,4 we know 

. ‖w1‖L1(h−1J
≤2
T
α′0
;L2

zL
2
yG

)
� sup

τ∈[0,Tα′0
[

√
Tα′0 − τ

∥
∥
∥
∥
∥
eα′0Nu1√

ht

∥
∥
∥
∥
∥

L1([0, τ
h
];L2

zL
2
yG

)

� Mα01CV γ 1/2M1(u1) ,

while for .m > 1 , 

. ‖wm‖
L1([

T
α′m−3δm

h
,
T
α′m−δm

h
];L2

zL
2
yG

)

�
(

Tα′m
δm

)1/2

2−m/2 sup
τ∈[0,Tα′m [

√
Tα′m − τ‖e

α′mNu1√
ht
‖L1([0, τ

h
];L2

zL
2
yG

)

�
(

Tα

Tα2−m−2

)1/2

2−m/2Mα01CV γ 1/2M1(u1)

� Mα01CV γ 1/2M1(u1) .

We have proved 

. 

supτ∈[0,Tα[
√

Tα − τ

∥
∥
∥ eαNL11(u1)√

ht

∥
∥
∥

L1([0, τ
h
];L2

zL
2
yG

)

Mα01CV γ 1/2M1(u1)

�

⎛

⎝ sup
s∈[0, 3Tα

4h
]

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt

⎞

⎠

1/2

+sup
n≥1

⎛

⎝ sup
s∈[0, 3Tα

4h
]

∫

h−1Jn
Tα

‖Bn1(t, s)‖2 dt

⎞

⎠

1/2

+ sup
n>1

n∑

m=2

⎛

⎝ sup
s∈h−1Jm

Tα

∫

h−1Jn
Tα

‖Bnm(t, s)‖2 dt

⎞

⎠

1/2

. (88) 

It remains to estimate every term of the above right-hand side. 
.L11(u1)-Step 2, Estimate for .B11 The expression 

. B11(t, s) = 1[0,t](s)
(

Tα

Tα′0

)1/2 (
hs

ht

)1/2

eαN
√

haG(V2)e
−α′0N

implies, with .Tα = γ (α1 − α) = 7γ (α′0 − α) , 

. ‖B11(t, s)‖2 ≤ Tα

Tα′0

7γ

Tα

M2
α01C

2
V h1[0,t](s)

hs

ht
≤ 7γM2

α01C
2
V

4hs

3Tα

1[0,t](s)
t

.
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We obtain 

. 

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt ≤ 7γM2

α01C
2
V

4hs

3Tα

ln(
3Tα

4hs
) .

and 

.

⎛

⎝ sup
s∈[0, 3Tα

4h
]

∫ 3Tα
4h

0
‖B11(t, s)‖2 dt

⎞

⎠

1/2

� γ 1/2Mα01CV . (89) 

.L11(u1)-Step 3, Estimate for .Bn1 , .n > 1 From 

. Bn1(t, s) = 1[0, 3Tα
4h
](s)2

−n/2eαN
√

haG(V2)e
−α′0N

(
hs

Tα′0

)1/2

we deduce with .α′0 − α = α1−α
7 = Tα

7γ
and .Tα′0 =

6Tα

7 , 

. ‖Bn1(t, s)‖2 ≤ 1[0, 3Tα
4h
](s)2

−n hM2
α01C

2
V

(α′0 − α)

(
3Tα/4

Tα′0

)

≤ 1[0, 3Tα
4h
](s)

2−n7γ h

Tα

M2
α01C

2
V .

With .Jn
Tα
= [(1− 2−n)Tα, (1− 2−n−1)Tα[ for .n > 1 we obtain 

. 

∫

h−1Jn
Tα

‖Bn1(t, s)‖2 dt ≤ 2−n−1Tα × 2−n7γ

Tα

M2
α01C

2
V ≤

7γ

4
M2

α01C
2
V .

and 

. sup
n>1

⎛

⎝ sup
s∈[0, 3Tα

4h
]

∫

h−1Jn
Tα

‖Bn1(t, s)‖2 dt

⎞

⎠

1/2

� γ 1/2Mα01CV . (90) 

.L11(u1)-Step 4, Estimate for the .Bnm’s, .n,m > 1 From 

.Bnm(t, s) = 1[0,t]∩h−1Jm
Tα

(s)2−(n−m)/2eαN
√

haG(V2)e
−α′mN
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and .α′m − α = 2−(m+2)(α1 − α) = 2−(m+2)Tα

γ
, we deduce 

. ‖Bnm(t, s)‖2 ≤ 1[0,t]∩h−1Jm
Tα

(s)2−(n−m) h2m+2γ

Tα

M2
α01C

2
V .

Using again that the length of .Jn
Tα

is .2−(n+1)Tα , we get 

. sup
s∈h−1Jm

Tα

∫

h−1Jn
Tα

‖Bnm(t, s)‖2 dt ≤ 2γ 2−2(n−m)M2
α01C

2
V

and 

. sup
n≥1

n∑

m=1

⎛

⎝ sup
s∈h−1Jm

Tα

∫

h−1Jn
Tα

‖Bnm(t, s)‖2 dt

⎞

⎠

1/2

� γ 1/2Mα01CV . (91) 

.L1∞(u∞)-Step 1, Decomposition of . L1∞(u∞)

Compared with the decomposition of .L22(u2) and .L11(u1) , an additional 
dyadic decomposition has to be done around 0 in order to absorb the weight . 1√

ht

properly and to use Proposition 4.2. Decompose now .[0, T ] = ∪n∈ZJn
T where . J 0

T

is now the interval .[T/4, T /2[ and .Jn
T = 2nJ 0

T for .n < 0 , according to figure 4. 

In particular, the interval previously denoted by . J 0
T is now .J≤0

T while .J≤n0
T is not 

changed for .n0 > 0 . 
We seek an upper bound of .N1,1(ϕ) for 

. ϕ(t) = eαNL1∞(u∞)(t) = −h

∫ t

0
eαNaG(V2)U(t)U(s)∗aG(V1)

∗u∞(s) ds .

0 
0 

1 
1 

0 

≤ 1  

≤ 0  

≤ 2  

Fig. 4 The time intervals . J n
T , .n ∈ Z .
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By the equivalence of norms .N1,1 and .N1,3 this is equivalent to proving a uniform 
upper bound for 

. 

∥
∥
∥
∥
∥

(
Tα

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1J
≤1
Tα
;L2

zL
2
yG

)

and 2−n/2‖ϕ‖L1(h−1Jn
Tα
;L2

zL
2
yG

) for n > 1 .

But the dyadic decomposition around 0 says 

. 

∥
∥
∥
∥
∥

(
Tα

ht

)1/2

ϕ

∥
∥
∥
∥
∥

L1(h−1J
≤1
Tα
;L2

zL
2
yG

)

≤ 2
∑

n≤1

‖2− n+1
2 ϕ‖L1(h−1Jn

Tα
;L2

zL
2
yG

)

= 2‖
∑

n≤1

2−
n+1

2 1h−1Jn
Tα

(t)ϕ‖
L1(h−1J

≤1
Tα
;L2

zL
2
yG

)
.

.L1∞(u∞)-Step 2, Estimate on . h-1Jn≤1Tα

We write .ϕ1 =∑n≤1 2− n+1
2 1h−1Jn

Tα
(t)eαNL1∞(u∞) =∑n≤1 ϕ1,n(t) where 

. ϕ1,n(t) =− h

1∑

m=−∞
2−

n+1
2 1h−1Jn

Tα
(t)

∫ t

0
eαNaG(V2)e

− α+α′0
2 N×

U(t)U(s)∗e
α+α′0

2 Na∗G(V1)e
−α′0N1h−1Jm

Tα
(s)eα′0Nuh∞(s) ds

=− h

1∑

m=−∞
1h−1Jn

Tα

∫ t

0
B1nU(t)U(s)∗B∗2m(s)ϕ∞,m(s) ds

with 

.B1n = 2−
n+1

2 eαNaG(V2)e
− α+α′0

2 N ,

‖B1n‖L2
zL

2
yG
←L2

zL
rσ
yG

�
Mα01‖V2‖Lr′σ√

α′0 − α
2−n/2 � Mα01CV γ 1/2

T
1/2
α1

2−n/2 ,

B∗2m = e
α+α′0

2 Na∗G(V1)e
−α′0N1h−1Jm

Tα
(s)

√
hs√

Tα − hs
,

‖B∗2m‖L2
zL

r′σ
yG
←L2

zL
2
yG

�
Mα01‖V1‖Lr′σ√

α′0 − α
2m/2 � Mα01CV γ 1/2

T
1/2
α

2m/2 ,

ϕ∞,m(s) = 1h−1Jm
Tα

(s)ϕ∞(s) , ϕ∞(s) = eα′0N
√

Tα − hs√
hs

u∞(s) .
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By noticing 

. |h−1Jn
Tα
| ≤ Tαh−12n

the upper bound of Proposition 4.2 gives 

. ‖ϕ1‖L1(h−1J
≤1
Tα
;L2

zL
2
yG

)

�

⎡

⎣
∑

−∞≤m≤n≤1

2n/2(Mα01CV γ 1/22−n/2)(Mα01CV γ 1/22m/2)

⎤

⎦

× ‖ϕ∞‖L∞(h−1J
≤1
Tα
;L2

zL
2
yG)

� M2
α01C

2
V γM∞(u∞) .

We proved 

.‖ 1√
ht

eαNL1∞(u∞)‖
L1(h−1J

≤1
Tα
;L2

zL
2
yG

)
� Mα01C

2
V γM∞(u∞) . (92) 

.L1∞(u∞)-Step 3, Estimate on .h-1JnTα
, . n>1

Write .ϕ1(t) = 2−n/21h−1Jn
Tα

(t)eαNL1∞(u∞) , where 

. ϕ1(t) =− h

1∑

m=−∞
2−

n
2 1h−1Jn

Tα
(t)

∫ t

0
eαNaG(V2)e

− α+α′0
2 NU(t)U(s)∗×

e
α+α′0

2 Na∗G(V1)e
−α′0N1h−1Jm

Tα
(s)eα′0Nuh∞(s) ds

− h

n∑

m=2

2−
n
2 1h−1Jn

Tα
(t)

∫ t

0
eαNaG(V2)e

− α+α′m
2 NU(t)U(s)∗×

e
α+α′m

2 Na∗G(V1)e
−α′mN 1h−1Jm

Tα
(s)eα′mNuh∞(s) ds

=− h

1∑

m=−∞
1h−1Jn

Tα
(t)

∫ t

0
B1nU(t)U(s)∗B∗2m(s)ϕ∞,m(s) ds

− h

n∑

m=2

1h−1Jn
Tα

(t)

∫ t

0
B1nmU(t)U(s)∗B∗2nm(s)ϕ∞,m(s) ds .

The family . I of Proposition 4.2 is made here of the single interval .h−1Jn
Tα

while the 

family .J =
{
h−1Jm

Tα
,m ≤ n

}
is splitted in two parts .m ≤ 1 and .2 ≤ m ≤ n . In the
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last two lines the notations correspond to 

. B1n = 2−
n
2 eαNaG(V2)e

− α+α′0
2 N ,

‖B1n‖L2
zL

2
yG
←L2

zL
rσ
yG

�
Mα01‖V2‖Lr′σ√

α′0 − α
2−n/2 � Mα01CV γ 1/2

T
1/2
α1

2−n/2 ,

m ≤ 1 B∗2m = e
α+α′0

2 Na∗G(V1)e
−α′0N 1h−1Jm

Tα
(s)

√
hs√
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r′σ
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2
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�
Mα01‖V1‖Lr′σ√

α′0 − α
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T
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2 eαNaG(V2)e

− α+α′m
2 N ,
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←L2
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rσ
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�
Mα01‖V2‖Lr′σ√

α′m − α
2−n/2 � Mα01CV γ 1/2

T
1/2
α1

2m/2−n/2 ,

m ≥ 2 B∗2nm = e
α+α′m

2 Na∗G(V1)e
−α′mN1h−1Jm

Tα
(s)

√
hs√

Tα − hs
,

m ≥ 2 ‖B∗2mn‖L2
zL

r′σ
yG
←L2

zL
2
yG

�
Mα01‖V1‖Lr′σ√

α′m − α
2m/2 � Mα01CV γ 1/2

T
1/2
α

2m ,

ϕm(s) = 1h−1Jm
Tα

(s)ϕ∞(s) ,

ϕ∞(s) = 1
h−1J

≤1
Tα

(s)eα′0N
√

Tα − hs√
hs

u∞(s)

+
∞∑

m=2

eα′mN1h−1Jm
Tα

(s)

√
Tα − hs√

hs
u∞(s) .

The size of the intervals are estimated respectively by .|h−1Jn
T α | � h−12−nTα and 

.|h−1Jm
Tα
| � h−12mTα for m ≤ 1 , |h−1Jm

Tα
| � h−12−mTα for m ≥ 2 .
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Proposition 4.2 gives 

. 

‖ϕ1‖L1(h−1Jn
Tα
;L2

zL
2
yG

)

‖ϕ∞‖L∞(h−1J
≤n
Tα
;L2

zL
2
yG

)

�

⎡

⎣
∑

−∞≤m≤1

2−n/2(Mα01CV γ 1/22−n/2)(Mα01CV γ 1/22m/2)2m/2

⎤

⎦

+
[

n∑

m=2

2−n/2(Mα01CV γ 1/22m/2−n/2)(Mα01CV γ 1/22m)2−m/2

]

� Mα01C
2
V γ .

With 

. ‖ϕ∞‖L∞(h−1J
≤n
Tα
;L2

zL
2
yG

) ≤ ‖ϕ∞‖L∞([0,Tα/h[;L2
zL

2
yG

) ≤ M∞(u∞) ,

we have proved 

. sup
n≥1

2−n/2‖eαNL1∞(u∞)‖L1(h−1Jn
Tα
;L2

zL
2
yG

) � Mα01C
2
V γM∞(u∞) . (93) 

Conclusion From (71), (72) and (73) we deduce 

.M∞(L∞∞(u∞)+L∞2(u2)+L∞1(u1)) � γ 1/2Mα01CV M(u∞, u2, u1) . (94) 

Combining (88), (89), (90), (91), and taking the supremum over .α ∈ [α0, α1[ yields 

. M1(L11(u1)) � γ 1/2Mα01CV M1(u1) ,

while (82) says 

. M2(L22(u2)) � CV Mα01
√

γM2(u2) .

Finally the upper bounds (92),(93) combined, firstly with the equivalence of 
norms .N11 and .N31 , and secondly the normalization of (67) of .M1 yields 

. M1(L1∞(u∞)) � γ 1/2Mα01CV M(u∞, u2, u1) .

The sum of all those inequalities is 

.M(L(u∞, u2, u1)) � γ 1/2Mα01CV M(u∞, u2, u1) ,



Waves in a Random Medium: Endpoint Strichartz Estimates and Number Estimates 55

which means that there exists a constant .Cd,U determined by the dimension d and 
the free dynamics U such that 

. ‖L‖L(Eh
α0,α1,γ ) ≤ Cd,UMα01CV γ 1/2 .

��
Lemma 4.1 The norms .Np,1, Np,2, Np,3, Np,4 defined in (75)(76)(77)(78) for . p =
2 (resp. (83)(84)(85)(86) for .p = 1) are equivalent according to (74) (resp. (87)). 

Proof We forget the notation .L2
zL

2
yG

because it is a time integration issue and it can 
be done with any Banach space valued functions. 

With the Definition (77) of .N2,3(ϕ) , the equality 

. ‖ϕ‖
L2(h−1J

≤1
T )
=
(
‖ϕ‖2

L2(h−1J 0
T )
+ ‖ϕ‖2

L2(h−1J 1
T )

)1/2

allows to replace .N2,3(ϕ) by the equivalent norm 

. 
√

T ‖ϕ‖
L2(h−1J

≤1
T )
+√T sup

n>1
2−n/2‖ϕ‖L2(h−1Jn

T )

For .p = 1 , the inequality 

. ∀t ∈ [3T

4h
,
T

h
[, 1

T
≤ 1

ht
≤ 4

3T

allows to replace the second term of the definitions (84) (85)(86) of .N1,2 , . N1,3
and .N1,4 , respectively by 

. sup
δ∈]0,T /8]

√
δ

∥
∥
∥
∥

ϕ√
ht

∥
∥
∥
∥

L1(h−1[T−2δ,T−δ[)
,

sup
n>1

√
T 2−n/2

∥
∥
∥
∥

ϕ√
ht

∥
∥
∥
∥

L1(h−1Jn
T )

,

sup
δ∈]0,T /12]

√
δ

∥
∥
∥
∥

ϕ√
ht

∥
∥
∥
∥

L1(h−1[T−3δ,T−δ[)
.
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Additionally the .supτ∈[0,T [ in the definitions (75)(83) can be replaced by 
.supτ∈[3T/4,T [ . We are thus led to compare the norms, for .p = 1, 2 , 

. Np,1,T ,h(ϕ) = sup
τ∈[3T/4,T [

√
T − τ

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp([0, τ
h
])

,

Np,2,T ,h(ϕ) = √T

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp(J
≤1
T/h)

+ sup
δ∈]0, T

8 ]

√
δ

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp(h−1[T−2δ,T−δ])
,

Np,3,T ,h(ϕ) = √T

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp(J
≤1
T/h)

+√T sup
n>1

2−n/2

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp(h−1Jn
T )

,

Np,4,T ,h(ϕ) = √T

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp(J
≤2
T/h)

+ sup
δ∈]0, T

12 ]

√
δ

∥
∥
∥
∥
∥

ϕ

(ht)
1
p
− 1

2

∥
∥
∥
∥
∥

Lp(h−1[T−3δ,T−δ])
.

The elementary homogeneity of those expressions gives 

. Np,i,T ,h(ϕ)= T

h1/p
Np,i,1,1(ϕ̃) with ϕ̃(t)=ϕ(ht) for p = 1, 2 and 1 ≤ i ≤ 4 ,

and it suffices to consider the case .T = h = 1 while setting .ψ = ϕ̃

t1/p−1/2 . 
For .τ ∈ [3/4, 1[ the identity 

. ‖ψ‖Lp([0,τ ]) =
(

‖ψ‖p
Lp(J

≤1
1 )
+ ‖ψ‖pLp([3/4,τ ])

)1/p

reduces the comparison of .Np,1,1,1(ϕ̃) , .Np,2,1,1(ϕ̃) and .Np,3,1,1(ϕ̃) to the compari-
son of 

. A1(ψ) = sup
τ∈[3/4,1[

√
1− τ ‖ψ‖Lp([3/4,τ ]) ,

A2(ψ) = sup
δ∈]0,1/8]

√
δ ‖ψ‖Lp[1−2δ,1−δ]) ,

A3(ψ) = sup
n>1

2−n/2 ‖ψ‖Lp(J n
1 ) .

Taking .τ = 1− δ , .δ ≤ 1/8 , in .A1(ψ) and .δ = 2−n−1 , . n > 1 , in .A2(ψ) gives 

.A3(ψ) ≤ √2A2(ψ) ≤ √2A1(ψ) .
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For .τ ∈ [3/4, 1[ there exists .nτ > 1 such that . τ ∈ [1 − 2−nτ , 1 − 2−nτ−1[= J
nτ

1
and 

. ‖ψ‖pLp([3/4,τ ]) =
nτ∑

n=2

‖ψ‖p
Lp(J n

1 )
≤

nτ∑

n=2

2np/2(2−n/2‖ψ‖Lp(J n
1 ))

p

≤ 2p(nτ+1)/2

2p/2 − 1
A3(ψ)p .

The inequality 

. (1− 2−nτ ) ≤ τ or
√

1− τ ≤ 2−nτ /2 ,

while taking the supremum over .τ ∈ [3/4, 1[ , implies 

. A1(ψ) ≤
√

2

(2p/2 − 1)1/p
A3(ψ) .

We have proved the equivalence 

. κ−1
p,1Np,1(ϕ) ≤ Np,i(ϕ) ≤ κp,1Np,1(ϕ) for p = 1, 2, i = 2, 3 ,

with a universal constant .κp,1 > 1 . 
It now suffices to compare .Np,2 and .Np,4 or equivalently .Np,2,1,1(ϕ̃) and 

.Np,4,1,1(ϕ̃) written with . ψ = ϕ̃

t1/p−1/2

. Np,2,1,1(ϕ̃) = ‖ψ‖
Lp(J

≤1
1 )
+ sup

δ∈]0,1/8]

√
δ‖ψ‖Lp([1−2δ,1−δ]) =: B2(ψ) ,

Np,4,1,1(ϕ̃) = ‖ψ‖
Lp(J

≤2
1 )
+ sup

δ∈]0,1/12]

√
δ‖ψ‖Lp([1−3δ,1−δ]) =: B4(ψ) .

For the first terms of .B2(ψ) and .B4(ψ) , 

. ‖ψ‖p
Lp(J

≤1
1 )
≤ ‖ψ‖p

Lp(J
≤2
1 )
= ‖ψ‖p

Lp(J
≤1
1 )
+ ‖ψ‖p

Lp(J 2
1 )

gives 

.‖ψ‖
Lp(J

≤1
1 )
≤ ‖ψ‖

Lp(J
≤2
1 )
≤ ‖ψ‖

Lp(J
≤1
1 )
+ sup

δ∈]0,1/8]
‖ψ‖Lp([1−2δ,1−δ]) .
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For the second terms of .B2(ψ) and .B4(ψ) , 

. 
√

δ‖ψ‖Lp([1−3δ,1−3δ/2]) ≤
√

δ‖ψ‖Lp([1−3δ,1−δ])

≤ √δ‖ψ‖Lp([1−3δ,1−3δ/2]) +
√

δ‖ψ‖Lp([1−2δ,1−δ])

leads to 

. (2/3)1/2 sup
δ∈]0,1/8]

√
δ‖ψ‖Lp([1−3δ,1−δ]) ≤ sup

δ∈]0,1/12]

√
δ‖ψ‖Lp([1−2δ,1−δ])

≤ 2 sup
δ∈]0,1/8]

√
δ‖ψ‖Lp([1−3δ,1−δ]) .

Adding the two terms yields the equivalences 

. κ−1
p,2B2(ψ) ≤ B4(ψ) ≤ κp,2B2(ψ)

and κ−1
p,2N2,2(ϕ) ≤ N2,4(ϕ) ≤ κp,2N2,2(ϕ)

for a universal constant .κp,2 > 1 . The proof ends by taking .κp = κp,1κp,2 > 1 . ��

5 Consequences of Strichartz Estimates for Our Model 
Problem 

The general results of Sect. 4 are applied to our model problem presented in 
Sect. 2.3. 

5.1 Validity of the General Hypotheses and Main Result 

Let us consider (20) 

.

{
i∂t f̂

h = (ξ − d�(Dy))
2f̂ h +√h[a(V )+ a∗(V )]f̂ ,

f̂ h(t = 0) = f̂ h
0 ,

(95) 

where .f̂ h(t) ∈ L2(Rd ×Z′′, dξ

(2π)d
⊗dz”;�(L2(Rd , dy;C))) , . ξ is the Fourier vari-

able of .x ∈ R
d and .z′′ ∈ Z′′ is a parameter, e.g. . L2(Z′′,dz”) = L2(Rd ,

dξ

(2π)d
;C)⊗

�(L2(Rd , dy;C)) when we want to handle the evolution of Hilbert-Schmidt 
operators on .L2(Rd ,

dξ

(2π)d
;C) ⊗ �(L2(Rd , dy;C)) as described in the end of
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Sect. 2.3. Our complete parameter is thus 

. z′ = (ξ, z′) ∈ R
d × Z′′ = Z′

and remember the writing introduced in Definition 3.2 and specified in (47) and (58) 

. L2(Rd ×Z′′, dξ

(2π)d
⊗dz;�(L2(Rd , dy;C))) = L2

z,symL2
yG
= L2

z0︸︷︷︸
vacuum

⊕L2
z1,symL2

yG

with .Z0 = Z′ , .Z1 = R ⊗ Z′ , where the subscript .sym refers to the symmetry for 
the relative coordinate variable .Y ′ ∈ R . 

Using the center of mass variable (see Sect. 3) by setting . t �→ uh
G(t) =

U−1
G f̂ h(t), (95) becomes 

.

{
i∂tu

h
G = (ξ −DyG

)2uh
G +
√

h[a∗G(V )+ aG(V )]uh
G ,

uh
G(t = 0) = uh

G,0 .
(96) 

In this context, the free dynamics .U(t) involved in (57) acts simply on .L2
zL

2
yG

and 
equals 

. U(t) = K0(t, z
′)⊕ U1(t, Y

′, z′) = (e−it |ξ |2×z′)⊕ (e−it (ξ−DyG
)2×(Y ′,z′))

where we recall .z0 = z′ ∈ Z′ and .z1 = (Y ′, z′) ∈ R× Z′ . Because . ‖e±iξ ·yϕ‖Lp
y
=

‖ϕ‖Lp
y

for all .1 ≤ p ≤ +∞ and .e−itD2
y = eit�y satisfies 

. ‖eit�y f ‖L2
y
≤ ‖f ‖L2

y
,

‖eit�y (eis�y )∗g‖L∞y = ‖ei(t−s)�y g‖L∞y ≤
‖g‖L1

y

(4π)d/2|t − s|d/2
t �= s ,

the assumption (42)(43) are satisfied for .U1(t, z1) , .z1 = (Y ′, z′) , as soon as . d ≥ 3
with .σ = d

2 > 1 , uniformly with respect to .z1 ∈ R× Z′ . 
The dense subset D in .L2

z1
L2

yG
such that .D ⊂ L2(Z1,dz1;Lrσ (Rd , dyG;C)) , 

with .rσ = 2d
d−2 and .d ≥ 3 here, is simply .D = L2(Z1, dz1;Hμ(Rd)) with . μ >

d/2 . Remember that the dense subset D was introduced in Proposition 4.1 for the 
dense a priori  definition of the operator .AT on .L1([0, T ];L2

z,x) (see Remark 4.1 
and the proof of Proposition 4.1). 

Below are reviewed assumptions on V : 

1. If .V ∈ L
2d

d+2 (Rd , dy;R) , the assumptions of Proposition 4.3 are satisfied with 
.CV = 1+ ‖V ‖

L
2d

d+2
> 0 and .r ′σ = 2σ

σ+1 = 2d
d+2 .
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2. If .V ∈ H 2(Rd;R) then (95) (or (96)) defines a unitary dynamics with 
a rather well understood domain of its generator in . L2(Rd × Z′′, dξ

(2π)d
⊗

dz”;�(L2(Rd , dy;C))) � L2
zL

2
yG

. 

We will always assume .V ∈ Lr ′σ in the sequel, and depending on the statement we 
might assume that .V ∈ H 2 or not. 

If .V ∈ H 2(Rd ;R), the unique solution . t �→ uh
G(t) = U−1

G f̂ h(t) ∈
C0(R;L2

zL
2
yG

) to (96) satisfies 

.uh
G(t) = U(t)uh

G,0 − i

∫ t

0
U(t)U(s)∗

√
h[a∗G(V )+ aG(V )]uh

G(s) ds , (97) 

and we will now seek for a solution of this equation using the fixed point method 
developed in Sect. 4.2, for .V ∈ Lr ′σ but not necessarily .V ∈ H 2(Rd ;R). 

If .(uh∞, uh
2, uh

1) solves 

.uh∞(t) = −i

∫ t

0
U(t)U∗(s)

(√
ha∗G(V )uh∞(s)+√huh

2(s)+ uh
1(s)

)
ds+f h∞(t) , . 

(98) 

uh 
2(t) = −i

∫ t 

0 
aG(V )U(t)U(s)∗

√
huh 

2(s) ds +f h 
2 (t) , . 

(99) 

uh 
1(t) = −i

∫ t 

0 
aG(V )U(t)U(s)∗

(
ha∗G(V )uh∞(s)+√huh 

1(s)
)

ds , (100) 

with 

.f h∞(t) = −i

∫ t

0
U(t)U(s)∗a∗G(V )

√
hU(s)uh

G,0 ds , . (101) 

f h 
2 (t) = −i aG(V )

∫ t 

0 
U(t)U(s)∗a∗G(V )

√
hU(s)uh 

G,0 ds + aG(V )U(t)uh 
G,0 , 

(102) 

written shortly as 

.

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠ = L

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠+
⎛

⎝
f h∞
f h

2
0

⎞

⎠ , L =
⎛

⎝
L∞∞ L∞2 L∞1

0 L22 0
L1∞ 0 L11

⎞

⎠ , (103) 

then .uh
G(t) = u∞(t)+ U(t)uh

G,0 will yield a solution to (97).
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Actually, with .uh
G(t) = uh∞(t) + U(t)uh

G,0, applying .aG(V ) to (98) on the one 

hand, and summing .
√

h×(99) and (100) on the other hand yields . 
√

haG(V )uh
G =

uh
1 +
√

huh
2, which inserted in (98) provides (97). 

Theorem 5.1 Assume .d ≥ 3 and .V ∈ L
2d

d+2 (Rd , dy;R) with 

. ‖V ‖
L

2d
d+2

< CV .

Assume that there exists .α1 > 0 and .Cα1 > 0 such that 

. ∀h ∈]0, h0[ , ‖eα1Nuh
G,0‖L2

zL
2
yG
≤ Cα1 .

There exists a constant .Cd > 0 depending on the dimension .d ≥ 3 , such that 
when .γ > 0 is chosen such that 

. 2‖L‖L(Eh−α1,α1,γ ) ≤ Cdeα1CV γ 1/2 ≤ 1 ,

the function .uh
G(t) = uh∞(t) + U(t)uh

G,0 with .(uh∞, uh
2, uh

1) the unique solution 

to (103) in .(Eh−α1,α1,γ
,M) satisfies 

. ∀t ∈ Ih
Tα

,

∥
∥
∥eαN [uh

G(t)− U(t)uh
G,0]

∥
∥
∥

L2
zL

2
yG

≤ CdCV eα1Cα1γ
1/2

√|ht |√
Tα − |ht | ,

(104) 

with 

.Tα = γ (α1 − α) (105) 

for all .α ∈ [0, α1[ and all .h ∈]0, h0[ . 
If, moreover, .V ∈ H 2(Rd;R), then .uh

G is the only solution to .(96) in 
.C0(Ih

T0
;L2

zL
2
yG

) . 

Proof We take .α0 = −α1 where .α1 > 0 is fixed. The constant .Mα01 of 
Definition 4.3 is nothing but 

. Mα01 = eα1

2
.

Accordingly to Definition 4.3, for a fixed .γ > 0 the time scale . Tα is given by 
.Tα = γ (α1 − α) for all .α ∈ [−α1, α1[ . Proposition 4.3 tells us that the condition 

.Cd,U

eα1

2
CV γ 1/2 ≤ 1

2



62 S. Breteaux and F. Nier

where .Cd,U = Cd is determined by the dimension .d ≥ 3 here, ensures that the 
operator L is a contraction in .Eh−α1,α1,γ

for all .h ∈]0, h0[: 

. ‖L‖L(Eh−α1,α1,γ ) ≤
1

2
.

If .M(f h∞, f h
2 , 0) <∞, then the system (103) admits a unique solution in . Eh−α1,α1,γ

for all .h ∈]0, h0[ with 

. M(uh∞, uh
2, uh

1) ≤ 2M(f h∞, f h
2 , 0) .

It remains to check two things:

• the right-hand side .(f h∞, f h
2 , 0) given by (101)(102) belongs to .Eh−α1,α1,γ

and to 

estimate .M(f h∞, f h
2 , 0) ;

• the unique solution .(uh∞, uh
2, uh

1) to (103) yields after setting . uh
G(t) = uh∞(t) +

U(t)uh
G,0 the unique solution to (18) in .C0(] − T0

h
,

T0
h
[;L2

z,yG
) . 

The first step is simpler than what we did for Proposition 4.3. Let us start with 

. eαNf h∞(t) =− i

∫ t

0
U(t)U(s)∗eαN

√
ha∗G(V )e−α1NU(s)eα1Nuh

G,0 ds

=
∫ t

0
U(t)U(s)∗F(s) ds

with .F(s) = −i1[0,t](s)eαN
√

ha∗G(V )e−α1NU(s)eα1Nuh
G,0 . By Proposition 3.4 we 

know that 

. ‖F‖
L2

s L
2
z1

L
r′σ
yG

≤ CV eα1

2
√

α1 − α
|ht |1/2‖eα1Nuh

G,0‖L2
zL

2
yG
≤ CV eα1γ 1/2

√
Tα

Cα1 |ht |1/2 .

A direct application of the retarded endpoint Strichartz estimate (46) yields 

. 

(
Tα − |ht |
|ht |

)1/2

‖eαNf h∞(t)‖L2
zL

2
yG

� CV eα1Cα1γ
1/2 .

and by taking the supremum over .|ht | < Tα , 

.M(f h∞, 0) � CV eα1Cα1γ
1/2 . (106) 

For 

.f h
2,1(t) = −i aG(V )

∫ t

0
U(t)U(s)∗a∗G(V )

√
hU(s)uh

G,0 ds ,
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the Proposition 3.4 and the retarded Strichartz estimate (44) give 

. 
√

Tα−τ‖eαNf h
2,1‖L2

t (I
h
τ ;L2

zL
2
yG

)

�
√

Tα−τ
CV eα1

√
α1−α

∥
∥
∥
∥

∫ t

0
U(t)U(s)∗e

α+α1
2 Na∗G(V )

√
hU(s)uh

G,0 ds

∥
∥
∥
∥

L2
z1

L2
t (I

h
τ ;Lrσ

yG
)

�
√

Tα−τ
CV eα1

√
α1−α

∥
∥
∥e

α+α1
2 Na∗G(V )

√
hU(s)uh

G,0

∥
∥
∥

L2
z1

L2
s (I

h
τ ;Lr′σ

yG
)

,

where here .r ′σ = 2d
d+2 and .rσ = 2d

d−2 . 
Then using Proposition 3.4 again, the square integrability of 1 on . Ih

τ and the 
boundedness of .U(s) in the . L2 norm, 

. 
√

Tα − τ‖eαNf h
2,1‖L2

t (I
h
τ ;L2

zL
2
yG

)

�
√

Tα − τ
C2

V e2α1

α1 − α

∥
∥
∥eα1N

√
hU(s)uh

G,0

∥
∥
∥

L2
zL

2
s (I

h
τ ;L2

yG
)

� C2
V e2α1γ

√
Tα − τ

√
τ

Tα

∥
∥
∥eα1NU(s)uh

G,0

∥
∥
∥

L∞s (Ih
τ ;L2

zL
2
yG

)

� C2
V e2α1γ

∥
∥
∥eα1Nuh

G,0

∥
∥
∥

L2
zL

2
yG

By taking the supremum w.r.t. .α ∈ [−α1, α1[ and dividing by .CV eα1γ 1/2/2 we 
obtain 

.M2(f
h
2,1) � CV eα1Cα1γ

1/2 . (107) 

It remains to control 

. f h
2,2(t) = aG(V )U(t)uh

G,0.

For .−α1 ≤ α < α1 and .0 ≤ τ < Tα , Proposition 3.4 and the homogeneous 
Strichartz estimate (44) yield 

. 
√

Tα − τ‖eαNaG(V )U(t)uh
G,0‖L2(Ih

τ ;L2
zL

2
yG

)

�
√

Tα − τ
CV eα1

√
α1 − α

‖U(t)eα1Nuh
G,0‖L2

z1
L2(Ih

τ ;Lrσ
yG

)

� CV eα1
√

γ ‖eα1Nuh
G,0‖L2

zL
2
yG

. (108)
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Taking the supremum over .τ ∈ [0, Tα[ , .α ∈ [−α, α1[ and dividing by . CV eα1γ 1/2/2
gives 

. M(0, f h
2,2, 0) � Cα1

It can be improved by rewriting the system 

. 

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠ = (Id− L)−1

⎛

⎝
f h∞

f h
2,1 + f h

2,2
0

⎞

⎠ =
⎛

⎝
0

f h
2,2
0

⎞

⎠+ (Id− L)−1

⎛

⎝
f h∞
f h

2,1
0

⎞

⎠

+ (Id− L)−1L

⎛

⎝
0

f h
2,2
0

⎞

⎠

from which we deduce 

. M(uh∞, uh
2 − f h

2,2, u
h
1) � CV eα1

√
γ
[
M(f h∞, f h

2,1, 0)+M(0, f h
2,2, 0)

]
.

The inequalities (106), (107) and (108) prove that .(f h∞, f h
2 , 0) ∈ Eh−α1,α1,γ

and thus 

. M(uh∞, uh
2 − f h

2,2, u
h
1) ≤ 2M(f h∞, f h

2 , 0) � CV eα1Cα1γ
1/2 .

By possibly enlarging the constant .Cd > 0 , the above inequality becomes 

. M(uh∞, uh
2 − f h

2,2, u
h
1) ≤ CdCV Cα1e

α1γ 1/2 .

We have finished the proof as soon as we can identify 

. uh∞(t) = uh
G(t)− U(t)uh

G,0

for .t ∈ Ih
Tα

and .α ∈ [0, α1[ . For .t ∈ Ih
T0

, the function . uh
G(t) = uh∞(t) + U(t)uh

G,0

belongs to .C0(Ih
T0
;L2

zL
2
yG

) and satisfies (97) which is equivalent to (96). By the  

existence and uniqueness for (97) or (96) in .C0(Ih
T0
;L2

zL
2
yG

) when .V ∈ H 2(Rd;R) , 

. uh
G is the unique solution to (97) or (96) in .C0(Ih

T0
;L2

zL
2
yG

) . ��
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5.2 Consequences of Theorem 5.1 

Let us work now with a general initial time . t0 , specified later, and consider (96) 

.

{
i∂tu

h
G = (ξ −DyG

)2uh
G +
√

h[a∗G(V )+ aG(V )]uh
G ,

uh
G(t = t0) = uh

G,t0
,

(109) 

with the solution .uh
G(t) = uh

G(t ′ + t0) = U(t ′)uh
G,t0
+ uh∞ in the framework 

of Theorem 5.1. For simplicity and because we work definitely in the framework 
of (109) we use here .U(t)U(s)∗ = U(t − s) . Remember that .(uh∞, uh

2, uh
1) solves 

.

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠ =
⎛

⎝
L∞∞ L∞2 L∞1

0 L22 0
L1∞ 0 L11

⎞

⎠

︸ ︷︷ ︸
=L

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠+
⎛

⎝
f h∞
f h

2
0

⎞

⎠ (110) 

with 

. L∞∞(ϕ)(t ′) = −i

∫ t ′

0
U(t ′ − s)

√
ha∗G(V )ϕ(s) ds ,

L∞1(ϕ)(t ′) = −i

∫ t ′

0
U(t ′ − s)ϕ(s) ds , L∞2(ϕ)(t ′) = √hL∞1(ϕ)(t ′) ,

Lqq(ϕ)(t ′) = −i

∫ t ′

0
aG(V )U(t ′ − s)

√
hϕ(s) ds , q ∈ {2, 1} ,

L1∞(ϕ)(t ′) = −ih

∫ t ′

0
aG(V )U(t ′ − s)a∗G(V )ϕ(s) ds ,

and 

.f h∞(t ′) = −i

∫ t ′

0
U(t ′ − s)a∗G(V )

√
hU(s)uh

G,t0
ds ,

f h
2 (t ′) = −iaG(V )

∫ t ′

0
U(t ′ − s)a∗G(V )

√
hU(s)uh

G,t0
ds

︸ ︷︷ ︸
f h

2,1(t
′)

+ aG(V )U(t ′)uh
G,t0︸ ︷︷ ︸

f h
2,2(t

′)

.
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Theorem 5.1 provides a framework in which L is a contraction and we will use it 
twice while inverting 

. 

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠ = (Id−L)−1

⎛

⎝
f h∞
f h

2
0

⎞

⎠ =
⎛

⎝
0

f h
2,2
0

⎞

⎠+(Id−L)−1

⎛

⎝
f h∞
f h

2,1
0

⎞

⎠+(Id−L)−1L

⎛

⎝
0

f h
2,2
0

⎞

⎠

and then using the Neumann expansion .(Id−L)−1 =∑∞k=0 Lk for different values 
of . t0 and of the parameter . γ in Theorem 5.1. The following result is an easy 
consequence of Theorem 5.1. 

Proposition 5.1 Assume that the initial datum .uh
G,0 for .t0 = 0 in (109) satisfies 

the uniform bound .‖e2α1Nuh
G,0‖L2

zL
2
yG
≤ Cα1 for all .h ∈]0, h0[ . Then there exists 

.T̂α1 > 0 and .C̃α1 > 0 , .δα1 > 0 , such that 

(a) The following weighted estimate 

. ‖eα1Nuh
G(t)‖L2

zL
2
yG
≤ C̃α1

holds true for all .t ∈ Ih

T̂α1

=] − T̂α1
h

,
T̂α1
h
[ and all .h ∈]0, h0[ . 

(b) For .t0 ∈ Ih

T̂α1

, .uh
G(t0 + δ/h) admits in .e−

α1
2 NL2

zL
2
yG

the following asymptotic 

expansion in terms of .δ ∈ [−δ1, δ1] , 

. uh
G(t0 + δ/h) = U(δ/h)uh

G(t0)
︸ ︷︷ ︸

O(1)

− i
√

h

∫ δ/h

0
U(δ/h− s) [a∗G + aG](V )U(s)uh

G(t0) ds

︸ ︷︷ ︸
O(|δ|1/2)

−h

∫ δ
h

0

∫ s

0
U(

δ

h
− s) [a∗G+aG](V )U(s − s′) [a∗G+aG](V )U(s′)uh

G(t0) ds′ ds

︸ ︷︷ ︸
O(|δ|)

+ O(|δ|3/2)

where .v(h, δ) = O(|δ|k/2) , .k = 0, 1, 2, 3 , means . ‖e α1
2 Nv(h, δ)‖L2

zL
2
yG
≤

C̃α1 |δ|k/2 uniformly with respect to .h ∈]0, h0[ and .t0 ∈ Ih

T̂α1

.
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Proof 

(a) Fix .α1 > 0 and apply Theorem 5.1 with . α1 replaced by .2α1 . There exists 
.γ = γ1 > 0 , determined by . α1 , .C12(V ) and the dimension .d ≥ 3 , such that 
the operator L is a contraction in .Eh

−2α1,2α1,γ1
. The system (110) for . t0 = 0

admits a unique solution with the norm M in .Eh
−2α1,2α1,γ1

estimated by 

.M(uh∞, uh
2, uh

1) � Cα1 (111) 

and the solution . uh
G to (18) equals 

. uh
G(t) = U(t)uh

G,0 + uh∞(t) .

With .Tα1 = γ1(2α1 − α1) = γ1α1 , the estimate (111) says in particular 

. ∀t ∈ Ih
Tα1

, ‖eα1Nuh∞(t)‖L2
zL

2
yG

� Cα1

√|ht |
√

Tα1 − |ht | .

By taking .T̂α1 = Tα1
2 with .|ht | ≤ Tα1

2 when .t ∈ I
T̂ h

α1
and with 

. ‖eα1NU(t)uh
G,0‖L2

zL
2
yG
≤ ‖eα1uh

G,0‖L2
zL

2
yG
≤ Cα1 ,

we finally obtain 

. ∀t ∈ Ih

T̂α1
, ‖eα1Nuh

G(t)‖L2
zL

2
yG

� C̃α1 ,

for .C̃α1 large enough. 
[(b)] With a) the initial datum .uh

G,t0
= uh

G(t0) of (109) fulfils the assumptions 

of Theorem 4.1 after time translation .t ′ = t − t0 and where .t ′ ∈ Ih
T means 

.t ∈ t0 + Ih
T . For any .γ > 0 small enough and by setting .Tα = γ (α1 − α) for 

.α ∈ [0, α1] we know that the system (110) satisfies 

. ‖L‖L(Eh−α1,α1,γ ) � γ 1/2 , M(f h∞, f h
2,1, 0) � Cα1γ

1/2 , M(0, f h
2,2, 0) � Cα1 ,

while .uh
G(t ′ + t0) = U(t ′)uh

G(t0)+ uh∞(t ′) for .t ′ ∈ Ih
Tα

. 

In particular 

.

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠ =
⎛

⎝
0

f h
2,2
0

⎞

⎠+ (Id− L)−1

⎛

⎝
f h∞
f h

2,1
0

⎞

⎠+ (Id− L)−1L

⎛

⎝
0

f h
2,2
0

⎞

⎠
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leads to 

. 

⎛

⎝
uh∞
uh

2
uh

1

⎞

⎠

=
⎛

⎜
⎝

f h∞ + L∞2(f
h
2,2)+ L∞∞(f h∞ + L∞2(f

h
2,2))+ L∞2(f

h
2,1 + L22(f

h
2,2))

f h
2,2 + f h

2,1 + L22(f
h
2,2)+ L22(f

h
2,1 + L22(f

h
2,2))

L1∞(f h∞ + L∞2(f
h
2,2))

⎞

⎟
⎠

+ O(γ 3/2)

in .Eh−α1,α1,γ
. By using the first line with .α = α1

2 , and by setting 

. vh(t ′) = U(t ′)uh
G(t0)+ [f h∞(t ′)+ L∞2(f

h
2,2)](t ′)

+ L∞∞[f h∞ + L∞2(f
h
2,2)](t ′)+ L∞2[f h

2,1 + L22(f
h
2,2)](t ′)

the difference .uh
G(t0 + t ′)− vh(t ′) satisfies satisfies 

. ∀t ′ ∈ Ih
T α1

2

, ‖e α1
2 N [uh

G(t0 + t ′)− vh(t ′)]‖L2
zL

2
yG

� γ 3/2
√|ht ′|√
T0 − |ht ′| ,

where .Tα1
2
= γα1

2 . For .δ = ±
T α1

2
2 = ± γα1

4 we obtain 

. ‖e α1
2 N [uh

G(t0 + δ/h)− vh(δ/h)]‖L2
zL

2
yG
= O(|δ|3/2) .

It now suffices to specify all the terms of .vh(δ/h):

• The first one is nothing but .U(δ/h)uh
G(t0) with an .O(1)-norm.

• The second term 

. f h∞(δ/h)+ L∞2(f
h
2,2)(δ/h) = −i

∫ δ/h

0
U(δ/h− s)

√
h[a∗G(V )+ aG(V )]

U(s)uh
G(t0) ds

has an .O(δ1/2)-norm.
• All the other terms have an .O(δ)-norm and equal 

.L∞∞(f h∞)(δ/h) =

− h

∫ δ/h

0

∫ s

0
U(δ/h− s)a∗G(V )U(s − s′)a∗G(V )U(s′)uh

G(t0) ds′ds ,
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L∞∞(L∞2(f h 
2,2))(δ/h) = 

− h
∫ δ/h 

0

∫ s 

0 
U(δ/h− s)a∗G(V )U(s − s′)aG(V )U(s′)uh 

G(t0) ds′ds , 

L∞2(f h 
2,1)(δ/h) = 

− h
∫ δ/h 

0

∫ s 

0 
U(δ/h− s)aG(V )U(s − s′)a∗G(V )U(s′)uh 

G(t0) ds′ds , 

L∞2(L22(f h 
2,2))(δ/h) = 

− h
∫ δ/h 

0

∫ s 

0 
U(δ/h− s)aG(V )U(s − s′)aG(V )U(s′)uh 

G(t0) ds′ds . 

This ends the proof. ��

6 Semiclassical Measures 

We will check here that semiclassical (or Wigner) measures for our model problem 
presented in Sect. 2.3 can be defined simultaneously for all macroscopic times . t ∈
] − T̂α1 , T̂α1 [ . 

6.1 Framework 

Below are reviewed a few properties of semiclassical measures or Wigner measures. 
We refer the reader e.g. to [6, 14–16, 19, 27] for various presentations of those now 
well known objects. 

(a) The Anti-Wick quantization on . Rd is defined by 

. aA−Wick(hx,Dx) =
∫

T ∗Rd

a(X) |ϕh
X〉〈ϕh

X|
dX

(2πh)d

is defined for any .a ∈ L∞(T ∗Rd , dx;C) with 

. ϕh
X0

(x) = hd/4

πd/4 eiξ0·(x− x0
2h

)e−
h(x− x0

h
)2

2 , X0 = (x0, ξ0) ∈ T ∗Rd .

It is a non negative quantization for which 

.(a ≥ 0)⇒ (aA−Wick(hx,Dx) ≥ 0)
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and 

. ‖aA−Wick(hx,Dx)‖L(L2(Rd ,dx;C)) ≤ ‖a‖L∞ .

A natural separable subspace of .L∞(T ∗Rd;C) is 

. C0
0(T
∗
R

d ;C) =
{

a ∈ C0(T ∗Rd;C) , lim
X→∞ a(X) = 0

}

resp. C0(T ∗Rd � {∞} ;C) = C0
0(T
∗
R

d ;C)⊕ C 1

=
{

a ∈ C0(T ∗Rd;C) , lim
X→∞ a(X) ∈ C

}

,

endowed with the . C0 norm, of which the dual is the space .Mb(T
∗
R

d;C) (resp. 
.Mb(T

∗
R

d � {∞} ;C)) of bounded Radon measures on .T ∗Rd (resp. . T ∗Rd �
{∞}) .  

(b) For a bounded family .(�h)h∈]0,h0[ of normal states .�h ∈ L1(L2(Rd , dx;C)) , 
.�h ≥ 0 , .Tr[�h] = 1 , the set of semiclassical measures on .T ∗Rd (resp. . T ∗Rd �
{∞}) is defined as the weak. ∗ limit point in .Mb(T

∗
R

d;R+) (resp. . Mb(T
∗
R

d �
{∞} ;R+)) of .

σWick(�h)

(2πh)d
with 

. σWick(�h)(X) = 〈ϕh
X , �hϕ

h
X〉L2(Rd ) = Tr

[
�h|ϕh

X〉〈ϕh
X|
]

.

This is extended by linearity for any bounded family .(�h)h∈]0,h0[ in the 
space .L1(L2(Rd , dx;C)) . 

The set of semiclassical measures is denoted by 

. M(�h, h ∈]0, h0[) ,

and when h is restricted to a set .E ⊂]0, h0[ , . 0 ∈ E , we use  

. M(�h, h ∈ E) .

After recalling 

.

∫

T ∗Rd

a(X) σWick(�h)(X)
dX

(2πh)d
= Tr

[
aA−Wick(hx,Dx) �h

]
,
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semiclassical measures .μ ∈ M(�h, h ∈]0, h0[) are characterized by the 
existence of a sequence .(hk)k∈N∗ , .hk ∈ E such that 

. lim
k→∞hk = 0 ,

lim
k→∞Tr

[
aA−Wick(hkx,Dx) �hk

]
=
∫

T ∗Rd

a(X) dμ(X) , ∀a ∈ D ,

lim
k→∞Tr

[
�hk

] = μ(T ∗Rd � {∞}) = μ(T ∗Rd)+ μ(∞) ,

where . D is any dense set of .C0
0(T
∗
R

d;C) . 
(c) After choosing .D = C∞0 (T ∗Rd;C) and by recalling . ‖aA−Wick(hx,Dx) −

aWeyl(hx,Dx)‖ = O(h) , for any .a ∈ S(1, dx2 + dξ2) ⊃ C∞0 (T ∗Rd;C) , 
semiclassical measures are characterized by 

. ∀a ∈ C∞0 (T ∗Rd ;C) , lim
k→∞Tr

[
aWeyl(hkx,Dx) �hk

]
=
∫

T ∗Rd

a(X) dμ(X) ,

or 

. ∀P ∈ T ∗Rd , lim
k→∞Tr

[
τ

hk

P �hk

]
=
∫

T ∗Rd

ei(pξ ·x−px ·ξ) dμ(x, ξ) ,

with 

. τh
P = (ei(pξ ·x−px ·ξ))Weyl(hx,Dx) = ei(pξ ·(hx)−px ·Dx) , P = (px, pξ ) .

The compactification .T ∗Rd � {∞} is just a way to count the mass of . (�hk
)k∈N∗

which is not caught by the compactly supported obervables .a ∈ C∞0 (T ∗Rd;C) . 
(d) Semiclassical measures are transformed by the dual action of semiclassical 

Fourier integral operator on .aWeyl(hx,Dx) , .a ∈ C∞0 (T ∗Rd ;C) . 
(e) When .M(�h,1, h ∈ E) = {μ1} and .M(�h,2, h ∈ E) = {μ2} the total variation 

between . μ1 and . μ2 is estimated by 

. |μ2 − μ1|( T ∗Rd
︸ ︷︷ ︸

or T ∗Rd�{∞}
) ≤ 4 lim inf

h→0
‖�h,1 − �h,2‖L1 .

(f) When .(�, d�) is a metric space and .(�h(λ))h∈]0,h0[,λ∈� is a bounded family 
in .L1(L2(Rd , dx;C)) , semiclassical measures can be defined simultaneously 
for all .λ ∈ � , if for any sequence .(hn)n∈N , .limn→∞ hn = 0+ , there exists a 
subsequence .(hnk

)k∈N such that 

.∀λ ∈ �, ∃μλ ∈Mb(T
∗
R

d � {∞}) ,

lim
k→∞Tr

[
aA−Wick(hnk

x,Dx) �hnk
(λ)
]
=
∫

T ∗Rd�{∞}
a(X) dμλ(X) .
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By assuming .(�, d�) separable, sufficient conditions for this property are 
either

• For all given .a ∈ C∞0 (T ∗Rd ;C) , .Tr
[
aWeyl(hx,Dx) �h(λ)

]
is an equicontin-

uous family of continuous functions from . � to . C , or
• The map .(P, λ) �→ Tr

[
τh
P �h(λ)

]
is an equicontinuous family of continuous 

functions from .T ∗Rd ×� to . C . 

For the first characterization, apply a diagonal extraction process for a dense 
countable subset of .(�, d�) (and a dense countable subset of .C0

0(T
∗
R

d) lying 
in .C∞0 (T ∗Rd ;C)) and then apply the various characterisations of elements 
of .M(�h(λ) , h ∈ E) . 

Like in our problem, semiclassical measures can be defined for bounded families 
.�h ∈ L1(L2(Rd ×Z′, dx⊗dz’;C)) after using observables .aWeyl(hx,Dx)⊗ IdL2

z
. 

When .(�h)h∈]0,h0[ is a family of states, .�h ≥ 0 and .Tr[�h] = 1 , the relationship 
with the study of pure states can be done in two ways:

• Firstly by writing a general state as a convex combination of pure states, provided 
that this convex decomposition is explicit enough to follow the behaviour 
as .h→ 0+ .

• Secondly by writing .�h = �
1/2
h �

1/2
h and taking . �h = �

1/2
h ∈ L2(L2(Rd ×

Z′, dx ⊗ dz’;C)) ∼ L2(Rd × Z′ × Ẑ, dx ⊗ dz’ ⊗ dẑ;C) where . Ẑ is another 
copy of .Rd × Z′ with .dẑ = dx ⊗ dz’ . Then 

. Tr
[
(aWeyl(hx,Dx)⊗ IdL2

z′
)�h

]
= 〈�h , (aWeyl(hx,Dx)⊗ IdL2

z′,ẑ
)�h〉 .

6.2 Equicontinuity 

The following result, which is the first useful information about semiclassical 
measures, before computing them, comes from the equicontinuity directly deduced 
from Proposition 5.1. The unitary transforms introduced in Sects. 2.3 and 3 in order 
to transform (18) into (96) and .aWeyl(hx,Dx)⊗ Id into .aWeyl(−hDξ , ξ −DyG

) are 
not recalled here and the results are directly formulated for the initial problem (18) 
and the semiclassical observables .aWeyl(hx,Dx)⊗ Id . 

Proposition 6.1 Assume 

. V ∈ Lr ′σ (Rd , dx;R) ∩H 2(Rd;R) , r ′σ =
2d

d + 2
, d ≥ 3 ,

and let .UV(t) = e−it (−�x+
√

hV) like in Sect. 2.3.
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Assume that there exists .α1 > 0 such that .�h(0) ∈ L1(L2(Rd ×�, dx⊗G;C)) , 
.�h(0) ≥ 0 , .Tr[�h(0)] = 1 satisfies 

. ∃Cα1 > 0 , ∀h ∈]0, h0[ , Tr
[
eα1N�h(0)eα1N

]
≤ Cα1 .

Then there exists .T̂α1 > 0 such that elements of .M(�h(t), h ∈]0, h0[) can be 
defined simultaneously for all macroscopic times .t ∈] − T̂α1 , T̂α1 [ when . �h(t) =
UV( t

h
) �h(0) U∗V( t

h
) . 

Proof When .U(s) = e−is(−�x) denotes the free unitary transform , the time evolved 
observable .U∗( s

h
)[aWeyl(hx,Dx) ⊗ IdL2

ω
]U( s

h
) equals exactly . aWeyl(hx,Dx, s) ⊗

IdL2
ω

with 

. a(x, ξ, s) = a(x + 2ξs, ξ) .

It is clearly equicontinuous in .h ∈]0, h0[with respect to .s ∈ [−T̂α1 , T̂α1 ] in . L(L2
x,ω)

for any given .a ∈ C∞0 (T ∗Rd ;C) : 

. ‖aWeyl(hx,Dx, s)− aWeyl(hx,Dx, 0)‖L(L2
x,ω) ≤ Ca|s| .

We drop the tensorization with .IdL2 . With 

. Tr
[
aWeyl(hx,Dx)�h(t + δ)

]
− Tr

[
aWeyl(hx,Dx)�h(t)

]

= Tr

[

aWeyl(hx,Dx, δ)U
∗( δ

h
)UV(

δ

h
)�h(t)U

∗
V(

δ

h
)U(

δ

h
)

]

− Tr
[
aWeyl(hx,Dx, 0)�h(t)

]

it thus suffices to check, uniformly with respect to .(h, t) ∈]0, h0[×]− T̂α1 , T̂α1 [ , the  
estimate 

.‖U∗( δ

h
)UV(

δ

h
)�h(t)U

∗
V(

δ

h
)U(

δ

h
)− �h(t)‖L1 = oδ→0(1) . (112) 

We now use the decomposition .�h(0) = �h(0)1/2�h(0)1/2 and consider the 
evolution 

. UV(
t

h
)�h(0)1/2 ∈ L2(L2(Rd×�, dx⊗G;C)) ∼ L2(Rd×�×Ẑ, dx⊗G⊗dẑ;C)

with .Ẑ = R
d ×� , .dẑ = dx ⊗ G .
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The estimate (112) is done as soon as 

. ‖U∗( δ

h
)UV(

δ

h
)[UV(

t

h
)�h(0)1/2] − [UV(

t

h
)�h(0)1/2]‖L2

x,ω,ẑ
= oδ→0(1)

uniformly with respect to .(h, t) ∈]0, h0[×] − T̂α1 , T̂α1 [ . 
This problem is now translated in a problem in 

. L2(Rd × Ẑ,
dξ

(2π)d
⊗ dẑ;C)

︸ ︷︷ ︸
vacuum

⊕L2
sym(Rd

yG
× Z1; dyG ⊗ dz1;C)

by the unitary transform .UG associated with the center of mass . yG of Sect. 3 , the  
translation invariance and its Fourier variable .ξ ∈ R

d and the relative coordinates 
.Y ′ ∈ R . The variable .z1 ∈ Z1 is nothing but .z1 = (ξ, Y ′, ẑ) ∈ R

d × R × Ẑ with 
.dz1 = dξ

(2π)d
⊗μ⊗dẑ . The subscript .sym refers to the symmetry in the variable . Y ′ ∈

R . All the assumptions of Theorem 5.1 have been checked in Sect. 5. In particular 
we can use Proposition 5.1-b) with 

. uh
G(

t

h
) = UV(

t

h
)�h(0)1/2 and

t

h
∈ Ih

T̂α1
.

It says in particular 

. uh
G(

t

h
+ δ

h
) = U(

δ

h
)uh

G(
t

h
)+ O(|δ|1/2) ,

uniformly with respect to .(h, t
h
) ∈]0, h0[×Ih

T̂α1

, and therefore 

. ‖U∗( δ

h
)UV(

δ

h
)[UV(

t

h
)�h(0)1/2] − [UV(

t

h
)�h(0)1/2]‖L2

x,ω,ẑ
= Oδ→0(|δ|1/2)

uniformly with respect to .(h, t) ∈]0, h0[×] − T̂α1 , T̂α1 [ . 
This ends the proof. ��

7 Approximations 

With our number estimates stated in Sect. 5, various approximations can be con-
sidered for the general class of initial data .(�h(0))h∈]0,h0[ , . �h(0) ∈ L1(L2(Rd ×
�, dx ⊗ G;C)) , .�h(0) ≥ 0 , .Tr[�h(0)] = 1 under the sole additional assumption 
.Tr[eα1N�h(0)eα1N ] ≤ Cα1 . Before computing the evolution of the semiclassical 
measures .(μt )t∈]−T̂α1 ,T̂α1 [ given by Proposition 6.1 (this will be done in a subsequent 

article), it provides useful a priori information for them.
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7.1 Truncation with Respect to the Number Operator N 

For . ε > 0 , let .χε : [0,+∞)→ [0, 1] be a decaying function such that 

.∀k ∈ N ,∀ε ∈]0, 1[ , ∃Ck,ε > 0 , sup
s∈[0,+∞)

skχε(s) ≤ Ck,ε , . (113) 

∀α1 > 0 , ∃Cα1 > 0 ,∀ε ∈]0, 1[ , sup 
s∈[0,+∞) 

e−α1s (1− χε(s)) ≤ Cα1 × ε .  

(114) 

Examples are 

. χε(s) = 1[0,ε−1](s) and χε(s) = e−εs .

Then the operators 

. aG,ε(V ) = χε(N)aG(V )χε(N) , a∗G,ε(V ) = χε(N)a∗G(V )χε(N)

are bounded operators on 

. F 2 = L2(Z′,dz’;�(L2(Rd , dy;C))) = L2
z,sym = L2

z0
⊕ L2

z1,symL2
yG

according to (56) and .
√

h(aG,ε(V ) + a∗G,ε(V )) is an .Oε(
√

h) bounded self-adjoint 

perturbation of .(ξ −DyG
)2 . Additionally for .ε > 0 the estimates of Proposition 3.3 

hold true when .aG(V ) and .a∗G(V ) are replaced by .aG,ε(V ) and .a∗G,ε(V ) . Actually, 
(39) with .n > 1 and (37) with .n > 0 become 

. ‖aG,ε(V )fG,n‖L2
z′,Y ′

n−1
L

p
yG
≤ ‖V ‖

Lr′χε(n− 1)2√n‖fG,n‖L2
z′,Y ′n

L
q
yG

≤ Cε‖V ‖Lr′ ‖fG,n‖L2
z′,Y ′n

L
q
yG

. (115)

‖a∗G,ε(V )fG,n‖
L2 

z′,Y ′
n+1 

L q
′

yG 
≤ ‖V ‖

Lr′χε(n)2
√

n+ 1‖fG,n‖
L2 

z′,Y ′n 
L p
′

yG 

≤ Cε‖V ‖Lr′ ‖fG,n‖
L2 

z′,Y ′n 
L p
′

yG 
(116) 

when .V ∈ Lq ′(Rd;C) ∩ Lr ′(Rd;C) , . 1
r ′ = 1

2 + 1
q ′ − 1

p′ , .p′, q ′ ∈ [1, 2] . All  
the analysis can thus be carried out with .aG(V ) and .a∗G(V ) replaced by . aG,ε(V )

and .a∗G,ε(V ) , either with estimates which are uniform in .ε ∈]0, 1[ , or by replacing 
the N -dependent estimates by constants . Cε depending on .ε ∈]0, 1[ .
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In particular the solution .vh
G,ε to 

.

{
i∂t v

h
G,ε = (ξ −DyG

)2vh
G,ε +

√
h[a∗G,ε(V )+ aG,ε(V )]vh

G,ε

vh
G,ε(t = 0) = vh

G,ε,0 = uh
G,0 ,

(117) 

satisfies the same properties as the solution .uh
G to (96) stated in Theorem 5.1 and 

Proposition 5.1, uniformly with respect to .ε ∈]0, 1[ . 
Proposition 7.1 Assume .‖e2α1Nuh

G,0‖L2
zL

2
yG
≤ Cα1 for all .h ∈]0, h0[ like in 

Proposition 5.1. There exists .Ĉα1 > 0 and .T̂α1 > 0 such that the solutions . uh
G

to (96) and .vh
G,ε to (117) for .ε ∈]0, 1[ , satisfy 

. ‖uh
G(t)− vh

G,ε(t)‖L2
zL

2
yG
≤ Ĉα1ε

for all .t ∈ Ih

T̂α
=] − T̂α1

h
,

T̂α1
h
[ . 

Additionally the statement b) of Proposition 5.1 holds true when .uh
G , . aG(V ) ,

.a∗G(V ) are replaced by .vh
G,ε , .aG,ε(V ) , .a∗G,ε(V ) . 

Proof The statements a) and b) of Proposition 5.1 hold true uniformly with respect 
to .ε ∈]0, 1[ for .vh

G,ε as a consequence of the previous arguments. 

In particular .vh
G,ε(t) = U( t

h
)uh

G,0 + vh∞,ε where .(vh∞,ε, v
h
2,ε, v

h
1,ε) solves the 

system 

. 

⎛

⎜
⎝

vh∞,ε

vh
2,ε

vh
1,ε

⎞

⎟
⎠ = Lε

⎛

⎜
⎝

vh∞,ε

vh
2,ε

vh
1,ε

⎞

⎟
⎠+

⎛

⎜
⎝

f h∞,ε

f h
2,ε

0

⎞

⎟
⎠ , Lε =

⎛

⎝
L∞∞ ,ε L∞2,ε L∞1,ε

0 L22,ε 0
L1∞,ε 0 L11,ε

⎞

⎠ ,

(118) 

with 

.f h∞,ε(t) = −i

∫ t

0
U(t)U(s)∗a∗G,ε(V )

√
hU(s)uh

G,0 ds , . (119) 

f h 
2,ε(t) = −i aG,ε(V )

∫ t 

0 
U(t)U(s)∗a∗G,ε(V )

√
hU(s)uh 

G,0 ds 

+ aG,ε(V )U(t)uh 
G,0 , (120) 

and where the entries . Lε are the same as the ones of L with .aG(V ) and . a∗G(V )

replaced by .aG,ε(V ) and .a∗G,ε(V ) . When .χε(s) = e−εs , one recovers the system 

for . uh
G by taking .ε = 0 .
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We start now with the equation for . uh
G

. uh
G(t) = U(

t

h
)uh

G,0 − i
√

h

∫ t
h

0
U(t − s)[aG(V )+ a∗G(V )]uh

G(s) ds ,

which implies 

. χε(N)uh
G(t) =

U(
t

h
)χε(N)uh

G,0 − i
√

h

∫ t
h

0
U(

t

h
− s)χε(N)[aG(V )+ a∗G(V )]χε(N)2uh

G(s) ds

− i
√

hχε(N)

∫ t
h

0
U(

t

h
− s)[aG(V )+ a∗G(V )](1− χ2

ε (N))uh
G(s) ds .

The function .wh
G,ε(t) = χε(N)uh

G(t) solves 

. wh
G,ε(t) = U(

t

h
)χε(N)uh

G,0

− i
√

h

∫ t
h

0
U(t − s)[aG,ε(V )+ a∗G,ε(V )]wh

G,ε(s) ds + gh∞,ε (121) 

with 

. gh∞,ε = −i
√

hχε(N)

∫ t
h

0
U(t − s)[aG(V )+ a∗G(V )](1− χ2

ε (N))uh
G(s) ds .

(122) 

The system for .(wh∞,ε, w
h
2,ε, w

h
1,ε) after decomposing . wh

G,ε(t) = U( t
h
)χε(N)uh

G,0+
wh∞,ε(t) is 

.

⎛

⎜
⎝

wh∞,ε

wh
2,ε

wh
1,ε

⎞

⎟
⎠ = Lε

⎛

⎜
⎝

wh∞,ε

wh
2,ε

wh
1,ε

⎞

⎟
⎠+

⎛

⎜
⎝

f̃ h∞,ε

f̃ h
2,ε

0

⎞

⎟
⎠+

⎛

⎝
gh∞,ε

0
0

⎞

⎠ ,
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where .f̃ h∞,ε and .f̃ h
2,ε have the same expressions as (119)(120) with .uh

G,0 replaced by 

.χε(N)uh
G,0 . By taking the difference with (118), and because . ‖Lε‖L(E0,α1,γ ) ≤ 1/2

for .γ > 0 small enough, the proof is done as soon as the three norms 

. ‖uh
G(t)− χε(N)uh

G(t)‖L2
zL

2
yG

. (123) 

M( f̃ h∞,ε − f h∞,ε, f̃ h 
2,ε − f h 

2,ε, 0). (124) 

M(gh∞,ε, 0, 0) , (125) 

are bounded by .Ĉα1ε . 
Because the time interval is restricted to .Ih

T̂α1

with .T̂α1 < Tα1 , the weight 

.
√

Tα1 − |ht | or .
√

Tα1 − τ used in Definition 4.3 or in Proposition 4.3 can be 
forgotten now (simply multiply .f h

q,ε, .f̃ h
q,ε, .q ∈ {∞, 2} and .gh∞,ε by .1I

h−1 T̂α1
(t)). 

The estimate of (123) is obvious since 

. ‖(1− χε(N))uh
G(t)‖L2

zL
2
yG
≤ sup

s≥0
|(1− χε(s))e

−α1s |
︸ ︷︷ ︸

O(ε)

×‖eα1Nuh
G(t)‖L2

zL
2
yG︸ ︷︷ ︸

≤C̃α1

.

The estimate of (124) is very similar. Actually in the proof of Theorem 5.1 we 
checked .M(f h∞, f h

2 , 0) � ‖eα1Nuh
G,0‖L2

zL
2
yG

. It gives now 

. M(f̃ h∞,ε − f h∞,ε, f̃
h
2,ε − f h

2,ε, 0) � ‖eα1N(χε(N)− 1)uh
G,0‖L2

zL
2
yG
≤ Ĉα1ε .

For (125) let us first decompose .gh∞,ε as 

. gh∞,ε = gh
∞,1,ε + gh

∞,2,ε

with gh
∞,1,ε = −i

√
hχε(N)

∫ t
h

0
U(t − s) a∗G(V ) (1− χ2

ε (N)) uh
G(s) ds

and gh
∞,2,ε = −i

√
hχε(N)

∫ t
h

0
U(t − s) aG(V ) (1− χ2

ε (N)) uh
G(s) ds .

The estimate of .gh
∞,1,ε follows the method for the bound of .M(f h∞, 0, 0) in 

the proof of Theorem 5.1, where we simply used the uniform bound in time 
for .‖U(s)eα1Nuh

G,0‖L2
zL

2
yG

. With 

. sup
t
‖(1− χ2

ε (N))uh
G(t)‖L2

zL
2
yG
≤ sup

s≥0
|(1− χ2

ε (s))e−α1s |
︸ ︷︷ ︸

O(ε)

×‖eα1Nuh
G(t)‖L2

zL
2
yG︸ ︷︷ ︸

≤C̃α1

,
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this gives 

. M(gh
∞,1,ε, 0, 0) ≤ Ĉα1ε .

For .gh
∞,2,ε , remember firstly that the assumption is .‖e2α1Nuh

G,0‖L2
zL

2
yG
≤ Cα1 and 

by possibly reducing .T̂α1 , we may assume .‖e 3α1
2 NuG,h(t)‖L2

zL
2
yG
≤ C̃α1 . We now  

use the obvious relation .aG(V )φ(N) = φ(N + 1)aG(V ) and write 

. gh
∞,2,ε = −iχε(N)e−

α1
2 (N+1)(1− χ2

ε (N + 1))e
α1
2 (N+1)

∫ t
h

0
U(t − s)

√
haG(V )uh

G(s) ds .

Remember that the equivalent system (96) says . 
√

haG(V )uh
G(t) = uh

1(t)+√huh
2(t)

with .M(0, uh
2, uh

1) � Cα1 . The above equality becomes 

. gh
∞,2,ε(t) = χε(N)(1− χ2

ε (N + 1))e−
α1
2 (N+1)e

α1
2 (N+1)[L∞ 1(u

h
1)+ L∞ 2(u

h
2)] .

The bounds for .L∞ 1 and .L∞ 2 in the Theorem 5.1, lead to 

. ‖|ht |−1/2e
α1
2 (N+1)[L∞ 1,ε(u

h
1)+ L∞ 2,ε(u

h
2)](t)‖L∞(Ih

T̂α1
;L2

zL
2
yG

) � Cα1 .

With 

. ‖χε(N)(1− χ2
ε (N + 1))e−

α1
2 (N+1)‖L(L2

zL
2
yG

) ≤ sup
s≥0
|(1− χ2

ε (s))e−
α1
2 s | = O(ε) ,

this proves 

. M(gh
∞,2,ε, 0, 0) ≤ Ĉα1ε .

��
Let us go back to our initial problem and let us compare the evolution of states 
for the dynamics .U( t

h
) = e−it (−�x+

√
hV) for .ε = 0 and the case . ε > 0

where .χε(N)Vχε(N) is a bounded self-adjoint perturbation of .−�x . Set in 
particular 

.UV,ε = e−it (−�x+
√

hVε) with Vε = χε(N)Vχε(N) . (126)
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Proposition 7.2 Assume like in Proposition 6.1 

. V ∈ Lr ′σ (Rd , dx;R) ∩H 2(Rd;R) , r ′σ =
2d

d + 2
, d ≥ 3 ,

and assume that there exists .α1 > 0 such that .�h(0) ∈ L1(L2(Rd×�, dx⊗G;C)) , 
.�h(0) ≥ 0 , .Tr[�h(0)] = 1 satisfies 

. ∃Cα1 > 0 , ∀h ∈]0, h0[ , Tr
[
eα1N�h(0)eα1N

]
≤ Cα1 .

Call .�h(t) = UV( t
h
)�h(0)U∗V( t

h
) and .�h,ε(t) = UV,ε(

t
h
)�h(0)U∗V,ε(

t
h
) . When the 

subset .E ⊂]0, h0[ , .0 ∈ E , is chosen such that 

. ∀t ∈] − T̂α1 , T̂α1 [ , M(�h(t), h ∈ E) = {μt } andM(�h,ε(t), h ∈ E) = {μt,ε

}
.

Then the total variation of .μt − μt,ε is estimated by 

. ∀t ∈] − T̂α1 , T̂α1 [ , |μt − μt,ε| (T ∗Rd
︸ ︷︷ ︸)

or T ∗Rd�{∞}
≤ C′α1

ε ,

for some constant .C′α1
> 0 determined by .α1 > 0 . 

Proof From 

. �h(t)− �h,ε(t) =
[

UV(
t

h
)�h(0)1/2 − UV,ε(

t

h
)�h(0)1/2

]

�h(0)1/2U∗V(
t

h
)

+ UV,ε(
t

h
)�h(0)1/2[�h(0)1/2U∗V(

t

h
)− �h(0)1/2U∗V,ε(

t

h
)]

we deduce 

. |μ(t)− με(t)|(T ∗Rd ∪ {∞}) ≤ 4 lim inf
h∈E,h→0

‖�h(t)− �h,ε(t)‖L1

≤ 8 lim inf
h∈E,h→0

‖�h(t)−�h
ε (t)‖L2

x,ω,ẑ

with . �h
ε (t) = UV,ε(

t
h
)�h(0)1/2 ∈ L2(L2(Rd × �, dx ⊗ G;C)) ∼ L2(Rd × � ×

Ẑ, dx ⊗ G⊗ dẑ;C) with .Ẑ = R
d ×� , .dẑ = dx ⊗ G . 

But Proposition 7.1 implies 

.∀t ∈] − T̂α1 , T̂α1 [ , ‖�h(t)−�h
ε (t)‖L2

x,ω,ẑ
≤ Ĉα1ε .

��
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7.2 Asymptotic Conservation of Energy 

The result of this paragraph is a consequence of the approximation of the . UV
dynamics by the one of .UVε in terms of wave functions in Proposition 7.1, states 
and semiclassical measures in Proposition 7.2. 

