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Abstract. In recent years, the performance of visual inertial odome-
try (VIO) based on deep learning has shown significant advantages over
traditional geometric methods. However, all existing methods estimate
each pose through visual and inertial measurements, which involves a
large amount of computational redundancy, resulting in huge time costs
and hardware damage when training and deploying on devices. In order
to maintain accuracy while reducing the number of training parame-
ters, an improved algorithm based on Visual-Selective-VIO is proposed.
To reduce the number of network parameters and maintain the train-
ing accuracy, a unique attention mechanism is designed for the visual
branch and a lightweight pose estimation module. By improving the
visual branch, we serialize the information of attention feature maps,
covering both channel and spatial dimensions. Then, we multiply these
two feature maps with the original input feature maps for adaptive fea-
ture correction. This method improves the sensitivity of the model to
channel features and enables more accurate image localization. Experi-
mental results show that our algorithm maintains accuracy with a 10%
reduction in network parameters compared to advanced VIO algorithm,
making it more suitable for training large-scale datasets and deployment
in practical applications.

Keywords: Visual inertial odometry · Gate recurrent unit · Adaptive
learning

1 Introduction

Humans can perceive their own motion in space through a variety of multimodal
fusion methods. Optic flow (vision) and proprioception (inertial sensors) are
the two most important sensory information for humans to perceive their self-
motion [1].
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Estimating six degrees of freedom (6-DOF) motion is one of the important
technical challenges faced by robots and autonomous driving. The advantages of
visual cameras, such as low cost and ease of operation, have made them widely
used in these fields. Over the past decade, with the development of visual odome-
ters and visual synchronous localization and mapping (VSLAM) [7], this chal-
lenge has gradually gained attention and exploration. These technologies pro-
vide an important background and foundation for visual based 6-DOF motion
estimation. 6-DOF motion estimation has shown impressive results. However,
while methods such as DSO [8] and ORB-SLAM [9] have achieved high pre-
cision and real-time positioning in large-scale environments, there is still much
room for improvement in positioning accuracy under non-textured environments,
image blurring, and extreme lighting conditions. In the fields of computer vision,
robotics, and autonomous driving, visual-inertial odometry based on the fusion
of visual information and inertial sensor information is currently a topic of
strong research interest [2–6]. Compared with traditional visual odometry, the
visual-inertial odometry system includes additional IMU information, which can
improve the motion tracking performance of mobile agents in non-textured envi-
ronments or under extreme lighting conditions, and provide more accurate and
robust attitude information. At the same time, the low cost, high performance,
and all-time domain advantages of camera and inertial sensor fusion are widely
used in the fields of robotics, drones, and smart phones. However, traditional
visual-inertial odometry methods (not based on deep learning) heavily rely on
manual intervention for fault case analysis and system initialization selection,
and require careful parameter tuning for various specific environments. Deploy-
ing such a system with rapid calibration in fast-moving scenarios still faces sig-
nificant challenges.

In recent years, with the continuous development and successful application
of deep learning methods in various computer vision tasks [15–17], deep learning
and data-driven VIO methods [7,10–14] have attracted widespread attention and
demonstrated strong competitiveness in some complex and specific scenarios.

Compared to traditional geometric based methods, deep learning based VIO
solutions utilize deep neural networks (DNNs) to extract higher quality features.
These solutions are trained on large-scale datasets to learn better fusion of visual
and inertial features, and to filter out abnormal sensor data. However, training
large-scale datasets requires a significant amount of time and resource costs. In
order to reduce the number of network parameters and maintain the accuracy
of training, we propose an architecture that combines GRU and CBAM.

By using this combination architecture, we can reduce the number of network
parameters while maintaining training accuracy. Experiments have shown that
our designed method can effectively improve the accuracy of training. The advan-
tage of this method is that it can better capture the correlation between images
and inertial data, and can automatically filter out interference from abnormal
sensors.

Our research results indicate that VIO solutions based on deep learning
have better performance and adaptability compared to traditional methods. By
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training on large-scale datasets, we can enable the model to learn richer fea-
ture representations and reduce training costs by optimizing the network struc-
ture. This will provide higher accuracy and efficiency for the application of VIO
technology, and provide more reliable solutions for future visual navigation and
positioning tasks.

In this paper, our main contributions are summarized as follows:

• A novel framework to reduce the parameter size of the training network is
proposed, which can improve the efficiency of deployment on devices, and
reduce computational costs. The method has been fully compared with other
advanced algorithms and provides a new solution for training VIO large-scale
datasets.

• The complementary advantages between Gate Recurrent Unit and Convolu-
tional Block Attention Module are discovered in VIO field in this article.

