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Abstract 

Pearl millet [Pennisetum glaucum (L.) R. Br] is a staple grain for about 90 million 
people in India, sub-Saharan Africa, and South Asia. Genomic selection is a new 
tool that helps to identify better lines among experimental cultivars in plant 
breeding programs. Genomic selection examines the phenotypes and high-
density marker scores of lines in a population to predict breeding values. The 
integration of all marker information in the prediction model contributes to the 
effectiveness of genomic selection by eliminating biased marker effect 
estimations and collecting more of the variance associated with small-effect 
quantitative trait loci (QTL). The whole genome sequence of pearl millet has 
recently been sequenced, allowing genomic selection models to be used to 
improve the selection process in the pearl millet breeding program. Genomic 
selection, which employs genomic-estimated breeding values of individuals 
obtained from genome-wide markers to identify candidates for the next breeding 
cycle, is a powerful tool for enhancing quantitative traits. Models used for 
genomic selection frequently encounter problems when the number of markers
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exceeds the number of phenotypic data. To address this issue and enhance 
prediction accuracy, genomic selection models and algorithms such as Bayesian, 
Gaussian, and machine learning have been used. This chapter focuses extensively 
on the transition from conventional selection techniques used in plant breeding to 
the genomic selection, the underlying statistical models and methods used for this 
purpose, the current state of genomic selection research in pearl millet, and the 
prospects for its successful application in the development of climate resilient 
pearl millet varieties suitable for different end users.
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6.1 Introduction 

The primary objective of any crop improvement program is to develop varieties and 
cultivars with increased yield and biotic and abiotic stress tolerance. The process of 
developing varieties is continuous to meet the food demand of a growing global 
population. The current rate of genetic improvement in major agricultural crops is 
about 0.8–1.2%, which is insufficient to meet global food security in the future 
(Krishnappa et al. 2021). As the human population is expected to increase to 9.5 or 
10 billion by 2050, the varietal improvement needs to be accelerated to 2.4% to feed 
the hungry stomach (Hickey et al. 2019; Ray et al. 2012, 2013). 

In general, the development of high-yielding crop varieties has been achieved 
through forward genetics and/or conventional breeding approaches with difficulties. 
Because most of the yield and yield contributing traits are genetically complex and 
highly influenced by changing environmental conditions and climate change, the 
rate of genetic improvement is restricted (Bailey-Serres et al. 2019). 

Over the decades, different molecular breeding approaches have been developed 
to speed up domestic and global breeding programs. After the discovery of molecu-
lar markers, marker-assisted selection/breeding (MAS/MAB) has been used to 
facilitate the development of crop varieties in different crop plants. MAS/MAB 
has been used successfully in crop improvement programs. This has led to the 
release of improved varieties of many crops, such as HHB67-Improved in pearl 
millet (Rai et al. 2008), C214 in chickpea (Varshney et al. 2014a), JL24 and TAG24 
in groundnut (Varshney et al. 2014b), JTN5503 and DS880 in soybean (Arelli et al. 
2006, 2009), HUW510 in wheat (Vasistha et al. 2017), Pusa Samba 1850 (Krishnan 
et al. 2019), Pusa Basmati 1728 (Singh et al. 2017a), Pusa Basmati 1637 (Singh et al. 
2017b), Improved Pusa Basmati1 (Gopalakrishnan et al. 2008), Swarna-Sub1 
(Neeraja et al. 2007), Improved Samba Mahsuri (Ratna Madhavi et al. 2016), and 
CR 1009 Sub 1(Robin et al. 2019) in rice. However, MAS/MAB is inefficient for 
improving traits like yield and biotic and abiotic stress tolerance because it is 
controlled by many genes or quantitative loci with small effects. The biggest



problems with MAS/MAB are (1) that it uses a low-density marker system, (2) that it 
doesn’t have a good statistical method for improving traits that are controlled by 
many loci with small effects, and (3) that it uses a certain type of population. Hence, 
we need an appropriate approach for improving polygenic traits such as yield and 
biotic and abiotic stress tolerance. 
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A genomic selection (GS) approach was proposed by Meuwissen et al. (2001) for 
a breeding population to facilitate the selection of polygenic traits. The GS approach 
is used to predict the individual marker effect along with the sum of all the marker 
effects, which is used to calculate the genomic-estimated breeding values (GEBV) of 
the individual genotype. 

Pearl millet (Pennisetum glaucum (L) R. Br., syn. Cenchrus americanus (L.) 
Morrone) is a drought-tolerant, open-pollinated, climate-resilient, C4 plant that 
grows primarily in resource-limited or marginal soil and environmental conditions 
such as low soil fertility, high temperatures, and limited water availability 
(Srivastava et al. 2020). As a C4 plant, it has great photosynthetic and high 
biomass-producing potential, which makes pearl millet an important staple food 
for those who are living in poverty or developing countries. It was considered an 
orphan/neglected crop and limited efforts have been made to improve its yield and 
quality. Later, much emphasis was given to the development of genetic and genomic 
resources to breed high-yielding and climate-resilient pearl millet varieties/hybrids 
for marginal farmers. The discovery of the pearl millet reference sequence in 2017 
(Varshney et al. 2017) aided in the advancement of the pearl millet crop. 

