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Abstract 

Pearl millet is one of the most important sources of nutrition for millions of 
people in arid and semi-arid areas in Africa and Asia. Farmers have had, through-
out its domestication, to select cultivars adapted to their environments. So, pearl 
millet appears as an interesting crop model to study drought adaptation. However,
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current and future climatic changes pose challenges to its cropping sustainability. 
Drought and heat are the main factors of climate change. To accelerate pearl 
millet adaptation and improve its productivity to cope with climate change, its 
mechanisms of adaptation must be dissected. Here, we review the state of 
research on the physiological and molecular bases of pearl millet adaptation to 
drought and heat. However, pearl millet remains a neglected crop, and progress in 
research remains to be made.
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10.1 Climate Change 

Climate change is a major threat to agriculture and food security (Kang et al. 2009; 
Godfray et al. 2010; Wang et al. 2018). The most conspicuous climate changes in 
recent times are the increase in atmospheric temperatures due to increasing levels of 
greenhouse gases (Solomon et al. 2007; Stott et al. 2010; Christidis et al. 2012; 
Wang et al. 2018) and associated changes in the water cycle (Bates et al. 2008; 
Collins et al. 2013; Jung et al. 2002; Balling and Cerveny 2003; Fauchereau et al. 
2003; Trenberth et al. 2007). A continued rise in global temperature is predicted if 
greenhouse gas (GHG) emissions continue unabated, according to the Fifth Assess-
ment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). The 
frequency of warm days, warm nights, and heat waves have increased, while the 
frequency of cold days and cold nights has decreased (Sillmann et al. 2013). Based 
on emission scenarios, the IPCC predicts a temperature increase between 0.3 and 
0.7 °C by 2035 with a medium degree of confidence (Kirtman et al. 2013). In a study 
assessing long-term projections of climate change, Collins et al. (2013) showed that 
increase in global mean surface temperatures for 2081–2100, relative to 1986–2005, 
will likely be in the 5–95% range of CMIP5 (Coupled Model Intercomparison 
Project Phase 5) models; 0.3–1.7 °C (Representative Concentration Pathway 2.6 or 
RCP2.6), 1.1–2.6 °C (RCP4.5), 1.4–3.1 °C (RCP6.0), 2.6–4.8 °C (RCP8.5). As a 
result, an increase in temperature from 0.3 to 4.8 °C is expected by the end of the 
twenty-first century. This increase in mean temperatures is expected to be greater in 
the tropics and subtropics than in the mid-latitudes (high confidence; Kirtman et al. 
2013). 

Along with the increase in temperature, global warming is associated with 
changes in the intensity/uncertainties of precipitation. Future climate projections 
show that precipitation could increase or decrease depending on the latitude of the 
area. These results corroborate those of Bates et al. (2008), who reported that over 
the past century, precipitation has mainly increased over northern high-latitude 
lands, while notable decreases have occurred in recent years from 10°S  to  30°N. 
This observed effect is expected to continue in the coming years as climate model 
simulations predict an increase in precipitation in high latitudes and parts of the



tropics and decreases in some subtropics and lower mid-latitudes by the end of the 
twenty-first century (Collins et al. 2013). 
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Arid and semi-arid areas, especially those in Asia and Africa, are very vulnerable 
to climate change. Temperature and precipitation variability is expected to increase 
in these areas. In Africa, it is predicted that the temperature will rise faster compared 
to the rest of the world. This increase could exceed 2 °C by the middle of the twenty-
first century and 4 °C by the end of the twenty-first century (Niang et al. 2014; 
Adhikari et al. 2015; Djanaguiraman et al. 2018) and will lead to reduced crop yields 
(Fischer et al. 2005a, b; Howden et al. 2007; Liu et al. 2016). Regarding rainfall, 
significant negative trends are observed in West Africa and the Sahel. The Sahelian 
region of West Africa experienced a decrease in rainfall between the late 1950s and 
the late 1980s (Dai et al. 2004). Recently, Sultan and Gaetani (2016) predicted an 
increase in extreme events and increased variability in precipitation from year to 
year. Precipitation projections for the twenty-first century are not spatially homoge-
neous in West Africa. As a result, there is a large dispersion in the representation of 
rainfall from one regional model to another, both on a seasonal and intra-seasonal 
scale (Salack et al. 2012b). Beyond the changes in the total amount of rain, precipi-
tation patterns are also predicted to change in the Sahelian area. For instance, Salack 
et al. (2011) identified two agro-climatic zones where rainfall breaks frequently 
occur at the start and end of the rainy season (Salack et al. 2012a). These rainfall 
breaks accompanied by heat stress are likely to affect crop yield. These factors 
constitute a major agronomic problem that contributes to severe yield losses of up to 
10% for pearl millet in arid and semi-arid areas (South Asia and Africa) (Knox et al. 
2012). It is therefore urgent to better understand heat and drought stress mechanisms 
in pearl millet to develop new agricultural practices and varieties adapted to these 
stresses and ensure food and nutritional security in sub-Saharan Africa. 

10.2 Effects of Drought and Heat on Pearl Millet and Annual 
Plant Growth and Development 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important food crop grown under 
hot and dry conditions in arid and semi-arid regions of Africa and Asia (Arya and 
Yadav 2009; Ullah et al. 2017). Since these areas are characterized by low and 
irregular rainfall, high temperatures, and low soil fertility, they constitute the main 
constraints for its production. These stresses often occur simultaneously, making it 
very difficult to separate the effects of each on plants. However, the combined 
stresses have a negative impact on plant growth and productivity, which is more 
pronounced than the individual impacts (Craufurd and Peacock 1993; Prasad et al. 
2008; Dreesen et al. 2012).
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10.2.1 Drought Effects 

Drought stress is one of the major constraints limiting crop production worldwide 
(Forster et al. 2004; Khan et al. 2010). Drought can be defined as a deficit of 
adequate moisture necessary for normal plant growth in the complete life cycle 
(Zhu 2002). Plants are subject to drought when the stock of water in the soil is 
limited, and the vapor pressure deficit is very low (Anjum et al. 2011b). It has a 
considerable influence on plant growth and development. Pearl millet is sensitive to 
drought stress at the vegetative and reproductive stages (Vadez et al. 2012). The 
effects of drought stress depend on the degree, duration, stage of crop development, 
and tolerance level of the species. Drought stress during the growth phase affects cell 
division and elongation, the main processes involved in plant growth. Due to the 
reduction in turgor pressure, cell elongation appears to be one of the most drought-
sensitive processes. Even though cell division is less sensitive than cell elongation, it 
can be affected by mild drought stress. Tardieu et al. (2000) reported that soil 
moisture deficit resulted in a reduction in the length of the cell division zone and 
the relative division rate. According to Alves and Setter (2004), the reduction in leaf 
area was caused largely by development delay and a reduction in cell division in the 
youngest meristematic leaves. 