• Our method is extensively tested on the KITTI Odometry dataset, and
achieves good performance in terms of adaptability.

2 Relate Work

2.1 VO

The VO algorithm estimates the incremental self motion of the camera. A tra-
ditional VO algorithm, involves extracting features from an image, matching
features between the current image and subsequent images, and then calculat-
ing optical flow. Motion can be calculated using optical flow. The fast semi direct
monocular visual odometer (SVO) algorithm (Forster, Pizzoli, and Scaramuzza
2014) is an example of the most advanced VO algorithm. Its design is to directly
operate on image patches without relying on slow feature extraction, thus achiev-
ing fast and robust performance. On the contrary, it uses a probability depth
filter on the patch of the image itself. Then update the depth filter by aligning
the entire image. This algorithm runs in real-time on embedded platforms and
has high computational efficiency. However, its probability formula makes it dif-
ficult to tune, and it also requires a bootstrap process to initiate this process.
As expected, its performance largely depends on the hardware used to prevent
tracking failures - typically requiring the use of a global shutter camera above
50 fps to ensure accurate mileage estimation [24,25].

2.2 Traditional VIO Methods

In recent years, VIO has become a highly focused method that integrates camera
and IMU data into a pose estimator, with the ability to provide higher robustness
and accuracy in complex and dynamic environments. In the past few decades,
tightly coupled VIO systems can be mainly divided into two categories: filter
based methods and optimization based methods. Among the filter based meth-
ods, representative ones include MSCKF [19] and ROVIO [20]. MSCKF com-
bines geometric constraints and IMU measurements in a multi-state constrained
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extended Kalman filter (EKF), which has low computational complexity and
provides accurate attitude estimation in large scale real world environments.
ROVIO uses EKF to fuse IMU data and photometric errors, which is another
popular filter based VIO method. Among the optimization based methods, rep-
resentative ones include OKVIS [21] and VINS [5]. OKVIS is a keyframe based
VIO system, while VINS is a tightly coupled method based on nonlinear opti-
mization that achieves high precision mileage measurement by integrating pre
integrated IMU measurements and feature observations. These VIO methods
have made significant progress in combining camera and IMU data, and have
been widely applied in the field of attitude estimation. They exhibit excellent
performance and robustness in different environments and application scenarios.

2.3 Deep Learning-Based VIO

With the development of hardware, deep learning based methods have achieved
significant success in computer vision applications, including VIO. VINet [7] is
the first end-to-end trainable depth learning VIO method, which learns attitude
regression from image sequences and IMU measurements through supervised
learning. In this method, the long short memory (LSTM) network is introduced
to model the correlation of temporal motion. Subsequently, Chen et al. [10]
proposed two different masking techniques to selectively fuse visual and inertial
features. ATVIO [11] adopts an attention based fusion function and applies adap-
tive loss for attitude regression. Recent research has also proposed a self super-
vised learning framework to learn 6-DoF self motion without ground annotation
during training. Shamwell et al. [12] proposed VIOLearner, which estimates atti-
tude through a multi-level error correction view synthesis method. DeepVIO [13]
improves VIO’s attitude estimation through additional optical flow self super-
vision. In addition, Almalioglu et al. [14] demonstrated a self supervised VIO
method based on depth estimation. Mingyu Yang and Yu Chen [18] proposed an
adaptive method for disabling dynamic visual modality for visual selective VIO.
This method can effectively fuse visual and IMU information in specific environ-
ments, thereby improving the accuracy and efficiency of localization. This study
provides valuable ideas and methods for the further development of the VIO
field. These deep learning based methods have made significant progress in the
field of VIO and provide new ideas and technical means for achieving more accu-
rate and efficient attitude estimation. They are of great significance for solving
complex visual navigation and positioning problems, and are expected to provide
more reliable solutions for future robots and autonomous navigation systems.

3 Method

The main network structure proposed in this article mainly consists of Inertial
Encoder, Visual Encoder, fusion module, pose estimation module, and Deci-
sion Module. The Inertial Encoder consists of Conv1d, BatchNorm1d, and
LeakyReLU, while the Visual Encoder consists of Conv2d, CBAM, Batch-
Norm2d, and LeakyReLU, with CBAM connected after downsampling at each
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Fig. 1. Proposed architecture for pose estimation