In this chapter, we present the current status and promising prospects of genomic 
selection methods, prediction models, and trait improvement concerning their appli-
cation in pearl millet improvement. 

6.2 Prediction Methods and Models 

Several different series of models and algorithms for genetic prediction have been 
proposed by several researchers in GS. Initially, GS prediction approaches were 
mainly proposed and performed for animal genetic prediction. Later, the develop-
ment of GS models provided a platform to utilize the models in plant breeding 
programs. 

Compared to conventional plant breeding, genomic prediction models can accel-
erate crop improvement per unit of time by reducing labor costs and shortening the 
generation interval in a breeding cycle. A fundamental prerequisite for genomic 
prediction is the distribution of markers across the genome, with at least one marker 
being in linkage disequilibrium (LD) with each QTL. When estimating effects with a 
“training” population, all markers are employed concurrently. Genomic selection 
(GS) uses a “training population” of individuals that have been both phenotyped and 
genotyped to train a prediction model for calculating genomic estimated breeding 
values (GEBVs). Genomic prediction can foretell the GEBVs of individuals for 
selection based on the information from the training population. There are two steps 
involved in estimating the GEBVs with high prediction ability



�
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1. Determining the size of the training population and the number of markers 
utilized in the suitable prediction model; 

2. Testing and model validation to foresee the phenotype of those lines that were not 
included in the training models. 

The genetic diversity and size of the training population, marker density, trait 
heritability, marker or gene effects, and the extent and distribution of LD between 
markers and QTL are a few variables that impact the accuracy of genomic prediction. 

The basic process of any genomic selection process starts with the creation of a 
training population, i.e., individuals having both genotypic and phenotypic informa-
tion and this information is used to build a model, where the phenotype is used as a 
response and the genotype as a predictor. In “training” populations, the effects of 
each marker are used simultaneously to create prediction models. Fixed regression 
methods utilizing ordinary least squares cannot be utilized to create prediction 
models since the number of predictors (markers) is typically more than the sample 
size (P ≫ n). Prediction models are created using statistical techniques that see 
marker effects as random, such as ridge regression best linear unbiased prediction 
(RR-BLUP) and various Bayesian models. One can evaluate the accuracy of geno-
mic selection, by comparing GEBVs to the breeding values predicted using conven-
tional techniques that depend on phenotypic data. For the purpose of predicting 
phenotypes utilizing a large number of markers, several GS models have been 
created. The key area where these models diverge is in the proportion of variance 
that is attributable to marker effects. 

6.3 Methods Used in Genomic Selection 

6.3.1 M1: General Combining Ability (GCA) Model (E + GP1 + GP2) 

For characterizing the ith hybrid, this model utilizes genomic information obtained 
from the inbreds via the GCA of the parents; hence, modeling of male and female 
effects can be performed. This model is composed of two genetic scores, which are 
derived from the main effects of the markers of those inbreds acting as parent 1 or 
B-lines (gP1i) and parent 2 or R-lines (gP2i), respectively (Technow et al. 2014; 
Kadam et al. 2016). Collecting the aforementioned results and assumptions, the 
linear predictor for modeling the hybrid performance via the GCA of inbreds is 
obtained as follows 

yij =mþ Ej þ gP1i þ gP2i þ eij 
where yij is the yield performance of the ith (i = 1, 2,. . ., I ) hybrid in the jth ( j = 1, 
2,. . ., J ) environment, m is the common mean, Ej is the main effects of the jth 
environments, gP1 = {gP1i}� N(0,GP1σ

2 
P1g) and gP2 = {gP2i}� N(0,GP2σ

2 
P2g) with 

GP1 = XP1X
1 
P1/p,  GP2 = XP2X

1 0P2/p, σ
2 
P1g = p × σ2 bP1 and σ

2 
P2g = p × σ2 bP2 as the 

corresponding variance components of the parental effects, and eij N(0, σ2 e) and



σ2E and σ2e represent the associated variance components of environments and 
residual terms. One of the disadvantages of this model is that it does not take into 
consideration the specific effect of crossing parent 1 with parent 2, but rather the 
average effects between both parents. Moreover, it returns a common genetic effect 
for the same hybrid in different environments (Jarquin et al. 2020). 

6 Genomic Selection and Its Application in Pearl Millet Improvement 145

6.3.2 M2: General Plus-Specific Combining Ability Model 
(E + GP1 + GP2 + GP1 × P2) 

This model is an extension of model M1, and it not only accounts for the main effects 
of the genetic components of the inbreds but also includes the specific interaction 
effect of crossing inbred parent 1 and parent 2 (Acosta-Pech et al. 2017). The main 
effect is accounted for by the GCA component, and the interaction effect is 
accounted for by the SCA component. The SCA was modeled using the cell-by-
cell product of the entries of the covariance structures from inbred parent 1 (GP1) and 
inbred parent 2 (GP2), such that gP1xP2 = {gP1ixP2i} � N(0,GP1xP2σ

2 
P1gxP2g), where 

GP1xP2 = (ZgP1GP1Z
1 
gP1)�(ZgP2GP2Z

1 
gP2), σ

2 
P1gxP2g is the variance component 

associated with this interaction term, and ZgP1 and ZgP2 are the corresponding 
incidence matrices for parent 1 and parent 2 for the hybrids. 