However, the effects of drought on the leaves depend on the intensity of the 
stress. A slight drought causes a reduction in the rate of expansion, number, and size 
of leaves, while severe stress decreases the rate of leaf elongation, which can even 
cause leaf growth to stop. The most common negative effect of drought stress on 
crop plants is the reduction in growth. This has been reported in pearl millet by many 
authors (Muchow 1989; Winkel et al. 1997; Aparna et al. 2014; Kholová et al. 2016). 
Drought reduces leaf size, stem extension, and root proliferation, disrupts plant– 
water relationships, and reduces water use efficiency (Farooq et al. 2009; Anjum 
et al. 2011b). These results agree with those of Khan et al. (2001) and Anjum et al. 
(2011a), who reported a significant decrease in the growth of maize under drought in 
terms of plant height, stem diameter, leaf area, and plant biomass. 

In addition, drought has been shown to alter physiological processes (Radhouane 
2008, 2013; Pinheiro and Chaves 2010; Anjum et al. 2011a; Ghatak et al. 2016). 
Photosynthesis, transpiration rate, stomatal conductance, water use efficiency, intrin-
sic water use efficiency, and intercellular CO2 have been reduced by drought (Anjum 
et al. 2011a). In millet, severe drought stress leads to a reduction in photosynthesis 
(Ashraf et al. 2001; Golombek 2003; Radhouane 2009). This reduction has also been 
reported in C4 cereals such as maize (Boyer and Westgate 2004) and sorghum 
(Ogbaga et al. 2014). One or more steps in the photosynthetic process can be affected 
by water deficit, such as the diffusion of CO2 through the stomata and into intercel-
lular spaces (Flexas et al. 2006). For Slatyer (1973), almost all the decrease in 
photosynthesis must be attributed to stomatal closure. On the other hand, according 
to Bois (1993) and Golombek (2003), the decrease in photosynthesis of pearl millet 
is due jointly to stomatal resistance and non-stomatal changes. The imposition of 
drought stress also resulted in a decrease in chlorophyll content (Ghatak et al. 2021),



which could be related to the increase in the activity of the enzyme chlorophyllase 
(Ashraf et al. 1994). 
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In terms of production, drought stress strongly affects yield during the grain-
filling period (Aparna et al. 2014). In sorghum, the yield can be reduced by more 
than 36% and 55% when water stress occurs in the vegetative and reproductive 
phases respectively (Assefa et al. 2010). Stress reduces grain size and weight, 
resulting in a reduction in grain yield (Arya et al. 2010). Many studies corroborate 
this result (Barnabás et al. 2008; Alqudah et al. 2011; Aparna et al. 2014; Debieu 
et al. 2018). A severe reduction in panicle filling occurs under drought (Winkel et al. 
2001) due to a reduction in the assimilate partitioning and activities of sucrose and 
starch synthesis enzymes (Farooq et al. 2009; Anjum et al. 2011b). However, 
according to Aparna et al. (2014), the decrease in grain yield depends more on the 
number than the size of the seeds. Therefore, it is due to the combined effect of a 
reduction in the number of panicles (productive tillers) and seeds. In pearl millet, a 
strong correlation was found between grain yield and grain number (Bidinger and 
Raju 2000). In wheat, drought stress reduced yield following tiller abortion and a 
lower grain number per spike (Izanloo et al. 2008). Thus, drought most often occurs 
during the vegetative and reproductive stages of pearl millet, causing drastic effects 
on growth and productivity. 

10.2.2 Heat Effects 

Heat stress (increase in air temperatures above the optimum) is an agricultural 
problem in many parts of the world (Wahid et al. 2007). It is a key determinant of 
crop growth and productivity (Al-Khatib and Paulsen 1999), whose adverse effects 
on cereals vary with the timing, duration, and intensity (sternness) of stress 
(Barnabás et al. 2008; Fahad et al. 2016a). In Africa and India, soil temperatures 
generally exceed 45 °C and sometimes reach 60 °C (Yadav et al. 2010). This 
explains the important place occupied by pearl millet cultivation in these areas 
because the optimum temperature for its development fluctuates between 33 and 
34 °C (Ashraf and Hafeez 2004). 

Indeed, pearl millet is the most heat-tolerant cereal crop and needs high 
temperatures to grow. This has been illustrated by numerous works showing that 
the growth of pearl millet is optimal up to a temperature of 35 °C (Arya et al. 2014), 
but beyond that, inhibition of the normal growth process is noted (Ashraf and Hafeez 
2004; Yadav et al. 2010, 2016; Arya et al. 2014; Djanaguiraman et al. 2018). 

A temperature above the optimum can delay or prevent germination. This germi-
nation delay was reported in pearl millet cultivars subjected to supra-optimal 
temperatures compared to controls (Khalifa and Ong 1990). In pearl millet and 
maize, heat stress has been reported to cause a decrease in the final percentage of 
germinated seeds and the germination rate (Ashraf and Hafeez 2004). Yadav et al. 
(2016) showed that increasing the temperature can decrease the germination rate or 
even inhibit germination depending on the tolerance of the genotype, which agrees 
with the results of Wahid et al. (2007).
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In later stages, heat stress can also negatively affect the vegetative growth of 
plants. It induces a reduction in shoot dry mass, relative growth rate, and net 
assimilation rate (Ashraf and Hafeez 2004; Wahid 2007). On the roots, temperatures 
above optimal lead to a decrease in primary root length, number of lateral roots, and 
their angle of emergence (Calleja-Cabrera et al. 2020). In addition, it causes a 
decrease in shoots or root’s water status, root’s hydraulic conductivity, or leaf 
stomatal conductance, which only occurs when the stress is prolonged (Heckathorn 
et al. 2013). 

Reduction in photosynthetic activities by higher temperature has been reported by 
numerous studies (Al-Khatib and Paulsen 1999; Crafts-Brandner and Salvucci 2000, 
2002; Prasad et al. 2004; Fahad et al. 2016b; Yadav et al. 2016). This reduction in 
photosynthesis was attributed to the damage to chlorophyll pigments, a decline in 
leaf nitrogen contents, blockage of PSII reaction center and electron flow decreased 
quantum efficiency (Fv/Fm), and down-regulation of PSII photochemistry (Fahad 
et al. 2016b, 2017). Heat stress decreases the activation and activity of Rubisco 
(Prasad et al. 2004) by inhibiting the activity of the enzyme Rubisco activase (Crafts-
Brandner and Salvucci 2000, 2002). Heat also reduces the photochemical efficiency 
of photosystem II (PSII), which appears to be the most heat-sensitive photosynthetic 
component (Al-Khatib and Paulsen 1999). 

On the other hand, despite the multiple negative effects of heat stress at the 
vegetative stage, plants appear more sensitive at the reproductive stages (Farooq 
et al. 2011; Prasad et al. 2017). Recently, much work has been done on cereals to 
identify the growth stage(s) most sensitive to heat stress during reproductive devel-
opment (Prasad and Djanaguiraman 2014; Prasad et al. 2015; Djanaguiraman et al. 
2018). Two periods were identified, ranging from 10 to 12 days and 2 to 0 days 
before anthesis in pearl millet (Djanaguiraman et al. 2018), 8 to 6 days and 2 to 
0 days before anthesis in wheat (Prasad and Djanaguiraman 2014), 10 to 5 days 
before anthesis and 5 days before and 5 days after anthesis in sorghum (Prasad et al. 
2015). During these periods, heat stress causes maximum decreases in pollen 
germination percentage, seed number (Djanaguiraman et al. 2018), and floret fertility 
(Prasad and Djanaguiraman 2014; Prasad et al. 2015). 