layer. The pose estimation module consists of GRU and FC. The imu features
and visual features output by the Encoder are input into the fusion network for
fusion output, and then input into the pose estimation module to output 6-DoF.
As shown in Fig. 1. Here, this article draws inspiration from the decision network
approach proposed by Mingyu Yang, Yu Chen et al. [18] in Visual Selective VIO
and designs the Decision Module. During the training process, we use Gumbel
Softmax distribution to sample decisions from the decision module to ensure
that the entire system is end-to-end differentiable. In the reasoning process, the
decision is sampled through the Bernoulli distribution controlled by the policy
network.Once the decision module determines the use of visual modality, the
current image will be processed by a visual encoder and the obtained visual fea-
tures, along with inertial features, will be provided to the attitude estimation
module for regression GRU attitude estimation. However, if the decision module
decides to disable the visual encoder, the input of zero padding will be passed to
the GRU to ensure the continuity of the calculation process. This design enables
the system to perform flexible input processing according to the instructions of
the decision module, while maintaining the trainability and effectiveness of the
algorithm.

3.1 Attention Mechanism for the Visual Branch

In order to improve the representation ability and performance of the CNN net-
work, we introduce the Convolutional Block Attention Module(CBAM) module
in our algorithm, as shown in Fig. 2. Traditional convolutional networks only
focus on local information and often ignore global information, which leads to
poor performance. Therefore, the CBAM module can better focus on the global
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information of the monocular camera image. The channel attention module com-
presses the spatial dimensions while keeping the channel dimension unchanged,
focusing on meaningful information in the image. The spatial attention mod-
ule compresses the channel dimensions while keeping the spatial dimensions
unchanged, focusing on the position information of the target. By using these two
modules, the computational performance of the model is significantly improved
with a small increase in computational and parameter complexity. The formula
of Channelx Attention Module as (1):

Mc(F) = σ(MLP (AvgPool(F))+MLP (MaxPool(F)))
= σ(W1(W0(F

c
avg))+W1(W0(F

c
max)))

(1)

The formula of Spatial Attention Module as (2):

Ms(F) = σ(f7∗7[AvgPool(F);MaxPool(F)])

= σ(f7∗7[Fs
avg; F

s
max])

(2)

Fig. 2. Convolution Block Attention Module

3.2 Lightweight Pose Estimation Module

To address the challenge of reducing the number of parameters in a model while
maintaining its computational performance, we have introduced the Gate Recur-
rent Unit (GRU) module, as illustrated in Fig. 3. This module has fewer param-
eters, which greatly improves hardware computation and time costs, providing a
significant advantage for engineering practical applications. By incorporating a
two-layer GRU-based pose estimation Recurrent Neural Network (RNN) in our
study, we aim to enhance the accuracy and efficiency of our model.

The GRU module is a type of RNN that utilizes gating mechanisms to control
the flow of information. Specifically, it employs two gates, namely the update
gate and reset gate, which work together to regulate the memory content of the
cell. The update gate determines the proportion of new information that should
be retained in the cell state, while the reset gate controls the amount of old
information that should be discarded.

By utilizing the GRU module, we can effectively reduce the number of param-
eters in our model without sacrificing its performance. This is particularly useful
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in practical applications where computational resources are limited, and effi-
ciency is crucial. Our two-layer GRU-based pose estimation RNN leverages the
advantages of the GRU module to improve the accuracy and robustness of our
model, making it suitable for a wide range of applications, including autonomous
driving, robotics, and augmented reality.

Fig. 3. Gate Recurrent Unit

3.3 Loss Function

In our training process, we use the mean square error (MSE) loss function to
minimize the attitude estimation error, which is defined by formula (3). This loss
function plays a key role in the training process, helping us measure the accuracy
of attitude estimation. By applying MSE loss to attitude estimation error, our
goal is to reduce the model’s error in this task and improve its performance:

Lpose=
1

3(T−1)

t−1∑

t=1

(||v̂t−vt||22+α||ϕ̂t−ϕt||22) (3)

In the formula, T is the length of the training sequence. vtand ϕt represent the
ground truth translation vector and rotation vector, respectively. α is the weight
that balances the translation loss and rotation loss, and it is set to 100 according
to the previous supervised VO/VIO methods. Additionally, we apply an extra
penalty factor C to the use of each visual encoder to encourage disabling of
visual feature computation. During the training process, we compute the average
penalty and define it as the efficiency loss:

Leff =
1

T − 1

t−1∑

t

Cdt (4)
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Finally, we train the end-to-end system to comprehensively consider the sum
of attitude estimation loss and efficiency loss (Eq. 5), in order to achieve a balance
of computational efficiency while maintaining good accuracy.

L = Lpose + Leff (5)

During the training process, we not only focus on the accuracy of attitude
estimation, but also consider the computational efficiency of the system. We
combine attitude estimation loss with efficiency loss to find a balance point.
This balance point enables our system to perform efficiently while providing
accurate attitude estimation.