The model in which both the GCA and the SCA components are included can be 
written as. 

yij =mþ Ej þ gP1i þ gP2i þ gP1ixP2i þ eij 
Although this model considers the effects of crossing parent 1 with parent 2, it 

brings a common genetic effect across environments for the same hybrid in different 
environments similar to the previous model. 

6.3.3 M3: General Plus-Specific Combining Ability in Interaction 
with Environments Model 
(E + GP1 + GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E) 

This model is an extension of M2, in that it includes both the GCA and SCA 
components but also accounts for the interaction of the inbred markers with 
environments by including the interaction between GCA and SCA components 
and environments. The model can be written as 

yij =mþ Ej þ gP1i þ gP2i þ gP1ixP2i þ gEP1ijþ gEP2ij þ gEP1ijxP2ij þ eij 
where gEP1 = {gEP1ij}� N(0, (ZgP1GP1Z

1 
gP1)�(ZEZ1 E)σ2 gEP1), gEP2 = {gEP2ij}�N 

(0, (ZgP2GP2Z
1 
gP2)�(ZEZ1 E)σ2 gEP2) and gEP1xP2 = {gEP1ijxP2ij} � N 

(0, (I4 ((ZgP1GP1Z
1 
gP1)�(ZgP2 GP2Z

1 
gP2)))�(ZEZ1 E)σ2gEP1xP2); σ2 gEP1, σ2 gEP2, and 

σ2 gEP1xP2 are the corresponding variance components for interaction terms between



markers of inbred and environments for the GCA (parent 1 and parent 2) and SCA 
(P1 × P2) terms; ZE is the corresponding incidence matrix for environments. The 
genetic effects of the genotypes derived from this model are particular to each 
environment. 
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6.4 Models Implied for Genomic Selection 

The process of selecting suitable individuals in GS starts with a simple linear model 
also known as least-squares regression or ordinary least-squares regression (OLS): 

Y = 1nμþ Xβ þ ε 
where Y = n × 1 vectors of observations, μ is the mean, β = p × 1 vectors of marker 
effects, ε = n × 1 vectors of random residual effects, X = design matrix of order n × p 
(where each row represents the genotype/individuals/lines (n), and each column 
corresponds to the marker (p)), and ε ~ N(0, σ2 e). 

One major limitation in linear models using several thousands of genome-wide 
markers is that the number of markers (p) exceeds the number of observations (n), 
i.e., genotypes/individuals/lines and this creates the problem of over-
parameterization (large “p” and small “n” problem (p ≫ n)). Using a subset of 
significant markers can be an alternative for dealing with the large “p” and small “n” 
problem. Meuwissen et al. (2001) modified the least-squares regression for GS and 
performed least-squares regression analysis on each marker separately with the 
following model. 

Y =Xjβj þ ε 

where Xj = jth column of the design matrix of the markers and βj = genetic effect of 
the jth marker. 

Markers with significant effects are selected using the log-likelihood of this 
model, and those are further used for estimating the breeding values. However, 
some key information may be lost by selection based on the subset of markers. 
Hence, an efficient solution for the over-parameterization problem in linear models 
is using ridge regression (RR), which is a penalized regression-based approach 
(Meuwissen et al. 2001). It also solves the problems of multicollinearity simulta-
neously (i.e., correlated predictors, e.g., SNP or markers). RR shrinks the 
coefficients of correlated predictors equally towards zero and solves the regression 
problem using ‘2 penalized least squares. Here, the goal is to derive an estimator of 
parameter β with a smaller variance than the least-squares estimator. Similar to RR, 
the least absolute shrinkage and selection operator (LASSO) (Usai et al. 2009)  is  
another variant of penalized regression, which uses the ‘1 penalized least-squares 
criterion to obtain a sparse solution. However, sometimes LASSO may not work 
well with highly correlated predictors (e.g., SNPs in high linkage disequilibrium) 
(Ogutu et al. 2012). The elastic net (ENET) is an extension of the LASSO that is



robust to extreme correlations among the predictors (Friedman et al., 2010), and it is 
a compromise between ‘1 penalty (LASSO) and ‘2 penalty (RR) (Zou and Hastie 
2005). 
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The RR model considers that each marker contributes to equal variance, which is 
not true for all traits. Therefore, the variance of the markers based on the trait’s 
genetic architecture has to be modeled. For this purpose, several Bayesian models 
have been proposed where it is assumed that there is some prior distribution of 
marker effects (Budhlakoti et al. 2022). Furthermore, inferences about model 
parameters are obtained based on posterior distributions of marker effects. There 
are several variants of Bayesian models for genomic prediction such as Bayes A, 
Bayes B, Bayes Cπ, and Bayes Dπ (Meuwissen et al. 2001; Habier et al. 2011) and 
other derivatives, e.g., Bayesian LASSO and Bayesian ridge regression (BRR). 
Besides the marker-based models, the best linear unbiased prediction (BLUP) 
(Henderson et al. 1959) is one of the most commonly used genomic prediction 
methods. There are many variants of BLUP available for this purpose, e.g., genomic 
BLUP (GBLUP), single-step GBLUP (ssGBLUP), ridge regression BLUP 
(RRBLUP), and GBLUP with linear ridge kernel regression (rrGBLUP), of which 
GBLUP is very frequently used. The GBLUP uses the genomic relationships 
calculated using markers instead of the conventional BLUP which uses the pedigree 
relationships to obtain the GEBV of the lines or individuals (Meuwissen et al. 2001). 