In pearl millet, high temperatures (>40 °C) often coincide with the flowering and 
grain-filling stages (Gupta et al. 2015). Heat stress during these stages leads to a 
decrease in grain number and weight, leading to poor crop yield and quality (Bita 
and Gerats 2013; Djanaguiraman et al. 2018). According to Sultan et al. (2013), 
raising the temperature to 6 °C would lead to a 41% reduction in pearl millet yield. 
Several studies have reported a decrease in the yield of pearl millet and other cereals 
under heat stress (Gupta et al. 2015; Prasad et al. 2017; Djanaguiraman et al. 2018; 
Qaseem et al. 2019; Jagadish 2020). 

According to Fahad et al. (2016a, b), the decrease in pollen germination mainly 
results from the retention of pollen in dehiscent anthers. However, an increase in the 
content of reactive oxygen species and a decrease in the activity of antioxidant 
enzymes in pollen and pistils have been reported in millet (Djanaguiraman et al. 
2018). Pistils were more sensitive than pollen grains because they had relatively 
higher reactive oxygen species and lower antioxidant enzyme activity. Increased



production of reactive oxygen species under these conditions may be responsible for 
decreased germination and pollen viability in sorghum (Prasad and Djanaguiraman 
2011). 
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Heat stress also causes a decrease in spikelet fertility due to a decrease in the 
production and number of pollens on the stigma (Prasad et al. 2006a) and inhibition 
of panicle emergence (Prasad et al. 2006b). This decrease in spikelet fertility resulted 
in fewer filled grains, lower grain weight per panicle, and lower harvest index. 
According to Gupta et al. (2015), heat stress causes reproductive sterility in pearl 
millet leading to a drastic reduction in grain yield. In addition, the increase in 
temperature promotes a higher rate of evapotranspiration, which ultimately reduces 
soil moisture and available water needed to fill the grains. 

10.2.3 Heat and Drought Combined Effects 

In arid and semi-arid areas, drought and heat stress often occur simultaneously (Shah 
and Paulsen 2003; Barnabás et al. 2008). This effect occurs because of a negative 
correlation between temperature and precipitation on inter-annual scales because dry 
conditions favor more sunshine and less evaporative cooling (Trenberth and Shea 
2005; Zscheischler and Seneviratne 2017). However, few studies examining the 
impact of the combined effects of both stresses on crops, let alone pearl millet, have 
been carried out. The few studies carried out on this subject have shown that the 
combined effects on growth and productivity considerably exceed the simple effects 
(Savin and Nicolas 1996; Prasad et al. 2008; Dreesen et al. 2012; Qaseem et al. 
2019). 

Drought and heat stresses, by their intensity and duration, can influence the 
growth and development of plants. At the leaf scale, the distribution of the relative 
elongation rate was independently affected by these stresses, which had quasi-
additive effects (Tardieu et al. 2000). Additionally, leaf elongation rates were 
positively correlated with leaf temperatures and negatively with vapor pressure 
deficit and pre-dawn leaf water potential (Welcker et al. 2007). This shows the 
strong relationship that exists between leaf elongation rates and various physiologi-
cal components that can be indicative of drought and heat stress. In terms of growth, 
drought, and heat affect stem growth and plant height (Katerji et al. 1994; Winkel 
et al. 1997; Prasad et al. 2006b). 

Similarly, these stresses can also impact the transition and duration of the 
developmental stage. Cooper et al. (2009) reported a reduction in the length of the 
growing period of plants in dry tropical regions. This reduction is the result of both 
the rapid development of the leaf canopy and an increase in the overall growth rate of 
the crop stimulated by heat stress. Higher temperature results in faster development, 
and therefore shorter, growth phase duration. 

Heat stress combined with drought can cause stomatal closure leading to an 
increase in leaf temperature (Rizhsky et al. 2002), unlike the simple effect of heat 
stress, which promotes the opening of the stomata, thus leading to cooling of the 
leaves by transpiration. Consequently, the water status of the plant is partly linked to



the temperature, which affects several parameters of the plant. According to Shah 
and Paulsen (2003), the interactions between stresses were pronounced, and the 
consequences of drought were more severe at high temperatures than at low 
temperatures on all physiological parameters. Barnabás et al. (2008) confirm these 
statements by asserting that the synchronization of the two results in even greater 
severity of drought stress. Thus, heat increases the intensity of the drought by 
causing the soil to dry faster. This effect results from the increase in the vapor 
pressure deficit of the air, which favors a greater demand for evapotranspiration. In 
addition to warming, the indirect effect of heat on water evapotranspiration from the 
soil can have a great impact on plants. 
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On the other hand, antagonistic interactions between heat and drought have been 
reported on net photosynthesis. In wheat, Lu and Zhang (1999) asserted that drought 
stress increases the tolerance of PSII to heat stress. However, many authors have 
argued that drought tends to dramatically exacerbate the effects of heat stress on 
plant growth and photosynthesis (Shah and Paulsen 2003; Xu and Zhou 2005a, b, 
2006). 

The effect of drought and heat stresses on root growth depends on the intensity of 
the stress. Moderate stress results in greater root growth due to increased distribution 
of carbohydrates to the roots and greater exploration of the soil caused by drought 
and heat stress, respectively. On the other hand, severe stress leads to a reduction in 
the number, length, and diameter of the roots, which becomes more important when 
drought and heat stress are associated (Prasad et al. 2008). 

When these constraints occur during grain development, they cause significant 
yield losses in cereals (Chaves et al. 2003; Bai et al. 2004; Prasad et al. 2008). 
Knowing that starch represents a major part of the dry weight of cereals, this 
reduction is due to a decrease in its accumulation. On the other hand, data on the 
possible variation of this trait in pearl millet are limited. 

10.2.3.1 Mechanisms of Adaptation to Climate Variability (Drought 
and Heat) in Pearl Millet 

Faced with environmental constraints, plants must be able to react and adapt to 
increase their chance of survival. Thus, they are developing different strategies to 
adapt and resist drought and heat stresses. These strategies are characterized by a 
strong ability to set up biochemical, molecular, and physiological responses which 
influence various cellular processes in the plant. Drought survival mechanisms of 
plants are like those used to cope with heat stress (Wu et al. 2018). Escape, 
avoidance, and tolerance mechanisms have long been considered important 
strategies for drought adaptation (Chaves et al. 2003). These mechanisms have 
also been reported by Kooyers (2015) and Li et al. (2017). 

Drought escape allows some plants to cope with stress by completing their full 
development cycle before the water deficit sets in the soil (Annerose 1990). Drought 
avoidance, on the other hand, is the ability of plants to maintain high levels of water 
potential in their tissues by reducing water loss or improving water uptake (Ludlow 
and Muchow 1990). Escape and avoidance strategies may be the most effective for 
survival and reproduction when drought stress is mild-tomoderate (Kooyers 2015).