Proposition 7.3 Assume like in Proposition 6.1 

. V ∈ Lr ′σ (Rd , dx;R) ∩H 2(Rd;R) , r ′σ =
2d

d + 2
, d ≥ 3 ,

and assume that there exists .α1 > 0 such that .�h(0) ∈ L1(L2(Rd×�, dx⊗G;C)) , 
.�h(0) ≥ 0 , .Tr[�h(0)] = 1 satisfies 

. ∃Cα1 > 0 , ∀h ∈]0, h0[ , Tr
[
eα1N�h(0)eα1N

]
≤ Cα1 .

Call .�h(t) = UV( t
h
)�h(0)U∗V( t

h
) and let the subset .E ⊂]0, h0[ , .0 ∈ E , be such  

that 

. ∀t ∈] − T̂α1 , T̂α1 [ , M(�h(t), h ∈ E) = {μt }

with the additional assumption at time .t = 0 , 

.supp μ0 ⊂
{
(x, ξ) ∈ T ∗Rd , |ξ |2 ∈ F

}
(127) 

where F is a closed subset of . R . Then for all .t ∈] − T̂α1 , T̂α1 [ , the support of . μt

restricted to .T ∗Rd satisfies 

. supp μt

∣
∣
T ∗Rd ⊂

{
(x, ξ) ∈ T ∗Rd , |ξ |2 ∈ F

}
.

Proof For .ε > 0 and .z ∈ C \ R the resolvent estimate 

. ‖[z+�x]−1 − [z− (−�x +
√

hVε)]−1‖L(L2
x,ω) ≤

Cε

√
h

|Im z|2

with .Vε = χε(N)Vχε(N) ∈ L(L2
x,ω) as in (126) combined with Helffer-Sjöstrand 

formula [17] gives  

.∀ε > 0 ,∀χ ∈ C∞0 (R;C) , ∃Cχ,ε > 0 ,

‖χ(−�x)− χ(−�x +
√

hVε)‖L(L2
x,ω) ≤ Cχ,ε

√
h .
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The semiclassical calculus then implies 

. 

∥
∥
∥χ(−�x +

√
hVε) aWeyl(hx,Dx) χ(−�x +

√
hVε)

− [χ2(|ξ |2)a]Weyl(hx,Dx)

∥
∥
∥
L(L2

x,ω)
= Oa,χ,ε(

√
h)

for all .a ∈ C∞0 (T ∗Rd ;C) and all .χ ∈ C∞0 (R;C) . 
Hence, the assumption (127) implies 

. ∀χ ∈ C∞0 (R \ F ; [0, 1]) ,

lim
h∈E ,h→0

‖χ(−�x +
√

hVε) �h(0) χ(−�x +
√

hVε)‖L1(L2
x,ω) = 0 ,

and therefore 

. ∀χ ∈ C∞0 (R \ F ; [0, 1]) , ∀t ∈] − T̂α1 , T̂α1 [ ,
lim

h∈E ,h→0
‖χ(−�x +

√
hVε) �h,ε(t) χ(−�x +

√
hVε)‖L1(L2

x,ω) = 0 ,

with .�h,ε(t) = UVε (
t
h
)�h(0)U∗Vε

( t
h
) and .UVε (t) = e−it (−�x+

√
hVε) . 

When .E′ ⊂ E , .0 ∈ E′ , is such that 

. M(�h,ε(t) , h ∈ E′) = {μt,ε

}
,

Proposition 7.2 tells us 

. |μt − μt,ε|(T ∗Rd) ≤ C′α1
ε ,

while 

. 

∫

T ∗Rd

a(x, ξ) |χ |2(|ξ |2) dμt,ε(x, ξ)

= lim
h∈E′,h→0

Tr
[
χ(−�x +

√
hVε) aWeyl(hx,Dx) χ(−�x +

√
hVε) �h,ε(t)

]
= 0 ,

for .a ∈ C∞0 (T ∗Rd ;C) and .χ ∈ C∞0 (R \ F ; [0, 1]) . We deduce 

. ∀a ∈ C∞0 (T ∗Rd ;C) ,∀χ ∈ C∞0 (R \ F ; [0, 1]) ,∀t ∈] − T̂α1 , T̂α1 [ ,
∫

T ∗Rd

a(x, ξ) χ2(|ξ |2) dμt (x, ξ) = 0 ,

which yields the result. ��



Waves in a Random Medium: Endpoint Strichartz Estimates and Number Estimates 83

7.3 Changing V 

The formulation of Theorem 5.1 .uh
G(t) = UV(t)uh

G,0 = U( t
h
)uh

G,0 + uh∞(t) where 

.
(
uh

q

)
q∈{∞,2,1} is a solution of a fixed point problem, solved in Proposition 4.3, where 

only .‖V ‖
Lr′σ , .r ′σ = 2d

d+2 , is used, allows to consider perturbations of V , which can 
be done separately in the the terms .aG(V ) and .a∗G(V ) and with complex valued 
perturbations. 

Remember that our state .�h(t) = UV( t
h
)�h(0)U∗V( t

h
) is written 

. �h(t) = [UV(
t

h
)�h(0)1/2][�h(0)1/2U∗V(

t

h
)] ,

and the link with the fixed point problem is done after setting 

. U(t)uh
G,0 + uh∞(t) = uh

G(t) = UV(
t

h
)�h(0)1/2 in L2(L2

x,ω) ∼ L2
z,yG

,

where the last identification is done via the unitary transform .UG of Sect. 3 , omitted 
here and explained in the proof of Proposition 6.1. 

A generalization is done by writing for a pair .Ṽ = (V1, V2) ∈ Lr ′σ (Rd , dy;C)2 , 

.�
h,Ṽ(t) = uh

G,Ṽ(
t

h
)[uh

G,Ṽ(
t

h
)]∗ ∈ L1(L2

x,ω) , (128) 

where .uh

G,Ṽ
(t) = U(t)�h(0)1/2 + uh

∞,Ṽ
(t) and .

(
uh

q,Ṽ

)
q∈{∞,2,1} solves the fixed 

point problem (59)(60)(61) with .f h
1 (t) = 0 and .f h∞ and . f h

2 given by 

.f h∞(t) = f h

∞,Ṽ(t) = −i

∫ t

0
U(t)U(s)∗a∗G(V1)

√
hU(s)uh

G,0 ds , . (129) 

f h 
2 (t) = f2, Ṽ(t) = −i aG(V2)

∫ t 

0 
U(t)U(s)∗a∗G(V1)

√
hU(s)uh 

G,0 ds 

+ aG(V2)U(t)uh 
G,0 . (130) 

This fixed point problem will be written 

.

⎛

⎜
⎜
⎝

uh

∞,Ṽ
uh

2,Ṽ
uh

1,Ṽ

⎞

⎟
⎟
⎠ = LṼ

⎛

⎜
⎜
⎝

uh

∞,Ṽ
uh

2,Ṽ
uh

1,Ṽ

⎞

⎟
⎟
⎠+

⎛

⎜
⎝

f h

∞,Ṽ
f h

2,Ṽ
0

⎞

⎟
⎠ . (131)
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Proposition 7.4 For two pairs .Ṽk = (V1,k, V2,k) ∈ Lr ′σ (Rd , dy;C)2 , for  
.‖eα1Nuh

G,0‖ ≤ Cα1 and by choosing .T̂α1 > 0 small enough, the two solutions to 
(131) with the right-hand sides given by (129)(130) satisfy 

. ∀t ∈] − T̂α1 , T̂α1 [ ,

‖uh

∞,Ṽ2
(
t

h
)− uh

∞,Ṽ1
(
t

h
)‖L2

z,yG
≤ C

[‖V1,2 − V1,1‖Lr′σ + ‖V2,2 − V2,1‖Lr′σ
]

for some constant .C > 0 given by .α1 > 0 , .Cα1 , the dimension d , and 
.maxi,j ‖Vi,j‖Lr′σ . 

Proof It suffices to notice that the difference .vh = uh

Ṽ2
− uh

Ṽ1
with . uh

Ṽk
=

(
uh

q,Ṽk

)
q∈{∞,2,1} , .k = 1, 2 , solves  

. vh − LṼ1
(vh) = (LṼ2

− LṼ1
)(uh

Ṽ2
)+

⎛

⎜
⎝

f h

∞,Ṽ2
− f h

∞,Ṽ1

f h

2,Ṽ2
− f h

2,Ṽ1

0

⎞

⎟
⎠ .

Estimates for all the terms of the right-hand side have essentially been proved for 
Proposition 4.3 and for Theorem 5.1. Although they are written for .V1 = V2 real-
valued in Theorem 5.1 the generalization is straightforward (like in Proposition 4.3) 
and upper bounds are proportional the .Lr ′σ of the potential which is either . (V1,2 −
V1,1) or .(V2,2 − V2,1) . 

The time interval .] − Tα1 , Tα1 [=] − 2T̂α1 , 2T̂α1 [ is actually chosen like in 
Proposition 4.3 such that .‖LṼ1

‖L(Eα1,−α1 ,γ ) ≤ 1
2 and this ends the proof. ��

For a general pair .Ṽ = (V1, V2) ∈ Lr ′σ (Rd , dy;C)2 , the trace-class opera-
tor .�h

Ṽ
(t) is no more a state and neither self-adjoint. However it remains uniformly 

bounded in .L1(L2
x,ω) and complex-valued semiclassical measures .μṼ(t) make 

sense for .t ∈] − T̂α1 , T̂α1 [ . Moreover the results of Proposition 5.1 and Propo-
sition 6.1 can be adapted mutatis mutandis for such a general pair, so that 
semiclassical measures (extraction process) can be defined simultaneously for all 
.t ∈]T̂α1 , T̂α1 [ . 

The above comparison result can be translated in terms of trace-class operators 
and asymptotically for semiclassical measures. 

Proposition 7.5 Assume 

.V ∈ Lr ′σ (Rd , dx;R) ∩H 2(Rd;R) , V1, V2 ∈ Lr ′σ (Rd , dx;C) ,

r ′σ =
2d

d + 2
, d ≥ 3 ,
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and assume that there exists .α1 > 0 such that .�h(0) ∈ L1(L2(Rd×�, dx⊗G;C)) , 
.�h(0) ≥ 0 , .Tr[�h(0)] = 1 satisfies 

. ∃Cα1 > 0 , ∀h ∈]0, h0[ , Tr
[
eα1N�h(0)eα1N

]
≤ Cα1 .

Let .�h(t) = UV( t
h
)�(0)U∗V( t

h
) and let .�

h,Ṽ(t) be defined by (128). Then 

. ∃C > 0 , ∀t ∈] − T̂α1 , T̂α1 [ ,
‖�h(t)− �

h,Ṽ(t)‖L1(L2
x,ω) ≤ C

[‖V1 − V ‖
Lr′σ + ‖V2 − V ‖

Lr′σ
]

.

When the subset .E ⊂]0, h0[ , .0 ∈ E , is chosen such that 

. ∀t ∈] − T̂α1 , T̂α1 [ , M(�h(t), h ∈ E) = {μt } andM(�
h,Ṽ(t), h ∈ E) = {μ

t,Ṽ
}
.

Then the total variation of .μt − μ
t,Ṽ is estimated by 

. ∃C′ > 0 , ∀t ∈] − T̂α1 , T̂α1 [ ,
|μt − μ

t,Ṽ| (T ∗Rd
︸ ︷︷ ︸)

or T ∗Rd�{∞}
≤ C′

[‖V1 − V ‖
Lr′σ + ‖V2 − V ‖

Lr′σ
]

.

Proof It suffices to write 

. �
h,Ṽ(t)− �h(t)

=
[

uh

G,Ṽ(
t

h
)− uh

G(
t

h
)

]

[uh

G,Ṽ(
t

h
)]∗ + [uh

G(
t

h
)]
[

uh

G,Ṽ(
t

h
)− uh

G(
t

h
)

]∗

and to remember that Hilbert-Schmidt norms correspond to .L2
z,yG

-norms estimated 
in Proposition 7.4. ��

7.4 Quantum Dynamics with Low Regularity 

We conclude with an easy application of Proposition 7.4 which says that the 
dynamics .(UV(t))t∈R is actually well defined under the sole assumption 

.V ∈ Lr ′σ (Rd;R) , r ′σ =
2d

d + 2
d ≥ 3 , (132) 

with good approximations when .Vn ∈ Lr ′σ (Rd;R) ∩ H 2(Rd;R) satisfies 
.limn→∞ ‖Vn − V ‖

Lr′σ = 0 .
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Proposition 7.6 Let V belong to .Lr ′σ (Rd;R) and let .(Vn)n∈N be a sequence in 
.Lr ′σ (Rd;R)∩H 2(Rd;R) such that .limn→∞ ‖V −Vn‖Lr′σ = 0 . Then for any . t ∈ R

the unitary operator .UVn(t) converges strongly to a unitary operator .UV(t) . 
Therefore .(UV(t))t∈R is a strongly continous unitary group in . L2(Rd×Z′′, dx⊗

dz”;�(L2(Rd , dy;C))) = L2
z,symL2

yG
with a self-adjoint generator denoted 

.(−�x +
√

hV,D(−�x +
√

hV)) . 
The convergence .(−�x+

√
hVn,D(−�x+

√
hVn)) to . (−�x+

√
hV,D(−�x+√

hV)) holds in the strong resolvent sense. 

Remark 7.1 Although the dynamics .(UV(t))t∈R and its self-adjoint generator 
.(−�x +

√
hV,D(−�x +

√
hV)) is well defined for .V ∈ Lr ′σ (Rd;R) , we have  

no information on the domain .D(−�x +
√

hV) . The approximation process by 
.Vn ∈ Lr ′σ (Rd ;R) ∩ H 2(Rd ;R) for which a core of .�x +

√
hVn is given by 

Proposition 4.4 in [5] recalled in Lemma 2.1, provides a substitute for the analysis. 
It could be interesting to see if this Schrödinger type approach relying on 

endpoint Strichartz estimates could be applied to other quantum field theoretic 
problem and whether it would bring additional information of tools as compared 
with the euclidean approach (see [28] and refences therein). 

Proof Actually we can work here with .h = 1 . The convergence of 

. UVn(t)uG,0 = U(t)uG,0 + u∞,Vn(t)

is deduced from the convergence (see Proposition 7.4) of .u∞,Vn(t) to . u∞,V(t)

when .eα1NuG,0 ∈ L2
z,symL2

yG
for some .α1 > 0 . 

From .‖UVn(t)uG,0‖L2
z,symL2

yG
= ‖uG,0‖L2

z,symL2
yG

we deduce . ‖UV(t)uG,0‖
L2

z,symL2
yG
= ‖uG,0‖L2

z,symL2
yG

. This finally provides the extension of . UV(t)uG,0

for any .uG,0 in .L2
z,symL2

yG
with the convergence of .UVn(t)uG,0 to .UV(t)uG,0 , 

because the space .e−α1NL2
z,symL2

yG
is dense in .L2

z,symL2
yG

. Passing from the strong 
convergence of unitary groups to the strong resolvent convergence of generators is 
standard. ��
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On the Semiclassical Regularity 
of Thermal Equilibria 

Jacky J. Chong, Laurent Lafleche, and Chiara Saffirio 

1 Introduction 

We consider a system of N non-interacting fermions in a harmonic trap and study 
the semiclassical structure of its one-particle density matrix associated with the 
corresponding Gibbs (equilibrium) state of the trapped gas at temperature .T > 0. 
More precisely, given a family of one-particle normalized nonnegative trace class 
operators .ρβ acting on .L2(Rd) and indexed by the parameter . β, proportional to 
.T −1, we consider the following quantities 

.∇xρβ := [∇, ρβ

]
and ∇ξρβ :=

[
x
ih̄

, ρβ

]
, (1) 

which we refer to as the quantum gradients of . ρβ , and show that for any .p ∈ [2,∞], 

. ρβ,
√

ρβ ∈W1,p(m)

uniformly in . ̄h, where .W1,p(m) are the semiclassical analogue of weighted Sobolev 
spaces equipped with the norm 

. ‖ρ‖p

W1,p(m)
:= ‖ρ m‖p

Lp + ‖∇xρ m‖p

Lp + ∥∥∇ξρ m
∥∥p

Lp
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and .m := 1 + |p|n. Here .p = −ih̄∇ is the momentum operator and .Lp are the 
semiclassical versions of the Lebesgue spaces endowed with the rescaled Schatten 
norms 

. ‖ρ‖Lp := h
d
p Tr

(|ρ|p) 1
p

where .h = 2πh̄. 
The quantities (1) play key roles in obtaining semiclassical estimates, such as in 

the problems of the derivation of the Vlasov equation from quantum mechanics 
and of the Hartree and the Hartree–Fock equations from many-body quantum 
mechanics. To the authors’ knowledge, they first appeared in [2], where the Hartree 
equation was derived in the mean-field regime for arbitrary long times from a system 
of N fermions interacting through a smooth potential, under the assumption that the 
initial state . ρin of the Hartree dynamics is a pure state, i.e. .(ρin)2 = ρin, and satisfies 
the following semiclassical structures 

.

∥∥∥∇xρ
in
∥∥∥
L1

≤ C and
∥∥∥∇ξρ

in
∥∥∥
L1

≤ C. (2) 

Similarly, bounds on semiclassical Schatten norms of commutators are used in [9] to  
obtain uniform in . ̄h mean-field estimates, in [13] in the context of the semiclassical 
limit, in [11] in the context of the convergence of numerical schemes, in [10] to get 
estimates on the quantum Wasserstein distance. 

When the interaction is the Coulomb potential only partial results are available 
on a time scale of order one (see [14]) and they rely on a semiclassical structure 
expressed in terms of .Lp norms of the diagonal of the operator .|∇ξρ|, with . p > 3
(see also [13]). 

In [8] and [1], the authors obtained semiclassical bounds of the form (2) for pure 
states in the non-interacting case, which in turn provided explicit examples of initial 
pure states that satisfy the assumptions in [2] on the semiclassical structures. In 
this paper, we extend this analysis to the finite positive temperature case, where the 
one-particle reduced density matrix . ρ is no longer a projection. When dealing with 
mixed states the analogue relevant quantities considered in [3, 6] are  

.

∥∥
∥∥∇x

√
ρin

∥∥
∥∥
Lp

≤ C and

∥∥
∥∥∇ξ

√
ρin

∥∥
∥∥
Lp

≤ C. (3) 

In [3], the interaction potential is integrable, its Fourier transform has bounded 
moments of order two, and Eq. (3) is required to hold true for the the initial state 
for . p = 1. In [6], singular interactions of the form .|x|−a with .a ≤ 1 are considered 
and Eq. (3) is required to hold for .p ∈ [2,∞]. 

In this work, we focus on quasi-free Gibbs states, which is an important class of 
examples as they model the equilibria of an ideal gas at finite positive temperature. 
It is well-known that the one-particle reduced density matrix associated to a 
Gibbs state can be computed explicitly (see Proposition 2). Using the explicit
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expression (4), we prove bounds on the weighted .Lp norms of the quantum 
gradients (1) with . ρβ given by the one-particle reduced density matrix associated 
to the Gibbs state of a system of non-interacting fermions confined by a harmonic 
potential, and on its partition function. Our main result is the following. 

Theorem 1 Let .H = |p|2+|x|2
2 be the d-dimensional harmonic oscillator Hamilto-

nian and define the family of density matrix operators given by 

.ρβ := 1

N hd

(
1 + eβ(H−μ)

)−1
(4) 

where . μ depends on . β, N and h and is chosen so that .hdTr(ρβ) = 1 holds. Then 

for any .p ≥ 2, .ρβ ∈ W1,p(m) and .√ρβ ∈ W1,p(m) uniformly with respect to 
.h̄ ∈ (0, 1). More explicitly, let 

.Zβ := hdTr(e−βH ), and Zμ := λ e−βμ (5) 

with .λ := Nhd , then the following holds. For any fixed .β ∈ R+, .h̄ ∈ (0, 1) and for 
.p ∈ [1,∞], we have the bound 

.
∥∥∇ρβ

∥∥
Lp ≤ Cd,p

β
1
2 − d

p

Zμ

max
(
2
√

2, βh̄
) 1

2 − 1
p

(θ(βh̄))
1
p

(6) 

where .θ(x) = th(x)/x with .th(x) = ex−e−x

ex+e−x , and 

.C−1
λ,β Zβ ≤ Zμ ≤ Zβ (7) 

with .Cλ,β = 2 if .μ ≤ dh̄/2 and .Cλ,β = 1 + eβλ1/d/π if .μ ≥ dh̄/2. 

Remark 1 As a corollary of our result, we exhibit a class of initial states satisfying 
the regularity assumptions of [6, Theorem 3.1]. 

Remark 2 Our proof in the case .p = ∞ is rather general and in particular can be 
adapted without difficulty to other external trapping potentials .V (x), that is to the 

case of an Hamiltonian of the form .H = |p|2
2 + V (x). 

Remark 3 As indicated in [6, Figure 1], there are three scaling regimes to keep in 
mind when studying mean-field dynamics of quantum systems (both bosonic and 
fermionic), namely, .Nhd → 0, Nhd → ∞, and .Nhd converges to some constant 
(in fact, .Nhd = 1 which we called the critical scaling). We refer to the limit . Nhd →
0 as the lower density scaling regime, which means that the density growth in N is 
slower than in the critical scaling regime. Similarly, we refer to the limit . Nhd → ∞
as the higher density scaling regime. 

Let .β > 0 be fixed. In the lower density scaling regime .Nhd → 0, we have that 
.eβμ → 0 or equivalently .μ → −∞, which is an immediate consequence of (7) in
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the above theorem and the fact that .Zβ is bounded (cf. Sect. 2.2). It is not difficult 

to see that in this case .ρβ = (
Nhd + Zμ eβH

)−1
will converge to .Z−1

β e−βH . In  
other words, in the semiclassical limit .h̄ → 0, . ρβ will converge to the Maxwell– 
Boltzmann distribution. This result should not be surprising to the reader since in 
the lower density scaling regime .Nhd → 0, the Fermi gas behaves like a classical 
ideal gas. 

In the case of the higher density scaling regime .Nhd → ∞, we recall that as 
in [6, Equation (16)], .λ = Nhd ≤ 1

‖ρ‖L∞ =: C−1∞ . This shows that . ‖ρ‖L∞ → 0
as .λ → ∞. From a more physical perspective, a high density Fermi gas exhibits 
quantum “degeneracy” behavior, consequence of the Pauli exclusion principle. 

Finally, in the critical scaling case, we see that .ρβ does not converge to the 
Maxwell–Boltzmann distribution but instead to the Fermi–Dirac distribution. The 
divergence from classical behavior is attributed to the fact that at the critical scaling 
we are in fact modeling the degeneracy behavior of the Fermi gas. See e.g. [5, 
Chapter 17.5]. 

Remark 4 In the semiclassical limit .h̄ → 0, then our main Inequality (6) implies 

. 
∥∥∇ρβ

∥∥
Lp ≤ Cd,p,λ β

1
2 + d

p′ + o(1)

where .o(1) converges to 0 when .h̄ → 0. This is optimal in the sense that it is 
consistent with the behavior of the classical norm .

∥∥∇(
Z−1

β e−β|z|2)∥∥
Lp(R2d )

in terms 
of . β provided we are away from the critical scaling regime. It is interesting to 
observe that the behavior of the right-hand-side of Inequality (6) changes at low 
temperature and when . ̄h is not negligible (i.e. when . βh̄ is large). Moreover, we do 
not capture the correct behavior when the state does not converge to the Maxwell– 
Boltzmann distribution. 

1.1 Second Quantization Formalism 

To introduce quasi-free Gibbs states, we will need the second quantized description 
of a many-body system of non-interacting fermions in an external trap. Here we give 
a brief review of the Fock space formalism. For a more comprehensive treatment, 
the reader could consult [4, 15]. 

The fermionic (antisymmetric) Fock space over the one-particle Hilbert space 
.h = L2(Rd) is defined to be the closure of 

. F :=
∞⊕

n=0

h∧n = C ⊕ h ⊕ (h ∧ h) ⊕ · · ·

with respect to the norm induced by the standard associated inner product. Here the 
n-th sector of . F given by .h∧n denotes the subspace of .hn = L2(Rdn) containing
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functions that satisfy the antisymmetry property 

. ψ(x1, . . . , xn) = sgn(σ )ψ(xσ(1), . . . , xσ(n))

for any permutation . σ . An important vector to note is the vacuum vector . 	 =
(1, 0, 0, . . .) ∈ F which describes a pure state with no particles. 

The operator-valued distribution . ax and . a∗
x on . F are defined by their actions on 

the . nth sector of . F as follows. Let .ψ ∈ h∧n, then 

. (axψ)(x1, . . . , xn−1) := √
nψ(x, x1, . . . , xn−1),

(a∗
xψ)(x1, . . . , xn+1) :=

n+1∑

j=1

(−1)j−1

√
n + 1

δx(xj ) ψ(x1, . . . , x/j , . . . , xn+1).

Furthermore, for each .ϕ ∈ h, we associate to it the annihilation operator and its 
adjoint the creation operator, defined by 

. a(ϕ) =
∫

Rd

ϕ(x) ax dx and a∗(ϕ) =
∫

Rd

ϕ(x) a∗
x dx.

It can be shown that creation and annihilation operators are bounded on . F with 
operator norm .‖a(ϕ)‖∞ = ‖a∗(ϕ)‖∞ = ‖ϕ‖h and that they satisfy the canonical 
anticommutation relations, i.e. 

. {a(ϕ), a(φ)} = {a∗(ϕ), a∗(φ)} = 0 and {a∗(ϕ), a(φ)} = 〈φ, ϕ〉h 1

hold for all .(ϕ, φ) ∈ h2 where .{A,B} := AB + BA is the standard anticommutator 
of the operators . A and . B. 

In this work, we are interested in trapped non-interacting Fermionic systems 
modeled by the one-particle Hamilton operator 

.H = 1
2 |p|2 + V (x), (8) 

where .p = −ih̄∇x and V is an external trapping potential. The second quantization 
of the one-particle operator H on . F is defined to be the operator . H whose action on 
the . nth sector is given by 

. (H) (x1, . . . , xn) =
n∑

j=1

(− h̄2

2 �xj
+ V (xj ))(x1, . . . , xn).

Another useful operator on . F is the number operator 

.N =
∞⊕

n=0

n 1h∧n .
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1.2 Harmonic Oscillators 

To simplify the presentation, we choose the external potential V to be the harmonic 
trapping potential, that is, 

.H = 1
2 |p|2 + 1

2 |x|2 =
d∑

i=1

1
2 p2

i + 1
2 x2

i =
d∑

i=1

Hi. (9) 

Since H is the d-dimensional quantum harmonic oscillator, it is well-known that it 
emits a discrete spectrum where the eigenvalues and eigenvectors are given by 

. En = (|n|1 + d
2

)
h̄ for n = (n1, . . . , nd) ∈ N

d
0 ,

uEn = φn1 ⊗ · · · ⊗ φnd
with Hiφni

=
(
ni + 1

2

)
h̄ φni

.

where .|n|1 = n1 + . . . + nd and the functions .φni
are the standard one-variable 

Hermite functions 

. φni
(xi) = cni

e−x2/2Pni
(xi) with c−1

ni
= 2

ni
2 (ni !) 1

2 (πh̄)
1
4 ,

with .Pni
(x) the Hermite polynomials. Moreover, for each eigenvalue .En the 

corresponding multiplicity is given by .g|n|1,d = (|n|1+d−1
d−1

)
. In particular, by the 

spectral decomposition of H , we could now rewrite . H as 

.H =
∑

n∈Zd
0

En a∗(uEn) a(uEn). (10) 

1.3 Thermal States 

We consider quantum states that are given by density operators . ω on . F, that is, the 
expectation of an observable . A is given by .〈A〉ω = TrF (Aω) for every .A ∈ B(F), 
where .B(F) denotes the space of bounded operators on the Fock space. The Gibbs 
equilibrium of a trapped non-interacting Fermi gas associated to some positive 
temperature .T > 0 is defined to be the unique minimizer of the Gibbs free energy 
functional 

.F(ω) = TrF (Hω) − kB T S(ω) with S(ω) = −TrF (ω ln ω)
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in .XN = {ω ∈ B(F) | ω ≥ 0, TrF (ω) = 1, TrF (Nω) = N} where . S is the 
von Neumann entropy. It can be checked that the Gibbs state associated to the 
temperature T is given by the normalized positive trace class operator 

.ωN = 1

ZN

e
−β

(
H−μN

)

(11) 

where .β = 1/(kB T ) and the chemical potential . μ is chosen so that .Tr(NωN) = N . 
Here .ZN is the grand canonical partition function 

. ZN = 1 +
∞∑

n=1

enβμTrh∧n exp

(
− β

dn∑

j=1

Hj

)
=

∏

n∈Zd
0

(1 + e−β(En−μ)).

1.4 Quasi-Free States 

Here we will only give a rudimentary introduction to the tools necessary for the 
subsequent sections. A more comprehensive exposition of the following content 
can be found in [4, 15]. The state . ω is said to be quasi-free if for all . n ∈ N, we have  
that 

. TrF
(
a�1 (f1) · · · a�2n+1 (f2n+1)ω

) = 0,

TrF
(
a�1 (f1) · · · a�2n (f2n)ω

) =
∑

σ

(−1)σ
n∏

j=1

Tr
(
a�σ(j) (fσ(j))a

�σ(j+n) (fσ(j+n))ω
)
,

where .a�j stands for either a or . a∗, and the sum is taken over all permutations . σ
satisfying .σ(1) < σ(2) < . . . < σ(n), and .σ(j) < σ(j +n), for all .j ∈ {1, . . . , n}. 
The definition indicates that quasi-free states are determined by the one-particle 
reduced density matrix operator defined via its integral kernel 

.ρ(x, y) = 1

Nhd
TrF

(
a∗
y ax ω

)
, (12) 

and the antisymmetric pairing function defined by 

.α(x, y) = 1

Nhd
TrF

(
ay ax ω

)
. (13) 

More compactly, we introduce the generalized one-particle density matrix . � : h ⊕
h∗ → h ⊕ h∗ defined by 

.� =
[

ρ α

−JαJ 1 − JρJ∗
]

(14)
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where .J : h → h∗ is the map .J(φ) = 〈φ, ·〉 and . J∗ is its adjoint operator. This 
observation is summarized by the following proposition (see e.g. [15, Appendix 
G]). 

Proposition 1 Let .� : h ⊕ h∗ → h ⊕ h∗ be an operator of the form (14). Then 
. � is the generalized one-particle density matrix of some quasi-free state with finite 
particle number if and only if .� ≥ 0 and .Trρ < ∞. 

In the case of . ωN , it can be readily shown that its generalized one-particle density 
matrix is given by 

. �β =
[
ρβ 0
0 1 − JρβJ

∗

]

where .α = 0, which we refer to as the gauge-invariant condition. The following 
proposition, whose proof can be found for example in [4, Proposition 5.2.23], makes 
the link between the Fock space Gibbs state (11) and the one body Gibbs state 
considered in our main theorem. 

Proposition 2 Let . ωN denote the Gibbs state (11) with .Tr
(
e−βH

)
< ∞. Then . ωN

is quasi-free and its one-particle reduced density matrix operator is given by Eq. (4). 

2 Semiclassical Thermal Regularity 

In this section, we give the proof of the main theorem. 

2.1 Preliminaries 

For a trapped non-interacting Fermi gas with Hamiltonian (8), let us write . G =
e−βH and .λ = Nhd . Consider the quantities 

.gβ = Z−1
β e−βH , . (15a) 

ρβ = λ−1
(
1 + eβ(H−μ)

)−1 = Gμ

(
1 + λ Gμ

)−1 
, (15b) 

where .Gμ = λ−1 e−β(H−μ) = Z−1
μ G and .Zβ and .Zμ are given in Eq. (5). The  

quantum gradients of these operators are given by the following lemma.
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Lemma 1 Let . ∇ be a quantum gradient. Then we have 

.∇gβ = − β

Zβ

∫ 1

0
G1−s (∇H)Gs ds, . (16a) 

∇ρβ = −β

∫ 1 

0 
G1−s 

μ (1 + λGμ)−1 (∇H) (1 + λGμ)−1Gs 
μ ds. (16b) 

Proof Notice that for any operators A and B, we have that 

. ∂t

[
A, etB

]
=

[
A,B etB

]
= [A,B] etB + B

[
A, etB

]
.

Therefore, .∂t

(
e−tB

[
A, etB

]) = e−tB [A,B] etB and we obtain the Duhamel-like 
formula 

.

[
A, etB

]
=

∫ t

0
e(t−s)B [A,B] esB ds. (17) 

In particular, taking .t = 1 and .B = −βH , we obtain the identity 

. ∇G = −β

∫ 1

0
G1−s (∇H)Gs ds

from which we deduce Identity (16a). Then observe that if A is an invertible 
operator, by the Leibniz rule for commutators, . 0 = ∇(

AA−1
) = (∇A)A−1 +

A∇(
A−1

)
and so 

.∇(
A−1) = −A−1 (∇A) A−1. (18) 

In particular, since .∇ (
1 + λGμ

) = λ∇Gμ, we deduce that 

. ∇ρβ = (∇Gμ

) (
1 + λGμ

)−1 − Gμ

(
1 + λGμ

)−1
λ

(∇Gμ

) (
1 + λGμ

)−1

= (
1 + λGμ

)−1 (∇Gμ

) (
1 + λGμ

)−1

which leads to Formula (16b). ��
Taking the square root of G changes . β by .β/2. Hence it follows that 

. ∇√
gβ = − β

2
√

Zβ

∫ 1

0
G(1−s)/2 (∇H)Gs/2 ds.

On the other hand, it is more difficult to compute explicitly .∇√
ρβ . The following 

lemma allows us to bound .√ρβ by reducing the problem to estimating G.
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Lemma 2 Let . m be a self-adjoint operator. Then 

. 
∥∥∇√

ρβ

∥∥
Lp(m)

≤
(∥∥∇√

Gμ

∥∥
Lp(m)

+ λ

2

∥∥√
ρβ

∥∥
Lq (m)

∥∥∇Gμ

∥∥
Lr

)

for any .1 ≤ p, q, r ≤ ∞ such that . 1
p

= 1
q

+ 1
r
. 

Proof By Identity (18), we have that 

. ∇√
ρβ =

(
∇√

Gμ − √
ρβ

(
∇√

1 + λGμ

)) (
1 + λGμ

)− 1
2 . (19) 

To bound .∇√
1 + λGμ, we proceed as in [6, Lemma 7.1]. Let .A := λGμ. Since 

.0 ≤ A ≤ 2 c := λZ−1
μ , we deduce that .‖A − c‖L∞ ≤ c and so the following series 

is absolutely convergent 

. 
√
1 + A = √

1 + c

√
1 + 1

1+c
(A − c) =

∞∑

n=0

(
1/2

n

)(
1

1+c

)n− 1
2
(A − c)n .

Since it follows from the Jacobi identity that 

. ∇ (A − c)n =
n∑

k=1

(A − c)k−1 (∇A) (A − c)n−k ,

then we deduce the estimate 

. 

∥∥
∥∇√

1 + A

∥∥
∥
Lp

≤
∞∑

n=1

∣∣
∣∣

(
1/2

n

)∣∣
∣∣
(

1
c+1

)n− 1
2
n ‖∇A‖Lp ‖A − c‖n−1

L∞

≤ 1

2
√

c + 1

∞∑

n=1

(−1/2

n − 1

)( −c
c+1

)n−1 ‖∇A‖Lp = 1

2
‖∇A‖Lp .

We conclude by applying the fact that .
∥∥∇√

ρβ m
∥∥
Lp = ∥∥m∇√

ρβ

∥∥
Lp , which 

follows from taking the adjoint, and the triangle inequality to Formula (19). This  
yields the desired result. ��
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2.2 Bounds on the Inverse Fugacity 

In the rest of this paper, we assume H is the harmonic oscillator Hamiltonian . H =
|p|2+|x|2

2 . In this case of the partition function in . gβ has the closed form 

.Zβ =
(

2π

β

)d 1

shc(βh̄
2 )d

(20) 

where .shc(x) = sh(x)/x denotes the hyperbolic sinc function. In particular . Zβ ≤
(2π/β)d and .Zβ ∼ (2π/β)d as .βh̄ → 0. The function . Zμ, that one could call 
the inverse fugacity, can be compared to the partition function .Zβ as proved in the 
following proposition. 

Proposition 3 Let .Zμ = λ e−βμ with .λ = Nhd . Then the following inequality 
holds 

.C−1
λ,β Zβ ≤ Zμ ≤ Zβ (21) 

with .Cλ,β = 2 if .μ ≤ dh̄/2 and .Cλ,β = 1 + eβλ1/d/2π if .μ ≥ dh̄/2. 

Proof Let .cμ = eβμ = Nhd/Zμ. Notice that 

. 1 = hdTr
(
ρβ

) = 1

N
Tr

((
1 + c−1

μ eβH
)−1

)
≤ cμ

N
Tr

(
e−βH

)
,

which implies the second inequality in Formula (21). 
Next, define the function .g : R+ → R+ by .g(r) = (

1+ c−1
μ eβr

)−1, then for any 

.R > 0, it holds .g(r) ≥ (
1 + c−1

μ eβr
)−1

1r≤R , which leads to 

. 1 = 1

N
Tr (g(H)) ≥ 1

N
(

1 + c−1
μ eβR

) Tr
(
1H≤R

)
.

Recalling the property of the harmonic oscillator given in Sect. 1.2, one sees that the 
trace of the characteristic function is nothing but 

. Tr
(
1H≤R

) =
∣∣
∣
{
n ∈ N

d
0 : (|n|1 + d

2

)
h̄ ≤ R

}∣∣
∣ .

Since .|n|1 ≥ supj nj =: |n|∞, then this can be crudely estimated by 

.Tr
(
1H≤R

) ≥
∣
∣∣
{
n ∈ N

d
0 : |n|∞ ≤ R

h̄
− d

2

}∣
∣∣ =

(⌊
R
h̄

− d
2

⌋
+ 1

)d

. (22)
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In particular, since .μ ≥ dh̄/2 > 0, then taking .R = μ = ln cμ

β
yields . μ

h̄
− d

2 ≤
(
N1/d + 1

)
and so since .N ≥ 1, 

.μ ≤ 2 N1/d h̄ + dh̄

2
. (23) 

Now, let us obtain upper bounds for . cμ. First, observe that we have the lower 
bounds 

.1 = cμ

N
Tr

((
1 + cμe−βH

)−1
e−βH

)
≥ Zβ cμ

Nhd
(
1 + cμe−dβh̄/2

) . (24) 

If .cμ ≤ edβh̄/2 (i.e. .μ ≤ dh̄/2) then it follows from Inequality (24) that 

. cμ ≤ 2 NhdZ−1
β .

On the other hand, if .cμ ≥ edβh̄/2 > 1 (i.e. .μ ≥ dh̄/2), then it follows from 
Inequality (23) and Inequality (24) that we have the bound 

.cμ ≤
(

1 + cμ e−dβh̄/2
)

NhdZ−1
β ≤

(
1 + e2βh̄N1/d

)
NhdZ−1

β (25) 

This completes our proof of the proposition. ��

2.3 L∞ Bounds 

This section is devoted to the proof of the following proposition. 

Proposition 4 Let .β > 0 and .H = |p|2+|x|2
2 , then we have the estimates 

. 
∥∥∇gβ

∥∥
L∞ ≤ 2

Zβ

max
(√

β, β
√

h̄
)

,

∥∥∇ρβ

∥∥
L∞ ≤ 2

Zμ

max
(√

β, β
√

h̄
)

.

Prior to giving the proof of the above proposition, let us make the following 
observation. Since .∇xH = x and .∇ξH = p, we deduce that . ∇zH = z := (x,p)

where .z = (x, ξ). By Identity (16a), we have that 

.∇ρβ = −β

∫ 1

0
(1 + λGμ)−1G1−s

μ z Gs
μ(1 + λGμ)−1 ds
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which implies the estimate 

. 
∥∥∇ρβ

∥∥
Lp ≤ β

∫ 1

0

∥∥∥G1−s
μ z Gs

μ

∥∥∥
Lp

ds = β Z−1
μ

∫ 1

0

∥∥∥G1−sz Gs
∥∥∥
Lp

ds.

Since .‖G‖L∞ ≤ 1, then we have the estimate 

.

∥∥∇ρβ

∥∥
Lp ≤ β Z−1

μ

∫ 1/2

0

∥∥
∥G1−sz

∥∥
∥
Lp

ds + β Z−1
μ

∫ 1

1/2

∥∥z Gs
∥∥
Lp ds

≤ 2 β Z−1
μ

∫ 1

1/2

∥∥z Gs
∥∥
Lp ds.

(26) 

Hence to estimate .∇ρβ and .∇gβ , it remains to estimate the value of . 
∥∥x e−βsH

∥∥
Lp

and .
∥∥p e−βsH

∥∥
Lp for .s ∈ [ 1

2 , 1]. Let start with the case .p = ∞. 

Lemma 3 Let .β > 0, then we have the estimate 

. 

∥∥∥|x|n e−βH
∥∥∥

2/n

L∞ =
∥∥∥|p|n e−βH

∥∥∥
2/n

L∞ ≤ n max
(

2
β
,
√

2 h̄
)

.

Remark 5 In the classical case, it is not difficult to prove that the maximum of the 

function .x �→ |x|n e−β|x|2 is .
(

n
2eβ

)n/2
, and more generally, 

. 

∥∥∥|x|n e−β|x|2
∥∥∥

p

Lp
= ωd �(

d+np
2 ) (βp)−

d+np
2

where . ωd is the volume of the d-dimensional unit ball and . � is the gamma function. 

Proof of Lemma 3 It is sufficient to prove a bound on the first quantity because H 
is symmetric in x and . p. Let .ϕ ∈ L2 and .ψ = e−tH ϕ. Notice that for any .t ≥ 0, 
.‖ψ‖L2 ≤ ‖ϕ‖L2 . Let .y := ∥∥|x|n ψ

∥∥2/n

L2 . Since .2 ∂tψ = −( |x|2 − h̄2�
)
ψ , then 

integrating by parts yields 

. 
d

dt
yn = −

∫

Rd

|ψ |2 |x|2(n+1) dx − h̄2Re

(∫

Rd

∇
(
ψ |x|2n

)
· ∇ψ dx

)

≤ −
∫

Rd

|ψ |2 |x|2(n+1) + h̄2 |∇ψ |2 |x|2n dx + 2 n h̄2
∫

Rd

|ψ | |x|2n−1 |∇ψ | dx.

Applying Young’s inequality for the product, we get 

.
d

dt
yn ≤ −

∫

Rd

|ψ |2 |x|2(n+1) dx + (nh̄)2
∫

Rd

|ψ |2 |x|2(n−1) dx

≤ −c−1 yn+1 + (nh̄)2 c yn−1
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where .c = ‖ϕ‖2/n

L2 . This yields the differential inequality 

.y′ ≤ − 1

n c

(
y2 − (nh̄ c)2

)
. (27) 

This ordinary differential equation has a fixed point at .y = nh̄ c. If initially, .y ≤ h̄ c, 
then .y′ ≥ 0 but y remains smaller than .nh̄ c. If not, then at any time .y′ < 0 and 
.h̄ c < y(t) < y(0). If initially .y >

√
2 n h̄ c, then as long as it remains true, it holds 

. y′ ≤ − 1

2 n c
y2

which implies 

. y(t) ≤ max

(
2

t
,
√

2 h̄

)
n c

and proves the result by taking .t = β. ��
To complete the proof of Proposition 4, we use the above lemma to get that for 

any .s ∈ [ 1
2 , 1], 

. 

∥∥
∥x e−βsH

∥∥
∥
L∞ ≤ 2 max

(
1√
β
,
√

h̄
)

.

Finally, we conclude using Inequality (26). 

2.4 Lp Bounds for 2 ≤ p <  ∞ 

Proposition 5 Let β >  0 and h̄ ∈ (0, 1). Suppose p ∈ [2,∞] then there exists 
Cd,p > 0 such that 

. 
∥∥∇gβ

∥∥
LpCd,p

β
1
2 − d

p

Zβ

max
(

2
√

2, βh̄
) 1

2 − 1
p

θ(βh̄)
1
p

,

∥∥∇ρβ

∥∥
Lp ≤ Cd,p

β
1
2 − d

p

Zμ

max
(

2
√

2, βh̄
) 1

2 − 1
p

θ(βh̄)
1
p

.

where where θ(x)  = th(x)/x with th(x) = ex−e−x 

ex+e−x .
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Lemma 4 Let β >  0 and n >  −d. Then 

. hdTr
(|x|n gβ

) = hdTr
(|p|n gβ

) = Cd,n

(β θ(βh̄/2)/2)n/2

where Cd,n = �(d+n 
2 )/�(d 

2 ). 

Proof Let H◦ = x2+|p|2 

2 be the one-dimensional Hamiltonian of the harmonic 
oscillator, and ψn be its eigenvalues verifying 

. H◦ψn =
(
n + 1

2

)
h̄ ψn.

The Wigner transform of the corresponding density operator |ψn〉〈ψn|, is classically 
given by (see e.g. [12, Sect. 5.04] or [7, Theorem 1.105]) 

. fn(z) = 2 (−1)n e−|z|2/h̄ Ln

(
2 |z|2

h̄

)

where z = (x, ξ) and Ln is the Laguerre polynomial of order n defined by 

. Ln(z) = ex

n! ∂n
x

(
xne−x

) =
n∑

k=0

(
n

k

)
(−x)k

k!

By the formula of the generating function of the Laguerre polynomials, we deduce 
that 

. 

∞∑

n=0

tnfn(z) = 2

1 + t
e
− |z|2

h̄
1−t
1+t

Taking t = e−βh̄, we obtain the Wigner transform of the thermal state. Since 
in dimension d it is factorized, it yields to the following formula for the Wigner 
transform of Z−1 

β e−βH 

. fβ(z) =
(

β θ(βh̄/2)

2π

)d

e−β|z|2θ(βh̄/2)

Its spatial moments are given by 

. hdTr
(|x|n gβ

) =
∫∫

R2d

fβ(z) |x|n dz =
(

β θ(βh̄/2)

2π

)d/2 ∫

Rd

|x|n e−β|x|2θ(βh̄/2) dx

which yields the result. ��
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Proof of Proposition 5 Since hdTr
(∣∣|x|n G

∣∣2
)

= Z2β hdTr
(|x|2n g2β

)
, then, by 

Lemma 4, we have the identity 

. 
∥∥|x|n G

∥∥2
L2 = ∥∥|p|n G

∥∥2
L2 = Cd,2n Z2β

(β θ(βh̄))n

whenever n >  −d/2. Now applying linear interpolation of Schatten norms and 
Lemma 3, we obtain the intermediate Schatten norm bounds 

. 
∥∥|x|n G

∥∥
Lp = ∥∥|p|n G

∥∥
Lp ≤ Cd,n,p Z

1
p

2β

max
(

2
β
,
√

2 h̄
)n

(
1
2 − 1

p

)

(β θ(βh̄))
n
p

where Cd,n,p = C 
1 
p 
d,2n n n

(
1 
2 − 1 

p

)

. Finally, by Identity (16a), we arrive at  

. 
∥∥∇gβ

∥∥
Lp ≤ 2β

Zβ

∫ 1

1/2

∥∥z Gs
∥∥
Lp ds

≤ Cd,1,p

2β

Zβ

sup
s∈[ 1

2 ,1]
Z

1
p

2sβ

max
(

2
sβ

,
√

2 h̄
) 1

2 − 1
p

(sβ θ(sβh̄))
1
p

≤ Cd,p

β
1
2 − d

p

Zβ

max
(

2
√

2, βh̄
) 1

2 − 1
p

(θ(βh̄))
1
p

where we used the fact that Zβ ≤ (2π/β)d and Cd,p = 2 
5 
4 + 2d+1 

p Cd,1,p π 
d 
p . 

Similarly, Inequality (26) implies the same bound for ρβ with Zβ replaced by Zμ. 
��
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Quasi-Classical Spin Boson Models 

Michele Correggi, Marco Falconi, and Marco Merkli 

1 Introduction and Main Result 

The spin-boson model describes the interaction between a bosonic scalar field, 
playing the role of environment or reservoir, and a ‘small’ quantum system, whose 
spin degrees of freedom are the only relevant ones. It has been widely studied in the 
mathematical physics and physics literature, from various standpoints. The spin-
boson model is one of the paradigmatic examples of an open quantum system. 
It is used to investigate general open system phenomena such as decoherence, 
entanglement, thermalization, to test the validity of markovian approximations and 
to analyze non-markovian behavior. We cannot attempt to give an exhaustive list 
of references of the model. We point the mathematically interested reader to the 
following inconclusive list of works, [1, 6–10, 22], as well as to references therein 
contained. 

On the more physical side, the spin-boson model is used to describe atom-
radiation interaction in quantum optics, qubit-noise coupling in quantum infor-
mation and computation, environment induced transport phenomena and chemical 
processes in quantum chemistry. Some of these aspects can be found in the 
references [23–26, 29–37, 40]. 

For the purpose of this paper, in which we focus on mathematical aspects, we 
assume that the reader is familiar with the basic mathematical tools of free quantum 
fields, namely Fock spaces, second quantization, creation/annihilation operators, 
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etc.; if not, they may refer, e.g., to [16, 18]. Let us denote by . ℋ the Hilbert space of 
the spin system, and by . h the Hilbert space of a single bosonic excitation. We denote 
by . Gε the second quantization functor,1 where .0 < ε � 1 is a scale parameter. The 
spin-boson Hamiltonian has the general form 

. Hε =S ⊗ 1 + ν(ε) 1 ⊗ dGε(ω) + s ⊗ ϕε(g) ,

as an operator on .ℋ ⊗ Gs
ε(h). Here, .S, s ∈ ℬ(ℋ) are self-adjoint, .ν(ε) is either 

.ν(ε) = 1 or .ν(ε) = 1
ε
, . ω is a positive—with possibly unbounded inverse—operator 

on . h, and .g ∈ h. The bipartition of the total Hilbert space .ℋ ⊗ Gs
ε(h) reflects the 

separation of the total physical system into two subsystems. Commonly, especially 
in the physics literature, the Hilbert space . ℋ is finite-dimensional. For instance, . ℋ
has dimension . 2N in the case of N spins . 1/2, or N qubits. One of the most studied 
cases is .N = 2, hence the name “spin-boson” model. A further characteristic of 
the spin-boson model is that the interaction operator is of the simple product form 
.s ⊗ ϕε(g), or a finite sum of such terms. This simplifies the (rigorous) analysis 
of the model. Nevertheless, other models in which the interaction term is more 
complicated, are also of interest. For instance, in the Nelson, the Pauli-Fierz or 
the polaron model, the interaction operator is of the form .

∫
R3 s(k) ⊗ ϕε(k)d3k. 

While these models are also treatable with the methods explained here (see [15]), 
we focus in the present manuscript, for ease of presentation, on the simple form of 
the interaction as in .Hε above. 

We shall consider a more general setup though. The guiding principle is that 
we want to describe two qualitatively unequal interacting parts. The ‘spin’ part 
which is ‘small’ and the boson part (or field, reservoir, environment) which is 
‘large’. A quantification of what small versus large means can be implemented 
in different ways, depending on the physical reality being modeled. For instance, 
finite dimensional (. ℋ) versus infinite dimensional (.Gs

ε(h)) Hilbert spaces, or 
Hamiltonians with discrete spectrum (. S) versus Hamiltonians with continuous 

1 We use a somewhat unorthodox notation for the second quantization functor. We denote by 
.Gs

ε(h) = ⊕
n∈N hn the symmetric Fock space over . h in which the canonical creation and 

annihilation operators have .ε-dependent commutation relations: 

. [aε(f ), a∗
ε (g)] = ε〈f, g〉h; .

The second quantization of an operator A on . h is written thus as 

. dGε(A) =
∞∑

i,j=0

Aij a
∗
ε,iaε,j ,

with .Aij = 〈ei , Aej 〉h, and .a
�
ε,k = a

�
ε(ek), with .{ek}k∈N an O.N.B. of . h. The quasi-classical 

parameter . ε clearly plays the role of a semiclassical parameter for the (Segal) field . ϕε(f ) =
a∗
ε (f ) + aε(f ): as .ε → 0, the field becomes a classical commutative observable [see 15, for a  

gentler and more detailed introduction to the quasi-classical scaling], and [11–14] for other recent 
papers concerning the quasi-classical regime.
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spectrum (.dGε(ω)). In the quasi-classical setup we are discussing here, the field 
is large in the sense that it is in a state which contains many more particles 
(or excitations) than the spin system does. This is formalized by saying that the 
(average) number of particles of the spin system is fixed, while that number in the 
field state is .∝ 1/ε � 1—constituting the quasi-classical limit. 

We will soon explain how the choice of .ν(ε) affects the quasi-classical limit 
.ε → 0. There are further possible generalizations of the model, namely by taking 
. s and g to be vector-valued, or by taking . S to be only bounded from below, or by 
taking .g /∈ h. Self-adjointness for the latter case has been recently studied in [27]. 
For our purposes, these generalizations do not present serious obstacles as long as 
. Hε can be defined as a self-adjoint operator, however for the sake of clarity we keep 
the setting as described above. 

Proposition 1 (Self-Adjointness of . Hε) For all .g ∈ h, . Hε is essentially self-
adjoint on2 

.D
(
dGε(ω)

) ∩ C∞
0

(
dGε(1)

)
. In addition, if both .g ∈ h and .ω−1/2g ∈ h, 

then . Hε is self-adjoint on .D
(
dGε(ω)

)
and bounded from below. 

Proof The essential self-adjointness is proved in [20], for a general class of 
operators describing the interaction between matter and radiation; self-adjointness 
and boundedness from below with the additional assumption .ω−1/2g ∈ h is an easy 
consequence of the Kato-Rellich theorem on relatively bounded perturbations of 
self-adjoint operators. �
Remark 1 (Form Factors) There are form factors .g ∈ h with .ω−1/2g /∈ h such 
that .Hε is unbounded from below (even though it is still self-adjoint). This is 
analogous to what happens for the van Hove model, and it is caused by some infrared 
singularity: in physical models, .ω−1/2 is unbounded (and thus it could happen that 
.ω−1/2g /∈ h) only if the field is massless [see 17, for further details]. For our 
purposes, uniqueness of the quantum dynamics (i.e. essential self-adjointness of 
. Hε) is enough. 

1.1 Main Result 

Our goal is to characterize explicitly the dynamics of quantum states, in the limit 
.ε → 0. In order to do that, let us define quantum states as density matrices 

.�ε ∈ L1+,1

(
ℋ ⊗ Gs

ε(h)
)

,

2 We denote by .C∞
0

(
dGε(1)

)
the Fock space vectors with a finite number of particles (i.e., for  

which the k-particle components are all zero for .k > k, for some .k ∈ N). 
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where . L1 is the trace ideal, and .L1+,1 stands for elements in the positive cone, with 
trace one. A time-evolved state is then given by 

. �ε(t) = e−itHε�εe
itHε .

To be more precise, the question we will answer in this note is the following: 

Knowing the behavior of the initial state . �ε as .ε → 0, what is the behavior of .�ε(t) as 
.ε → 0, for any time .t ∈ R? 

To answer the question, we shall first clarify what the general behavior is of a 
quantum state . �ε, as .ε → 0. The intuition is that as the boson degrees of freedom 
become classical, the state—restricted to the boson subsystem—becomes classical 
as well (in the statistical mechanics sense, i.e. a probability measure); on the other 
hand, the spin subsystem retains its quantum nature, and thus its description shall 
still be given by a density matrix. 

This picture is satisfactorily described mathematically in terms of a so-called 
state-valued measure, introduced in [15, 21]. A state-valued measure is a couple 
.m = (μ, γ ) consisting of a (Borel Radon) measure . μ on the classical configuration 
space . h for the Boson subsystem, and a .μ-almost-everywhere defined function . h �
z �→ γ (z) ∈ L1+,1(ℋ) with values in the density matrices of the Spin subsystem. 
The function .γ (z) acts as a vector-valued Radon-Nikodým derivative (it is in fact 
one), and thus the measure element .dm(z) can be written as 

. dm(z) = γ (z)dμ(z) .

Integrating a scalar measurable bounded function F with respect to . m gives an 
element in .L1(ℋ), that we denote by 

. 

∫

h

F(z)dm(z) =
∫

h

F(z)γ (z)dμ(z) .

It is also possible to integrate suitable functions . F with values in the bounded 
operators on . ℋ, however in this case the relative order between the function and 
the measure matters: in general, 

. 

∫

h

F(z)dm(z) =
∫

h

F(z)γ (z)dμ(z) �=
∫

h

γ (z)F(z)dμ(z) =
∫

h

dm(z)F(z) .

A detailed study of state-valued measures and their properties is given in the 
aforementioned references [14, 15, 21]; we will make extensive use of the results 
proved in those papers, so the interested reader shall refer to them. 

The last concept needed to understand the main results is that of the (non-
commutative) Fourier transform of a quantum state, and of the Fourier transform 
of a state-valued measure. These tools allow to put quantum states and state-valued 
measures on the same grounds, to set up the quasi-classical convergence of the
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former to the latter. The Fourier transform of a quantum state . �ε is the function 
.�̂ε : h→ L1(ℋ) given by 

. �̂ε(η) = trGs
ε(h)

(
�ε(Wε(η))

)
,

with .Wε(η) being the bosonic Weyl operator 

. Wε(η) = eiϕε(η) = e
i
(
a∗
ε (η)+aε(η)

)
,

and .trGs
ε(h)

denoting the partial trace w.r.t. the bosonic degrees of freedom. The 
Fourier transform of a state-valued measure . m is the function . m̂ : h → L1(ℋ)

given by 

. m̂(η) =
∫

h

e2iRe〈η,z〉hdm(z) =
∫

h

e2iRe〈η,z〉hγ (z)dμ(z) .

We say that a state . �ε converges quasi-classically to a state-valued measure . m, 
denoted by .�ε −→

ε→0
m, if and only if for all .η ∈ h, 

. w*-limε→0 �̂ε(η) = m̂(η) ,

where .w*-lim stands for the limit in the weak-* topology of .L1(ℋ), i.e. when tested 
with compact operators .k ∈ L∞(ℋ): 

. �ε −→
ε→0
m

def⇐⇒ trℋ
(
�̂ε(η)k

) −→
ε→0

trℋ
(
m̂(η)k

)
, ∀η ∈ h, k ∈ L∞(ℋ).

Proposition 2 (Quasi-Classical Convergence [15, Prop. 2.3]) Let . �ε be a state 
such that there exist .δ, C > 0 with 

.tr
(
(dGε(1) + 1)δ�ε

)
� C . (1) 

Then there exists a sequence .εn −→
n→∞ 0, and a state-valued measure . m (in general 

depending on the sequence) such that 

. �εn −→
n→∞ m .

Proof of Sketch The proof of this proposition adapts to the quasi-classical setting 
the semiclassical analysis for quantum fields developed by Ammari and Nier in [2– 
5], with some crucial differences. A complete proof is given in [15], however the 
key ideas could be summarized as follows.



112 M. Correggi et al.

The Fourier transform of a quantum state enjoys some special properties [see 
38, 39], namely: 

• .trℋ
(
�̂ε(0)

) = 1; 

• . �̂ε is weak-* continuous when restricted to any finite-dimensional subspace of . h; 
• . �̂ε is “quantum-” completely positive definite: for any finite collection . {ηj }Jj=1 ⊂
h, and .{tj }Jj=1 ⊂ ℬ(ℋ), 

. 

J∑

j,k=1

tj �̂ε(ηj − ηk)t
∗
k eiεIm〈ηj ,ηk〉 � 0

as an operator on . ℋ. 

Intuitively, by taking the (.h-pointwise) weak-* limit (using a compactness argu-
ment), one tries to prove that there exists a sequence .εn → 0 such that . �̂0 =
limn→∞ �̂εn satisfies 

• .trℋ
(
�̂0(0)

) = 1; 

• . �̂0 is weak-* continuous when restricted to any finite-dimensional subspace of . h; 
• . �̂0 is completely positive definite: for any finite collection .{ηj }Jj=1 ⊂ h, and 

.{tj }Jj=1 ⊂ ℬ(ℋ), 

. 

J∑

j,k=1

tj �̂0(ηj − ηk)t
∗
k � 0 .

It turns out that, under the assumption (1) above, the second and third properties are 
indeed satisfied, thus by the infinite dimensional version of Bochner’s theorem [21], 
. �̂0 identifies uniquely a cylindrical state-valued measure3 

. m. In addition, (1) also 
implies that . m is tight, and thus a Borel Radon measure. The first property, namely 
that the mass is preserved in the limit, does not hold in general in the quasi-classical 
case, contrarily to the semiclassical case where it is again ensured by (1). This is  
due to the fact that some mass may be lost “at infinity” if the spin subsystem has 
infinitely many degrees of freedom, see Sect. 1.2 for a detailed discussion. �

We are now in a position to state the main result of this note, in an informal but 
intuitive manner.

3 A cylindrical measure is a finitely additive measure that is .σ -additive on any subalgebra of 
cylinders generated by a finite number of vectors. 
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Theorem 1 (Quasi-Classical Dynamics) Let .�ε ∈ L1+,1

(
ℋ ⊗Gs

ε(h)
)
be such that 

there exists .δ, C > 0 such that, uniformly w.r.t. .ε ∈ (0, 1), 

. tr
((

dGε(1) + 1
)δ

�ε

)
� C .

Then there is a sequence .εn → 0 such that, with .ν := limε→0 εν(ε), the following 
diagram is commutative, for any .t ∈ R: 

. 

In the above theorem, the symbol .( · )�( · ) stands for the pushforward of 
the measure on the right by means of the map on the left, and .Ut,s (z) is the 
two-parameter unitary group on . ℋ generated by the self-adjoint, generally time-
dependent effective Hamiltonian4 

. H(z) =S + 2Re〈e−itνωz, g〉h s .

The operator .H(z) is a time-dependent generator if .ν = 1, and it is time-independent 
if .ν = 0.5 More precisely, for .ν = 1 the classical bosonic field described by 
.e−itω

� μ evolves freely, while for .ν = 0 it does not evolve at all and is described 
by . μ at all times; in both cases it drives the spin state through .Ut,0(z), mediated 
over all possible configurations z in the support of . μ. Let us also remark that 
.Ut,0(z)γ (z)U∗

t,0(z) shall be seen as a Radon-Nikodým derivative, and as such the 
pushforward does not act on it. 

Theorem 1 therefore explains how the semiclassical bosonic subsystem becomes 
an environment driving the spin system, unaffected by the latter, if the quasi-
classical parameter . ε is small enough. This also motivates the terminology used 
so far, i.e., the identification of the spin component as the ‘small’ system, while 
the bosonic field is the ‘large’ environment or reservoir. In addition, the effective 
dynamics of the spin system can be characterized explicitly, being unitary and 
described by .Ut,0(z) for any fixed configuration z of the classical field, but not

4 .Ut,s (z) is the unique solution of .i∂tUt,s (z) = H(z)Ut,s (z) and .Ut,t (z) = 1. 
5 We restrict our attention only to the limits .ν = 1 and .ν = 0, since they encode all different and 
well-defined outcomes that one could obtain for the effective dynamics. In fact, every choice of 
.ν(ε) such that .limε→0 εν(ε) = λ > 0 would amount in a rescaling of the field dispersion relation, 
while any choice such that either .limε→0 εν(ε) = λ = ∞ or such that the limit does not exist 
would prevent an explicit definition of the effective dynamics in the limit .ε → 0. 
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unitary (and not even Markovian6 ) in general, due to the integration over all 
configurations reached by the classical bosonic state .e−itνω

� μ. Both a stationary 
and a freely evolving bosonic environment can be obtained, tuning the microscopic 
initial state accordingly in a way that makes .ν(ε) either 1 (stationary) or . 1

ε
(freely 

evolving). Let us stress that even if .ν(ε) appears in the Hamiltonian, it should be 
thought as a feature of the chosen initial state, fixing the scale of energy for the 
bosonic subsystem. 

1.2 Loss of Mass in the Quasi-Classical Limit 

An interesting feature of quasi-classical systems is that some mass can be lost in the 
limit .ε → 0, due to the entanglement between the two subsystems, when the spin 
part is infinite dimensional. By loss of mass we mean that the measure in the quasi-
classical limit satisfies .μ(h) < 1. There are many well-known examples of loss of 
mass (also called loss of compactness) in semiclassical analysis, both in finite and 
infinite dimensions [see, e.g., 2, 28]. In those cases, however, conditions like (1) are 
enough to guarantee that no mass is lost. 

Here, on the contrary, mass can be lost “through the spin system”, provided the 
systems are entangled, and the spin system components could escape to infinity. In 
fact, if the microscopic state is unentangled (in a natural quasi-classical way), i.e. it 
is of the form 

. �ε = γ0 ⊗ ξε ,

with γ0 ∈ L1+,1

(
ℋ

)
, ξε ∈ L1+,1

(
Gs

ε(h)
)

,

the quasi-classical convergence in Proposition 2 “decouples” and no mass can be 
lost: for this class of states (1) implies .m = (μ, γ0), with .μ(h) = 1. Similarly, if the 
spin subsystem is finite dimensional or its particles are confined, again no mass can 
be lost. More precisely, if either .dim(ℋ) < +∞ or there exists an operator . A > 0
on . ℋ with compact resolvent7 such that there exists .C > 0 with 

.tr
(
�ε(A ⊗ 1)

)
� C , (2) 

then the measure .m = (μ, γ ) in Proposition 2 is such that .μ(h) = 1. 
In general however, part or all of the mass can be lost in the limit .ε → 0 of a 

generic quantum state . �ε. Theorem 1 is also interesting if (some) mass is lost. In 

6 We plan to investigate the non-Markovian character of the quasi-classical effective dynamics in 
an upcoming paper. 
7 If . S has compact resolvent (and it is bounded from below), .A = S + |inf σ(S)| + 1 would be a 
natural choice, and the associated condition (2) would mean that mass is not lost if one restricts to 
states with .ε-uniformly-bounded Spin kinetic energy.
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fact, the mass is preserved by the quasi-classical dynamics: this means that the same 
amount of mass is lost at any time, and therefore that one should check if any mass 
is lost only at the initial time. We think that this loss of mass phenomenon peculiar 
to the quasi-classical entanglement is worth pointing out, and could be explored 
further in concrete applications. 

2 Heuristic Derivation 

If the initial state is quasi-classically unentangled, i.e. 

. �ε = γ0 ⊗ ξε

(see Sect. 1.2 above), it is possible to use the factorized nature of the spin-boson 
interaction to formally obtain a result akin to Theorem 1 in a very intuitive way, that 
hopefully helps to illustrate the main ideas behind the general proof. 

In order to discuss the strategy, let us set some useful notation. Define the free 
Hamiltonian 

. H f
ε := Hε

∣
∣
g=0 =S ⊗ 1 + ν(ε) 1 ⊗ dGε(ω) =: H fs + H fb

ε ,

and define the interaction 

. H i
ε = Hε − H f

ε .

The Dyson expansion for the evolution in the interaction picture is 

. eitH f
ε e−itHε = 1 +

∑

n∈N∗
(−i)n

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn ss1 · · ·

ssn ⊗ ϕε,s1 · · · ϕε,sn ,

where 

.ss = eisH fs
se−isH fs

,

ϕε,s = eisH fb
ε ϕε(g)e−isH fb

ε = ϕε(e
iν(ε)sωg) ;
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and in addition 

. eitHεe−itH f
ε = 1 +

∑

m∈N∗
im

∫ t

0
du1

∫ u1

0
du2 · · ·

∫ um−1

0
dum sum · · ·

su1 ⊗ ϕε,um · · ·ϕε,u1 .

It follows that 

. γ̃ε(t) := trGs
ε(h)

(
eitH fs

e−itHε (γ0 ⊗ ξε)e
itHεe−itH fs

)

=
∑

m,n∈N
im−n

∫ t

0
ds1 · · ·

∫ sn−1

0
dsn

∫ t

0
du1 · · ·

∫ um−1

0
dum ss1 · · · ssn γ0 sum · · · su1

trGs
ε(h)

(
ξεϕε,um · · ·ϕε,u1ϕε,s1 · · ·ϕε,sn

)
.

Now, in order to take the limit .ε → 0, one should focus on the expectation with 
respect to . ξε: 

. 〈ϕε,um · · · ϕε,u1ϕε,s1 · · ·ϕε,sn〉ξε := trGs
ε(h)

(
ξεϕε,um · · ·ϕε,u1ϕε,s1 · · ·ϕε,sn

)
.

It is possible to write such an expectation as follows, where .f1, . . . , fk ∈ h, 
. 〈ϕε(f1) · · · ϕε(fk)〉ξε

= (−i)k∂λ1 · · · ∂λk

(
〈Wε(λ1f1) · · · Wε(λkfk)〉ξε

)∣
∣
∣
∣
λ1=···=λk=0

=: Dk〈Wε(λ1f1) · · · Wε(λkfk)〉ξε

∣
∣
∣
∣
λ=0

.

It then follows from the Weyl CCR 

. Wε(λ1f1)Wε(λ2f2) = e−iεIm〈λ1f1,λ2f2〉Wε(λ1f1 + λ2f2)

that 

. lim
ε→0

Dk〈Wε(λ1f1) · · · Wε(λkfk)〉ξε

∣
∣
∣
∣
λ=0

= lim
ε→0

Dk〈Wε(λ1f1 + · · · + λkfk)〉ξε

∣
∣
∣
∣
λ=0

.
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Now, in this formal reasoning we feel free to exchange .limε→0 with . Dk; thus we 
obtain, provided that8 

.ξε −→
ε→0

μ, 

. Dk lim
ε→0

〈Wε(λ1f1 + · · · + λkfk)〉ξε

∣
∣
∣
∣
λ=0

= Dkμ̂(λ1f1 + · · · λkfk)

∣
∣
∣
∣
λ=0

=
∫

h

αf1(z) · · · αfk
(z)dμ(z) ;

where 

. αf (z) := 2Re〈z, f 〉h .

Applying these results to .limε→0 γ̃ε(t) yields: 

. lim
ε→0

γ̃ε(t) =
∑

m,n∈N
im−n

∫ t

0
ds1 · · ·

∫ sn−1

0
dsn

∫ t

0
du1 · · ·

∫ um−1

0
dum ss1 · · ·

ssn γ sum · · · su1

∫

h

αs1(z) · · ·αsn(z)αu1(z) · · · αum(z)dμ(z) ,

with 

.αs(z) = 2Re〈z, eiνsωg〉h . (3) 

We have thus 

. γ (t) := lim
ε→0

γε(t) := lim
ε→0

trGs
ε(h)

(
e−itHε (γ0 ⊗ ξε)e

itHε

)

=
∫

h

Ut,0(z)γ (z)U∗
t,0(z)d

(
e−itνω

� μ
)
(z) , (4) 

where .Ut,0(z) is defined in Theorem 1, that can also formally be seen as 

. Ut,0(z) = e−itH fs ∑

n∈N
(−i)n

∫ t

0
ds1 · · ·

∫ sn−1

0
dsn ss1αs1(z) · · · ssnαsn(z) .

One can see last equality in (4) as a ‘resummation of the Dyson series’. 

8 The scalar convergence .ξε −→
ε→0

μ is perfectly analogous to the quasi-classical one, and could be 

seen as a particular case of it where the additional degrees of freedom are trivial. Let us remark 
again that for the scalar case—and thus also for the unentangled quasi-classical states considered 
here – (1) is sufficient to guarantee that .μ(h) = 1.
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3 Proof of Theorem 1 

As we have seen in Sect. 2, the factorized structure of the spin-boson interaction 
can be used to simplify the study of the quasi-classical limit, compared to, say, 
the Nelson, polaron, or Pauli-Fierz models, where such a factorization is not present 
[see 14, 15, for their quasi-classical analysis]. The proof of Theorem 1 reflects this as 
well, as illustrated below. Since the proof follows closely [15]—and directly utilizes 
some of its results—we will mostly focus on highlighting the features specific to the 
spin-boson model. 

The proof is organized in a few steps, namely: 

• write a Duhamel-type formula for the Fourier transform of evolved quantum 
states in the interaction representation; 

• extract a subsequence .εnk
of common quasi-classical convergence for regular 

enough evolved states at any given time; 
• take the limit .εnk

→ 0 along the aforementioned subsequence of the Duhamel 
formula; 

• study the resulting transport equation to identify the evolved measure, and 
uniqueness of the limit; 

• relax the regularity assumption needed at step two to the assumption in the 
theorem. 

We will review these steps below separately. 

3.1 The Duhamel Formula 

For technical reasons, related mostly to the possible unboundedness of . ω, it is  
convenient to pass to the so-called interaction representation. Let us define the 
evolution in the interaction representation as 

. ϒε(t) := eitH f
ε�ε(t)e

−itH f
ε .

The Schrödinger differential equation of quantum evolution requires too much 
regularity for its solutions; it is more convenient to use its integral (or Duhamel) 

form. To write it, it is sufficient to suppose that for all .t ∈ R, . tr
(
ϒε(t)(dGε(1) +

1)1/2
)

< +∞. Under this assumption the Fourier transform .ϒ̂ε(t) satisfies the
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following integral equation, weakly on .L1(ℋ), for any .t, s ∈ R and .η ∈ h: 

. [ϒ̂ε(t)](η) − [ϒ̂ε(s)](η) = −i

∫ t

s

trGs
ε(h)

([
s(τ ) ⊗ ϕε(τ ), ϒε(τ )

]
Wε(η)

)
dτ

= i

∫ t

s

(

trGs
ε(h)

(
ϒε(τ)ϕε(τ )Wε(η)

)
s(τ )

− s(τ )trGs
ε(h)

(
ϕε(τ )ϒε(τ )Wε(η)

))

dτ . (5) 

Here, we write 

. s(τ ) = eiτH fs
se−iτH fs

and ϕε(τ ) = eiτH fb
ε ϕε(g)e−iτH fb

ε .

Once the required regularity is taken care of, this equation follows directly from 
the algebraic properties of the quantum evolution (in interaction representation) 
.eitH f

ε e−itHε , as already outlined in Sect. 2. The Duhamel formula is the starting point 
for our study of the dynamical quasi-classical limit. 

The regularity bound concerning the average of the number operator at all times 
that we used above—especially in its form that is uniform w.r.t. .ε ∈ (0, 1)— 
will be crucial also in what follows, so let us formulate it as an auxiliary “black 
box” result. Such propagation results are typically heavily dependent on the model 
under consideration; for the Spin-Boson system one could adapt very easily the 
results available for the Nelson model with ultraviolet cutoff [19, Proposition 4.2], 
obtaining the lemma below. 

Lemma 1 For any .δ, C > 0 and for all .t ∈ R, there exists .K(δ,C, t) > 0 such 
that 

. tr
(
�ε

(
dGε(1) + 1

)δ
)
� C �⇒

(

tr
(
�ε(t)

(
dGε(1) + 1

)δ
)
� K(δ,C, t)

∧ tr
(
ϒε(t)

(
dGε(1) + 1

)δ
)
� K(δ,C, t)

)

.

3.2 Common Subsequence Extraction at All Times 

Thanks to the propagation lemma, Lemma 1, it is possible to prove that . t �→ ϒ̂ε(t)

is uniformly equicontinuous w.r.t. .ε ∈ (0, 1). This in turn implies, by a diagonal 
extraction argument, that starting from any sequence .εn → 0, it is possible to extract 
a subsequence .εnk

→ 0 that guarantees convergence of .ϒεnk
(τ ) to some state-valued 

measure . nτ for any . τ in a given compact interval .[s, t] (actually for any given time). 
This is the crucial ingredient allowing to study the limit .ε → 0 of the Duhamel
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formula (5), for the latter involves the integral over all evolved states between s and 
t . The result reads as follows, and it has been proved in [15, Propositions 4.2 and 
4.3], with a general argument that does not depend on the nature of . ℋ or on the 
Hamiltonian (one only requires that a form of Lemma 1 is available). 

Proposition 3 Let . �ε be such that 

. tr
(
�ε

(
dGε(1) + 1

)1/2
)
� C .

Then .R × h � (t, η) �→ [ϒ̂ε(t)](η) ∈ L1(ℋ) is uniformly equicontinuous w.r.t. 
.ε ∈ (0, 1) on bounded subsets of .R × h, having endowed .L1(ℋ) with the weak-* 
topology. 