The genomic prediction models perform well for traits with additive genetic 
architecture, but their performance becomes very poor in the case of epistatic genetic 
architecture. Hence, Gianola et al. (2006) first used nonparametric and 
semiparametric methods for modeling the complex genetic architecture. Subse-
quently, several statistical methods were implemented to model both additive and 
epistatic effects for genomic selection (Xu 2007; Cai et al. 2011; Legarra and 
Reverter 2018). Several nonparametric methods have been studied in relation to 
genomic selection, e.g., NW (Nadaraya–Watson) estimator (Gianola et al. 2006), 
RKHS (reproductive kernel Hilbert space) (Gianola et al. 2006), SVM (support 
vector machine) (Maenhout et al. 2007; Long et al. 2011), ANN (artificial neural 
network) (Gianola et al. 2011), and RF (random forest) (Holliday et al. 2012), among 
which SVM, NN, and RF are based on the machine learning approach. 

Methods discussed earlier are based on genomic information where information 
is available for a single trait, i.e., single-trait genomic selection (STGS). As the 
performance of STGS-based methods may be affected significantly in the case of 
pleiotropy, i.e., one gene linked to multiple traits, a mutation in a pleiotropic gene 
may have an effect on several traits simultaneously. It was observed that low 
heritability traits could borrow information from correlated traits and consequently 
achieve higher prediction accuracy. However, STGS-based methods consider the 
information of each trait independently. 

Hence, crucial information may be lost which may ultimately result in poor 
genomic prediction accuracy. Nowadays, as we are receiving data on multiple traits, 
multi-trait genomic selection (MTGS)-based methods may provide more accurate 
GEBV and subsequently a higher prediction accuracy. Several MTGS-based 
methods have been studied in relation to GS, e.g., the multivariate mixed model



approach (Jia and Jannink 2012; Klápště et al. 2020), Bayesian multi-trait model (Jia 
and Jannink 2012; Cheng et al. 2018), MRCE (multivariate regression with covari-
ance estimation) (Rothman et al. 2010), and cGGM (conditional Gaussian graphical 
model) (Chiquet et al. 2017). Jia and Jannink (2012) presented three multivariate 
linear models (i.e., GBLUP, Bayes A, and Bayes Cπ) and compared them to 
univariate models, and a detailed comparison of various STGS and MTGS-based 
methods has also been studied by Budhlakoti et al. (2019). A brief structure of 
different STGS- and MTGS-based methods used in GS studies is given in Fig. 6.1. 
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Fig. 6.1 Summary of models utilized in genomic selection 

The architecture of the target traits may impact how well prediction models for 
complex traits function (Momen et al. 2018). At ICRISAT, India, whole genome 
resequencing (WGRS) along with phenotypic data for several important traits of 
PMiGAP lines was exploited for GWAS and GS. Different whole-genome predic-
tion/genomic selection models were created and optimized based on the numerous 
target features identified by GWAS in pearl millet. Varshney et al. (2017) performed 
GS to predict grain yield for test crosses by ridge regression best linear unbiased 
prediction (RR-BLUP) at ICRISAT. GS strategy was also used to predict the 
performance of the hybrids derived from a CMS (Cytoplasmic male sterility) 
using both (RADseq and tGBS) techniques and four genomic prediction schemes 
(Liang et al. 2018). Pilot studies on the genomic selection with different prediction 
models in pearl millet are summarized in Table 6.1.



Traits studied Breeding material References
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Table 6.1 Studies on genomic selection in pearl millet 

Prediction model 
employed 

Grain yield 170 hybrid 
combinations 

RR-BLUP (ridge 
regression best linear 
unbiased prediction) 

Varshney 
et al. 
(2017) 

1000-grain weight, days to 
flowering, grain yield, and 
plant height 

Two common control 
lines/hybrids and 
13 experimental lines 

RR-BLUP (ridge 
regression best linear 
unbiased prediction) 

Liang et al. 
(2018) 

Grain yield 320 pearl millet hybrids 
and 37 inbred parents 

Bayesian generalized 
linear regression 
(BGLR) 

Jarquin 
et al. 
(2020) 

6.5 Trait Improvement 

6.5.1 Yield 

Modern breeding efforts have increased the productivity of almost all agricultural 
crops. Pearl millet productivity increased by almost four times from 1950 to 2019. 
This genetic improvement of pearl millet is divided into four phases (Yadav et al. 
2019; Yadav and Rai 2013). Each phase of improvement and its emphasis are 
presented in Fig. 6.2. Pearl millet yielded 162% more after adopting high-yielding, 
pest and disease-resistant, and abiotic stress-tolerant standard agronomic manage-
ment practices, while sorghum, wheat, rice, and maize yielded 26%, 59%, 69%, and 
113%, respectively (Yadav et al. 2019; Yadav and Rai 2013). 