Mechanisms of dehydration avoidance include morphological and functional 
modifications such as leaf area size, leaf rolling, stomatal conductance, and osmotic 
adjustment (Blum 2011; Kadioglu et al. 2012). However, when drought stress 
becomes severe, plants must be able to rely on tolerance strategies to avoid desicca-
tion. Thus, drought tolerance appears to be the capacity of plants to resist water 
deficit while maintaining appropriate physiological activities (Xiong et al. 2006). 
Therefore, the response of plants to drought depends on the species, duration of the 
drought as well as the timing of application (Sanchez et al. 2002; Pinheiro and 
Chaves 2011). 
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Due to its drought and heat tolerance (Arya et al. 2010), pearl millet is an ideal 
model for studying the heat and drought resistance mechanism of cereal crops. 

Leaf Rolling and Stomatal Conductance 
In plants, many changes occur in the leaf, both in structure and morphology, in 
response to drought and heat stress. Leaf rolling is an abiotic stress avoidance 
mechanism (Kadioglu and Terzi 2007; Kadioglu et al. 2012). It occurs when plants 
are under stress and is caused by folding in the midrib of upper leaves and changes in 
their leaf’s orientations (Kusaka et al. 2005b). This leads to a reduction in leaf 
temperature via a decrease in incident radiation (O’toole et al. 1979; Heckathorn and 
DeLucia 1991) and thus offers protection against the effects of excessive radiation 
(Kadioglu and Terzi 2007). Leaf rolling effectively reduces light interception, 
transpiration, and leaf dehydration (Kadioglu and Terzi 2007). 

However, reduced transpiration has often been associated with leaf senescence 
which results in an efficient and rapid decrease in leaf area. It can extend the duration 
of soil water availability by reducing the plant’s water requirements and losses. 
According to Wallace et al. (1993) and Soegaard and Boegh (1995), senescence 
constitutes the main mechanism responsible for the reduction of transpiration. 
However, it can be a limiting factor for the accumulation of crop biomass and 
hence grain yield due to its irreversible effect. Unlike senescence, the reversible 
nature of leaf rolling provides flexibility when drought is temporary and intermittent. 

However, sorghum and pearl millet studies have shown that leaf rolling did not 
occur until after stomatal closure (Blum and Sullivan 1986; Ludlow and Muchow 
1990). Therefore, the immediate response of plants under drought stress is the 
stomatal closure to prevent water loss through transpiration (Cornic and Massacci 
1996; Assmann et al. 2000; Ghatak et al. 2016; Buckley 2019). Through the 
transpiration stream, drought induces root-to-leaf signaling promoted by soil drying, 
which causes stomatal closure (Farooq et al. 2009; Anjum et al. 2011b). This 
stomatal closure is higher and faster in tolerant genotypes (Ghatak et al. 2021) and 
appears to be more effective in reducing water loss than leaf rolling. It has been 
reported that the decrease in water use by stomata is greater pre-anthesis than post-
anthesis because of the ontogenetic decline in the range of stomatal conductance 
(Winkel et al. 2001). 

Under drought conditions, plants tend to have lower stomatal conductance, which 
decreases as drought stress increases (Ghatak et al. 2021). This decrease in conduc-
tance allows the plant to conserve water and maintain an adequate water status of the



leaves, hence the close relationship between them. A significant correlation between 
stomatal conductance and leaf xylem water potential has been reported by Matsuura 
et al. (1996). However, a low stomatal conductance could be partly related to a 
difference in stomatal density. According to Slama (2002), the increase in the 
number of stomata per unit area could be one of the factors of resistance to water 
deficit in cereals if accompanied by appropriate photosynthesis activity. It can 
decrease water loss and increase the net uptake of CO2, which allows the plant to 
maintain photosynthesis. Increased stomatal density can also affect crop yield. The 
variety of durum wheat with the highest yield and the largest kernels has a higher 
stomatal density at the beard and flag leaf (Slama 2002). On the other hand, 
according to Kholová et al. (2010), stomatal regulation is more important than 
stomatal density in regulating the loss of water in pearl millet. Nevertheless, stomatal 
conductance and leaf rolling have been shown to be reliable physiological indicators 
of drought tolerance in plants (Kadioglu and Terzi 2007). 
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Heat stress, often associated with a high vapor pressure deficit (VPD), also causes 
leaf rolling in plants (Omarova et al. 1995) and stomatal closure (Maroco et al. 
1997). It causes a change in the temperature of the leaves, which can be an important 
factor in controlling the leaf water status under stress. The study by Kadioglu and 
Terzi (2007) showed that leaf rolling was linearly correlated with osmotic potential 
and leaf temperature. Thus, the physiological role of leaf rolling was reported as the 
maintenance of adaptive potential by increasing the efficiency of water metabolism 
in wheat flag leaves under heat stress (Sarieva et al. 2010). In fact, this is consistent 
with the fact that leaf rolling results in more efficient use of water during photosyn-
thesis (Kadioglu and Terzi 2007). In addition, a reduction in leaf area was noted in 
pearl millet and sorghum under high VPD (Choudhary et al. 2020). According to 
Choudhary et al. (2020), water conservation when increasing VPD depends primar-
ily on reduced leaf area and somewhat on transpiration restriction in these two crops. 
This restriction of transpiration has also been reported by Kholová et al. (2010). 
However, partial stomatal closure is achieved by limiting the transpiration rate under 
conditions of high VPD. Stomatal sensitivity to VPD was correlated with the 
hydraulic conductance of leaves relative to the total leaf area (Ocheltree et al. 
2014). However, reducing the transpiration of pearl millet under a high vapor 
pressure deficit has been proposed to be beneficial for crop yield under such 
conditions (Kholová et al. 2010). 

Root Characteristics 
Pearl millet is one of the most abiotic stress-tolerant cereal crops in part due to its 
strong root system. Rapid root growth at depth can offer a chance for survival in 
harsh conditions as water uptake requests deep roots because of the quick water 
drainage of the sandy soils where millet is usually grown. The advantage of deeper 
root systems was demonstrated in pearl millet (Faye et al. 2019), sorghum (Chopart 
et al. 2008b), wheat (Kirkegaard et al. 2007; Christopher et al. 2008), maize (Sinclair 
and Muchow 2001; Hund et al. 2009), and rice (Manschadi et al. 2010; Wasson et al. 
2012). In pearl millet, the root system is made up of several types of roots, namely 
the primary root (emerges from the seed and the mesocotyl connecting the seed and



the base of the stem), crown roots (emerges from the base of the stem), lateral roots 
(appear on primary or crown roots), and secondary roots (ramifications of lateral 
roots) (Passot et al. 2016). Crown roots form most of the root system, even though 
the primary root characterizes the root system at the start of pearl millet growth. This 
primary root will regress from 1 month after sowing (within 2 months after germi-
nation) (Maiti and Bidinger 1981; Passot 2016). Passot et al. (2016) showed that the 
number of central metaxylem vessels constitutes the major difference between the 
different root types. 
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Different lateral root types have been reported in pearl millet, rice, and maize 
(Passot et al. 2016, 2018; Hochholdinger and Tuberosa 2009; Rebouillat et al. 2009). 
The different types of lateral roots in cereals have been identified through anatomical 
studies of roots, often based on traits such as root diameters and vascularization 
(Varney et al. 1991; Watt et al. 2008; Henry et al. 2016; Passot et al. 2016). Recently, 
Passot et al. (2018) were able to classify roots based on their growth rate profiles. 
The study found three types of lateral roots with similar characteristics in pearl millet 
and maize. This revealed three types of lateral roots with similar characteristics in 
pearl millet and maize. 