In addition, for any sequence .εn → 0, there exists a subsequence .εnk
→ 0 and a 

family .{nt }t∈R of state-valued measures such that for all .t ∈ R, 

. ϒεnk
(t) −→

k→∞ nt .

As a byproduct (again this is a general result concerning unitary evolutions gener-
ated by operators of the type .ν(ε)dGε(·)), we also get the following information 
on the limit of the “true” evolution .�ε(t). Remember that we defined . ν =
limε→0 εν(ε). 

Corollary 1 Under the same assumptions as in Proposition 3, and given the 
subsequence .εnk

→ 0 and measures .{nt }t∈R, we have that for any .t ∈ R, 

. �εnk
(t) −→

k→∞ mt = e−itH fs(
e−itνω

� nt
)
eitH fs

.

In other words, we are able to relate the quasi-classical evolution in the interaction 
picture to the one not in interaction picture “as it should be”, i.e. by acting with the 
expected free evolution on both the Spin and classical Boson subsystems. It follows 
that once we have characterized the map .t → nt , we have also a characterization 
for the map .t → mt . 

3.3 The Limit of the Duhamel Formula 

We are now in a position to take the limit .ε → 0 of the Duhamel formula (5). In  
taking this step, the factorized nature of the spin-boson interaction helps greatly, 
essentially allowing to transform the problem from quasi-classical to semiclassical, 
allowing us to avoid completely the use the heavy machinery of quasi-classical 
calculus developed in [15, §2] (that is however necessary whenever the interaction
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is not factorized as for the spin boson). Let .k ∈ L∞(ℋ) be a compact operator on 
the Spin subsystem, then Duhamel’s formula (5) becomes 

. trℋ
(
[ϒ̂ε(t)](η)k

)
− trℋ

(
[ϒ̂ε(s)](η)k

)

= i

∫ t

s

(

tr
(
ϒε(τ)ϕε(τ )Wε(η)s(τ )k

)
− tr

(
ks(τ )ϕε(τ )ϒε(τ )Wε(η)

))

dτ .

It is possible to exchange the trace w.r.t. .ℋ and the integral by dominated 
convergence, using the bound for .�ε assumed in Proposition 3, and its time 
propagation given by Lemma 1. By Proposition 3, and the definition of quasi-
classical convergence, it follows immediately that, along the common subsequence 
.εnk

→ 0, 

. lim
k→∞ trℋ

(
[ϒ̂εnk

(t)](η)k
)

= trℋ
(
n̂t (η)k

)
,

lim
k→∞ trℋ

(
[ϒ̂εnk

(s)](η)k
)

= trℋ
(
n̂s(η)k

)
.

Let us now focus on the interaction term, and in particular on the expression 

. tr
(
ϒε(τ)ϕε(τ )Wε(η)s(τ )k

)
,

the other one being analogous. Let us now decompose the operator .s(τ )k in its real 
positive, negative, and imaginary positive, negative parts: 

. s(τ )k = skr+ − skr− + i(ski+ − ski−) ,

with .skr+, skr−, ski+, ski− � 0. Therefore, we have that 

. tr
(
ϒε(τ)ϕε(τ )Wε(η)s(τ )k

)
= tr

(
ϒε(τ)ϕε(τ )Wε(η)skr+

)

− tr
(
ϒε(τ)ϕε(τ )Wε(η)skr−

)
+ i

(

tr
(
ϒε(τ)ϕε(τ )Wε(η)ski+

)

− tr
(
ϒε(τ)ϕε(τ )Wε(η)ski−

))

.

Now, we would like to treat all these terms in the same fashion, so let us focus on 
the first one. We can split the total trace in the two partial traces, but we do it in 
reverse order w.r.t. before: 

.tr
(
ϒε(τ)ϕε(τ )Wε(η)skr+

)
= trGs

ε(h)

(

trℋ
(
ϒε(τ)skr+

)
ϕε(τ )Wε(η)

)

.
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The partial trace w.r.t. to . ℋ is the expectation over a state of a positive operator, so 

. ζε(τ, skr+) := trℋ
(
ϒε(τ)skr+

)
∈ L1+(h) ,

and we finally obtain 

. tr
(
ϒε(τ)ϕε(τ )Wε(η)skr+

)
= trGs

ε(h)

(

ζε(τ, skr+)ϕε(τ )Wε(η)

)

.

The state .ζε(τ, skr+) is a semiclassical (scalar) state, living on the Fock space. On 
one hand, by Proposition 3 and the definition of quasi-classical convergence9 we 
know that 

. ζεnk
(τ, skr+) −→

k→∞ dμτ,skr+(z) = trℋ
(
dnτ (z)skr+

)
.

On the other hand, by semiclassical calculus in infinite dimensions [see 2], we also 
know that 

. lim
k→∞ trGs

εnk
(h)

(

ζεnk
(τ, skr+)ϕεnk

(τ )Wεnk
(η)

)

=
∫

h

ατ (z)e
2iRe〈η,z〉hdμτ,skr+(z) ,

where the shorthand .ατ (z) has been defined in (3). Combining the two things, and 
repeating the same reasoning for all the other remaining terms, we end up obtaining 
the following integral equation for the map .t → nt (another dominated convergence 
argument allows to pass the limit .εnk

→ 0 inside the time integral, this time 
exploiting the uniformity w.r.t. .ε ∈ (0, 1) of the number operator bounds at any 
time). 

Proposition 4 The family of state-valued measures .{nt }t∈R of Proposition 3 satis-
fies the following transport equation for the Fourier transform, in the weak sense on 
.L1(ℋ): 

.n̂t (η) − n̂s(η) = i

∫ t

s

∫

h

[γnτ (z), s(τ )]ατ (z)e
2iRe〈η,z〉hdμnτ (z)dτ .

9 Quasi-classical convergence is the pointwise convergence of Fourier transforms in weak-* 
topology, i.e. when tested with compact operators. Since .skr+ is compact, we have pointwise 
convergence of .ϒ̂ε(τ ) traced together with .skr+. 
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3.4 Uniqueness of the Solution to the Transport Equation, 
Uniqueness of the Limit 

The transport equation for the Fourier transform of . nt can be easily translated in an 
equation for the measure: 

. γnt (z)dμnt (z) − γns (z)dμns (z) = i

∫ t

s

[γnτ (z), s(τ )]ατ (z)dμnτ (z)dτ .

Now, let us fix .s = 0, and suppose that we have the quasi-classical convergence at 
initial time 

. �εn −→
n→∞ m .

It then follows that 

. n0 = m ,

and the transport equation reads 

. γnt (z)dμnt (z) − γm(z)dμm(z) = i

∫ t

0
[γnτ (z), s(τ )]ατ (z)dμnτ (z)dτ .

The family of state-valued measures .{nt }t∈R given by 

. dnt (z) = Ũt,0(z)γm(z)Ũ∗
t,0(z) ,

with .Ũt,0(z) the two-parameter unitary group on . ℋ generated by 

. ατ (z)s(τ )

is easily checked to be a solution to the transport equation. Such solution is actually 
unique, as is proved in a general fashion in [15, Proposition 5.3]. Therefore, we have 
proved that given 

. �εn −→
n→∞ m and tr

(
�ε

(
dGε(1) + 1

)1/2
)
� C ,

there exists a subsequence .εnk
along which for any .t ∈ R we have the convergence 

.ϒεnk
(t) −→

k→∞ nt ,
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with 

. dnt (z) = Ũt,0(z)γm(z)Ũ∗
t,0(z) .

By Corollary 1, it also follows that for any .t ∈ R, 

. �εnk
(t) −→

k→∞ mt ,

with 

. dmt (z) = Ut,0(z)γ (z)U∗
t,0(z) d

(
e−itνω

� μ
)

(z) ,

as stated in Theorem 1. However, a couple of steps are still missing to complete the 
proof of the latter. 

First of all, one shall prove convergence along the original sequence of conver-
gence at initial time .εn → 0, rather than on some existing subsequence .εnk

→ 0. 
This is readily established exploiting once more the uniqueness of the solution to 
the transport equation. Suppose in fact that we have another subsequence . εnj

→ 0
of convergence for .ϒεnj

(t) at all times .t ∈ R, with possibly different limit measure 

.{n′t }t∈R. Then, by the same argument as in Sect. 3.3, . n′t would satisfy the very same 
transport equation given in Proposition 4 for . nt . Since the solution to that transport 
equation is unique, this would imply .n′t = nt . In other words, there is a unique 
possible cluster point for the sequence .ϒεn(t), thus it converges itself to the very 
same limit . nt . We can thus conclude that, that if 

. �εn −→
n→∞ m and tr

(
�ε

(
dGε(1) + 1

)1/2
)
� C ,

then for any .t ∈ R, 

. �εn(t) −→
k→∞ mt ,

with 

. dmt (z) = Ut,0(z)γ (z)U∗
t,0(z) d

(
e−itνω

� μ
)

(z) .

3.5 Relaxing the Regularity Assumption on the Expectation 
of the Number Operator 

The final step for the proof is to relax the initial time assumption 

.tr
(
�ε

(
dGε(1) + 1

)1/2
)
� C
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used in the above, to 

. tr
(
�ε

(
dGε(1) + 1

)δ
)
� C

for some .δ > 0. This is done using standard approximation techniques and density 
arguments, as detailed in [4, §2]. This concludes the proof of Theorem 1. 
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Some Remarks on Semi-classical Analysis 
on Two-Step Nilmanifolds 

Clotilde Fermanian Kammerer, Véronique Fischer, and Steven Flynn 

1 Introduction 

1.1 Subelliptic Operators and Subelliptic Estimates 

Sub-elliptic operators are an important class of operators containing sub-
Laplacians—also known as Hörmander’s sums of squares of vector fields [25] 
that generate the tangent space by iterated commutation. These operators also 
appear naturally in stochastic analysis as the Kolmogorov equations of stochastic 
ordinary differential equations are described in terms of second order differential 
operators which are often sub-Laplacians. In complex geometry, Kohn Laplacian 
(acting on functions) on Cauchy-Riemann manifolds also gives an example of sub-
elliptic operators. More generally, sub-elliptic operators appear in contact geometry, 
thereby having significant place. 

One of their specific properties relies on the sub-elliptic estimates proved 
independently by Rothschild and Stein [28] on the one hand, and Fefferman and 
Phong [12], on the other one. While, in the elliptic case, if .�u ∈ Hs(Rd), 
then .u ∈ Hs+2(Rd), the gain of regularity is smaller for a sub-elliptic operator 
.L = X2

1 + · · · +X2
p. Indeed, one then has 

. Lu ∈ Hs(Rd) �⇒ u ∈ Hs+2/r (Rd)
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where r is the mean length to obtain spanning commutators. The Rothschild and 
Stein proof in [28] is based on Harmonic analysis on Lie groups, as developed in 
[20, 28], via a lifting procedure consisting in the construction of a nilpotent stratified 
Lie group for which the sub-elliptic operator is a sub-Laplacian. It is in that spirit 
that we work here and we are interested in sublaplacians associated with a special 
type of manifolds called nilmanifolds, that are naturally attached to a nilpotent Lie 
group. 

1.2 Analysis on Nilmanifolds 

In this paper, as is often the case in harmonic analysis, we restrict our attention to 
nilpotent Lie groups that are stratified. We will further assume that their step is two 
later on. 

1.2.1 Stratified Lie Groups 

A stratified Lie group G is a connected simply connected Lie group whose (finite 
dimensional, real) Lie algebra . g admits an .N-stratification into linear subspaces, i.e. 

. g = g1 ⊕ g2 ⊕ . . . with [g1, gj ] = g1+j , 1 ≤ i ≤ j.

In this case, the group G and its Lie algebra are nilpotent. The step of nilpotency is 
the largest number .s ∈ N such that . gs is not trivial. In this paper, all the nilpotent 
Lie groups are assumed connected and simply connected. 

Once a basis .X1, . . . , Xn for . g has been chosen, we may identify the points 
.(x1, . . . , xn) ∈ R

n with the points .x = expG(x1X1 + · · · + xnXn) in G via 
the exponential mapping .expG : g → G. By choosing a basis adapted to 
the stratification, we derive the product law from the Baker-Campbell-Hausdorff 
formula. We can also define the (topological vector) spaces .C∞(G) and . S(G)

of smooth and Schwartz functions on G identified with . Rn. This induces a Haar 
measure dx on G which is invariant under left and right translations and defines 
Lebesgue spaces on G, together with a (non-commutative) convolution for functions 
.f1, f2 ∈ S(G) or in .L2(G), 

. (f1 ∗ f2)(x) :=
∫

G

f1(y)f2(y
−1x)dy, x ∈ G.

The Lie algebra . g is naturally equipped with the family of dilations .{δr , r > 0}, 
.δr : g → g, defined by .δrX = r�X for every .X ∈ g�, .� ∈ N [20]. The associated 
group dilations derive from 

.δr (expG X) = expG(δrX), r > 0, X ∈ g.
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In a canonical way, this leads to a notion of homogeneity for functions (measurable 
functions as well as distributions) and operators. For instance, the Haar measure is 
Q-homogeneous where 

. Q :=
∑
�∈N

� dim g�

is called the homogeneous dimension of G. Another example is obtained by 
identifying the elements of the Lie algebra . g with the left-invariant vector fields on 
G: we check readily that the elements of . gj are homogeneous differential operators 
of degree j . 

When a scalar product is fixed on the first stratum . g1 of the Lie algebra . g, 
the group G is said to be Carnot. The intrinsic sub-Laplacian on G is then the 
differential operator given by 

. LG := V 2
1 + · · · + V 2

q ,

for any orthonormal basis .V1, . . . , Vq of . g1. We fix such a basis that will be used in 
different places of the paper. 

1.2.2 Nilmanifolds 

A nilmanifold is the one-sided quotient of a nilpotent Lie group G by a discrete 
subgroup . � of G. In this paper, we will choose the left quotient of G and denote it 
by .M = �\G. We will consider compact nilmanifolds, or equivalently cocompact 
subgroups . �. We denote by .x 
→ ẋ the canonical projection which associates to 
.x ∈ G its class modulo . � in M . 

Recall that the Haar measure dx on G is unique up to a constant and, once it is 
fixed, . dẋ is the only G-invariant measure on M satisfying for any function . f : G→
C, for instance continuous with compact support, 

.

∫
G

f (x)dx =
∫

M

∑
γ∈�

f (γ x) dẋ. (1) 

We may allow ourselves to write dx for the measure on M when the variable of 
integration is .x ∈ M and no confusion with the Haar measure is possible. 

The canonical projection .G→ M induces a one-to-one correspondence between 
the set of functions on M with the set of .�-left periodic functions on G, that is, the 
set of functions f on G satisfying 

.∀x ∈ G, ∀γ ∈ �, f (γ x) = f (x).
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With a function f defined on M , we associate the .�-left periodic function . fG : x 
→
f (ẋ) defined on G. Conversely, a .�-left periodic function f on G naturally defines 
a function .fM : ẋ 
→ f (x) on M . 

Consider a linear continuous mapping .T : S(G) → S′(G) which is invariant 
under . � in the sense that 

. ∀F ∈ S(G), ∀γ ∈ �, T (F (γ ·)) = (T F )(γ ·).

Then it naturally induces [18] an operator .TM on M via 

. TMf = (TfG)M.

Furthermore, .TM : D(M) → D′(M) is a linear continuous mapping. Note that if 
T is invariant under G, then it is invariant under . �. For instance, any left-invariant 
differential operator T on G induces a corresponding differential operator .TM on M . 

Let us now assume that G is a Carnot group. The intrinsic sub-Laplacian on 
M is the operator .LM induced by .LG on M . It is a differential operator that is 
essentially self-adjoint on .L2(M); we will keep the same notation for its self-adjoint 
extension. The spectrum of .−LM is a discrete and unbounded subset of .[0,+∞). 
Each eigenspace of .LM has finite dimension. The constant functions on M form the 
0-eigenspace of . LM , see e.g. [18]. 

1.2.3 Objectives 

In this paper, we consider nilpotent Lie groups G of step .s = 2 whose Lie algebra is 
equipped with a scalar product. They are naturally stratified, (see Sect. 1.3.1) and so 
they will also be Carnot. We will focus our attention on sequences of eigenfuctions 
.(ψk)k∈N and eigenvalues .(Ek)k∈N of .−LM , ordered in increasing order and repeated 
according to multiplicity: 

.− LMψk = Ekψk, E1 ≤ E2 ≤ · · · ≤ Ek ≤ · · · , Ek −→
k→∞+∞. (2) 

We are interested in the measures on M that are limit points of the densities 
.|ψk(x)|2dx as k tends to .+∞. Our result extends to operators 

. − L
U

M = −LM + U(x)

where .x 
→ U(x) is a smooth potential on M . Our analysis will be using a semi-
classical approach based on the harmonic analysis on the group G in order to derive 
invariance properties of these measures.
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1.3 Fourier Analysis of Step-Two Groups 

Our semi-classical approach is based on the Fourier theory of the group, as 
developed in Harmonic analysis (see for example [19, 20]). In the rest of this paper, 
we will consider only a nilpotent Lie group G of step two and its associated compact 
nilmanifolds .M = �\G. 

1.3.1 Step-Two Groups 

As G is step two, the derived algebra .z := [g, g] lies in the centre of . g. Moreover, 
denoting by . v a complement of . z, we have the decomposition: 

. g = v⊕ z.

Note that .z = [v, v] and that this decomposition yields a stratification of . g with 
.g1 = v, .g2 = z. Hence G is naturally stratified with dilations given by . δε(V +Z) =
εV+ε2Z where .ε > 0, .V ∈ v, .Z ∈ z. Its topological dimension is . n = dim v+dim z

while the homogeneous dimension is .Q = dim v + 2 dim z. We also assume that a 
scalar product has been fixed on . g, and that . v is an orthogonal complement of . z. 

1.3.2 The Dual Set 

The dual set . ̂G of G is the set of the equivalence classes of the irreducible unitary 
representations of G. We will often allow ourselves to identify a class of such 
representations with one of its representatives. Since G is a nilpotent Lie group, 
its dual is the disjoint union of the (classes of unitary irreducible) representations of 
dimension one and of infinite dimension: 

. ̂G= Ĝ1Ĝ∞, Ĝ1 := {class of π, dim π = 1}, Ĝ∞ := {class of π, dim π =∞}.

As G is step two, . ̂G1 and .Ĝ∞ can be described in a relatively simple manner. 

i. The (classes of unitary irreducible) one-dimensional representations are 
parametrized by the elements .ω ∈ v∗ of the dual of . v and consists of the 
characters 

. πω(x) = eiω(V ), x = expG(V + Z), V ∈ v, Z ∈ z.

ii. The (classes of unitary irreducible) infinite dimensional representations are 
parametrised by a non-zero element .λ ∈ z∗ \ {0} of the dual of . z and another 
parameter .ν ∈ v∗ which we now describe. For any .λ ∈ z, we consider the
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skew-symmetric bilinear form on . v defined by 

.∀U,V ∈ v , B(λ)(U, V ) := λ([U,V ]) . (3) 

We denote by . rλ the radical of .B(λ). The other parameter . ν will be in the dual 
. r∗λ of this radical. 

Using the scalar product on . g, we can construct the representation .πλ,ν for each 
.λ ∈ z∗ \ {0} and .ν ∈ r∗λ as follows. First, we will allow ourselves to keep the same 
notation for the skew-symmetric form .B(λ) and the corresponding skew-symmetric 
linear map on . v. Hence .rλ = ker B(λ). As .B(λ) is skew symmetric, we find an 
orthonormal basis of . v

. 
(
P λ

1 , . . . , P λ
d ,Qλ

1, . . . ,Qλ
d, Rλ

1 , . . . , Rλ
k

)

with 

. k = kλ := dim rλ, d = dλ := dim v− k

2
,

where the matrix of .B(λ) takes the block form 

.

⎛
⎝ 0d,d D(λ) 0d,k

−D(λ) 0d,d 0d,k

0k,d 0k,d 0k,k

⎞
⎠ . (4) 

Here .D(λ) is a diagonal matrix with positive diagonal entries depending on . λ. Note  
that .rλ = Span

(
Rλ

1 , . . . , Rλ
k

)
and we decompose . v as 

. v = pλ+qλ+rλ where pλ := Span
(
P λ

1 , . . . , P λ
d

)
, qλ := Span

(
Qλ

1, . . . ,Qλ
d).

The representation .πλ,ν acts on .L2(pλ) via 

.πλ,ν(x)φ(ξ) = e
iλ

(
Z+

[
D(λ)

1
2 ξ+ 1

2 P,Q

])
eiν(R)φ

(
D(λ)

1
2 ξ + P

)
, (5) 

for .φ ∈ L2(pλ), .ξ ∈ pλ, where x is written as .x = expG(P + Q + R + Z) with 
.P ∈ pλ, .Q ∈ qλ, .R ∈ rλ, .Z ∈ z. If .ν = 0, we will use the shorthand .πλ,0 = πλ. 

With the representations described in (i) and (ii) above, the dual set of G is: 
.Ĝ = Ĝ1  Ĝ∞ with 

. ̂G1 = {class of πω, ω ∈ v∗} and Ĝ∞ = {class of πλ,ν, λ ∈ z∗ \ {0}, ν ∈ r∗λ}.

This can be justified in this case with the von Neumann theorem characterising the 
representations of the Heisenberg groups. Equivalently, we can also use the orbit
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method which states that there is a one-to-one correspondence between .π ∈ Ĝ and 
the co-adjoint orbits .g∗/G. The advantage of the orbit method is that the Kirillov 
map .g∗/G → Ĝ is a homeomorphism [7], giving us easy information on the 
topology of subsets of . ̂G. Furthermore, one can check that the co-adjoint action of 
G on .g∗ = v∗ ⊕ z∗ leaves the .z∗-component invariant. Hence, we can describe the 
co-adjoint orbit of any .ν + λ ∈ g∗ = v∗ ⊕ z∗ by choosing the unique representative 
as the linear form .ω = ν if .λ = 0, and .λ+ ν with .ν ∈ r∗λ if .λ �= 0. Via the Kirillov 
map, they correspond respectively to .πω and .πλ,ν . 

1.3.3 The Subsets �k and �0 

As a set, .z∗ \ {0} decomposes as the disjoint union of 

. �k := {λ ∈ z∗ \ {0} : dim rλ = k}, k ∈ N.

Observe that .�k = ∅ when .k > dim v and also when .k = dim v because if . kλ =
dim v then .rλ = v∗, thus .Bλ = 0 and .λ = 0. We denote by . k0 the smallest . k ∈ N

such that .�k �= ∅; roughly speaking, this is the set of .λ ∈ z∗ for which .B(λ) is of 
smallest kernel. We have 

. z∗ \ {0} = k0≤k<dimv �k.

We can describe .∪k′≥k�k′ as the set of .λ ∈ z∗ \ {0} such that all the minors of 
.B(λ) (viewed as a matrix in the basis that we have fixed) of order . ≤ dim v − k

cancel, and .�k as the subset of .∪k′≥k�k′ formed by the .λ′s such that at least one 
minor of order .= dim v−k does not vanish. Since .B(λ) is linear in . λ, .∪k′≥k�k′ is an 
algebraic variety, and . �k is an open subset of it. Moreover, if .�k �= ∅ then . ∪k′>k�k′
is an algebraic subvariety with .dim∪k′>k�k′ < dim∪k′≥k�k′ . Consequently, . �k is 
an open subset of .∪k′≥k�k′ and it is either empty or dense in .∪k′≥k�k′ . 

We can decompose each .�k into further subsets, according to the multiplicity 
of the eigenvalues of .B(λ) viewed as a matrix in a canonical basis. Here, we will 
be only considering the case .k = k0 and denote by .�0 the set of .λ ∈ �k0 for 
which .B(λ) has the maximal number of distinct eigenvalues. Recall that, by the 
Cauchy residue formula, the multiplicity of a zero . z0 of a polynomial .p(z) is equal 
to .

∮
|z−z0|=r

p′(z)
p(z)

dz for r small enough. Applying this to .det(B(λ)2 − z) in the case 

of maximal multiplicities implies that the multiplicities of the eigenvalues of . B(λ)2

for .λ ∈ �0 are locally constant and that the subset .�0 is open in .�k0 . Moreover, 
by the implicit function theorem, the eigenvalues of .B(λ)2 can be written locally as 
smooth functions (even algebraic expressions) of .λ ∈ �0. Similar properties hold 
for each subset of .�k0 with fewer constraints on the multiplicities, implying that . �0
is dense in .�k0 . 

The Heisenberg groups correspond to the case when .dim z = 1 while the 
Heisenberg-type groups are exactly the step-two nilpotent groups G for which
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.B(λ)2 = −|λ|2Iv. Heisenberg-type groups and their nilmanifolds have an H-type 
foliation as in [4], and so do the groups G and their nilmanifolds when, more 
generally, every .B(λ), .λ ∈ z∗ \ {0}, has a trivial radical .rλ = {0}. Geometrically, 
these nilmanifolds are contact manifolds when the radicals are all trivial and 
.dim z = 1, and they are quasi-contact manifolds when the radicals may not be 
trivial. The analysis of the properties of weak limits of densities of eigenvalues of 
the sub-Laplacian for contact manifolds was studied in [10] and for quasi-contact 
manifold of dimension four with radical generically of dimension one in [29]. 

As the co-adjoint action is trivial on the .z∗-component, the sets . �k may be viewed 
as the unions of the co-adjoint orbits of .ν + λ ∈ g∗ = v∗ ⊕ z∗ with .λ ∈ �k , or our 
chosen representatives for those co-orbits: 

.�k ∼ {(λ, ν) ∈ z∗ × v∗, λ ∈ �k, ν ∈ r∗λ}, (6) 

and therefore identified via Kirillov’s map with the following subset of . ̂G

. �k ∼ {π = πλ,ν ∈ Ĝ∞, λ ∈ �k, ν ∈ r∗λ}.

We also proceed similarly for . �0. As subsets of .Ĝ∞, they enjoy the same 
topological properties; for instance, .�k0 which is an open dense subset of .Ĝ∞. 

1.3.4 The Fourier Transform 

Let .f ∈ L1(G), the Fourier transform of f is the field of operators 

. F(f ) := {f̂ (π) : Hπ → Hπ , π ∈ Ĝ} given by f̂ (π) =
∫

G

f (x)π(x)∗dx,

for any (continuous unitary) representation . π of G. 
The unitary dual . ̂G is a standard Borel space, and there exists a unique positive 

Borel measure . μ on . ̂G such that for any continuous function .f : G → C with 
compact support we have 

. 

∫
G

|f (x)|2dx =
∫

Ĝ

‖f̂ (π)‖2
HS(Hπ )dμ(π).

The measure . μ is called the Plancherel measure and the formula above the 
Plancherel formula. For instance, in the case of step-two groups, the Plancherel 
measure is given by .dμ(πλ,ν) = c0 det(D(λ)) dλdν, for a known constant . c0 > 0
[11, 27]; note that it is supported on the subsets .�k0 or even .�0 of .Ĝ∞ defined in 
Sect. 1.3.3. 

The Plancherel formula extends the group Fourier transform unitarily to func-
tions .f ∈ L2(G): their Fourier transforms are then a Hilbert-Schmidt fields 
of operators satisfying the Plancherel formula. The group Fourier transform also
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extends readily to classes of distributions, for instance the distributions with 
compact support and the distributions whose associated right convolution operators 
are bounded on .L2(G) or act continuously on the Sobolev spaces adapted to it. If T 
is the associated operator, we denote by . ̂T or .π(T ) = T̂ (π) the associated field of 
operators with 

. F(Tf )(π) = π(T ) ◦ Ff (π), ∀f ∈ S(G).

In particular, the group Fourier transform extends to left-invariant differential 
operators. 

The considerations above are known for any nilpotent Lie group, and let us 
consider the case of step-two groups. The group Fourier transform of . f ∈ L1(G)

gives a scalar number at .π = πω and a bounded operator on . Hπλ,ν = L2(pλ)

for .π = πλ,ν . It is easy to compute that for the 1-dimensional representation, we 
have .πω(−LG) = |ω|2. In the remainder of the paper, we will use the notation 
.π(L) and .̂L = {π(L), π ∈ Ĝ} and omit the index G in this context. The case of 
representations of infinite dimension is more involved. The following is known in 
great generality [19]: 

1. .LG and .π(L) for .π ∈ Ĝ are essentially self-adjoint on .L2(G) and . Hπ ; we keep 
the same notation for their self-adjoint extensions. Hence they both admit spectral 
decompositions. 

2. For each .π ∈ Ĝ \ {1Ĝ}, the spectrum .sp(π(−L)) of .π(−L) is discrete and lies in 
.(0,∞) and each eigenspace is finite dimensional, while for .π = 1Ĝ, .π(L) = 0. 

3. Consider the spectral decomposition . Pζ , . ζ ≥ 0, of .−LG, i.e. .−LG =
∫∞

0 ζdPζ . 
For each .π ∈ Ĝ \ {1Ĝ}, the group Fourier transform .π(Pζ ) of the projections . Pζ

are orthogonal projections of . Hπ . Furthermore, they yield a spectral decomposi-
tion of . −L̂: .π(−L) =∑

ζ∈sp(π(−L)) ζπ(Pζ ). 

In the step-two case, some of the properties above are easy to see. Indeed, 
denoting by 

. ηj = ηj (λ), 1 ≤ j ≤ d, with the convention 0 < η1(λ) ≤ . . . ≤ ηd(λ),

the positive entries of .D(λ) = diag(η1, . . . , ηd), we readily compute 

.πλ,ν(P λ
j ) =

√
ηj (λ)∂ξj

and πλ,ν(Qλ
j ) = i

√
ηj (λ)ξj (7) 

and deduce from the additional observation .πλ,ν(Rλ
� ) = iν�, .1 ≤ l ≤ k. 

.πλ,ν(−L) = H(λ)+ |ν|2,
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where .H(λ) is the operator on .Hλ given by 

. H(λ) =
∑

1≤j≤d

ηj (λ)(−∂2
ξj
+ ξ2

j ).

which is up to multiplicative factors the harmonic oscillator of .L2(Rd). Recall 
that Hermite functions give an orthonormal basis of eigenfunctions of .H(λ) with 
eigenvalues 

.ζ(α, λ) :=
∑

1≤j≤d

(2αj + 1)ηj (λ), α ∈ N
d , (8) 

see Sect. 4.2.2. Hence, the spectrum of .πλ,ν(−L) is 

. sp(πλ,ν(−L)) =
{
ζ(α, λ)+ |ν|2, α ∈ N

d
}

,

giving in this special case Property (2) above. Furthermore, the spectral projections 
.πλ,ν(Pζ ) onto the eigenspaces of .H(λ) are either zero or orthogonal projections 
onto subspaces generated by Hermite functions. 

The properties above hold for any .λ ∈ z∗ \ {0}. Restricting to . �0, each .ηj (λ) is 
a smooth function of .λ ∈ �0 since the . η2

j ’s are the eigenvalues of .B(λ)2 which 
are diagonalisable linear morphisms with eigenvalues of constant multiplicities 
depending smoothly on . λ. Therefore, .ζ(α, λ) in (8) also depends smoothly on . λ
in . �0. 

1.4 Main Result 

Let .x 
→ U(x) be a smooth potential on M . Let .(ψU

k )k∈N be a sequence of 
eigenfunctions of .−LU

M = −LM + U according to 

.− L
U

MψU

k = EU

k ψU

k , k ∈ N. (9) 

Without loss of generality, we may assume .EU

k ≥ 0 for all .k ∈ N (if not, we modify 
. U by a constant). Let . � be a weak limit of the density .|ψU

k (x)|2dx, then . � decompose 
according to the structure of . ̂G and each of the elements of this decomposition 
enjoys its own invariances. These invariances are expressed in terms of the elements 
. ω, . λ and . ν characterizing the points of . ̂G. We will need the following notation to 
state the result. 

(a) For each .λ ∈ z∗ and .ν ∈ r∗λ, we associate 

.ν · Rλ := ν1R
λ
1 + · · · + νkR

λ
k ∈ rλ,
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where the . νj ’s are the coordinates of . ν in the dual of the orthonormal basis 
.(Rλ

1 , · · · , Rλ
k ), i.e. .ν = ν1(R

λ
1 )∗ + . . .+νk(R

λ
k )∗. This definition is independent 

of the choice of the orthonormal basis .(Rλ
1 , · · · , Rλ

k ) for . rλ. 
(b) In the same spirit, for any .ω ∈ v∗, we associate 

. ω · V := ω1V1 + · · ·ωqVq ∈ v,

where the . ωj ’s are the coordinates of . ω in the dual of an orthonormal basis 
.(V1, · · · , Vq): .ω = ω1V

∗
1 + . . . + ωqV ∗q . Here, .q = dim v. This definition is 

independent of the choice of the orthonormal basis .(V1, · · · , Vq) for . v. 
(c) If .k0 = 0, each eigenvalue .ζ = ζ(α, λ) in (8) of .πλ(L) depends smoothly on . λ

in . �0. The vector in . z corresponding to the gradient at . λ is denoted by 

. ∇λζ(α, λ) = ∇λζ ∈ z.

Theorem 1 ([15–17]) Let .(ψU

k )k∈N be a sequence of eigenfunctions of . −LU

M =
−LM + U according to (9). Then a weak limit . � of the density . |ψU

k (x)|2dx

decomposes as 

.� = �v + �z (10) 

with 

1. .�v(x) =
∫
v∗

ς (x, dω) where the measure . ς is invariant under the flow 

. (x, ω) 
→ (Exp(s ω · V )x, ω), s ∈ R

2. .�z(x) =
dimv−1∑

k=0

∫
(λ,ν)∈�k

γk(x, dλ, dν) with the identification (6) for . �k , with 

each measure .γk(x, λ, ν) being supported in .M ×�k where it is invariant under 
the flow given by 

. (x, (λ, ν)) 
−→ (Exp(s ν · Rλ)x, (λ, ν)), s ∈ R.

3. Furthermore, in the case when .�0 �= ∅, omitting .ν = 0, 

.γ0(x, λ) =
∑
α∈N

γ
(α)
0 (x, λ),
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with each measure .1λ∈�0γ
(α)
0 being supported on .M × �0 where it is invariant 

under the flow given by 

. (x, λ) 
−→ (Exp(s ∇λζ(α, λ))x, λ), s ∈ R.

In the case of the groups of Heisenberg type, .ηj (λ) = |λ| for all j , so . �0 =
�0 = z∗ \ {0} and 

.∇λζ(α, λ) = Zλ

dimv/2∑
j=1

(2αj + 1), where Zλ := |λ|−1λ∗, (11) 

and .λ∗ ∈ z corresponds to . λ by duality via the scalar product. We therefore recover 
with Theorem 1 the results of the first two authors in [15]. 

Theorem 1 is a consequence of Theorem 2 below. It is based on a microlocal 
approach and the measures . γ that appear in the statement above are microlocal 
objects that can be compared with the semi-classical measures introduced in the 90s 
in the Euclidean context in [21–24]. The difference here is that the semi-classical 
calculus we use is based on the Harmonic analysis of the group G and on the Fourier 
transform introduced via representation theory as presented above. This setting has 
been introduced in [19] in a microlocal context where no specific semi-classical 
scale . ε is specified. It uses a pseudo-differential calculus with operator-valued 
symbols that can be composed with the Fourier transform of the functions (that 
are also operator-valued). 

The construction of a pseudodifferential calculus on groups is an old question 
from the 1980s [5, 6, 9, 30] that have known recent developments with an abstract 
point of view from the theory of algebra of operators in [31–33], and with a PDEs 
approach in [2, 14, 19] with applications in control theory and observability [16]. 

We conclude this section with some comments about Theorem 1. It is noticeable 
that there is coexistence of two kinds of behaviour, with a splitting of the measure 
. γ corresponding to the different types of elements of . ̂G. In the context of the 
Heisenberg group, .�0 = �0 �= ∅ and .∇λζ is colinear to .Zλ (see (11)) and 
this is linked to the wave aspect of the sub-Laplacian in this group pointed out 
in [1, 3, 8, 10]. On other nilpotent Lie groups where .�0 = ∅, the other vector fields 
involved, .ν · Rλ, are more of Schrödinger’s type.
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2 Noncommutative Semi-classical Setting 

2.1 Semi-classical Pseudodifferential Operators 

We consider the set .A0 of fields of operators . {σ(x, π) ∈ L(Hπ ), (x, π) ∈ M× Ĝ}
such that 

. σ(x, π) = Fκx(π) =
∫

G

κx(z)π(z)∗dz,

where .x 
→ κx(·) is in .C∞(M,S(G)). We call the function . κx the convolution kernel 
associated with the symbol . σ . In the spirit of the works [3, 19], and when .ε � 1 is 
a semi-classical parameter, the .ε-quantization of the symbols .σ ∈ A0 is given by 

. Opε(σ )f (x) =
∫

Ĝ

tr
(
π(x)σ (x, ε · π)f̂ (π)

)
dμ(π), f ∈ S(M), x ∈ M.

Here, .ε · π denotes the class in . ̂G of the irreducible representation .x 
→ π(δεx). 
Setting 

. κε
x (z) = ε−Qκx(δε−1z),

the .ε-quantization then obeys to 

.Opε(σ )f (x) =
∫

G

κε
x(y−1x)f (y)dy =

∑
γ∈�

∫
y∈M

κε
x(γy−1x)dy, (12) 

for .f ∈ S(M), .x ∈ M . As in the case of groups (see [13]), the family . 
(
Opε(σ )

)
ε>0

is a bounded family in .L(L2(M)): 

Proposition 1 There exists .C > 0 such that for all .σ ∈ A0 and .ε > 0, 

. ‖Opε(σ )‖L(L2(M)) ≤
∫

G

sup
x∈M

|κx(z)|dz.

Proof By Young’s convolution inequality 

. ‖f ∗ κε
x (γ ·)‖L2(M) ≤ ‖ sup

x∈M

|κε
x (γ ·)|‖L1(M)‖f ‖L2(M),

with 

.‖ sup
x∈M

|κε
x (γ ·)|‖L1(M) = ε−Q

∫
M

sup
x∈M

|κx(ε
−1 · γy)|dy =

∫
γ−1M

sup
x∈M

|κx(y)|dy.
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Therefore, using (12), we deduce 

. ‖Opε(σ )f ‖L2(M) ≤
∑
γ∈�

‖f ∗ κε
x (γ ·)‖L2(M)

≤ ‖f ‖L2(M)

∑
γ∈�

∫
γ−1M

sup
x∈M

|κx(y)|dy = ‖f ‖L2(M)

∫
G

sup
x∈M

|κx(y)|dy.

�
Besides, this semi-classical pseudodifferential calculus enjoys symbolic calculus 

(see Proposition 3.6 in [13] in the case of groups and Proposition 2.2 in [16] for the  
extension to nilmanifolds). 

2.2 Semi-classical Measures 

Let us first introduce our notion of operator-valued measures introduced in the 
earlier papers of the first two authors. We will use the same notation as in those 
paper, even if it means using the Greek letter . � for the trace-class operators .�(x, π). 
We think that there is no possible confusion with our current notation for the co-
compact discrete subgroup . � of G, and thus will allow this small conflict of notation 

We consider pairs .(�, γ ) consisting in a positive Radon measure . γ on . M × Ĝ

and a measurable field over .(x, π) ∈ M×Ĝ of trace-class operators .�(x, π) on . Hπ

satisfying 

. 

∫
M×Ĝ

Tr |�(x, π)| dγ (x, π) <∞.

We equip the set of such pairs with the equivalence relation .(�, γ ) ∼ (�′, γ ′) given 
by the existence of a measurable function .f : M × Ĝ→ C such that 

. γ ′ = f γ and �′ = f−1�, γ − a.e.

We denote by .Mov(M × Ĝ) the set of equivalence classes for this relation and by 
.�dγ the class of the pair . (�, γ ). If .� ≥ 0, then we say that the operator valued 
measure .�dγ is positive, and we denote by .M+

ov(M × Ĝ) the set of the positive 
operator-valued measures on .M× Ĝ. They characterize bounded families in . L2(M)

according to the following theorem. 

Proposition 2 ([13, 15]) Let .(ψε)ε>0 be a bounded family in .L2(M). There exist 
a subsequence .εk → 0 as .k → ∞, and an operator-valued measure . �dγ ∈
M+

ov(M × Ĝ) satisfying 

.∀σ ∈ A0,
(
Opεk

(σ )ψεk , ψεk
) −→

k→∞

∫
M×Ĝ

Tr (σ (x, π)�(x, π)) dγ (x, π).
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Continuing with the setting of the statement above, we say then that the operator-
valued measure .�dγ is a semi-classical measure of .(ψε)ε>0 at the scale . ε. A given  
family .(ψε)ε>0 may have several semi-classical measures, depending on different 
subsequences .(εk)k∈N. The knowledge of all these families indicates the obstruction 
to strong convergence in .L2(M) of the family .(ψε)ε>0. 

The scale . ε is particularly interesting for analyzing the oscillations of a family 
.(ψε)ε>0 that satisfies weighted Sobolev estimates such as 

.∃s, C > 0, ∀ε > 0, ‖(−ε2
LM)

s
2 ψε‖L2(M) ≤ C. (13) 

Indeed, one can then link the weak limits of the energy densities with the semi-
classical measures: 

Proposition 3 ([15]) Assume .(ψε)ε>0 satisfies (13) and that .�dγ is a semi-
classical measure of .(ψε)ε>0 for the subsequence .(εk)k∈N. Then for all . φ ∈
C∞(M), 

. lim sup
k→+∞

∫
M

φ(x)|ψεk (t, x)|2dx =
∫

M×Ĝ

φ(x)Tr (�(x, π)) dγ (x, π). (14) 

2.3 Application to Quantum Limits 

Let us now come back to the sequence (2) of eigenfunctions .(ψU

k )k∈N of the sub-
Laplacian operator .−LU

M = −LM + U(x) for a compact nilmanifod . M = �\G
whose underlying group G is step two. Denoting by .EU

k the associated sequence of 
eigenvalues; we set 

. εk = (EU

k )−1/2,

we obtain a semi-classical scale such that the sequence .(ψU

k )k∈N is .εk-oscillating. 
Thus any weak limit . � of the energy density .|ψU

k (x)|2dx is the marginal of a semi-
classical measure .�dγ of the family .(ψU

k )k∈N according to (14). Therefore, the 
properties of the semi-classical measures of the sequence .(ψU

k )k∈N will reflect on 
any weak limit of the energy density. 

We now omit the index .k ∈ N and focus on the semi-classical measures of a 
family of normalized functions .(ψε)ε>0 that satisfy 

.− ε2
L
U

Mψε = ψε, (15) 

where .U ∈ C∞(M) is a potential on M .
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As G is a nilpotent Lie group, the elements of .M+
ov(M × Ĝ) split into two parts 

. �dγ = 1M×Ĝ1
�dγ + 1M×Ĝ∞�dγ

In particular, on .M× Ĝ1, we may assume .� = 1, while on .M× Ĝ∞, the trace-class 
operator .�(x, πλ,ν) acts on .Hπλ,ν = L2(pλ) in the case of a step-two group G. 

We can already observe that the decomposition (10) in Theorem 1 is due to the 
split above: the measure . �v is the restriction of .�dγ to .M×Ĝ1, while the restriction 
to .M×Ĝ∞ yields a more involved measure . �z. The invariance then comes from the 
theorem below. In this statement, we will allow ourselves to use the identifications 
(see Sects. 1.3.2 and 1.3.3): 

. ̂G1 ∼ v∗ and Ĝ∞ ∼ dimv−1
k=k0

�k.

Theorem 2 Let .(ψε)ε>0 be a family of normalized functions satisfying (15) and 
.�dγ one of its semi-classical measures. Then we have the following properties: 

(i) Localization: 

. π(L)�(x, π) = �(x, π)π(L) = −�(x, π), γ (x, π) a.e.

which implies 

a. The scalar measure .1M×Ĝ1
γ on .M × Ĝ1 is supported in the set 

. {(x, πω) ∈ M × Ĝ1, |ω| = 1}.

b. Setting .�ζ := 1M×Ĝ∞ P̂ζ � for each .ζ > 0, we have 

. �(x, π) =
∑

ζ∈sp(π(−L))

�ζ (x, π)

for .γ -almost every .(x, π) ∈ M×Ĝ∞. Moreover, it satisfies . ζ�ζ dγ = �ζ dγ

in .M+
ov(M × Ĝ). In other words, .ζ = 1 on the support of the measure 

.Tr(�ζ (x, π))γ (x, π). 

(ii) Invariance: 

a. The scalar measure .1M×Ĝ1
γ is invariant under the flow 

.(x, πω) 
−→ (Exp(sω · V )x, πω), s ∈ R.
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b. 

i. For each .ζ > 0, the operator valued measure . �ζ dγ = 1M×Ĝ∞ P̂ζ �dγ

is supported in .M × Ĝ∞ where it is invariant under the flow 

. (x, πλ,ν) 
−→ (Exp(sν · Rλ)x, πλ,ν), s ∈ R.

ii. Assume .�0 �= ∅. For each .ζ > 0 parametrized smoothly by . λ, the  
operator valued measure .1M×�0�ζ dγ is supported on .M × �0 where 
it is invariant under the flow 

. (x, πλ) 
−→ (Exp(s∇λζ )x, πλ), s ∈ R.

Note that the flow invariances may be different for various . ζ in Part (2) (b). This 
was already observed on the groups of Heisenberg type where . �0 = �0 = z∗\{0} ∼
Ĝ∞ (see [15, 16]). The invariance of Point (2)(a) is empty in that case since the flow 
map of (2)(a) reduces to identity on . �0. 

Theorem 2 implies Theorem 1 through the identification that has been mentioned 
above: 

. �v(x) =
∫

ω∈v∗
dγ (x, πω) and �z(x) =

∫
π∈Ĝ∞

Tr(�(x, π))dγ (x, π).

2.4 Main Ideas of the Proof 

Theorem 2 is inspired by the results [13, 16] where the group G was assumed to be 
of Heisenberg type. We follow here the ideas developed in these papers and extend 
them to general two-step groups. We explain below the main elements of the proof 
that rely on technical lemmata that are discussed in Sect. 4. 

One can notice that, formally, 

.− ε2
L
U

M = −Opε(π(L))+ ε2Opε(U), (16) 

which implies that the term involving the potential . U is of lower order than the 
operator .ε2

LM itself. For both the proof of the localisation results and the invariance 
ones, we start from some relations coming from the .(ψε)ε>0 being eigenfunctions 
of the subLaplacian. We then use symbolic calculus as developed in [13, 16] to  
analyse these algebraic relations and compute precisely the symbols involved in 
the calculus. Finally, passing to the limit .ε → 0, we investigate what the resulting 
equations mean for the semi-classical measure. We restrict ourselves to the zone 
.Ĝ1 or .Ĝ∞ by using symbol belonging to the von Neumann algebra generated by 
. A0. Another important ingredient of the proof consists in analyzing the different 
behavior of symbols that commute with . ̂L and those who don’t. These technical 
points are developed in Sect. 4.
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(i) Localization. Let .σ ∈ A0. By the definition of the family .(ψε)ε>0, we have  
(by Eq. (15)) 

. 

(
Opε(σ )(−ε2

L
U

Mψε), ψε
)

L2(M)
=

(
Opε(σ )ψε,−ε2

L
U

Mψε
)

L2(M)

= (
Opε(σ )ψε, ψε

)
L2(M)

.

By passing to the limit and using (16), the definition of the semi-classical measures 
as in Proposition 2 and the properties of the calculus [13, 16], give that any semi-
classical measure .�dγ of .(ψε)ε>0 satisfies 

.

∫
M×Ĝ

Tr (σ (x, π)π(L)�(x, π)) dγ (x, π) (17) 

=
∫

M×Ĝ 
Tr (π(L)σ (x, π)�(x, π)) dγ (x, π) 

= −
∫

M×Ĝ 
Tr (σ (x, π)�(x, π)) dγ (x, π). 

This readily implies the first localization property in (i). The rest of (i) follows as 
we can now apply (17) not only to symbols . σ in . A0, but also in the von Neumann 
algebra generated by . A0, in particular to .1M×Ĝ1

σ and to .1M×Ĝ∞σ , see Lemma 3. 

Furthermore, (17) shows the commutation of . � with . ̂L so also with the spectral 
projectors . ̂Pζ for .ζ > 0. Therefore, with the notation of Sect. 4.1, our semi-classical 

measure .�dγ is in .Mov(M × Ĝ)(L̂), the subspace of semi-classical measures that 
commute with . ̂L. Hence, by the analysis in Sect. 4.1, we only need to consider 
symbols . σ in . B0 which is the space of the symbols in .A0 that commutes with . ̂L.

(ii) Invariance. We now take advantage of the fact that for all .σ ∈ A0, 

.

(
[Opε(σ ),−ε2

L
U

M ]ψε,ψε
)

L2(M)
= 0. (18) 

Setting .π(V ) · V := ∑q

j=1 π(Vj )Vj for any orthonormal basis of .V1, . . . , Vq of . v, 
a computation gives for .σ ∈ A0, 

. 
1

ε
[Opε(σ ),−ε2

L
U

M ] = −
1

ε
Opε([σ, π(L)])+ 2 Opε(π(V ) · V σ)

+ ε Opε(Lσ)+ ε[Opε(σ ),U(x)]. (19) 

For symbols .σ ∈ B0 (which then commute with . ̂L), the term in . 1
ε

in the right-hand 
side vanishes and we deduce by passing to the limit that any semi-classical measure 
.�dγ of .(ψε)ε>0 satisfies 

.∀σ ∈ B0,

∫
M×Ĝ

Tr (π(V ) · V σ(x, π)�(x, π)) dγ (x, π) = 0. (20)
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Let us prove Part (2)(a). As for Part (1), we can apply this to the elements 
.1M×Ĝ1

σ and to .1M×Ĝ∞σ of the von Neumann algebra generated by . B0, see  
Lemma 3. We obtain first that (20) holds with integration over . M × Ĝ1; Part  
(ii)(1) then follows from this and Corollary 1. Then, we obtain that (20) holds with 
integration on .M × Ĝ∞. This yields 

.0 =
∫

M×Ĝ∞
Tr (π(V ) · V σ(x, π)�(x, π)) dγ (x, π) (21) 

=
∫

M×Ĝ∞

∑
ζ∈sp(π(L)) 

Tr
(
π(Pζ )(π(V ) · V )π(Pζ ) σ(x, π)�(x, π)

)
dγ (x, π), 

since .
∑

ζ∈sp(π(L) π(Pζ ) is the identity operator on .Hπ and . π(Pζ ) = π(Pζ )
2

commutes with .σ(x, π) and .�(x, π). Furthermore, for .π = πλ,ν , it follows from 
Sect. 4 (see (31)) 

. ∀ζ > 0, π(Pζ )(π(P λ) · P λ)π(Pζ ) = 0, π(Pζ )(π(Qλ) ·Qλ)π(Pζ ) = 0.

Hence (21) becomes 

. ∀σ ∈ B0,

∫
M×Ĝ∞

Tr
(
ν · Rλσ(x, πλ,ν)�(x, πλ,ν)

)
dγ (x, πλ,ν) = 0.

This implies Part (ii)(2)(a) by Proposition 4 as .�dγ is in the set .Mov(M × Ĝ)(L̂) of 
operator-valued measures that commute with . ̂L. 

Let us prove Part (2)(b). We now assume .�0 �= ∅. Indeed, on . �0, the analysis 
above does not yield anything since .ν · Rλ = 0 on . �0. We will need the following 
observation: 

Lemma 1 If .σ ∈ A0 and .η ∈ S(z∗), then the symbol . ση given by . (ση)(x, πλ,ν) =
σ(x, πλ,ν)η(λ) is in . A0. If .σ ∈ B0 then .ση ∈ B0. 

Proof If .κx(y) is the kernel of . σ , then we check readily that . (yv, yz) 
→
(κx(yv, ·) ∗z F−1

z η)(yz) is the kernel of . ση. The rest follows. �
By Lemma 1, if .σ1 ∈ B0 and if .η ∈ S(z∗) is supported in the dense open subset 

. �0 of .z∗ \ {0}, then .σ := σ1η is supported in .M×�0. Moreover, by Lemma 4, there 
exists a symbol .T σ ∈ A0 such that 

. π(V ) · V σ = [T σ, π(−L)].

Therefore, using the additional fact 

.[Opε(T σ ),U(x)] = O(ε) in L(L2(M)),
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the Eq. (19) gives 

. 
1

ε

(
Opε(π(V ) · V σ)ψε, ψε

)
L2(M)

= 1

ε

(
Opε([T σ, π(−L)])ψε, ψε

)
L2(M)

= 1

ε

(
[Opε(T σ ),−ε2

L
U

M ]ψε,ψε
)

L2(M)

− 2
(
Opε((π(V ) · V ) ◦ T σ)ψε, ψε

)
L2(M)

+O(ε).

By (18), the first term of the right-hand side is 0 and we have 

. 
1

ε

(
Opε(π(V ) · V σ)ψε, ψε

)
L2(M)

= −2
(
Opε((π(V ) · V ) ◦ T σ)ψε, ψε

)
L2(M)

+O(ε).

Plugging this expression of .
(
Opε(π(V ) · V σ)ψε, ψε

)
L2(M)

in (19) and using one 
more time (18), we finally get 

. O(ε) = 2

ε

(
Opε(π(V ) · V σ)ψε, ψε

)
L2(M)

+ (
Opε(Lσ)ψε, ψε

)
L2(M)

= (
Opε(−4π(V ) · V ◦ T σ + Lσ)ψε, ψε

)
L2(M)

.

We now pass to the limit .ε → 0 and transform the latter equation according to the 
equality 

. − 4π(V ) · V ◦ T σ + Lσ = i
∑

ζ∈SpL̂

∇λζ σ P̂ζ ,

induced by Corollary 2 and the fact that .σ ∈ B0. We are left with 

. 
∑

ζ∈SpL̂

∫
M×�0

Tr
(∇λζ σ (x, πλ)�ζ (x, πλ)

)
dγ (x, πλ) = 0,

and the relation holds for all .σ = σ1η with .σ1 ∈ B0 and .η ∈ S(z∗) supported in the 
dense open set . �0. This concludes the proof. 

3 Geometric Invariance 

In this section, we address the geometric invariance of the objects that we have 
introduced above.
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3.1 Nilmanifolds as Filtered Manifolds 

A stratified Lie group G carries a natural filtration on its Lie algebra given by 

. h1 ⊂ h2 ⊂ · · · ⊂ hk = g = TeG, with hj = g1 ⊕ · · · ⊕ gj .

One can view the nilmanifold M as a filtered manifold with associated filtration of 
subbundles 

. H 1
ẋ ⊂ H 2

ẋ ⊂ · · · ⊂ Hr
ẋ = TẋM, x ∈ G, [Hi,Hj ] ⊂ Hi+j , 1 ≤ i + j ≤ r,

(22) 

given by .Hi
ẋ = dπ� ◦ dLx(hi ). Here .π� : G→ M = �\G is the quotient map and 

.Lx : G → G is the left-translation. In fact, G induces a left-invariant stratification 
by the subbundles .dπ� ◦dLx (gi ) of T M  in the obvious way, but such a stratification 
will not respect the Lie bracket of vector fields on M unless one restricts to left-
invariant vector fields. What’s more, we will see that the semi-classical calculus 
only depends on the filtration, and not on the stratification or the metric. 

When G is step 2, we have .h1 = v and .h2 = g. In this case, the data of the 
filtration on G is almost the same as a stratification except that one forgets the second 
stratum . g2 = z. On  M , the filtration is given by a single step 2 bracket generating 
subbundle .H 1 ⊂ T M without a preferred complement. 

3.2 Filtration Preserving Maps 

Let U be an open subset of M and .� : U → M a smooth map on M . We introduce 
two definitions. 

Definition 1 

1. The smooth map . � is said to preserve the filtration at .ẋ ∈ U when 

. dẋ�
(
Hi

ẋ

)
⊆ Hi

�(ẋ), i = 1, . . . , r.

2. The map . � is Pansu differentiable at the point . ẋ when for any .z ∈ G, 

. lim
ε→0

δε−1

(
�(ẋ)−1�(ẋδεz)

)
= lim

ε→0
δε−1 (�ẋ(δεz)) =: PDẋ�(z). (23) 

3. The map . � is uniformly Pansu differentiable on U if it is Pansu differentiable at 
every point in U , and the limit (23) holds locally uniformly on .U ×G. 

Remark 1 Taking .U ⊂ M to be a sufficiently small neighborhood of . ẋ ∈ M , we  
may consider U as a neighborhood of .x ∈ G and lift . � to a smooth map .�G :
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U ⊂ G → G. Then the above definition is equivalent to saying .�G is Pansu 
differentiable (resp. uniformly Pansu differentiable) at .x ∈ G (resp. on .U ×G). 

On a neighborhood .U ⊂ M sufficiently small to identify with a neighborhood in G, 
the notions of Pansu differentiability and filtration preservation are related via the 
following result [17]: 

Theorem 3 ([17]) The map . � is uniformly Pansu differentiable on U if and only if 
. � preserves the filtration at every point . x ∈ U.

This result relates a morally algebraic property, Pansu differentiability, to a geo-
metric property of being filtration-preserving. Consequently, the diffeomorphisms . �

we consider in the sequel are uniformly Pansu differentiable, and the transformation 
of pseudodifferential operators by the pull-back associated with . � will involve the 
Pansu derivative of . �. This leads us to employ the osculating Lie group and Lie 
algebra bundles in the next section. 

3.3 Schwartz Vertical Densities 

For a filtered manifold M , the  osculating Lie algebra bundle .GM (and the osculatig 
Lie group bundle .GM := exp(GM)), defined in [17], play the role of the tangent 
bundle. When .M = �\G, with the filtration (22), the fibers of .GM and . GM , are all  
isomorphic to . g and G respectively. In particular, we have canonical identifications 

. GM ∼= M × g and GM ∼= M ×G.

The Haar measure on each fibers .GẋM is given by .dẋz = dz and the dual sets by 
.ĜẋM = Ĝ. 

To any semi-classical pseudodifferential operator on a compact nilmanifold 
.M = �\G, its convolution kernel . κ may be viewed as an element of .C∞(M,S(G)). 
However, this is not the right space for the general case of filtered manifolds. Indeed, 
Theorem 4 together with Eq. (26) below will imply that as a pseudodifferential 
operator transforms under diffeomorphisms on M preserving the filtration, its 
associated convolution kernel transforms like a density on the osculating group 
bundle. We show that it is natural to view the convolution kernels . κ as elements 
of the bundle of Schwartz vertical densities on .GM , rather than functions in 
.C∞(M,S(G)). We briefly elaborate below. 

Let .V(GM) be the vertical bundle of .GM , that is, the kernel of the map 
.GM → M . Let .|�|V(GM) be the bundle of vertical densities, that is, the 
bundle over .GM whose fibers are densities in the vertical spaces. Let . S(GM) =∐

ẋ∈M S(GẋM) be the Fréchet vector bundle over M whose fibers are Schwartz 
class functions. Furthermore, let .S(GM, |�|V) be the Fréchet bundle over M 
whose fibers are Schwartz class densities on the vertical space. As in [17], denote by 
.�c (S (GM, |�|V)), the space of its smooth compactly supported sections, which
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we call the Schwartz vertical densities. After making a choice of Haar measure on 
G, this space is identified with .C∞(M,S(G)). 

Indeed, by left-invariance, we identify the fibers of .V(GM) with the Lie algebra 
. g and fibers of .|�|V(GM) with .|�|g, the set of densities on the Lie algebra: 

.V(GM) ∼= (M ×G)× g, whence |�|V(GM) ∼= (M ×G)× |�|g. (24) 

The above trivializations give the identification 

. �c (S (GM, |�|V)) ∼= C∞(M,S(G, |�|g)).

And a choice of Haar measure on G gives .S(G, |�|g) ∼= S(G). 
For a choice of Haar measure dz on G, which in turn gives a Haar system 

.{dẋz} on .GM through (24), the identifications of vertical Schwartz densities with 
functions is given explicitly by 

. κ ∈ �c (S (GM, |�|V)) : ẋ 
→ κẋ = κ̃ẋdẋz, κ̃ẋ ∈ S(GẋM).

The symbols .σ ∈ A0 are defined as the images of the elements . κ of the set 
.�c (S (GM, |�|V)) by the fiberwise Fourier transform: 

.ẋ 
→ σ(ẋ, π) =
∫

z∈GẋM

κ̃ẋ (z)π(z)∗dẋz, π ∈ ĜẋM. (25) 

Since our convolution kernels are densities, the integral (25) is independent of the 
choice of Haar measure. 

3.4 Semi-classical Pseudodifferential Calculus and Filtration 
Diffeomorphisms 

We keep the notations of the preceding section except we suppose . � : U ⊂ M →
M is a diffeomorphism onto its image. Let . J� be the Jacobian of . �. We associate 
with . �

(i) a unitary transformation .U� of .L2(U) induced by . �

. U�(f ) := J
1/2
� f ◦�, f ∈ L2(U),

(ii) a map .I� on the space of Schwartz vertical densities that extends to an isometry 
of . L1(|�|V(GM))

.(I�κ)x(z) := J�(x) κ�(x)(PDx�(z)), ∀(x, z) ∈ U ×G.
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We are interested in the properties of the operator .U� ◦ Opε(σ ) ◦ U−1
� , in  

particular in the asymptotics in . ε of its semi-classical pseudodifferential symbol. 
The structure of the latter and the way it can be deduced from . σ will give 
information of the geometric nature of the objects. Indeed, . � induces several 
geometric transformations: 

(i) . � induces a map on representations 

. ̂G� :
{

U × Ĝ −→ �(U)× Ĝ

(x, π) 
−→ (
�(x), π ◦ (PDx�)−1

)

(ii) The generalized canonical transformation .Ĝ� induces a pull-back on symbols 

. (Ĝ�)∗σ(x, π) := σ(Ĝ�(x, π)).

The maps .Ĝ� and .I� are intertwined by the group Fourier Transform: If . σ(x, π) =
κ̂x(π) for all .x ∈ U ⊂ M and .π ∈ ĜxM , then for any filtration preserving 
differmorphism . � : U → M

.(Ĝ�)∗σ(x, π) = Î�κx(π), x ∈ U ⊂ M, π ∈ Ĝ = ĜxM. (26) 

These two maps are involved in the description of the first term of the expansion of 
the semi-classical symbol of the operator .U� ◦ Opε(σ ) ◦U−1

� : 

Theorem 4 ([17]) Assume that . � is filtration preserving on U . Then in .L(L2(U)), 

. U� ◦ Opε(σ ) ◦U−1
� = Opε

(
(Ĝ�)∗σ

)+O(ε).

Remark 2 Theorem 4 establishes the geometric invariance of the semi-classical 
calculus by filtration preserving differmorphisms . �. In particular, . � does not need 
to preserve the action of G on M , or even preserve the gradation. 

The results of this section suggest that the semi-classical symbols we defined in 
Sect. 2.1 ought to be the natural generalization of symbols for arbitrary filtered 
manifolds. So defined, the semi-classical symbols are invariant under generalized 
canonical transformations of .ĜM associated to differmorphisms preserving the 
filtration on M . 

4 Technical Tools 

This section is devoted to several technical results used in the proof of Theorem 2.
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4.1 Some C∗-Algebras and Their Properties 

4.1.1 The von Neumann Algebra L∞(M × ̂G) 

A measurable symbol .σ = {σ(x, π) : (x, π) ∈ M × Ĝ} is said to be bounded when 
there exists a constant .C > 0 such that for .dxdμ(π)-almost all .(x, π) ∈ M×Ĝ, we  
have .‖σ(x, π)‖Hπ

≤ C. We denote by .‖σ‖L∞(M×Ĝ) the smallest of such constant 
.C > 0 and by .L∞(M × Ĝ) the space of bounded measurable symbols. We check 
readily that .‖ · ‖L∞(M×Ĝ) is a norm on .L∞(M × Ĝ) which is a .C∗-algebra. We will 
later use the fact that it is a von Neumann algebra. 

4.1.2 The C∗-Algebra A and Its Topological Dual 

Clearly, .A0 is a subspace of .L∞(M × Ĝ). Its closure denoted by . A for the 
norm .‖ · ‖L∞(M×Ĝ) is a sub-.C∗-algebra of .L∞(M × Ĝ). Its topological dual . A∗

is isomorphic to the Banach space of operator-valued measures .Mov(M × Ĝ) via 

. Mov(M × Ĝ) � �dγ 
→ ��dγ ∈ A∗,

��dγ (σ ) :=
∫

M×Ĝ

Tr (σ (x, π)�(x, π)) dγ (x, π).

Moreover, the isomorphism is isometric: 

. ‖��dγ ‖A∗ = ‖�dγ ‖Mov(M×Ĝ)

where 

. ‖�dγ ‖Mov
:=

∫
M×Ĝ

Tr |�(x, π)| dγ (x, π),

and the positive linear functionals on . A are the .� = ��dγ ’s with .�dγ ≥ 0. 

4.1.3 The C∗-Algebra B and Its Topological Dual 

Let . B0 be the subspace of .A0 of symbols commuting with . ̂L. Clearly . B0 contains 
all the symbols of the form .a(x)ψ(L̂), .a ∈ C∞(M), .ψ ∈ S(R), by Hulanicki’s 
theorem (see [26]): 

Theorem 5 (Hulanicki) The convolution kernel of a spectral multiplier .ψ(LG) of 
. LG for a Schwartz function .ψ ∈ S(R) is Schwartz on G. 

We denote by . B the closure of . B0 for the norm .‖ · ‖L∞(M×Ĝ). Property (2) of 

. ̂L recalled in Sect. 1.3.4 implies that . B is the subspace of . A of symbols commuting
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with every . ̂Pζ , .ζ > 0. We check readily that . B is a sub-.C∗-algebra of . A and that 
.B0 = A0 ∩ B. The next statement identifies the topological dual of . B: 

Proposition 4 Via .�dγ 
→ ��dγ |B, the topological dual . B∗ of . B is isomorphic 

with the closed subspace .Mov(M × Ĝ)(L̂) of operator valued measures . �dγ ∈
Mov(M× Ĝ) such that the operator . � commutes with . ̂Pζ for all .ζ > 0, in the sense 
that 

. ∀ζ > 0 π(Pζ )�(x, π) = �(x, π)π(Pζ ) for γ − almost all (x, π) ∈ M × Ĝ.

Proof 
Step 0. We observe that if two pairs .(�, γ ) and .(�1, γ1) are equivalent and one of 
them satisfies the commutative condition with . ̂Pζ for all .ζ > 0, then so does the 

other. Hence, .Mov(M×Ĝ)(L̂) is a well defined subset of .Mov(M×Ĝ). One checks 
that it is a closed subspace of .Mov(M × Ĝ). 
Step 1. Let .� ∈ B∗. By the Hahn-Banach theorem, this functional extends to .�̃ ∈ A∗, 
i.e. .�̃|B = �. Denote by .�dγ ∈ Mov(M × Ĝ) the corresponding operator-valued 
measure: .�̃ = ��dγ . Now set  

. �1(x, π) :=
∑

ζ∈sp(π(L))

π(Pζ )�(x, π)π(Pζ ).

The operator-valued measure .�1dγ is a well defined element of . Mov(M × Ĝ)

satisfying the condition of commutativity with . ̂L so .�1dγ ∈ Mov(M × Ĝ)(L̂). 
Let us show that it coincides with .��dγ on . B. Let .σ ∈ B. Since . 

∑
ζ∈sp(π(L)) π(Pζ )

is the identity operator on . Hπ , we have  

. ��dγ (σ ) =
∫

M×Ĝ

∑
ζ∈sp(π(L))

Tr
(
σ(x, π)�(x, π)π(Pζ )

)
dγ (x, π)

=
∫

M×Ĝ

∑
ζ∈sp(π(L))

Tr
(
σ(x, π)π(Pζ )�(x, π)π(Pζ )

)
dγ (x, π),

since .π(Pζ ) = π(Pζ )
2 commutes with .σ(x, π). We recognise .��1dγ (σ ) on the 

right-hand side. We have obtained that any .� ∈ B∗ may be written as the restriction 
to . B of . ��1dγ , for some .�1dγ ∈Mov(M × Ĝ)(L̂). 

In other words, we have proved that .�dγ 
→ ��dγ |B maps . Mov(M × Ĝ)(L̂)

onto . B∗. This map is continuous and linear. It remains to show that it is injective. 
Side step. Let us open a parenthesis. The von Neumann algebra .L∞(M×Ĝ) is a . C∗
algebra containing . A and we denote by .vNA the von Neumann algebra generated 
by . A. This means that .vNA is the closure of . A for the strong operator topology 
in .L∞(M × Ĝ). We are going to use this von Neumann algebra by considering the
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natural unique extension of .� = ��dγ ∈ A∗ to a continuous linear functional on the 
von Neumann algebra .vNA of . A. 

Since .B ⊂ A, we also have .vNB ⊂ vNAwhere .vNB denotes the von Neumann 
algebra generated by . B. Moreover, .vNB is the subspace of the symbols . σ ∈ vNA
commuting with .̂Pζ .dxdμ(π)-almost everywhere for every , .ζ > 0. 

Finally, we observe that for .ζ > 0 and .σ ∈ A, the symbol .π(̂Pζ )σπ(̂Pζ ) is in 
.vNA. Indeed, using Hulanicki’s theorem (Theorem 5) together with . S(G)∗S(G) ⊂
S(G), we obtain that if .σ ∈ A0 then for any .ψ1, ψ2 ∈ S(R), the symbol 
.ψ1(L̂)σψ2(L̂) is in . A0. Taking limits for suitable sequences of .σ,ψ1, ψ2 implies 
that the symbol .π(̂Pζ )σπ(̂Pζ ) is in .vNA for any .σ ∈ A. 

Step 2. Let us now consider .�dγ ∈Mov(M × Ĝ)(L̂) such that .� := ��dγ vanishes 
on . B. We want to show .� = 0. We extend . � to a functional L on . vNA. This  
functional vanishes on . vNB. We set  

. Lζ (σ ) :=
∫

M×Ĝ

Tr
(
σ(x, π)π(Pζ )�(x, π)

)
dγ (x, π), ζ > 0.

We check readily that .ζ 
→ Lζ (σ ) defines a complex measure on .[0,∞) with 
total mass that is smaller or equal to .‖σ‖L∞(M×Ĝ)‖�dγ ‖Mov

. Moreover, . �(σ ) =∫ +∞
0 Lζ (σ ) since .

∑
ζ∈sp(π(L) π(Pζ ) is the identity operator on . Hπ . 

Using .P2
ζ = Pζ and the commutation of . � with .π(Pζ ) .dγ -a.e., together with 

trace property, we obtain 

. Lζ (σ ) =
∫

M×Ĝ

Tr
(
π(Pζ )σ (x, π)π(Pζ )�(x, π)

)
dγ (x, π)

= Lζ (π(Pζ )σ (x, π)π(Pζ ))

with .π(Pζ )σ (x, π)π(Pζ ) ∈ vNB. Arguing as above (in the side step), we deduce 
.Lζ = 0, whence .L = 0 and .� = 0. This implies the injectivity of . �dγ 
→ ��dγ |B
on .Mov(M × Ĝ)(L̂). �

The proof above has an important consequence regarding the restriction of 
symbols to .M × Ĝ1, a notion we now explain. 

4.1.4 Restriction of Symbols to M × ̂G1 

The restriction .σ |M×Ĝ1
of .σ ∈ A with kernel . κx(y), to .M × Ĝ1 is given by 

.σ |M×Ĝ1
(x, ω) = σ(x, πω) = Fv

∫
z

κx(·, z)dz(ω), (x, ω) ∈ M × v∗,



156 C. Fermanian Kammerer et al.

having identified . ̂G1 with . v∗. Moreover, we can therefore identify 

. A|M×Ĝ1
:= {σ |M×Ĝ1

, σ ∈ A}

with a sub-space of .C0(M × v∗). In fact, we can show 

Lemma 2 We have . C0(M × v∗) = A|M×Ĝ1
.

Proof Any element of .C0(M×v∗) may be viewed as a limit for the supremum norm 
on .M × v∗ of .Fvκ

(j)
x (ω) for a sequence of kernels .κ(j) ∈ C∞(M,S(v)). We then 

consider the sequence of symbols .σj (x, π) = π(κ
(j)
x η) with .η ∈ S(z) satisfying 

.Fzη(0) = ∫
z
η(Z)dz = 1. We check readily that .σj |M×Ĝ1

(x, ω) = Fvκ
(j)
x (ω). �

For a subspace S of . A, we denote by 

. S|M×Ĝ1
:= {σ |M×Ĝ1

, σ ∈ S}

the resulting subspace in .A|M×Ĝ1
. The proof of Lemma 2 shows that if . S̄ denotes 

the closure of S in the .C∗-algebra . A, then .S̄|M×Ĝ1
is the closure of .S|M×Ĝ1

in 
.C0(M × v∗), that is, given by the supremum norm on .M × v∗. Hence . S̄|M×Ĝ1

⊂
A|M×Ĝ1

. 
We will need the following property regarding the restriction of the symbols in 

.A0 and . B0 to .M × Ĝ1; its proof relies on the proof of Proposition 4: 

Corollary 1 The following commutative . C∗ algebras coincide: 

. B̄0|M×Ĝ1
= B|M×Ĝ1

= Ā0|M×Ĝ1
= A|M×Ĝ1

= C0(M × v∗).

Proof Clearly, .B̄0|M×Ĝ1
= B|M×Ĝ1

⊂ Ā0|M×Ĝ1
= A|M×Ĝ1

= C0(M × v∗). It  
remains to show the converse inequality. 

Let . � be a continuous linear functional on .C0(M × v∗). This is given by 
integration against a complex Radon measure . γ1. Consider the operator-valued 
measure .�dγ ∈Mov(M × Ĝ) defined by .1M×Ĝ∞�dγ = 0 and .1M×Ĝ1

�dγ = γ1, 
that is, 

. ��dγ (σ ) =
∫

M×v∗
σ |M×Ĝ1

(x, πω) dγ1(ω), σ ∈ A.

We observe that . � commutes with . ̂Pζ , .ζ > 0. Hence, if .� = 0 on .B|M×Ĝ1
then 

.��dγ ≡ 0 on . B and therefore also on . A by Proposition 4, or rather Step 2 of its 
proof; this implies .�dγ = 0 thus .γ1 = 0 and .� = 0. By the Hahn-Banach theorem, 
this shows that .B|M×Ĝ1

= C0(M × v∗). �
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4.1.5 Some Elements of vNA and vNB 

We will need the following properties: 

Lemma 3 If .σ ∈ A0 then .1M×Ĝ1
σ and .1M×Ĝ∞σ are in .vNA. Similarly, if . σ ∈ B0

then .1M×Ĝ1
σ and .1M×Ĝ∞σ are in .vNB. 

Proof We consider .ση as in Lemma 1 with a sequence of functions . η ∈ S(z∗)
satisfying .η(0) = 1 and with support shrinking to . {0}. We check readily that if 
.σ ∈ A0 then the limit of these . ση for the strong operator topology will be . 1M×Ĝ1

σ

which is therefore in .vNA. It will also be the case for .1M×Ĝ∞σ = σ − 1M×Ĝ1
σ . 

The case of . B0 follows. �

4.2 The Lowering and Raising Operators Associated with H(λ) 

4.2.1 Preliminaries 

Before proving several useful identities, we introduce some notations. If .π1, π2 are 
two representations of . g, and .A : v→ v is a linear morphism, then we set 

. (Aπ1(V )) · π2(V ) =
∑
j,k

Aj,kπ1(Vk)⊗ π2(Vj ) ∈ Hπ1 ⊗Hπ2

where .(Aj,k) is the matrix representing A in the orthonormal basis .(Vj ). We can 
check that this is independent of the orthonormal basis .(Vj ). If the context is clear, 
we may allow ourselves to omit the notation for the tensor product . ⊗ and may swap 
the order in the tensor product. 

With .A = idv, . π1 being the regular representation of . g on .L2(M) and . π2 = π ∈
Ĝ, this yields the super-operator .V ·π(V ) acting on . A0. If we restrict this to .M×Ĝ1, 
i.e. .π2 = πω ∈ Ĝ1, this defines .ω · V acting on .C∞(M,S(v∗)) ∼ A0|M×Ĝ1

. 