The rate of genetic gain achieved in pearl millet and other cereals is the collective 
outcome of improved varieties and best crop management strategies. This quantum 
jump in the productivity of pearl millet was achieved in two different ways. First, 
almost 90% of pearl millet is grown under rainfed conditions; second, pearl millet 
has attracted fewer human resources and infrastructure than other crops (Yadav et al. 
2019). In pearl millet association studies (Anuradha et al. 2017), Xibmsp11/AP6.1, a 
known SNP marker found on acetyl CoA carboxylase gene, was shown to be 
significantly linked with yield and yield components (grain harvest index and 
grain yield). Stay green and grain yield-related traits are closely linked to 
Xibmcp09/AP10.2 and Xibmcp09/AP10.1 InDels markers on chlorophyll a/b bind-
ing protein genes. (Anuradha et al. 2017). 

6.5.2 Grain Quality 

Since pearl millet is a particularly nutritious grain with higher quantities of protein 
and various minerals than other cereals, breeding has sought to focus on increasing 
the yield potential (Singh and Nainawatee 1999) along with other important traits 
(Fig. 6.3). Earlier studies revealed that the protein concentration of pearl millet was
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Fig. 6.2 Four phases of yield improvement in pearl millet 

Fig. 6.3 Important traits improved in pearl millet



reported at up to 24.3% (Jambunathan and Subramanian 1988), with top breeding 
lines reaching 19.8% (Singh et al. 1987). However, due to the unfavorable 
associations between protein content and grain yield, no significant efforts to 
enhance it were made in most of the pear millet breeding programs (Singh and 
Nainawatee 1999). In light of the growing awareness of widespread iron (Fe) and 
zinc (Zn) deficiencies worldwide, improving grain nutritional characteristics has 
recently been included as a breeding target. The main areas focused on include the 
evaluation of genotype-environment interactions; correlations between grain 
minerals and agronomic features; genetic regulation of micronutrients; and assess-
ment of the degree of genetic variation for grain Fe and Zn content.
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There is a lot of variation in the amount of Fe and Zn in pearl millet germplasm 
and breeding lines. This suggests that these micronutrients could be improved 
through pre-breeding approaches. The mapping populations and germplasm 
accessions originating from the Iniadi landrace have the greatest levels of Fe and 
Zn, respectively (Velu et al. 2008; Govindaraj et al. 2016; Govindaraj et al. 2020a, b; 
Govindaraj et al. 2021). When more than 120 commercial Indian hybrids were 
tested, 46–56 ppm Fe and 37–44 ppm Zn were found (Rai et al. 2016). In 2018, 
the Indian national testing and cultivar release policy set 42 ppm Fe and 32 ppm Zn 
as a baseline for the mainstreaming of Fe and Zn in pearl millet (AICPMIP 2018). 
For Indian adults, the daily recommended amounts of Fe and Zn are 17–21 mg/d and 
10–12 mg/day, respectively. 

The presence of Fe and Zn in pearl millet is mostly determined by additive gene 
action, implying that both parental lines of hybrids would be required to enrich these 
minerals (Kanatti et al. 2014). Lower G × E influences interaction on Fe and Zn 
accumulation in pearl millet grains and also revealed the success of progeny 
selection in pedigree breeding to generate lines with higher grain Fe and Zn densities 
(Kanatti et al. 2014; Govindaraj et al. 2016). Between Fe and Zn, a significant and 
positive association has been found (Kanatti et al. 2014; Govindaraj et al. 2020a, b). 
Additionally, there was a significant positive correlation between these two 
micronutrients and grain size (Kanatti et al. 2014; Govindaraj et al. 2016). These 
relationships would help generate pearl millet cultivars rich in Fe and Zn without 
compromising their grain size, regardless of color, and also increase micronutrient 
content through crop improvement. 

6.6 Biotic Stress Tolerance 

6.6.1 Disease Resistance 

The most important disease in pearl millet in India and Africa is Downy Mildew 
(DM), caused by Sclerospora graminicola (Sacc.) J. Schröt. DM in pearl millet 
causes significant yield loss in major growing countries, mainly in India and Africa 
(Yadav et al. 2021). Identifying various resistance sources through greenhouse and 
field screening of large panels of germplasm accessions and breeding lines has 
helped to advance the development of DM-resistant hybrids in pearl millet



significantly. This hybrid population of diverse genetic backgrounds has been an 
important factor in successfully managing widespread DM outbreaks in pearl millet 
(Singh et al. 1987, 1990). 
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The severity of smut (Moesziomyces penicillariae Bref. Vanky) and ergot 
(Claviceps fusiformis Lov.) significantly reduces the grain yield in pearl millet. 
Both infections are soil-borne and infect the host through the stigma during 
flowering (Thakur and Williams 1980). Pollen wash is the main reason for the 
severity of smut and ergot diseases during the rainy season. The development of 
field and greenhouse screening methods was aided by knowledge of the biology and 
epidemiology of these diseases. Numerous lines have been examined to determine 
their resistance to these diseases. The lack of incredibly high ergot resistance in 
germplasm accessions has driven the development of ergot-resistant lines by 
interbreeding less susceptible germplasm lines and selecting and rescreening resis-
tant progeny for multiple generations under intense disease pressure. Resistance to 
Smut is a dominant trait that is easy to pass on to the next generation. But there have 
also been reports of quantitative resistance incorporating both additive and nonaddi-
tive gene effects (Thakur et al. 2011). Smut and DM resistance has been discovered 
in several lines (Thakur et al. 1992, 2011). 