Under drought stress, pearl millet root growth is reoriented toward deeper soil 
layers that retain more water. Several studies have argued that root growth orienta-
tion was only dependent on soil depth (Chopart and Siband 1999; Chopart et al. 
2008a, b; Faye et al. 2019). This dependence differed between thick roots and fine 
roots. Thick root growth was horizontal in shallow soils and became more and more 
vertical with increased depth, unlike the growth orientation of fine roots, which was 
only marginally dependent on soil depth (Faye et al. 2019). This result agrees with 
those found in sugarcane and sorghum (Chopart et al. 2008a, b). They claimed that 
fine roots appeared isotropic when thick roots were horizontal near the surface and 
gradually became vertical in deeper horizons. According to Passot et al. (2016), the 
thick roots correspond to the seminal or crown roots, while the fine ones probably 
correspond to the different types of laterals. 

Increasing water uptake is a way of avoiding stress. It takes place via the roots, 
and its transport from the soil to the xylem vessels uses two pathways: the apoplastic 
pathway and the cell-to-cell pathway, which summarizes the transcellular and the 
symplastic pathways (Steudle 2001). The type of path depends mainly on environ-
mental conditions. Water flows through the apoplastic path under non-stressful 
conditions due to hydrostatic forces while it flows through the cell-to-cell path 
under stressful conditions due to osmotic forces. Aquaporins, water channels present 
in cell membranes, enable cell-to-cell water transport (Prado and Maurel 2013; 
Chaumont and Tyerman 2014). They are involved in the physiology of plant growth 
(Maurel et al. 2015), thus influencing the hydraulics, transpiration, and water 
conservation of the soil. Their importance has been demonstrated in pearl millet 
where they contribute up to 84% to the hydraulic conductivity of roots (Grondin 
et al. 2020). Interestingly, aquaporins contribution was higher in root hydraulic 
conductivity for a pearl millet line with lower water use efficiency (Grondin et al. 
2020). Aquaporins are also well known for their response to drought stress 
(Alexandersson et al. 2005; Aroca et al. 2012; Grondin et al. 2016). Several types



of aquaporin families have been identified with different functions. Many of them 
are involved in the regulation of water uptake by roots under drought conditions 
(Aroca et al. 2012). 
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On the other hand, root length is an important trait for tolerance to drought stress. 
Root length increased in all genotypes under drought stress (Ghatak et al. 2021). 
This increase in the root system has been reported by many authors (Kusaka et al. 
2005a; Ghatak et al. 2016). It has been reported in cereals that a deep root system 
allows water uptake from deep layers of the soil in drought-stressed environments 
(Kondo et al. 2000; Kashiwagi et al. 2006; Manschadi et al. 2010; Wasson et al. 
2012; Steele et al. 2013; Wasaya et al. 2018; Faye et al. 2019). In sorghum and pearl 
millet, there is a positive correlation between drought tolerance and root length 
(Matsuura et al. 1996), even though the roots of pearl millet were found to be longer 
than those of sorghum (Rostamza et al. 2013). In addition to length, root density can 
be a factor in drought tolerance. In a study on maize, Zhan et al. (2015) argue that 
reduced lateral root density improves drought tolerance. This reduction in density is 
associated with deeper rooting resulting in lower root length density for thick roots 
than for fine roots (Chopart et al. 2008b). 

Therefore, fine root diameter, specific root length, specific root surface area, root 
angle, and root length density are considered useful traits for improving plant 
productivity under drought conditions (Wasaya et al. 2018). Increased root airspaces 
(aerenchyma) and root xylem diameter have also been linked with greater yield 
under drought conditions in maize (Chimungu et al. 2015) and the conservation of 
water resources to laid grain filling in wheat (Richards and Passioura 1989) respec-
tively. Increased root growth can also be helpful for heat stress conditions. It allows 
plants to maintain their water potential despite significant transpiration. Under these 
conditions, plants develop strategies to restrict water loss. The reduction of transpi-
ration in pearl millet under high vapor pressure deficit (VPD) was associated with 
aquaporins function (Reddy et al. 2017b). VPD-insensitive genotypes increased their 
transpiration rate, which may be since they used more symplastically mediated water 
transport (aquaporins) pathways than VPD-sensitive genotypes (Reddy et al. 
2017b). Thus, water uptake in warmer soil appears to be positively correlated with 
aquaporin activity in wheat (Carvajal et al. 1996). In mature maize plants, increasing 
temperature slows lateral root growth to promote the development of long axial roots 
to reach water in deeper soil layers (Hund et al. 2008). Therefore, leaf and roots 
hydraulic conductance plays an important role in the response of plants to evapora-
tive demand (Ocheltree et al. 2014). 

Osmotic Adjustment 
Osmotic adjustment is considered a major drought adaptation mechanism (Kusaka 
et al. 2005b; Izanloo et al. 2008; Sanders and Arndt 2012; Blum 2017). It allows the 
maintenance of water absorption and cell turgor pressure thanks to the accumulation 
of solutes. As a result, increasing the number of osmotically active substances in the 
cell leads to a more negative osmotic potential, which can improve the degree of cell 
hydration, maintaining turgor in leaf tissue and other metabolically active cells 
(Sanders and Arndt 2012). Osmotically active substances can be either organic



solutes (amino acids, glycerol, sugars, and other low molecular weight metabolites) 
or inorganic ions (Na+ , K+ , Ca2+ , and Cl-). Several studies have reported the 
important role of these solutes in tolerance to abiotic stresses (Chaves and Oliveira 
2004; Ashraf and Foolad 2007; Chen and Jiang 2010; Verslues and Sharma 2010). 
Depending on the adjustment capacity, the types of solutes accumulated, and their 
relative contribution to lowering osmotic potential, the osmotic adjustment may vary 
between species and genotypes (Chen and Jiang 2010). 
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Variation in the osmotic adjustment of cultivars in response to drought has been 
reported in many crop plants, including pearl millet. Local varieties from more arid 
areas exhibited a greater capacity for osmotic adjustment (Blum and Sullivan 1986). 
However, the latter depends not only on the stage of development of the plant 
(Chimenti et al. 2006) but also on the degree and duration of the water deficit 
(Shangguan et al. 1999; Kusaka et al. 2005a, b; Nio et al. 2011). Kusaka et al. 
(2005b) studied the contribution of several solutes to the osmotic adjustment of two 
pearl millet cultivars, one susceptible (IP8949) and the other tolerant (IP8210) to 
drought stress. They reported that, for both accessions, the stem exhibited higher 
osmotic adjustment than the younger and expanded leaves, while their decrease in 
relative water content was different. In addition, an increase in the concentration of 
organic components (sucrose, glucose, proline, and QAC) was noted in both 
accessions in response to drought stress. This has also been reported in durum 
wheat, where drought stress increased sugar and proline concentrations and 
decreased nitrate levels (Bajji et al. 2001). Sugars were the main solutes that 
contributed to osmotic adjustment, especially in growing leaves, followed by proline 
and quaternary ammonium compounds (Bajji et al. 2001). However, in pearl millet, 
accumulation of proline was greater (more than four times) in young leaves of the 
tolerant genotype than in the susceptible genotype (Kusaka et al. 2005b). This 
increase has also been reported in maize up to 10 days after stress application and 
declines when stress becomes severe (Anjum et al. 2011a). A strong accumulation of 
proline increases the cell solute concentration, resulting in increased water potential 
in the tissues and decreased cellular damage. As a result, it constitutes the first 
response of plants exposed to drought stress and contributes to the immediate 
recovery of plants after stress. 