4.2.2 Technical Computations 

Here, we assume that .k = 0 and consider .λ ∈ �0. Following Appendix B in [15], 
instead of the basis .P λ

j ,Qλ
j , .1 ≤ j ≤ d, we will use the fields 

.Wλ
j :=

1

2
(P λ

j − iQλ
j ) and W

λ

j :=
1

2
(P λ

j + iQλ
j ). (27) 

Direct computations show using Eq. (7), 

.π(P λ
j ) =

√
ηj (λ)∂ξj

and π(Qλ
j ) = i

√
ηj (λ)ξj ,
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so we obtain 

. πλ(Wλ
j ) =

√
ηj (λ)

2
(∂ξj

+ ξj ) and πλ(W
λ

j ) =
√

ηj (λ)

2
(∂ξj

− ξj ).

In particular, these new fields coincide up to normalisation with the lowering and 
raising operators of the harmonic oscillators .(−∂2

ξj
+ ξ2

j ). Consequently, the family 
of Hermite functions .(hα)α∈Nd given by 

. hα(ξ1, . . . , ξd) = hα1(ξ1) . . . hαd
(ξd),

where 

. hn(ξ) = (−1)n√
2nn!√π

e
ξ2

2
d

dξ
(e−ξ2

), n ∈ N,

is an orthonormal basis of .L2(Rd) that satisfies: 

. πλ(Wλ
j )hα =

√
ηj (λ)

2
√

αjhα−1j
πλ(W

λ

j )hα = −
√

ηj (λ)

2

√
αj + 1hα+1j

.

(28) 

Here, . 1j denotes the multi-index with j -th coordinate 1 and 0 elsewhere. We also 
have extended the notation . hα to .α ∈ Z

d with .hα = 0 if .α /∈ N
d . We then deduce 

easily 

.

[
πλ(Wλ

j ), πλ(−L)
]
= 2ηj (λ)πλ(Wλ

j ), . (29)

[
πλ (W λ 

j ), π
λ (−L)

]
= −2ηj (λ)πλ (W λ 

j ), (30) 

and that both the operators .̂Pζ π(Wλ
j )̂Pζ and .̂Pζ π(W

λ

j )̂Pζ are zero. Consequently, 
we also have 

.̂Pζ π(P λ
j )̂Pζ = 0 and P̂ζ π(Qλ

j )̂Pζ = 0 (31) 

for all .λ ∈ z∗ \ {0}, .j ∈ {1, · · · , d}, .ζ ∈ R. 

Following the ideas and notation from Sect. 4.2.1, we define the operator 

. T = i

2
(B(λ)−1V · πλ(V )), λ ∈ �0,

acting on the space of symbols in .A0 restricted to .M×�0. This may also be viewed 
as acting on the space of symbols in .A0 which are supported in . M × �0. The  
properties above imply:
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Lemma 4 

1. For any .σ ∈ A0, we have on .M ×�0: 

. [T σ, π(−L)] = π(V ) · V σ

2. For any .λ ∈ �0 and .ζ > 0, using the shorthand .π(Pζ ) for .idL2(G) ⊗ π(Pζ ), we  
have 

. πλ(Pζ )
(
V · πλ(V )) ◦ T

)
πλ(Pζ ) = 1

4
L− i

4

d∑
j=1

(2αj + 1)[P λ
j ,Qλ

j ]πλ(Pζ ).

Proof Since .P λ
j = W

λ

j +Wλ
j , and .Qλ

j = 1
i
(W

λ

j −Wλ
j ), we deduce for .π = πλ, 

.λ ∈ �0, 

. V · π(V ) = 2
d∑

j=1

(
Wλ

j π(W
λ

j )+W
λ

jπ(Wλ
j )

)
.

As .B(λ)Qλ
j = ηj (λ)P λ

j and .B(λ)P λ
j = −ηj (λ)Qλ

j , we obtain 

. (B(λ)−1V ) · π(V ) =
d∑
j

1

ηj

(
−P λ

j π(Qλ
j )+Qλ

jπ(P λ
j )

)

= 2

i

d∑
j=1

1

ηj

(
W

λ

jπ(Wλ
j )−Wλ

j π(W
λ

j )
)

.

By (29) and (30), we check readily Part (1). 

For Part (2), we may assume that .πλ(Pζ ) �= 0, that is, . ζ is in the spectrum of 
the harmonic oscillator .πλ(L), or in other words .ζ = ∑

j ηj (λ)(2αj + 1) for some 

.α ∈ N
d . For any such index . α and for an arbitrary vector .w1 ∈ S(G), by the  

computations above and (28), we see with .π = πλ: 

.π(Pζ )
(
V · π(V )

) ◦ (
B(λ)−1V · π(V )

)
w1 ⊗ hα

= 4

i

∑
j1,j2

η−1
j2

π(Pζ )
(
Wλ

j1
π(W

λ

j1
)+W

λ

j1
π(Wλ

j1
)
)

(
W

λ

j2
π(Wλ

j2
)−Wλ

j2
π(W

λ

j2
)
)
w1 ⊗ hα

= 2

i

∑
j

(
W

λ

jW
λ
j (αj + 1)−Wλ

j W
λ

jαj

)
w1 ⊗ hα.
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We can simplify each term in the sum above with: 

. W
λ

jW
λ
j (αj + 1)−Wλ

j W
λ

jαj = 1

4
((P λ

j )2 + (Qλ
j )

2)− i

4
(2αj + 1)[P λ

j ,Qλ
j ].

Part (2) follows �
We recall that the maps .λ 
→ ηj (λ), .j = 1, . . . , d, are smooth in . �0. Moreover, 

if .λ0 ∈ �0, one can choose the vectors .P λ
j ,Qλ

j , .j = 1, . . . , d, so that they depend 
smoothly on . λ in a neighborhood of . λ0. We then have the following result. 

Lemma 5 Let .P λ
j ,Qλ

j , .j = 1, . . . , d, be smooth eigenvectors in an open subset U 
of U . Then we have 

. [P λ
j ,Qλ

j ] = ∇ληj (λ) ∈ z, j = 1, . . . , d, λ ∈ �0.

Proof The differentiation of the equality .B(λ)Qλ
j = ηj (λ)P λ

j with respect to . λ
gives 

. ∀λ′ ∈ z∗ B(λ′)Qλ
j + B(λ) λ′ · ∇λQ

λ
j = λ′ · ∇ληj (λ)P λ

j + ηj (λ) λ′ · ∇λP
λ
j .

Taking the scalar product with .P λ
j and using .B(λ)t = −B(λ) with . −B(λ)P λ

j =
ηj (λ)Qλ

j , we obtain: 

. (B(λ′)Qλ
j , P

λ
j )+ ηj (λ)(λ′ · ∇λQ

λ
j ,Q

λ
j ) = λ′ · ∇ληj (λ)(P λ

j , P λ
j )

+ ηj (λ)(λ′ · ∇λP
λ
j , P λ

j ).

Now, .(Qλ
j ,Q

λ
j ) = 1 = (P λ

j , P λ
j ). Differentiating this with respect to . λ yields 

. (λ′ · ∇λQ
λ
j ,Q

λ
j ) = 0 = (λ′ · ∇λP

λ
j , P λ

j ),

and we have for all . λ′ ∈ z∗

. (B(λ′)Qλ
j , P

λ
j ) = λ′ · ∇ληj (λ).

Since the left-hand side is equal to .λ′([Qλ
j , P

λ
j ]) by definition of . B(λ′), the  

conclusion follows. �
The two lemmata above imply readily: 

Corollary 2 Using .ζ = ζ(α, λ) = ∑d
j=1 ηj (λ)(2αj + 1), we deduce that for the 

choice of orthonormal basis of Lemma 5, we have 

.πλ(Pζ )
(
V · πλ(V )) ◦ T

)
πλ(Pζ ) = 1

4
L− i

4
∇λζ.
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Spectral Asymptotics 
for Two-Dimensional Dirac 
Operators in Thin Waveguides 

William Borrelli, Nour Kerraoui, and Thomas Ourmières-Bonafos 

1 Introduction and Main Result 

1.1 Introduction 

In this article, we continue the study of spectral properties of relativistic quantum 
waveguides, initiated in [5]. In particular, as explained below, we focus on the 
existence of discrete eigenvalues in the spectral gap in the thin-width regime. 

The study of non-relativistic quantum waveguides started with the pioneering 
paper [11] ( see also [8, 13, 15] for further improvements), where it was demon-
strated that the quantum free Hamiltonian on a waveguide given by the Dirichlet 
Laplacian possesses discrete eigenvalues when the base curve is not a straight 
line. Roughly speaking, the corresponding particle gets trapped in any non-trivially 
curved quantum waveguide. Notice that this is in sharp contrast with the classical 
case, considering particles following Newton’s law with regular reflection at the 
boundary. Indeed, except for a set of initial conditions of zero measure in the 
phase space, particles will eventually leave any bounded region in finite time. The 
existence and properties of the geometrically induced bound states have attracted a 
lot of attention in the last decades, and this research field is still very active. We refer 
the reader to the monograph [10] for a comprehensive discussion of the subject. 

The study of the relativistic counterpart of this Hamiltonian started very recently 
in the two-dimensional case, in [5], considering the Dirac operator on a tubular 
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neighborhood of a curve with infinite mass boundary conditions at the boundary. 
Generally speaking, the mathematical study of such operator on domains started 
recently [2–4, 16], motivated by models of hadrons confinement from high-energy 
physics [6] or by the description of graphene samples [1]. We also mention the work 
[9], where spectral properties of Dirac operators on tubes with ziz-zag type boundary 
conditions are considered. 

Notice, however, that boundary conditions for Dirac operators on manifolds with 
boundary had been already considered previously in the geometry literature, see e.g. 
[12, 17] and references therein. 

In [5, Thm.2], under suitable assumptions, it has been proved that the Dirac 
operator with infinite mass boundary conditions (see (1)), posed in the tubular 
neighborhood of a planar curve, is self-adjoint and its essential spectrum has 
been identified. Thus, a natural question is to understand the interplay between 
the geometry and relativistic setting. In particular, we focus on the existence of 
geometrically induced bound states in the thin-waveguide regime. For the Dirichlet 
Laplacian, it is known that in this regime, up to a renormalization factor, the splitting 
of the eigenvalues is given by an effective operator and this operator is the one-
dimensional Schrödinger operator with the attractive potential given by 

. − d2

ds2
− κ2

4
,

where . κ is the curvature of the underlying curve . �, and .s ∈ R is the arc-length 
parameter. For this reason, one speaks of geometrically induced bound states related 
to the non-trivial geometry of the curve/waveguide (see, e.g. [8, 10] ).  

On the other hand, in [5, Thm.4] it is proved that the Dirac operator with infinite 
mass boundary conditions (see (1)), after a suitable choice of renormalization, 
converges in the norm-resolvent sense to a one-dimensional free effective Dirac 
operator 

. − iσ1∂s + 2

π
mσ3

whose spectrum is purely absolutely continuous. Here . σ1 and . σ3 are the first and 
third Pauli matrices, respectively (as in (2)). Then in this case, the effective operator 
does not bear any geometrical information, and geometric effects are expected to 
appear at the next order in the asymptotic expansion in the thin-waveguide regime. 
The purpose of this paper is precisely to investigate this problem and in our main 
result Theorem 1 we provide an asymptotic expansion (5) for the eigenvalues, which 
provides both the splitting and exhibits an effective operator involving the geometry 
of the underlying curve. This is achieved using min-max techniques, working on 
the square of the operator (1) and relating its eigenvalues to those of a reference 
operator, defined using its quadratic form (6).
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1.2 Main Result 

Let .γ : R → R
2 be an arc-length parametrization of a .C4-planar curve . �. For  

.s ∈ R, we define the normal .ν(s) at the point .γ (s) ∈ � such that .(γ ′(s), ν(s)) is an 
orthonormal basis of . R2. We define the curvature .κ(s) of the curve . � at the point 
.γ (s) by 

. κ(s) := γ ′′(s) · ν(s).

Remark that under the smoothness assumption on . γ , .κ ∈ C2(R), and all along this 
paper, we assume the following hypothesis: 

(A) .lims→±∞ κ(s) = 0, 
(B) .κ ′, κ ′′ ∈ L∞(R). 

Define the strip .Str := R× (−1, 1) and .ε0 := ‖κ‖−1
L∞(R)

. For .ε > 0, we consider 
the map 

. 
ε :
{
Str → R

2

(s, t) �→ γ (s) + εtν(s).

and define the tubular neighborhood of . �

. �ε := 
ε(Str).

Thus .s ∈ R and .t ∈ (−1, 1) are the arc-length parameter of the curve and the 
transverse coordinate with respect to the curve, respectively. 

In order to guarantee that .
ε is a .C3-diffeomorphism from .Str to .�ε we will 
always assume that 

(C) the map . 
ε is injective. 

We are interested in the spectrum of the Dirac operator with infinite mass 
boundary conditions posed in the domain . �ε. Let .D�(ε) denote this operator it 
writes 

. D�(ε) := −iσ1∂1 − iσ2∂2 + mσ3

domD�(ε) := {u ∈ H 1(�ε,C
2) : −iσ3σ · νε = u on ∂�ε} , (1) 

where . νε is the outward pointing normal vector field on .∂�ε and .m ≥ 0 is a fixed 
parameter. Here .σ = (σ1, σ2) and .σ1, σ2, σ3 are the Pauli matrices 

.σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i

i 0

)
, σ3 :=

(
1 0
0 −1

)
. (2) 

Notice that in (1), .σ3σ · νε = σ3(σ1ν
1
ε + σ2ν

2
ε ), where .νε = (ν1

ε , ν2
ε ).
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Thanks to [5, Thm. 2], we know that for . ε small enough, .D�(ε) is self-adjoint, 
that its spectrum is symmetric with respect to 0 and that is essential spectrum is 
given by 

. Spess(D�(ε)) =
(

− ∞,−E1(mε)

ε

]
∪

[E1(mε)

ε
,+∞

)

where for .ρ ≥ 0, .E1(ρ) := √
ρ2 + k1(ρ)2 and where .k1(ρ) is defined as the unique 

root of 

. ρ sin(2k) + k cos(2k) = 0

lying in .[π
4 , π

2 ). 

Remark 1 Notice that there is a slight change in notation compared to [5, Thm. 2].  
Indeed, there .k1(·) is denoted by .E1(·) and then the thresholds of the essential 
spectrum are .±√

ε−2E1(mε) + m2. 

Our aim is to investigate the possible existence of a discrete spectrum of . D�(ε)

in the thin waveguide regime .ε → 0. To do so, we use the min-max principle for 
the operator .D�(ε)2, recalled below (see [7, Thm. 4.5.1 & 4.5.2]). 

Definition 1 Let Q be a closed, lower semi-bounded, and densely defined quadratic 
form with domain .domQ in a Hilbert space . H. For . n ∈ N, the n-th min-max value 
of Q is defined as 

.μn(Q) := inf
F⊂domQ
dim F=n

sup
u∈F\{0}

Q[u]
‖u‖2
H

. (3) 

If A is the unique self-adjoint operator associated with the sesquilinear form derived 
from Q via Kato’s first representation theorem (see [14, Ch. VI, Thm. 2.1]) we shall 
refer to (3) as the n-th min-max level of A and we note .μn(A) = μn(Q). 

Now, we can recall the min-max principle. 

Proposition 1 Let Q be a closed, lower semi-bounded densely defined quadratic 
form with domain .domQ in a Hilbert space . H. Let A be the unique self-adjoint 
operator associated with Q. Then, for .n ∈ N, the following alternative holds true: 

1. either .μn(A) < inf Spess(A) and .μn(A) is the n-th eigenvalue of A (counted 
with multiplicities), 

2. or .μn(A) = inf Spess(A) and for all .k ≥ n there holds .μk(A) = inf Spess(A).
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In order to state the main result of this paper, we introduce the one dimensional 
Schrödinger operator defined through its quadratic form as 

.qe[f ] =
∫
R

(|f ′|2 − κ2

π2 |f |2)ds, domqe = H 1(R) (4) 

and set .J := {μn(qe) < 0}. 
Theorem 1 If .J ≥ 1 then there exists .ε1 > 0 such that for all .ε ∈ (0, ε1) there 
holds 

. Spdis(D�(ε)) �= ∅.

Moreover, if .λj (D�(ε)) denotes the j -th positive discrete eigenvalue of . D�(ε)

counted with multiplicity then for all .j ∈ {1, . . . , J }, there holds 

.λj (D�(ε)) = E1(mε)

ε
+ 2

π
μj (qe)ε + O(ε2). (5) 

Remark 2 A situation in which .J ≥ 1 is when .κ ∈ L2(R) \ {0}. Indeed, let . θ > 0
and consider the map defined for .s ∈ R by 

. ψθ(s) :=

⎧⎪⎪⎨
⎪⎪⎩

θ−1(s + 2θ) if s ∈ [−2θ,−θ),

1 if s ∈ [−θ, θ ],
−θ−1(s − 2θ) if s ∈ (θ, 2θ ],
0 otherwise.

One remarks that .ψθ ∈ H 1(R), verifies .‖ψθ‖L∞(R) ≤ 1 and that 

. qe[ψθ ] = 2

θ
− 1

π2

∫
R

κ2|ψθ |2ds ≤ 2

θ
− 1

π2

∫ θ

−θ

κ2 ds .

Hence, since .κ ∈ L2(R), choosing . θ sufficiently large, we get .qe[ψθ ] < 0 and the 
min-max principle (Prop. 1) gives .μ1(qe) < 0. 

As already remarked, Theorem 1 proves that as long as the curvature creates 
bound states for the effective operator given by the quadratic form . qe, it also creates 
bound states for the operator .D�(ε). Note that in Theorem 1 there is no term of 
order 0 and the bound states are at a distance of order . ε from the essential spectrum. 
This differs from the non-relativistic counter part of this problem studied in [8, 
Thm. 5.1.], where the splitting of eigenvalues appears at constant order. However, 
the result is consistent with [5, Thm. 4] where the authors prove that up to a unitary 
map, the operator (1), suitably renormalized, behaves at constant order as a massive 
(free) Dirac operator on the real line with effective mass . 2

π
m. The spectrum of this 

operator being purely absolutely continuous, this is consistent with (5), where the
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constant term arising in the expansion of .E1(mε)

ε2 is precisely given by such effective 

mass . 2
π
m. 

2 Preliminaries 

The purpose of Sects. 2.1 and 2.2 is to gather several results on one dimensional 
operators, which play an important role in the proof of Theorem 1. This proof 
is based on the min-max principle applied to the quadratic form of the square of 
.D�(ε), exploiting suitable lower and upper bounds for it, given in Sect. 2.3. 

2.1 The Effective Operator 

In what follows, we deal with the following one dimensional operator, defined 
through its quadratic form by 

.q̃e[f ] =
∫
R

(
|f ′ − i

κ

π
σ3f |2 − κ2

π2
|f |2

)
ds, domq̃e = H 1(R,C2). (6) 

It turns out that the spectral properties of the operator associated with . q̃e are related 
to the one of the operator associated with . qe defined in (4). Notice that the former is 
defined for vector valued functions, while the latter is defined for scalar ones. 

Proposition 2 There exists a unitary map .U : L2(R,C2) → L2(R,C2) such that 
for all . f = (f +, f −)� ∈ dom(qe ⊕ qe)

. (qe ⊕ qe)[f ] = qe[f +] + qe[f −] = q̃e[Uf ].

Proof Let us consider the following gauge transform 

. U : L2(R2,C2) → L2(R2,C2), (Uf ) = ei
ρ
2 σ3f,

where for all .s ∈ R we have set .ρ(s) = ∫ s

0 κ(η)dη. Remark that there holds 

.|(Uf )′ − i
κ

2
σ3(Uf )| = |i κ

2
σ3e

i
ρ
2 σ3f +ei

ρ
2 σ3f ′ − i

κ

2
σ3e

i
ρ
2 σ3f | = |ei

ρ
2 σ3f ′| = |f ′|
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because for all .s ∈ R, .ei
ρ(s)

2 σ3 is a unitary matrix. For the same reason, there holds 
.|(Uf )| = |f | and this yields 

. (qe ⊕ qe)[f ] = q̃e[f ].

2.2 The Transverse Dirac Operator 

When proving Theorem 1, we need to use some spectral properties of a one 
dimensional operator. It is defined for .m ≥ 0 by 

. T(m) := −iσ2
d

dt
+ mσ3,

domT(m) := {u = (u1, u2)
� ∈ H 1((−1, 1),C2) : u2(±1) = ∓u1(±1)}.

The following proposition holds. 

Proposition 3 Let .m ≥ 0. The operator .T(m) is self-adjoint and has compact 
resolvent. Moreover, the following holds: 

1. for all .u ∈ domT(m) there holds 

. ‖T(m)u‖2
L2(−1,1)

= ‖u′‖2
L2(−1,1)

+ m2‖u‖2
L2(−1,1)

+ m(|u(1)|2 + |u(−1)|2),
(7) 

2. .Sp
(
T(m)

) ∩ [−m,m] = ∅, 
3. for all .p ≥ 1, define .kp(m) as the only root lying in .[(2p − 1)π

4 , p π
2 ] of 

. m sin(2k) + k cos(2k) = 0,

now if one sets .Ep(m) =
√

m2 + kp(m)2 there holds . Sp
(
T(m)

) = ⋃
p≥1

.{±Ep(m)}, 
4. there holds 

.k1(m) = π

4
+ 2

π
m − 16

π3 m2 + O(m3),
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5. for .p ≥ 1, a normalized eigenfunction associated with .Ep(m) is given by 

. ϕm,+
p (t) := Nm,p

(
kp cos(kp(t + 1))

(
1
1

)
+ sin(kp(t + 1))

(
Ep + m

−(Ep − m)

))

where .Nm,p is a normalization constant. We consider .ϕm,−
p := σ1ϕ

m,+
p ; a  

normalized eigenfunction associated with .−Ep(m) and if one sets . ϕ±
p := ϕ

0,±
p

there holds 

. ϕ
m,±
1 = ϕ±

1 + O(m),

where the remainder is understood in the .L∞-norm on .(−1, 1). 

Proof The proof of Points (1)–(3) can be found, e.g., in [5, Proposition 10]. 
Point (4) relies on the fact that 

.m sin(2k1(m)) + k1(m) cos(2k1(m)) = 0. (8) 

Hence, as . k1 is defined near .m = 0 by this smooth implicit equation, . k1 is smooth 
near .m = 0 and there holds 

. k1(m) = k1(0) + k′
1(0)m + 1

2
k′′

1 (0)m2 + O(m3), m → 0.

One can compute thanks to (8) that 

. k1(0) = π

4
, k′

1(0) = 2

π
, k′′

1 (0) = − 32

π3 ,

which yields Point (4). To prove Point (5), again by Borrelli et al. [5, Proposition 10], 
any eigenfunction associated with .Ep(m) is of the form 

. um
p (t) = cos(kp(m)(t + 1))

(
α

kp(m)

Ep(m)+m
β

)
+ sin(kp(m)(t + 1))

(
β

− kp(m)

Ep(m)+m
α

)
,

for some constants .α, β ∈ C. The boundary condition at .t = −1 gives 
.α = kp(m)

Ep(m)+m
β so that, choosing .β = (Ep(m) + m): 

.um
p (t) = kp(m) cos(kp(m)(t + 1))

(
1
1

)
+ sin(kp(m)(t + 1))

(
Ep(m) + m

−(Ep(m) − m)

)
.
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Hence, we take .Nm,p := ‖um
p ‖−1

L2((−1,1),C2)
and remark that .ϕ

m,+
p := Nm,pum

p . Note  
that 

. ‖um
1 ‖2

L2((−1,1),C2)
= 2k1(m)2(1 + sin(4k1(m))

4k1(m)

)

+ 2(E1(m)2 + m2)
(
1 − sin(4k1(m))

4k1(m)

)

+ 2mk1(m)
(
1 − cos(4k1(m))

2k1(m)

)

which gives using Point (4) 

.N1,m = 1

2k1(m)
+ O(m), m → 0. (9) 

Now, remark that for all .t ∈ (−1, 1) there holds 

. |ϕm,+
1 (t) − ϕ+

1 (t)| ≤ 2
∣∣∣k1(m)Nm,p − 1

2

∣∣∣ + 2
∣∣∣E1(m)Nm,p − 1

2

∣∣∣ + 2m.

which gives Point (5) for .ϕm,+
1 thanks to (9). For .ϕ

m,−
1 one only has to note that 

for all .t ∈ (−1, 1) there holds . |ϕm,−
1 (t) − ϕ−

1 (t)| = |σ1(ϕ
m,−
1 (t) − ϕ−

1 (t))| =
|ϕm,+

1 (t) − ϕ+
1 (t)|. 

Remark 3 The explicit expression of the functions .ϕ±
1 is of crucial importance in 

what follows. They are defined, for all .t ∈ (−1, 1), as  

.ϕ±
1 (t) = 1

2
cos(

π

4
(t + 1))

(
1
1

)
± 1

2
sin(

π

4
(t + 1))

(
1

−1

)
. (10) 

2.3 The Quadratic Form of the Square 

By Borrelli et al. [5, Prop. 3] we know that the operator .D�(ε) is unitarily equivalent 
to 

.E�(ε) := 1

1 − εtκ
(−iσ )∂s + 1

ε
(−iσ2)∂t + εtκ ′

2(1 − εtκ)2
(−iσ1) + mσ3,

domE�(ε) := {u = (u1, u2)
� ∈ H 1(Str,C2) : u2(·,±1) = ∓u1(·,±1)}
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and that the quadratic form of its square is given, for every .u ∈ domE�(ε), by  

. 

‖E�(ε)u‖2
L2(Str,C2)

=
∫
Str

1

(1 − εtκ)2
|∂su − i

κ

2
σ3u|2dsdt + 1

ε2

∫
Str

|∂tu|2dsdt

+ m

ε

∫
R

(
|u(s, 1)|2 + |u(s,−1)|2

)
ds + m2‖u‖2

L2(Str,C2)

−
∫
Str

κ2

4(1 − εtκ)2 |u|2dsdt − 5

4

∫
Str

(εtκ ′)2

(1 − εtκ)4 |u|2dsdt

− 1

2

∫
Str

εtκ ′′

(1 − εtκ)3 |u|2dsdt .

(11) 

The main result of this section reads as follows. 

Proposition 4 There exists .ε′ > 0 and .c > 0 such that for all .ε ∈ (0, ε′) and all 
.u ∈ domE�(ε,m) there holds 

.a−[u] ≤ ‖E�(ε)u‖2
L2(Str,C2)

≤ a+[u], (12) 

where we have introduced the quadratic forms . a± defined by 

. a±[u] := (1 ± cε)

∫
Str

(
|∂su − i

κ

2
σ3u|2 − κ2

4
|u|2

)
dsdt

+ 1

ε2

∫
R

(‖T(mε)u‖2
L2((−1,1),C2)

)
ds ± cε‖u‖2,

doma± := domE�(ε).

The proof of Proposition 4 is straightforward, taking into account (11) and the fact 
that .κ, κ ′, κ ′′ ∈ L∞(R). To this aim, observe that .(1 − εtκ(s))−1 = 1 + O(ε), 
uniformly in .(s, t) ∈ R × [−1, 1], and recall (7). By comparison, the bounds (12) 
will be used to get the desired spectral asymptotics. 

3 Proof of the Main Result 

In Sect. 3.1 we give an upper bound on the j -th min-max level of .D�(ε)2, while a 
lower bound is obtained in Sect. 3.2. Combining these results, Theorem 1 is proved 
in Sect. 3.3.
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3.1 An Upper Bound 

The goal of this paragraph is to prove the following Proposition. 

Proposition 5 Let .j ∈ N. There exists .ε1 > 0 and .c > 0 such that for all . ε ∈ (0, ε1)

there holds 

.μj (D�(ε)2) ≤ E1(mε)2

ε2 + μj (qe ⊕ qe) + cε. (13) 

Proof Let .f = (f +, f −) ∈ H 1(R,C2) and set .u = f +ϕ
mε,+
1 + f −ϕ

mε,−
1 . By  

construction .u ∈ domE�(ε) and for . ε small enough there holds 

. a+[u] = (1 + cε)

∫
Str

(
|∂su − i

κ

2
σ3u|2

)
dsdt − (1 + cε)

∫
R

κ2

4
|f |2ds

+ E1(mε)

ε

2

‖f ‖2
L2(R)

+ cε‖f ‖2
L2(R)

.

Now, one remarks that 

. 

∫
Str

(
|∂su − i

κ

2
σ3u|2

)
dsdt =

∫
R

|f ′|2ds +
∫
R

κ2

4
|f |2ds

+
∫
R

κ�
( ∫ 1

−1
〈∂su,−iσ3u〉 dt

)
ds

and there holds 

. 〈∂su,−iσ3u〉 = (f +)′f +〈ϕmε,+
1 ,−iσ3ϕ

mε,+
1 〉 + (f +)′f −〈ϕmε,+

1 ,−iσ3ϕ
mε,−
1 〉

+ (f −)′f +〈ϕmε,−
1 ,−iσ3ϕ

mε,+
1 〉 + (f −)′f −〈ϕmε,−

1 ,−iσ3ϕ
mε,−
1 〉.

Now by Point (5) in Proposition 3, there holds 

. 

∫ 1

−1
〈ϕmε,+

1 ,−iσ3ϕ
mε,+
1 〉dt = i

∫ 1

−1
〈ϕ+

1 , σ3ϕ
+
1 〉dt + O(ε) = i

2

π
+ O(ε),

where we have used the explicit expression of .ϕ+
1 given in (10). Similarly, one gets 

.

∫ 1

−1
〈ϕmε,−

1 ,−iσ3ϕ
mε,−
1 〉dt = −i

2

π
+ O(ε)
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as well as 

. 

∫ 1

−1
〈ϕmε,+

1 ,−iσ3ϕ
mε,−
1 〉 dt = O(ε),

∫ 1

−1
〈ϕmε,−

1 ,−iσ3ϕ
mε,+
1 〉 dt = O(ε).

Hence, we get 

. 

∫ 1

−1
〈∂su,−iσ3u〉 dt = i

2

π

(
(f +)′f + − (f −)′f −) + 〈f ′, f + σ1f 〉O(ε)

= 〈∂sf,−i
2

π
σ3f 〉 + 〈f ′, f + σ1f 〉O(ε).

Thus, there exists .ε1 > 0 small enough and .k > 0 such that for all .ε ∈ (0, ε1) there 
holds 

. a+[u] ≤ (1 + cε)
( ∫

R

|f ′|2ds +
∫
R

2�(〈f ′,−i
κ

π
σ3f 〉)ds

)

+ E1(mε)2

ε2 ‖f ‖2
L2(R)

+ (1 + cε)kε(‖f ‖2
L2(R)

+ ‖f ′‖2
L2(R)

).

Now, remark that 

. 

∫
R

|f ′|2ds +
∫
R

2�(〈f ′,−i
κ

π
σ3f 〉)ds =

∫
R

(
|f ′ − i

κ

π
σ3f |2 − κ2

π2
|f |2

)
ds.

Thus, for a .c1 > 0 there holds 

. a+[u] ≤ (1 + c1ε)

∫
R

(
|f ′ − i

κ

π
σ3f |2 − κ2

π2 |f |2
)
ds

+ E1(mε)2

ε2 ‖f ‖2
L2(R)

+ c1ε‖f ‖2
L2(R)

= (1 + c1ε) q̃e[f ] + E1(mε)2

ε2 ‖f ‖2
L2(R)

+ c1ε‖f ‖2
L2(R)

.

Now, the min-max principle of Propositions 1, 4 and 2 give for all .j ∈ N: 

. μj (D�(ε)2) ≤ (1 + c1ε)μj (qe ⊕ qe) + E1(mε)2

ε2 + c1ε

so that (13) follows.
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3.2 A Lower Bound 

The aim of this paragraph is to prove the following lower bound. 

Proposition 6 Let .j ∈ N. There exists .ε1 > 0 and .c > 0 such that for all . ε ∈ (0, ε1)

there holds 

.μj (D�(ε)2) ≥ E1(mε)2

ε2 + μj (qe ⊕ qe) − cε . (14) 

To prove Proposition 6, we need to introduce the projector in .L2(Str,C2) defined 
for all .δ > 0 and .u ∈ L2(Str,C2) by 

. �δu := 〈u, ϕ
δ,+
1 〉L2(−1,1)ϕ

δ,+
1 + 〈u, ϕ

δ,−
1 〉L2(−1,1)ϕ

δ,−
1

and set .� := �0. Thanks to Point 5 in Proposition 3, there holds 

. �δ = � + O(δ), as δ → 0,

where the remainder is estimated in the operator norm. We also set . (�δ)⊥ := Id −
�δ and .�⊥ = Id − �. 

Proof Let .u ∈ domE�(ε) and remark that there holds 

. a−[u] − E1(mε)2

ε2
‖u‖2 ≥ (1 − cε)

∫
Str

(
|(∂s − i

κ

2
σ3)(�

mε + (�mε)⊥)u|2

− κ2

4
(|�mεu|2 + |(�mε)⊥u|2)

)
dsdt

+ E2(mε)2 − E1(mε)2

ε2 ‖(�mε)⊥u‖2

− cε(‖�mεu‖2 + ‖(�mε)⊥u‖2). (15) 

We focus on the first term on the right-hand side of the last equation which gives 

.

∫
Str

(|(∂s − i
κ

2
σ3

)(
�mε + (�mε)⊥

)
u|2)dsdt =

∫
Str

|(∂s − i
κ

2
σ3

)
�mεu|2dsdt

+
∫
Str

|(∂s − i
κ

2
σ3

)
(�mε)⊥u|2dsdt

+ 2�
( ∫

Str
〈(∂s − i

κ

2
σ3

)
�mεu,

(
∂s − i

κ

2
σ3

)
(�mε)⊥u〉dsdt

)
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≥
∫
Str 

|(∂s − i 
κ 
2 
σ3

)
�mε u|2dsdt 

+ 2�
( ∫

Str
〈(∂s − i 

κ 
2 
σ3

)
�mε u,

(
∂s − i 

κ 
2 
σ3

)
(�mε )⊥u〉dsdt

)
. 

Let us deal with the last term. Remark that there holds 

. 〈(∂s − i
κ

2
σ3

)
�mεu,

(
∂s − i

κ

2
σ3

)
(�mε)⊥u〉

= 〈([(∂s − i
κ

2
σ3

)
,�mε] + �mε

(
∂s − i

κ

2
σ3

))
�mεu,

([(∂s − i
κ

2
σ3

)
, (�mε)⊥]

+ (�mε)⊥
(
∂s − i

κ

2
σ3

))
(�mε)⊥u〉,

where the scalar product is taken in .L2(Str,C2). Taking into account that . �mε

commutes with . ∂s , we obtain 

. [(∂s − i
κ

2
σ3

)
,�mε] = −[(∂s − i

κ

2
σ3

)
, (�mε)⊥] = −i

κ

2
[σ3,�

mε],

which gives 

. 〈(∂s − i
κ

2
σ3

)
�mεu,

(
∂s − i

κ

2
σ3

)
(�mε)⊥u〉

= 〈( − i
κ

2
[σ3,�

mε] + �mε
(
∂s − i

κ

2
σ3

))
�mεu,

× (
i
κ

2
[σ3,�

mε] + (�mε)⊥
(
∂s − i

κ

2
σ3

))
(�mε)⊥u〉

= 〈−i
κ

2
[σ3,�

mε]�mεu, i
κ

2
[σ3,�

mε](�mε)⊥u〉

+ 〈−i
κ

2
[σ3,�

mε]�mεu, (�mε)⊥
(
∂s − i

κ

2
σ3

)
(�mε)⊥u〉

+ 〈�mε
(
∂s − i

κ

2
σ3

)
�mεu, i

κ

2
[σ3,�

mε](�mε)⊥u〉
:= J1 + J2 + J3.

One notices that there exists .c1 > 0 such that 

.|J1| ≤ c1‖�mεu‖‖(�mε)⊥u‖ ≤ c1

2
ε‖�mεu‖2 + c1

2ε
‖(�mε)⊥u‖2. (16)
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Similarly, there exists .c2 > 0 such that 

. |J3| ≤ c2‖(∂s − i
κ

2
)�mεu‖‖(�mε)⊥u‖

≤ c2

2
ε‖(∂s − i

κ

2
)�mεu‖2 + c2

2ε
‖(�mε)⊥u‖2. (17) 

Concerning the term . J2, there holds 

. J2 = 〈−i
κ

2
(�mε)⊥σ3�

mεu, ∂s(�
mε)⊥u〉

+ 〈−i
κ

2
(�mε)⊥σ3�

mεu,−i
κ

2
σ3(�

mε)⊥u〉

and integration by parts in the s-variable gives 

. J2 = −〈−i
κ

2
(�mε)⊥σ3�

mε∂su, (�mε)⊥u〉−〈−i
κ ′

2
(�mε)⊥σ3�

mεu, (�mε)⊥u〉

+ 〈−i
κ

2
(�mε)⊥σ3�

mεu,−i
κ

2
σ3(�

mε)⊥u〉.

Hence, there exists .c3 > 0 such that 

. |J2| ≤ c3
(‖∂s�

mεu‖‖(�mε)⊥u‖ + ‖�mεu‖‖(�mε)⊥u‖)

≤ c3
(ε

2
(‖∂s�

mεu‖2 + ‖�mεu‖2) + 1

2ε
‖(�mε)⊥u‖2).

Noting that 

. ‖∂s�
mεu‖ ≤ ‖(∂s − i

κ

2
σ3

)
u‖ + ‖κ

2
�mεu‖

there exists .c4 > 0 such that 

.|J2| ≤ c4
(ε

2
(‖(∂s − i

κ

2
σ3

)
�mεu‖2 + ‖�mεu‖2) + 1

2ε
‖(�mε)⊥u‖2). (18) 

In estimates (16), (17) and (18) we have used that .κ ∈ L∞(R), and the following 
bounds on the operator norms 

. ‖�mε‖ ≤ 1 , ‖(�mε)⊥‖ ≤ 1

as .�mε and .(�mε)⊥ are projectors, as well as the elementary identity . 2ab ≤ εa2 +
1
ε
b2, with .a, b, ε > 0.
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Combining the above observations, coming back to (15), we get, for some . c5 ≥
0: 

. a−[u] − E1(mε)2

ε2
≥ (1 − c5ε)

∫
Str

(
|(∂s − i

κ

2
σ3)�

mεu|2 − κ2

4
|�mεu|2

)
dtds

+
(E2(mε)2 − E1(mε)2

ε2 − c5

ε
− c5

)
‖(�mε)⊥u‖2 − c5‖�mεu‖2 .

Notice that the first term on the right-hand-side of (18) has been absorbed in the 
integral above, taking a new constant . c5, and the terms involving .‖�mεu‖2 and 
.‖(�mε)⊥u‖2 contribute to the last two terms in the above formula. 

Now, set .f ± := 〈u, ϕ
mε,±
1 〉L2(−1,1) and remark that the computation of the term 

. 

∫
Str

(
|(∂s − i

κ

2
σ3)�

mεu|2 − κ2

4
|�mεu|2dsdt.

is similar to the one performed in the proof of the upper bound (see the proof of 
Proposition 5) and it yields 

. 

∫
Str

(
|(∂s − i

κ

2
σ3)�

mεu|2 − κ2

4
|�mεu|2dsdt ≥ (qe ⊕ qe)[f ] − c6ε‖f ‖2

L2(R)
,

for some constant . c6. All in all, we have obtained that there exists .k > 0 such that 
provided . ε is small enough there holds 

. a−[u] − E1(mε)2

ε2 ≥ (1 − kε)(qe ⊕ qe)[f ] − kε‖f ‖2
L2(R)

+
(E2(mε)2 − E1(mε)2

ε2 − k

ε
− k

)
‖(�mε)⊥u‖2

≥ (1 − kε)(qe ⊕ qe)[f ] − kε‖f ‖2
L2(R)

+
( 5π2

16ε2 − k

ε
− k

)
‖(�mε)⊥u‖2,

where for the last inequality we have used Point (3) Proposition 3. As the quadratic 
form on the right-hand side is the quadratic form of the direct sum of two operators, 
if one fixes .j ∈ N the min-max principle of Proposition 1 yields 

.μj (D�(ε)2) − E1(mε)2

ε2

≥ j − th element of the set
(
{(1 − kε)μj (qe ⊕ qe) − kε} ∪ { 5π2

16ε2 − k

ε
− k}

)
.
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Hence, for . ε small enough (depending on j ), this reads 

. μj (D�(ε)2) − E1(mε)2

ε2 ≥ (1 − kε)μj (qe ⊕ qe) − kε.

which is precisely Proposition 6. 

3.3 Proof of Theorem 1 

Let .J ≥ 1 and remark that due to the symmetry of the spectrum of .D�(ε) with 
respect to zero, for all .j ∈ {1, . . . , J } there holds 

.λj (D�(ε)) =
√

μ2j (D�(ε)2). (19) 

Combining Propositions 5 and 6, we have for all .j ∈ N that when . ε → 0

. μj (D�(ε)2) = E1(mε)2

ε2
+ μj (qe ⊕ qe) + O(ε)

= E1(mε)2

ε2

(
1 + ε2

E1(mε)2 μj (qe ⊕ qe) + O(ε3)
)
,

where we have used that .E1(mε) = O(1) when .ε → 0. Hence, there holds 

. 

√
μj (D�(ε)2) = E1(mε)

ε
+ 1

2E1(mε)
μj (qe ⊕ qe)ε + O(ε2)

and by Point 4 in Proposition 3, there holds 

. 

√
μj (D�(ε)2) = E1(mε)

ε
+ 2

π
μj (qe ⊕ qe)ε + O(ε2).

Thus, for .j ∈ {1, . . . , J }, (19) yields 

. λj (D�(ε)) = E1(mε)

ε
+ 2

π
μ2j (qe⊕qe)ε+O(ε2) = E1(mε)

ε
+ 2

π
μj (qe)ε+O(ε2),

concluding the proof. 
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Topological Polarization in Disordered 
Systems 

Giuseppe De Nittis and Danilo Polo Ojito 

1 Introduction 

In nature, there are materials in which a macroscopic polarization at the edges of 
the sample appears when subjected to mechanical strains, i.e., to the accumulation 
of charge whenever the materials are deformed. This phenomenon is known as 
piezoelectric effect, and its microscopically description was only understood in 
the last 50 years. In the 70’s, Martin [11] noticed that the previous approach in 
terms of dipole momenta for the macroscopic polarization was incomplete and 
unsatisfactory. This fact is due to that the total polarization comes from two 
contributions: the relative displacements of the ionic cores in a unit cell (whose 
computation is straightforward), and electrical conduction which is called orbital 
polarization. Resta [17] and King-Smith and Vanderbilt [8] shifted the attention to 
the orbital polarization and derived a formula using linear response theory, which 
allows calculating the polarization in terms of the Berry connection. Namely, the 
change in polarization .ΔP accumulated during a (periodic) deformation in the 
interval .[0, T ] is given by 

.ΔP := 1

(2π)d

M∑

m=0

∫

B

dk
(
Am(k, T ) − Am(k, 0)

)
. (1) 

Here .B � T
d denotes the first Brillouin zone, d is the space dimension, .Am(k, t) is 

the Berry connection for the m-th Bloch band at time t , and the sum runs over all 
the occupied M Bloch bands. Panati et al. [14] generalized Eq. (1) for continuous 
and periodic systems, showing that in the adiabatic limit of slow deformations 
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the macroscopic piezoelectric current is determined by the geometry of the Bloch 
bundle. Using an adaption of Nenciu’s super-adiabatic theory [13] to .C∗-dynamical 
systems, Schulz-Baldes and Teufel [18] established formula (1) for discrete random 
systems. They obtained that in the adiabatic limit it holds true that 

.ΔPk = i
∫ T

0
dtT

(
P(t)[ ∂tP (t), ∇kP (t) ]) + O(εN), (2) 

where . T denotes the trace per unit volume, .P(t) = χ(−∞,εF )

(
H(t)

)
is the spectral 

projection onto all states below the Fermi energy . εF , .H(t) is the instantaneous 
Hamiltonian of the system at time t , .N ∈ N is related to the regularity of the 
map .t �→ H(t) and .k = 1, . . . , d indicates the direction of the polarization in 
the physical space. It is important to point out that the works [14] and [18] it  
is also explored the topological nature of orbital polarization. They proved that 
.ΔP is quantized up to a small error (in the adiabatic parameter . ε) whenever the 
slow deformation is periodic. The latter fact is in agreement with the observation 
of Thouless [21] in a more restricted context. In [5] one of the authors and Lein 
carried out a topological study of the orbital polarization in discrete graphene-like 
systems, where they showed that the polarization depends only on the class of 
homotopy paths in the gapped parameter space. Therefore, a necessary condition 
for the existence of piezoelectric effects is that the fundamental group of the gapped 
parameter space is non-trivial. 

In this work, we focus on deriving rigorously Eq. (2) for continuous and 
disordered systems of independent electrons in the regime of an adiabatic peri-
odic deformation of the background potential. The main strategy is to use the 
mathematical framework introduced in [6], along with tools from (super)adiabatic 
theory [13, 20], for the derivation of the formula for .ΔP in a wide range of 
covariant (random) systems, which in principle are defined over a topological 
group . G that can be chosen equal to .Rd (continuous case) or .Zd (discrete case) 
in concrete applications. Our main result, Theorem 2, establishes the expression for 
the orbital polarization in this generalized setting, along with its main topological 
consequences when the deformation is periodic. 

Organization of the Paper Section 2 is devoted to the construction of the semi-
finite von Neumann algebra of observables and its trace per unit volume. In Sect. 3, 
we briefly review all the necessary mathematical notions and we state the main 
hypotheses needed for the derivation of Eq. (2). In Sect. 4 we present the main 
results. We start this section with a notion of differentiability for affiliated self-
adjoint operators to the observable algebra, and after that, we prove an equivalence 
for the current expectation value (Theorem 1). We will use the later facts to derive 
the King-Smith and Vanderbilt formula. We finish this section with the topological 
quantization of the polarization for periodic deformations. Section 5 provides the 
physical models where our results apply. We will present in detail the case of 
continuous disordered systems and we will build the Landau Hamiltonian which 
fulfills all the required hypotheses. In order to maintain the clarity in the proof of



Topological Polarization in Disordered Systems 185

the Theorem 2, in Appendix 5.2 we have included the technical proofs needed for 
the construction of the superadiabatic projections. 

2 Description of the Physical Models 

The background material contained in this section is based on [6, Chapter 4] where 
the relevant references are also provided. 

Let . h be a (separable) Hilbert space and .B(h) the set of linear bounded operators 
on . h. The physical relevant observables (like the Hamiltonians) will be modeled by 
strongly continuous1 families .

(
Hω)ω∈Ω of (self-adjoint) operators affiliated to a von 

Neumann algebra . A. Here . Ω denotes a compact2 space which describes the possible 
configurations of the interacting potential between particles and medium (e.g. 
random interaction). In order to construct a von Neumann algebra . A which contains 
homogeneous models3 we assume that there is an ergodic topological dynamical 
system .(Ω,G, τ,P) consisting of a locally compact4 abelian group . G (with a given  
Haar measure . μG), a probability space .(Ω,F ,P), where . F is the Borel .σ -algebra 
and . P is a probability measure, and a representation .τ : G → Homeo(Ω). These 
structures are related by the following assumptions: 

(i) The group action .G × Ω 	 (g, ω) �→ τg(ω) ∈ Ω is jointly continuous; 
(ii) . P is a .τ -invariant ergodic measure, namely .P(τg(B)) = P(B) for all .B ∈ F , 

and if .τg(B) = B for all .g ∈ G then .P(B) = 1 or .P(B) = 0. 

In the next we will consider the Hilbert space .h = L2(G)⊗C
N, where N depends 

on the spin-type degrees of freedom (e.g. the isospin) and we will introduce the 
direct integral [7, Part II, Chapters 1–5] 

. H :=
∫ ⊕

Ω

d P(ω) hω � L2(Ω, h) ,

with the assumption that .hω = h for (almost) all .ω ∈ Ω. A random operator is a 
bounded-operator valued map .Ω 	 ω �→ Aω ∈ B(h) such that the map . Ω 	 ω �→
〈φ,Aωψ〉h is measurable for all .φ,ψ ∈ h, and .ess − sup ‖Aω‖B(h) < ∞. We will 
denote the set of random operators by .Rand(H) ⊂ B(H). Furthermore, any random 
operator .A := {Aω}ω∈Ω fulfills 

.‖A‖B(H) = ess − sup
ω∈Ω

‖Aω‖B(h) .

1 In the sense of the resolvent. 
2 We will assume that . Ω is also metrizable, and in turn separable. This assumption implies that 
.L2(Ω) is a separable Hilbert space. 
3 In the sense of Bellissard [2]. 
4 In the interesting examples . G is also separable and metrizable (e.g. .G = R

d ,Zd ,Td ) and this 
implies that .L2(G) is a separable Hilbert space. 
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Let .Θ : G × G → U(1) be a twisting group 2-cocycle [6, Definition 4.1.2], and 
for every .g ∈ G consider the operator .Ug ∈ B(H) defined by 

. 
(
Ug ψ

)
τg(ω)

(h) := Θ(g, hg−1) ψω(hg−1) , ∀ h ∈ G

where .ψ := {ψω}ω∈Ω is any element of . H, and on the left-hand side the symbol 
.(·)τg(ω) means that the value of the vector .Ugψ on the fiber of . H at . τg(ω). It is  
evident from the definition that . Ug doesn’t respect the fiber structure of the direct 
integral . H. One can check that the mapping .G 	 g �→ Ug ∈ B(H) forms a projective 
unitary representation of . G. 

Definition 1 The von Neumann algebra of observables is the set 

. A ≡ A(Ω,P,G,Θ) = SpanG{Ug}′ ∩ Rand(H)

where .SpanG{Ug} denotes the linear space generated by the .Ug and the symbol . ′
denotes the commutant. 

For sake of notational simplicity, we write . A instead of .A(Ω,P,G,Θ). Said 
differently . A consists of those random operators . A which are covariant with respect 
to the projective unitary representation of . G provided by the . Ug , i.e. 

. Ug,τg(ω) Aω U−1
g,τg(ω) = Aτg(ω) , ∀ g ∈ G , ∀ ω ∈ Ω

where .Ug,τg(ω) denotes the action of . Ug from the fiber at . ω into the fiber at .τg(ω). 
It is known that . A is a semi-finite von Neumman algebra, hence . A admits a 

faithful normal semi-finite (f.n.s.) trace [7, Part I, Chapter 6, Proposition 9]. On 
the domain of definition, such a trace can be constructed following the procedure 
described in [9, Proposition 2.1.6 and Theorem 2.2.2], i.e. 

. TP(A) :=
∫

Ω

dP(ω) Trh(MλAωMλ) , A ∈ A+ ,

where .λ ∈ L∞(G) ∩ L2(G) is any positive function of unitary norm .‖λ‖L2 = 1, 
and .Mλ is the operator which acts on . h as the multiplication by the diagonal matrix 
.λ ⊗ 1N . It turns out that .TP coincides with the trace per unit volume, namely 

. TP(A) = lim
n→∞

1

|Λn| TrH(PΛnAωPΛn) , P − a. e.

where .PΛm is the multiplication operator by the characteristic function of the 
compact set .Λn ⊂ G, .|Λn| is its volume, and .{Λn}n∈N forms a Følner exhausting 
sequence for . G.
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3 Main Hypotheses for a Linear Response Theory 

In this section, we will briefly review all the necessary mathematical notions and we 
will state the main hypotheses needed for a rigorous derivation of the linear response 
theory as formulated in [6, Sect. 2]. These notions and hypotheses will be used in 
the following sections of this work. 

Let .AFF(A) be the set of closed and densely defined operators affiliated with 
. A [6, Sect. 3.1.2], and .Lp(A) the .Lp-spaces (or p-Schatten classes) associate to 
the semi-finite von Neumman algebra . A with its f.n.s. trace .TP [7, 12, 19, 22] 
or [6, Sect. 3.2]. The non-commutative Hölder inequalities allow defining the 
commutators 

. [A,B](r) := AB − BA ∈ Lr (A) , A ∈ Lp(A) , B ∈ Lq(A) ,

with .r−1 = p−1 + q−1. 

Hypothesis 1 (Unperturbed Dynamics) Let .H ∈ AFF(A) be a (possibly 
unbounded) self-adjoint operator (or Hamiltonian) which prescribes the 
unperturbed dynamics of the system. The affiliation of H to . A implies that the 
unperturbed dynamics 

. αt (A) := e− i tH A e i tH , t ∈ R, A ∈ A,

generated by H is a strongly continuous one-parameter group of isometries on each 
Banach space .Lp(A). The generator .L (p)

H of . αt on .Lp(A) has a core .DH,p where 
it acts as a generalized commutator [6, Proposition 5.1.3], i.e. 

. L
(p)
H (A) = − i

(
HA − (HA∗)∗

) =: − i [H,A]† , A ∈ DH,p .

we will refer to .L (p)
H as the p-Liouvillian of H . An (initial) equilibrium configura-

tion for H is any positive element .ρ ∈ A+ such that .αt (ρ) = ρ for every .t ∈ R. 
It will be called equilibrium state if in addition .TP(ρ) = c < +∞ (and up to a 
multiplicative factor one can always impose the normalization condition .c = 1). For 
instance .ρ = f (H), with .f ∈ L∞(R) and positive, is an equilibrium configuration. 

Hypothesis 2 (Spatial Derivation) Let .{X1, X2, ..., Xd} be a set of (possibly 
unbounded) self-adjoint operators which are .TP-compatible in the sense that for 
all .k = 1, 2, ..., d and for all .s ∈ R they satisfy 

(i) . e i sXk A e− i sXk ∈ A for all .A ∈ A; 
(ii) .TP( e i sXk A e− i sXk ) = TP(A) for all A in the domain of . TP; 

(iii) . e i sXj e i sXk = e i sXk e i sXj for all .j, k = 1, 2, ..., d.
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This assumption allows to introduce the spatial derivations on .Lp(A) as generators 
of an .R-flow, i.e. 

. ∇k(A) := lim
s→0

e i sXk A e− i sXk − A

s
.

The . ∇k are densely defined closed operators on each .Lp(A) with a common core 
where they act as commutators, i.e. .∇k(A) = i [Xk,A] [6, Sect. 3.4.1]. The domain 
of the associated gradient .∇ := (∇1, ...,∇d) is the (non-commutative) Sobolev 
space [6, Sect. 3.4.2] 

. M1,p(A) := {A ∈ Lp(A) | ∇k(A) ∈ Lp(A), k = 1, 2, ..., d}.

Hypothesis 3 (Current Operator) The self-adjoint Hamiltonian . H ∈ AFF(A)

with dense domain .D(H) and the set of .TP-compatible generators . {X1, X2, ..., Xd}
with common localizing domain .Dc ⊂ H [6, Remark 3.4.7] meet the following 
assumptions: 

(i) The joint core .Dc(H) := Dc ∩ D(H) is a densely defined core for H , and 
.Xk[Dc(H)] ⊂ Dc(H) for all .k = 1, . . . , d; 

(ii) .H [Dc(H)] ⊂ Dc and the formal commutators 

.Jk := − i (XkH − HXk) , k = 1, . . . , d (3) 

are essentially self-adjoint on .Dc(H), and therefore uniquely extend to self-
adjoint operators denoted (with abuse of notation) by .Jk = ∇k(H). 

(iii) All the . Jk are infinitesimally H -bounded, i.e., for any .δ > 0 there are constants 
.a > 0 and .δ > b > 0 such that 

. ‖Jkϕ‖H ≤ a‖ϕ‖H + b‖Hϕ‖H, ϕ ∈ Dc(H)

for all .k = 1, . . . , d. 
(iv) .Jk ∈ AFF(A) for every .k = 1, . . . , d. 

The vector-valued operator 

. J := ∇(H) = (∇1(H), . . . ,∇d(H))

will be called current operator. 

Hypothesis 4 (Perturbed Dynamics) Let .R ⊇ I 	 t �→ H(t) ∈ AFF(A) be a 
path such that: 

(i) .H(0) = H and .D(H(t)) = D(H) for every .t ∈ R; 
(ii) For every .t ∈ I the operator .H(t) meets the properties of Hypotheses 3 and 

therefore there exists the time-dependent current .J (t) = ∇(H(t));
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(iii) There exists a unique strongly jointly continuous map . I 2 	 (s, t) �→ U(s, t) ∈
A, called unitary propagator, which leaves invariant the domain .D(H) and 
solves the differential equation 

. i ∂tψs(t) = H(t)ψs(t) , ψs(s) = ψ0 ∈ D(H)

in the sense that .ψs(t) = U(t, s)ψ0. 

The unitary propagator verifies the properties .U(t, t) = 1 and . U(t, s)U(s, r) =
U(t, r) for every .t, s, r ∈ I . Suitable conditions for the existence of the unitary 
propagator are given in [6, Theorem 5.2.4]. Since .U(t, s) ∈ A, it can be used to 
define dynamics on . A and .Lp(A) by 

.η(t,s)(A) := U(t, s)AU(s, t) , (t, s) ∈ R
2 , A ∈ A or Lp(A). (4) 

These are isometries jointly strongly continuous in t and s on . A and in each .Lp(A). 
Moreover, it turns out that the map .I 	 t �→ η(t,s)(A) ∈ Lp(A) is differentiable for 
every fixed s, and 

. i ∂tη(t,s)(A) = [H(t), η(t,s)(A)]†

whenever HA  and .HA∗ are in .Lp(A) [6, Proposition 5.2.6]. 

Hypothesis 5 (Gap Condition) Let .σ∗(t) ⊂ σ(H(t)) be a subset of spectrum of 
.H(t) such that there exist continuous function .f± : I → R defining intervals 
.G(t) = [f−(t), f+(t)] so that .σ∗(t) ⊂ G(t) and 

. g := inf
t∈I

dist
(
G(t), σ (H(t)) \ σ∗(t)

)

is strictly positive. We will denote by .P∗(t) := χσ∗(t)(H(t)) the spectral projection 
of .H(t) on the gapped spectral patch . σ∗(t).

Hypothesis 6 (Regularity of the Equilibrium State) Let . ρ be an equilibrium state 
for H . We assume that . ρ is p-regular, i.e. 

(i) .ρ ∈ A+ ∩ M1,1(A) ∩ M1,p(A); 
(ii) .H(t)ρ(t) ∈ M1,1(A) ∩ M1,p(A) for all .t ∈ I . 

The state . ρ can be evolved also by the perturbed dynamics .η(t,s) through the 
prescription 

.ρ(t) := η(t,0)(ρ) = U(t, 0)ρU(0, t) , t ∈ R. (5)
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Since .ρ(t)∗ = ρ(t) for every .t ∈ I it follows that the generalized commutator 
.[H(t), ρ(t)]† is well defined and from [6, Theorem 5.2.6] one gets that .ρ(t) is the 
unique solution of 

.

⎧
⎨

⎩

i ∂tρ(t) = [H(t), ρ(t)]† ,

ρ(0) = ρ ,

(6) 

where the derivative is taken in .L1(A) or .Lp(A). 

4 The King-Smith and Vanderbilt Formula for the Orbital 
Polarization 

In this section we present the main results of this paper, i.e., the derivation of the 
King-Smith and Vanderbilt formula for the orbital polarization. 

Let us start by saying that a self-adjoint map .R ⊇ I 	 t �→ H(t) ∈ AFF(A) is 
N -differentiable in the uniform sense (in the interval I ) if the map  

. I 	 t �−→ (
i 1 − H(t)

)−1 ∈ A

is N -differentiable with respect to the norm topology of . A. We will denote with 
.CN(I,A) ⊂ A the space of .A-valued maps which are N -differentiable. 

Remark 4 Notice that if the map .I 	 t �→ H(t) ∈ AFF(A) is N -differentiable in 
the uniform sense, then it is also true that 

. 
(
z1 − H(·))−1 ∈ CN(I,A)

for each .z ∈ C which lies in the resolvent set of .H(t), for any .t ∈ I . Indeed, one 
has that 

. 
(
z1 − H(t)

)−1 − (
i 1 − H(t)

)−1 = ( i − z)
(
z1 − H(t)

)−1( i 1 − H(t)
)−1

.

Thus, 

. 
(
z1 − H(t)

)−1 = F(z, t)
(

i 1 − H(t)
)−1

where 

.F(z, ·) :=
(
1 − ( i − z)

(
i 1 − H(·))−1

)−1 ∈ CN(I,A) .
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Therefore 

. ∂n
t

(
z1 − H(t)

)−1 = ∂n
t F (z, t)

(
i 1 − H(t)

)−1 + F(z, t)∂n
t

(
i 1 − H(t)

)−1

for .0 < n ≤ N in consequence of the fact that .( i − z)−1 lies in the resolvent of 
.
(

i 1 − H(t)
)−1 for every .t ∈ I , and of the identity 

. ∂n
t F (z, t) = −( i − z)F (z, t)∂n

t

(
i 1 − H(t)

)−1
F(z, t) , 0 < n ≤ N .

Our first result is a generalization of [18, Proposition 4]. 

Theorem 1 Let .R ⊇ I 	 t �→ H(t) ∈ AFF(A) be a path of self-adjoint operators 
which meets Hypothesis 1, 2, 3, 4. Let .P ∈ A be an orthogonal projection which 
satisfies Hypothesis 6 with .p = 1, 2. Let .P(t) := η(t,0)(P ) and .Jk(t) the k-th 
component of the current operator .J (t) = ∇(H(t)) ∈ AFF(A). Then, the current 
expectation value can be rewritten as 

.TP

(
Jk(t)P (t)

) = i TP

(
P(t)[∂tP (t),∇k(P (t))](1)

)
(7) 

for every .k = 1, . . . , d. 

Proof From the hypothesis we have that .H(t)P (t) ∈ L1(A) and . Jk(t) ∈ AFF(A)

for all .t ∈ I . Then, using [6, Lemma 3.3.7] one obtains that 

. Jk(t)P (t) = (
Jk(t)(H(t) − z1)−1)((H(t) − z1)P (t)

) ∈ L1(A),

where z (which can depend on t) lies in the resolvent set of .H(t). Therefore, the 
left-hand side of the expressions (7) is well defined. From the hypothesis, it also 
follows that .∇k(P (t)) ∈ L2(A) and .H(t)P (t) ∈ L2(A) which implies 

. ∂tP (t) = − i
(
H(t)P (t) − (H(t)P (t))∗

) ∈ L2(A) .

Therefore, the commutator .[∂tP (t),∇k(P (t))](1) is a well defined element in 
.L1(A). For sake of notational simplicity, we suppress the t dependencies in the 
following computation. From [6, Lemma 3.2.14], one gets 

. 

i TP

(
P [∂tP ,∇k(P )](1)

) = lim
n→∞ i TP

(
P [∂tPPn,∇k(P )](1)

)

= lim
n→∞ i TP

(
P [∂tPPn,∇k(P )](1)P

)

where .Pn(t) := χ[−n,n]
(
H(t)

)
is the spectral projection of .H(t) on .[−n, n]. 

Moreover, one has that 

.

i ∂tPPn = [H,P ]†Pn = HPPn − (HP )∗Pn

= HPPn − PHPn = (HP − PH)Pn,
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since .(HP )∗ = PH when projected on . Pn. Thus, beginning from the right-hand 
side of (7) and using the properties of the trace one finds 

. 

i TP

(
P [∂tP ,∇k(P )](1)

)

= lim
n→∞ TP

(
P [(HP − PH)Pn,∇k(P )](1)P

)

= lim
n→∞ TP

(
P(HP − PH)Pn∇k(P )P − P∇k(P )(HP − PH)PnP

)

= lim
n→∞ TP

( − PHPn∇k(P )P − P∇k(P )HPPnP
)

where in the last equality we have used the identity .P∇k(P )P = 0 (which follows 
from .∇k(P ) = ∇k(P )2) to remove the term .PHPPn∇k(P )P which goes to 0 
when .n → ∞, and the term .P∇k(P )PHPnP . Since .PHPn ∈ A and using the 
“integration by part” between .TP and . ∇k one gets 

. 

i TP

(
P [∂tP ,∇k(P )](1)

)

= lim
n→∞ TP

(∇k(PHPn)P
) − TP

(
P∇k(P )HPPn

)

= lim
n→∞ TP

(∇k(P )HPnP + P∇k(HPn)P
) − TP

(
P∇k(P )HPPn

)

= lim
n→∞ TP

(
P∇k(HPn)P

) + lim
n→∞ TP

(∇k(P )HPnP − P∇k(P )HPPn

)

= lim
n→∞ TP

(∇k(HPn)P
) + lim

n→∞ TP

(∇k(P )HPnP − ∇k(P )HPPnP
)

= TP

(∇k(H)P
) + 0

= TP

(
JkP

)
.

This concludes the proof. 

Let .ρ0 := χ(−∞,εF ](H) be the spectral projection of the Hamiltonian . H = H(0)

with Fermi level .εF ∈ R in a gap of the spectrum of H . It is clear that . ρ0 is an 
initial equilibrium state for H . Let us assume that . ρ0 meets the regularity condition 
of Hypothesis 6 and let .ρ(t) be the solution of the Eq. (6). The variation of the 
polarization .ΔPk between time .t = 0 and .t = T due to the current . Jk in the state 
. ρ0 is by definition 

.ΔPk :=
∫ T

0
dt TP

(
Jk(t)ρ(t)

)
, k = 1, ..., d . (8) 

By using Theorem 1 one can rewrite the quantity (8) as follows 

.ΔPk := i
∫ T

0
dt TP

(
ρ(t)[∂tρ(t),∇k(ρ(t))](1)

)
, k = 1, 2, . . . , d . (9)
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It is important to point out that Eq. (9) is not very useful in general, since it requires 
the knowledge of .ρ(t), which is not a function of .H(t). Thereby, we will use 
tools from adiabatic perturbation theory adapted from [18], in order to express the 
polarization in terms of the spectral projections of .H(t). For that, let us consider the 
Liouville equation 

.ε∂tρ(t) = − i [ H(t), ρ(t) ]†, (10) 

where .ε > 0 is a small adiabatic parameter. With these ingredients, we present now 
the main Theorem of this work, which is based on some technical results described 
in Appendix 5.2. 

Theorem 2 Assume that the map .[0, T ] 	 t �→ H(t) ∈ AFF(A) is .N + 2-
differentiable in the uniform sense and meets Hypothesis 1, 2, 3, 4, 5 and 6. If  
.∂n

t

(
i 1 − H(t)

)−1|t=0 = ∂n
t

(
i 1 − H(t)

)−1|t=T = 0 for all .0 < n ≤ N, then 

.ΔPk = i
∫ T

0
dt TP

(
P∗(t)[∂tP∗(t), ∇k(P∗(t))](1)

) + O(εN) (11) 

where .P∗(t) is the instantaneous spectral projection of .H(t) on the gapped spectral 
patch .σ∗(t). 

Proof From Theorem 3, there are projections .P ε
N such that 

. ‖P ε
N(t) − ρ(t)‖ + ‖∇k

(
P ε

N(t) − ρ(t)
)‖ + ‖∂t

(
P ε

N(t) − ρ(t)
)∥∥ = O(εN) .

Since . ρ is a p-regular initial equilibrium state, then for some .ε > 0 small enough 
.∇kH(t)P ε

N(t) ∈ L1(A). Furthermore, the Eq. (9), the norm bound property of the 
trace, and Corollary 2 yield 

. ΔPk = i
∫ T

0
dt TP

(
P ε

N(t)[ ∂tP
ε
N(t), ∇k(P

ε
N(t))](1)

) + O(εN) .

Now let us show that the above integral is independent of . ε. Indeed, since the first 
N derivates of .t → (

i 1 − H(t)
)−1 vanish at the endpoints then by Theorem 3 one 

has that .P ε
N(0) = P∗(0) and .P ε

N(T ) = P∗(T ). As a consequence of the dominated 
convergence theorem [1, Corollary 5.8], and following the same algebraic steps used 
in the proof of [18, Theorem 1], one gets 

.∂ε

∫ T

0
dt TP

(
P ε

N [∂tP
ε
N ,∇k(P

ε
N)](1)

)

=
∫ T

0
dt TP

(
P ε

N [∂ε∂tP
ε
N ,∇k(P

ε
N)](1) + P ε

N [∂tP
ε
N , ∂ε∇k(P

ε
N)](1)

)
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= TP

(
P ε 

N [ ∂εP
ε 
N, ∇k(P

ε 
N)](1)

)∣∣∣
T 

0 
−

∫ T 

0 
dt TP(P ε 

N [∂εP
ε 
N,∇k(∂tP

ε 
N)](1)) 

+
∫ T 

0 
dt TP

(
P ε 

N [∂tP
ε 
N,∇k(∂εP

ε 
N)](1)

) = 0 . 

In both equalities above it was used that .TP(∂εP
ε
N∂tP

ε
N∇kP

ε
N) = 0, and the 

differentiability of the map .ε �→ P ε
N , which follows from Theorem 3, implies 

existence and equality of the mixed derivatives. Now, making .ε → 0 one obtains 
.P ε

N(t) → P∗(t) and in turn 

. ΔPk = i
∫ T

0
dt TP

(
P∗(t)[∂tP∗(t), ∇k(P∗(t))](1)

) + O(εN) .

This concludes the proof. 

It is important to notice that the leading order term of (11) is invariant under 
diffeotopies. Consider a diffeotopy F between the projection-valued paths . P0 and 
. P1, i.e., a smooth function .F : [0, T ]×[0, 1] → M1,1(A) such that . F(t, 0) = P0(t)

and .F(t, 1) = P1(T ) for all .t ∈ [0, T ]. By replacing . ε with the diffeotopy parameter 
.s ∈ [0, 1] in the proof of Theorem 2, one obtains immediately the equality 

. ΔP0
k [P0] = ΔP0

k [P1] , k = 1, 2, . . . , d

where 

. ΔP0
k [Pj ] :=

∫ T

0
dt TP

(
Pj (t)[ ∂tPj (t), ∇k(Pj (t)) ](1)

)
, j = 0, 1

stands for the leading order term of .ΔPk with respect to the path . Pj . 
The last important step consists in proving that the leading order term .ΔP0

k is 
topologically quantized. This can be shown following the argument of [18]. 

Corollary 1 Under the assumptions of the Theorem 2, if the deformation is cyclic, 
that is .H(0) = H(T ), it holds true that 

. ΔP0
k = 2π Ch(P∗)

where 

. Ch(P∗) := 1

2π i

∫ T

0
dt TP

(
P∗[ i ∂tP∗, ∇k(P∗)](1)

) ∈ Z

is the Chern number of the differentiable map .[0, T ] 	 t �→ P∗(t) ∈ M1,1(A).
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Proof If the deformation is cyclic, we can consider . P∗ as a projection-valued map 
in the .C∗-algebra .C(S1)⊗A, where .C(S1) are the continuous functions on the circle 
.S

1 ∼= [0, T ). We can endow this .C∗-algebra with the spatial derivation . ∇k , the time 
derivation . i ∂t , and the trace given by 

. ̂TP(Â) :=
∫ T

0
dt TP

(
A(t)

)
, Â ∈ C(S1) ⊗ A .

Thus, it follows that .ΔPk = 2π Ch(P∗) + O(εN), where .Ch(P∗) is the Chern 
number of the element .P̂∗ ∈ C(S1)⊗A defined by .t �→ P∗(t). It is well known that 
Chern numbers of projections take value in . Z [4, 15]. 

The last result can be rephrased by saying that up to arbitrarily small corrections 
in the adiabatic parameter . ε, the orbital polarization .ΔPk is topologically quan-
tized. 

5 Applications 

The mathematical framework described in the previous sections applies directly to 
the two most common cases, namely .G = Z

d and . Rd , which describe discrete 
(tight-binding) models and continuum systems, respectively. The case of discrete 
random models has been considered in detail in [18] and it will not be considered 
here. On the other hand, the treatment of the continuous random case is one of the 
main motivations for the writing of this work. In the following part of this section, 
we will present the formalism to describe the continuous random system and we 
will show that all the Hypothesis 1–6 listed in Sect. 3 are satisfied for such models. 

5.1 Continuous Models in Disordered Media 

Let us focus on ergodic magnetic media [3, Section 4], i.e., non-interacting systems 
of charge particles submitted to a constant magnetic field . B, and to random 
potentials .Aω and . Vω (solids that can be either random, periodic or quasi-periodic), 
where . ω runs in the ergodic probability space .(Ω,P) of disorder with the ergodic 
.R

n-action . τ . Let us consider the one-particle Hilbert space .h = L2(Rd), which 
describes the quantum states of the system. The constant magnetic field . B can be 
represented by a .d × d antisymmetric matrix with entries .{Bj,k} and the associated 
vector potential .A : Rd → R

d can be chosen as 

.Aj(x) = −1

2

d∑

k=1

Bj,kxk , j = 1, . . . , d .
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It turns out that 

. 
∂Ak

∂xj

− ∂Aj

∂xk

= Bj,k ,
∂Ak

∂xj

+ ∂Aj

∂xk

= 0 , j, k = 1, . . . , d .

On . h acts the free Landau Hamiltonian 

. HA
0 := (− i ∇ − A)2 ,

and the family of random magnetic Hamiltonians 

. HA
ω ≡ HA

ω (Aω, Vω) := (− i ∇ − A − Aω)2 + Vω , ω ∈ Ω .

In order to ensure the self-adjointness of the Hamiltonians .HA
0 and .HA

ω , we assume 
the Leinfelder–Simader conditions on the potentials A, .Aω and .Vω (see [10] or  
[3, Section 2.1]). It turns out that .HA

ω is essentially self-adjoint on . C∞
0 (Rd). We  

will denote with .Dω := D(HA
ω ) the domain of .HA

ω , i.e., the closure of . C∞
0 (Rd)

with respect to the graph norm induced by .HA
ω . Observe that .HA

ω meets the gauge 
covariance property 

.H
A+∇χ
ω = e− i χ HA

ω e i χ (12) 

where .χ : Rd → R is considered as a multiplication operator on . h. 
Let us consider the direct integral 

. H :=
∫ ⊕

Ω

d P(ω) hω � L2(Ω) ⊗ L2(Rd) � L2(Ω × R
d) ,

and the subspaces .D := L2(Ω) ⊗Dω and .Dc := L2(Ω) ⊗ C∞
0 (Rd). The family of 

Hamiltonians .HA := {HA
ω }ω∈Ω defines an operator acting on the Hilbert space . H. It  

turns out that .HA is essentially self-adjoint with core . Dc and domain . D. Moreover, 
it follows that the maps .ω �→ f (HA

ω ) are measurable for every .f ∈ L∞(R) (see 
[3, Section 4.1] and references therein). In particular, the spectral projections of 
.HA define measurable maps and this is equivalent to say that .HA is affiliated to 
.Rand(H). 

Let us introduce the vector-valued operators .G := − i ∇ + A. It turns out that 
every component of G commutes with .HA

0 . For every y we consider the unitary 
operator .Ty := e− i y·G which acts on .ϕ ∈ h as 

.(Tyϕ)(x) = ΘB(y, x)ϕ(x − y) = ΘB(y, x − y)ϕ(x − y) (13) 

where 

.ΘB(y, x) := e
i
2 y·B·x = e

i
2

∑d
j,k=1 Bj,kyj xk .
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It follows that .TyH
A
0 T ∗

y = HA
0 for every .y ∈ R

d . Furthermore, one can check that 
the map .ΘB : R

d × R
d → U(1) is a twisting group 2-cocycle according to [6, 

Definition 4.1.2]. We assume that the potentials .Aω and .Vω are covariant random 
variables, i.e., they meet 

. Vω(x − y) = Vτy(ω)(x) , Aω(x − y) = Aτy(ω)(x)

for .P-almost every .ω ∈ Ω and Lebesgue-almost every .x ∈ R
d . Then, one obtains 

the covariance relations 

. TyH
A
ω T ∗

y = HA
τy(ω) .

If one defines the unitary .Uy ∈ B(H) as 

.
(
Uy ψ

)
τy(ω)

(x) := ΘB(y, x) ψω(x − y) , (14) 

where .ψ := {ψω}ω∈Ω is any element of . H and on the left-hand side the symbol 
.(·)τy(ω) means the value of the vector .Uyψ on the fiber of . H at .τy(ω), then one gets 
the invariance relations 

. UyH
AU∗

y = HA , ∀y ∈ R
d .