It is common knowledge that rust (Puccinia substriata var. indica Ramachar & 
Cumm) has little impact on grain (Pearl millet) crops, but in the fodder industry, it 
has a significant impact on yield and quality. A combination of field and greenhouse 
screening resulted in the discovery of stable sources of resistance. DArT and 
SSR-based linkage maps were created using a mapping population of 168 F7 
RILs, which was also screened for rust resistance (Ambawat et al. 2016). Three 
QTLs on linkage groups 1, 4, and 7 were identified for pearl millet rust resistance, 
accounting for 58% of the phenotypic variation in rust reactivity. A newly discov-
ered QTL for rust resistance, Linkage Group 1 (LG1), confers a long-lasting slow 
rusting phenotype (Ambawat et al. 2016). 

The leaf spot or blast disease, caused by Pyricularia grisea Sacc. (syn. 
Magnaporthe grisea), has emerged as a major pearl millet disease (Rai et al. 
2012). The identification of blast-resistant lines from pearl millet breeding and 
germplasm accessions allowed for the development of hybrids that are resistant to 
the disease (Sharma et al. 2013; Goud et al. 2016). In pearl millet, a single dominant 
gene is responsible for resistance to Indian strains of Magnoporthe grisea (Gupta 
et al. 2012; Singh et al. 2018). A total of six blast-resistant pearl millet genotypes 
(ICMB 97222, ICMB93333, ICMR 11003, IP 21187-P1, and ICMR 06222) were 
crossed with two susceptible genotypes (ICMB 89111 and ICMB 95444) to study 
the inheritance pattern. Their generations and backcrosses were screened for resis-
tance against Pg53 and Pg45 (Magnoporthe grisea isolates). Molecular markers are 
also being used to identify QTLs for blast disease pathotypes. Using SSR markers, 
two significant QTLs for blast resistance have been identified in linkage groups 
1 (LG1) and 6 (LG6) (Maganlal et al. 2018). A large panel of germplasm accessions 
of pearl millet was collected from 13 different countries and tested against 
Magnoporthe grisea isolates Pg45, Pg53, Pg56, Pg118, and Pg119. The accessions 
were then classified according to the amount of resistance. It was found that



n

182 different accessions of pearl millet exhibited resistance against different 
pathotypes. (Sharma et al. 2021). 
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6.6.2 Insect Resistance 

Although there have been reports of more than 100 insect pests linked with cropping 
systems based on pearl millet, only a small number of these insects are considered to 
have the ability to cause considerable damage to the crop. These include the stem 
borers (Chilo partellus in India and Coniesta ignefusalis in western Africa), shoot 
flies (Atherigona approximata), and white grubs (Holotrichia consanguinea) i  
India. Additionally, ear head worms (Helicoverpa armigera), gray weevils 
(Myllocerus species), and leaf rollers (Marasmia trapezalis) are found (Raghvani 
et al. 2008). Pest control techniques have been created based on research into the 
pests’ life cycles and the types of harm they cause. Each region has its own unique 
pattern of insect-pest dispersion and devastation. Long-term research has shown that 
no single approach to pest management is successful against any kind of pest. 
Cultural and chemical management is needed as part of an integrated pest manage-
ment strategy (Sharma and Youm 1999). Insect pest incidence on commercial 
cultivation and experimental test genotypes is regularly monitored, and no breeding 
initiatives are pursuing insect resistance as a goal trait in pear millet. 

6.7 Abiotic Stress Tolerance 

6.7.1 Drought Tolerance 

Crop plants suffer from impaired growth and development when drought conditions 
persist due to insufficient rainfall and its unpredictable distribution pattern. It has 
been discovered that QTL for drought tolerance contributes to differences in photo-
synthetic pigments and ROS scavenging enzymes in different accessions of pearl 
millet. The ascorbate peroxidase (APX) activity was found to be elevated in tolerant 
genotypes, although the superoxide dismutase (SOD) and catalase (CAT) activities 
remained unaltered, according to the QTL that was investigated. It was shown that 
the presence or lack of drought-related QTL had no effect on the molecules that 
make up photosynthetic pigments (Kholová et al. 2011). 