In addition to proline, glycine betaine, and soluble sugars contribute to osmotic 
adjustment and stress adaptation in pearl millet. However, the accumulation of 
organic components remained lower than that of K+ and NO3

- (Kusaka et al. 
2005b). The concentration of K+ increased both in the cell sap of the leaves and 
the stems of the two accessions at the onset of stress. The accumulation of K+ in the 
cell sap reached a very high level and was relative to decreasing relative water 
content. This proves the role of inorganic compounds in contradiction to the 
conclusion of Bajji et al. (2001). Fischer et al. (2005a, b) found a positive correlation 
between osmotic adjustment and grain yield under moisture deficit. Likewise, in a 
critical review examining 26 published studies in which osmotic adjustment and 
yield were measured under drought stress in variable genotypes from 12 crops, Blum 
(2017) reported a positive and significant association between osmotic adjustment 
and performance in 24 published studies. In pearl millet, drought tolerance was more



correlated with osmotic adjustment capacity than total root length under severe 
drought stress (Kusaka et al. 2005a). 
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Like drought stress, heat stress also leads to changes in the accumulation of 
compatible osmolytes (Sakamoto and Murata 2002). The early synthesis of these 
osmolytes (proline, glycine betaine, or soluble sugars) compensates for the effect of 
the decrease in leaf water potential, which appears as an immediate response to heat. 
By maintaining the cell water balance and membrane stability and buffering the 
cellular redox potential, the accumulation of osmolytes regulates osmotic activities 
and protects cellular structures from high temperatures (Farooq et al. 2008). The role 
of glycine betaine in photosynthesis in plants under heat stress has been reported by 
Allakhverdiev et al. (2008). The activation of Rubisco is maintained by the produc-
tion of glycine betaine in the chloroplasts by sequestering Rubisco activase near 
thylakoids and preventing its thermal inactivation (Allakhverdiev et al. 2008). 
However, there is a difference between species in their ability to synthesize glycine 
betaine under heat-stress conditions (Ashraf and Foolad 2007). In maize and sugar-
cane, a strong accumulation of glycine betaine has been reported in response to 
elevated temperatures (Quan et al. 2004; Wahid and Close 2007). At the same time, 
the increase in temperatures causes the accumulation of proline and soluble 
carbohydrates in wheat while the levels of valuable proteins are reduced (Qaseem 
et al. 2019). Thus, despite the lack of studies on pearl millet, work on other crops has 
shown the role of osmotic adjustment in tolerance to heat stress. 

Transpiration Efficiency 
In times of stress, plants need to develop mechanisms to conserve soil water or 
maximize their water use efficiency to alleviate the effect of stress. Several studies 
have been carried out in recent years to determine the water use efficiency of crops 
(Vadez et al. 2011, 2013a, 2014, 2021; Schittenhelm and Schroetter 2014; van 
Oosterom et al. 2021). Water use efficiency appears to be an important criterion 
for evaluating the water supply. It provides a simple and quick measure of how the 
available water can be converted into biomass and grain (Sekhon et al. 2010). 
Defined as the accumulation of biomass per unit of water transpired (Xin et al. 
2009), transpiration efficiency can also be understood at the leaf level as the intrinsic 
water-use efficiency. It is the ratio of the instantaneous rates of CO2 assimilation and 
transpiration at the level of the stomata (Condon et al. 2002). Thus, increased 
biomass or photosynthesis, decreased transpiration, or a combination of both can 
result in reduced water use reflecting higher water use efficiency of plants. However, 
Xin et al. (2009) reported that transpiration efficiency based on biomass production 
was strongly correlated with increased biomass accumulation rather than reduced 
water use. 

In a recent study comparing the transpiration efficiency of C4 cereals, Vadez et al. 
(2021) found that transpiration efficiency in maize was higher than in millet and 
somewhat higher than in sorghum (Fig. 1.12). This difference between species could 
be explained by differences in the ability to restrict transpiration under high VPD 
(Vadez et al. 2014). Likewise, Choudhary et al. (2020) reported that maize conserves 
water by limiting transpiration during increased VPD and under higher soil moisture

https://doi.org/10.1007/978-981-99-5890-0_1#Fig12


than sorghum and pearl millet. In addition, the transpiration efficiency seems to 
depend on the type of soil. It was higher in high clay than in sandy soil under a high 
VPD (Vadez et al. 2021), while the differences in transpiration efficiency between 
maize and sorghum were not visible in Alfisol and sandy soil. 

10 Physiological and Molecular Bases of Drought and Heat Tolerance in Pearl Millet 261

However, there is variation in transpiration efficiency within species that has been 
demonstrated for C4 plant species (Mortlock and Hammer 2000; Xin et al. 2009; 
Vadez et al. 2011, 2014, 2021). Transpiration efficiency was higher under stress 
conditions (Mortlock and Hammer 2000). Sorghum genotypes with low internal 
CO2 concentration and improved photosynthetic capacity may be a factor explaining 
the high transpiration efficiency in some lines (Xin et al. 2009). Under water deficit 
conditions, water use efficiency was also increased in sweet sorghum, while for 
maize, it was reduced (Zegada-Lizarazu et al. 2012). Bhattarai et al. (2020) confirm 
this result by stating that the water use efficiency was highest for sorghum cultivars, 
followed by millet and maize. According to Blum (2005), water use efficiency is 
often associated with drought tolerance and improved crop yields under stress 
conditions. Thus, genotypes with higher water use efficiency have greater 
survivability. 

However, water extraction also seems to play an important role during grain 
filling. Differences in yield under terminal drought in sorghum have been reported to 
be determined by TE, followed by water extraction (Vadez et al. 2013b). Although 
the amount of water extracted by tolerant and susceptible genotypes was similar 
under drought stress, tolerant genotypes extracted less water before anthesis and 
more water after anthesis. This explains the lower yield of sensitive genotypes than 
that of tolerant lines under drought stress (Vadez et al. 2013a). Thus, the early 
conservation of water during pre-anthesis increases the yield of pearl millet during 
terminal drought (Kholová and Vadez 2013; Kholová et al. 2010). The drought 
tolerance of pearl millet is explained by the higher water use efficiency. Therefore, 
improving transpiration efficiency can effectively increase pearl millet yield in arid 
and semi-arid regions. 