Moreover, one has that the spectral projections of .HA commute with the . Uy , and in 
turn .HA results affiliated with the von Neumann algebra 

. A = SpanRd {Uy}′ ∩ Rand(H) .

Ultimately .HA ∈ AFF(A) according to Hypothesis 1. 
Hypothesis 2 and 3 are verified if the .{X1, X2, ..., Xd} are the usual position 

operators which act constantly on the fibers of . H, namely . (Xjψ)ω(x) := xjψω(x)

for every .{ψω}ω∈Ω ∈ H. Observe that the localization domain . Dc := L2(Ω) ⊗
C∞

0 (Rd) is also a core for .HA, therefore .Dc(H
A) := Dc ∩ D(HA) = Dc. Finally, 

the components of the current are .Jk := {Jk,ω}ω∈Ω with 

. Jk,ω := 2(− i ∂k − Ak − Aω,k) , k = 1, . . . , d .

The effects of the external deformation on the system are modeled by a 
sufficiently regular function .w : [0, T ] → R with the boundary conditions . w(0) =
0 = w(T ), which enters in the definition of the time-dependent Hamiltonian 
.HA(t) := {HA

ω (t)}ω∈Ω defined by 

.HA
ω (t) := HA

ω + w(t) Wω ,
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where .W := {Wω}ω∈Ω ∈ Rand(H) is a bounded random potential. In view of the 
Kato-Rellich theorem [16, Theorem X.12] one has that .D(HA(t)) = D(HA) for 
every .t ∈ [0, T ]. Moreover, it is straightforward to check .Jk(t) = Jk for every 
.k = 1, . . . , d, namely the time-dependent current equals the stationary current. 
Let us assume that there is a Fermi energy .εF ∈ C \ σ(HA) inside the resolvent 
set of . HA. If .‖w‖∞ � 1 is sufficiently small the gap around . εF doesn’t closed 
during the time-dependent perturbation and one gets that .εF ∈ C \ σ(HA(t)) for 
every .t ∈ [0, T ]. This is in particular a gap condition stronger than that assumed in 
Hypothesis 5, which is therefore automatically satisfied. In particular the relevant 
spectral patch can be chosen as .σ∗(t) := (−∞, εF ]∩σ(HA(t)). In order to complete 
the check of the validity of Hypothesis 4 we need to prove that there exists the 
unitary propagator .[0, T ]2 	 (s, t) �→ UA(s, t) ∈ A associated to .HA(t). For that, 
it is sufficient to show that the conditions listed in [16, Theorem X.70] (see also [23, 
Section XIV.4]) are satisfied. The main object is the operator 

. 

C(t, s) : =
(
HA(t) − HA(s)

) 1

HA(s) − ξ1

= (w(t) − w(s))W
1

HA(s) − ξ1
.

If one assumes that .w ∈ C1([0, T ]), then .C(t, s) automatically fulfills all the 
conditions for the construction of the unitary propagator. 

Finally, the relevant initial equilibrium state for .HA is given by the spectral 
projection of .HA on the Fermi energy .ρ0 := χ(−∞,εF ](HA). Let us observe that, in 
view of the gap condition, the step function .χ(−∞,εF ] can be replaced by a smooth 
and compactly supported function. Therefore, from [3, Proposition 4.2] one has that 
also Hypothesis 6 is verified. 

5.2 Continuous Periodic Models 

The case of a continuous periodic model has been rigorously studied in [14]. 
However, it represents a special case of the model described in Sect. 5.1 when the 
ergodic topological dynamical system .(Td ,Rd , τ, μ) is given by a d-dimensional 
torus .Td := R

d/Γ , with .Γ � Z
d a lattice, and its normalized Haar measure 

. μ. Evidently, the action of .Rd on .Td is given by translations and the resulting 
dynamical system is minimal, which means that the orbit of any point . ω ∈ T

d

under the action of . Rd is dense. 
Let us fix the reference point .ω0 = [0]. In view of the covariance conditions one 

gets 

.Vω0(x − γ ) = Vτγ (ω0)(x) = Vω0(x) , ∀ γ ∈ Γ
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since .τγ (ω0) = [0 + γ ] = [0]. Moreover, this is independent of the election of the 
reference point . ω0. Therefore it turns out that .Vω0 , and similarly .Aω0 are .Γ -periodic 
potentials which will be denoted simply by .VΓ and . AΓ , respectively. Note also that 
for any .ω ∈ T

d and .A ∈ A it holds true that 

. TyAω0T
∗
y = Aτy(ω0) = Aω ,

where .ω = [y]. Therefore, if one factor the action of . Rd as .Rd = T
d × Γ one can 

decompose the algebra . A as follows 

. A =
∫ ⊕

Td

d μ(ω) AΓ

where 

. 
AΓ : = {A ∈ B(L2(Rd)) | [Tγ ,A] = 0 , ∀ γ ∈ Γ }

= SpanΓ {Tγ }′

is the von Neumann algebra of the bounded operators on the Hilbert space . L2(Rd)

which are invariant under the action of the translations . Tγ defined by (13). Thus, 
there is a .∗-isomorphism of von Neumann algebras .A � AΓ given by the 
identification .A 	 A �→ Aω0 ∈ AΓ . Hence, in the case of continuous periodic 
models, it is sufficient to work with the algebra .AΓ defined on the Hilbert space 
.L2(Rd). 

In the case that the algebra .SpanΓ {Tγ } contains a commutative .C∗-subalgebra 
.IΓ (rational magnetic flux), then the von Neumann’s spectral Theorem [7, Part II,  
Chap.6, Theorem 1], provides a (new) direct integral decomposition 

.L2(Rd) :=
∫ ⊕

σ(IΓ )

dν(k)Hk (15) 

where . ν is a basic spectral measure and .σ(IΓ ) is the Gelfand spectrum of . IΓ . 
Moreover, there is a unitary map . F , called the Bloch-Floquet transform, such that 
.FAΓ F−1 is contained in the bounded decomposable operators over the direct 
integral, that is, 

. FAF−1 =
∫ ⊕

σ(IΓ )

dν(k)A(k) , A ∈ AΓ ,

where .A(k) ∈ B(Hk). Note also that the trace per unite of volume . T on .AΓ is given 
by 

.T (A) = 1

μ
(
σ(IΓ )

)
∫ ⊕

σ(IΓ )

dν(k) TrHk

(
A(k)

)
. (16)
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Appendix: Adiabatic Theorem 

The aim of this section is to extend the adiabatic Theorem proved in [18, Appendix 
A] to our setting. 

The first result concerns the regularity of the spectral projections on the gap of 
.H(t). 

Lemma 1 Suppose that the map .[0, T ] 	 t �→ H(t) ∈ AFF(A) is N -differentiable 
in the uniform sense and that the Hypothesis 1, 2 and 5 hold. Then, the spectral 
projection map .P∗(t) = χσ∗(t)(H(t)) fulfills .P∗ ∈ CN([0, T ],A). 

Proof Let .γ (t) ⊂ C be a closed curve in the resolvent set of .H(t) surrounding 
.σ∗(t) in the positive sense with 

. dist
(
γ (t), σ (H(t)) \ σ∗(t)

)
� g

2
,

where g is defined in Hypotheses 5. Then 

. P∗(t) = 1

i2π

∮

γ (t)

dz
(
z1 − H(t)

)−1
.

Since .f±(t) are continuous functions, one has that .γ (t + h) is homotopic to .γ (t) in 
the resolvent set of .H(t + h) for . |h| small enough, and hence 

. 

P∗(t + h) = 1

i2π

∮

γ (t+h)

dz
(
z1 − H(t + h)

)−1

= 1

i2π

∮

γ (t)

dz
(
z1 − H(t + h)

)−1
.

Since .∂n
t (z1 − H(t))−1 ∈ A for all .n ≤ N , then one deduce with an induction on n 

that 

. ∂n
t P∗(t) = 1

i2π

∮

γ (t)

dz ∂n
t

(
z1 − H(t)

)−1 ∈ A .

This concludes the proof. 

The next two results concern the existence of the superadiabatic projections and 
are adaptions of [18, Proposition 7 and Theorem 9]. 

Proposition 1 Under the assumptions of the Lemma 1, there exist unique maps 
.Pn ∈ CN+2−n([0, T ],A), with .1 � n � N , such that the functions 

.P̃ ε
m(t) =

m∑

n=0

εnPn(t)
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for .0 � m � N and .P0(t) = P∗(t) = χσ∗(t)(H(t)), satisfies 

.
(
P̃ ε

m

)2 = P̃ ε
m + εm+1Gm+1 + O(εm+2) (17) 

with .Gm+1 := ∑m
n=1 PnPm+1−n and 

.iε∂t P̃
ε
m(t) − [H(t), P̃ ε

m(t)]† = i εm+1∂tPm(t) . (18) 

Furthermore, if .∂n
t

(
i 1 − H(t)

)−1|t=t0 = 0 for some .t0 ∈ [0, T ] and all . n � N,

then .Pn(t0) = 0 for all . 1 � n � N.

Proof This result can be obtained by using induction in m. For .m = 0, with 
.P̃ ε

0 (t) := P∗(t) the instantaneous spectral projection of .H(t), it follows that 

. 
(
P̃ ε

0

)2 = P̃ ε
0 , iε∂t P̃

ε
0 − [H(t), P̃ ε

0 ]† = i ε∂tP∗(t) = O(ε) .

Assume now that .(17) and .(18) holds for . Pj with .j = 0, . . . , m. Thus, if we define 
.Pm+1 as 

. 

Pm+1 := P ⊥∗ Gm+1P
⊥∗ − P∗Gm+1P∗

+ 1

i2π

∮

γ (t)

dz (z1 − H)−1[∂tPm, P∗]†(z1 − H)−1 ,

with .γ (t) any curve encircling .σ∗(t) once in the positive sense, one can show 
that .(17) and .(18) hold for .Pm+1 just following the same steps in [18, Proposition 
7]. Moreover, since . A is closed under holomorphic functional calculus, one gets 
.Pm+1 ∈ A. Finally, if .∂n

t

(
i 1 − H(t)

)−1|t=t0 = 0 then it is also true that 

.∂n
t

(
z1 − H(t)

)−1|t=t0 = 0 for each z in the resolvent of .H(t) for every t in . [0, T ]
(see Remark 4). Thus, .Ṗ∗(t0) = 0 and by the construction of . Pm+1, it follows also  
that .P1(t0) = 0. Using induction again we conclude the last statement. 

In order to simplify the notation, we introduce the following norm 

. ‖A(t)‖S,k := ‖A(t)‖ + ‖∂tA(t)‖ + ‖∇kA(t)‖ k = 1, . . . , d

for any differentiable path .t �→ A(t) in .C1([0, T ],A). 

Theorem 3 Let the map .[0, T ] 	 t �→ H(t) ∈ AFF(A) be N -differentiable in the 
uniform sense for some .N ∈ N and assume the hypothesis of Lemma 1. Then, there 
are constants .εN > 0, .cN < ∞ and orthogonal projections . P ε

N(t) ∈ M1,1(A)

such that the map .(0, εN) 	 ε → P ε
N(·) ∈ C2([0, T ],M1,1(A)), and the following 

properties hold uniformly in t: 

.‖P ε
N(t) − P∗(t)‖S,k < cNε , (19)
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.
∥∥iε∂tP

ε
N − [

H(t), P ε
N

]
†

∥∥
S,k

< cNεN+1 . (20) 

Moreover, if .∂n
t

(
i 1 − H(t)

)−1|t=t0 = 0 for some .t0 ∈ [0, T ], then . P ε
N(t0) = P(t0).

Proof We know by (17) that there is a constant . cN such that 

. ‖(P̃ ε
m)2 − P̃ ε

m‖ � cNεN+1 .

Therefore, the spectral mapping theorem provides 

. 

σ(P̃ ε
m) ⊂ [−cNεN+1, cNεN+1] ∪ [1 − cNεN+1, 1 + cNεN+1]

⊂
[
−1

4
,

1

4

]
∪

[
3

4
,

5

4

]

where the latter holds for .ε < εN = (4cN)−
1

N+1 . Thus, one can define for any 
. ε < εN

. P ε
N := 1

i2π

∮

|z−1|= 1
2

dz (z1 − P̃ ε
m)−1,

where the integral is taken in the positive sense. It follows that .P ε
N ∈ A. Moreover 

by adapting the arguments used in [3, Proposition 4.2] one can show that . P ε
N(t) ∈

M1,1(A) for every .t ∈ [0, T ]. Using the fact that .P̃ ε
m is differentiable one obtains 

that .ε �→ P ε
N(·) is in .C2([0, T ],M1,1(A)). Now one can obtain (19) by taking the 

norms of 

. P ε
N − P∗ = 1

12π

∮

|z−1|= 1
2

dz (z1 − P̃ ε
m)−1(P̃ ε

m − P∗)(z1 − P∗)−1 ,

of its time derivate . ∂t and of its gradient . ∇k . In the same way, we can use 

. 

iε∂tP
ε
N − [H,P ε

N ]†

= 1

i2π

∮

|z−1|= 1
2

dz
(

iε∂t (z1 − P̃ ε
m)−1 − [H, (z1 − P̃ ε

m)−1]†

)

= 1

i2π

∮

|z−1|= 1
2

dz (z1 − P̃ ε
m)−1 (

iε∂t P̃
ε
m − [H, P̃ ε

m]†
)
(z1 − P̃ ε

m)−1

= εN+1

i2π

∮

|z−1|= 1
2

dz (z1 − P̃ ε
m)−1∂tPN(z1 − P̃ ε

m)−1

to show (20). The last claim follows directly from Proposition 1. 

The proof of the following result is an adaption of [18, Corollary 5].
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Corollary 2 Let .ρε
sa(t) be the unique solution of the equation 

. iε∂tρ
ε
sa(t) = i [H(t), ρε

sa(t)]† , ρε
sa(0) := P ε

N(0).

Then under the hypothesis of Lemma 1 one gets that 

. ρε
sa(t) = P ε

N(t) + Δε(t)

with .‖Δε(t)‖S = O(εN |t |). 
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Quadratic Forms for Aharonov-Bohm 
Hamiltonians 

Davide Fermi 

2020 Mathematics Subject Classification: 47A07, 49J45, 81Q10 

1 Introduction 

In a pioneering work dating back to 1949 [17], Ehrenberg and Siday foretold that 
charged quantum particles confined within regions where the electromagnetic field 
vanishes do still experience a phase shift, which can be expressed in terms of 
non-zero electromagnetic potentials. Their prediction did not attract great attention 
until Aharonov and Bohm re-discovered it in an independent research of 1959 
[2], eventually reaching a much larger audience. Ever since then, people referred 
to the said phenomenon as the “Aharonov-Bohm effect” [5, 29]. Despite sound 
experimental evidence [33], this groundbreaking discovery generated conflicting 
views and a long-standing debate about the reality of electromagnetic potentials and 
the tenability of the locality principle in quantum mechanics [3]. This controversy 
somehow continues even nowadays [4, 20, 34], though there are strong indications 
that an explanation in terms of local field interactions can actually be attained within 
the framework of QED [21, 25]. 

The prototypical Aharonov-Bohm configuration consists of a single, non-
relativistic, spinless and electrically charged quantum particle moving outside of a 
long thin solenoid. More precisely, attention is restricted to a low-energy regime in 
which the De Broglie wavelength of the particle is much larger than the solenoid 
section diameter and, at the same time, much smaller than the solenoid longitudinal 
length. The natural first order approximation considers an ideal solenoid of infinite 
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length, zero cross section and finite total magnetic flux. Against this background, 
the Schrödinger operator ruling the dynamics of the particle reads 

. H3D = 1

2m

(−ih̄∇−qA3D
)2

, A3D(x, y, z) = �

2π

(
− y

x2 + y2 ,
x

x2 + y2 , 0

)
,

where . ̄h is the reduced Plank constant, m is the particle mass, q is the electric charge, 
. � is the total magnetic flux across the solenoid, and .(x, y, z) are coordinates in 
. R3 such that the solenoid coincides with the z-axis. The corresponding singular 
magnetic field is given by .B = curlA3D = (0, 0,� δ(x,y) = (0,0)). 

Upon factorizing the axial direction and passing to natural units of measure, the 
model is described by the reduced Schrödinger operator 

.Hα := (− i∇ + Aα

)2
, Aα(x) := α

x⊥

|x|2 , (1) 

acting in .L2(R2). Here and in the sequel, .x = (x, y) ∈ R
2 and .x⊥ ≡ (−y, x). 

Besides, . α is a dimensionless parameter measuring the magnetic flux . � in units of 
the flux quantum .2πh̄/q. It entails no loss of generality to assume1 

. α ∈ (0, 1) .

Due to the singularity of .Aα at .x = 0, the self-adjointness of .Hα is not 
granted a priori. Assessing this feature is in fact a crucial task. Decomposing in 
angular harmonics and exploiting the exact solvability of the radial problems, all 
admissible self-adjoint extensions of the symmetric restriction . Hα � C∞

c (R2 \ {0})
were originally characterized via Krein-von Neumann methods in [1] and [12] 
(see also [7, 15, 28]). These extensions include the Friedrichs one and finite 
rank perturbations thereof, forming a family labeled by .2×2 complex Hermitian 
matrices. It is worth noting that a complete analysis of the spectral and scattering 
properties of the resulting Hamiltonians can be derived by resolvent techniques. 
A complementary approach relies on considering first finite size solenoids, partially 
shielded by electrostatic potentials, and then examining suitable scaling regimes 
[14, 22, 24, 30, 31]. Different self-adjoint realizations of . Hα are obtained as limits (in 
strong resolvent sense) of Hamiltonian operators comprising just regular potentials. 
In this connection, zero-energy resonances produced by the shielding electrostatic

1 For any .α ∈ R, consider the decomposition .α = 2� + α̃ with .� ∈ Z, .α̃ ∈ (−1, 1). For  any fixed  
determination of .arctan, the map .(Uψ)(x) = e−2i� arctan(x/y)ψ(x) defines a unitary operator in 

.L2(R2). A direct computation gives .U
( − i∇ + α x⊥

|x|2
)2

U−1 = ( − i∇ + (α − 2�) x⊥
|x|2
)2, showing 

that . Hα is unitarily equivalent to . Hα̃ with .α̃∈(−1, 1). The condition .α̃∈[0, 1) can then be realized 
exploiting conjugation symmetry. The case .α =0 is here discarded because of its triviality (. Hα = 0
is just the free Laplacian in . R2, with no magnetic flux). 
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potential play a key role. This also allows to gain some intuition about the physical 
meaning of different self-adjoint realizations. 

The present work examines magnetic perturbations of the pure Aharonov-Bohm 
Hamiltonian . Hα , continuing the analysis begun in [8, 11]. The main goal is to 
characterize self-adjoint realizations in .L2(R2) of the Schrödinger operator 

. Hα,S := (−i∇ + Aα + S)2 ,

where . Aα is like in (1) and .S ∈ L∞
loc(R

2,R2) is the vector potential associated 
to a regular, external axial magnetic field, to be regarded as a perturbation of the 
Aharonov-Bohm singular flux. The said perturbation allows to account, in particular, 
for magnetic traps and leakages of magnetic field lines outside of the solenoid coils. 

The case of a homogeneous magnetic field, corresponding to .S = B
2 x⊥ (. B > 0

being the magnetic field intensity), was previously analyzed in [18]. An exhaustive 
classification of all self-adjoint realizations of .Hα,S (with the said choice of . S) and 
of their spectral properties was derived therein by means of Krein-von Neumann 
methods, exploiting again decomposition in angular harmonics. 

For a generic perturbation . S, lacking rotational symmetry, the decomposition 
in angular harmonics appears to be somewhat artificial and the Krein-von Neumann 
construction cannot be implemented straightaway. On the contrary, a quadratic form 
approach is more natural and flexible. In the context under analysis the use of 
quadratic forms was first proposed in [11] for the pure Aharonov-Bohm setting 
with .S= 0. In [8] similar techniques were employed to characterize the Friedrichs 
realization of .Hα,S and a one-parameter family of singular s-wave perturbations. 

In this paper we extend the previous analysis, including p-wave and mixed singu-
lar perturbations of the Friedrichs Hamiltonian (see Theorem 1 and Corollary 1). In 
view of the results derived in [1, 12, 18], this is expected to encompass all admissible 
self-adjoint realizations of .Hα,S in .L2(R2). The focus is not on identifying minimal 
regularity hypotheses for . S, but rather on providing techniques which can be 
generalized to the case of multiple Aharonov-Bohm fluxes [9]. Building on the 
quadratic form construction, we further derive a natural convergence result showing 
that the Friedrichs realization of .H0,S = Hα,S

∣∣
α = 0 is the .�-limit for .α → 0+ of the 

analogous realizations of .Hα,S for .α ∈ (0, 1) (see Theorem 2 and Corollary 2). Let 
us finally mention that some of the results presented in this work might be of interest 
also for applications to anyonic particle models [10, 11, 23, 27, 35, 36], though this 
issue is not addressed directly here. 

Throughout the paper we often refer to polar coordinates . (r, θ) : R2 \ {0} →
(0,+∞)×[0, 2π) centered at .x = 0, and to the related angular averages of functions 
.f : R2 → C, namely, 

.
〈
f
〉
(r) := 1

2πr

∫

∂Br (0)
d�r f = 1

2π

∫ 2π

0
dθ f

(
x(r, θ)

)
.
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2 Main Results 

2.1 Self-Adjoint Realizations of Hα,S 

Self-adjoint realizations in .L2(R2) of the Schrödinger operator .Hα,S are generally 
characterized as suitable extensions of the densely defined, symmetric operator 
.Hα,S � C∞

c (R2 \{0}). The simplest of such extensions is the Friedrichs one, to be 

denoted with .H
(F)
α,S henceforth. This is obtained introducing the quadratic form 

. Qα,S[ψ] =
∫

R2
dx
∣∣(−i∇ + Aα + S)ψ

∣∣2 , forψ ∈ C∞
c (R2\{0}) ,

and considering its Friedrichs realization 

. D
[
Q

(F)
α,S

] := C∞
c (R2\{0}) ‖ · ‖α,S

, Q
(F)
α,S [ψ] = Qα,S[ψ] ,

where .‖ψ‖α,S := ‖ψ‖2 + Qα,S[ψ]. We recall the following Proposition from [8]. 

Proposition 1 (Friedrichs Realization) Let .α ∈ (0, 1) and .S ∈ L∞
loc(R

2). Then: 

(i) The quadratic form .Q
(F)
α,S is closed and non-negative on its domain, and 

.D
[
Q

(F)
α,S

] = {
ψ ∈L2(R2)

∣∣ (−i∇ + S)ψ ∈L2(R2) , Aαψ ∈L2(R2)
}
. (2) 

Moreover, any .ψ ∈D
[
Q

(F)
α,S

]
fulfills 

. lim
r→0+

〈
|ψ |2

〉
(r) = 0 , lim

r→0+ r2
〈
|∂rψ |2

〉
(r) = 0 . (3) 

(ii) The unique self-adjoint operator .H
(F)
α,S associated to .Q

(F)
α,S is 

. D
(
H

(F)
α,S

) = {
ψ ∈D

[
Q

(F)
α,S

] ∣∣ Hα,S ψ ∈L2(R2)
}
, H

(F)
α,S ψ = Hα,S ψ.

(4) 

It is well known that the Friedrichs extension of a symmetric operator is the 
one with the smallest domain of self-adjointness. Accordingly, other self-adjoint 
realizations can only be obtained by suitably enlarging the domain. The standard 
approach to achieve this goal is to consider elements of the form .ψ = φλ + q Gλ, 
where .φλ ∈ D

(
H

(F)
α,S

)
, .q ∈ C and .Gλ ∈ L2(R2), .λ > 0, is a solution of the defect 

equation .(Hα,S + λ2)Gλ = 0 in .R2 \ {0}. A key obstacle in this construction is 
that, for generic choices of . S, an explicit expression of . Gλ is not available. At the
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same time, we expect that the asymptotic behavior of . Gλ near .x = 0 should not be 
affected by the perturbation . S, at least to leading order. 

Trusting the latter surmise, we proceed to consider the solutions .G(k)
λ ∈ L2(R2), 

.k∈{0,−1}, of the unperturbed defect equation 

.
(
(−i∇ + Aα)2 + λ2

)
G

(k)
λ = 0 , in R

2\{0} . (5) 

The parameter k coincides with the angular momentum number of the wavefunction 
.G

(k)
λ . For this reason, we shall refer to .G(0)

λ and .G(−1)
λ , respectively, as the s-wave 

and p-wave Green functions.2 

Using angular coordinates and writing . Kν for the modified Bessel function of 
second kind (a.k.a. Macdonald function), their explicit expressions are given by 

.G
(k)
λ (r, θ) ≡ G

(k)
λ

(
x(r, θ)

) = λ|k+α| K|k+α|(λr) eikθ , for k∈{0,−1} . (6) 

For later reference, let us mention that (see [19, Eq. 6.521.3]) 

.
∥
∥G(k)

λ

∥
∥2
2 = π2 |k + α|

sin(πα)
λ2|k+α|−2 , for k∈{0,−1} . (7) 

To say more, for .r → 0+ there holds (see [26, §10.31]) 

. G
(k)
λ (r, θ)

=
[

�
(|k + α|)
21−|k+α|

1

r |k+α| + �
(− |k + α|)
21+|k+α| λ2|k+α| r |k+α| + O(r2−|k+α|)

]

eikθ ,

(8) 

So far, we made no assumption concerning the regularity of . S near the origin, where 
the Aharonov-Bohm potential . Aα is singular. We henceforth require that 

.S ∈ L∞
loc(R

2,R2) is Lipschitz continuous at x = 0 . (9) 

Without loss of generality we also fix the Coulomb gauge, which entails 

.∇ · S = 0 . (10) 

2 By decomposition in angular harmonics, it appears that (5) admits non-trivial solutions only for 
.k = 0 and .k = −1.
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Under the above hypotheses, for .λ > 0 we consider trial functions of the form 

.ψ = φλ + e−i S(0)·x χ
∑

k∈{0,−1}
q(k) G

(k)
λ , (11) 

where .φλ ∈D
[
Q

(F)
α,S

]
, .q(k) ∈C for .k∈{0,−1} and .χ : R2→[0, 1] is a smooth cut-off 

function fulfilling 

.χ ∈C2
c (R2) , χ(x)≡1 for any x∈Ba(0), for some a>0 . (12) 

The latter cut-off is necessary to include in the present analysis the case of perturba-
tions . S which are unbounded at infinity, comprising especially configurations with 
magnetic traps. For the sake of simplicity, we assume . χ to be radial, i.e., 

.χ(x) ≡ χ
(|x|) ≡ χ(r) . (13) 

Remark 1 One could fix .S(0)=0, on top of the Coulomb gauge (10). This would 
make the phase factor in (11) irrelevant and would even allow to abridge some of 
the expressions to be derived in the following. Yet, in this work we choose not to fix 
the value of . S at .x= 0 in order to exhibit a construction which can be generalized 
to the case of multiple fluxes with a moderate effort [9]. With the same objective in 
mind, we stick to the Lipschitz condition in (9), though most of the results in this 
work are still valid requiring just some Hölder regularity of . S at the origin. 

A heuristic evaluation of the expectation value .〈ψ |Hα,S ψ〉 for functions . ψ
like (11) suggests the educated guess 

. Q
(β)
α,S[ψ] := Q

(F)
α,S [φλ] − λ2 ‖ψ‖22 + λ2 ‖φλ‖22

+ 2
∑

k∈{0,−1}
Re
[
q(k)

(
2
〈
(−i∇ + Aα)φλ

∣∣∣ e−i S(0)·x((S − S(0)
)
χ − i∇χ

)
G

(k)
λ

〉

+
〈
φλ

∣∣∣ e−i S(0)·x[(S − S(0)
)2

χ + 2S(0)·((S − S(0)
)
χ − i∇χ

)+ �χ
]
G

(k)
λ

〉)]

+
∑

k,k′∈{0,−1}
q(k) q(k′)

[
βkk′ + π2

sin(πα)
λ2|k+α| δkk′ + �kk′(λ)

]
, (14) 

where we have introduced the .2×2 complex Hermitian matrix .β = (βkk′), labeling 
the quadratic form, and we have set 

. �kk′(λ) :=
〈
χ G

(k)
λ

∣∣∣
[(
S − S(0)

)2+ 2
(
S − S(0)

)·Aα

]
χ G

(k′)
λ

〉

+ ∥
∥(∇χ)G

(k)
λ

∥
∥2
2 δkk′ + 2

〈
χ G

(k)
λ

∣∣
∣
(
S − S(0)

)·(−i∇)
(
χ G

(k′)
λ

)〉
.

(15)
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The expression (14) was derived integrating by parts and deliberately discarding 
some contributions, an operation to be justified a posteriori in the proof of 
Theorem 1. We also used that  .Aα ·∇χ = 0, since . χ is radial (see (13)), and the 
identity 

.
〈
G

(k)
λ

∣∣ η G
(k′)
λ

〉 = 〈
G

(k)
λ

∣∣ η G
(k)
λ

〉
δkk′ , for any radial η :R2→R . (16) 

Remark 2 For any .λ > 0, the matrix .�kk′(λ), .k, k′ ∈ {0,−1}, defined by (15) is 
itself Hermitian. This feature is evident for the first two addenda in (15), given that 
.S,Aα and . χ are real-valued. As regards the last addendum in (15), integrating by 
parts and checking that the boundary contribution vanishes (recall (8) and (9)), we 
have in fact 

. 

〈
χ G

(k)
λ

∣∣∣
(
S − S(0)

)·(−i∇)
(
χ G

(k′)
λ

)〉 =
〈
(−i∇)

(
χ G

(k)
λ

) ∣∣∣
(
S − S(0)

)
χ G

(k′)
λ

〉

=
〈
χ G

(k′)
λ

∣∣∣
(
S − S(0)

)·(−i∇)
(
χ G

(k)
λ

)〉
.

Besides, building on the fact that .G(0)
λ is real-valued, c.f.(6), it can be inferred that 

.

〈
χ G

(k)
λ

∣
∣∣
(
S − S(0)

)·(−i∇)
(
χ G

(k′)
λ

)〉 = 0 , for k=k′ =0 . (17) 

A family of admissible singular perturbations of the Friedrichs realization is 
described by the upcoming Theorem 1 and Corollary 1. 

Theorem 1 (Quadratic Forms for Singular Perturbations) Let .α ∈ (0, 1) and 
.S ∈ L∞

loc(R
2) be Lipschitz continuous at .x = 0, with .∇ · S = 0. Then, for any 

Hermitian matrix .β = (βkk′), .k, k′ ∈ {0,−1}, the quadratic form .Q(β)
α,S defined 

in (14) satisfies the following: 

(i) It is well-posed on the domain 

. D
[
Q

(β)
α,S

] :=
{

ψ = φλ + e−i S(0)·x χ
∑

k∈{0,−1}
q(k) G

(k)
λ ∈ L2(R2) s.t.

φλ ∈D
[
Q

(F)
α,S

]
, λ>0 , χ fulfills (12)(13) , q(k) ∈C , k∈{0,−1}

}
. 

(18) 

(ii) It is independent of .λ>0 and of the cut-off . χ , provided that (12)(13) hold true. 
(iii) It is closed and bounded from below on the domain (18).
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Corollary 1 (Self-Adjoint Realizations for Singular Perturbations) Assume the 
hypotheses of Theorem 1 to hold. Then, for any .2 × 2 Hermitian matrix . β, the self-
adjoint operator .H

(β)
α,S associated to the quadratic form .Q

(β)
α,S is given by 

. D
(
H

(β)
α,S

) =
{

ψ = φλ + e−i S(0)·xχ
∑

k∈{0,−1}
q(k)G

(k)
λ ∈ D

[
Q

(β)
α,S

]
s.t.

φλ ∈ D
(
H

(F)
α,S

)
and (19) 

21−|k+α|

�
(|k + α|)

∑

k′∈{0,−1} 
q(k′)

(
βkk′ + 

π2λ2|k+α| 

sin(πα) 
δkk′

)

= lim 
r→0+ 

|k+α| 〈e−ikθ φλ〉(r) + r〈e−ikθ ∂rφλ〉(r) 
r |k+α| , for k∈{0,−1}

}
; 

. 
(
H

(β)
α,S + λ2

)
ψ = (

H
(F)
α,S + λ2

)
φλ

+
∑

k∈{0,−1}
q(k)e−i S(0)·x[2

((
S − S(0)

)
χ − i∇χ

)
·(− i∇ + Aα

)
G

(k)
λ

+
((
S − S(0)

)2
χ + 2

(
S − S(0)

)·(−i∇χ) − �χ
)
G

(k)
λ

]
.

(20) 

The set of operators .H
(β)
α,S , . β Hermitian, identifies a family of self-adjoint extensions 

of .Hα,S �C∞
c (R2\{0}) in .L2(R2), labeled by four real parameters.3 If .S∈L∞(R2), 

this family comprises all admissible self-adjoint realizations of .Hα,S in .L2(R2). 

Remark 3 The characterization (19) of the operator domain is quite standard. 
Especially, it incorporates boundary conditions relating the “charges” .q(k) to the 
asymptotic behavior of the “regular part” . φλ at .x = 0. Considering that the matrix 

.βkk′ + π2λ2|k+α|
sin(πα)

δkk′ is certainly invertible for . λ large enough, it is always possible 

to derive an explicit expression for .q(k) in terms of boundary values of . φλ. Let us 
also stress that, in agreement with our expectations, only the leading order term of 
the asymptotic expansion (8) for .G

(k)
λ is relevant here (cf. the proof of Corollary 1). 

Remark 4 The Hermitian matrix . β labeling the self-adjoint operator .H(β)
α,S only 

appears in the boundary conditions for .D
(
H

(β)
α,S

)
. In this sense, it parametrizes 

a singular interaction affecting just the s-wave and p-wave modes of the wave-
functions. In [8] attention was restricted to pure s-wave perturbations, corresponding 
to .βkk′ =b δk,0 δk′,0 with .b∈R. Here we also include pure p-wave perturbations, as 
well as mixed interactions coupling s-wave and p-wave modes.

3 Notice that .2×2 complex Hermitian matrices form a 4-dimensional real vector space. 
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Remark 5 The Friedrichs realization is formally recovered fixing “.βkk′ = ∞ δkk′” 
and, accordingly, .q(0) = q(−1) = 0. In this case, the boundary conditions appearing 
in the characterization (19) of .D

(
H

(F)
α,S

)
become, for .k∈{0,−1}, 

. |k+α| 〈e−ikθφλ〉(r) + r 〈e−ikθ∂rφλ〉(r) = O(r |k+α|) , for r → 0+.

These conditions are otherwise concealed in the position .H(F)
α,S φλ ∈ L2(R2) of (4). 

In particular, notice that .D
(
H

(F)
α,S

)
certainly contains elements . ψ ∈ H 2

loc(R
2 \{0})

such that .〈φλ〉 = O(rα
)
and .〈eiθφλ〉 = O(r1−α

)
for .r → 0+ (cf. [11, Prop.2.1]). 

Remark 6 The action of the operator described in (20) is somehow unorthodox. 
Making reference to the standard theory of self-adjoint extensions, one would rather 
expect the simpler relation .

(
H

(β)
α,S + λ2

)
ψ = (

H
(F)
α,S + λ2

)
φλ. The expressions in 

the last two lines of (20) are in fact necessary corrections, produced by the use of 
surrogates in place of true defect functions for .Hα,S . 

Remark 7 Electrostatic potentials regular enough at the Aharonov-Bohm singu-
larity could be easily incorporated in the construction provided here. We omit the 
discussion of this further development for the sake of brevity. 

2.2 �-Convergence for the Friedrichs Hamiltonian 

Consider now a regime where the Aharonov-Bohm flux is negligible, in suitable 
units, compared to the external magnetic perturbation or to the angular momentum 
of the particle. In this context, the dynamics of the particle should be properly 
described by some self-adjoint realization in .L2(R2) of the Schrödinger operator 

.H0,S ≡ Hα,S

∣∣
α = 0 = (− i∇ + S

)2
. (21) 

At the same time, due to the local singularity at .x = 0 of the Aharonov-Bohm 
potential . Aα , establishing the convergence .Hα,S → H0,S for .α → 0+ (in any 
reasonable operator topology) is not a plain task. Building on the quadratic form 
approach described in the previous subsection, we present hereafter a result based 
on the classical notion of .�-convergence [6, 13]. 

For the sake of simplicity, let us assume that4 

.S ∈ L∞(R2,R2) is Lipschitz continuous at x = 0 . (22) 

4 Notice the similarity with (9). Here we are making a stronger requirement: . S must be uniformly 
bounded on the whole space . R2, not just on compact subsets of it. This excludes magnetic traps.
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Besides, we restrict the attention to the Friedrichs Hamiltonian .H(F)
α,S of Proposi-

tion 1, postponing the discussion of the singular perturbations .H
(β)
α,S characterized in 

Theorem 1 and Corollary 1 to future investigations. 
Let us consider the Friedrichs quadratic form .Q

(F)
α,S (see Proposition 1) and extend 

it to the whole Hilbert space .L2(R2) setting 

.Q
(F)
α,S [ψ] :=

{ ∥∥(−i∇ + Aα + S)ψ
∥∥2
2 ifψ ∈D

[
Q

(F)
α,S

] ;
+∞ ifψ ∈L2(R2)\D

[
Q

(F)
α,S

]
.

(23) 

Notice that, under the hypothesis (22), the identity (2) in Proposition 1 reduces to 

. D
[
Q

(F)
α,S

] = {
ψ ∈H 1(R2)

∣∣ Aαψ ∈L2(R2)
}
.

In a similar fashion, for .α = 0 we put 

.Q
(F)
0,S [ψ] :=

{ ∥∥(−i∇ + S)ψ
∥∥2
2 ifψ ∈D

[
Q

(F)
0,S

] ≡ H 1(R2) ;
+∞ ifψ ∈L2(R2)\H 1(R2) .

(24) 

For later reference, let us mention that the self-adjoint operators associated to the 
above quadratic forms are respectively given by (cf. (4)) 

. D
(
H

(F)
α,S

) = {
ψ ∈H 1(R2)

∣∣ Aαψ,Hα,S ψ ∈L2(R2)
}
, H

(F)
α,S ψ = Hα,S ψ ;

D
(
H

(F)
0,S

) = H 2(R2) , H
(F)
0,S ψ = H0,S ψ .

Theorem 2 Let .S ∈ L∞(R2) be Lipschitz continuous at .x = 0, with .∇ · S = 0, 
and .{αn}n ∈N ⊂ (0, 1) be any sequence such that .αn → 0 for .n → +∞. Then, the 
family of quadratic forms .Q

(F)
αn,S .�-converges to .Q

(F)
0,S , that is: 

(i) Lower bound inequality. For every sequence .{ψαn}n ∈N ⊂ L2(R2) such that 
.ψαn → ψ0∈L2(R2) as .n → +∞, there holds 

.Q
(F)
0,S [ψ0] � lim inf

n→+∞ Q
(F)
αn,S[ψαn ] . (25) 

(ii) Upper bound inequality. For every .ψ0 ∈ L2(R2) there exists a sequence 
.{ψαn}n ∈N⊂L2(R2) such that .ψαn → ψ0 as .n → +∞ and 

.Q
(F)
0,S [ψ0] � lim sup

n→+∞
Q

(F)
αn,S[ψαn ] . (26)
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From the previous theorem and classical results on .�-convergence [13, §13], we 
readily deduce the following. 

Corollary 2 Under the same assumptions of Theorem 2, the family of operators 
.H

(F)
αn,S converges to .H(F)

0,S in strong resolvent sense for .n → +∞. More precisely, 

for any .z∈C\[0,+∞) and any .ψ ∈L2(R2), there holds 

.

∥∥∥
(
H

(F)
αn,S − z

)−1
ψ − (

H
(F)
0,S − z

)−1
ψ

∥∥∥
2

n→+∞−−−−→ 0 . (27) 

Remark 8 The requirement .z∈C\[0,+∞) in Corollary 2 matches the elementary 
inclusions .σ

(
H

(F)
αn,S

)⊂[0,+∞) and .σ
(
H

(F)
0,S

)⊂[0,+∞). 

Remark 9 In the pure Aharonov-Bohm configuration, with .S = 0, it should 
be possible to infer strong resolvent convergence for .α → 0 even by direct 
computations, starting from the explicit expression for the integral kernel of the 
resolvent operator derived in [1]. This alternative approach would however involve 
a rather complicate analysis, relying on non-elementary regularity features of the 
Bessel functions with respect to their order and further demanding non-trivial 
exchanges of limits and integrations. On top of that, the .�- convergence method 
considered in this work appears to be more flexible. Especially, it should be possible 
to adapt it to multiple fluxes configurations with not too much effort. 

Remark 10 Despite being quite natural, the results derived in Theorem 2 and 
Corollary 2 are not completely obvious, especially if one considers the topology of 
the underlying space domains. In fact, the Aharonov-Bohm configuration (.α = 0) 
refers to the domain .R

2\{0}, with first homotopy group given by . Z, while the setting 
with no singular flux (.α = 0) corresponds to the plane . R2, with trivial topology. 

3 Proofs 

Let us recall that Theorem 1 and Corollary 1 rely on the hypothesis (9) for . S, 
demanding . S to be locally uniformly bounded and Lipschitz continuous at .x = 0. 

Proof (Theorem 1) Each of the statements (i)–(iii) can be derived adapting some 
related arguments from [8]. Throughout the proof, . 1χ is the indicator function of 
the support of . χ and .c ≡ c(α,S) is a suitable positive constant independent of . λ, 
which may vary from line to line. 

(i) Upon identifying .(−i∇ + Aα)φλ with .1χ (−i∇ + Aα)φλ in (14), all parings 
in (14) (15) are well-defined inner products in .L2(R2). To account for this 
claim, firstly note that .(−i∇+Aα)φλ ∈L2

loc(R
2) for any .φλ ∈D

[
Q

(F)
α,S

]
, see  (2). 

Secondly, recall that .G(k)
λ ∈ L2(R2) for .k ∈ {0,−1}, see  (7). Hypotheses (9) 

and (12) further grant the uniform boundedness of . ∇χ , . �χ , .
(
S − S(0)

)
χ and
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.
(
S − S(0)

) · Aαχ . In view of the basic relation .
∣∣∇(χG

(k)
λ

)∣∣ � c
|x| χG

(k)
λ , . k ∈

{0,−1}, the same hypotheses also ensure that . 
(
S − S(0)

) · (−i∇)
(
χ G

(k)
λ

) ∈
L2(R2). 

(ii) Let us show that the form is independent of .λ > 0. To this pur-
pose, fix .λ1 = λ2 and consider, for any .ψ ∈ D

[
Q

(β)
α,S

]
, the  two  

alternative representations . ψ = φλ1 + e−iS(0)·xχ
∑

k∈{0,−1} q(k)G
(k)
λ1

and .ψ = φλ2 + e−iS(0)·xχ
∑

k∈{0,−1} q(k)G
(k)
λ2
. It is easy to check 

that .χ
(
G

(k)
λ2

− G
(k)
λ1

) ∈ D
[
Q

(F)
α,S

]
for .k ∈ {0,−1} (see (2) and (8)). 

This ensures that the “charges” .q(k) are independent of . λ, and further entails 
.φλ1 = φλ2 + e−iS(0)·xχ

∑
k∈{0,−1} q(k)(G

(k)
λ2

− G
(k)
λ1

). Taking these facts into 
account and exploiting the identity (16), with a number of integrations by parts 
we obtain 

.Q
(β)
α,S

⎡

⎣φλ1+ e−iS(0)·xχ
∑

k∈{0,−1}
q(k)G

(k)
λ1

⎤

⎦

= 〈φλ2 |(−i∇ + Aα + S)2φλ2〉 − λ22 ‖ψ‖22 + λ22 ‖φλ‖22
+ 2

∑

k∈{0,−1}
Re
[
q(k)

(
2
〈
(−i∇ + Aα)φλ2

∣
∣∣e−iS(0)·x[(S− S(0)

)
χ − i∇χ

]
G

(k)
λ2

〉

+
〈
φλ2

∣∣∣e−iS(0)·x[(S− S(0)
)2

χ + 2S(0)·((S− S(0)
)
χ − i∇χ

)+ �χ
]
G

(k)
λ2

〉)]

+
∑

k,k′∈{0,−1}
q(k) q(k′)

[
βkk′ + π2

sin(πα)
λ
2|k+α|
2 δij

+ 2
〈
χ G

(k)
λ2

∣∣∣
(
S − S(0)

)·(−i∇)
(
χ G

(k′)
λ2

)〉

+
〈
χG

(k)
λ2

∣∣
∣
[(
S − S(0)

)2+ 2
(
S − S(0)

)·Aα

]
χG

(k′)
λ2

〉
+ ∥
∥(∇χ)G

(k)
λ2

∥
∥2
2 δkk′

]

+
∑

k∈{0,−1}

∣∣q(k)
∣∣2
[

π2

sin(πα)

(
λ
2|k+α|
1 −λ

2|k+α|
2

)
+ (λ22 − λ21)

〈
χG

(k)
λ1

∣∣χG
(k)
λ2

〉

+ 〈
G

(k)
λ1

∣∣ (∇χ2)·∇G
(k)
λ2

〉− 〈∇G
(k)
λ1

∣∣ (∇χ2)G(k)
λ2

〉]

+ 2
∑

k∈{0,−1}
q(k)

[
lim

r→0+

∫

∂Br (0)
d�r e−iS(0)·x(iχ

(
S − S(0)

)·r̂ + ∂rχ
)

+ φλ2

(
G

(k)
λ2

− G
(k)
λ1

)
]
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+
∑

k∈{0,−1} 
q∗
k

[
lim 

r→0+

∫

∂Br (0) 
d�r e

iS(0)·x((iχ S(0)·r̂ − ∂rχ
) (

G (k) 
λ2 

− G (k) 
λ1

)
φλ2 

+ χ
(
G (k) 

λ2 
− G (k) 

λ1

)
∂rφλ2 − χ ∂r

(
G (k) 

λ2 
− G (k) 

λ1

)
φλ2

)]

+
∑

k∈{0,−1}

∣∣q(k)
∣∣2
[

− 2i lim 
r→0+

∫

∂Br (0) 
d�r χ

2(S − S(0)
)·r̂ (G (k) 

λ2 
− G (k) 

λ1

)
G (k) 

λ1 

+ lim 
r→0+

∫

∂Br (0) 
d�r χ∂rχ

( ∣∣G (k) 
λ2 

− G (k) 
λ1

∣∣2 − 2Re
(
G (k) 

λ1

(
G (k) 

λ2 
− G (k) 

λ1

)))]
. 

(28) 

By comparison with (14)(15), it appears that the terms from the second to the 

sixth line of (28) exactly reproduce .Q
(β)
α,S

[
φλ2+ e−iS(0)·xχ

∑
k∈{0,−1}q(k)G

(k)
λ2

]
. 

We now proceed to show that all other contributions vanish. On one side, 
consider the terms in the seventh and eighth lines of (28). An additional 
integration by parts gives 

. 
〈
G

(k)
λ1

∣
∣ (∇χ2)·∇G

(k)
λ2

〉− 〈∇G
(k)
λ1

∣
∣ (∇χ2)G(k)

λ2

〉

= lim
r→0+

[∫

∂Br (0)
d�r χ2

[
∂rG

(k)
λ1

G
(k)
λ2

− G
(k)
λ1

∂rG
(k)
λ2

]

+
∫

R2\Br(0)
dx χ2

(
�G

(k)
λ1

G
(k)
λ2

− G
(k)
λ1

�G
(k)
λ2

)]
.

From (8) we deduce, for .r → 0+, 

. 

(
∂rG

(k)
λ1

G
(k)
λ2

− G
(k)
λ1

∂rG
(k)
λ2

)
(r) = π (λ

2|k+α|
2 −λ

2|k+α|
1 )

2 sin(πα) r
+ O(r1−2|k+α|) .

Moreover, in view of (5) and (6), an explicit computation gives 

. �G
(k)
λ = (

A2+λ2 + 2A·(−i∇)
)
G

(k)
λ =

(
A2+ λ2 + 2αk

r

)
G

(k)
λ , inR2\{0} .

Recalling that .χ =1 in an open neighborhood of .x = 0, see  (12), we obtain 

.
π2

sin(πα)

(
λ
2|k+α|
1 −λ

2|k+α|
2

)
+ (λ22 − λ21)

〈
χG

(k)
λ1

∣∣χG
(k)
λ2

〉

+ 〈
G

(k)
λ1

∣∣ (∇χ2)·∇G
(k)
λ2

〉− 〈∇G
(k)
λ1

∣∣ (∇χ2)G(k)
λ2

〉 = 0 .
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On the other side, consider the boundary contributions in the last five lines 
of (28). For  r small enough, the following holds true: .∂rχ = 0 on .∂Br(0), 
see (12); .|S−S(0)|�c r , see  (9); .|G(k)

λ2
−G

(k)
λ1

|�c r |α+k| and . 
∣∣∂r(G

(k)
λ2

−G
(k)
λ1

)
∣∣�

c r |α+k|−1, see  (8). Recalling as well the condition (3), by Cauchy-Schwarz 
inequality we get: 

. 

∣
∣∣∣

∫

∂Br (0)
d�r e−iS(0)·x(iχ

(
S − S(0)

)·r̂ + ∂rχ
)

φλ2

(
G

(k)
λ2

− G
(k)
λ1

)
∣
∣∣∣

� c r2+|α+k|
√〈|φλ2 |2

〉 r→0+−−−→ 0 ;

. 

∣
∣∣∣

∫

∂Br (0)
d�r eiS(0)·x((iχ S(0)·r̂ − ∂rχ

) (
G

(k)
λ2

− G
(k)
λ1

)
φλ2

+ χ
(
G

(k)
λ2

− G
(k)
λ1

)
∂rφλ2 − χ ∂r

(
G

(k)
λ2

− G
(k)
λ1

)
φλ2

)∣∣∣∣

� c r |α+k|
(

r

√〈|φλ2 |2
〉+ r

√〈|∂rφλ2 |2
〉+

√〈|φλ2 |2
〉
)

r→0+−−−→ 0 ;

. 

∣∣
∣∣

∫

∂Br (0)
d�r χ2(S − S(0)

)·r̂ (G(k)
λ2

− G
(k)
λ1

)
G

(k)
λ1

∣∣
∣∣ � Cr2

r→0+−−−→ 0 ;

. 

∫

∂Br (0)
d�r χ∂rχ

( ∣∣G(k)
λ2

− G
(k)
λ1

∣∣2 − 2Re
(
G

(k)
λ1

(
G

(k)
λ2

− G
(k)
λ1

))) = 0 .

Summing up, the previous results entail 

. Q
(β)
α,S

[
φλ1+ e−iS(0)·xχ

∑

k∈{0,−1}
q(k)G

(k)
λ1

]

= Q
(β)
α,S

[
φλ2+ e−iS(0)·xχ

∑

k∈{0,−1}
q(k)G

(k)
λ2

]
,

whence the thesis. By similar arguments it can be shown that the form does not 
depend on the choice of . χ , as long as hypotheses (12) (13) are fulfilled. 

(iii) Closedness can be deduced by classical arguments [11, 32], once lower 
boundedness has been proved. Therefore, the thesis follows as soon as we show 
that 

.Q
(β)
α,S[ψ] + λ2 ‖ψ‖22 � 0 , for λ > 0 large enough . (29)
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To this avail, by minor variations of the arguments described in [8] (also  
recall (7)), we obtain the following for any .ε1, ε2, ε3 ∈ (0, 1) and suitable 
.c1, c2, c3>0: 

. Q
(F)
α,S [φλ] � 1

2
Q

(F)
α,S [φλ] + 1 − ε1

2

∥∥1χ (−i∇ + Aα)φλ

∥∥2
2 − 1 − ε1

2ε1
c1
∥∥φλ

∥∥2
2 ;

. 
∑

k∈{0,−1}
Re
[
q(k)

〈
(−i∇ + Aα)φλ

∣∣∣ e−i S(0)·x((S − S(0)
)
χ − i∇χ

)
G

(k)
λ

〉]

� −ε2

8

∥∥1χ (−i∇ + Aα)φλ

∥∥2
2 − 2c2

ε2

∑

k∈{0,−1}
|q(k)|2 λ2|k+α|−2 ;

. 
∑

k∈{0,−1}
Re
[
q(k)

〈
φλ

∣∣∣ e−i S(0)·x[(S − S(0)
)2

χ

+ 2S(0)·((S − S(0)
)
χ − i∇χ

)+ �χ
]
G

(k)
λ

〉]

� −ε3

2
‖φλ‖22 − c3

ε3

∑

k∈{0,−1}
|q(k)|2 λ2|k+α|−2 .

Building on the basic inequality .
∣∣∇(χ G

(k)
λ

)∣∣ � c
|x|
(
χ G

(k)
λ

)
and (7) and 

(9), we further deduce .|�kk′(λ)|�c ‖G(k)
λ ‖2 ‖G(k′)

λ ‖2�c λ|k+α|+|k′+α|−2. This  
allows us to infer that, for some suitable .c4>0, 

. 
∑

k,k′∈{0,−1}
q(k) q(k′)

[
βkk′ + π2

sin(πα)
λ2|k+α| δkk′ + �kk′(λ)

]

�
[

π2

sin(πα)
min

k∈{0,−1}
(
λ2|k+α|)− max

k,k′∈{0,−1}

( ∣∣βkk′
∣∣+ ∣∣�kk′(λ)

∣∣
)]

×
∑

k∈{0,−1}

∣
∣q(k)

∣
∣2

� c4

(
min

{
λ2α, λ2(1−α)

}− 1 − max
{
λ−2α, λ−2(1−α)

} ) ∑

k∈{0,−1}

∣∣q(k)
∣∣2 .

Summing up, we have 

.Q
(β)
α,S[ψ] + λ2 ‖ψ‖22

� 1

2
Q

(F)
α,S [φλ] + 1−ε1−ε2

2

∥∥1χ (−i∇ + Aα)φλ

∥∥2
2
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+
(

λ2 − 
1 − ε1 
2ε1 

c1 − ε3

)
‖φλ‖2 2 

+
[
c4 min

{
λ2α , λ2(1−α)

}− c4 

−
(
8c2 
ε2 

+ 2c3 
ε3 

+c4

)
max

{
λ−2α , λ−2(1−α)

}
] ∑

k∈{0,−1}

∣∣q(k)
∣∣2 . 

Upon fixing .ε1, ε2, ε3∈(0, 1) appropriately and .λ>0 large enough, the above 
relation suffices to infer (29), whence the thesis. 

��
Proof (Corollary 1) For any Hermitian matrix . β, we derive the self-adjoint operator 
.H

(β)
α,S associated to the quadratic form .Q

(β)
α,S by standard methods. To begin with, for 

any pair .ψ� = φ�,λ + e−i S(0)·x χ
∑

k∈{0,−1} q
(k)
� G

(k)
λ , .� ∈ {1, 2}, belonging to the 

form domain .D
[
Q

(β)
α,S

]
, consider the sesquilinear form defined by polarization 

. Q
(β)
α,S[ψ1, ψ2] = Q

(F)
α,S [φ1,λ, φ2,λ] − λ2〈ψ1|ψ2〉 + λ2〈φ1,λ|φ2,λ〉

+
∑

k∈{0,−1}
q

(k)
1

[
2
〈
e−i S(0)·x((S − S(0)

)
χ − i∇χ

)
G

(k)
λ

∣
∣∣ (−i∇ + Aα)φ2,λ

〉

+
〈
e−i S(0)·x[(S − S(0)

)2
χ + 2S(0)·((S − S(0)

)
χ − i∇χ

)+ �χ
]
G

(k)
λ

∣∣∣φ2,λ

〉]

+
∑

k∈{0,−1}
q

(k)
2

[
2
〈
(−i∇ + Aα)φ1,λ

∣∣∣ e−i S(0)·x((S − S(0)
)
χ − i∇χ

)
G

(k)
λ

〉

+
〈
φ1,λ

∣∣
∣e−i S(0)·x[(S − S(0)

)2
χ + 2S(0)·((S − S(0)

)
χ − i∇χ

)+ �χ
]
G

(k)
λ

〉]

+
∑

k,k′∈{0,−1}
q

(k)
1 q

(k′)
2

[
βkk′ + π2

sin(πα)
λ2|k+α| δkk′ + �kk′(λ)

]
. (30) 

Here .Q
(F)
α,S [φ1,λ, φ2,λ] is the sesquilinear form associated to the Friedrichs quadratic 

form, namely, .Q(F)
α,S [φ1,λ, φ2,λ] := ∫

R2 dx (−i∇+ Aα+ S)φ1,λ ·(−i∇+Aα+S)φ2,λ . 

Now assume .q(0)
1 = q

(−1)
1 = 0, so that .ψ1 = φ1,λ. Integrating by parts and 

checking that boundary contributions vanish by means of arguments similar to those 
outlined in the proof of Theorem 1, item (ii), the sesquilinear form (30) reduces to 

.Q
(β)
α,S[φ1, ψ2] = 〈

φ1,λ
∣∣Hα,Sφ2,λ

〉

+
∑

k∈{0,−1}
q

(k)
2

[
2
〈
φ1,λ

∣
∣∣ e−i S(0)·x((S − S(0)

)
χ − i∇χ

) · (− i∇ + Aα

)
G

(k)
λ

〉

+
〈
φ1,λ

∣∣∣e−i S(0)·x((S − S(0)
)2

χ − λ2χ + 2
(
S − S(0)

)·(−i∇χ) − �χ
)
G

(k)
λ

〉]
.
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Considerations analogous to those reported in the proof of Theorem 1, item (i), 
ensure that all pairings in the second and third lines of the above identity are well-
defined inner products in .L2(R2). So, to fulfill the condition . Q

(β)
α,S[φ1, ψ2]=〈φ1|w〉

for some .w = H
(β)
α,S ψ2 ∈ L2(R2), we must require .Hα,S φ2,λ ∈ L2(R2) (cf. (4) and 

the condition in the second line of (19)), as well as (cf. (20)) 

. w = Hα,S φ2,λ +
∑

k∈{0,−1}
q

(k)
2 e−i S(0)·x[2

((
S − S(0)

)
χ − i∇χ

)
·(− i∇ + Aα

)
G

(k)
λ

+
((
S − S(0)

)2
χ − λ2χ + 2

(
S − S(0)

)·(−i∇χ) − �χ
)
G

(k)
λ

]
.

(31) 

In view of the previous results, the sesquilinear form (30) can be re-written as 

. Q
(β)
α,S[ψ1, ψ2] = Q

(β)
α,S[φ1,λ, ψ2]

+
∑

k∈{0,−1}
q

(k)
1

[
2
〈
e−i S(0)·x((S − S(0)

)
χ − i∇χ

)
G

(k)
λ

∣
∣∣ (−i∇ + Aα)φ2,λ

〉

+
〈
e−i S(0)·x[(S − S(0)

)2
χ − λ2χ + 2S(0)·((S − S(0)

)
χ − i∇χ

)

+�χ
]
G

(k)
λ

∣∣∣ φ2,λ

〉]

+
∑

k,k′∈{0,−1}
q

(k)
1 q

(k′)
2

[
βkk′+ π2

sin(πα)
λ2|k+α| δkk′+�kk′(λ)−λ2

〈
χ G

(k)
λ

∣∣
∣χ G

(k′)
λ

〉]
.

Building on this and recalling the definition (15) of .�kk′(λ), by simple (though 
lengthy) computations we deduce that the position .Q(β)

α,S[ψ1, ψ2]= 〈ψ1|w〉, with w 
as in (31), can be satisfied for generic .q

(0)
1 , q

(−1)
1 only if, for .k∈{0,−1}, 

. 

〈
G

(k)
λ

∣∣∣
[
(−i∇ + Aα)2 + λ2

](
ei S(0)·x χ φ2,λ

) 〉

=
∑

k′∈{0,−1}
q

(k′)
2

[
βkk′ + π2

sin(πα)
λ2|k+α| δkk′ +

+
( 〈

G
(k)
λ

∣
∣∣∇·(χ∇χ

)
G

(k)
λ

〉
+ 2

〈
G

(k)
λ

∣
∣∣ (χ∇χ)·∇G

(k)
λ

〉 )
δkk′

]
.

(32) 

To derive the above identity we used in particular the identity (16) and the fact 
that .Aα · ∇χ = 0, both descending from (13). On one side, recalling the explicit 

expression (6) for .G
(k)
λ and that . χ is radial, we get .2G

(k)
λ (χ∇χ) · ∇G

(k)
λ = (χ∇χ) ·
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∇∣∣G (k) 
λ

∣∣2 ; then, integrating by parts and keeping in mind that .χ ≡1 near the origin, 
we obtain 

. 

〈
G

(k)
λ

∣∣
∣∇·(χ∇χ

)
G

(k)
λ

〉
+ 2

〈
G

(k)
λ

∣∣
∣ (χ∇χ)·∇G

(k)
λ

〉

= − lim
r→0+

∫

∂Br (0)
d�r

(
χ∂rχ

) ∣∣G(k)
λ

∣∣2 = 0 . (33) 

On the other side, integrating by parts twice and using the basic identity (5), we get 

. 

〈
G

(k)
λ

∣
∣∣
[
(−i∇ + Aα)2 + λ2

](
ei S(0)·x χ φ2,λ

) 〉

= lim
r→0+

∫

∂Br (0)
d�r

[
G

(k)
λ ∂r

(
ei S(0)·x χ φ2,λ

)− ∂rG
(k)
λ

(
ei S(0)·x χ φ2,λ

)
]

+ lim
r→0+

∫

R2\Br(0)
d�r

[
(−i∇ + Aα)2 + λ2

]
G

(k)
λ

(
ei S(0)·x χ φ2,λ

)

= lim
r→0+

∫

∂Br (0)
d�r

[
G

(k)
λ ∂r

(
ei S(0)·x χ φ2,λ

)− ∂rG
(k)
λ

(
ei S(0)·x χ φ2,λ

)]

= �
(|k + α|)
21−|k+α| lim

r→0+
1

r |k+α|

∫

∂Br (0)
d�r e−ikθ

[
∂rφ2,λ + |k + α|

r
φ2,λ

]
, (34) 

where the last identity follows from the asymptotic relations (3), (8), by arguments 
analogous to those mentioned in the proof of Theorem 1. Notably, only the leading 
order term in (8) plays a role here. Summing up, from (32), (33) and (34) we infer 

. 
∑

k′∈{0,−1}
q

(k′)
2

(
βkk′ + π2

sin(πα)
λ2|k+α| δkk′

)

= �
(|k + α|)
21−|k+α| lim

r→0+
1

r |k+α|

∫

∂Br (0)
d�r e−ikθ

[
∂rφ2,λ + |k + α|

r
φ2,λ

]
,

which proves the boundary condition in (19), thus completing the characterization 
of .D

(
H

(β)
α,S

)
. 

The fact that the family .H(β)
α,S , . β any .2×2 Hermitian matrix, exhausts all self-

adjoint extensions of .Hα,S �C∞
c (R2 \ {0}) in .L2(R2) if .S∈L∞(R2) can be deduced 

by exactly the same arguments reported in [8, Proof of Corollary 1.10]. ��
Let us finally proceed to present the proof of Theorem 2, keeping in mind that it 

relies on the hypothesis (22). The latter implies that . S is uniformly bounded on the 
whole space . R2 and Lipschitz continuous at the origin. 

Proof (Theorem 2) The derivation of both the lower and upper bound inequalities 
relies on the following algebraic identity, which can be easily deduced using the
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gauge transformation .ψ �→ e−iS(0)·x ψ and an elementary telescopic argument: 

. Q
(F)
αn,S[ψαn ] − Q

(F)
0,S [ψ0]

= ∥∥Aαnψαn

∥∥2
2 + 2Re

[〈(− i∇ + S − S(0)
)
ψαn

∣∣Aαnψαn

〉]

+ ∥∥(− i∇ + S − S(0)
)
ψαn

∥∥2
2−

∥∥(− i∇ + S − S(0)
)
ψ0
∥∥2
2 .

(35) 

(i) Lower bound inequality. First of all, on account of the hypothesis .S∈L∞(R2), 
from [8, Eq. (2.7)] we deduce that 

.Q
(F)
αn,S[ψαn ] + γ ‖ψαn‖22 � Cγ

( ∥∥∇ψαn

∥∥2
2 + ∥∥Aαnψαn

∥∥2
2

)
, (36) 

for any .γ > 0 large enough and some suitable .Cγ > 0. With obvious 
understandings, the above inequality is in fact valid for all .ψαn∈L2(R2). 

For any convergent sequence .ψαn→ψ0∈L2(R2)\H 1(R2), the thesis can be 
derived by reductio ad absurdum. In this case, the condition (25) reads (cf. (23)) 

. + ∞ = Q
(F)
0,S [ψ0] � lim inf

n→+∞ Q
(F)
αn,S[ψαn ] � lim sup

n→+∞
Q

(F)
αn,S[ψαn ] .

By contradiction, assume there exists some sequence . ψαn → ψ0 ∈ L2(R2)\
H 1(R2) such that .limn→+∞ Q

(F)
αn,S[ψαn ] � CS < +∞. Then, from (36) it 

follows that the said sequence is uniformly bounded in .H 1(R2). By Banach-
Alaoglu theorem, this implies in turn that .ψαn ⇀ ϕ ∈ H 1(R2) (weak 
convergence, up to extraction of a subsequence). This contradicts the hypothesis 
.ψαn→ψ0∈L2(R2)\H 1(R2), since uniqueness of the limit implies .ψ0 = ϕ. 

Next, consider any convergent sequence in .L2(R2) fulfilling . ψαn → ψ0 ∈
H 1(R2). The thesis (25) follows trivially if .Q(F)

αn,S[ψαn ]>Q
(F)
0,S [ψ0] for almost 

all .n∈N. On the contrary, let us assume that .Q(F)
αn,S[ψαn ]�Q

(F)
0,S [ψ0] for almost 

all .n ∈ N. Since .Q(F)
0,S [ψ0] < +∞ for .ψ0 ∈ H 1(R2), by arguments similar 

to those described before we deduce the existence of a uniformly bounded 
subsequence .{ψα̃n

}n ∈N in .H 1(R2), converging weakly to . ψ0. Taking this into 
account, let us now refer to (35). On one side, notice that . ‖(−i∇ + S −
S(0))ψ‖22 + ‖ψ‖22 defines an equivalent norm in .H 1(R2) for .S ∈ L∞(R2). 
Then, keeping in mind that .ψα̃n

→ ψ0 in the strong .L2-topology, by lower 
semicontinuity of the norm in .H 1(R2) we infer 

. lim inf
n→+∞

∥∥(− i∇ + S − S(0)
)
ψα̃n

∥∥2
2

= lim inf
n→+∞

( ∥∥(− i∇ + S − S(0)
)
ψα̃n

∥∥2
2 + ∥∥ψα̃n

∥∥2
2

)
− lim

n→+∞
∥∥ψα̃n

∥∥2
2
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�
(∥∥(− i∇ +  S − S(0)

)
ψ0
∥∥2 
2 + ‖ψ0‖2 2

)
− ‖ψ0‖2 2 

= ∥∥(− i∇ +  S − S(0)
)
ψ0
∥∥2 
2 . 

On the other side, using the angular harmonics decomposition 

. ψα̃n
(r, θ) =

∑

k∈Z
ψ

(k)

α̃n
(r)

eikθ

√
2π

,

by a direct computation we infer 

. 
∣
∣〈(−i∇)ψα̃n

∣
∣Aα̃n

ψα̃n

〉∣∣ =
∣∣
∣∣∣

∑

k∈Z

∫ +∞

0
dr

α̃n k

r

∣
∣ψ(k)

α̃n
(r)
∣
∣2
∣∣
∣∣∣

� α̃n

∑

k∈Z

∫ +∞

0
dr

k2

r

∣∣ψ(k)

α̃n
(r)
∣∣2 � α̃n

∥∥ψα̃n

∥∥2
H 1 .

At the same time, exploiting the Lipschitz continuity of . S at .x = 0, we get 

. 
∣∣ 〈(S − S(0)

)
ψα̃n

∣∣Aα̃n
ψα̃n

〉∣∣ �
∥∥(S − S(0)

)·Aα̃n

∥∥∞
∥∥ψα̃n

∥∥2
2 � α̃n c

∥∥ψα̃n

∥∥2
2 .

Discarding the positive term .‖Aαnψαn‖22 and recalling that .{ψα̃n
}n ∈N is uni-

formly bounded in .H 1(R2), from the above arguments and (35) we deduce 

. lim inf
n→+∞ Q

(F)
αn,S[ψαn ] − Q

(F)
0,S [ψ0]

� − 2 lim sup
n→+∞

∣∣〈(− i∇ + S − S(0)
)
ψαn

∣∣Aαnψαn

〉∣∣

� −C lim sup
n→+∞

(
α̃n

∥∥ψα̃n

∥∥2
H 1

)
= 0 ,

which proves the lower bound inequality (25). 
(ii) Upper bound inequality. For .ψ0 ∈ L2(R2)\H 1(R2) the thesis (26) is trivial, 

since .Q(F)
0,S [ψ0] = +∞ by (24). Let us henceforth assume .ψ0 ∈ H 1(R2). For  

any given family .{αn}n ∈N ⊂ (0, 1) such that .αn → 0 as .n→+∞, we consider 
the sequence of approximants 

. ψαn := ηαn ψ0 ∈ L2(R2) ,

where .ηαn(x)≡ηαn

(|x|) : [0,+∞) → [0, 1] is a monotone increasing, smooth 
radial function with downward concavity fulfilling 

.ηαn(x) =
{ ( |x|/√αn

)αn for x∈B√
αn

(0) ,

1 for x∈R
2\B2

√
αn

(0) .
(37)
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By monotone convergence, we readily infer 

. 
∥∥ψαn − ψ0

∥∥2
2 =

∫

R2
dx

∣∣ηαn − 1
∣∣2 |ψ0|2 n→+∞−−−−→ 0 ,

proving the required strong convergence .ψαn → ψ0 in .L2(R2). 
In the sequel we proceed to deduce the upper bound (26), using  the  

telescopic identity (35) to derive the stronger condition 

. lim
n→+∞

∣∣∣Q(F)
αn,S[ψαn ] − Q

(F)
0,S [ψ0]

∣∣∣ = 0 . (38) 

To this purpose, let us first consider the expression .
∥∥Aαnψαn

∥∥2
2 in (35) and refer 

to the decomposition 

. 
∥∥Aαnψαn

∥∥2
2 =

∫

R2\B√
αn (0)

dx
∣∣Aαnηαnψ0

∣∣2 +
∫

B√
αn (0)

dx
∣∣Aαnηαnψ0

∣∣2 .

By elementary estimates we get 

. 

∫

R2\B√
αn (0)

dx
∣∣Aαnηαnψ0

∣∣2 � αn ‖ψ0‖22 .

On the other side, keeping in mind that .ψ0 ∈H 1(R2), we use a sharp result on 
Sobolev embeddings [16] and dominated convergence to infer

∫

B√
αn (0) 

dx
∣∣Aαnηαnψ0

∣∣2 =
∫

B√
αn (0) 

dx 
α2 

n 
|x|2

( |x|√
αn

)2αn 

|ψ0|2

� α2−αn 
n ess sup 

x∈B√
αn (0)

(
|x|2αn

(
1 + | log |x| | )2

) ∫

B√
αn (0) 

dx
|ψ0|2 

|x|2(1 + | log |x| |)2

� e−2−αn log αn+2αn

∫

B1(0) 
dx 

1B√
αn (0) |ψ0|2 

|x|2(1 + | log |x| | )2 
n→+∞−−−−→ 0 . 

The above arguments show that 

.
∥∥Aαnψαn

∥∥2
2

n→+∞−−−−→ 0 . (39) 

Next, let us examine the behavior in .H 1(R2) of the sequence .{ψαn}n ∈N, taking 
into account that we already established strong convergence .ψαn → ψ0 in 
.L2(R2). By triangular inequality, we get 

.
∥∥∇ψαn − ∇ψ0

∥∥
2 �

∥∥(ηαn − 1)∇ψ0
∥∥
2 + ∥∥(∇ηαn) ψ0

∥∥
2 .
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Recalling once more that .ψ0∈H 1(R2), by dominated convergence we obtain 

. 
∥∥(ηαn − 1)∇ψ0

∥∥2
2 =

∫

R2
dx

∣∣ηαn − 1
∣∣2 |∇ψ0|2 n→+∞−−−−→ 0 .

On the other hand, from (37) we deduce 

. 
∣
∣∇ηαn(x)

∣
∣=
{√

αn

(|x|/√αn

)αn−1= ∣∣Aαn(x)
∣∣ηαn(x) for x∈B√

αn
(0) ,

0 for x∈R
2\B2

√
αn

(0) ;

the downward concavity of . ηαn further ensures 

. 
∣∣∇ηαn(x)

∣∣ � √
αn for x ∈ B2

√
αn

(0)\B√
αn

(0) .

The above relations, together with (39), entail 

. 
∥∥(∇ηαn) ψ0

∥∥2
2 �

∫

B√
αn (0)

dx
∣∣Aαn(x)

∣∣2 ∣∣ηαn(x)ψ0
∣∣2 + αn

∫

B2
√

αn (0)\B√
αn (0)
dx |ψ0|2

�
∥∥Aαnψαn

∥∥2
2 + αn ‖ψ0‖22 n→+∞−−−−→ 0 .

Summing up, we have .
∥
∥∇ψαn − ∇ψ0

∥
∥
2→0 for .n→+∞, which entails strong 

convergence .ψαn → ψ0 in .H 1(R2). In particular, we have that .{ψαn}n ∈N is a 
uniformly bounded sequence in .H 1(R2). 

Returning to (35) and recalling that .S ∈ L∞(R2), on account of the results 
derived above we finally obtain 

. 

∣∣∣Q(F)
αn,S[ψαn ] − Q

(F)
0,S [ψ0]

∣∣∣

� C
[∥
∥Aαnψαn

∥
∥2
2 + ∥

∥ψαn

∥
∥

H 1

∥
∥Aαnψαn

∥
∥
2

+ ( ∥∥ψαn

∥∥
H 1+ ‖ψ0‖H 1

) ∥∥ψαn − ψ0
∥∥

H 1

] n→+∞−−−−→ 0 ,

which proves (38), whence the thesis (26). 
��
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12. Dabrowski, L., S̆t’ovíček, P.: Aharonov-Bohm effect with δ-type interaction. J. Math. Phys. 39, 

47–62 (1998) 
13. Dal Maso, G.: An Introduction to �-Convergence. Birkhäuser, Basel (1993) 
14. de Oliveira, C.R., Pereira, M.: Mathematical Justification of the Aharonov-Bohm Hamiltonian. 

J. Stat. Phys. 133, 1175–1184 (2008) 
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Some Remarks on the Regularized 
Hamiltonian for Three Bosons 
with Contact Interactions 

Daniele Ferretti and Alessandro Teta 

1 Introduction 

In this note we discuss some properties of a model Hamiltonian describing the 
dynamics of three identical bosons interacting via zero-range forces in dimension 
three. Since the seminal papers by Minlos and Faddeev [11, 12], it is known that 
a natural candidate for such Hamiltonian turns out to be unbounded from below, 
giving rise to the so-called Thomas effect. Here natural means that the boundary 
condition defining the Hamiltonian, known as Ter-Martirosyan Skornyakov (TMS) 
boundary condition, is the direct generalization to the three-body case of the 
boundary condition characterizing the Hamiltonian of the two-body problem. 
Roughly speaking, the reason of such instability is due to the interaction becoming 
too singular as all the three particles are close to each other. We note that this 
pathology is absent in dimension one, where perturbation theory of quadratic forms 
can be used, and in dimension two, where the renormalized two-body boundary 
condition is sufficient to avoid the collapse (see e.g. [3, 4]). 