The pearl millet grain filling stage is the most susceptible stage to drought stress, 
which results in a decrease in grain size and grain test weight (Fussell et al. 1991). A 
pearl millet germplasm association panel was recently constructed and is being used 
for drought tolerance trait association mapping. A significant association was 
observed between an SNP in the acetyl-CoA carboxylase genes and panicle yield, 
grain harvest index, and grain yield, whereas an InDel was shown to be significantly 
connected with grain yield and stay-green phenotype traits under drought conditions 
(Sehgal et al. 2015). Debieu et al. (2018) used genotyping by sequencing (GBS) to 
identify QTLs linked with agronomic parameters in 188 inbred lines under drought



conditions. Four marker-trait relationships for the stay-green trait were identified on 
chromosome 6, and two SNPs were shown to be significantly linked with biomass 
yield under early drought stress conditions. One of the two SNPs identified for 
biomass yield was mapped between two predicted genes, Pgl GLEAN 10037359 and 
Pgl GLEAN 10037360, while the other was mapped between two predicted genes, 
Pgl GLEAN 10036946 and Pgl GLEAN 10036945. Early drought stress in lines 
resulted in a decreased grain and biomass yield, although only minor changes were 
found in grain weight (Debieu et al. 2018). Shivhare et al. (2020) discovered 1129 
DEGs on all seven pearl millet chromosomes except chromosome 4. Most genes 
were found on and mapped to chromosome 2 (196), followed by chromosome 
3 (171), chromosome 5 (168), chromosome 6 (164), chromosome 7 (140), and 
chromosome 4 (108). Recent research on transcriptome analysis identified 2792 
transcription factors, 1223 transcriptional regulators, 315 transcription factors, and 
128 transcriptional regulators expressed under drought conditions. Using 
RNA-Pacibio sequencing, a total of 6484 genes for drought stress were identified 
(Sun et al. 2020). In recent research, Zhang et al. (2021) investigated the mechanism 
of drought resistance in pearl millet by comparing physiological and transcriptome 
data under drought and controlled conditions. It has been found that 12 genes were 
elevated under stress, some of which are connected with drought stress in other 
species, such as ADH1, FtsH, and CCCH. Also, the expression levels of genes like 
SnRK2 and PP2C involved in ABA signaling pathways were found to vary (Zhang 
et al. 2021). 
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6.7.2 Heat Tolerance 

The ideal temperature for normal pearl millet development is 33–34 °C. The seedling 
and reproductive phases of pearl millet are equally susceptible to the effects of higher 
temperatures. By 2050, climate change models predict that sub-Saharan Africa 
(SSA) and South Asia (SA) pearl millet yields will fall by 6–17%. (Knox et al. 
2011). High-temperature stress during the flowering stage of pearl millet produces 
sterility in the flowers, resulting in a drastic decrease in seed set and grain yield 
(Gupta et al. 2015; Djanaguiraman et al. 2018). Pearl millet has evolved as a very 
prolific and profitable crop throughout the hot and dry summer season in northern 
and western India during the last two decades. With increased air temperatures 
(typically >42 °C) coinciding with blooming during this season, the crop suffers 
from reproductive sterility, resulting in dramatic decreases in seed set and subse-
quently decreased grain production (Gupta et al. 2015; Djanaguiraman et al. 2018). 
During the reproductive stage, plants’ ability to handle high temperatures has 
become an important trait in improving genetic gains. 

Pearl millet roots have recently been studied to see how heat stress affects the 
plant’s physiological and transcriptional systems. Trehalose concentration in the 
roots increased between 3 and 7 h of heat stress. Furthermore, peroxidase (POD) 
activity steadily increased from 3 to 7 h of heat stress. HSFs, bZIP, and bHLHs were 
the most frequently identified transcription factors expressed under heat stress. There



was a total of 16 bZIPs, 7 HSFs, and 18 bHLH genes that showed different 
expressions under heat stress (Sun et al. 2021). 
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The ability to withstand high temperatures during the reproductive phase has 
emerged as an essential genetic characteristic of pearl millet. Guidelines for 
flowering-period heat stress screening in controlled environments (greenhouses 
and growth chambers) and the field have been established (Gupta et al. 2015). 
There is a substantial amount of genetic heterogeneity between breeding lines and 
among open-pollinating populations. Multi-location field experiments were carried 
out to understand the sensitive plant reproductive parts highly susceptible to heat 
stress and found that stigma is more heat-sensitive than the pollen in pearl millet, 
thus helping researchers to pyramid heat tolerance in high-yielding hybrids and 
open-pollinated varieties (OPVs) (Gupta et al. 2016, 2019). 

6.8 Genomic Selection (GS) in Pearl Millet 

Genomic selection (GS) is a promising method that has tremendous potential to 
investigate and enhance the genetic gain per selection (in a set of timeframes) in a 
breeding scheme and, as a result, speed and efficiency in breeding programs. 
Genomic selection can also be called genome-wide selection (Spindel et al. 2015). 
In cereals and numerous other crops, including pearl millet, GS has been shown to be 
a cost-effective and feasible alternative to marker-assisted selection (MAS) and 
phenotype selection (PS) for quantitative traits and rapid crop development 
initiatives (Zhong et al. 2009; Heffner et al. 2009; Crossa et al. 2010; Poland et al. 
2012; Ornella et al. 2012; Spindel et al. 2015; Muleta et al. 2019; Liang et al. 2018; 
Jarquin et al. 2020). 