10.3 Molecular Basis of Stress Tolerance 

Pearl millet is an important model for studying the physiological and molecular 
mechanisms of drought tolerance. Yet, compared to other cereals, the molecular 
mechanisms of drought stress tolerance in pearl millet remain elusive. Recently, 
genome-wide association studies (GWAS) have detected some genes associated 
with the domestication and differentiation of local millet varieties that have adapted 
to climatic conditions. These genes are related to heading date and plant height 
(Lakis et al. 2012), flowering time, morphological character, and yield (Saïdou et al. 
2009; Vigouroux et al. 2011; Clotault et al. 2012; Diack et al. 2020), fitness under 
irregular climatic conditions (Ousseini et al. 2017), biomass and stay green (Debieu 
et al. 2018). Molecular responses involve a set of genes and signal transduction 
pathways that are highly regulated. The tolerance mechanisms begin with the



detection of the stress, which causes a series of signal molecules transported in the 
leaves via the xylem. 
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Among the signals, abscisic acid (ABA) is a very important drought response 
pathway. It is a key root-to-shoot signal of drought stress (Xu et al. 2010) even 
though it is variable among species (Zhang et al. 2005; Jia and Zhang 2008). 
However, how the root cells detect the moisture state of the soil remains a mystery. 
Root tissues synthesize ABA upon detection of stress, which induces stomatal 
closure, thereby reducing transpiration and photosynthesis and allowing plant adap-
tation to drought conditions (De Ollas et al. 2013). ABA is also involved in 
regulating aquaporin activity, which contributes to the maintenance of the favorable 
water status of the plant (Parent et al. 2009; Reddy et al. 2017a). The 
ABA-dependent signaling response to stress involves different genes and transcrip-
tion factors (Tuteja 2007). These genes and transcription factors are either involved 
in ABA biosynthesis or induced by the presence of ABA. For example, under 
drought conditions, strong expression of the 9-cis-epoxycarotenoid dioxygenase 
gene (NCED) is the first step in ABA biosynthesis (Qin and Zeevaart 1999; Behnam 
et al. 2013), provides evidence of ABA accumulation. In addition, several transcripts 
such as the WRKY transcription family (Jaiswal et al. 2018; Chanwala et al. 2020), 
PYL/PYR, PP2C SnRK2, ABRF DREB2A/2B, AREB1, RD22BP1, NAC, and 
MYC/MYB family (Tuteja 2007; Bhargava and Sawant 2013; Dudhate et al. 
2018; Zhang et al. 2021) are known for their role in phytohormone signaling and 
response to abiotic stresses in plants. Furthermore, during drought stress, reactive 
oxygen species (ROS) accumulation increases considerably (Farooq et al. 2009; 
Alam et al. 2010). ROS form a natural by-product of normal oxygen metabolism and 
plays an important role in cell signaling. ROS include oxygen ions, free radicals, and 
peroxides, whose common characteristic is their ability to cause oxidative damage to 
proteins, DNA, and lipids (Apel and Hirt 2004). They target various organelles, 
including chloroplasts, mitochondria, and peroxisomes, resulting in premature leaf 
senescence or plant death (Ma et al. 2013). However, a versatile and cooperative 
antioxidant system tightly controls improved ROS production. It modulates the 
intracellular concentration of ROS and defines the redox status of the cell. Superox-
ide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxi-
dase (APX), and guaiacol peroxidase (GPOX) constitute the main mechanisms of 
entrapment (Cruz de Carvalho 2008, Takayuki et al. 2013). An increase in the levels 
of these antioxidant enzymes (AOX) has been noted in pearl millet in water-deficit 
stress conditions (Vijayalakshmi et al. 2012). On the other hand, prolonged drought 
stress leads to the ineffectiveness of the antioxidant system causing cell damage and 
death. Many genes conferring tolerance to drought stress have been identified in 
plants. These genes were presented in the study by Kumar et al. (2018) and classified 
into two groups (Bray 1997; Yamaguchi-Shinozaki and Shinozaki 2005; Kumar 
et al. 2018). The first group includes functional genes encoding proteins whose 
catalytic activities are responsible for the protection of cells and organs against 
stress, regulatory genes encoding proteins necessary for signal transduction and 
the regulation of expression of genes. The second group comprises several genes 
and transcription factors responsive to drought, such as the binding gene to elements



sensitive to dehydration, aquaporin, abundant proteins of late embryogenesis, and 
dehydrins (Farooq et al. 2009). 
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In pearl millet seeds, Ghatak et al. (2016) also identified heat shock proteins 
(HSP), molecular chaperones, storage proteins, and abundant late embryogenesis 
(LEA) with increased levels. These proteins help stabilize the folding and confor-
mation of structural proteins and the functionality of enzymes (Wang et al. 2004), 
hence their protective function. 

In recent years, proteomic studies have become increasingly important as proteins 
are the main drivers of all cellular events. At the proteomic level, several studies 
have been carried out to understand the effect of drought stress on cereals such as 
millet (Ghatak et al. 2016, 2021), maize (Riccardi et al. 2004), and wheat (Ford et al. 
2011; Komatsu et al. 2014; Ghatak et al. 2021). In pearl millet, a shotgun proteomics 
approach was used to study protein signatures from different tissues under drought 
and control conditions (Ghatak et al. 2016). Proteins have been identified and 
quantified in the root, leaf, and seed tissues. However, there is a pronounced change 
in the proteome of stressed plants compared to control conditions. Putative drought-
sensitive proteins have also been identified in the root (271 proteins), seed 
(159 proteins), and leaf (292 proteins). Leaf tissue showed the most significant 
changes, followed by roots and seeds. 

A high temperature also triggers important molecular changes in plants. Many 
transcripts and proteins alter their expression and levels to prevent or reverse the 
effects of heat on proteins. Under stress, plants synthesize (induce) a set of heat 
shock proteins (HSPs), unlike in normal conditions where they are almost absent. 
Based on their molecular weight, HSPs are divided into different families with 
distinct functions. Numerous studies have shown the role of HSP families in 
thermotolerance (Gurley 2000; Queitsch et al. 2000; Sun et al. 2002; Hu et al. 
2010; Reddy et al. 2010; Nitnavare et al. 2016). Heat stress transcription factors 
(Hsfs) are the main regulators of heat stress response gene expression (Baniwal et al. 
2004; Kotak et al. 2007; Schramm et al. 2008). Since protein aggregation is 
irreversible, HSPs appear important in the thermo-tolerance reaction and act as 
molecular chaperones to prevent the denaturation or aggregation of target proteins 
and facilitate protein refolding (Ahuja et al. 2010; Scharf et al. 2012). In addition, 
they lead to an improvement in physiological parameters and membrane stability or 
hydration of cellular structures (Camejo et al. 2005; Ahn and Zimmerman 2006; 
Wahid and Close 2007). These improvements promote adequate plant growth and 
development under heat stress. Thus, it has been reported that the expression of 
genes inducing HSPs may be an important mechanism for increasing tolerance to 
heat stress (Wahid et al. 2007). 