It is worth to underline that the construction of a self-adjoint and bounded from 
below Hamiltonian for three, or more, interacting bosons with zero-range forces in 
dimension three is a challenging open problem in Mathematical Physics. Following 
a suggestion contained in [11], it has been recently studied [1, 6, 10] a regularized 
version of the Hamiltonian for a system of three bosons (see also [5] for the case 
of N bosons interacting with an impurity). The main idea is to introduce a three-
body repulsion that reduces to zero the strength of the contact interaction between 
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two particles if the third particle approaches the common position of the first two. 
On the other hand, when the third particle is far enough, the usual two-body point 
interaction is restored. The result is that the regularized Hamiltonian is self-adjoint 
and bounded from below if the strength . γ of the three-body interaction is larger than 
a threshold value . γc. 

The aim of this paper is to describe the construction of such regularized 
Hamiltonian following the approach developed in [1] and also to prove two further 
results. More precisely, in Sect. 2 we introduce the notation and we formulate the 
main result of [1], essentially based on the analysis of a suitable quadratic form Q. 

In Sect. 3 we prove that the threshold value . γc obtained in [1] is optimal, in the 
sense that for .γ < γc the quadratic form Q is unbounded from below. 

In Sect. 4 we give a different proof of the main result in [1] based on a new 
approach in position space. The proof is surely less general since it is valid only for 
.γ > γ ′

c , where .γ
′
c > γc. On the other hand it has the advantage to be much simpler 

and to show that the choice of the three-body force is not arbitrary but it is dictated 
by the inherent singularity of the problem. 

2 Regularized Hamiltonian 

Let us consider a system composed of three identical spinless bosons of mass . 12 in 
three dimensions and let us fix the center of mass reference frame so that . x1, . x2 and 
.x3 = −x1 − x2 represent the Cartesian coordinates of the three particles. We also 
introduce the Jacobi coordinates 

.

{
rk := 1

2

∑3
i,j=1 εijk(xi − xj ),

ρk := 3
2 xk − 1

2

∑3
�=1 x�,

k ∈ {1, 2, 3} (1) 

where .εijk is the Levi-Civita symbol, so that one has the following identities 

.

{
rk±1 = − 1

2rk ∓ ρk,

ρk±1 = ± 3
4rk − 1

2ρk,
k ∈ Z�{3}. (2) 

Denoting by .x = r1 = x2 − x3 and .y = ρ1 = x1 − x2 + x3
2 , the Hilbert space of 

the system is 

. L2
sym(R6) :=

{
ψ ∈ L2(R6)

∣∣ ψ(x, y) = ψ(−x, y) = ψ
(
1
2 x + y, 3

4 x − 1
2 y

)}
.

(3) 

Indeed, notice that the symmetry conditions in (3) corresponds to the 
exchange of particles .2, 3 and .1, 2 that implies also the condition . ψ(x, y) =
ψ

(
1
2 x − y,− 3

4 x − 1
2 y

)
, associated with the exchange of particles . 3, 1. If the
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bosons interact via zero-range forces, then the system is described, at least formally, 
by the Hamiltonian 

.Ĥ = −�x − 3
4 �y + μδ(x) + μδ( 12 x + y) + μδ( 12 x − y) (4) 

where .μ ∈ R is a coupling constant and we denote by . H0 the free Hamiltonian of 
the system, i.e. 

.H0 := −�x − 3
4 �y, D(H0) = H 2(R6) ∩ L2

sym(R6). (5) 

In order to define a rigorous counterpart of . Ĥ, one needs to build a perturbation of 
the free Hamiltonian supported on the coincidence hyperplanes 

.πk :=
{
(rk, ρk)∈ R

6
∣∣ rk = 0

}
, π := ⋃3

k=1 πk (6a) 

or, equivalently, 

.

π1 :=
{
(x, y)∈R

6
∣∣ x = 0

}
, π2 :=

{
(x, y)∈R

6
∣∣ y = − 1

2 x
}
,

π3 :=
{
(x, y)∈R

6
∣∣ y = 1

2 x
}
.

(6b) 

In other words, we look for a self-adjoint and bounded from below extension in 
.L2
sym(R6) of the following symmetric, densely defined, and closed (with respect to 

the graph norm of . H0) operator 

.Ḣ0 := H0
∣∣
D(Ḣ0)

, D(Ḣ0) := H 2
0 (R6 \ π) ∩ L2

sym(R6). (7) 

In particular, we are interested in the family of self-adjoint extensions studied in [1] 
(see also [10]) which, at least formally, are characterized by the boundary condition 

.ψ(x, y) = ξ(y)

|x| + α(y)ξ(y) + o(1), |x| → 0, (8) 

where . α is a position dependent parameter given by 

.α : y �−→ −1

a
+ γ

|y| θ(|y|) (9) 

with . a the two-body scattering length, . γ a positive parameter representing the 
strength of the regularization and . θ a real measurable function with compact support 
such that 

.1 − s

b
≤ θ(s) ≤ 1 + s

b
, s ≥ 0 (10)
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for some .b > 0. Notice that assumption (10) forces the function . θ to be continuous 
at zero, with .θ(0) = 1. Moreover, the simplest choice for . θ is the characteristic 
function of the ball of radius b centered in the origin. We also stress that, due to the 
symmetry constraints of .L2

sym(R6), the boundary condition (8) implies 

. ψ(x, y) = ξ(x)∣∣∣y + 1
2 x

∣∣∣ + α(x)ξ(x) + o(1), y → − 1
2 x,

ψ(x, y) = ξ(−x)∣∣∣y − 1
2 x

∣∣∣ + α(−x)ξ(−x) + o(1), y → 1
2 x.

Observe that for .γ = 0 Eq. (8) reduces to the standard TMS boundary condition, 
which leads to the Thomas effect. Then, for .γ > 0 we are introducing a three-
body repulsion meant to regularize the ultraviolet singularity occurring when the 
positions of all particles coincide. However, since .supp θ is a compact, the usual 
two-body point interaction is restored when the third particle is far enough. 

The procedure adopted in [1] for the rigorous construction of the Hamiltonian is 
the following: one first introduces the quadratic form Q in .L2

sym(R6) describing, at 
least formally, the expectation value of the energy of our three-body system. Then 
one defines a suitable form domain .D(Q) and proves that .Q,D(Q) is closed and 
bounded from below. Finally, the Hamiltonian is defined as the unique self-adjoint 
and bounded from below operator associated to the quadratic form. 

In order to define the quadratic form .Q,D(Q), we first introduce an auxiliary 
hermitian quadratic form . �λ in .L2(R3) given by [1, equation (3.1)] for .λ>0, i.e. 

.�λ := �λ
diag+ �λ

off + �reg + �0, D(�λ) = H 1/2(R3), (11) 

where 

.�λ
diag[ξ ] := 12π

∫
R3

dp

√
3
4 p2 + λ |ξ̂ (p)|2, . (12a)

�λ 
off[ξ ] := −12 

π

∫
R6 

dpdq 
ξ̂ (p) ξ̂ (q) 

p2 + q2 + p ·q + λ 
, . (12b)

�reg[ξ ] :=  
6γ 
π

∫
R6 

dpdq 
ξ̂ (p) ξ̂ (q) 
|p − q|2 , . (12c)

�0[ξ ] := 12π
∫
R3 

dy β(y)|ξ(y)|2, β  : y �−→ −1 

a 
+ γ 

θ(y)  − 1 
y 

. (12d) 

By assumption (10), one has .β ∈ L∞(R3) and therefore . �0 is bounded. The proof 
of the fact that . �λ is well defined in .H 1/2(R3) is relatively standard and it is given
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in [1, proposition 3.1]. The more relevant point concerning . �λ is that it is coercive 
for . λ large enough as long as .γ > γc, with 

.γc = 4

3
−

√
3

π
≈ 0.782004. (13) 

The proof is given in [1, proposition 3.6] and it is based on a rather long and non 
trivial analysis performed in the momentum representation. The conclusion is that 
there exists .λ0 > 0 such that . �λ is closed and bounded from below by a positive 
constant for each .λ > λ0 and .γ > γc. Therefore one can uniquely define a self-
adjoint, positive and invertible operator . �λ in .L2(R3) such that 

.�λ[ξ ] = 〈ξ, �λξ 〉L2(R3), ∀ ξ ∈ D (14) 

with .D = D(�λ) a dense subspace independent of . λ. Furthermore, defining the 
continuous1 operator 

.
τ : D(H0) −→ L2(R3),

ϕ �−→ 12π ϕ|π1

(15) 

satisfying .ran(τ ) = H 1/2(R3) and .ker(τ ) = D(Ḣ0), one can check that the 
injective operator .G(z) := (τRH0

(z̄))∗ ∈ B(L2(R3), L2
sym(R6)) with .z∈ ρ(H0) is 

represented in the Fourier space by 

.(G(z)ξ̂ )(k,p) =
√

2

π

ξ̂(p) + ξ̂
(
k− 1

2p
)

+ ξ̂
(
−k− 1

2p
)

k2 + 3
4p

2 − z
. (16) 

We are now in position to introduce the quadratic form in .L2
sym(R6) [1, defini-

tion 2.1] 

. D(Q) :=
{
ψ ∈ L2

sym(R6)
∣∣ ψ = φλ + G(−λ)ξ, φλ ∈ H 1(R6),

ξ ∈ H 1/2(R3), λ> 0
}
,

Q[ψ] := ‖H1/2
0 φλ‖2 + λ‖φλ‖2 − λ‖ψ‖2 + �λ[ξ ]. (17) 

Using the properties of .�λ and .G(−λ), it is now easy to show that the above 
quadratic form is closed and bounded from below if .γ > γc. Hence it uniquely

1 Here .D(H0) must be intended as a Hilbert subspace of .L2
sym(R6) endowed with the graph norm 

of . H0. 
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defines a self-adjoint and lower semi-bounded operator . H which, by definition, is 
the Hamiltonian of the three bosons system. 

Following an equivalent approach, one can consider the densely defined and 
closed operator .�(z) : D ⊂ L2(R3) −→ L2(R3), given by 

.�(z) := �λ− (λ + z)G(z̄)∗G(−λ), λ>λ0, z ∈ ρ(H0) (18) 

which represents a sort of analytic continuation of . �λ, D. Actually, one can prove 
that .�(z) fulfils 

.�(z)∗ = �(z̄), ∀ z ∈ ρ(H0), . (19a)

�(z) − �(w) = (z − w)G(z̄)∗G(w), ∀ w, z ∈ ρ(H0), . (19b) 

∀ z ∈ C : �(z) < −λ0 ∨ �(z) > 0, 0 ∈ ρ(�(z)). (19c) 

These properties imply, according to e.g. [13] (see also [2, theorem 2.19]), that for 
any .z ∈ C such that .�(z) has a bounded inverse, the operator 

.R(z) = (H0 − z)−1 + G(z)�(z)−1G(z̄)∗ (20) 

defines the resolvent of a self-adjoint and bounded from below operator which 
coincides with the Hamiltonian . H obtained with the approach based on the quadratic 
form and .

{
z ∈ C

∣∣ �(z) < −λ0 ∨ �(z) > 0
} ⊆ ρ(H). Moreover, one can verify 

that . H coincides with . H0 on .D(Ḣ0), satisfies the boundary condition (8) in the . L2

sense (see [1, remark 4.1]) and it is characterized by 

.

D(H) ={
ψ ∈ D(Q)

∣∣ φz ∈ D(H0), ξ ∈ D, �(z)ξ = τφz

}
,

Hψ = H0φz + zG(z)ξ.
(21) 

3 Optimality of γc 

In this section we prove the optimality of the threshold parameter . γc defined by (13). 
More precisely our goal is to prove the following theorem. 

Theorem 3.1 Whenever .γ < γc, the quadratic form Q given by (17) is unbounded 
from below. 

In order to achieve the result, we shall adapt the ideas contained in [7, section 5]. 
Denote for short .Gλ := G(−λ) for any .λ>0 and let .{un}n∈N⊂D(Q) be a sequence 
of trial functions given by 

.un(x, y) = (Gληn)(x, y), . (22) 

ηn(y) = n2f (ny), f ∈ H 1/2(R3). (23)
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We stress that, by an explicit estimate due to (16), one finds 

. inf
n∈N

‖Gληn‖L2
sym(R6) � 0. (24) 

Indeed, 

. ‖Gληn‖2 = 2

π

∫
R6

dkdp
1

n2

∣∣∣f̂ (p
n

) + f̂
(

k
n

− p
2n

)
+ f̂

(
k
n

+ p
2n

)∣∣∣2(
k2 + 3

4p
2 + λ

)2

= 2

π

∫
R6

dκdq

∣∣∣f̂ (q) + f̂
(
κ − q

2

) + f̂
(
κ + q

2

)∣∣∣2(
κ2 + 3

4q
2 + λ

n2

)2 > ‖Gλf ‖2.

Our goal is to show that whenever . γ is smaller than the threshold value . γc given 
by (13), one has 

. lim
n→ +∞ Q[un] = −∞. (25) 

According to (17), we have  

.Q[un] = −λ ‖Gληn‖ + �λ[ηn] ≤ −λ ‖Gλf ‖ + �λ[ηn] (26) 

and therefore the theorem is proven if we exhibit some .f ∈ H 1/2(R3) such that 

. lim
n→ +∞ �λ[ηn] = −∞. (27) 

Lemma 3.1 Let . �λ and . ηn be given by (11) and (23), respectively. Then, one has 

. �λ[ηn] = n2(�0
diag+ �0

off + �reg)[f ] + O(n).

Proof First of all, we can neglect the bounded component . �0, since 

.�0[ηn] = 12πn4
∫
R3

dy β(y) |f (ny)|2 = 12π n

∫
R3

dt β
(

t
n

) |f (t)|2

≤ 12π n ‖β‖L∞(R3)‖f ‖2
L2(R3)

�⇒ �0[ηn] = O(n), n → +∞.
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Next, rescaling properly the variables in computing .�λ
diag[ηn], one gets 

. �λ
diag[ηn] = 12π n

∫
R3

dκ

√
3
4 n2κ2 + λ |f̂ (κ)|2

= 6
√
3π n2

∫
R3

dκ |κ | |f̂ (κ)|2

+ 12π n

∫
R3

dκ

(√
3
4 n2κ2 + λ −

√
3
4 nκ

)
|f̂ (κ)|2

= n2�0
diag[f ] + o(n).

Indeed, exploiting the elementary inequality .
√

a2 + b2 − |a| ≤ |b|, we can use the 
dominated convergence theorem to obtain 

. lim
n→+∞

∫
R3

dκ

(√
3
4 n2κ2 + λ −

√
3
4 nκ

)
|f̂ (κ)|2 = 0.

Concerning the regularizing contribution, one simply has 

. �reg[ηn] = 6γ

π
n2

∫
R3

dp

∫
R3

dq
f̂ (p) f̂ (q)

|p − q|2
= n2�reg[f ].

Finally, we compute . �λ
off[ηn]

. �λ
off[ηn] = −12

π
n2

∫
R6

dpdq
f̂ (p) f̂ (q)

p2 + q2 + p ·q + λ
n2

= − 12

π
n2

∫
R6

dpdq
f̂ (p) f̂ (q)

p2 + q2 + p ·q +

+ 12

π
λ

∫
R6

dpdq
f̂ (p) f̂ (q)(

p2 + q2 + p ·q + λ
n2

)(
p2 + q2 + p ·q) .

Defining the integral operator in .L2(R3) given by 

.(Pnϕ̂)(p) := 12

π
λ

∫
R3
dq

ϕ̂(q)(
p2 + q2 + p ·q + λ

n2

)(
p2 + q2 + p ·q) , (28)
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we can write 

. �λ
off[ηn] = n2�0

off[f ] +
∫
R3
dp f̂ (p) (Pnf̂ )(p).

We notice that . Pn is a Hilbert-Schmidt operator and 

. ‖Pn‖2B(L2(R3))
≤ 124λ2

π2

∫
R6

dpdq
1(

p2 + q2 + p ·q + λ
n2

)2(
p2 + q2 + p ·q)2

≤ 124λ2

π2

∫
R6

dpdq
4(p2+ q2

2 + λ
n2

)2(
p2 + q2

)2
= 496πλ2

∫ +∞

0
dk

k(
k2

2 + λ
n2

)2
= 496πλn2.

Using the above estimate, we find 

. �λ
off[ηn] = n2�0

off[f ] + O(n)

and the lemma is proven. ��
In light of Lemma 3.1, it is straightforward to see that (27) is achieved as soon as 
we exhibit a function .f ∈ H 1/2(R3) such that, whenever .γ < γc, there holds 

. �0
diag[f ] + �0

off[f ] + �reg[f ] < 0.

A relevant feature of the previous lemma is that the leading order of .�λ[ηn] as 
n goes to infinity does not depend on . λ and, therefore, we have reduced the 
problem to the study of the hermitian quadratic form evaluated in .λ = 0 which 
is diagonalizable. 

In the next lemma we exhibit a trial function that allows us to prove our result. 

Lemma 3.2 Let . γc be defined by (13), assume .γ < γc and let us consider the family 
of trial functions .fβ ∈ H 1/2(R3) such that 

. f̂β(p) = 1
p2 exp

(
−pβ +p−β

2

)
, β > 0.

Then there exists .β0 > 0 such that for any .β ∈ (0, β0) we have 

.
(
�0

diag+ �0
off + �reg

)[fβ ] < 0.
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Proof We stress that our trial functions are entirely lying in the s-wave subspace, 
therefore we have 

.�0
diag[fβ ] = 48π2

√
3
4

∫ +∞

0
dp p3 |f̂β(p)|2, . (29a)

�0 
off[fβ ] = −96π

∫ +∞ 

0 
dp p

∫ +∞ 

0 
dq q f̂β(p) f̂β(q) ln

(
p2 + q2 + pq 
p2 + q2 − pq

)
, . (29b)

�reg[fβ ] =  24πγ

∫ +∞ 

0 
dp p

∫ +∞ 

0 
dq q f̂β(p) f̂β(q) ln

(
p2 + q2 + 2pq 
p2 + q2 − 2pq

)
, (29c) 

where we have used the identity2 

.

∫
R6

dpdq g
(
p, q,

p·q
pq

)
= 8π2

∫ +∞

0
dp p2

∫ +∞

0
dq q2

∫ 1

−1
du g(p, q, u) (30) 

holding for any integrable function .g : R2+ × [−1, 1] −→ C. According to, e.g. [1, 
lemma 3.4], the quantities in Eqs. (29) can be diagonalized through the unitary 
transformation 

.

M : L2(R+, p2
√

p2 + 1 dp) −→ L2(R),

ψ �−→ ψ�(x) = 1√
2π

∫
R

dt e−itxe2tψ(et )
(31) 

yielding (see [1, lemmata 3.4, 3.5]) 

.�0
diag[fβ ] = 48

√
3
4 π2

∫
R

dx |f̂ �
β (x)|2, . (32a)

�0 
off[fβ ] = −48π2

∫
R 
dx | f̂ �

β (x)|2 4 sinh
(

π 
6 x

)
x cosh

(
π 
2 x

) , . (32b)

�reg[fβ ] =  48π2
∫
R 
dx | f̂ �

β (x)|2 γ tanh
(

π 
2 x

)
x 

. (32c) 

Let us introduce the bounded and continuous (except at the point .x = 0) function 

.S(x) :=
√
3

2
+ γ sinh

(
π
2 x

) − 4 sinh
(

π
6 x

)
x cosh

(
π
2 x

) (33) 

2 Equation (30) is an application of the addition formula for the spherical harmonics in the s-wave.
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so that we have 

.
(
�0

diag+ �0
off + �reg

)[fβ ] = 48π2
∫
R

dx |f̂ �
β (x)|2 S(x), (34) 

with 

. lim
x→ 0

S(x) =
√
3
2 − 2π

3
+ π

2
γ = π

2
(γ − γc) < 0. (35) 

Roughly speaking, the integral in (34) is negative if we choose the trial function 
such that the support of . f̂ �

β is sufficiently concentrated in a neighborhood of zero. 

More precisely, considering the explicit expression of . f̂β , we have3 

.f̂
�

β (x) = 1

β
ĥ
(

x
β

)
(36) 

where .h(p) = e− coshp with .h ∈ S(R). Then 

. 

∫
R

dx |f̂ �
β (x)|2S(x) = 1

β2

∫
R

dx |ĥ(x/β)|2 S(x)

= 1

β

∫
R

dx |ĥ(x)|2 S(β x).

By dominated convergence theorem we obtain 

. lim
β→ 0+

∫
R

dx |ĥ(x)|2 S(β x) = ‖h‖2
L2(R)

lim
x→ 0

S(x) < 0.

Hence, the lemma is proven by noticing that the previous integral is continuous in 
.β >0 and therefore, the quadratic form .

(
�0

diag+�0
off+�reg

)[fβ ] is negative for any 
. β small enough. ��
Proof of Theorem 3.1 Let . f̂β be the trial function given in Lemma 3.2 with . β < β0
and consider the following sequence of charges 

. η̂ β
n (p) = 1

n
f̂β

(p

n

)
.

By Lemma 3.1, we know that 

. �λ[η β
n ] = n2(�0

diag+ �0
off + �reg)[fβ ] + O(n), n → +∞

and then .�λ[η β
n ] −→ −∞ as n grows to infinity. ��

3 We stress that .f̂ �
β (x) =

√
2
π

1
β
Kix/β(1) because of the integral representation for the Macdonald 

function . Kν given by [8, p. 384, 3.547 4]. 
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4 Analysis in Position Space 

In this section, we give a different proof of the coercivity of .�λ based on the 
representation of . �λ in position space. In particular, this approach allows to identify 
the negative contribution of the quadratic form .�λ

off and therefore to justify the 
choice of the regularization term .�reg. 

In the next proposition, we write the quadratic form . �λ defined in (11) in the 
position-space representation. 

Proposition 4.1 For any .ξ ∈ H 1/2(R3) and .λ > 0 one has 

.�λ
diag[ξ ] = 12π

√
λ ‖ξ‖2 + 2

√
3λ

π

∫
R6

dxdy
|ξ(x) − ξ(y)|2

|x − y|2 K2

(√
4λ
3 |x − y|

)
, . 

(37a)

�λ 
off[ξ ] = −8

√
3λ 

π

∫
R6 

dxdy 
ξ(x) ξ(y) 

y2 + x2 + x ·y 
K2

(√
4λ 
3

√
y2 + x2 + x ·y

)
, . 

(37b)

�reg[ξ ] =  12π γ

∫
R3 

dx 
|ξ(x)|2 

|x| (37c) 

where .Kν : R+ −→ C is the modified Bessel function of the second kind (also 
known as Macdonald function) and order .ν ∈ C. 

Proof Identity (37a) is a consequence of (12a) and [9, section 7.12, (5)], while (37c) 
is obtained by comparing (12c) with the identity 

.

∫
R3

dr
|f (r)|2

r
= 1

2π2

∫
R6

dpdq
f̂ (p) f̂ (q)

|p − q|2 , ∀ f ∈ H 1/2(R3). (38) 

Concerning the proof of (37b), we consider (12b) for .ϕ ∈ S(R3) and we observe 
that we have uniformly in . λ > 0

. σ �−→ 1

σ 2 + τ 2 + τ ·σ + λ
∈ L2(R3, dσ ), for τ �= 0.

Therefore, by Plancherel’s theorem we find 

.�λ
off[ϕ] = −12

π

∫
R3

dτ ϕ̂(τ )

∫
R3

dx
ϕ(x)

(2π)3/2

∫
R3

dσ
e−i x·σ

τ 2 + σ 2 + τ ·σ + λ
.
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Using the change of coordinates .σ = q − τ
2 , we obtain 

. �λ
off[ϕ] = −12

π

∫
R3

dτ ϕ̂(τ )

∫
R3

dx
e

τ · x
2 i

(2π)3/2
ϕ(x)

∫
R3

dq
e−i q·x

3
4τ

2 + q2 + λ

= − 24π

(2π)3/2

∫
R3

dτ ϕ̂(τ )

∫
R3

dx
ϕ(x)

|x| e
τ · x
2 i−

√
3
4 τ 2 + λ |x|

= − 24π

(2π)3/2

∫
R3

dx
ϕ(x)

|x|
∫
R3

dτ ϕ̂(τ ) e
τ · x
2 i−

√
3
4 τ 2 + λ |x|

.

Since uniformly in . λ > 0

. τ �−→ e
τ · x
2 i−

√
3
4 τ 2 + λ |x| ∈ L2(R3, dτ ), for x �= 0

we use again Plancherel’s theorem to obtain 

. �λ
off[ϕ] = − 24π

(2π)3

∫
R3

dx
ϕ(x)

|x|
∫
R3

dy ϕ(y)

∫
R3

dτ e
iτ ·(y+ x

2)−
√

3
4 τ 2 + λ |x|

= −12

π

∫
R3

dx
ϕ(x)

|x|
∫
R3

dy
ϕ(y)

|y + x
2 |

∫ +∞

0
dτ τ sin

(
τ |y + x

2 |) e
−

√
3
4 τ 2 + λ |x|

.

The last integral can be explicitly computed using the formula (see, e.g., [8, p. 491, 
3.914.6]) 

. 

∫ +∞

0
dx x sin(bx) e−β

√
x2 + γ 2

= bβγ 2

β2 + b2
K2

(
γ

√
β2 + b2

)
, ∀ b ∈ R and β, γ > 0 (39) 

and therefore identity (37b) is proven for .ϕ ∈ S(R3). By a density argument4 the 
result is extended to any .ϕ ∈H 1/2(R3). ��
Before proceeding, let us briefly recall some elementary properties of .K2(·): 

.x2K2(x) is decreasing in x > 0, . (40a) 

K2(x) =
√

π 
2 

e−x

[
1√
x 

+ O
(

1 

x3/2

)]
, as x → +∞, . (40b) 

K2(x) = 
2 

x2 − 
1 

2 
+ O

(
x2 ln x

)
, as x → 0+. (40c)

4 Because of Propositions 4.2 and 4.3, one can obtain a control in the .H 1/2 norm. 
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In particular, notice that (40a) and (40c) imply 

.K2(x) ≤ 2

x2
, ∀ x > 0. (40d) 

In the next proposition we show the relevant fact that the negative contribution of 
.�λ

off can be explicitly characterized. 

Proposition 4.2 For any .ϕ ∈ H 1/2(R3) and .λ > 0 one has 

. 

�λ
off[ϕ] = − 24π

∫
R3

dx
e−√

λ |x|

|x| |ϕ(x)|2+

+ 4
√
3λ

π

∫
R6

dxdy
|ϕ(x) − ϕ(y)|2
y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
.

(41) 

Proof Let us decompose the expression given by (37b) as follows 

. 

�λ
off[ϕ] = −8

√
3λ

π

[∫
R3

dy |ϕ(y)|2
∫
R3

dx
K2

(√
4λ
3

√
y2 + x2 + x ·y

)
y2 + x2 + x ·y +

+
∫
R3

dy ϕ(y)

∫
R3

dx
ϕ(x) − ϕ(y)

y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)]
,

Then, we evaluate the first term in the right hand side. In Proposition 4.1 we have 
seen that the function 

.

f̂ λ
x : R3 −→ R+, x, λ ∈ R+,

τ �−→ e
−x

√
3
4 τ 2 + λ

x

(42) 

is such that 

.f λ|x|
(
y + x

2

)
=

√
8

3π
λ
K2

(√
4λ
3

√
y2 + x2 + x ·y

)
y2 + x2 + x ·y . (43) 

Notice the symmetry in the exchange .x ←→ y. Then, 

.

∫
R3

dx f λ|x|
(
y + x

2

) =
∫
R3

dx f λ|y|
(
x + y

2

) =
∫
R3

dz f λ|y|(z) = (2π)3/2f̂ λ|y|(0).
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Therefore we find 

. 
λ√
3π2

∫
R3

dx
K2

(√
4λ
3

√
y2 + x2 + x ·y

)
y2 + x2 + x ·y = e−√

λ|y|

|y| , ∀ λ > 0, y ∈ R
3
� {0}.
(44) 

According to (44), we obtain 

. 

�λ
off[ϕ] = − 24π

∫
R3

dy |ϕ(y)|2 e−√
λ|y|

|y| +

+ 8
√
3λ

π

∫
R6

dxdy
ϕ(y) [ϕ(y) − ϕ(x)]

y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
.

(45) 

It is now sufficient to notice that the symmetry in exchanging .x ←→ y allows us to 
write 

. 

∫
R3

dy ϕ(y)

∫
R3

dx
ϕ(y) − ϕ(x)

y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
=

= 1

2

∫
R6

dxdy
|ϕ(y) − ϕ(x)|2
y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
.

and the proposition is proved. ��
Thanks to Proposition 4.2, it is not hard to find lower and upper bounds for . �λ. 

To this end, it is convenient to introduce the Gagliardo semi-norm of the Sobolev 
space .H 1/2(R3), defined as 

.[u]21
2
:=

∫
R6

dxdy
|u(x) − u(y)|2

|x − y|4 , u ∈ H 1/2(R3), (46) 

so that .‖u‖2
H 1/2(R3)

= ‖u‖2+ [u]21
2
. In terms of the Fourier transform of u we also 

have (see e.g., [9, section 7.12 (4)]) 

.[u]21
2
= 2π2

∫
R3

dk |k||û(k)|2. (47) 

Proposition 4.3 For any given .ϕ ∈ H 1/2(R3), one has 

.�λ[ϕ] ≥ �0[ϕ] + �λ
diag[ϕ] + 3min{0, γ − 2}[ϕ ]21

2
, . (48a)

�λ[ϕ] ≤ �0[ϕ] + �λ 
diag[ϕ] +

(
3γ + 

96
√
3 

π

)
[ϕ ]2 1 

2 
. (48b)
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Proof The lower bound is obtained by neglecting the positive part of . �λ
off

. �λ
off[ϕ] + �reg[ϕ] ≥ 12π

∫
R3

dy
|ϕ(y)|2

|y|
(
γ − 2e−√

λ |y|)

and by considering the following inequalities 

. inf
y∈R3

{
γ − 2e−√

λ |y|}≥ min{0, γ − 2}, . (49)

∫
R3 

dx 
|ϕ(x)|2 

|x| ≤ 
1 

4π 
[ϕ ]2 1 

2 
. (50) 

Notice that (50) is a consequence of the Hardy-Rellich inequality (see5 [14]) 

.

∫
R3

dx
|u(x)|2

|x| ≤ π

2

∫
R3

dk |k||û(k)|2, ∀u ∈ H 1/2(R3) (51) 

compared with (47). In order to obtain the upper bound, we recall (46) to get 

. 

∫
R6

dxdy
|ϕ(y) − ϕ(x)|2
y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
≤

≤ [ϕ ]21
2

sup
(x, y)∈R6

|x − y|4
y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
.

We make use of (40d) and get rid of the dependence on the angles in evaluating the 
. sup, since 

. 

{
x2 + y2 − 2 x ·y ≤ 2(x2 + y2),

x2 + y2 + x ·y ≥ x2+y2

2 ,
�⇒ |x − y|2

x2 + y2 + x ·y ≤ 4.

Hence, 

.

∫
R6

dxdy
|ϕ(y) − ϕ(x)|2
y2 + x2 + x ·y K2

(√
4λ
3

√
y2 + x2 + x ·y

)
≤

≤ 3

2λ
[ϕ ]21

2
sup

(x, y)∈R6

|x − y|4(
y2 + x2 + x ·y)2 = 24

λ
[ϕ ]21

2
.

5 There is a typo in [14, equation (1.4)]: a power 2 on the Euler Gamma function in the numerator 
is missing. 
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We stress that in the last step we have an equality since the argument of the 
supremum in . R6 attains its upper bound in the hyperplane .x + y = 0. So far,  
we have obtained for any . ϕ ∈ H 1/2(R3)

.�λ
off[ϕ] ≤ −24π

∫
R3

dy
|ϕ(y)|2

|y| e−√
λ |y| + 96

√
3

π
[ϕ ]21

2
. (52) 

We complete the proof simply by neglecting the negative contribution. ��
The major difficulties in the proof of the coercivity of . �λ in momentum space 
obtained in [1] lie in the search of a lower bound. On the other hand, in position 
space such estimate, provided in Proposition 4.3, turns out to be much easier. 
However, some accuracy is lost in this framework. Indeed, adopting (48a) to obtain 
an estimate from below for . �λ, one gets 

.�λ[ξ ] ≥ �λ
diag[ξ ] − 3max{0, 2 − γ }[ξ ]21

2
+ 12π essinf

y∈R3
β(y) ‖ξ‖2

L2(R3)
(53) 

or, equivalently 

. �λ[ξ ] ≥
∫
R3

dp

[
12π

√
3
4p

2 + λ − 6π2 max{0, 2−γ }p + 12π essinf
y∈R3

β(y)

]
|ξ(p)|2.

(54) 

The function in square brackets attains its minimum at 

. pmin = 2π max{0, 2−γ }√λ√
9 − 3π2 max{0, 2−γ }2 ,

provided 

.3 − π2 max{0, 2 − γ }2 > 0 ⇐⇒ γ > 2 −
√
3

π
=: γ ′

c. (55) 

Indeed, plugging the value of .pmin in the right hand side of (54), one gets 

. �λ[ξ ] ≥
(
4
√
3π

√
λ

√
3 − π2 max{0, 2−γ }2 + 12π essinf

y∈R3
β(y)

)
‖ξ‖2

L2(R3)

(56) 

that is positive for 

.λ >
3min{0, essinfβ}2

3 − π2 max{0, 2−γ }2 . (57) 

As mentioned above, .γ ′
c ≈ 1.44867 is not optimal, since .γ ′

c � γc.
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On the Magnetic Laplacian with a 
Piecewise Constant Magnetic Field in . R3

+

Emanuela L. Giacomelli 

1 Introduction 

We study a Schrödinger operator in .R
3+ := {x ∈ R

3 | x = (x1, x2, x3), x2 > 0} with 
a magnetic field admitting a piecewise constant strength and a uniform direction. 
We review some recent results obtained in [3] about the bottom of the spectrum. 
Such an operator is interesting to be considered in the theory of superconductivity. 
We first introduce it and later we motivate the last assertion. 

1.1 The Main Result 

We denote by .Bα,γ,a a piecewise constant magnetic field having uniform direction. 
More precisely, we suppose .Bα,γ,α to have an intensity equal to 1 in the region . D1

α

and equal to a in . D2
α , where 

. D1
α = {

R
3 � x = ρ(cos θ sin φ, sin θ sin φ, cos φ) | ρ ∈ (0,∞),

θ ∈ (0, α), φ ∈ (0, π)
}
,

. D2
α = {

R
3 � x = ρ(cos θ sin φ, sin θ sin φ, cos φ) | ρ ∈ (0,∞),

θ ∈ (α, π), φ ∈ (0, π)
}
.
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For any .a ∈ [−1, 1) \ {0}, .α ∈ (0, π) and .γ ∈ [0, π/2], we define 

.Bα,γ,a = (cos α sin γ, sin α sin γ, cos γ )
(
1D1

α

+ a1D2
α

)
. (1) 

Note that by symmetry considerations, we can restrict the angle . γ to the interval 
.[0, π/2]. Moreover, instead of taking into account a generic piecewise constant 
magnetic field having two different uniform intensities in the regions .D1

α and . D2
α , it  

is possible (by scaling arguments) to reduce the study to the case of a field having 
intensity equal to .1D1

α

+ a1D2
α

for some .a ∈ [−1, 1). The condition .a �= 0 we 

imposed above is a technical restriction which we need to simplify our analysis. 
Let now .Aα,γ,a ∈ H 1

loc(R
3+,R3) be a vector potential such that . curlAα,γ,a =

Bα,γ,a (see Sect. 2.2.1 for an explicit expression of .Aα,γ,a). In this paper we take into 
account the magnetic Neumann realization of the following self-adjoint operator in 
. R3+

.Lα,γ,a = −(∇ − iAα,γ,a)
2, (2) 

with a domain given by 

. Dom(Lα,γ,a) = {
u ∈ L2(R3+) : (∇ − iAα,γ,a)

nu ∈ L2(R3+),

for n ∈ {1, 2}, (∇ − iAα,γ,a)u · (0, 1, 0)|∂R3+ = 0
}
. (3) 

We denote by .λα,γ,a the bottom of the spectrum of .Lα,γ,a , i.e., 

.λα,γ,a := inf sp(Lα,γ,a). (4) 

Note that the case .a = 1, α = π/2 corresponds to the Lu-Pan/Helffer-Morame 
model (see e.g., [23, 29]). If in addition one has .γ = 0, the problem of characterizing 
.λα,γ,a can be reduced to the study of the so called de Gennes operator (a harmonic 
oscillator on the half-axis with Neumann condition at the origin). Moreover, in our 
analysis we exclude the values .α = 0, π since in this case there is no discontinuity 
jump and the magnetic field is constant over .R3+ . 

The main result proved in [3] is in the theorem below. 

Theorem 1 (Bottom of the Spectrum of .Lα,γ,a) Let .a ∈ [−1, 1)\{0}, .α ∈ (0, π), 
.γ ∈ [0, π/2] and .ν0 = arcsin(sin α sin γ ). Let .λα,γ,a as in (4). It holds 

.λα,γ,a ≤ min(βa, |a|ζν0), (5) 

where . βa and . ζν0 are as in (10) and (13). Moreover, if the inequality in (5) is strict, 
then there exists .τ� ∈ R such that 

. λα,γ,a = σ(α, γ, a, τ�),

where .σ(α, γ, a, τ�) is an eigenvalue of the operator .L
α,γ,a

(τ�) defined in (16).
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Remark 1 (On the Bound for .λα,γ,a) Note that for .a ∈ (0, 1), .α ∈ (0, π) and 
.γ ∈ [0, π/2] one has .βa = a and .ζν0 ≤ 1 (see (11) and (14)); from Theorem 1 we 
then get .λα,γ,a ≤ |a|ζν0 . Moreover, when .a = −1, we know that (see again (11)) 
.β−1 = �0 ∼ 0.59; being in this case .ζν0 ∈ (�0, 1) (see (14)), Theorem 1 implies 
that .λα,γ,−1 ≤ �0. 

1.2 Motivation 

The motivations to study the operator .Lα,γ,a go back to the phenomenon of 
superconductivity, which was discovered in 1911 by H. Kamerlingh Onnes in 
Leiden. Here we put the focus on the breakdown of superconductivity in presence 
of an external magnetic field [37]. In general, superconductors can be divided into 
two types, according to how the breakdown occurs. For type-I, superconductivity 
is abruptly destroyed via a first order phase transition. In 1957 Abrikosov deduced 
the existence of a class of materials which exhibit a different behavior, i.e., some 
of their superconducting properties are preserved when submitted to a suitably 
large magnetic field. Physically, these two classes can be identified by the value 
of a parameter . κ , also known as the Ginzburg-Landau parameter (i.e., a value 
proportional to the inverse of the penetration depth and typical of the material). 
The value . κ is smaller than .1/

√
2 for type-I superconductors and larger than 

.1/
√

2 for the so called type-II superconductors. We consider here extreme type-
II superconductors, i.e., we assume that the Ginzburg-Landau parameter satisfies 
the condition .κ 
 1. 

In general, it is well-known [20] that a superconducting material exposed to 
a strong magnetic field with intensity .hex loses permanently its superconducting 
properties (i.e., goes to the normale state) when .hex exceeds some critical value. 
Determining this critical value is not an easy task and strongly depends on the geom-
etry of the sample. Below we underline the main ideas toward this characterization, 
and emphasizing where the operator we introduced in (2) is expected to play a role. 

1.2.1 The Ginzburg-Landau Theory 

To study the transition to the normal state, it is convenient to use the Ginzburg-
Landau theory [19] which, in general, allows to describe the behavior of a type-II 
superconductor exposed to an external magnetic field . B (such that .|B| = hex) in a  
temperature close to the critical one. Let .� ⊂ R

3 be a domain, the GL functional is 
defined by1 

.G�,κ [ψ,A] =
∫

�

|∇ + ihexA)ψ |2 − 1

2
κ2(2|ψ |2 − |ψ |4) + hex

∫

R3
|curlA − 1|2.

1 Note that in some cases the GL model reduces to a two dimensional one: this happens when 
for example the external magnetic field is supposed to be perpendicular to the cross section of a 
superconducting wire. 
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Here . ψ is the order parameter (.|ψ |2 denotes the density of Cooper pairs) and .hexA is 
the induced magnetic vector potential. We recall that we take into account extreme 
type II-superconductors, which means that .κ → ∞. 

Using the GL theory it is possible to study the phase transitions which occur 
in a type-II superconductor: these can be described by identifying three increasing 
critical values of the magnetic field. When the first critical value .Hc1 is reached, 
superconductivity is lost in the bulk of the sample at isolated points (see e.g. 
[18, 38]). Between the second and third critical fields, i.e., in the regime . Hc2 ≤
hex ≤ Hc3 , superconductivity survives only close to the boundary of the sample 
(see e.g.,[11–15, 21, 31]) . Above the third critical field .Hc3 , the sample goes back 
to its normal state (see e.g., [8, 16, 17, 22, 24, 28]). 

In this framework the normal state corresponds to the choice . (ψ,A) = (0,F)

where . F is such that .curlF = 1, i.e., three are no Cooper pairs and the external field 
penetrates completely the sample. It is then natural to expect that to characterize the 
value of .Hc3 , the first term in GL functional is playing the main role, i.e., one should 
study the magnetic Laplacian: 

. − (∇ − ihexA)2.

As suggested in [18, Chapter 13], we take into account external magnetic fields of 
intensity proportional to the GL parameter . κ , i.e., .hex = κσ for some . σ > 0. Note  
that since .κ → ∞, the intensity of the magnetic field is high. Under this choices, 
the study of .Hc3 is naturally linked to a semiclassical limit .h → 0: 

. − (∇ − i(κσ )A)2 = −(κσ )2(h∇ − iA)2, h := (κσ )−1. (6) 

1.2.2 A Semiclassical Problem 

Analysing the semiclassical problem in (6) is important to prove the localization 
of the GL minimizing order parameter in order to characterize the transition to the 
normal state. Many works indeed have been dedicated to the study of the operator 
.(−ih∇ −A)2 in the limit .h → 0 deriving an asymptotics of the first eigenvalue and 
proving the localization of the associated eigenfunctions. In dimensions .d = 2, 3, 
the first eigenvalue of .(h∇−iA)2 behaves at first order as .hE(B,�), where . E(B,�)

is the smallest eigenvalue of a given model operator which strongly depends on 
the dimension d, on the geometry of . � and on the shape of the magnetic field. In 
other words, to study the semiclassical problem it is useful to first take into account 
specific effective models. 

Below we list some well-known situations and we underline where the 3D 
Schrödinger operator we study here is expected to appear. In the case of a uniform 
external magnetic, if the domain .� ⊂ R

d (.d = 2, 3) is smooth, one has to deal 
with two model operators: one defined over .Rd (when working in the interior of 
. �) and the other living in .Rd+ (to work near the boundary . ∂�). For such situations
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we refer to [18, 22, 28] for dimension .d = 2 and to [16, 18, 20, 23, 29] in the 3D 
setting. Moreover, it is well-know that in presence of singularities (e.g., corners, 
wedges) along the boundary of . �, one has to introduce another operator to work 
close to the singularities. This operator is defined over an infinite angular sector or 
an infinite wedges (according to the dimension), see [8, 10] for the 2D case and 
[10, 29, 32–34] for .d = 3. For non-uniform magnetic field there are, in general, less 
results available in the literature. We mention here [1, 2, 6] for piecewise constant 
magnetic fields in dimension .d = 2 and [35, 36] for smoothly varying magnetic 
fields both in dimension .d = 2 and .d = 3. 

The transition to the normal state in the case of a smooth domain .� ⊂ R
3 with an 

external magnetic field which is piecewise constant is completely open. The study of 
the 3D Schrödinger operator introduced above can be seen as a first step towards this 
characterization. To give an idea of that, we take into account an external magnetic 
such that 

. B(x) = (1x2>0 + a1x2<0)(x)(0, 0, 1) for x = (x1, x2, x3),

and a domain .� ⊂ R
3 with smooth boundary which intersects transversally the 

plane .(x1x3), we call this intersection the discontinuity plane and we denote it by 
S. Moreover, we set .� := ∂� ∩ S to be the discontinuity curve. In this setting 
superconductivity is expected to nucleate close to . � right before disappearing. To 
rigorously prove this, it is convenient to use the model operator .Lα,γ,a introduced 
above to work in regions localized at the boundary along . �. Indeed, the fact that 
localization occurs at the boundary forces us to work with a model operator defined 
on . R3+. Moreover, to work close to . � requires to take into account a model operator 
with a discontinuous magnetic field. 

2 Proof of Theorem 1 

In this section we give the main ideas for the study of the bottom of the spectrum of 

. Lα,γ,a = −(∇ − iAα,γ,a), α ∈ (0, π), γ ∈
[
0,

π

2

]
, a ∈ [−1, 1) \ {0},

i.e., .λα,γ,a = inf sp(Lα,γ,a). In the following we make a specific choice of the vector 
potential .Aα,γ,a which allows us to use a partial Fourier transform to compare our 
operator with 2D operators. 

2.1 The Reference 2D Operators 

As mentioned above, it turns out that it is possible to compare .Lα,γ,a with 2D 
operators. We will study the spectrum of such 2D operators making use of two 
additional models. The first one is a 2D operator with discontinuous magnetic field
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and the second one is Schrödinger operator in .R3+ having a uniform magnetic field. 
We introduce them in what follows and we refer to [3] (and references therein) for 
more details. 

2.1.1 Magnetic Laplacian with a Piecewise Constant Magnetic Field in 2D 

Let .Aa ∈ H 1
loc(R

2,R2) be such that 

. curlAa(x) = (
1x2>0 + a1x2<0

)
(x), x ∈ R

2, a ∈ [−1, 1) \ {0}.
In particular, one can fix the gauge and set 

. Aa(x) =
{

(−x2, 0) if x2 > 0,

(−ax2, 0) if x2 < 0.

Consider the magnetic Neumann realization of 

.La := ( − ∇ − iAa

)2
, (7) 

with domain 

. dom(La) := {
u ∈ L2(R2) : (∇ − iAa)

nu ∈ L2(R2), n = 1, 2
}
.

We denote by . βa the bottom of the spectrum, i.e., 

.βa = inf sp(La). (8) 

The operator . La as well as the value . βa were widely studied (see e.g., [4, 5, 25, 26]). 
Here we just recall that . La can be decomposed by one dimensional fiber operators 
via a partial Fourier transform, i.e., 

.La =
∫ ⊕

ξ∈R
ha(ξ) dξ, ha(ξ) =

{
− d2

dt2 + (t − ξ)2 for t > 0,

− d2

dt2 + a(t − ξ)2 for t < 0.
(9) 

As a consequence, denoting by .μa(ξ) the bottom of the spectrum of .ha(ξ), one has 

.βa = inf
ξ∈Rμa(ξ). (10) 

We now recall some properties of . βa which we need later: 

. βa = a for 0 < a < 1, β−1 = �0, |a|�0 < βa < |a| for − 1 < a < 0.

(11) 

For more details and for some properties of . μa(·), see [3, Section 2.1].
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2.1.2 Magnetic Laplacian with Constant Magnetic Field in R3 
+ 

We now take into account a uniform magnetic field . Bν with unit strength on . R3+, 
where . ν denotes the angle between . Bν and the plane .(x1x3). We can explicitly write 

. Bν = (0, sin γ, cos γ ).

We can then take into account the magnetic Neumann realization of 

.Hν = −(∇ − iAν)
2 in L2(R3+), (12) 

where .Aν ∈ H 1
loc(R

3+,R3) is such that .curlAν = Bν . Fixing the gauge, we can set 
.Aν(x) = (x3 sin ν−x2 cos ν, 0, 0) for .x = (x1, x2, x3) ∈ R

3+. We denote the bottom 
of the spectrum of . Hν by 

.ζν := inf sp(Hν). (13) 

This model operator is studied in [28–30]. We refer to [23, 29] for a collection of 
some useful properties of . ζν . Here, we only recall that 

.ζ0 = �0, ζ π
2

= 1, ζν ∈ (�0, 1) ∀ν ∈ (0, π/2). (14) 

2.2 Ideas for the Proof of Theorem 1 

We now summarize the strategy of the proof of Theorem 1 done in [3]. More 
precisely, first we reduce the study of .λα,γ,a to the one of the bottom of the spectrum 
of 2D operators (Sect. 2.2.1), then we collect the main properties we need on the 
spectrum of the aforementioned 2D operators (Sect. 2.2.2) and in Sect. 2.2.3 we give 
an idea of the final proof. 

2.2.1 Reduction to 2D Operators 

We do a partial Fourier transform to decompose (see Sect. 2.2.1) .Lα,γ,a . To do that, 
it is convenient to fix the gauge. Thus, from now on we suppose that the vector 
potential .Aα,γ,a is such that .Aα,γ,a = (A1, A2, A3), with 

.A1 = 0,

A2 =
{

cos γ
(
x1 − x2 (1 − a) cot α

)
for x ∈ D1

α,

a cos γ x1 for x ∈ D2
α,

A3 =
{

sin γ
(
x2 cos α − x1 sin α

)
for x ∈ D1

α,

a sin γ
(
x2 cos α − x1 sin α

)
for x ∈ D2

α.
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Note that this choices for . A1, . A2, . A3 ensure that .Aα,γ,a ∈ H 1
loc(R

3+,R3) and imply 
that the operator .Lα,γ,a is translation invariant with respect to the . x3 coordinate. We 
can then use a partial Fourier transform in the . x3 variable to decompose .Lα,γ,a via 
fiber operators living in . R2+. More precisely, we can write 

.Lα,γ,a =
∫ ⊕

τ∈R
L

α,γ,a
(τ ) dτ, (15) 

where 

.L
α,γ,a

(τ ) = −(∇ − iAα,γ,a)
2 + Vα,γ,a(τ ). (16) 

Below we explain our notations. First, we set . D1
α , .D2

α to be the orthogonal 
projections of the regions . D1

α , .D2
α over the plane .(x1x2). The magnetic potential 

.Aα,γ,a is the projection of .Aα,γ,a on . R2+, i.e., .Aα,γ,a = (A1, A2) with .A1 = 0 and 

.A2 =
{

cos γ (x1 − (1 − a) cot αx2) for (x1, x2) ∈ D1
α,

a cos γ for (x1, x2) ∈ D2
α.

(17) 

Moreover, .Aα,γ,a is such that 

.curlAα,γ,a = sα,a cos γ, sα,a = 1D1
α

+ a1D2
α
. (18) 

Finally the potential .Vα,γ,a(τ ) appearing in (16) is an electric potential which is 
defined through the projection of .Bα,γ,a on . R2+. More precisely, we denote the 
aforementioned projection by .Bα,γ,a and, explicitly, we have 

.Bα,γ,a = (cos α, sin α sin γ )sα,a ≡ (b1, b2). (19) 

The electric potential is then given by 

.Vα,γ,a(τ ) = (x1b2 − x2b1 − τ)2. (20) 

From (15) it turns out that 

. λα,γ,a = inf
τ

σ α,γ,a(τ ),

where we denoted by .σα,γ,a(τ ) the bottom of the spectrum of the operator 
.L

α,γ,a
(τ ). As a consequence, we reduced the study of .λα,γ,a to the one of the map 

.τ �→ σ(α, γ, a) (which can be proven to be .C∞, see e.g., [18, 27]).



On the Magnetic Laplacian with a Piecewise Constant Magnetic Field in .R3+ 255 

2.2.2 Spectrum of the 2D Operators 

Here we recall two results we need about the spectrum of the 2D reduced operator 
.L

α,γ,a
(τ ) for fixed2 

.α ∈ (0, π), .γ ∈ (0, π/2], .a ∈ [−1, 1) \ {0}, .τ ∈ R. 

Proposition 1 (Bottom of the Essential Spectrum) Let .a ∈ [−1, 1) \ {0}, . α ∈
(0, π), .γ ∈ (0, π/2] and .τ ∈ R. Let 

.σ ess(α, γ, a, τ ) = inf spess(Lα,γ,a
). (21) 

It holds 

.σess(α, γ, a, τ ) = inf
ξ∈R

(
μa(τ sin γ + ξ cos γ ) + (ξ sin γ − τ cos γ )2), (22) 

where .μa(·) is as in (10). 

Proposition 2 (Behavior of .σ(α, γ, a, τ ) for Large . τ ) Let .α ∈ (0, π) and . γ ∈
(0, π/2]. It holds: 
1. For .a ∈ [−1, 0): 

. lim
τ→−∞ σ(α, γ, a, τ ) = +∞, lim

τ→+∞ σ(α, γ, a, τ ) = |a|ζν0 .

2. For .a ∈ (0, 1), 

. lim
τ→−∞ σ(α, γ, a, τ ) = aζν0 , lim

τ→+∞ σ(α, γ, a, τ ) = ζν0 .

The proofs of Propositions 1 and 2 are based on the study of two auxiliary operators: 
one is useful to work near the boundary of .R2+ away from the discontinuity line 
(i.e., the intersection between the plane of equation .x1 sin α − x2 cos α = 0 and 
. R2+), meanwhile the other is an effective operator useful when working close to the 
discontinuity. We refer to [3, Section 3] for more details. Here, we only mention that 
Proposition 1, is an application of Persson’s Lemma. 

2.2.3 Conclusion of the Proof of Theorem 1 

Once Propositions 1 and 2 are established, the proof of Theorem 1 is quite simple. 
As mentioned before, one can distinguish between .γ = 0 and .γ �= 0. In the first 
case, it is immediate to get that 

.λα,0,a ≤ |a|�0, (23)

2 The case .γ = 0 can be treated directly, this is why suppose .γ �= 0 in this section. 
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by following what was proven in [1, Section 3]. Combining (23) with the fact that 
.ζ0 = �0 (see (14)) and that .βa ≥ |a|�0 (see (11), one has 

.λα,0,a ≤ min(βa, |a|ζ0). (24) 

We refer to [3, Section 4] for more details. 
In the case .γ �= 0 the proof is more involved. In particular, from Proposition 2, 

we get that 

.σ(α, γ, a, τ ) ≤ |a|ζν0 . (25) 

We can now distinguish between .a ∈ [−1, 0) and .a ∈ (0, 1). In the second case, 
i.e., .a ∈ (0, 1), there is nothing to prove. Indeed, one has that .βa = a for . a ∈ (0, 1)

(see (11)) and .ζν0 ≤ 1 (see (14)). This allows to conclude the proof of (5) for 
a positive. In the case .γ �= 0, .a ∈ [−1, 0), we have to work a bit more. From 
Proposition 1 and choosing a particular value3 of .τ = τ∗, one has 

.σ(α, γ, a, τ∗) ≤ βa. (26) 

Combining (26) with (25), the estimate in (5) holds. We now discuss the case of a 
strict inequality. From Proposition 2, we have  

. inf
τ

σ (α, γ, a, τ ) = λα,γ,a < |a|ζν0

= min
(

lim
τ→−∞ σ(α, γ, a, τ ), lim

τ→+∞ σ(α, γ, a, τ )
)
, (27) 

which implies that .infτ σ (α, γ, a, τ ) is attained at some .τ� ∈ R. Moreover, from 
Proposition 1 (see [3, Corollary 3.6]) we know that 

. inf
τ∈R σess(α, γ, a, τ ) ≥ βa.

Thus, we get 

.λα,γ,a = σ(α, γ, a, τ�) < βa ≤ σess(α, γ, a, τ�), (28) 

which implies that .λα,γ,a is an eigenvalue of .L
α,γ,a

(τ�). 

Remark 2 In [3, Proposition 1.4] we also provide a condition on .(α, γ, a) such that 
the strict inequality in (5) is realized. 

Remark 3 We consider cases of .(α, γ, a, τ ) where the infimum of the spectrum 
of .L

α,γ,a
(τ ) is an eigenvalue below the essential spectrum (see Remark 2). One 

3 One has to take .τ∗ = ξa sin γ , where . ξa is the minimum of .μa(·) introduced in (10).
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can prove an Agmon-estimate result showing the decay of the corresponding 
eigenfunction, for large values of . |x|. More precisely, let .a ∈ [−1, 1) \ {0}, 
.α ∈ (0, π), .γ ∈ (0, π/2] and .τ ∈ R. Consider the case where . σ(α, γ, a, τ ) <

σess(α, γ, a, τ ). Let .vα,γ,a,τ be the normalized eigenfunction corresponding to 
.σ(α, γ, a, τ ). For all .η ∈ √

σess(α, γ, a, τ ) − σ(α, γ, a, τ ), there exists a constant 
C (depending on . η and . α) such that 

. Qτ

α,γ,a
(eηφvα,γ,a,τ ) ≤ C,

where .φ(x) = |x|, for .x ∈ R
2+ and .Qτ

α,γ,a
is the quadratic form associated 

to .L
α,γ,a

(τ ) in . R2+. For the proof, we refer the reader to similar results in [7, 
Theorem 9.1] and [9]. 
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Quantum Systems at the Brink 

Dirk Hundertmark, Michal Jex, and Markus Lange 

1 Introduction 

Except for the famous Wigner-von Neumann potentials [48], bound states of 
quantum systems are usually found below the energies of scattering states. The 
bound state energies and the scattering energies are separated by the ionization 
threshold corresponding to the essential spectrum threshold. Above this threshold, 
the particles cease to be bound and move to infinity. Below the threshold, the binding 
energy, i.e., the difference between the ionization threshold and the energy of the 
bound state, is positive. Since the minimal energy cost to move a particle to infinity 
is given by the binding energy and since regular perturbation theory predicts that 
the energy changes only little under small perturbations the quantum system is 
stable under small perturbations. As long as the binding energy stays positive the 
corresponding eigenfunctions are still bound, i.e., they do not suddenly disappear. 

D. Hundertmark 
Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, Karlsruhe, 
Germany 

Department of Mathematics, Altgeld Hall, University of Illinois at Urbana-Champaign, Urbana, 
IL, USA 
e-mail: dirk.hundertmark@kit.edu 

M. Jex (�) 
Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical 
University in Prague, Prague, Czech Republic 

CEREMADE, Université Paris-Dauphine, PSL Research University, Paris, France 
e-mail: michal.jex@fjfi.cvut.cz 

M. Lange 
Institute for AI-Safety and Security, German Aerospace Center (DLR), Sankt Augustin & Ulm, 
Germany 
e-mail: markus.lange@dlr.de 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
M. Correggi, M. Falconi (eds.), Quantum Mathematics I, 
Springer INdAM Series 57, https://doi.org/10.1007/978-981-99-5894-8_10

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5894-8protect T1	extunderscore 10&domain=pdf

 885
45222 a 885 45222 a
 
mailto:dirk.hundertmark@kit.edu
mailto:dirk.hundertmark@kit.edu
mailto:dirk.hundertmark@kit.edu

 885
51863 a 885 51863 a
 
mailto:michal.jex@fjfi.cvut.cz
mailto:michal.jex@fjfi.cvut.cz
mailto:michal.jex@fjfi.cvut.cz
mailto:michal.jex@fjfi.cvut.cz

 885 56845 a 885 56845
a
 
mailto:markus.lange@dlr.de
mailto:markus.lange@dlr.de
mailto:markus.lange@dlr.de
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10
https://doi.org/10.1007/978-981-99-5894-8_10


260 D. Hundertmark et al.

Imagine a parameter of the quantum system being tuned such that the energy of 
a bound state, e.g., the ground state energy, approaches the ionization threshold. At 
this critical value, the perturbation theory in the parameter breaks down. Moreover, 
at this threshold there is no energy penalty for moving the quantum particle to 
infinity anymore. So it is unclear what happens exactly at this binding–unbinding 
transition: Does the bound state disappear, i.e., the quantum particle can move 
to infinity and the eigenstate of the quantum system spreads out more and more 
and dissolves, or does the bound state still exist at the critical parameter and 
then suddenly disappears (see, for example, the discussion in [29]). Consider a 
Schrödinger operators of the form 

.Hλ = − 1

2m
� − Vλ(x) + U(x) (1) 

where .− 1
2m� is the kinetic energy, U a non-zero repulsive part of the potential and 

.−Vλ a compactly supported attractive part of the potential depending on a parameter 

. λ. This operator describes one-particle models, however with slight modifications 
it can also describe interacting many-particle systems. The well-known WKB 
asymptotics, see also the work of Agmon [2], shows that the eigenfunction . ψλ

corresponding to a discrete eigenvalue . Eλ of the operator (1) falls off exponentially 
with the distance to the origin, i.e., 

. ψλ ∼ exp
(
−√

2m�Eλ|x|
)

for .|x| → ∞ where .�Eλ ≥ 0 is the binding energy, i.e., the distance of the 
eigenvalue . Eλ to the bottom of the essential spectrum of . Hλ. Such a decay estimate 
does not provide any useful information at critical coupling when .�Eλ = 0. Even  
worse, all rigorous approaches for decay estimates of eigenfunctions usually provide 
upper bounds of the form 

.|ψ(x)| ≤ Cδ exp
(
−(

√
2m�Eλ − δ)|x|

)
(2) 

for all small enough .δ > 0 with a constant . Cδ which diverges in the limit . δ →
0, see e.g. [2]. Therefore, in order to be able to prove bounds on the asymptotic 
behavior of bound states, which still yields useful information when the binding 
energy vanishes, a new approach is needed. It can not require a gap between the 
eigenvalue and the threshold of the essential spectrum to work. 

The new method developed in [23], which is presented in the next section, can 
be viewed as a higher order correction to the WKB method. The main ingredient is 
still a suitable energy estimate. However, our approach to energy estimates is based 
on the idea that a positive long–range repulsive part of the potential can stabilize a 
quantum system. Such a long range positive part allows us to gain extra flexibility, in 
particular, it remove the necessity of positive binding energy, i.e., a safety distance 
with respect to the bottom of the essential spectrum. The underlying intuition is
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Fig. 1 Sketch of tunneling 
problem for the ground state 
at zero energy: black line 
corresponds to the potential, 
red line to the energy level, 
green to the eigenstate and 
grey area to classically 
forbidden region 0 

x 
Po
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that if the binding energy .�Eλ vanishes as the parameter . λ approaches a critical 
value, the bound state can only disappear when it tunnels through the positive tail 
of potential, see Fig. 1. If this tunneling probability is zero, the ground state cannot 
disappear, hence the quantum system stays bounded at the critical coupling. This 
behavior is also predicted by numerical calculations [12, 13, 19, 42]. Our method 
makes this intuition precise, including upper bounds on the asymptotic behavior of 
the corresponding eigenfunctions at the ionization threshold. 

Before we present our approach let us shortly mention some known results 
for the existence and non-existence of threshold eigenvalues. Early results on 
existence or non-existence of threshold eigenvalues go back to [1, 26, 28, 30– 
32, 37, 39, 40, 44, 49]. In [9] it was noted that a long range Coulomb part can create 
zero energy eigenstates, see also [36, 50]. An analysis of eigenstates and resonances 
at the threshold for the case of certain nonlocal operators recently appeared in [27]. 
The references presented above are by no means exhaustive. 

The main result of the paper, presented in Theorem 1, yields decay estimates for 
bound states of quantum systems which do not require that the binding energy . �Eλ

is positive if a suitable long-range repulsive part of the potential is present. 

2 The Method 

For simplicity of the exposition we will only consider one–particle Schrödinger 
operators . Hλ of the form (1) in the following. We also assume that the potentials 
. Vλ and the long range repulsive part U are in the Kato–class, see [4, 11] or [45] 
for the definition. This ensures that the potentials are infinitesimally form bounded 
with respect to the kinetic energy . −�, so the Schrödinger operator (1) is well– 
defined with the help of quadratic form methods, [41, 46]. The ionisation threshold 
.�λ = inf σess(Hλ) is given by the bottom of the essential spectrum. We also assume 
that the potential vanishes at infinity, in which case .σess(Hλ) = [0,∞), i.e., .�λ = 0.
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Theorem 1 Each normalized eigenfunction .ψλ corresponding to an eigenenergy 
.Eλ ≤ 0 of . Hλ satisfies 

.|ψλ| � exp

(
−F − 1

2
ln

(
�Eλ + U − |∇F |2

2m

))
(3) 

with .�Eλ = −Eλ being the binding energy, and F being any function which is 
bounded from below and satisfies 

.
|∇F |2
2m

< �Eλ + U (4) 

for all .|x| ≥ R > 0. Here .U ≥ 0 is the repulsive part of the potential. 

Remark 1 Choosing .F(x) = μ|x| yields .|∇F(x)|2 = μ2. Note that . �Eλ + U −
|∇F |2
2m ≥ �Eλ − μ2

2m since .U ≥ 0. Thus in the subcritical case, when the binding 
energy is positive, upper bounds of the form (2), which, for one–particle operators, 
coincide with the result of Agmon [2], follow immediately from Theorem 1. 

In the critical case, when the binding energy vanishes, a non-zero repulsive part 
U is indispensable since otherwise (4) can never be satisfied. However, in contrast 
to the usual WKB asymptotics our bound provides detailed information on how 
well the quantum system is localized at critical coupling, when a repulsive part 
U is present. The logarithmic expression in the exponent of (3) corresponds to a 
polynomial correction of the asymptotic behavior and in all relevant cases it is of 
smaller order than F . 

The existence of the eigenstate is a necessary assumption in Theorem 1. On the  
other hand, as shown in [23, 24], the existence of an eigenstate for the critical case 
follows from bounds of the form (3) together with tightness arguments in the form 
of, e.g., [21]. 

Proof In the following we will, for notational simplicity, drop the dependence of 
the Schrödinger operator, the wave function, and the eigenenergy on the parameter 
. λ. 

Starting Point Consider a self-adjoint operator H given in (1) with and a normal-
ized eigenvector . ψ satisfying 

. Hψ = Eψ

where E is the corresponding eigenvalue below or at the threshold of the essential 
spectrum. 

1st Step Let .0 ≤ χ ≤ 1 be a smooth real-valued function satisfying 

.χ(x) =
{
0 , for |x| ≤ 1

1 , for |x| ≥ 2
. (5)
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The scaled functions given by .χR(x) = χ(x/R) for .R > 0 smoothly localize in the 
region .{|x| ≥ R}. Note that .supp∇χR is localized in the annulus .{R ≤ |x| ≤ 2R}. 

Let F be another smooth and bounded real–valued function for which also . |∇F |
is bounded. With .ξ = χReF one calculates from the eigenvalue equation 

. Re〈(ξ)2ψ,Hψ〉 = E〈(ξ)2ψ,ψ〉 = E‖ξψ‖2 .

2nd Step Using a variant [11, 16] of the IMS localization formula [25, 35, 43], we 
obtain 

. E‖χReF ψ‖2 = Re〈(ξ)2ψ,Hψ〉 = 〈ξψ,Hξψ〉 − 1

2m
〈ψ, |∇ξ |2ψ〉 .

Clearly, .∇ξ = ∇(χReF ) = ∇χre
F + χR∇FeF , so  

. |∇ξ |2 ≤
(
|∇χR|2 + 2χR|∇χR||∇F |

)
e2F + |∇F |2ξ2 .

Note that the good part .G = (|∇χR|2 + 2χR∇χR · ∇F
)
e2F has compact support, 

because the support of .∇χR is compact for any .R > 0. Rearranging the terms, we 
obtain 

.

〈
χReF ψ,

(
H − E − 1

2m
|∇F |2

)
χReF ψ

〉
≤ 1

2m
〈ψ,Gψ〉 . (6) 

The usual argument now uses Persson’s theorem [38] for the bottom of the essential 
spectrum 

.� = inf σess(H) = lim
R→∞{〈ϕ,Hϕ〉 : ‖ϕ‖ = 1, supp (ϕ) ⊂ Bc

R} (7) 

where .Bc
R = {|x| ≥ R}. Thus, since we assume that .� = 0, for any .δ > 0 there 

exist .Rδ < ∞ such that 

. 〈ϕ,Hϕ〉 > (� − δ)〈ϕ, ϕ〉 = −δ〈ϕ, ϕ〉

for all . ϕ with support outside a centered ball of radius . Rδ . So with .R = Rδ , we get 
from (6) 

. 

〈
χReF ψ,

(
− δ − E − 1

2m
|∇F |2

)
χReF ψ

〉
≤ 1

2m
〈ψ,Gψ〉

but one needs positivity of .−δ − E − 1
2m |∇F |2 and this requires .E < −δ, i.e., a 

safety distance of the negative eigenvalue to the essential spectrum. 
Instead, we use the assumption that the potential is given by .−V + U , where V 

has compact support and U is positive. Chosing R so large that the support of V is
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contained in .{|x| ≤ R}, we have  

. 〈χReF ψ,HχReF ψ〉 = 〈χReF ψ, (−� + U)χReF ψ〉 ≥ 〈χReF ψ,UχReF ψ〉

and using this in (6) one arrives at 

.

〈
χReF ψ,

(
�E + U − 1

2m
|∇F |2

)
χReF ψ

〉
≤ 1

2m
〈ψ,Gψ〉 . (8) 

where .�E = −E is the binding energy. We want to use this energy inequality to 
prove exponential bounds on . ψ , but for this we need that F is growing. 

3rd Step In order to overcome the requirement that F is bounded, we regularize it. 
Let F be smooth, bounded from below and let .∇F be bounded. Adding a constant 
to F , we can assume that .F ≥ 0. This also does not change the gradient of F . Then 
for any .ε > 0 the function 

. Fε = F

1 + εF

is smooth and bounded. Since .∇Fε = (1 + εF )−2∇F also .∇Fε is bounded. Let . ξε

and . Gε be defined as above with F replaced by . Fε. Clearly .Fε ≤ F and . |∇Fε| ≤
|∇F | for all .ε ≥ 0. Hence .Gε ≤ G and 

. |∇ξε|2 ≤ Gε + |∇Fε|2ξ2ε ≤ G + |∇F |2ξ2ε
for all .ε ≥ 0. The argument leading to (8) then shows 

.

〈
χReFεψ,

(
�E + U − 1

2m
|∇F |2

)
χReFεψ

〉
≤ 1

2m
〈ψ,Gψ〉 ≤ K‖ψ‖2 . (9) 

with .K = 1
2m supR≤|x|≤2R G(x) < ∞, since G is supported inside .{R ≤ |x| ≤ 2R}. 

Note that 

. 

〈
χReFεψ,

(
�E + U − 1

2m
|∇F |2

)
χReFεψ

〉
=

∥∥∥∥χRe
Fε+ 1

2 ln
(
�E+U− 1

2m |∇F |2
)
ψ

∥∥∥∥
2

.

The monotone convergence theorem and (9) yield 

.

∥∥∥∥χRe
F+ 1

2 ln
(
�E+U− 1

2m |∇F |2
)
ψ

∥∥∥∥
2

= lim
ε→0

〈
χReFεψ,

(
�E + U − 1

2m
|∇F |2

)
χReFεψ

〉
≤ K‖ψ‖2 < ∞ .
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for any normalized eigenfunction . ψ with energy .E ≤ 0. This proves an . L2

exponential bound on . ψ , i.e., the function 

. x �→ exp

(
F(x) + 1

2
ln

(
�E + U − 1

2m
|∇F |2)

)
ψ(x)

is in . L2 under the condition that all exponential weights F satisfy (4). The claimed 
pointwise bound on . ψ then follows from such an . L2 bound using subsolution 
estimates of [45], see, e.g., the discussion in [23, Corollary 5.4]. 

3 Examples 

In this section we consider illustrative examples of a quantum particle in a potential 
well with a long range Coulomb repulsion term. In the first example the tunable 
parameter is the depth of the potential well. We will see that the bound from 
Theorem 1 fits very well with the explicitly calculated asymptotic behavior of the 
ground state of such a system. In a second example we tune the strength of the 
repulsion term. In the last example we illustrate that a long range repulsion term is 
crucial at critical coupling. 

First Example In dimension 3 let us consider 

.Hλ = −� − λ 1{|x|≤1} + 1{|x|>1}
|x| . (10) 

Here we chose .m = 1
2 for convenience. In this case .U(x) = 1/|x| for .|x| ≥ 1. It can 

be easily shown that there exists a critical value . λcr s.t. for .λ > λcr, the Hamiltonian 
. Hλ has at least one bound state and for .λ < λcr there are none. Furthermore, for this 
system we have .� = 0 and .λcr ≈ 0.634366. 

Take .F(x) = 2b|x|1/2. Then .∇F(x) = b|x|−1/2 and 

. U(x) − |∇F(x)|2 = 1 − b2

|x| > 0

whenever .b2 < 1 and .|x| ≥ 1. Thus Theorem 1 shows the upper bound 

.|ψλ| � e−2b|x|1/2+ 1
2 ln |x| (11) 

for large . |x| and all eigenstates with energy .Eλ ≤ 0 and all .0 < b < 1. This is a  
stretched exponential decay. 

One can make the bound tighter by choosing a more general radial weight 
function. With a slight abuse of notation, we set .F(x) = F(|x|). Then .∇F(x) =
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F ′(|x|)x/|x| and the borderline case allowed, or better, just not allowed by 
condition (4) is 

. �E + U(r) − |F ′(r)|2 = 0

with .r = |x|. Hence we want to solve the equation .F ′(r) = √
�E + U(r). For  

.a, b ≥ 0 let .Fa,b be given by 

.

Fa,b(r) =
∫ r

0

(
a + b

s

)1/2

ds

=
(

a + b

r

)1/2

r + b√
a
arcsinh

[√
ar

b

]
.

(12) 

It is easy to check that the derivative in r of the right hand side is given by integrand 
.(a + b/r)1/2. Splitting .U(r) = 1/|r| = δ/r + (1− δ)/r , for .0 < δ < 1, suggests to 
take .a = �Eλ and .b = 1 − δ. Theorem 1 then gives the upper bound 

.|ψλ(x)| � e−F�Eλ,1−δ(|x|)+ 1
2 ln |x| . (13) 

for the ground state of . Hλ with .�Eλ ≥ 0 and any .0 < δ < 1. In the subcritical 
case, where the binding energy .�Eλ > 0, the first part on the right hand side of (12) 
corresponds to exponential fall-off with exponential weight .

√
�Eλ|x| (recall that 

we put .m = 1/2), which is exactly the prediction of the WKB method, and the 
second one is the polynomial correction since .arcsinh[y] = ln(y + √

y2 + 1). 
Note that 

. lim
a→0

Fa,b(r) = 2
√

br

so in the limit where the binding energy vanishes we recover the bound (11) 
from (13). See Fig. 2 for an illustration. 

One can further improve upon the upper bound, by trying an ansatz of the form 

.F(r) = Fa,b(r) − K|x|κ (14) 

for any .K > 0 and .0 < κ < 1/2. It is straigtforward to check that with . a = �Eλ

and .b = 1, this ansatz satisfies (4) for all large . |x| and all .�Eλ ≥ 0. 
For vanishing binding energy, i.e., at .λ = λcr, a matching lower bound for the 

ground state, which can be chosen to be strictly positive, of the form 

.e−2
√|x|−K|x|κ � ψλcr(x)
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Fig. 2 Scaled plot of normalized ground states for the Hamiltonian (10) with varying parameter . λ
for .x ∈ [0, 1600]. The convergence of the ground states for .λ ↘ λcr ≈ 0.63 is visible. Note that 
in this choice of scale the parabolic curves correspond to the ground state decaying asymptotically 
as .exp(−c|x|), as is predicted by the WKB method, when the parameter .λ > λcr. For .λ = λcr the 
nearly straight line indicates that the ground state decays like . exp(−2

√|x|)

for any .K > 0 and .0 < κ < 1/2, was obtained in [23] using a subharmonic 
comparison lemma [3, 17]. Explicit calculations show that the eigenfunction has 
asymptotic behavior in the form 

. ψλcr(x) ∼ C
e−2

√|x|

|x|3/4

for large . |x| which is in perfect agreement with our result. 

Remark 2 In general the existence or non–existence of ground states at critical 
coupling depends crucially on the dimension of the considered problem, see [24] 
for more details. 

Second Example We consider again an operator describing a quantum particle in a 
potential well with a repulsion term everywhere outside that well. However we do 
not decrease the depth of the well but increase the repulsion term. We start with an 
operator having a long range Coulomb repulsion term in three dimensions 

.Hc = −� − 1{|x|≤1}(|x|) + 1{1<|x|}(|x|) c

|x| . (15) 

Increasing the repulsive term, i.e., increasing the parameter c, the eigenfunctions 
become more localized up to the numerically calculated critical value . ccr ≈
3.11693, see Fig. 3.
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Fig. 3 Plot of the normalized 
ground state eigenfunction for 
the model (15) for several 
values of c 
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This operator has essential spectrum .σess(H) = [0,∞) for any c and it has 
negative energy ground state for sufficiently small positive .c < ccr. The argument 
from Example 1 shows that eigenfunctions . ψc of . Hc with energy .Ec ≤ 0 decay as 

. |ψc(x)| � exp
(−F|Ec|,c(x) + κ|x|δ)

for any .κ > 0 and .0 < δ < 1/2, where .F|Ec|,c is given by (12) with the choice 
.a = |Ec| and .b = c. 