Pearl millet’s genome was recently assembled and is available in the public 
domain (Varshney et al. 2017). Because a reference genome is now widely available, 
genomic selection can be used to predict the general combining ability (GCA) of 
newly inbred parents and the specific performance of individual pearl millet hybrids 
(Liang et al. 2018). It has been demonstrated that adding information about the 
parents into genetic prediction can be advantageous (Massman et al. 2013). 
Genotyping based on sequencing makes it possible to produce thousands of SNPs 
that are used for differentiating breeding lines within the population. As stated in the 
introduction of this chapter, genomic selection-assisted breeding programs that 
include high-throughput genotyping and estimated breeding values have the ability 
to overcome all three of the most significant bottlenecks in pearl millet breeding 
efforts. GS uses genome-wide high-density DNA markers in linkage disequilibrium 
(LD) with QTL to predict the genomic estimated breeding values (GEBV) of the 
testing population, which only has genotypic data. The predicted GEBVs are used 
for selection (Meuwissen et al. 2001). Making selection decisions during the 
off-season allows for increases in genetic gain each year, which is one of the main 
benefits of GS (Heffner et al. 2009). The development and use of GS in pearl millet 
breeding programs make it possible to use resources well and predict how well 
hybrids will perform.
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In ICRISAT, efforts are being undertaken to take advantage of the pearl millet 
inbred germplasm association (PMiGAP) panel, along with whole-genome 
resequencing (WGRS) and phenotyping data for several characteristics for 
GS. The development and optimization of several whole-genome prediction/geno-
mic selection models in pearl millet are based on the various target features using 
genome-wide association studies (GWAS). To predict grain yield for test crosses in 
different environments, ICRISAT applied WGRS data for genomic selection by 
ridge regression best linear unbiased prediction (RR-BLUP). In this prediction, high 
prediction accuracies were found for the performance of genotypes across different 
environments. Additionally, it was reported that the GS strategy (additive and 
dominance effects) was used to analyze grain yield data with 302,110 SNPs to 
predict hybrid performance. One hundred and seventy promising hybrid 
combinations were discovered. Among them, more than ten hybrid combinations 
are already being utilized in heterosis breeding. Liang et al. (2018) analyzed the 
effectiveness of genomic selection and prediction using two potential genotyping 
techniques, RAD-seq and tGBS, to characterize a series of ICRISAT-developed 
inbred pearl millet lines. Twenty random rounds of fivefold cross-validation were 
performed for a tested SNP set, utilizing the projected hybrids from both (RADseq 
and tGBS) methodologies and four genomic prediction systems in pearl millet and 
assessing for each trait. The genomic prediction technique (RR-BLUP) was found to 
produce median prediction ranges (in parenthesis) for various traits, including 1000-
grain weight (0.73–0.74), days to flowering (0.87–0.89), grain yield (0.48–0.51), 
and plant height (0.72–0.73), respectively, using hybrid data. It was also predicted 
that adding inbred phenotypic data sets and hybrid trait values relative to the mean 
trait values of that population made hybrid GEBVs slightly better. 

Recently, Jarquin et al. (2020) implemented and compared three GS models 
utilizing grain yield and high-density molecular marker information from two 
distinct genotyping platforms for pearl millet (C [conventional GBS RAD-seq] 
and T [tunable GBS tGBS]). The three GS models were evaluated using different 
cross-validation (CV) schemes that mimic the scenarios of breeders encountered 
during the varietal developmental processes in breeding projects. While CV1 
forecasts the performance of untested hybrids and CV0 predicts the performance 
of hybrids in unobserved environmental conditions, CV2 is similar to an incomplete 
field trial. Through this study, Jarquin et al. (2020) discovered that the addition of 
phenotypic information of the parental inbreds, consideration of genotype-by-envi-
ronment interaction, and use of molecular markers derived from tGBS improved the 
predictive ability and performance of the GS models. 

6.9 Implications and Future Prospects 

Pearl millet, as a poor man’s crop, has received less attention despite its enormous 
potential. Pearl millet breeding has lagged behind that of other crops. With a growing 
population, the worldwide demand and diversification of feed, energy, and food are 
on the rise, urging the development of efficient methods for the development of



varieties for different end users. Pearl millet’s genetic and genomic insights could be 
gained using genomics if the wide range of wild species and germplasm accessions 
were studied. On the other hand, heterozygosity, high outcrossing rates, inbreeding 
depression, and residual heterozygosity pose bottlenecks in inbred development 
programs, thus influencing the association mapping panels and parental line/cultivar 
development. Furthermore, populations for functional genomics, such as mapping 
populations, natural diversity panels, molecular modules, GWAS, and genetic engi-
neering, could aid in dissecting the population’s valuable variables. GS should be 
carried out based on different end users. Single-cross hybrids dominate the Indian 
market, whereas top-cross and three-way hybrids are prominent in Africa. Therefore, 
an appropriate GS model can be employed based on the type of populations and 
genotype x environment interactions. 
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Genome editing, a new method in the genomic era, is important for creating novel 
targeted mutations and identifying genes and their functions for crop improvement. 
However, limited efforts have been made in pearl millet breeding. The implementa-
tion of this approach is heavily reliant on transformation efficiency, which is still 
significantly lower in crops like pearl millet and sorghum than in other key crops. To 
enhance CRISPR/Cas9 use in pearl millet breeding, it is necessary to optimize the 
transformation system. Even though a lot of progress has been made in finding the 
genetic loci that control important agronomic and grain quality traits, epigenomes, 
pan-genomes, and other fields should be brought together for the dissection of 
genetic diversity and identification of superior alleles for the development of supe-
rior pearl millet varieties to achieve global food and nutritional security. 
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