The plant cuticle is a protective layer made of lipids and waxes present on the 
surface of aerial organs. It forms a barrier against pathogen infection and limits water 
losses through transpiration. A similar hydrophobic barrier, the Casparian strip, is 
formed at the periphery of the endodermis’s root vascular bundle and is thought to 
contribute to the limitation of water loss. Recent results suggest that these lipid-made 
barriers are important components of water potential and heat stress tolerance in 
pearl millet. Indeed, sequencing of the pearl millet genome revealed an expansion of



gene families involved in the biosynthesis and transport of cut-in, suberin, and wax 
components of the cuticle and Casparian strip (Varshney et al. 2017; Debieu et al. 
2017). Moreover, an association genetics study for tolerance to water stress at the 
vegetative stage in pearl millet led to the identification of four genetic loci associated 
with increased biomass production under early drought stress. One of these 
associations contained a gene encoding an enzyme (3-ketoacyl-CoA synthase or 
KCS) catalyzes the elongation of C24 fatty acids during wax and suberin biosynthe-
sis (Debieu et al. 2018). Altogether, this suggests that wax and fatty acids biosyn-
thesis could be targeted to increase water and heat stress tolerance in dryland cereals. 
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10.4 Breeding Pearl Millet for Drought and Heat Tolerance 

Current climate models’ prediction showed that more inter- and intra-annual 
variability in rainfall and temperature are expected in sub-Saharan Africa (Brown 
and Lall 2006; Sultan and Gaetani 2016). This situation will increasingly threaten 
pearl millet production in this part of the world, where this cereal is one of the most 
important sources of nutrition for more than 90 million people (Anuradha et al. 
2017). Therefore, breeders should develop efficient breeding strategies to accelerate 
the development of improved varieties with better tolerance to drought and heat 
stresses. During the last decades, several attempts to improve phenotypic screening 
methods, study the genetic variation in breeding lines, and develop high-yielding 
and tolerant pearl millet varieties to heat and drought stress using conventional and 
molecular breeding methods have been accomplished. 

Drought is considered the primary abiotic constraint for pearl millet production 
and is caused by the low and erratic rainfall distribution. In breeding, progress has 
been made in the development of screening techniques, identification of sources of 
tolerance, development of early maturing varieties, and identification of QTL linked 
to drought tolerance (Yadav et al. 2017). Screening of 21 genotypes for osmotic 
stress tolerance (as a proxy for drought) using PEG 6000 revealed three genotypes 
(TNBH 0538, TNBH 0642, and ICVM 221) tolerant to moisture stress at germina-
tion and early growth stages (Govindaraj et al. 2010). However, pearl millet grain 
yield is more affected by post-flowering and terminal drought stresses (Kholová and 
Vadez 2013). To overcome these stresses, drought escape mechanisms have been 
successfully exploited by targeting early maturity (Yadav and Rai 2013). It has been 
demonstrated that early flowering pearl millet genotypes with low biomass, few 
basal tillers and high harvest index can tolerate terminal drought stress (Bidinger 
et al. 2005). Across West African countries, several landraces characterized by 
earliness, high grain yield, bold grain, and compact and conical panicles have 
contributed to the development of pearl millet cultivars adapted to drought-prone 
areas, including ICTP-8203 and GB-8735 (Wilson et al. 2008). These varieties 
flower within 40–45 days and mature within less than 75 days, making them suitable 
cultivars for arid zones. Interestingly, recurrent drought in the 1980s led to selection 
by farmers in Niger for earlier flowering pearl millet varieties (Vigouroux et al. 
2011).
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Another important research strategy was using molecular markers to identify 
genomic regions associated with drought tolerance in pearl millet. Several major 
QTLs with significant effects on pearl millet grain in terminal drought stress 
environments were identified and successfully used in marker-assisted selection to 
improve drought-sensitive pearl millet lines (Yadav et al. 2002, 2004; Serraj et al. 
2005; Bidinger et al. 2005). Similarly, potential QTLs for tolerance to water stress 
during the vegetative phase were identified (Debieu et al. 2018). 

For heat tolerance, a good amount of work has been accomplished in breeding. 
Both field and greenhouse heat tolerance screening techniques have been developed 
and improved at ICRISAT for pearl millet (Gupta et al. 2015). These techniques 
were widely used in assessing the effect of heat on a large number of hybrid parental 
lines, germplasm accessions, and improved varieties across several field locations in 
India for four consecutive years. The field screenings led to the identification of five 
hybrid parental lines and a germplasm accession as new sources of resistance to heat 
tolerance that has been used to develop a high-yielding and heat-tolerant composite 
variety (Gupta et al. 2016). 

10.5 Conclusion 

Climate change in arid and semi-arid areas is led by heat and drought, often 
intermittent or terminal. Drought is due to soil water and vapor pressure deficits. 
The climate models predicted an increase in climate change effects in the near or 
long term. Heat and drought are distinctive stresses but often occur simultaneously 
on crops. They are studied separately or jointly to understand their effects on the 
plant better. Dry spells and heat stress are the factors constituting major agronomic 
problems that cause severe yield losses for pearl millet in arid and semi-arid areas. 
Their effects on pearl millet depend on intensity, phase of occurrence, and duration. 
However, the flowering period is more vulnerable for pearl millet. Drought and heat 
affect aerial and root development and physiological and molecular performance. 
This results in a proportional decrease in pearl millet yield. 

In general, drought survival mechanisms of plants are similar to those used to 
cope with heat stress. Escape, avoidance and tolerance mechanisms have long been 
considered important strategies for drought adaptation. Due to its drought and heat 
tolerance, pearl millet is an ideal model for studying the heat and drought resistance 
mechanism of cereal crops. The avoidance mechanism is commonly used by pearl 
millet. It responds to water deficit with leaf rolling, senescence, and stomatal 
conductance, leading to reduced water loss when water soil stock becomes limiting. 
Also, transpiration restriction under high vapor pressure deficit reducing the transpi-
ration of pearl millet is beneficial for crop yield under terminal drought. Increasing 
water uptake by root morphological and functional modifications reinforces pearl 
millet avoidance of heat and drought. Few studies on pearl millet mention osmotic 
adjustment, the leading mechanism of heat and drought tolerance. These tolerance 
mechanisms led to changes in the accumulation of compatible osmolytes. The water 
use efficiency also explains the drought tolerance of pearl millet.
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The molecular mechanisms of drought stress tolerance in pearl millet remain 
elusive. However, gene discovery is ongoing with the detection of genes associated 
with domestication, genes conferring tolerance to drought stress like gene families 
involved in the biosynthesis and transport of antioxidant and constitutive molecules. 
The role of these genes has to be precise and validated to be useful for pearl millet 
improvement. Progress in pearl millet breeding is based essentially on drought 
escape mechanisms, with the development of early flowering and maturing varieties. 
However, molecular breeding started to use QTLs to improve terminal drought-
sensitive pearl millet. Heat-tolerant varietal sources are also identified and used in 
pearl millet improvement. 

Progress is made in understanding the molecular bases of pearl millet adaptation 
to drought and heat. However, pearl millet in research is still far from other major 
cereals and remains a neglected crop. So, it is urgent to address drought and heat 
adaptation mechanisms to breed pearl millet varieties for the benefit of the dry-land 
farmers. 
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