At critical coupling .c = ccr the operator (15) has a normalizable ground state 
with eigenvalue 0. For this it is crucial to have a long range repulsive term. Without 
long range repulsion the eigenfunctions will delocalize more and more for .c ↗ ccr, 
as is illustrated in the next example. 

Third Example To see the importance of long range behavior of the repulsive 
potential we consider next a Hamiltonian with only a finite size repulsive barrier 

.H̃c = −� − 1{|x|≤1}(|x|) + c1{1<|x|<2}(|x|) , (16) 

again in dimension three. Note that the value 2 is artificial and has no particular 
importance. If we start to increase the parameter c up to the critical value . ̃ccr ≈
2.7938776, we see that far away from the critical value the increase of c leads to 
the localization of the wavefunction even by a short range potential. However for 
.c ≥ 2.5 the wavefunction starts to spread further and further and for .c = 2.78 the 
fall-off of the function is hardly visible, see Fig. 4. Using results of [24] it is easy to  
see that 0 is not an eigenvalue of the operator given in (16) for .c = c̃cr. 

The presented plots highlight the physical intuition that the wavefunction has 
to tunnel through the repulsive barrier in order to leave the potential well and 
delocalize. However the long range Coulomb repulsion is too sticky for the 
wavefunction to delocalize even at the critical value and hence we are able to prove 
fall-off behavior at the threshold of the essential spectrum.
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Fig. 4 Plot of the normalized 
ground state eigenfunction for 
the model (16) for several 
values of c. It illustrates, that 
as . c approaches . ̃ccr the 
wavefunction delocalizes 

4 Outlook 

Our method is not restricted to a Coulomb type long range part of the potential nor 
to the case of one-particle models. A variety of physical systems can be handled. 
For example, it is easy to check that for a long range repulsive potential U , which is 
radial, say, any exponential weight F of the form 

.F(r) = δ

∫ r

r0

√
U(s) ds (17) 

for some .r0 ≥ 0 and .0 < δ < 1 will satisfy (4). To yield a useful upper bound 
one need that .limr→∞ F(r) = ∞, i.e., the integral .

∫ r

r0

√
U(s) ds should diverge in 

the limit .r → ∞. For power law repulsive potentials of the form . U(r) = c1r
−α

this shows that one needs .α ≤ 2. Since for vanishing binding energy .�E = 0, the  
correction term satisfy 

. − 1

2
ln

(
U(r) − |∇F(r)|2

2m

)
∼ c2 ln r

for some (computable) constant . c2 and all large r , we get a useful upper bound for 
any .c1 > 0 when .α < 2. If  .α = 2, i.e., the repulsive part .U(r) decays like a Hardy 
type potential, we also need that . c1 is large enough. 

Of particular importance are multi–particle systems, such as N electron atoms 
with a nucleus of charge Z. For such atomic systems ground states exist once . N <

Z +1, due to a classical result by Zhislin [51]. For .N > 2Z +1, no such states exist 
[33]. Hence, for any fixed number N there is a critical charge .Zc(N) such that for 
.Z > Zc(N) bound states exist and for charges .Z < Zc(N) the quantum system has 
no bound state. Note that .Zc(N) does not have to be a whole number. 

For helium-like systems, a variational calculation of Bethe[8] shows that . Zc(2) <

1. Numerically, it is known [5] that .Zc(2) ∼ 0.91. The existence and absence of an
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eigenstate for the simplest nontrivial example of helium-like systems for .Z = Zc(2), 
was studied extensively by M. and T. Hoffmann-Ostenhof and Simon [18]. They 
derived the existence of an eigenstate at critical coupling .Zc(2) for a singlet state 
and conjectured its fall-off behavior to be subexponential [18]. This conjectured 
fall-off behavior of threshold eigenstates was used for example in [10, 14, 20, 34]. 
Using our method we recently proved in [23] that the conjecture made in [18] is  
correct. 

For general atoms, the existence of a ground state at critical coupling was studied 
in the Born-Oppenheimer approximation in [7] and without it under the additional 
condition .Zc(N) ∈ (N − 2, N − 1) in [15]. These results establish the existence 
of an eigenstate, but the derived decay bounds are far from what is physically 
expected [20]. 

Our approach relies mostly on energy estimates which, when combined with 
a geometrically inspired lower bounds for the multiparticle potentials of atomic 
systems, see e.g. [47], are also applicable to many-particle systems. In particular, 
our method is applicable to atomic systems under the additional assumption that 
.N − K > Zc(N), where K is the number of electrons leaving the atom as Z 
decreases below .Zc(N). A preprint with a proof of concept is available on the arXiv 
[22]. 

For very large atoms, it is undoubtedly necessary to use, at least for the inner 
electrons, the corresponding relativistic equations to obtain the correct results. Our 
method relies mainly on the IMS localization formula. Thus using known results for 
pseudo-relativistic quantum systems [6], it should be possible to adapt our method to 
systems with pseudo-relativistic electrons. Moreover, calculations suggest that our 
method is also valid within Hartree-Fock and Density Functional Theory (DFT). 
This is especially interesting due to the fact that these theories are inherently 
nonlinear. 
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Lowest Eigenvalue Asymptotics in Strong 
Magnetic Fields with Interior 
Singularities 

Ayman Kachmar and Xing-Bin Pan 

1 Introduction 

Throughout this chapter, . o is a bounded domain in . R2 with a . C1 boundary . ∂o that 
has a finite number of connected components. Given a vector field .A : o → R

2 and 
a positive parameter . σ , we consider the magnetic Laplacian, 

. − ∇2
σA := −A + iσ divA + 2iσA · ∇ + σ 2|A|2 . (1) 

By imposing a boundary condition, like Dirichlet or Neumann, we can associate to 
the magnetic Laplacian a self-adjoint realization in .L2(o,C), the space of square 
integrable complex-valued functions on . o. In fact, we introduce the quadratic form 

.qσA(u) =
f

o

|(∇ − iσA)u|2 dx (2) 

which is closed on the magnetic Sobolev space 

.H 1
σA(o,C) = {u ∈ L2(o,C) : (∇ − iσA)u ∈ L2(o,C2)} , (3) 

A. Kachmar (O) 
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 
China 
e-mail: akachmar@cuhk.edu.cn 

X.-B. Pan 
The Chinese University of Hong Kong (Shenzhen), Shenzhen, China 

School of Science and Engineering, East China Normal University, Shanghai, China 
e-mail: panxingbin@cuhk.edu.cn 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
M. Correggi, M. Falconi (eds.), Quantum Mathematics I, 
Springer INdAM Series 57, https://doi.org/10.1007/978-981-99-5894-8_11

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5894-8protect T1	extunderscore 11&domain=pdf

 885 51310
a 885 51310 a
 
mailto:akachmar@cuhk.edu.cn
mailto:akachmar@cuhk.edu.cn
mailto:akachmar@cuhk.edu.cn

 885
56845 a 885 56845 a
 
mailto:panxingbin@cuhk.edu.cn
mailto:panxingbin@cuhk.edu.cn
mailto:panxingbin@cuhk.edu.cn
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11
https://doi.org/10.1007/978-981-99-5894-8_11


276 A. Kachmar and X.-B. Pan

thereby it yields by the Friedrichs theorem the Neumann self-adjoint realization 
denoted by .P N

σA. Moreover, .qσA is also closed on the space 

.H 1
0,σA(o,C) = {u ∈ H 1

σA(o,C) : u = 0 on ∂o} (4) 

and so we get the Dirichlet realization denoted by .P D
σA. The lowest eigenvalues of 

.P N
σA and .P D

σA can be expressed in the variational form (min-max principle) 

. λN(σA) = inf
u∈H 1

σA(o,C)

u/=0

qσA(u)

||u||2
L2(o,C)

and λD(σA) = inf
u∈H 1

0,σA(o,C)

u/=0

qσA(u)

||u||2
L2(o,C)

.

(5) 

A part from the mathematical interest in studying the strong field limit, .σ → +∞, 
of the lowest eigenvalue of .−∇2

σA, with Dirichlet or Neumann boundary conditions, 
the lowest eigenvalue stores information related to phase transitions occurring in 
models of superconductivity and liquid crystals [8]. 

The foregoing limit is understood to a large extent when the potential . A is smooth 
[21] and to a lesser extent when the magnetic field .curlA is a step function [3, 10], 
but we would like to discuss here what happens when the regularity of . A, or even  
the regularity of the associated magnetic field .curlA, is altered in other ways. More 
precisely, how does the lowest eigenvalue of the magnetic Laplacian feels the lack 
of regularity in the magnetic potential or the magnetic field ? Can one compare the 
effect of singularities of the magnetic field to the effect of domain topology, as is 
observed for the Aharonov-Bohm effect ? 

One motivation comes from a 3D model of liquid crystals which involves .S
2-

valued vector fields with constant direction, thereby leading to examples where the 
magnetic potential . A and the magnetic field .curlA have singularities. The typical 
situation of a cylindrical container leads to a magnetic potential1 with constant 
direction and unit length; if the potential is non-uniform, then it has to be singular at 
certain points. In other occasions, one encounters a possibly discontinuous magnetic 
field but living in the Sobolev space .H 1(o,R2). 

The present chapter addresses the effect of various examples of non-smooth 
magnetic fields on the lowest eigenvalue of the magnetic Laplacian, starting with 
the analysis of the magnetic Sobolev space, followed by presenting strong field 
asymptotics of the lowest eigenvalue, and finishing with some open questions. 

The chapter is organized as follows. In Sect. 2, we recall the investigation of the 
magnetic Sobolev space introduced in (3); in particular, we signal out situations 
where it reduces to the Sobolev space .H 1(o,C). 

In Sect. 3, we revisit a classical lower bound for the quadratic form in (2), and 
generalize it to other situations.

1 In that context this is called a director field [13]. 
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In Sect. 4, we inspect magnetic potentials with singularities, but with a unit 
length. We derive asymptotics for the lowest eigenvalue both for the Dirichlet and 
Neumann realizations. In the presence of various singularities, we study the problem 
of minimizing their cost. 

In Sect. 5, we revisit the asymptotics of the lowest eigenvalue for the Dirichlet 
realization, when the magnetic field is in the Sobolev space .H 1(o,R). We conclude 
by discussing the case of the Neumann realization, the case of square integrable 
magnetic fields, and other questions related to the Aharonov-Bohm magnetic 
potential. 

2 Magnetic Sobolev Space 

The definition of .H 1
σA(o,C) in (3) makes sense when, for example, . A ∈

L2(o,R2). In fact, for .u ∈ L2(o,C), Hölder’s inequality yields that . Au ∈
L1(o,C2) and so we can define the distribution .(∇ − iσA)u ∈ D'(o,C2). One has 
to be more careful when introducing .H 1

σA(o,C) in the case where . A ∈ Lp(o,R2)

and .1 ≤ p < 2 (see [15, Sec. 2]). 

2.1 The Diamagnetic Inequality 

If .A ∈ L2(o,R2) and .u ∈ H 1
σA(o,C), we have the following point-wise inequality 

[8, Thm. 2.1.1] 

.| ∇|u| | ≤ |(∇ − iσA)u| a.e. in o . (6) 

As a consequence of it, we observe that .H 1
σA(o,C) ⊂ Lr(o,C) for all . r ∈

[1,+∞). In fact, if .u ∈ H 1
σA(o,C), then (6) yields that .|u| ∈ H 1(o) where . H 1(o)

embeds in .Lr(o) for all .r ∈ [1,+∞), by the Sobolev embedding theorem in . R2. 
If moreover we have that .A ∈ Lq(o,R2), for  some  .q > 2, then we get that 

.Au ∈ L2(o,C2) by Hölder’s inequality and then 

. ∇u = (∇ − iA)u + Au ∈ L2(o,C2) .

In this case the magnetic and non-magnetic Sobolev spaces coincide, i.e. 

.H 1
σA(o,C) = H 1(o,C) .
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Note that, by Sobolev embedding, we get .A ∈ Lq(o,R2) for some .q > 2, if we  
know that2 .A ∈ W 1,p(o,R2) for some .p ∈ (1, 2]. 

2.2 Examples 

The magnetic potential defined for .x = (x1, x2) ∈ R
2 by 

. A(x) =
(

− x2

|x| ,
x1

|x|
)

is singular at 0. However, it belongs to .L∞(R2,R2), since .|A(x)| = 1 for .x /= 0. 
Consequently, .H 1

σA(o,C) = H 1(o,C). 
Let us discuss the example of an Aharonov-Bohm magnetic potential which has 

a more complex singularity at 0. Assume that .0 ∈ o and consider the magnetic 
potential defined for .x = (x1, x2) ∈ R

2 by 

. A(x) =
( −x2

2π |x|2 ,
x1

2π |x|2
)

.

Note that .A ∈ Lp(o,R2) for all .1 ≤ p < 2. However, .A ∈ L2(U,R2) when U 
is relatively compact in .o∗ := o \ {0}. Thus, given .u ∈ L2(o,C), . Au defines a 
distribution on . o∗ (not on . o) and so does .f (u, σA) := (∇ − iσA)u ∈ D'(o∗;C2). 
The space .H 1

σA(o,C) is initially defined as follows 

. H 1
σA(o,C) = {u ∈ L2(o,C) : f (u, σA) ∈ L2(o∗,C2)} .

Comparing with the definition in (3), we observe that .H 1
σA(o,C) = H 1

σA(o∗,C). 
Now, if .u ∈ H 1

σA(o∗,C), the diamagnetic inequality yields that . u ∈ Lp(o∗,C) =
Lp(o,C) and hence .Au ∈ L1(o,C2) ⊂ D'(o,C2). Consequently, . (∇ − iσA)u

becomes a distribution on . o and .H 1
σA(o,C) can be expressed in the usual form as 

in (3). 

3 Lower Bound on the Quadratic Form 

It is quite pleasant to have a lower bound on the quadratic form .qσA(u), introduced 
in (2), holding for a wide class of functions u and vector fields . A. We will recall 
such a useful bound which follows by a tricky computation, but also requires some 
conditions on . A and u.

2 The Soboelv space .W 1,p(o,R2) consists of functions in .Lp(o,R2) with gradient in .Lp(o,R2). 
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Proposition 1 Assume that .u ∈ C∞
c (R2,C) and .A ∈ C∞(R2,R2). Then, for all 

.σ > 0, 

. 

f
R2

|(∇ − iσA)u|2dx ≥ σ

f
R2

B(x)|u(x)|2 dx ,

where .B := curlA. 

The proof of Proposition 1 follows from the following tricky formula [8, 
Lem. 1.4.1]: 

. (∂x2 − iσA2)(∂x1 − iσA1)u − (∂x1 − iσA1)(∂x2 − iσA2)u = iσBu

which yields, after taking the inner product with u and integrating by parts3 

. − 2iRe <(∂x1 − iσA1)u, (∂x2 − iσA2)u>L2(o,C) = σ <Bu, u>L2(o,C) .

The inequality in Proposition 1 now becomes a consequence of Hölder’s inequality. 
By a standard density argument, Proposition 1 can be generalized as follows. 

Proposition 2 Assume that .u ∈ H 1
0 (o,C) and .A ∈ W 1,p(o,C2) with . 1 < p <

+∞. Then for all .σ > 0, 

. qσA(u) ≥ σ

f
o

B(x)|u(x)|2 dx ,

where .B := curlA and .qσA(u) is introduced in (2). 

Proof Consider sequences .(An)n≥1 ⊂ C∞(o,R2) and . (un)n≥1 ⊂ C∞
c (o,C2)

such that 

. ||An − A||W 1,p(o,R2) → 0 and ||un − u||H 1(o,C) → 0 .

Using the Sobolev embeddings of .W 1,p(o) and .H 1(o) in .Lq(o) and . Lr(o)

respectively, where .q = 2p
2−p

> 2 and .r ∈ [1,+∞), we get by Hölder’s inequality, 

. lim
n→+∞||(An−A)u||L2(o,C2) = 0 and lim

n→+∞

f
o

(curlAn−curlA)|u(x)|2dx = 0.

To finish the proof, we apply Proposition 1 on . An and . un then we take the limit 
.n → +∞.

3 The support of the function u is compact, hence contained in some disk D. The boundary term 
resulting from the integration by parts vanishes since u vanishes on the boundary of D. 
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Remark 1 If u does not vanish on the boundary then the lower bound in Proposi-
tion 2 fails in general. In fact, if .B(x) = 1 then one has [12] 

. qσA(u) ≥ o0σ
(
1 + ε(σ )

) f
o

|u(x)|2 dx

where . lim
σ→+∞ ε(σ ) = 0 and .o0 ∈ ( 12 , 1) is a constant that will be introduced in (14). 

The foregoing lower bound is optimal in the limit of large . σ . 

Remark 2 A particular example of a vector field satisfying the hypothesis in 
Proposition 2 is 

.F(x) = x⊥

|x| , (7) 

where .x = (x1, x2) ∈ R
2 and .x⊥ = (−x2, x1). In fact, .F ∈ W 1,p(o,R2) for all 

.p ∈ [1, 2) and the magnetic field generated by . F is 

.curlF(x) = 1

|x| . (8) 

4 Magnetic Potentials in Liquid Crystals 

Generally speaking, a vector field may have various types of singularity, for 
instance, point, line or higher dimensional singularity. The typical point singularity 
at a point . x0 is of the form 

.A = Q
x − x0

|x − x0| , (9) 

where Q is an orthogonal matrix-valued function. Such a magnetic potential is of 
particular interest in the theory of liquid crystals because it obeys the constraint 
.|A| = 1 and it arises naturally as a local approximation of the isolated dislocation 
of the director field (see [17]). A point singularity in 2 dimensions can be viewed as 
a straight line singularity in cylindrical domains. In general, line singularities could 
be much more complicated. 

Molecules in liquid crystals obey two types of order, an axial order in the 
nematic phase and a layering structure in the smectic phase. Nematic/smectic phase 
transition occurs at a threshold temperature. Smectics are generally observed at 
lower temperatures and their nucleation is related to the lowest eigenvalue of the 
operator .−∇2

qn, where . n is the minimizer of the Oseen-Frank nematic energy 
[2, 13, 18]. In the one constant approximation of the Oseen-Frank energy in 3
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dimensions, under the smooth boundary datum, the minimizer . n is smooth inside 
the domain except for a finite number of singular points, and near each singular 
point . x0, . n approaches . A, where . A is the field in (9) for some orthogonal matrix Q 
(see [5, 17, 22]). 

4.1 Singularity at One Point 

We will focus on the magnetic potential 

.FQ(x) = Q
x

|x| (10) 

where Q is a .2 × 2 orthogonal matrix. The matrix Q will be either a reflection 

(in which case .Q =
(

p −q

q p

)
with .p2 + q2 = 1) or a rotation (in which case 

.Q =
(

p q

q −p

)
with .p2 + q2 = 1). 

In the reflection case, we see that 

.curlFQ = q

|x| (11) 

is non-vanishing (for .(p, q) /= (±1, 0)). While, in the rotation case, we see that 

.curlFQ = 2px1x2 − q(x2
1 − x2

2)

|x|3 (12) 

vanishes on the set 

. z = {2px1x2 − q(x2
1 − x2

2) = 0}.

Writing .(p, q) = (cosα, sinα) and .(x1, x2) = (r cos θ, r sin θ), we can express the 
zero set . z in polar coordinates as follows, .z = {sin(2θ − α) = 0}. Hence, . z consists 
of two perpendicular straight lines intersecting at the singular point of . FQ, . x = 0
(these straight lines are .{θ = α

2 } and .{θ = π
2 + α

2 }). 
The behavior associated with non-vanishing magnetic fields is completely differ-

ent from the one with vanishing magnetic fields, see for instance [1, 4, 7, 11, 12, 20]. 
So we have to deal separately with the cases of Q being a reflection (non-vanishing 
magnetic field) and a rotation (vanishing magnetic field). However, the present text 
focuses on the case where Q is a reflection and excludes the rotation case.
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Given (11) and the property of gauge invariance,4 we can assume without loss 
of generality, that .q = 1. In this way we are led to consider the following magnetic 
potential . F introduced in (7). For .a ∈ o, we consider 

.A(x) = F(x − a) and B(x) = curlA(x) = 1

|x − a| . (13) 

Theorem 1 Let the magnetic potential . A and the magnetic field B be as in (13). 
The lowest eigenvalues introduced in (5) satisfy, as .σ → +∞, 

. 
λN(σA) = σ min

(
m(B,o),o0m(B, ∂o)

)
+ o(σ ) ,

λD(σA) = σm(B,o) + o(σ ) ,

where 

. m(B,o) = inf
x∈o

|B(x)| and m(B, ∂o) = inf
x∈∂o

|B(x)| .

The constant . o0 appearing in Theorem 1 is universal and satisfies . 12 < o0 < 1. It  
can be introduced as follows (see [12] and [8, Sec. 3.2& 4.3]) 

.o0 = inf
u∈H 1

A0
(R×R+,C)

u/=0

||(∇ − iA0)u||2
L2(R×R+,C2)

||u||2
L2(R×R+,C)

, (14) 

where 

.A0(x) = 1

2
(−x2, x1) for x = (x1, x2) ∈ R

2 . (15) 

Note that Theorem 1 is consistent with the known results where the magnetic field 
.B = curlA is continuous [8, Thm. 8.1.1]. The proof of Theorem 1 does not differ 
from the case where B is continuous, except that we have to be a bit careful near the 
singularity point a. As we shall see, the presence of the singularity will increase the 
energy much above .m(B,o), by Proposition 2. 

Proof (of Theorem 1) 
Lower Bound 

Let us start with the Neumann realization. Let .ε ∈ (0, 1) be a constant such that 

.
1

ε
> m(B,o) and D(a, 2ε) ⊂ o, (16) 

where .D(a, r) := {x ∈ R
2 : |x − a| < r} is the open disc of center a and radius r .

4 The lowest eigenvalues with magnetic potentials . A and .A' := A − ∇χ are equal, by the unitary 
transformation .(u,A) |→ (u' := eiχu,A' = A − ∇χ), for any function .χ ∈ H 1(o). 
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Let .u ∈ H 1(o,C) and .u /≡ 0, so that .||u||L2(o,C) > 0. We will write estimates 
of the quadratic form .qσA(u) (see (2) and (13)) that hold uniformly with respect to 
.u ∈ H 1(o,C), . ε and .σ ∈ N∞, where .N∞ is some neighborhood of .+∞. 

We define the two open sets 

. o1,ε = {x ∈ o : |x − a| > ε} and o2,ε = {x ∈ o : |x − a| < 2ε} .

Then we consider the partition of unity 

. ϕ2
1,ε + ϕ2

2,ε = 1,

where, for .i ∈ {1, 2}, 

. suppϕi,ε ⊂ oi,ε ,

and 

. |∇ϕi,ε| ≤ Cε−1 .

Let 

. ui,ε = ϕi,εu for i ∈ {1, 2} .

Then we have the following decomposition of the quadratic form (the first identity 
below is the celebrated IMS formula): 

. qσA(u) = qσA(u1,ε) + qσA(u2,ε) −
2E

i=1

f
o

|∇ϕi,ε|2|u|2 dx

≥ qσA(u1,ε) + qσA(u2,ε) − C

ε2

f
o

|u|2 dx .

Since .u2,ε is supported in .o2,ε ⊂ {|x − a| < 2ε}, we get by (13) and Proposition 2, 

.qσA(u2,ε) ≥ σ

f
o2,ε

1

|x − a| |u2,ε|
2 dx ≥ σ

ε
||u2,ε||2L2(o,C)

. (17) 

Since . A is smooth on .o1,ε and .u1,ε = 0 on .∂D(a, ε), then (see the argument in [8, 
Sec. 8.2.2]) 

. qσA(u1,ε) =
f

o1,ε

|(∇ − iσA)u1,ε|2 dx ≥
(
σdε − Cεσ

3/4
) f

o1,ε

|u2,ε|2 dx ,

(18)
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where .Cε > 0 is a constant independent of . σ and 

. dε = min
(

inf
x∈o1,ε

|B(x)| , o0 inf
x∈∂o

|B(x)|
)

≥ min
(
m(B,o),o0m(B, ∂o)

)
.

Hence, collecting (18), (17) and (16), we obtain the lower bound 

. qσA(u) ≥
(
σ min

(
m(B,o),o0m(B, ∂o)

) − Cεσ
3/4 − C

ε2

) f
o

|u|2 dx .

The min-max principle then yields (recall that . ε is fixed by (16)), 

. λN(σA) ≥ σ min
(
m(B,o),o0m(B, ∂o)

) + O(σ 3/4) .

For the Dirichlet case, we should consider the boundary condition .u = 0 on . ∂o, 
and use the lower bound in Proposition 2 which yields 

. qσA(u) ≥
f

o

B(x)|u(x)|2dx ≥ m(B,o)||u||2
L2(o,C)

.

Now we conclude by the min-max principle the non-asymptotic lower bound, 

. λD(σA) ≥ σm(B,o) .

Upper Bound 

Step 1. The Dirichlet realization 
Fix an arbitrary point .x0 ∈ o \ {a}. There exists .ε0 > 0 such that . D(x0, ε0) ⊂

o \ {a}. Define the function 

.ux0,σ (x) = π−1/2
/

σB(x0) χ(x) exp

(
−1

2
σB(x0) |x − x0|2

)
, (19) 

where .χ ∈ C∞
c (o) satisfies that .χ = 1 in .D(x0, ε0/2), .suppχ ⊂ D(x0, ε0), and 

.0 ≤ χ ≤ 1 in . o. Since . A is smooth on .D(x0, ε0), we can expand it by Taylor’s 
formula to order 2 near . x0 and get a function .ϕ0 ∈ C∞(

D(x0, ε0)
)
such that (see [8, 

p. 11]) 

.A(x) − ∇ϕ0 = Alin(x − x0) + O(|x − x0|2) , (20) 

where 

.Alin(x) = 1

2
B(x0)

( − x2, x1
)
.
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Now we set 

. wx0,b(x) = eiσϕ0(x)ux0,σ (x).

Then we can check easily that (see [8, Sec. 1.4.2 & Eq. (1.36)]) 

. qσA(ux0,σ ) ≤
(
σB(x0) + O(σ 1/2)

)
||ux0,σ ||2

L2(o,C)
.

The min-max principle yields 

. λD(σA) ≤ σB(x0) + O(σ 1/2) .

Dividing by . σ , taking .lim supσ→+∞ then minimizing over .x0 ∈ o \ {a}, we get 

. λD(σA) ≤ σ m(B,o) + o(σ ) .

Step 2. The Neuamnn realization 
Since the Dirichlet form domain is contained in that of Neumann, we infer from 

(5), 

. λN(σA) ≤ λD(σA).

So, in light of Step 1, it is enough to prove the upper bound 

. λN(σA) ≤ σo0m(B, ∂o) + o(σ ) .

Choose .x0 ∈ ∂o such that 

. B(x0) = inf
x∈∂o

B(x).

Again, we can select a smooth function . ϕ0 such that, in a (boundary) neighborhood5 

. Vx0 of . x0, 

. A(x) = Alin(x − x0) + ∇ϕ0 + r(x) where r(x) = O(|x − x0|2).

Then, for a function u supported in . Vx0 , 

.

qσA(eiϕ0u) =
f

Vx0

|(∇ − iσAlin(x − x0))u|2 dx +
f

Vx0

|ru|2 dx

+ <(∇ − iσAlin(x − x0))u, ru>L2(Vx0 ) .

5 We can take the boundary neighborhood of the form .Vx0 = D(x0, r) ∩ o. 
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But, since . ∂o is smooth, we can select the function u such that (see [8, Sec. 8.2.1]) 

. 

f
Vx0

|(∇ − iσAlin(x − x0))u|2 dx ≤
(
o0σB(x0) + o(σ )

) f
o

|u|2 dx

f
Vx0

|x − x0|4|u|2 dx = o(σ )

f
Vx0

|u|2 dx .

The min-max principle then yields the desired upper bound on the eigenvalue 
.λN(σA). 

Remark 3 The proof of Theorem 1 yields a lower bound on the quadratic form 
which allows us to extract localization properties of ground states via Agmon 
estimates (see [8, Sec. 7.2.6]). The ground states of .λD(σA) are localized near the 
set .C0 := {x ∈ o : |B(x)| = m(B,o)}. As for the ground states of .λN(σA), they  
are localized near . C0 if .m(B,o) < o0m(B, ∂o); if .o0m(B, ∂o) < m(B,o), then 
the localization occurs near the set .C1 := {x ∈ ∂o : |B(x)| = m(B, ∂o)} (see [8, 
Sec. 8.2.3]). 

Remark 4 The upper bounds 

. λD(σA) ≤ σ m(B,o) + o(σ )

λN(σA) ≤ σ min
(
m(B,o),o0m(B, ∂o)

)
+ o(σ )

continue to hold for any magnetic potential . A generating a magnetic field . B =
curlA that satisfies6 .B ∈ C(o \ {a1, · · · , aN }) and .B > 0 on . o, where 
.a1, · · · , aN ∈ o. 

4.2 Finitely Many Singular Points 

We will introduce a magnetic potential with finitely many singular points in the 
domain . o as superposition of the potentials with one singular point. Consider an 
integer .N ≥ 1, real numbers .m1, · · · ,mN ∈ (0, 1], and distinct points . a1, · · · , aN

in . o. We put .m = (m1, · · · ,mN) and .a = (a1, · · · , aN). Define the magnetic 
potential with N interior singular points 

.AN,m,a(x) = 1

N

NE
i=1

miF(x − ai) , (21) 

6 The only difference is that the remainder .O(|x − x0|2) in (20) will be replaced by .o(|x − x0|).
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which generates the following magnetic field 

.BN,m,a(x) = curlAN,m,a(x) = 1

N

NE
i=1

mi

|x − ai | . (22) 

The proof of Theorem 1 can be easily adapted when we take .A = AN,m,a. 

Theorem 2 Let .B = curlA and .A = AN,m,a be as in (21). The lowest eigenvalues 
introduced in (5) satisfy, as .σ → +∞, 

. 
λN(σA) = σ min

(
m(B,o),o0m(B, ∂o)

)
+ o(σ ) ,

λD(σA) = σm(B,o) + o(σ ) ,

where 

. m(B,o) = inf
x∈o

|B(x)| and m(B, ∂o) = inf
x∈∂o

|B(x)| .

It is natural to address the following 

Question For a given N , what are the locations of the singularities .a1, · · · , aN so 
that the ground state energies .λN(σAN,m,a) and .λD(σAN,m,a) are minimal ? 

In light of Theorem 2, we opt to minimize the limit quantities 

.

e(N,m, a,o) := m(BN,m,a,o) and

e'(N,m, a,o) := min
(
m(BN,m,a,o),o0m(BN,m,a, ∂o)

)
.

(23) 

To that end we introduce 

. e∗(N,m,o) = inf
a∈So

e(N,m, a,o) and e'∗(N,m,o) = inf
a∈So

e'(N,m, a,o)

(24) 

where 

.So = {(a1, · · · , aN) ∈ o
N : ai /= aj for i /= j} , (25) 

and introduce the sets of minimal points 

.

M∗(N,m,o) ={a ∈ o
N : e(N,m, a,o) = e∗(N,m,o)} and

M'∗(N,m,o) ={a ∈ o
N : e'(N,m, a,o) = e'∗(N,m,o)} ,

(26)
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Fig. 1 A domain with 
several ‘poles’ 

which describe the location of the minimum points. We will find, in Proposition 3, 
the values of .e∗(N,m,o) and .e'∗(N,m,o), and the location of the singular points, 
where the infimum in (24) is achieved, is on the boundary, at the ‘pole(s)’ of the 
domain (see Fig. 1). The precise result is 

Proposition 3 For all .N ≥ 1 and .m = (m1, · · · ,mN) ∈ (0,∞)N , we have 

. e∗(N,m,o) = 1

N diam(o)

NE
i=1

mi and e'∗(N,m,o) = o0

N diam(o)

NE
i=1

mi ,

(27) 

and 

. 
M∗(N, m,o) =M'∗(N, m,o)

={(a1, · · · , aN) ∈ (∂o)N : ∃ y ∈ ∂o, ∀ i ∈ {1, · · · , N}, |ai − y| = diam(o)} ,

where .diam(o) denotes the diameter of . o. 

We may call the elements of the set .M∗(N,m,o) the ‘poles’ of the domain . o. We  
emphasize that 

. M∗(N,m,o) ⊂ (∂o)N .

Let us look at some particular examples: 

• When .o = D(0, 1) is the unit disk, 

.M∗(N,m, ∂o) = ∂o × · · · × ∂o (N -folds).
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• For the ellipse case, .o = {(x, y) : x2

c2
+ y2

d2
< 1}, 

. M∗(N,m,o) = {−P,P }N,

supposing that .c > d > 0, where .P = (c, c) and .−P = (−c,−c). 
• For other domains, the set .M∗(N,m,o) may have a more complex form, in 

particular, the symmetric domain displayed in Fig. 1, which has four ‘poles’. 

Proof (of Proposition 3) 
Choose .a, b ∈ ∂o such that .dist(a, b) = diam(o). For every . ε ∈

(0, 1
2N diam(o)] and .i ∈ {1, · · · , N}, let  

. ai = a + iεν

where . ν is the interior unit normal vector of . ∂o. If  . ε is small enough, then all the 
points . ai are in . o, .a := (a1, · · · , aN) ∈ So (see (25)) and 

. e∗(N,m,o) ≤ e∗(N,m, a,o) ≤ BN,m,a(b) ,

where .e∗(N,m, a,o) is introduced in (24) and .BN,m,a is introduced in (22). By  
the triangle inequality, .|b − ai | ≥ |b − a| − Nε > 0, hence 

. BN,m,a(b) ≤ 1

|b − a| − Nε

1

N

NE
i=1

mi .

As .ε → 0+, we get 

. e∗(N,m,o) ≤ 1

|b − a|
1

N

NE
i=1

mi = 1

diam(o)

1

N

NE
i=1

mi ,

since .|b − a| = diam(o). 
On the other hand, for all .a = (a1, · · · , aN) ∈ So, 

. |x − ai | ≤ diam(o) (x ∈ o) .

In light of (22), we infer 

.∀ x ∈ o , |BN,m,a(x)| ≥ 1

diam(o)

1

N

NE
i=1

mi .
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Minimizing over .x ∈ o then over .a ∈ So, we get 

. 
1

diam(o)

1

N

NE
i=1

mi ≤ e∗(N,m,o) .

This finishes the proof of the part in Proposition 3 concerning .e∗(N,m,o). The  
statement concerning .e'∗(N,m,o) can be handled similarly. 

5 Magnetic Field in Sobolev Space 

So far, we considered in Sect. 4, a magnetic potential . A generating the magnetic 
field .B(x) = 1

|x−a| which is singular at .a ∈ o. Other singularities may occur when 

the magnetic field is in the Sobolev space .H 1(o,R). For instance, the magnetic 
field 

.B(x) =
(
ln

R

|x − a|
)p

where 0 < p < 1 and R > diam(o) , (28) 

is singular at a, despite that .B ∈ H 1(o,R), which suggests that the singularity here 
is slightly less than the one encountered in Sect. 4. 

In general, given .B ∈ H 1(o,R), we can extend B to a compactly supported 
function in .H 1(R2,R) and introduce the magnetic potential 

.A(x) =
(f 1

0
sB(sx)ds

) [−x2

x1

]
(29) 

generating the magnetic field .curlA = B, which is not singular in . o since . A ∈
H 1(o,R2) and after a gauge transformation it yields a potential in .H 2(o,R2), see  
[8, Prop. D.2.5]. 

5.1 The Dirichlet Realization 

The presence of a magnetic field in the Sobolev space, .H 1(o,R), is related to [8, 
Open problem 9], [19, Open problem 2.2.9] and [9]. The case when the magnetic 
field does not not vanish in . o was studied in [16] for the Dirichlet realization. 

Theorem 3 (cf. Theorem 1.2 in [16]) Assume that . A is given by (29), where . B ∈
H 1(o) satisfies 

.m0(B,o) := inf ess
x∈o

B(x) > 0 .
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Then, the lowest eigenvalue of the Dirichlet Laplacian, introduced in (5), satisfies 
as .σ → +∞, 

. λD
1 (σA) = σ m0(B,o) + o(σ ) .

Let us give a sketch of the proof of Theorem 3. First, by Proposition 2, we have  
the non asymptotic lower bound 

.λD
1 (σA) ≥ σ m0(B,o) . (30) 

So the point is to prove the asymptotic upper bound 

.λD
1 (σA) ≤ σ m0(B,o) + o(σ ) . (31) 

This follows if we construct a family of trial states, .(wε)ε∈(0,1], such that, for all 
.ε ∈ (0, 1], we have  

. qσA(wε) ≤ σ (m0(B,o) + ε + Rε(σ )) ||wε||2L2(o,C)
,

where .qσA is introduced in (2) and . lim
σ→+∞ Rε(σ ) = 0. 

The idea behind the construction of . wε is to replace .B(x) by .f (x, σ−3/8), its 
average on the disc .D(x, σ−3/8), then to find an appropriate gauge function . ϕε so 
that, locally, .A − ∇ϕ is a good approximation of a magnetic potential generating a 
uniform magnetic field,7 of strength .f (xε, σ

−3/8), for an appropriately chosen point 
. xε in . o. 

Consider the open set in .R
2 ×R+, .õ = {(x, r) ∈ o ×R+ : D(x, r) ⊂ o}. We  

introduce the two functions on . õ, defined as follows, 

. f (x, r) = 1

|D(x, r)|
f
D(x,r)

B(z) dz and g(x, r)= 1

|D(x, r)|
f
D(x,r)

|∇B(z)|2dz .

By the Lebesgue differentiation theorem, the limits 

. f (x) := lim
r→0

f (x, r) and g(x) := lim
r→0

g(x, r)

exist almost everywhere. Moreover 

.B(x) = f (x) and |∇B(x)|2 = g(x) a.e.

7 In general, when localizing in a disc of radius .σ−ρ , one encounters two types of errors, 
.O(σ 2ρ) resulting from the localization cut-off, and .O(σ 3−6ρ) resulting from the approximation 
of the magnetic field; optimizing we get .2ρ = 3 − 6ρ and therefore .ρ = 3/8; see  [16, 
Sec. 5.1 & Eq. (5.4)]. 
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For instance, there exists a set N of (area) measure 0 such that . m0(B,o) =
inf

x∈o\N f (x) and, for any .ε > 0, we can pick .xε ∈ o \ N such that 

.m0(B,o) ≤ lim
r→0

(
1

|D(xε, r)|
f

D(xε,r)

B(z) dz

)
= f (xε) ≤ m0(B,o)+ε (32) 

and 

. lim
r→0

(
1

|D(xε, r)|
f

D(xε,r)

|∇B(z)|2dz

)
= g(xε) < +∞ .

We pick .σε ≥ 1 such that .D(xε, σ
−3/8
ε ) ⊂ o. In the sequel .σ ≥ σε. Consider the 

two vector fields 

. Aε(x) = 2
f 1

0
sB

(
s(x − xε) + xε

)
A0(x − xε)ds ,

Aε
0(x) = f (xε, σ

−3/8)A0(x − xε) ,

where . A0 is the vector field in (15). Notice that, .curlAε = B and . curlAε
0 =

f (xε, σ
−3/8) in .D(xε, σ

−3/8). We can find a function . ϕε in .H 1
(
D(xε, σ

−3/8)
)
such 

that 

. Aε(x) − ∇ϕε = A on D(xε, σ
−3/8) .

Moreover, we have the following inequality (cf. [16, Thm. 1.1])  

.

f
D(xε,σ−3/8)

|Aε(x) − Aε
0(x)|2dx ≤ 8πσ−9/4g(xε, σ

−3/8) . (33) 

We introduce the trial state 

. wε(x) = e−iσϕε(x)vε(x)

where (compare with (19)) 

. vε(x) = π−1/2
/

σf (xε, σ−3/8) χε(σ
3/8x) exp

(
−1

2
σf (xε, σ

−3/8)|x − x0|2
)

,

and .χε ∈ C∞
c (R2) satisfies, 

.χε = 1 in D(xε, 1/2), suppχε ⊂ D(xε, 1) and 0 ≤ χε ≤ 1 in R2 .
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Then, 

. ||wε||2L2(o,C)
= 1 + o(σ−1)

and, by (33) and Cauchy’s inequality, 

.qσA(wε) ≤ σf (xε, σ
−3/8) + Cεσ

7/8 . (34) 

The min-max principle and (32) yields 

. lim sup
σ→+∞

(
λD(σA)

σ

)
≤ f (xε) ≤ m0(B,o) + ε

for all .ε ∈ (0, 1]. Sending . ε to 0 we get the desired upper bound in (31). 

5.2 The Neumann Realization 

The analogue of Theorem 3 for the Neumann realization is not tackled yet. By 
comparing the Dirichlet and Neumann eigenvalues in (5), we get 

. λN(σA) ≤ σ m0(B,o) + o(σ ) .

Let us introduce the essential infimum of B with respect to the arc-length measure 
along . ∂o, .m0(B, ∂o) = inf ess

x∈∂o
B(x), and assume that .m0(B, ∂o) > 0. We can 

repeat the constructions in the derivation of the upper bound in (31), by working 
in a neighborhood of the boundary . ∂o, where one can use the adapted Frenet 
coordinates (defined by the transversal distance to and the arc-length distance along 
. ∂o). In this way, we can establish the upper bound (compare with Theorem 1) 

. λN(σA) ≤ o0σ m0(B, ∂o) + o(σ ) .

Consequently, we have 

. lim sup
σ→+∞

λN(σA)

σ
≤ min

(
m0(B,o),o0m0(B, ∂o)

)

and one can ask whether the following matching lower bound holds 

. lim inf
σ→+∞

λN(σA)

σ
≥ min

(
m0(B,o),o0m0(B, ∂o)

)
. (35)
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The lower bound in (35) seems related to a lower bound on 

. qσA(u) − o0

f
o

B(x)|u(x)|2dx ,

which is an analogue of the one in Proposition 2 but for functions that do not vanish 
on the boundary . ∂o. Such a lower bound is out of reach at the moment. 

Another possibility is to study the limit profile of an actual ground state, . uσ , of  
.λN(σA), which is quite clear in the setting of a smooth magnetic field [8, Sec. 11.4], 
but the study is missing in the setting where the magnetic field only satisfies . B ∈
H 1(o,R). 

6 Other Magnetic Fields 

6.1 Square Integrable Magnetic Fields 

The lower bound in (30) continues to hold, by Proposition 2, when .B ∈ L2(o), since 
we can always find .A ∈ H 1(o,R2) satisfying .curlA = B (see [8, Prop. D.2.1]). 
An open question is whether the matching upper bound in (31) holds too under this 
relaxed assumption. 

We discuss here two examples of a square integrable magnetic field not in the 
Sobolev space .H 1(o). For instance, for a fixed .a ∈ o, the magnetic field (compare 
with (7)) 

.B(x) = 1

|x − a|p for 0 < p < 1 , (36) 

is singular at .a ∈ o and satisfies .B ∈ L2(o). It is generated by the magnetic 
potential 

. A(x) = 1

(4 − 2p)|x − a|p A0(x − a) ,

where . A0 is introduced in (15). Since .B ∈ C1(o \ {a}), we get as in the proof of 
Theorem 1, 

. lim sup
σ→+∞

λD(σA)

σ
≤ m0(B,o) ,

thereby Theorem 3 holds for the square integrable magnetic field in (36). 
Another example is that of a magnetic step [3], where 

.B(x) = b1o1 + 1o2 (37)
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where .b ∈ (0, 1) is a constant, .o1,o2 are non-empty pairwise disjoint open subsets 
of . o such that their closures cover . o. Note that .m0(B,o) = b. Picking . x0 ∈ o1
and considering the quasi-mode (as in (19), .D(x0, ε0) ⊂ o1 for some .ε0 > 0), 

. ux0,σ (x) = π−1/2
√

σb χ(x) exp

(
−1

2
σb |x − x0|2

)

we get that 

. λD(σA) ≤ σb + o(σ ) = σ m0(B,o) + o(σ ) ,

hence Theorem 3 continues to hold for this example too. 
Note that, in [3], for the magnetic field in (37) and the Neumann realization, an 

interesting example where .b ≈ −1 and .o1,o2 are separated by a smooth curve that 
intersects . ∂o transversely, the lowest eigenvalue .λN(σA) satisfies 

. lim
σ→+∞

λN(σA)

σ
< min

(
m0(B,o),o0m0(B, ∂o)

)

thereby violating (35), but when B changes sign. It would be interesting to get the 
same result for a particular .b ∈ (0, 1). 

6.2 Aharonov-Bohm Fields 

Loosely speaking, a magnetic field defined on a domain . o with singularity in a 
subset .S ⊂ o can be seen as a magnetic field without singularity defined in the 
punched domain .o\S, and the singular set S can be viewed as holes. The celebrated 
Aharonov-Bohm effect is a nice example, where the non-trivial topology of the 
domain interacts with the magnetic flux. 

Let us introduce the Aharonov-Bohm magnetic potential 

.FAB(x) =
(

− x2

2π |x|2 ,
x1

2π |x|2
)

(38) 

which satisfies .curlA = δ0 in the distributional sense (i.e. in .D'(o)). Here . δ0 is the 
Dirac measure at 0. 

It can be approximated formally via the regularized potential 

.Fε(x) =
{
FAB(x) if |x| > ε

1
πε2

A0(x) if |x| < ε
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where . A0 is introduced in (15). The regularized magnetic potential generates the 
following magnetic field 

. Bε(x) = curlFε(x) = 1

πε2
1D(0,ε) ,

which approximates . δ0 in .D'(o). 
Let .a ∈ o and consider 

. A(x) = FAB(x − a) and Aε(x) = Fε(x − a) .

Then, by [15, Thm. Eq. (5.17)], for every .σ > 0, the lowest eigenvalue for the 
Neumann realization satisfies, as .ε → 0+, 

. λN(σAε) = λN(σA) + o(1) .

The same formula continues to hold for the Dirichlet realization. Here, the function 

. σ |→ λN(σA)

is .2π -periodic and vanishes if and only if . σ is an integer multiple of . π (see [14] and 
[15, Thm. 1.4]). It would be interesting to establish these formulas uniformly with 
respect to .σ ∈ R+, or when . σ depends on . ε and is large (i.e. .σ → +∞ as .ε → 0). 

Moreover, as in [6], another interesting case could be when . A(x) = A0(x) +
Fε(x − a) (resp. .A(x) = A0(x) + FAB(x − a)), which induces the magnetic field 

. curlA(x) = 1 + 1

πε2
1D(0,ε) (resp. curlA(x) = 1 + δ0) .

This might be helpful in violating Theorem 3, when working under the hypothesis 
that B only belongs to .L2(o). 
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Part III 
Effective Nonlinear Models



Invariant Measures as Probabilistic 
Tools in the Analysis of Nonlinear ODEs 
and PDEs 

Zied Ammari, Shahnaz Farhat, and Vedran Sohinger 

1 Introduction 

The concept of a Gibbs measure originates from statistical physics and is related to 
the thermal equilibrium of a dynamical system. Nowadays, it is quite widespread 
in the literature, appearing in different forms and in various subjects. For instance 
in Probability, gaussian random fields are (free) Gibbs measures; while in Ergodic 
theory the Sinai–Ruelle–Bowen measures are an appropriate form of local Gibbs 
measures. On the other hand, in Mathematical Physics, Gibbs measures correspond 
to the Euclidean .(ϕ4

d) field theory. There is of course a large body of literature on 
each of these topics. For a general overview, we refer the reader to the following 
three monographs [7, 18, 19]. 

In this short note, we consider Gibbs measures for finite and infinite dimensional 
Hamiltonian systems and emphasise their statistical mechanical properties. On 
the other hand, we explain how Gibbs measures (likewise any other invariant 
measure) can be used as a tool for constructing global solutions for some nonlinear 
PDEs almost surely. For more than two decades, probabilistic tools have been 
used with remarkable success in order to study nonlinear dispersive PDEs at low 
regularity (see for instance [4–6, 11, 15, 17] and the references therein). Most of 
these results consider specific equations and combine local well-posedness analysis 
with probabilistic arguments. Our purpose here is to observe that almost sure 
existence (possibly without uniqueness) of global solutions for an abstract initial 
value problem is a general feature that is the sole consequence of existence of an 
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“invariant” measure. Invariance here is not meant in the sense that the flow preserves 
the measure, since we may not a priori have a well-defined one, but instead invariant 
measures are defined to be stationary solutions for a related Liouville equation. The 
results reported here are based on our two articles [2] and [1]. 

2 Gibbs Measures 

2.1 Finite Dimensions 

Hamiltonian systems: Consider a finite dimensional phase-space .E ≡ R
2n and a 

Hamiltonian function .h : E → R which is of class . C 1 or . C 2. A natural symplectic 
structure is introduced on E by choosing a skew-symmetric matrix J such that . J 2 =
−I2n and defining a symplectic form: 

.σ(u, v) = 〈u, Jv〉 . (1) 

A Hamiltonian dynamical system is then defined through the vector field . X : E →
E, 

.X(u) = J∇h(u) , ∀u ∈ E, (2) 

and the field equation: 

.u̇(t) = X(u(t)) . (3) 

The later initial value problem is complemented with an initial condition . u(t0) =
u0 ∈ E at a given time . t0. In the case where .h ∈ C 1, existence of local solutions 
for the equation (3) is provided by the Peano Theorem. On the other hand, when 
.h ∈ C 2, the Cauchy–Lipschitz theorem guarantees the uniqueness and existence 
of local (maximal) solutions. Remark that completeness of the vector field X is in 
general not guaranteed without further assumptions, which means that some initial 
conditions may not give rise to global in time solutions for (3). 

In order to define a Gibbs measure for the above Hamiltonian system, we assume 
that 

.zβ :=
∫

E

e−βh(u) dL < +∞ , (4) 

for some .β > 0. Here, . dL denotes the Lebesgue measure on E.
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Definition 1 (Gibbs Measure) The Gibbs measure of the Hamiltonian system (2)-
(3), at inverse temperature .β > 0, is the Borel probability measure given by 

.μβ = e−βh(·) dL∫
E

e−βh(u) dL
≡ 1

zβ

e−βh(·) dL . (5) 

Theorem 1 (Invariance) If the Hamiltonian vector field X is complete then the 
Gibbs measure . μβ is invariant with respect to the Hamiltonian flow. More precisely, 
let . φt denote the global Hamiltonian flow of (3) then for all .t ∈ R, 

. (φt )�μβ = μβ ,

or equivalently, for all Borel subsets B of E, 

. μβ

(
(φt )

−1(B)
)

= μβ (B) .

Proof It follows from the Liouville theorem and the conservation of energy: 

. 
d

dt
h(φt (u)) = 〈∇h(φt (u)), J∇h(φt (u))〉 = 0 .

Gibbs measures are more than invariant measures. They satisfy more properties 
reflecting their statistical stability. In fact, Gibbs measures are the unique probability 
measures verifying the Gibbs variational principle and the Classical Kubo-Martin-
Schwinger (KMS) condition stated below. 

Theorem 2 (Gibbs Variational Principle) The Gibbs measure . μβ is the unique 
minimizer of the entropy (free-energy) functional: 

.E(ν) =
∫

E

� log
(
�
)
dL + β

∫
E

h dν , (6) 

where . ν is any probability measure such that .ν = �dL. 

Proof Note that by convention .E(ν) = +∞ if the r.h.s of (6) is non integrable. A 
simple computation then yields 

. E(ν) =
∫

E

dν

dμβ

log

(
dν

dμβ

)
dμβ − log(zβ).

Hence, Jensen’s inequality (for .x log(x)) proves that . μβ is the unique minimizer. 

In the sequel, we denote by .P(E) the set of all Borel probability measures on E.



304 Z. Ammari et al.

Definition 2 We say that a probability measure .μ ∈ P(E) satisfies the classical 
Kubo–Martin–Schwinger (KMS) condition if and only if 

.

∫
E

{F,G}(u) dμ = β

∫
E

{F, h}(u) G(u) dμ , (7) 

for all compactly supported smooth functions .F,G ∈ C ∞
c (E). 

Theorem 3 (KMS Principle) The Gibbs measure .μβ is the unique probability 
measure satisfying the KMS condition (7). 

Proof See [1, Theorem 4.2] 

It is worth noticing that in the above result, we do not require . μ in (7) to be 
absolutely continuous with respect to the Lebesgue measure. 

2.2 Infinite Dimensions 

The latter results extend to the following framework of infinite dimensional 
Hamiltonian systems. Consider a positive operator .A : D(A) ⊆ H → H such 
that, 

.∃c > 0, A ≥ c1 . (8) 

A Hamiltonian dynamical system is defined using the quadratic function, 

.h0 : D(A1/2) → R, h0(u) = 1

2
〈u,Au〉 . (9) 

In this case, the vector field is a linear operator .X0 : D(A) → H , 

. X0(u) = −iAu,

and the linear field equation governing the dynamics of the system is: 

.u̇(t) = X0(u(t)) = −iAu(t). (10) 

We suppose furthermore that the operator A admits a compact resolvent. Hence, 
there exists an orthonormal basis in H of eigenvectors .{ej }j∈N of A associated with 
eigenvalues .{λj }j∈N such that for all .j ∈ N, 

.Aej = λj ej . (11)
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We make the following assumption: 

.∃s ≥ 0 :
∞∑

j=1

1

λ1+s
j

< +∞, (12) 

and henceforth work with fixed s satisfying (12). 
Here the Hilbert space H is complex. But sometimes, we will use it with its real 

structure and in this case we denote it by . HR. In particular, the family . {ej , iej }j∈N
is an O.N.B of . HR endowed with its inner product .〈·, ·〉HR

:= e〈·, ·〉. 
Weighted Sobolev Spaces The operator A introduces a weighted Sobolev space 
constructed as follows. For any .r ∈ R, define the inner product: 

. ∀x, y ∈ D(A
r
2 ) , 〈x, y〉Hr := 〈Ar/2x,Ar/2y〉 .

Then for .r ≥ 0: 

• . Hr is the Hilbert space .(D(Ar/2), 〈·, ·〉Hr ). 
• .H−r denotes the completion of the pre-Hilbert space .(D(A−r/2), 〈·, ·〉H−r ). 
• One has the canonical continuous and dense embedding (Hilbert rigging): 

. Hr ⊆ H ⊆ H−r .

We remark that .H−r identifies also with the dual space of . Hr relatively to the inner 
product of H . 

Gaussian Measures The free Gibbs measure written formally as 

. μβ,0 ≡ e−βh0(·) du∫
e−βh0(u) du

,

is rigorously defined as a Gaussian measure on the Hilbert space .H−s . 

The set of all Borel probability measures on .H−s is denoted by .P(H−s). 

Definition 3 

1. The mean-vector of .μ ∈ P(H−s) is the vector .m ∈ H−s such that: 

. 〈f,m〉H−s
R

=
∫

H−s

〈f, u〉H−s
R

dμ , ∀f ∈ H−s .

If .m = 0, one says that . μ is a centred measure.
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2. The covariance operator of .μ ∈ P(H−s) is a linear operator . Q : H−s
R

→ H−s
R

such that: 

. 〈f,Qg〉H−s
R

=
∫

H−s

〈f, u − m〉H−s
R

〈u − m, g〉H−s
R

dμ , ∀f, g ∈ H−s .

3. .μ ∈ P(H−s) is Gaussian if .B �→ μ({y ∈ H−s : 〈x, y〉H−s
R

∈ B}) are Gaussian 
measures on . R for all .x ∈ H−s . 

The following result is well-known (see e.g. [1] and references therein). 

Theorem 4 There exists a unique centred Gaussian measure on .H−s , denoted 
.μβ,0, such that its covariance operator is .β−1A−(1+s), i.e.: for all . f, g ∈ H−s

.
1

β
〈f,A−(1+s)g〉H−s

R

=
∫

H−s

〈f, u〉H−s
R

〈u, g〉H−s
R

dμβ,0 . (13) 

Moreover, the characteristic function of .μβ,0 is given for any .v ∈ H−s by 

.

∫
H−s

e
i〈v,u〉

H
−s
R dμβ,0(u) = e

− 1
2β 〈v,A−(1+s)v〉

H
−s
R . (14) 

Note that centred Gaussian measures are Gibbs measures over infinite dimensional 
spaces related to the linear Hamiltonian system (9)–(10). 

Nonlinear Hamiltonian Systems Consider the linear operator A satisfying the 
assumptions in (8), (11) and (12). Take a nonlinear functional . hI : H−s → R

satisfying for some .β > 0 and some .p ∈ [1,∞): 

. e−βhI ( ·) ∈ Lp(μβ,0) , . (15a) 

hI ∈ D1,p (μβ,0) , (15b) 

where .D
1,p(μβ,0) denotes the Gross-Sobolev spaces recalled below in Definition 5. 

The nonlinear Hamiltonian system that we would like to study is described by the 
Hamiltonian function: 

.h(u) = 1

2
〈u,Au〉 + hI (u) = h0(u) + hI (u), (16) 

and the vector field: 

.X(u) = −iAu − i∇hI (u) = X0(u) + XI (u) , (17)
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where .∇h is the Malliavin derivative of the functional h (recalled below in 
Lemma 1). Thus, a dynamical system is defined through the autonomous field 
equation: 

. ̇u(t) = X(u(t)) ,

or equivalently, in the interaction representation, through the non-autonomous field 
equation: 

. ̇u(t) = eitAXI (e−itAu(t)) ≡ X(t, u(t)) .

Gross-Sobolev Spaces In order to introduce these spaces, one needs a good 
differential calculus on a convenient space of test functions which in our case is 
the space of smooth cylindrical functions. 

Definition 4 Let .{fj }j∈N be an O.B.N. of . HR. Consider for .n ∈ N, the mapping 
.πn : H−s → R

2n, 

.πn(x) = (〈x, f1〉HR
, . . . , 〈x, f2n〉HR

) . (18) 

Define the space of smooth cylindrical functions .C ∞
c,cyl(H

−s) as the set of all 
functions .F : H−s → R such that 

.F = ϕ ◦ πn (19) 

for some .n ∈ N and .ϕ ∈ C ∞
c (R2n). 

On such functions, the gradient of F at the point .u ∈ H−s is given by 

.∇F(u) =
2n∑

j=1

∂jϕ(πn(u)) fj , (20) 

where .∂jϕ are the partial derivatives with respect to the 2n coordinates of . ϕ. 

Lemma 1 (Malliavin Derivative) The following linear operator is closable: 

. ∇ : C ∞
c,cyl(H

−s) ⊂ Lp(μβ,0) −→ Lp(μβ,0;H−s) ,

F = ϕ ◦ πn �−→ ∇F =
2n∑

j=1

∂jϕ(πn(·)) fj .

The Malliavin derivative is closure of such linear operators (still denoted by . ∇).
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Definition 5 (Gross–Sobolev Spaces) The Gross-Sobolev space .D
1,p(μβ,0) is the 

closure domain of the Malliavin derivative . ∇ with respect to the norm: 

.‖F‖p

D1,p(μβ,0)
:= ‖F‖p

Lp(μβ,0)
+ ‖∇F‖p

Lp(μβ,0;H−s )
. (21) 

In the case .p = 2, we remark that .D1,2(μβ,0) is a Hilbert space. 

Definition 6 (Gibbs Measure) Assume (8), (11), (12) and suppose that (15) holds 
true for some .p ∈ [1,∞). The Gibbs measure of the Hamiltonian dynamical system 
(16)-(17), at inverse temperature .β > 0, is the probability measure on .H−s given 
by: 

.μβ = e−βhI (·) dμβ,0∫
H−s e−βhI (u) dμβ,0

≡ 1

zβ

e−βhI (·) dμβ,0 . (22) 

We remark that . μβ is well-defined whenever (15a) is satisfied at least for .p = 1. 
The other assumption (15b) is useful for defining the dynamical system (16)–(17). 

In this infinite dimensional framework, the completeness (even almost surely) of 
the vector fields X or .X(t, ·) as well as the invariance of the Gibbs measure by the 
Hamiltonian flow are far from obvious questions. In particular, the conservation of 
energy cannot be exploited since the Hamiltonian function h does not make sense 
on the spaces .H−s . We will come back to these issues in Sect. 3. 

2.3 Statistical Properties 

As in the finite dimensional case (Sect. 2.1), the Gibbs measure .μβ in (22) is 
characterized by an entropy variational principle. However, in the present case it 
is necessary to use the notion of relative entropy. 

Theorem 5 (Gibbs Variational Principle) Define the relative entropy for all 
.μ, ν ∈ P(H−s) such that .ν � μ as: 

. E(ν|μ) :=
∫

H−s

dν

dμ
log

(
dν

dμ

)
dμ .

Assume that (15) holds true for .p = 2. Then the Gibbs measure . μβ is the unique 
minimizer of the entropy (free-energy) functional 

.Eμβ,0(ν) = E(ν|μβ,0) + β

∫
H−s

hI dν , (23) 

among all . ν such that . dν
dμβ,0

∈ L2(μβ,0).
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Proof Similarly to the finite dimensional case, we have 

. Eμβ,0(ν) = E(ν|μβ) − log(zβ) ,

where . zβ is given by (22). Thanks to Jensen’s inequality, one knows that . E(ν|μβ)

is non-negative with .E(ν|μβ) = 0 if and only if .ν = μβ . 

In order to prove a classical KMS principle similar to the one in Theorem 3, we  
define a Poisson structure over the spaces .H−s as follows. Consider: 

• The algebra of smooth bounded cylindrical functions .C ∞
b,cyl(H

−s). 
• .F,G ∈ C ∞

b,cyl(H
−s) such that: .∀u ∈ H−s , 

.F(u) = ϕ ◦ πn(u) , G(u) = ψ ◦ πm(u) , (24) 

with .ϕ ∈ C ∞
b (R2n) and .ψ ∈ C ∞

b (R2m) for some .n,m ∈ N. Here, we recall that 
.C ∞

b consists of smooth functions all of whose derivatives are bounded. 

Definition 7 (Poisson Bracket) For all such .F,G ∈ C ∞
b,cyl(H

−s), the Poisson 
bracket of F and G is defined by 

. {F,G}(u) :=
min(n,m)∑

j=1

∂
(1)
j ϕ(πn(u)) ∂

(2)
j ψ(πm(u)) − ∂

(1)
j ψ(πm(u)) ∂

(2)
j ϕ(πn(u)) .

(25) 

The classical KMS condition was introduced by Gallavotti and Verboven [13] in  
order to characterize the Gibbs measures of infinite systems of statistical mechanics. 
It was inspired by the Kubo-Martin-Schwinger work for quantum systems [8]. 

Definition 8 (Classical KMS Condition) A measure .μ ∈ P(H−s) satisfies the 
classical KMS condition, at inverse temperature . β, for the Hamiltonian system (16)-
(17) if and only if for all .F,G ∈ C ∞

c,cyl(H
−s), 

.

∫
H−s

{F,G}(u) dμ = β

∫
H−s

〈∇F(u),X(u)〉G(u) dμ , (26) 

with the Poisson bracket .{·, ·} defined as in (25). 
The following result is proved in [1]. 

Theorem 6 (KMS Principle) Assume that the assumption (15) is true for .p = 2. 
Let .μ ∈ P(H−s) be such that .μ � μβ,0 and suppose that 

.
dμ

dμβ,0
∈ D

1,2(μβ,0) .
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Then . μ satisfies the classical KMS condition for the Hamiltonian system (16)–(17) 
if and only if . μ is the Gibbs measure . μβ . i.e., 

. μ = e−βhI
μβ,0∫

H−s e−βhI (u)dμβ,0
= μβ .

Proof Using Malliavin calculus, see [1, Theorem 4.11], one can show that the Gibbs 
measure . μβ given in Definition 6 satisfies the KMS condition (26) with the vector 
field X as in (17). 

For the opposite implication, take .μ ∈ P(H−s) such that the KMS condition (26) 
is satisfied and .μ = � μβ,0 for some density .� ∈ D

1,2(μβ,0). Thanks to (26), one 
can show 

.∇� + β� ∇hI = 0 , (27) 

as an identity in .L1(μβ,0;H−s). We notice that there is no loss of generality in 
assuming .� > 0 almost surely and then we show 

. log(�) ∈ D
1,2(μβ,0) and ∇ log(�) = ∇�

�
.

Hence, (27) gives 

. ∇(
log(�) + βhI

) = ∇�

�
+ β∇hI = 0 .

By Malliavin calculus, see [1, Proposition A.4], one knows that if . F ∈ D
1,2(μβ,0)

such that .∇F = 0 for .μβ,0-almost surely then F is a constant. So, we get 

. log(�) + βhI = c ,

.μβ,0-almost surely. Using the normalization of the density . �, we obtain 

. � = e−βhI

∫
H−s e−βhI (u)dμβ,0

.

3 Nonlinear PDEs 

In this section, we discuss one of the main applications of Gibbs measures to the 
analysis of nonlinear dispersive PDEs, namely the construction of low regularity 
global solutions almost surely. This was first proved rigorously by Bourgain [4– 
6], building on the work of Lebowitz–Rose–Speer [14] and Zhidkov [20]. In this
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framework, Gibbs measures can be used as substitutes for conservation laws at low 
regularity. There is a vast literature on this subject. For an overview, we refer the 
reader to [10, 15, 17] and the references therein. 

3.1 Bourgain’s Method 

We now briefly describe Bourgain’s method and compare it to the applications of 
our results from [1, Section 5]. In this discussion, we set for simplicity of notation 
.β = 1, unless it is otherwise specified. Let us first consider the defocusing NLS 
equation on the spatial domain . Td for . d = 1, 2

.

{
i∂tut (x) = ( −  + 1

)
ut (x) + |ut (x)|2q ut (x)

u0(x) = ϕ(x) ∈ Hσ (Td) .
(28) 

Here .q ∈ [1, 2] when .d = 1. When .d = 2, we only consider the cubic problem, 
which corresponds to .q = 1. We take the operator .A = −+1 and . Hσ = Hσ (Td)

with .σ = −s for s satisfying the condition (12). Then the Gaussian measure . μ1,0
is well-defined by Theorem 4 and one can recast (28) as the Hamiltonian system 
in (16)-(17). When .d = 2, the nonlinearity needs to be renormalized by Wick 
ordering, see (31)–(32) below. The Hamiltonian function takes the form 

.h(u) = 1

2

∫
Td

ū(x)(1 − )u(x) dx + hI (u) . (29) 

• For .d = 1, let .s = 0 and 

.hI (u) = 1

4

∫
T

|u(x)|4 dx . (30) 

• For .d = 2, let .s > 0 and 

. hI (u) = lim
n

1

4

∫ (|Pnu(x)|4 − 4Eμ1,0 [|Pnu(x)|2] |Pnu(x)|2

+ 2E2
μ1,0

[|Pnu(x)|2]) dx,

. hI (u) ≡ 1

4

∫ (|u(x)|4 − 4Eμ1,0 [|u(·)|2] |u(·)|2︸ ︷︷ ︸
mass renormalization

+ 2E2
μ1,0

[|u(·)|2]︸ ︷︷ ︸
energy renormalization

)
dx

=: 1
4

∫
T2

: |u|4 : dx , (31)
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where . Pn is the orthogonal projection over the first n (ordered) eigenfunctions 
of A. The convergence (31) holds in .Lp(μ1,0) for .p ∈ [1,∞) as is shown by an 
application of Wick’s theorem. On the torus, we note that .E2

μ1,0
[|u(x)|2] does not 

depend on x. The nonlinearity .N(u)(t) = |ut |2 ut in (28) is then replaced by the 
Wick-ordered nonlinearity 

.NWick(u)(t) = 2
∂hI

∂ū
(ut ) = |ut |2 ut − 2

(∫
T2

|ut |2 dx

)
ut . (32) 

When .d = 2, 3, one also considers the Hartree equation 

.

{
i∂tut (x) = ( −  + 1

)
ut (x) + (V ∗ |ut |2) ut (x)

u0(x) = ϕ(x) ∈ H−s(Td) ,
(33) 

where .V : Td → R is an even integrable function whose Fourier coefficients satisfy 

.

⎧⎨
⎩
0 ≤ V̂ (k) ≤ c

〈k〉ε for d = 2

0 ≤ V̂ (k) ≤ c
〈k〉2+ε for d = 3 ,

(34) 

for some fixed .ε > 0 and .c > 0. In particular, it is assumed that V is of positive type 
(i.e. that . V̂ is pointwise nonnegative). For .d = 2, let .s > 0 and for .d = 3, let .s > 1

2 . 
As before, it is necessary to apply a Wick-ordering renormalization and consider 

. hI (u) = lim
n

1

4

∫ (
|Pnu(x)|2 − 4Eμ1,0 [|Pnu(x)|2]

)
V (x − y)

×
(
|Pnu(y)|2 − 4Eμ1,0 [|Pnu(y)|2]

)
dx dy

= 1

4

∫
Td

∫
Td

: |u(x)|2 : V (x − y) : |u(y)|2 : dx dy

= 1

4

∫
Td

∫
Td

(|u(x)|2 V (x − y) |u(y)|2 − 2V̂ (0)Eμ1,0 [|u(·)|2] |u(x)|2︸ ︷︷ ︸
mass renormalization

+ V̂ (0)E2
μ1,0

[|u(·)|2]︸ ︷︷ ︸
energy renormalization

)
. (35) 

The Wick ordering of the nonlinearity in (33) is now defined analogously as in (32), 
starting from (35). 

Note that the Wick-ordered nonlinearity in (35) is nonnegative, whereas (31) is 
not. In [5], this difficulty is overcome by use of the Nelson trick [16]. In all the 
cases discussed above, one obtains that . μ1 given by (22) satisfies .μ1 � μ1,0. With 
notation as above, the following series of results was proved by Bourgain.
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Theorem 7 (Bourgain [4–6]) The above NLS equations admit global solutions on 
.Hσ almost surely with respect to the Gibbs measure . μ1. Here, we take .σ < 1 − d

2 . 
Furthermore, . μ1 is invariant under the flow of the NLS. 

We recall that .σ = −s for s satisfying (12). In particular, when .d = 1, in Theorem 7 
we can take .σ = s = 0. In the above examples, the vector field is given by 

. X(u) = −iAu − i∇hI (u) ,

where the gradient .∇hI is understood as the Malliavin derivative from Lemma 1 
above. In [1, Section 5], we show the following result, which allows us to make a 
link between Bourgain’s method and the analysis in [1]. 

Proposition 1 With . hI given as in (30), (31), (35) above, we have for all . p ∈
[1,∞) and . β > 0

.e−βhI ( ·) ∈ Lp(μβ,0) and hI ∈ D
1,p(μβ,0) . (36) 

We note that it makes sense to study the above problems for focusing problems, 
i.e. when the nonlinear term does not give a positive-definite contribution to the 
Hamiltonian. The above analysis carries over [4, 6, 14] provided that one truncates 
in the mass when .d = 1 or in the Wick-ordered when .d = 2, 3. When .d = 1, the  
focusing problem was studied in [1, Section 5.3] by means of a local KMS condition. 
We note that the decay assumption on the Fourier coefficients (34) was used in [6] 
for the focusing problem. In the defocusing problem, the condition when .d = 3 was 
recently relaxed in [12]. It is known that, when .d = 2, the focusing cubic NLS does 
not admit a well-defined Gibbs measure [9]. 

In the remainder of the section, we give a brief summary of the strategy used to 
prove Theorem 7 and compare it with the methods used in [1]. For simplicity, we 
consider (28) with .d = 1. The first step is to compare (28) with a suitable finite-
dimensional approximation 

.

{
i∂tu

n
t (x) = ( −  + 1

)
un

t (x) + Pn

(|un
t (x)|2q un

t

)
(x)

un
0(x) := Pnu0(x) ∈ C ∞(T) .

(37) 

The equation (37) is globally well-posed. Moreover, it is shown in the approxima-
tion lemma [4, Lemma 2.27], using the analysis of the flow of the periodic NLS 
developed in [3], that the flow of (37) approximates that of (28) as .n → ∞. 
One notes that (37) is a Hamiltonian system, with Hamiltonian given by .h(un), 
with notation as in (29)–(30). The (truncated) Gibbs measure . μn

1 associated with 
the flow of (37) (with .β = 1) is defined analogously as in (22), where we now 
project everything to finitely many modes. By Liouville’s theorem and conservation 
of the Hamiltonian, . μn

1 is invariant under the flow of (37). Furthermore, one has 
.μn
1 = (Pn)�μ1 ⇀ μ1.
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When analysing (37), one of the main steps is to note that one has a uniform in 
n local well-posedness theory in .Hσ (T), for .σ ∈ (0, 1/2), which we fix throughout 
the discussion. This follows by using the arguments from [3]. More precisely, one 
notes that, for .K > 0, and . u0 satisfying 

.‖un
0‖Hσ (T) ≤ K , (38) 

(37) admits local solutions on a time interval .[−T , T ] with .T ∼ K−δ for some 
.δ > 0 depending on . σ . Moreover, one has 

. sup
t∈[−T ,T ]

‖un
t ‖Hσ (T) � K .

One wants to analyse what is the probability, with respect to . μn
1, that (38) does not 

occur. To this end, using concentration inequalities for Gaussian random variables, 
one can prove that 

.μn
1

(‖un
0‖Hσ (T) > K

)
� e−cK2

. (39) 

Denote by . Sn
T the flow  map of  (37) for time T defined on .�n

σ,K , which denotes the 
set of initial data . un

0 satisfying (38). For .τ > 0, we let  

.�n
σ,K(τ) := �n

σ,K ∩ (Sn
T )−1(�n

σ,K) ∩ · · · ∩ (Sn
T )−�τ/T �(�n

σ,K) . (40) 

We note that for .un
0 ∈ �n

σ,K(τ) and .0 ≤ t ≤ τ , we have  

.‖un(t)‖Hσ � K . (41) 

Furthermore, by using the invariance of . μn
1 under the flow of (37) as well as a union 

bound and (39) in (40), we deduce that 

.μn
1

(
PNHσ \ �n

σ,K(τ)
)
� τKδe−cK2

. (42) 

Using (41) and (42), the approximation lemma [4, Lemma 2.27], and considering 
a dyadic sequence of times, it is shown in [4, Lemma 4.4] that, given .ε > 0, there 
exists .Gε ⊂ Hσ (T) such that the following properties hold. 

(i) . μ1
(
Hσ \ Gε

)
< ε. 

(ii) For all .u0 ∈ Gε and .t ∈ R, we have  

. ‖ut‖Hσ (T) �
(
1 + |t |

ε

)σ+
.

From this result, one deduces the existence of global solutions of (28) evolving from 
initial data belonging to a set of full . μ1 measure. One then has all the tools to show
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the invariance of . μ1 under the flow of (28) [4, Section 4]. For .t ∈ R, we let  . St

denote the time evolution of (28). By the earlier discussion, this is defined almost 
everywhere. For .K ⊂ Hσ a compact set, one shows by using the approximation 
lemma [4, Lemma 2.27] and the invariance of . μn

1 under the flow of (37) that 

.μ1
(
StK

) ≥ μ1(K) . (43) 

The reverse inequality in (43) follows by time-reversibility of the flow. Finally, the 
general claim follows by inner regularity of the measure . μ1. 

Our methods in [1] differ in the sense that we do not need to approximate the 
flow of (28) with (37). In particular, we do not use variants of the approximation 
lemma [4, Lemma 2.27]. Instead, we use global measure-theoretic techniques. 

3.2 General Principle 

In this paragraph, we underline a general principle that enlightens in some sense the 
above discussion about the construction of global solutions by means of Gibbs or 
invariant measures. Although the result in Theorem 8 below holds true in a more 
general context, it is convenient here to consider the finite and infinite dimensional 
frameworks given respectively in Sects. 2.1 and 2.2. Recall that the Hamiltonian 
functions and the vector fields are respectively: 

.h : E → R ∈ C 1(E) and X(u) = J∇h(u) , (44) 

and 

.h(u) = 1

2
〈u,Au〉 + hI (u) and X(u) = −iAu − i∇hI (u) , (45) 

with A satisfying (11)–(12) and the nonlinearity . hI verifying (15a) for .p = 2. 

Definition 9 (Invariance) A probability measure .μ ∈ P(H−s) (resp. .μ ∈ P(E)) 
is an invariant measure for the Hamiltonian system (45) (resp. (44)) if and only if 
for all .F ∈ C ∞

c,cyl(H
−s) (resp. .F ∈ C ∞

c (E)), 

. 

∫
H−s

〈∇F(u),X(u)〉 dμ = 0 (resp.
∫

E

〈∇F(u),X(u)〉 dμ = 0).

The following result illustrates the general principle: 

.(μ invariant measure) �⇒ (existence of global solutions μ-almost surely).
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Theorem 8 (Ammari-Farhat-Sohinger) Let . μ be an invariant measure for the 
Hamiltonian system (45) (resp. (44)). Assume in the case (44) that .∇h ∈ L1(μ) and 
in the case (45) suppose that .∇hI ∈ L1(μ). Then the initial value problem 

. ̇u(t) = −ieitA∇hI (e−itAu(t)) (resp. u̇(t) = J∇h(u(t)),

admits global solutions for .μ-almost all initial conditions in .H−s (resp. E). 

Such a result applies of course to Gibbs measures on .H−s or E and in particular 
to the NLS equations as in Sect. 3.1. It shows also that the statistical properties of 
Gibbs measures do not play an important role in the construction of global solutions. 
But instead the invariance of the measure (according to Definition 9) is crucial. A 
detailed proof can be found in [2]. 
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Two Comments on the Derivation 
of the Time-Dependent Hartree–Fock 
Equation 

Niels Benedikter and Davide Desio 

1 Interacting Fermi Gases at High Density 

In condensed matter, one-, two-, and three-dimensional quantum systems are 
realized. In a basic approximation, an ordinary piece of metal can be modelled 
as a gas of interacting fermions in three dimensions; transistor-like semiconductor 
structures can in first approximation be considered as a two-dimensional electron 
gas; and the one-dimensional electron gas may be used as a simplified model 
of a carbon nanotube. Mathematically even these simple models are difficult to 
study because a quantum system of N particles is described by a vector in the 
antisymmetrized tensor product of N copies of .L2(Rd). As  N is easily of the order 
of .104 and more likely up to .1023, numerical methods quickly find their limits 
in the analysis of the many-body Schrödinger equation. One way of overcoming 
this difficulty is the use of effective equations: in idealized physical regimes the 
Schrödinger equation may be approximated by equations involving fewer degrees 
of freedom. For fermions, Hartree–Fock theory is such an approximation: one 
considers initial data given as an antisymmetrized elementary tensor (a Slater 
determinant) and then projects [9, 23] the many-body Schrödinger evolution on the 
submanifold of antisymmetrized elementary tensors. In the present note we show 
that the quantitative error estimates proved in [7] for the Hartree–Fock equation 
in dimension .d = 3 generalize to all space dimensions, and we reformulate the 
proof using an explicit formula for the unitary implementation of a particle-hole 
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transformation, thus casting it in a form completely analogous to the coherent state 
method of [27] for bosons. 

In the following paragraphs we will introduce the many-body Schrödinger 
equation, the scaling regime, reduced density matrices, and the Hartree–Fock 
equation. 

1.1 Fundamental Description: The Schrödinger Equation 

The fundamental theory is given by the Hamiltonian (with a coupling constant . λ ∈
R) 

.HN := −
N∑

i=1

�i + λ
∑

1≤i<j≤N

V (xi − xj ) , (1) 

a self-adjoint operator on the antisymmetric subspace .L2
a(R

dN) of . L2(Rd)⊗N �
L2(RdN), i.e., functions .ψ ∈ L2(RdN) satisfying 

.ψ(x1, x2, . . . , xN) = sgn(σ )ψ(xσ(1), xσ(2), . . . , xσ(N)) for σ ∈ SN (2) 

where .SN is the group of all permutations of N objects. The evolution of initial data 
.ψ0 ∈ L2

a(R
dN) is given by the Schrödinger equation 

.i∂tψt = HNψt . (3) 

Our goal is to approximate solutions of Eq. (3) by the time-dependent Hartree– 
Fock equation. Considering an appropriate scaling of the system parameters with 
the particle number N , one can prove estimates on the difference asymptotically as 
.N → ∞. In the next paragraph we discuss our choice of such a scaling regime. 

1.2 Coupled Mean-Field and Semiclassical Scaling Regime 

No approximation applies to all physical situations. The situation we consider is the 
scaling limit introduced by [24, 29] for deriving the Vlasov equation from quantum 
mechanics. In this setting the density of the system is large but the interaction 
between any pair of particles weak, so that mean-field like behaviour may be 
expected. To derive the precise choice of parameters we consider for the moment 
the torus .Td := R

d/2πZd instead of . Rd . The simplest fermionic wave functions 
are antisymmetrized elementary tensors (i.e., Slater determinants) 

.

ψ(x1, x2, . . . xN) = f1 ∧ · · · ∧ fN(x1, . . . , xN)

= (N !)−1/2 det
(
fj (xi)

)
i,j=1,...,N

.
(4)



Two Comments on the Derivation of the Time-Dependent Hartree–Fock Equation 321

Ignoring for the moment the interaction V , the ground state is the Slater determinant 
of N plane waves .fj (x) := (2π)−d/2eikj ·x where 

. kj ∈ BF := {k ∈ Z
d : |k| ≤ kF} .

If instead of using N as independent parameter we use the Fermi momentum .kF > 0, 
i.e., define .N := |BF| as a function of . kF, then the Slater determinant of the plane 
waves with .kj ∈ BF is the unique minimizer of the non-interacting Hamiltonian. 
Since .kF ∼ N1/d , the total kinetic energy becomes 

.〈ψ,

(
−

N∑

i=1

�i

)
ψ〉 =

∑

k∈BF

|k|2 ∼ N1+ 2
d as kF → ∞ . (5) 

Now let us bring back the interaction into the game, and consider its expectation 
value in the same Slater determinant of plane waves. To have a large-N limit in 
which neither kinetic nor interaction energy (as a sum over pairs being of order 
.λN2) dominates, we set 

. λ := N
2
d
−1 .

The particles most affected by the interaction are those close to the surface of the 
Fermi ball . BF, i.e., with momenta .|k| ∼ kF ∼ N1/d . Like their momentum, also their 
velocity is of order .N1/d . Therefore we study times of order .N−1/d ; the accordingly 
rescaled equation is 

. iN1/d∂tψt =
( N∑

i=1

−�i + N
2
d
−1

∑

1≤i<j≤N

V (xi − xj )

)
ψt .

Introducing an effective Planck constant 

. ̄h := N−1/d

and multiplying the entire equation by . ̄h2, we obtain the rescaled Schrödinger 
equation we study in this note: 

.ih̄∂tψt =
( N∑

i=1

−h̄2�i + 1

N

∑

1≤i<j≤N

V (xi − xj )

)
ψt . (6) 

Other scaling limits, with weaker interaction or shorter time scale, have been 
considered in [1–3, 21, 25].
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1.3 Reduced Density Matrices 

Given an N -particle observable . A, i.e., a self-adjoint operator on .L2
a(R

dN), its 
expectation value in a state .ψ ∈ L2

a(R
dN) can be written with a trace over . L2

a(R
dN)

in Dirac’s bra-ket notation as 

. 〈ψ,Aψ〉 = trN
(
|ψ〉〈ψ |A

)
.

Simpler observables are the averages of one-particle observables: if A is an operator 
on .L2(Rd) and . Aj means A acting on the j -th of N tensor factors, . Aj := 1 ⊗ · · · ⊗
1 ⊗ A ⊗ 1 ⊗ · · · ⊗ 1, the expectation value can be written with a partial trace over 
.N − 1 tensor factors as 

. 
1

N

N∑

j=1

〈ψ,Ajψ〉 = 〈ψ,A1ψ〉 = tr1
(
A trN−1|ψ〉〈ψ |) .

The one-particle reduced density matrix, an operator on the one-particle space 
.L2(Rd), is  

.γ
(1)
ψ := N trN−1|ψ〉〈ψ | . (7) 

As a trace class operator, the spectral theorem permits to decompose it as 

. γ
(1)
ψ =

∑

j∈N
λj |ϕj 〉〈ϕj | , ϕj ∈ L2(Rd) , λj ∈ R .

In particular we may speak of its integral kernel and its “diagonal” (representing the 
density of particles in position space), defined by 

. γ
(1)
ψ (x; y) :=

∑

j∈N
λjϕj (x)ϕj (y) , γ

(1)
ψ (x; x) :=

∑

j∈N
λj |ϕj (x)|2 .

A Slater determinant .ψ(x1, x2, . . . xN) = (N !)−1/2 det(ϕj (xi)) is an example of a 
quasi-free state, and as such uniquely (up to a phase factor) determined by its one-
particle reduced density matrix. The one-particle reduced density matrix of a Slater 
determinant is a rank-N projection, i.e., of the . λj in the spectral decomposition N 
have value 1 and the rest are 0. 

1.4 Effective Description: Hartree–Fock Theory 

In Hartree–Fock theory, attention is restricted to Slater determinants, with the choice 
of the orbitals .ϕj to be optimized. Projecting the time-dependent Schrödinger
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equation locally onto the tangent space of this submanifold (i.e., applying the 
Dirac–Frenkel principle, see [9, 23]) one obtains the time-dependent Hartree–Fock 
equations (a system of N non-linear coupled equations) 

. ih̄∂tϕj,t = −h̄2�ϕj,t + 1

N

N∑

i=1

(
V ∗ |ϕi,t |2

)
ϕj,t − 1

N

N∑

i=1

(
V ∗ (ϕj,tϕi,t

))
ϕi,t .

(8) 

Using the one-particle density matrix .ωN,t := ∑N
j=1|ϕj,t 〉〈ϕj,t | they take the form 

.ih̄∂tωN,t = [−h̄2� + (V ∗ ρt ) − Xt, ωN,t ] . (9) 

The term .V ∗ ρt with .ρt (x) := ωN,t (x; x) is a multiplication operator called the 
direct term. The exchange term . Xt is defined by its integral kernel . Xt(x; x′) =
V (x − x′)ωN,t (x; x′). 

Given a rank-N projection operator .ωN as initial data, the solution of Eq. (9) is 
for all times a rank-N projection operator. From its spectral decomposition, fixing 
the phase ambiguity appropriately, one obtains the N orbitals solving Eq. (8). 

2 Main Result 

Let X be the one-particle position operator on .L2(Rd), i.e., the multiplication 
operator .Xψ(x) = xψ(x) for . x ∈ R

d . Let .P := −ih̄∇ be the one-particle 
momentum operator. 

Let .ωN be a sequence of rank-N projection operators on . L2(Rd). Let .ψN,0 be 
the Slater determinant uniquely (up to a phase factor) determined by . ωN . Let . γ

(1)
N,t

be the one-particle reduced density matrix of the solution . ψN,t := e−iHN t/h̄ψN,0
of the Schrödinger equation. Let .ωN,t be the solution of the Hartree–Fock equation 
Eq. (9) with initial data . ωN . 

We have now introduced everything necessary to state our main result, according 
to which .ωN,t is a good approximation to .γ (1)

N,t . 

Theorem 1 (Validity of the Hartree–Fock Equation) Let .d ∈ N. Consider . V ∈
L1(Rd) with Fourier transform satisfying 

. q0 :=
∫

dp(1 + |p|)2|V̂ (p)| < ∞.

Assume there exist .CX > 0 and .CP > 0 such that for all .i ∈ N ∩ [1, d] and for all 
.N ∈ N we have 

. sup
α∈Rd

‖[eiα·X,ωN ]‖tr

1 + |α| ≤ Nh̄ CX , ‖[P,ωN ]‖tr ≤ Nh̄ CP . (10)
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(The latter estimate is to be read in .2-sense with respect to the components of the 
momentum operator, i.e., .‖[P,ωN ]‖tr = (

∑d
i=1‖[Pi, ωN ]‖2

tr)
1/2.) 

Then for all .t ∈ R and for .N ∈ N sufficiently large we have 

.‖γ (1)
N,t − ωN,t‖tr ≤ √

N6 exp
(

23 CX + CP

max{2, q0}e
2 max{2,q0}|t |

)
. (11) 

The trace norm estimate of order .N1/2 is to be compared to the triangle inequality 
which would yield 2N . As in [7], the result may be generalized to k-particle reduced 
density matrices; and as in [6] it can be generalized to relativistic massive particles. 

Remark 1 The assumption Eq. (10) is realized by the Fermi ball (see Eqs. (4) 
and (5)), which however is stationary under the Hartree–Fock evolution (for . V̂ ≥ 0
it is even the global minimizer [11, Theorem A.1]). The assumption is also realized 
by some examples with non-trivial Hartree–Fock evolution such as the ground 
state of non-interacting fermions in a harmonic trap [5] or even a general trapping 
potential [19]. Actually, in [5] a bound was shown for .‖[Xi, ωN ]‖tr instead of 
.supα∈Rd ‖[eiα·X,ωN ]‖tr(1 + |α|)−1. These are related by 

. 

[ωN, eiα·X] = eiα·X
∫ 1

0
dλ

d

dλ

(
e−iα·XλωNeiα·Xλ

)

= eiα·X
∫ 1

0
dλ e−iα·Xλ[ωN, iα · X]eiα·Xλ ,

so (as shown similarly also in [19, Corollary 1.3]) 

. sup
α∈Rd

tr|[ωN, eiα·X]|
1 + |α| ≤ sup

α∈Rd

1

1 + |α| tr|[ωN, α · X]|

≤ sup
α∈Rd

1

1 + |α|
d∑

j=1

|αj | tr|[ωN,Xj ]|

≤ sup
α∈Rd

|α|
1 + |α|

[ d∑

j=1

(
tr|[ωN,Xj ]|

)2
]1/2

= ‖[ωN,X]‖tr .

In [26, 28], a theorem similar to Theorem 1 has been proved for more singular 
interaction potentials but for initial data which is stationary under the time-
dependent Hartree–Fock equation. The Hartree–Fock equation has also been derived 
for initial data given by a mixed state [8]. This has been generalized to singu-
lar interaction potentials, including the Coulomb potential and the gravitational 
attraction in [14, 15]. The validity of the Hartree–Fock equation has been derived 
for extended Fermi gases in three dimensions by [20]. Next-order corrections (the 
random phase approximation) and a Fock space norm approximation, however only



Two Comments on the Derivation of the Time-Dependent Hartree–Fock Equation 325

for approximately bosonic collective excitations of the stationary Fermi ball, have 
been obtained in [13], based on the collective bosonization method developed in 
[4, 10–12]. A non-collective bosonization method has recently been developed in 
[16–18]. For a discussion of different levels of dynamical approximation, see the 
review [5]. 

3 Proof of Theorem 1 

Let us quickly fix some notation. Fermionic Fock space is defined as 

. F := C ⊕
∞⊕

n=1

L2
a(R

dn) .

For .f, g ∈ L2(Rd), the well-known creation and annihilation operators .a∗(f ) and 
.a(g) satisfy the canonical anticommutator relations 

. {a(f ), a∗(g)} = 〈f ; g〉 , {a(f ), a(g)} = 0 = {a∗(f ), a∗(g)} .

In the fermionic case these operators satisfy for all .ψ ∈ F the bounds 

. ‖a(f )ψ‖F ≤ ‖f ‖L2(Rd )‖ψ‖F , ‖a∗(f )ψ‖F ≤ ‖f ‖L2(Rd )‖ψ‖F .

The particle number operator is denoted by . N. The vacuum is .� = (1, 0, 0, 0, . . .), 
the (up to a phase) unique vector in the null space of all annihilation operators. This 
implies .N� = 0. Moreover, given any operator A on .L2(Rd) with integral kernel 
.A(x; y), its second quantization written using the operator valued distributions 
associated to the creation and annihilation operators is 

. d�(A) :=
∫

dxdyA(x; y)a∗
xay .

The following lemma collects standard bounds; see [7, Section 3] for proofs. 

Lemma 1 (Bounds for Second Quantization) Let .ψ ∈ F and let A be an operator 
on .L2(Rd). Then we have 

.‖d�(A)ψ‖F ≤ ‖A‖op‖Nψ‖F , . (12)

‖d�(A)ψ‖F ≤ ‖A‖HS‖N1/2ψ‖F , . (13)

‖d�(A)ψ‖F ≤ ‖A‖tr‖ψ‖F . (14)
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Moreover, if A has an integral kernel .A(x; y), then 

.‖
∫

dxdyA(x; y)axayψ‖F ≤ ‖A‖HS‖N1/2ψ‖F , . (15)

‖
∫

dxdyA(x; y)a∗
xa∗

yψ‖F ≤ 2‖A‖HS‖(N+ 1)1/2ψ‖F , (16) 

and 

.‖
∫

dxdyA(x; y)axayψ‖F ≤ 2‖A‖tr‖ψ‖F , . (17)

‖
∫

dxdyA(x; y)a∗
xa∗

yψ‖F ≤ 2‖A‖tr‖ψ‖F . (18) 

Finally, note that the definition of the one-particle reduced density matrix may be 
generalized to .ψ ∈ F by setting 

.γ
(1)
ψ (x; y) := 〈ψ, a∗

yaxψ〉 . (19) 

In fact, if .ψ ∈ L2
a(R

dN) is considered as a subspace of Fock space, then this .γ (1)
ψ is 

exactly the integral kernel of the operator defined in Eq. (7). 

3.1 Implementation of Particle-Hole Transformations 

Let .(ϕj )
N
j=1 be an orthonormal system in .L2(Rd). In [7] an explicit formula for . RN

is absent. Therefore, to do any computations, a formula for the conjugation of the 
number operator with .RN was used to compute the time derivative in Lemma 5. In  
the present proof, we introduce the following explicit definition which allows us to 
instead compute the generator of fluctuations as done for the bosonic case in [27]: 

.RN :=
N∏

j=1

(
a∗(ϕj ) + a(ϕj )

)
. (20) 

This is a unitary map on Fock space which maps the vacuum on a Slater determinant, 

.RN� =
N∏

j=1

a∗(ϕj )� = (N !)−1/2 det(ϕj (xi)) ,
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and satisfies 

.RNa∗(ϕj )R
∗
N =

{
(−1)N+1a(ϕj ) for j ≤ N

(−1)Na∗(ϕj ) for j > N .
(21) 

The formula Eq. (20) is an implementation of a particle-hole transformation as 
constructed by abstract Bogoliubov theory in [7]. We got aware of this formula 
from [22, Eq. (57)]. 

Moreover it is convenient to introduce the operators 

.QN :=
N∑

j=1

|ϕj 〉〈ϕj | , PN := 1 −
N∑

j=1

|ϕj 〉〈ϕj | , (22) 

where . ϕj is the complex conjugation of .ϕj ∈ L2(Rd). The action of the particle-
hole transformation on creation and annihilation operators can then be computed to 
be 

. R∗
NaxRN = (−1)N

(
a(PN,x) − a∗(QN,x)

)
. (23) 

R∗
Na∗

xRN = (−1)N
(
a∗(PN,x) − a(QN,x)

)
, (24) 

where .QN(x; y) and .PN(x; y) are (formal) integral kernels of the operators .QN and 
. PN , and .QN,x(y) := QN(y; x), .PN,x(y) := PN(y; x) for all .y ∈ R

d . 
We are going to use Eq. (20) to construct a unitary fluctuation dynamics as in 

[27]. The proof of the main theorem will then be obtained by an application of the 
Grönwall lemma, following the strategy of [7]. 

3.2 Many-Body Analysis 

The Hamiltonian .HN may be represented on Fock space as 

. HN := h̄2
∫

dx ∇xa
∗
x∇xax + 1

2N

∫
dxdy V (x − y)a∗

xa∗
yayax .

In fact, considering .L2
a(R

dN) as a subspace of . F, we have .HN �L2
a(R

dN )= HN . Since 
we consider only initial data in the N -particle subspace and the evolution preserves 
particle numbers (i.e., .[N,HN ] = 0) we can use .HN in the place of . HN . 

Let .ωN,t be the solution of the time-dependent Hartree–Fock equation (Eq. (9); 
for a discussion of the well-posedness see, e. g., [9]) with initial data . ωN . Let .ϕj,t , 
with .j = 1, 2 . . . N be the corresponding orthonormal systems of orbitals, and
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.RN,t the correspondingly constructed particle-hole transformation as in Eq. (20). 
We define the unitary fluctuation dynamics 

.UN(t, s) := R∗
N,t e

−i(t−s)HN/h̄RN,s . (25) 

The advantage of introducing the fluctuation dynamics .UN is the following 
representation of the difference that we want to estimate: 

Lemma 2 (Trace Norm Difference) Let . ωN be a rank-N projection operator and 
.ωN,t its Hartree–Fock evolution. Let .RN,0 and .RN,t be the corresponding particle-

hole transformations. Let moreover .ψN,0 := RN,0� and .ψN,t := e−iHnt/h̄ψN,0 its 
many-body Schrödinger evolution. Then for all .t ∈ R we have 

. ‖γ (1)
N,t − ωN,t‖tr ≤

(
2 + 4

√
N

)
〈UN(t, 0)�, (N+ 1)UN(t, 0)�〉 .

The proof of Lemma 2 is unchanged from [7, Section 4]. 
As in Eq. (22), also for the Hartree–Fock evolved orbitals .ϕj,t we define 

. QN,t :=
N∑

j=1

|ϕj,t 〉〈ϕj,t | , PN,t := 1 −
N∑

j=1

|ϕj,t 〉〈ϕj,t | .

The novelty of the present note lies in the use of the explicit formula Eq. (20) for 
computing the time derivative of .〈UN(t, 0)�, (N+1)UN(t, 0)�〉. The computation 
is then essentially identical to that given for bosons in the derivation of the Hartree 
equation by the coherent states method of [27], simply with the Weyl operators 
.W(

√
Nϕt) replaced by .RN,t . The computation results in the following new lemma. 

Lemma 3 (Generator of Fluctuations) Given .UN(t; s) by Eq. (25), we define the 
generator of fluctuations .LN(t) by 

. ih̄∂tUN(t; s) = LN(t)UN(t; s) .

Then we have 

.LN(t) =
(
AN(t) + BN(t) + CN(t) + h.c.

)
+MN(t) , (26) 

where 

.AN(t) := 1

2N

∫
dxdyV (x − y)a∗(PN,t,x)a

∗(PN,t,y)a
∗(QN,t,y)a

∗(QN,t,x)

BN(t) := 1

N

∫
dxdyV (x − y)a∗(PN,t,x)a

∗(PN,t,y)a
∗(QN,t,x)a(PN,t,y)

CN(t) := 1

N

∫
dxdyV (x − y)a∗(PN,t,x)a

∗(QN,t,x)a
∗(QN,t,y)a(QN,t,y)
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and where .MN(t) is an operator (a sum of quadratic and quartic products of a- and 
.a∗-operators) that commutes with the particle number operator: 

. [MN(t),N] = 0 for all N ∈ N and all t ∈ R .

Proof In this proof .MN(t) may change from line to line without further comment. 
Obviously 

. LN(t) = (ih̄∂tR
∗
N,t )RN,t + R∗

N,tHN(t)RN,t .

The contribution of .R∗
N,tHNRN,t is easily computed using Eq. (23), expanding 

all the products and using the canonical anticommutator relations to obtain an 
expression completely in normal order (i.e., with creation operators to the left of 
annihilation operators). One finds 

. R∗
N,t h̄

2
∫

dx∇xa
∗
x∇xaxRN,t

=
N∑

j=1

a∗(h̄2�ϕj,t )a
∗(ϕj,t ) −

N∑

k,j=1

〈ϕj,t , h̄
2�ϕk,t 〉a∗(ϕj,t )a

∗(ϕk,t )

+ h.c. +MN(t) (27) 

and 

. R∗
N,t

1

2N

∫
dxdyV (x − y)a∗

xa∗
yayaxRN,t

= 1

2N

∫
dxdy V (x − y)

×
[
a∗(Pt,x)a

∗(Pt,y)a
∗(Qt,y)a

∗(Qt,x) + 2a∗(Pt,x)a
∗(Pt,y)a

∗(Qt,x)a(Pt,y)

+ 2a∗(Pt,x)a
∗(Qt,x)a

∗(Qt,y)a(Qt,y) − 2〈Qt,y,Qt,y〉a∗(Pt,x)a
∗(Qt,x)

+ 2〈Qt,y,Qt,x〉a∗(Pt,x)a
∗(Qt,y)

]
+ h.c. +MN(t) . (28) 

The summand involving the time derivative is slightly more complicated to com-
pute. We define 

.R(h) := a∗(h) + a(h)
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for .h ∈ L2(Rd) and observe that .{R(ϕl,t ), R(ϕk,t )} = 2δl,k . Since . RN,t =∏N
k=1 R(ϕk,t ), by a slightly lengthy but straightforward computation 

. (ih̄∂tR
∗
N,t )RN,t

= ih̄R(∂tϕN,t )R(ϕN,t ) + ih̄

N−1∑

j=1

j−1∏

k=0

R(ϕN−k,t )R(∂tϕN−j,t )

N∏

m=N−j

R(ϕm,t )

=
N∑

k=1

ih̄R(∂tϕk,t )R(ϕk,t ) − 2ih̄

N∑

k=1

k−1∑

j=1

Re〈ϕk,t , ∂tϕk−j,t 〉R(ϕk,t )R(ϕk−j,t )

=
N∑

k=1

ih̄R(∂tϕk,t )R(ϕk,t ) − ih̄

N∑

k=1

N∑

j=1
j �=k

〈ϕk,t , ∂tϕj,t 〉R(ϕk,t )R(ϕj,t )

=
N∑

k=1

a∗(i�∂tϕk,t )a
∗(ϕk,t ) −

N∑

k=1

N∑

j=1

〈ϕk,t , i�∂tϕj,t 〉a∗(ϕk,t )a
∗(ϕj,t ) + h.c.

+MN(t) .

In the last step we made use of .a∗(ϕk,t )a
∗(ϕk,t ) = 0. Thus 

.

(ih̄∂tR
∗
N,t )RN,t

=
N∑

k=1

a∗(i�∂tϕk,t )a
∗(ϕk,t ) −

N∑

k=1

N∑

j=1

〈ϕk,t , i�∂tϕj,t 〉a∗(ϕk,t )a
∗(ϕj,t )

+ h.c. +MN(t).

(29) 

Summing Eqs. (27), (28), and (29), the Hartree–Fock equation Eq. (9) implies the 
cancellation of all the quadratic (containing products of two creation or annihilation 
operators) terms that do not commute with . N. The remaining terms are as claimed 
in Eq. (26). ��

3.3 Propagation of Commutator Bounds 

The following lemma propagates the bounds on the commutators from the initial 
data to all times. Though stated in [7, Proposition 3.4] only for .d = 3, the proof is 
without modifications valid for any .d ∈ N. This lemma refers only to the Hartree– 
Fock evolution.
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Lemma 4 (Propagation of Commutator Bounds) Let V and .ωN,t satisfy the 
same assumptions as in Eq. (1). Then for all .t ∈ R and all .N ∈ N we have 

. sup
α∈Rd

‖[eiα·X,ωN,t ]‖tr

1 + |α| ≤ Nh̄(CX + CP )e2 max{2,q0}|t |, . (30)

‖[P,  ωN,t ]‖tr ≤ N ̄h(CX + CP )e
2 max{2,q0}|t | . (31) 

The exponential time dependence may not be optimal; however, for our proof the 
important aspect of these bounds is that we gain at all times a factor . ̄h with respect 
to the naive bound .‖[eiα·X,ωN ]‖tr ≤ ‖eiα·XωN‖tr+‖ωNeiα·X‖tr = 2‖ωN‖tr = 2N . 

3.4 Conclusion of the Proof 

With the following lemma we are back at [7, Proposition 3.3]. 

Lemma 5 With .AN(t), .BN(t), and .CN(t) as defined in Lemma 3, we have 

. ih̄
d

dt
〈UN(t, 0)�, (N+ 1)UN(t, 0)�〉

= −2i Im〈UN(t, 0)�, (4AN(t) + 2BN(t) + 2CN(t))UN(t, 0)�〉 . (32) 

Proof Obviously 

. ih̄
d

dt
〈UN(t, 0)�, (N+ 1)UN(t, 0)�〉 = 〈UN(t, 0)�, [N,LN(t)]UN(t, 0)�〉 .

With the explicit formula for .LN(t) from Lemma 3 the result is obtained. ��
One now writes .V (x − y) in Eq. (32) in terms of its Fourier transform and then, 
using Lemmas 4 and 1 one shows as in [7, Lemma 3.5] that 

. 

∣∣∣∣h̄
d

dt
〈UN(t, 0)�, (N+ 1)UN(t, 0)�〉

∣∣∣∣

≤ h̄ 24(CX + CP )e2 max{2,q0}|t |〈UN(t, 0)�, (N+ 1)UN(t, 0)�〉

for all .t ∈ R, whence the main result follows by Grönwall’s lemma. 
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Derivation of the Gross-Pitaevskii Theory 
for Interacting Fermions in a Trap 

Andrea Calignano and Michele Correggi 

1 Introduction 

The low-temperature behavior of interacting fermions has been widely studied in the 
physics literature (see, e.g., the monographs [22, 24]), in order to understand phe-
nomena as the occurrence of superconductivity in materials, i.e., a sudden drop of 
resistivity below a certain critical temperature. A microscopic model for such a phe-
nomenon was proposed in the ‘50s in [4] by J. Bardeen, L. Cooper and R. Schrieffer, 
and it is nowadays very well known as the BCS theory: the presence of an attraction 
between the fermions may be responsible for the formation of (weakly) bound pairs 
(Cooper pairs) of fermions with opposite spin; such pairs behave in all respect as 
charged bosons and as such they undergo Bose-Einstein condensation below a cer-
tain critical temperature. The emergence of this collective behavior of Cooper pairs 
is the signature of the occurrence of superconductivity in the material, and it can be 
understood starting from the minimization of the free energy of the system given by 
the BCS energy functional depending on the two-particle reduced density matrix. 

Few years before the appearance of the BCS description of superconductivity, 
a much more phenomenological macroscopic explanation was provided in [16] by  
V.L. Ginzburg and L.D. Landau. In the GL theory the superconducting features of 
the sample are encoded in an order parameter . ψ , i.e., a complex wave function 
minimizing a suitable energy functional, which is supposed to approximate the 
free energy of the system (see [2, 6–8, 21] and references therein for some recent 
mathematical results). The connection between the two models was heuristically 
investigated in [17], but only much more recently a rigorous derivation of GL 
theory from the BCS model was obtained in [12] (see also the related papers 
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[11, 13, 15, 18–20]): it is shown that, in a translational invariant system in presence 
of slowly varying external potentials and close to the critical temperature for the 
superconductivity transition, the leading order of the BCS ground state energy is 
given by the minimum of the GL functional, provided the attraction admits at 
least a bound state and in the limit of zero ratio between the microscopic scale 
of the interaction and the macroscopic size of the sample. The zero-temperature 
analogue of the same result for a fermionic system in a bounded domain was 
successively obtained in [14], while a similar question for the Bogolubov-Hartree-
Fock functional, i.e., the BCS energy functional with the addition of direct and 
exchange terms, was studied in [5]. 

The setting we consider here is quite close to the one addressed in [14, 18], 
i.e., we study the zero-temperature behavior of a gas of interacting fermions, but, 
unlike the previous references, here we assume the presence of a confining external 
potential. The particles interact via a two-body attraction, which is strong enough 
to bind two particles together. Naively, one may think that the fermions at low 
temperature would arrange in bounded pairs, so forming a bosonic gas, which 
then undergoes BE condensation. However, as in [5, 14, 18], one observes that 
the possibility to form a two-body bound state is in fact enough to generate the 
superconductivity transition, even though the gas does not exactly arrange in two-
particle bound pairs. 

Let us describe the setting more precisely: we set the length scale of the trap to 
be . 1, while the microscopic interaction varies on a scale .h � 1. The parameter . h
thus describes the ratio between the micro- and macroscopic scales and we study 
the limit .h → 0 of the ground state energy of the BCS energy functional and of 
any corresponding minimizer. We do not fix the number of particles a priori, but we 
study the grand-canonical problem in presence of a chemical potential . μ. 

We stress that the physical setting we are considering is not the typical one of 
BCS theory in which the formation of Cooper pairs occurs on a scale much larger 
than the mean interparticle distance. On the contrary, here, the size of bounded pairs 
is of order . h and it is therefore much smaller than the mean distance travelled by 
fermions, which, as we are going to see, is of order .h1/3 (the density of particles 
if of order .h−1). There is however a physical regime in which this setting becomes 
meaningful, namely the BEC/BCS crossover region (see [18]), where for certain 
values of the two-particle scatting length, the picture is very close to the one 
considered here. Note also that, as a gas made of almost bosonic pairs, the system is 
dilute (see also next Remark 1 and the analogous discussions in [10, 23]), because 
the density times the microscopic volume where the interaction acts non-trivially is 
of order .h−1 · h3 = h2 � 1. 

1.1 BCS Theory of Superconductivity 

In the BCS model all the information about the state of the system is encoded in two 
variables: the reduced one-particle density matrix . γ and the pairing density matrix
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. α. Hence, the system is fully described by an operator 

.Γ =
(

γ α

ᾱ 1 − γ

)
, 0 � Γ � 1, (1) 

acting on .L2(R3) ⊕ L2(R3). The bar denotes complex conjugation, i.e., the integral 
kernels of the operators .γ , α are .γ (x, y) and .α(x, y), respectively. For a given . BCS
state . Γ , the .BCS functional at .T = 0 in macroscopic units is given by 

.EBCS
μ [Γ ] := Tr h γ +

∫
R6

dxdy V
( x−y

h

) |α(x, y)|2, (2) 

where the one-body operator .h = −h2Δ + h2W − μ describes the energy of non-
interacting electrons at chemical potential .μ < 0. The BCS ground state energy 
is 

.EBCS
μ := inf

0�Γ�1
EBCS

μ [Γ ]. (3) 

Assumption 1 (Existence of a Ground State) We assume that V is real, radially 
symmetric, locally integrable and bounded from below. Moreover, the two-particle 
operator .−Δ + V is assumed to admit a normalized ground state .α0 ∈ L2(R6) with 
corresponding energy .−E0, E0 > 0, which in particular implies that the negative 
part of . V is non-zero. 

Assumption 2 (Spectral Gap) Let . α0 be the ground state as in Assumption 1 above. 
We assume that .∃g > 0 and .0 < ε < 1, such that 

.P ⊥
α0

[−(1 − ε)Δ + V + E0] P ⊥
α0

� gP ⊥
α0

(4) 

where .P ⊥
α0

stands for the projector onto the orthogonal complement of . α0. 

Assumption 3 (Trapping Potential) We also assume that .W ∈ C1(R3) is positive 
and there exist .0 < β, c1, c2 < +∞ such that 

.

{
c1|x|β � W(x) � c2|x|β,

|∇W(x)| � c2β|x|β−1,
for |x| � 1. (5) 

We stress that for the class of attractive potentials in Assumption 1, one can 
deduce by standard Agmon estimates (see, e.g.,[1]) the exponential decay of the 
bound state wave function . α0: there exists .b > 0 such that 

.

∫
R3

dx |α0(x)|2e2bx < +∞. (6)
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Note also that Assumption 3 allows to Taylor expand 

.W(η + ξ/2) = W(η) + ξ
2 · ∇W(ζ), (7) 

with the variable . ζ belonging to .(η, η+ξ/2). A special case of a potential satisfying 
Assumption 3 is obviously given by the harmonic potential. In this case, the two-
body Hamiltonian perfectly decouples in relative and centre-of-mass coordinates, 
which allows to get rid of several error terms in the discussion below. 

The condition .0 � Γ � 1, which is often call admissibility of . Γ , implies that 
the operator . γ is hermitian, i.e. .γ (x, y) = γ (y, x) and that . α is such that . α =
α†. Furthermore, the operators .γ, α : L2(R3) → L2(R3) have a specific physical 
meaning (see, e.g., [3] for a formal derivation): given a many-body fermionic state 
. Ψ , we have  

.γ (x, y) =
〈
a†
xay

〉
Ψ

, α(x, y) = 〈
axay

〉
Ψ

(8) 

i.e., they represent the one-particle density matrix of the system and the wave 
function of a Cooper pair, respectively. Here .a†

x, ax are the fermionic creation and 
annihilation operators. In fact, in absence of any pairing between the fermions, 
the system is in the so-called normal state, which is characterized by a trivial 
off-diagonal component, i.e., .α ≡ 0. The emergence of superconductivity is then 
associated to a non-trivial . α. 

1.2 Gross-Pitaevskii Theory 

For any .D ∈ R, the Gross-Pitaevskii (GP) energy functional is defined as 

.EGP
D (ψ) :=

∫
R3

dη
{

1
4 |∇ψ |2 + (W(η) − D)|ψ |2 + gBCS|ψ |4

}
, (9) 

where the coefficient .gBCS > 0 represents the interaction strength among different 
pairs, and whose expression in terms of the microscopic quantities is provided in 
Theorem 1. The GP energy can be proven to be bounded from below for any positive 
.gBCS (see Corollary 1). We denote then the GP ground state energy by 

.EGP
D := inf

ψ∈DGP
EGP

D (ψ), (10) 

where .DGP = {ψ ∈ H 1(R3)|W |ψ |2 ∈ L1(R3)} is the natural minimization domain 
for (9). We denote by . ψ∗ the corresponding minimizer, which can be shown to be 
unique up to choice of the phase by strict convexity of the functional in .|ψ |2. 

We point out here that, mathematically speaking, the GP functional introduced 
above may as well be named Ginzburg-Landau functional, although the energy does
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not look exactly as the usual GL energy, which in a homogeneous sample would read 

.EGL[φ] =
∫
R3

dη

{
1
4 |∇φ|2 + g̃BCS

(
1 − |φ|2

)2
}

. (11) 

However, it is possible (see below and the discussion in [9, Sect. 1]) to reduce 
the minimization of (9) to the one of a functional very close to (11) (in fact, its 
inhomogeneous counterpart). 

Notice that the GP wave function . ψ is not normalized in .L2 since we are 
performing the energy minimization in the grand canonical setting, and therefore 
we may think that .‖ψ‖2 is determined by the value of the chemical potential . μ. 
Let us denote by . N such a quantity, i.e., .N := ‖ψ∗‖2

2, and let . f0 be the positive 
minimizer of the GP energy 

. ̃EGP[f ] =
∫
R3

dη
{

1
4 |∇f |2 + W(η)|f |2 + gBCSN |f |4

}
,

with . L2 norm set equal to . 1. Such a minimizer satisfies the variational equation 

. − 1
4Δf0 + Wf0 + 2gBCSNf 3

0 = μ0f0,

for a chemical potential .μ0 = ẼGP + gN ‖f0‖4
4, where we have set . ̃EGP :=

inf‖ψ‖2=1 Ẽ
GP[ψ]. With the splitting .ψ∗ =: √

Nf0φ∗ and exploiting the variational 
equation for . f0, one gets 

. EGP
D = N

{
ẼGP − D + ẼGL[φ∗]

}
,

where the last term is a weighted Ginzburg-Laudau functional explicitly given by 

.̃EGL[φ] =
∫
R3

dη f 2
0

{
1
4 |∇φ|2 + g̃BCSNf 2

0

(
1 − |φ|2

)2
}

, (12) 

and . φ∗ its minimizer. 
This makes apparent the connection between the GP and GL functionals, so that, 

from this point of view, both names are mathematically equivalent to identify (9). 
There is however a strong physical motivation (see also [18]) for the choice we 
made, namely the fact that the physical regime we are investigating is a BEC 
one: as described in Sect. 1, the mechanism behind the emergence of a collective 
behavior in the low-temperature Fermi gas considered here is not the usual BCS 
pairing phenomenon, but rather a condensation of fermionic pairs playing the role 
of bosonic molecules. The pairs have indeed a size of order .h � 1 which is much 
smaller that the typical distance between the fermionic particles of order of the trap 
length scale .O(1).
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2 Main Results 

This section contains our main results about the semiclassical expansion of the . BCS
energy. 

Theorem 1 (BCS Energy) Let .μ = −E0 + Dh2, for  some  .D ∈ R and let 
Assumption 1 to 2 to 3 be satisfied. Then, 

.EBCS
μ = hEGP

D + O(h2), (13) 

as .h → 0, where 

.gBCS := (2π)3
∫
R3

dp (p2 + E0)|α̂0(p)|4. (14) 

Moreover, for any approximate ground state . Γ of the BCS functional, i.e., such that 

.EBCS
μ [Γ ] � EBCS

μ + εh, 0 < ε< +∞, (15) 

its off-diagonal element . α can be decomposed as 

.α(x, y) = h−2ψ
( x+y

2

)
α0

( x−y
h

) + r(x, y), (16) 

where .ψ ∈ DGP satisfies .EGP
D (ψ) � EGP

D + ε+o(1), . α0 is the ground state of the 
two-particle operator and the correction r is small in the following sense: 

.‖r‖2
L2 = O(h), ‖∇r‖2

L2+
∥∥∥W |r|2

∥∥∥
L1

= O(h−1). (17) 

Remark 1 (Diluteness) The expansion (16) together with the heuristics . γ � αα

(see Sect. 3.4) suggests that the density of the gas in our setting is proportional1 

to .h−1 |ψ |2, i.e., the total number of particle is of order .h−1. This vindicates 
the statement about the diluteness of the system since the range of the two-body 
interaction is .∝ h and therefore the diluteness parameter .h−1h3 = h2 � 1 is small. 

Remark 2 (Properties of . α0) Note that by the estimate (6), .α0 ∈ L1 ∪ H 1(R3), 
which guarantees that .α̂0 ∈ L∞(R3), so that .α̂0 ∈ Lp(R3) for any .p � 2 and . gBCS
is a finite quantity. 

Whether the systems is superconducting in the asymptotic regime .h → 0 thus 
depends on the fact that the GP wave function . ψ is non-trivial. For the GP minimizer 
this depends on the value of the coefficient . D, which in turn is determined by

1 In fact, it may be possible to prove a weak version of such a statement as in [14, Proposition 1.11] 
using the Griffith’s argument, i.e., variation w.r.t. to the external potential. However, we omit this 
discussion here for the sake of brevity. 
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the chemical potential . μ. In fact, one can infer [14, 18] from the properties of the 
function 

.μ �→ EBCS
μ , (18) 

which is continuous, concave, and monotone decreasing, that there exists a unique 
critical value .μc(h) such that below . μc superconductivity is present and above it the 
system is in the normal state. The exact definition of .μc(h) is the following: 

.μc(h) := inf
{
μ < 0

∣∣ EBCS
μ < 0

}
, (19) 

i.e., it marks the threshold of the transition from a zero ground state energy (normal 
state) to a strictly negative one. 

Theorem 2 (Critical Chemical Potential) Under the assumptions of Theorem 1, 
the critical chemical potential at which the superconductivity phase transition takes 
place is 

.μc(h) = −E0 + EWh2 + o(h2), (20) 

as .h → 0, where .EW is the ground state energy of the one-particle operator . − 1
4Δ+

W . 

3 Proofs 

The key ingredient to prove Theorems 1 and 2 is given by the following Theorem 1, 
which provides the link between the BCS and GL functionals. 

Proposition 1 (BCS and GP Functionals) Let .μ = −E0 + Dh2, .D ∈ R. Then, 

1. Upper bound: for any .ψ ∈ DGP there exists an admissible state . Γψ such that 

.EBCS
μ [Γψ ] � hEGP

D (ψ) + Ch2
[

1 +
(

max
{
EGP

D (ψ), 0
})2

]
. (21) 

2. Lower bound: let . Γ be an admissible .BCS state such that .EBCS
μ [Γ ] � CΓ h. 

Then, there exists .ψ ∈ DGP(R3) such that 

.EBCS
μ [Γ ] � hEGP

D (ψ) − Ch2. (22) 

Furthermore, there exists a function r such that the following decomposition 
holds: 

.α(x, y) = h−2ψ
( x+y

2

)
α0

( x−y
h

) + r(x, y). (23)
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where the remainder . r satisfies the bounds 

.‖r‖2
L2 � Ch, 〈r |−Δ + W | r〉L2 � Ch−1. (24) 

Let us then assume that Theorem 1 holds and prove Theorems 1 and 2. The proof 
of Theorem 1 will be given in next Sects. 3.3 and 3.4 by separately addressing points 
.(a) and .(b) of the statement. 

Proof (Theorem 1) To prove the upper bound, we use the admissible trial state .Γψ∗ , 
where we recall that .ψ∗ stands for the minimizer of the GP functional. We then 
obtain by (21) 

.EBCS
μ � EBCS

μ [Γψ∗ ] = hEGP
D (ψ∗) + O(h2) = hEGP

D + O(h2), (25) 

since .EGP
D (ψ∗) = EGP

D � 0. In addition to proving a sharp upper bound for the 
ground state energy, the estimate above also yields the a priori bound . EBCS

μ [Γ ] �
Ch for any approximate minimizer . Γ of the BCS energy. Hence, the minimizer 
satisfies (22), so that we can deduce the estimate from below matching the upper 
bound, along with the decomposition of . α as in (23). ��
Proof (Theorem 2) We start from the trivial observation that 

.EGP
D < 0, ⇐⇒ D > EW, (26) 

where we recall that .EW is the ground state energy of .− 1
4Δ + W : indeed, if . D >

EW , it suffices to use .λψW , .λ > 0, as a trial state for the GP energy, where .ψW si 
the normalized ground state of .− 1

4Δ + W , to get 

.EGP
D = λ(EW − D) + gBCSλ2 ‖ψW‖4

L4 < 0, (27) 

for . λ small enough. On the other hand, if .D � EW , the functional is trivially 
positive, since 

.EGP
D (ψ) � (EW − D) ‖ψ‖2

L2 . (28) 

Note also that . ψ∗ is non-trivial if and only if .EGP
D < 0. 

Next, we prove the upper bound .μc(h) � −E0 +EWh2 +o(h2) by showing that, 
if .μ = −E0 + Dh2, .D > EW , then there exists an admissible .BCS state such that 

.EBCS
μ [Γ ] < 0. (29) 

By Proposition 1, for any .ψ ∈ DGP, there exists .Γψ admissibile such that 

.h−1EBCS
μ [Γψ ] = EGP

D (ψ) + O(h). (30)
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This in particular holds true for .ψ = ψ∗, so that 

.EBCS
μ � EGP

D h + O(h2) < 0, (31) 

if .D > EW . 
Conversely, we now show that, if .EBCS

μ = 0 for a certain .μ = −E0 + Dh2, 
then .D � EW , so completing the proof. By Theorem 1, indeed, if .EBCS

μ = 0, then 

.EGP
D = O(h) but the GP functional is independent of . h and therefore .EGP

D = 0, 
which in turn implies that .D � EW by (26). ��

3.1 GP Functional 

We discuss some useful properties of the GP functional (9) and its minimization. 
We recall that we denote by .EGP the infimum of (9) and by .ψ∗ any associated 
minimizer. 

Proposition 2 (A Priori Bounds on . ψ) There exists .C < +∞, depending on 
.gBCS > 0, such that 

. ‖∇ψ‖2
L2 + 〈ψ |W | ψ〉 + ‖ψ‖4

L4 + ‖ψ‖2
L2 � C

[
1 + max

{
EGP

D (ψ), 0
}]

(32) 

for all .ψ ∈ DGP. 

Proof We may assume that .D � 0 otherwise the result is trivially obtained with 

.C = max
{
|D|−1, g−1

BCS, 4
}

. The starting point is the inequality 

. 

〈
ψ

∣∣∣− 1
4Δ + W

∣∣∣ψ〉
+ gBCS ‖ψ‖4

L4 � D ‖ψ‖2
L2 + EGP

D (ψ)

� D ‖ψ‖2
2 + max

{
EGP

D (ψ), 0
}

, (33) 

which allows to bound from above both the quantities on the l.h.s. in terms of the 
. L2 norm and the GP energy of . ψ . Next, we estimate for . R large enough 

. ‖ψ‖2
L2 �

∫
|x|�R

dx |ψ |2 + R−β

∫
|x|>R

dx |x|β |ψ |2

�
√

4π
3 R3/2 ‖ψ‖2

L4 + CR−β 〈ψ |W | ψ〉

� C
[
R3/2g−1

BCS

(
D ‖ψ‖L2 + √

E
)

+ R−β
(√

D ‖ψ‖2
L2 + E

)]
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where we have set .E := max
{
EGP

D (ψ), 0
}

for short. Hence, for .R > (CD)1/β , we  
get 

. 

(
1 − CD

Rβ

)
‖ψ‖2

L2 − CR3/2D ‖ψ‖L2 � C
(
R3/2g−1

BCS

√
E + R−βE

)
,

which implies 

. ‖ψ‖2
L2 � C(

1 − CD
Rβ

)2

[(
1 − CD

Rβ

) (
R3/2g−1

BCS

√
E + R−βE

)
+ C2R3D2

]

(34) 

and thus the result. ��
Corollary 1 (Boundedness from Below of .EGP

D (ψ)) For any .gBCS > 0, there 
exists a finite constant .C < +∞ such that 

.EGP
D � −C. (35) 

Proof Again, .EGP
D = 0, if .D � 0, and there is nothing to prove, so let us assume 

that .D > 0. In this case it suffices to observe that .EGP
D � 0, which can be obtained 

by simply testing the GP energy on the trivial wave function .ψ ≡ 0. Hence, 
Proposition 2 implies that .∃C < +∞ such that .‖ψ‖2

L2 � C for any . ψ with non-

positive energy, which in turn yields the lower bound .EGP
D � −C|D| and thus the 

result. ��
The existence of a minimizer . ψ∗ which is also unique up to gauge transformation 

can be deduced by standard methods in variational calculus, and any such a 
minimizer solves the variational equation 

. − 1
4Δψ∗ + (W − D)ψ∗ + 2gBCS|ψ∗|2ψ∗ = 0. (36) 

Under Assumption 3, one can also show that .ψ∗ ∈ C3 ∩ L∞(R3) and it can be 
chosen strictly positive. 

3.2 Semiclassical Estimates 

Before attacking the proof of Proposition 1, it is useful to state some technical but 
standard semiclassical bounds to be used in the rest of the paper.
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Proposition 3 (Semiclassical Estimates) Let .μ = −E0 + h2D, .D ∈ R and let 

. αψ(x, y) := h−2 ψ
( x+y

2

)
α0

( x−y
h

)
, (37) 

for any .ψ ∈ DGP. Then, the following estimates hold as .h → 0: 

. 

∣∣∣∣Tr hαψ αψ +
∫
R6

dxdy V
( x−y

h

) |αψ(x, y)|2

−h
〈
ψ

∣∣∣− 1
4Δ + W − D

∣∣∣ψ〉
L2(R3)

∣∣∣∣ � A0h
2, (38) 

where 

.A0 = C
(∥∥∥W |ψ |2

∥∥∥
L1

+ ‖ψ‖2
L2

)
; (39) 

. 

∣∣∣Tr hαψ αψ αψ αψ − hgBCS‖ψ‖4
L4

∣∣∣
� Ch2

[
‖∇ ψ‖4

L2 +
∥∥∥W |ψ |2

∥∥∥2

L1
+ ‖ψ‖4

L2 + A0h

]
. (40) 

Before discussing the proof of the above Proposition, it is convenient to state 
a technical result about the reduced density .αψ which is going to be used several 
times. In the following we will often use the center-of-mass coordinates 

.η := 1
2 (x + y), ξ := x − y, (41) 

and use the notation 

.α̃ψ (η, ξ) := αψ(x, y). (42) 

Lemma 1 Let . αψ be as (37). Then, for any .n ∈ N even, 

.‖αψ‖n
Sn � Chn−3‖ψ‖n

Ln

∥∥|α̂0|
∥∥n

Ln , . (43)

‖∇ξ α̃ψ‖n 
Sn � h−3‖ψ‖n 

Ln

∥∥| · | α̂0
∥∥n 

Ln , (44) 

where .‖·‖Sn stands for the Schatten norm of order .n ∈ N. 

Proof See [5, Lemma 1]. The extension to any .n ∈ N is obtained by simply 
observing that, thanks to the monotonicity of Schatten norms, . 

∥∥αψ

∥∥
S∞ �

∥∥αψ

∥∥
Sn

for any .n ∈ N, which allows to use (43) and (44) repeatedly to extend the result to 
all natural numbers. ��
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We are now in position to present the proof of Proposition 3. 

Proof (Proposition 3) Using the change to center-of-mass and relative coordinates, 
one gets 

. Tr hαψ αψ +
∫
R6

dxdy V
( x−y

h

) |αψ(x, y)|2

=
〈
α̃ψ

∣∣∣− 1
4h2Δη + h2W(η + ξ/2) − h2D

∣∣∣ α̃ψ

〉
L2(R6)

+
〈
α̃ψ

∣∣∣−h2Δξ + V (ξ/h) + E0

∣∣∣ α̃ψ

〉
L2(R6)

=
〈
α̃ψ

∣∣∣− 1
4h2Δη + h2W(η + ξ/2) − h2D

∣∣∣ α̃ψ

〉
L2(R6)

. (45) 

where we used that . α0 is the normalized zero energy eigenvector of the operator 
.−Δ + V + E0. The result then follows from next Lemma 2. 

In order to prove the second estimate, we use the cyclicity of the trace and the 
symmetry of the Laplacian, to get 

. Tr Δαψ αψ αψ αψ =
〈
αψ αψ αψ

∣∣∣ 1
2 (Δx + Δy)αψ

〉
L2(R6)

=
〈
ω̃ψ

∣∣∣ 1
4Δηα̃ψ

〉
L2(R6)

+ 〈
ω̃ψ

∣∣Δξ α̃ψ

〉
L2(R6)

, (46) 

where we have set for short .ω̃ψ(η, ξ) := (αψ αψ αψ)(x, y). Introducing the 
coordinates 

.X = 1
4 (x1 + x2 + x3 + x4), ξk = xk+1 − xk, k = 1, 2, 3, (47) 

and rescaling the relative ones, we obtain 

. Tr(−h2Δ + E0) αψ αψ αψ αψ = h

∫
R12

dXdξ1dξ2dξ3 ψ(X − hs)ψ(X − ht)×

ψ(X + hs)ψ(X + ht) [(−Δ + E0) α0] (ξ1)α0(ξ2) α0(ξ3)α0(ξ∗)

− 1
4h2 〈

ω̃ψ

∣∣Δηα̃ψ

〉
L2(R6)

, (48) 

where .ξ∗ := −ξ1 − ξ2 − ξ3 and .s, t are functions of .ξ1, ξ2, ξ3, i.e., 

.s := 1
4 (ξ1 + 2ξ2 + ξ3) , t := 1

4 (ξ3 − ξ1) . (49)
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From this expression we are going to extract the quartic term needed to reconstruct 
the . GP functional times . h plus higher order contributions. The fundamental theorem 
of calculus allows to rewrite the first term on the r.h.s. of (48) as 

. h‖ψ‖4
L4

∫
R9

dξ1dξ2dξ3 [(−Δ + E0) α0(ξ1)] α0(ξ2) α0(ξ3)α0(ξ∗)

+ h

∫
R12

dXdξ1dξ2dξ3

∫ 1

0
dτ

d

dτ

(
ψ(X − τhs)ψ(X − τht)×

×ψ(X + τhs)ψ(X + τht)
)

[(−Δ + E0) α0(ξ1)] α0(ξ2) α0(ξ3)α0(ξ∗)

=: hgBCS‖ψ‖4
L4 + h2I1, (50) 

thanks to the explicit computation 

. 

∫
R9

dξ1dξ2dξ3 [(−Δ + E0) α0(ξ1)] α0(ξ2) α0(ξ3)α0((ξ∗))

= (2π)3
∫
R3

dp (p2 + E0)|α̂0(p)|4.

Hence, (48) yields 

. Tr(−h2Δ + E0) αψ αψ αψ αψ = hgBCS‖ψ‖4
L4 + h2 (I1 + I2) , (51) 

where 

.I2 := − 1
4

〈
αψ αψ αψ

∣∣Δηαψ

〉
L2(R6)

. (52) 

The estimate on the term containing the external potential immediately follows from 
Lemma 2 using Hölder inequality with exponents . 12 , 1

3 and . 16 : 

. 
∣∣Tr W αψ αψ αψ αψ

∣∣ � Tr
∣∣∣W 1/2 αψ αψ αψ αψW 1/2

∣∣∣
�

∥∥∥W 1/2αψ

∥∥∥
S2

∥∥∥W 1/2αψ

∥∥∥
S6

∥∥αψαψ

∥∥
S3 �

∥∥∥W 1/2αψ

∥∥∥2

S2

∥∥αψ

∥∥2
S6

� Ch‖ψ‖2
L6

∥∥α̂0
∥∥2

L6

∥∥∥W 1/2αψ

∥∥∥2

L2
� C‖ψ‖2

L6

[∥∥∥W |ψ |2
∥∥∥

L1
+ hA0

]
, (53) 

by the monotonicity of Schatten norms and Lemma 1. The replacement of . ‖ψ‖2
L6

with .‖∇ψ‖2
L2 + ‖ψ‖2

L2 can be done via Sobolev inequality. ��
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Lemma 2 Let . αψ be as (37) and . A0 as in (39), then 

.

∣∣∣∣〈αψ |W | αψ

〉
L2(R6)

− h−1
∫
R3

dη W(η)|ψ |2
∣∣∣∣ � A0. (54) 

Proof Using center-of-mass and relative coordinates as before, we get by the Taylor 
expansion (7) 

. 12

〈
αψ |W(x) + W(y)| αψ

〉
L2(R6)

= 1
2

〈
α̃ψ |W(η + ξ/2)| α̃ψ

〉
L2(R6)

+ 1
2

〈
α̃ψ |W(η − ξ/2)| α̃ψ

〉
L2(R6)

= h−1
∫
R3

dη W(η)|ψ(η)|2 + 1
2h−4

∫
R6

dηdξ ξ · ∇W(ζ) |ψ(η)|2 |α0(ξ/h)|2 ,

where we recall that .α̃ψ (η, ξ) = αψ(x, y). Hence, we have only to estimate the last 
term on the r.h.s. of the expression above: by Assumption 3 on . W , we deduce that, 
since .ζ ∈ (η, η + ξ/2), 

. 12h−4
∫
R6

dηdξ ξ · ∇W(ζ) |ψ(η)|2 |α0(ξ/h)|2

� C

∫
R6

dηdξ |ξ |
(
hβ−1 |ξ |β−1 + |η|β−1 + 1

)
|ψ(η)|2 |α0(ξ)|2 (55) 

which immediately implies the result, via the trivial bounds . |x|β−1 � W(x) + 1
(again by Assumption 3) and 

.

∥∥∥|·|β/2 α0

∥∥∥2

L2
� C,

∥∥∥|·|1/2 α0

∥∥∥2

L2
� C, (56) 

which follows from (6). ��
Lemma 3 Let .I1, I2 as in (50) and (52). Then, as .h → 0,.∃C < +∞ such that 

.|I1| + |I2| � C‖∇ ψ‖4
L2 . (57) 

Proof By [5, Proof of Lemma 1], there exist two finite constants .C1, C2 such that 

. |I1| � C1‖∇ ψ‖4
L2 ‖|·| α0‖L2 ‖α0‖L2 ‖α0‖L1 ‖V α0‖L1 ,

|I2| � C2‖∇ ψ‖4
L2 .

The result then follows from the properties of . α0 (see Remark 2). ��
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3.3 Energy Upper Bound 

The result is obtained by testing the BCS energy functional on a suitable trial state. 
We define an admissible state Γψ , with off-diagonal element given by αψ as in (37) 
and ψ ∈ DGP, and upper left entry 

.γψ := αψ αψ + (1 + λh) αψ αψ αψ αψ, (58) 

for some λ ∈ R
+. 

Remark 3 (Admissibility) The admissibility requirement makes the correction of 
order λh necessary. In fact, any correction of order hβ , 0  < β � 1, would work, 
if λ is chosen appropriately, but β = 1 gives the best error bound in our estimates. 
Indeed, the state is admissible if and only if γ − γ 2 − αα � 0 (see, e.g., [5, Eq.  
(4.8)]), which, assuming that the quartic correction is proportional to λhβ , yields 
the condition 

.λhβ − (1 + λhβ)2(αψ αψ)2 − 2(1 + λhβ) αψ αψ � 0. (59) 

Since ‖αψ‖∞ � ‖αψ‖6 � Ch1/2, this bound implies that we may choose 0 < β  <  
1, and the latter condition would be satisfied for any value of λ. For  β = 1, on the 
other hand, one is forced to take the parameter λ large enough, but the inequality 
may still hold. 

We now apply Proposition 3 to get 

. EBCS
μ [Γψ ] = Tr h γ ψ +

∫
R6

dxdyV
( x−y

h

) |αψ(x, y)|2

= Tr hαψ αψ +
∫
R6

dxdyV
( x−y

h

) |αψ(x, y)|2 + (1 + λh) Tr hαψ αψ αψ αψ

� h

∫
R3

dη
{

1
4 |∇ ψ |2 + (W − D)|ψ |2 + gBCS|ψ |4

}

+ Ch2
[
‖∇ ψ‖4

L2 +
∥∥∥W |ψ |2

∥∥∥2

L1
+ ‖ψ‖4

L2 + 1

]
(60) 

as h → 0. The upper bound (21) is thus a straightforward consequence of (32). 

3.4 Energy Lower Bound 

We consider any admissible .BCS state . Γ satisfying .EBCS
μ [Γ ] � CΓ h, whose 

existence is ensured by the analysis in the previous Sect. 3.3. The integral kernel
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of . α, the upper-right entry of . Γ , can be decomposed as 

.α(x, y) = αψ(x, y) + r(x, y) = h−2 ψ
( x+y

2

)
α0

( x−y
h

) + r(x, y). (61) 

where . r is chosen to be orthogonal to . α0: 

. 〈α0 ( · /h) |r̃ 〉L2
ξ (R3) = 0, (62) 

where .r̃(η, ξ) := r(x, y) and the coordinates .η, ξ are defined in (41). With such 
a choice, the order parameter . ψ is naturally defined in terms of . α as (recall the 
notation .α̃(η, ξ) := α(x, y)) 

. ψ(η) := h−1 〈α0 ( · /h) |α̃ 〉L2
ξ (R3) = h−1

∫
R3

dξ α0(ξ/h)α̃(η, ξ), (63) 

Note also that, because of the orthogonality of . r to . α0, one immediately gets 

.‖α‖2
L2(R6)

= ‖αψ‖2
L2(R6)

+ ‖r‖2
L2(R6)

= h−1‖ψ‖2
L2 + ‖r‖2

L2 . (64) 

The physical meaning of such a decomposition is apparent: . α represents the 
wave function of a pair of particles and it almost factorizes in the coordinates of 
the center-of-mass reference frame. More precisely, . α0 describes the wave function 
in the relative coordinate living on the microscopic scale h, while . ψ is the wave 
function in the in center-of-mass coordinate and varies on the macroscopic scale. 

We start with a preliminary lower bound on the .BCS energy functional in terms 
of the off diagonal entry . α of . Γ . Indeed, for any admissible . Γ , it can be seen that 
one can bound .EBCS

μ [Γ ] from below in terms of a functional of . α alone. 

Lemma 4 Let .μ = −E0 + h2D, .D ∈ R. For any admissible . Γ and for . h small 
enough, 

.EBCS
μ [Γ ] � Tr hαα + Tr hαααα +

∫
R6

dxdy V
( x−y

h

) |α(x, y)|2. (65) 

Proof The proof is given, e.g., in [14, Proposition 6.2]. We spell it in details here 
for the sake of completeness. The admissibility of . Γ , i.e., the condition .0 � Γ � 1, 
is equivalent to 

.γ − γ 2 − αα � 0. (66) 

Since for . h small enough . h is positive, as it follows from the trivial bound 

. h � E0 − Dh2 > 0, (67) 

we can use the monotonicity of the trace and apply the above inequality to get the 
result, since (66) implies that .γ � αα + αααα (see [14, Eq. (6.2)]). ��
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The next lower bound give more information on the decomposition (61). 

Lemma 5 Let .μ = −E0 + h2D, .D ∈ R, and let . Γ an admissible .BCS state 
with upper-right entry . α as in (61). Then, there exists a finite constant . C such that 
(recall (39)), as .h → 0, 

. Tr hαα +
∫
R6

dxdy V
( x−y

h

) |α(x, y)|2 � h
〈
ψ

∣∣∣− 1
4Δ + W − D

∣∣∣ψ〉
L2(R3)

+ 1
2g‖r‖2

L2(R6)
+ h2

[〈
r̃

∣∣∣− 1
4Δη − εΔξ + 1

2W − D

∣∣∣ r̃〉
L2(R6

− A0

]
. (68) 

Proof Plugging in the operator bound (67), we can immediately get rid of the 
second term in (65) to obtain 

. EBCS
μ [Γ ] � Tr hαα +

∫
R6

dxdy V
( x−y

h

) |α(x, y)|2 + (E0 − h2D)‖α‖4
S4 ,

and the last term can be dropped since it is positive. Next, we estimate the first term, 
which reads 

. Tr hαα +
∫
R6

dxdy V
( x−y

h

) |α(x, y)|2

=
∫
R6

dηdξ α̃(η, ξ)
(
− 1

4h2Δη − h2Δξ + h2W(η + ξ/2)+

V (ξ/h) − μ) α̃(η, ξ).

By plugging in the decomposition (61), we get 

. Tr hαα = 〈
αψ |h| αψ

〉 +
∫
R6

dxdy V
( x−y

h

) |αψ(x, y)|2

+ 〈r |h| r〉 +
∫
R6

dxdy V
( x−y

h

) |r(x, y)|2 + 2h2� 〈
αψ |Wr

〉
, (69) 

since the potential . W is the only operator which does not factorize in the decom-
position .L2(R6) = L2

η(R
3) ⊗ L2

ξ (R
3). The sum of the first two terms has already 

been estimated in Proposition 3, so that it just remains to consider the quadratic 
expression on . r and the mixed term. 

The mixed term can be controlled by exploiting the Taylor expansion (7) and the 
orthogonality (62), obtaining 

.2h2
∣∣� 〈

αψ |Wr
〉∣∣ = 2

∣∣∣∣
∫
R6

dηdξ ξ · ∇W(ζ)ψ(η)α0(ξ/h)r̃(η, ξ)

∣∣∣∣
� C

∫
R6

dηdξ |ξ |
(
|ξ |β−1 + |η|β + 1

)
|ψ(η)||α0(ξ/h)| |r̃(η, ξ)|
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by the trivial bound .|η|β−1 � |η|β + 1. Hence, by Cauchy-Schwarz inequality we 
get 

. 2h2
∣∣� 〈

αψ |Wr
〉∣∣ � C ‖ψ‖L2(R3) ‖r‖L2(R6) ×

×
(∫

R3
dξ

(
|ξ |2β + |ξ |2

)
|α0(ξ/h)|2

)1/2

+ C

(∥∥∥W |ψ |2
∥∥∥1/2

L1(R3)
+ ‖ψ‖L2(R3)

) [(∫
R6

dηdξ |η|β |r̃|2
)1/2

+ ‖r‖L2(R6)

]
×

×
(∫

R3
dξ |ξ |2 |α0(ξ/h)|2

)1/2

� Ch5/2
(
‖ψ‖2

L2 + ‖r‖2
L2 +

∥∥∥W |ψ |2
∥∥∥

L1
+

∥∥∥W |r|2
∥∥∥

L1

)

where we have estimated 

. 

∫
R6

dηdξ |η|β |r̃|2 � C

∥∥∥W |r|2
∥∥∥

L1(R6)
.

The two terms depending on . r can then be absorbed in the corresponding positive 
ones coming from the estimate of .〈r |h| r〉 by adding a . 12 prefactor for . h small 
enough, while the other two can be included in the .A0h

2 remainder up to the change 
of the constant . C in . A0. The quadratic expression in . ξ is bounded from below by 
means of Assumption 2: 

. 

∫
R3

dη
〈
r(η, ·)

∣∣∣−h2Δξ + V ( · /h) + E0

∣∣∣ r(η, ·)
〉
L2

ξ (R3)

�
∫
R3

dη
〈
r(η, ·)

∣∣∣−h2εΔξ + g

∣∣∣ r(η, ·)
〉
L2

ξ (R3)

= g‖r‖2
L2(R6)

+ h2ε
∥∥∇ξ r

∥∥2
L2(R6)

. (70) 

��
Lemma 6 Let .μ = −E0 + h2D, .D ∈ R, and let . Γ an admissible .BCS state with 
upper-right entry . α as in (61), such that .EBCS

μ [Γ ] � CΓ h. Then, there exists a finite 
constant . C such that 

.
∣∣Tr hαααα − Tr hαψαψαψαψ

∣∣ � Ch2
(
‖∇ψ‖4

L2 + A2
0

)
. (71) 

Proof We first rewrite the quartic term via 

.αααα − αψαψαψαψ = rαααψ + αψααr + rααr + αψ(αα − αψαψ)αψ,
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so that the cyclicity of trace and triangle inequality yields 

. 
∣∣Tr hαααα − Tr hαψαψαψαψ

∣∣ � ∥∥∥h1/2rαααψh
1/2

∥∥∥
S1

+
∥∥∥h1/2αψααrh1/2

∥∥∥
S1

+
∥∥∥h1/2rααrh1/2

∥∥∥
S1

+
∥∥∥h1/2αψ(αα − αψαψ)αψh

1/2
∥∥∥
S1

. (72) 

To estimate this four terms, we apply Hölder inequality: 

. 

∥∥∥h1/2αψααrh1/2
∥∥∥
S1

�
∥∥∥h1/2αψ

∥∥∥
S6

‖α‖2
S6

∥∥∥h1/2r

∥∥∥
S2

;
∥∥∥h1/2rαααψh

1/2
∥∥∥
S1

�
∥∥∥h1/2r

∥∥∥
S2

‖α‖2
S6

∥∥∥h1/2αψ

∥∥∥
S6

;
∥∥∥h1/2rααrh1/2

∥∥∥
S1

=
∥∥∥αrh1/2

∥∥∥2

S2
� ‖α‖2

S∞
∥∥∥h1/2r

∥∥∥2

S2
;

∥∥∥h1/2αψ(αα − αψαψ)αψh
1/2

∥∥∥
S1

�
∥∥αα − αψαψ

∥∥
S3/2

∥∥∥h1/2αψ

∥∥∥2

S6
.

Plugging the above bounds in (72), we obtain 

. 
∣∣Tr hαααα − Tr hαψαψαψαψ

∣∣ � 2
∥∥∥h1/2αψ

∥∥∥
S6

‖α‖2
S6

∥∥∥h1/2r

∥∥∥
S2

+ ‖α‖2
S6

∥∥∥h1/2r

∥∥∥2

S2
+ ∥∥αα − αψαψ

∥∥
S3/2

∥∥∥h1/2αψ

∥∥∥2

S6
. (73) 

By (68) and the condition on the BCS energy of . Γ , we deduce the inequality 

. 

(
1
2g − Dh2

)
‖r‖2

L2 + h2
[〈

r̃

∣∣∣− 1
4Δη − εΔξ + 1

2W

∣∣∣ r̃〉
L2(R6)

]

� Ch
[
1 + ‖ψ‖2

L2 + hA0

]
, (74) 

with .A0 defined in Proposition 3. This, for . h small enough (e.g., smaller than 
.
√

g/(4D)), gives a bound on .‖r‖2
L2 as well as its Sobolev norms in terms of the 

norm of . ψ . Hence, we have 

. 
∥∥αα − αψαψ

∥∥
S3/2 = ∥∥αψr + rαψ + rr

∥∥
S3/2

� 2
∥∥αψ

∥∥
S6 ‖r‖S2 + ‖r‖2

S2 � Ch
[
‖ψ‖2

L6 + ‖ψ‖2
L2 + 1 + hA0

]
,

by the monotonicity of Schatten norms, Lemma 1 and (74). Similarly, by Sobolev 
inequality 

. ‖α‖2
S6 � C

(∥∥αψ

∥∥2
S6 + ‖r‖2

S2

)
� Ch

[
‖ψ‖2

L6 + ‖ψ‖2
L2 + 1 + hA0

]

� Ch
[
‖∇ψ‖2

L2 + ‖ψ‖2
L2 + 1 + hA0

]
. (75)
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To conclude, we have to estimate the norms of .h1/2 αψ but, for any operator T , one 
has 

. 

∥∥∥h1/2 T

∥∥∥
S2n

=
∥∥∥T † h T

∥∥∥1/2

Sn

�
(
h2

∥∥∥T †(−Δ)T

∥∥∥
Sn

+ h2
∥∥∥T †WT

∥∥∥
Sn

+ μ

∥∥∥T †T

∥∥∥
Sn

)1/2

� h
(

1
2

∥∥∇ηT
∥∥
S2n + ∥∥∇ξ T

∥∥
S2n +

∥∥∥W 1/2T

∥∥∥
S2n

)
+ (E0 − h2D) ‖T ‖S2n .

Applying this inequality to estimate the norms above and using once more the 
monotonicity of Schatten norms, Proposition 3, Lemma 1 and 2 and Sobolev 
inequality, we obtain 

. 

∥∥∥h1/2αψ

∥∥∥
S6

� h
[

1
2

∥∥∇ηα̃ψ

∥∥
S2 + ∥∥∇ξ α̃ψ

∥∥
S2 +

∥∥∥W 1/2αψ

∥∥∥
S2

]
+ E0

∥∥αψ

∥∥
S6

� Ch1/2
[∥∥∥W |ψ |2

∥∥∥1/2

L1
+ ‖ψ‖L6 + A0 + h ‖∇ψ‖L2

]

� Ch1/2
[
‖∇ψ‖L2 +

∥∥∥W |ψ |2
∥∥∥1/2

L1
+ A0

]
,

. 

∥∥∥h1/2r

∥∥∥
S2

� h
[

1
2

∥∥∇ηr
∥∥
S2 + ∥∥∇ξ r

∥∥
S2 +

∥∥∥W 1/2r

∥∥∥
S2

]
+ E0 ‖r‖S2

� Ch1/2
[
1 + ‖ψ‖L2 + h1/2

√
A0

]
,

as follows from the a priori estimate (74). Putting together all the bounds found so 
far, we get the result. ��

In order to complete the proof of the lower bound, we need a last ingredient. 

Lemma 7 Let .μ = −E0 + h2D, .D ∈ R, and let . Γ an admissible .BCS state with 
upper-right entry . α as in (61), such that .EBCS

μ [Γ ] � CΓ h. Then, there exists a finite 
constant . C such that 

.

∫
R3

dη
{
|∇ψ |2 + W |ψ |2 + |ψ |2 + |ψ |4

}
� C. (76) 

Proof Let us denote for short 

. E :=
∫
R3

dη
{
|∇ψ |2 + W |ψ |2 + |ψ |2 + |ψ |4

}
.

Combining Lemma 6 with (40), we get 

. Tr hαααα � gBCSh ‖ψ‖4
L4 − Ch2E2, (77)



Derivation of GP Theory for Interacting Fermions in a Trap 355

so that, by Lemma 5, we find 

.CΓ h � EBCS
μ [Γ ] � hEGP

D (ψ) − Ch2
(
E2 + 1

)
, (78) 

where we used once more the estimate on .‖r‖L2 following from (74). Since there 
exists a positive constant .c > 0 such that .EGP

D (ψ) � cE− D ‖ψ‖2
L2 , we get 

. E � 1
c

(
Cγ + D ‖ψ‖2

L2

)
+ O(h).

However, such a bound gives a control on the norms .
∥∥W |ψ |2∥∥

L1 and .‖ψ‖L4 , which 
can be used as in the proof of Proposition 2 to get an estimate of .‖ψ‖2

L2 , i.e., one 
obtains that there exists a finite constant such that 

. ‖ψ‖2
L2 � C, (79) 

which in turn yields the result. ��
The estimate (78) together with (76) gives the energy lower bound (22). The  

combination of Lemma 4–7 provides the proof of the remaining statements about 
the decomposition of . α. 
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