4 Experiment

4.1 Dataset

We tested our method on the KITTI Odometry dataset [23], which is a highly
influential VO/VIO dataset in the field. The dataset includes 22 stereo video
sequences, out of which sequences 00–10 provide ground truth trajectories, while
sequences 11–22 are used for evaluation without ground truth. To follow the
procedure described in [22], sequence 03 was excluded as it lacked raw data. We
trained our model on sequences 00, 01, 02, 04, 06, 08, and 09, and tested it on
sequences 05, 07, and 10. The dataset’s left monocular images were used for this
purpose, with the frequency of image and ground truth poses is 10 Hz and the
frequency of IMU data is 100 Hz.

4.2 Experimental Setup and Details

This architecture was implemented using PyTorch and trained on NVIDIA
3090Ti GPU. During the training process, we adjusted all images to a size of
512 × 256. The sequence length of training was set as 11. We inserted 11 frames
of IMU data between every two images, resulting in an input dimension of 6
× 11 for IMU data. The visual encoder used a pre trained FlowNet-S network
for optical flow estimation, as detailed in reference [22]. CBAM was added after
each downsampling layer, and a fully connected (FC) layer was added at the
end to generate 512 dimensional visual features. We used three one-dimensional
convolutions for the IMU data branch and one FC layer, generating 256 dimen-
sional inertial features. The attitude estimation network consisted of two GRU
layers, which has 1024 gate units. The hidden state of the last GRU layer was
used to estimate a 6-degree of freedom attitude through two layers of MLP at
every time step. The training process was divided into two major stages which
included warm-up and joint-training stage. When it was at the warm-up stage,
a random strategy was used to train the visual encoder, inertial encoder, and
attitude estimation network for 40 epoches, and the output of the visual encoder
was used with a 50% probability. The learning rate was set to 7 × 10−5 during
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this stage. When it was at the warm-up stage the joint-training stage, all end-to-
end components (including the policy network) were trained for 40 epoches with
a learning rate of 7 × 10−6, followed by another 20 epoches with a learning rate
set at 1 × 10−7. The batch size was set as 32. During the training, the visual
information of the first frame was used to ensure effective initial pose estimation.
The implementation and training settings of this architecture ensured effective
processing and feature extraction of images and IMU data, and optimized the
performance of each component through joint training to achieve accurate atti-
tude estimation.

Fig. 4. Ground truth trajectories and motion trajectories on KITTI sequences 07 and
10.

In order to thoroughly evaluate the accuracy of our odometry estimates, we
have computed the root mean square error (RMSE) of the estimated translation
and rotation vectors for the entire trajectory. This is a widely used metric for
evaluating the overall performance of odometry systems. In addition, we have
also assessed the relative translation and rotation errors, denoted by trel and
rrel, respectively. These metrics are used to evaluate the accuracy of odometry
estimates for various subsequence path lengths, as described in [23].

The RMSE metric provides a comprehensive assessment of the performance
of our odometry system by considering the error of both the translation and
rotation vectors. By computing the RMSE for the entire trajectory, we can obtain
an overall measure of the system’s accuracy. This allows us to compare the
performance of our system against other state-of-the-art methods.

In addition to the RMSE, we have also evaluated the relative translation and
rotation errors. These metrics are particularly useful when assessing the perfor-
mance of odometry systems for specific subsequence path lengths. By analyzing
the trel and rrel metrics for various subsequence path lengths, we can gain a bet-
ter understanding of the performance of our system in different scenarios. This
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helps us to identify any potential weaknesses in our system and devise strategies
to improve its accuracy and robustness.

Overall, the combination of the RMSE and relative translation and rotation
errors provides a comprehensive and detailed evaluation of the accuracy of our
odometry system. By thoroughly analyzing these metrics, we can identify areas
for improvement and further optimize our system to meet the requirements of
various practical applications.

4.3 Main Result

We evaluated our method on the KITTI dataset and compared it with the full
modal baseline, GRU-only, and CBAM-only approaches. To ensure a fair com-
parison, we trained our proposed model and the other three models using the
same optimizer and common hyperparameters, including the number of epochs
and learning rate. We tested the models on the KITTI dataset and calculated
the average usage of the visual encoder and the average root mean square error
(RMSE) of translation and rotation. Table 1 summarizes the results.

Table 1. The relative translational trel & rotationalrrel error, and visual encoder usage
of the baseline model and the overall parameter quantity of the network

Seq.05 Seq.07 Seq.10 The amount of parameters

trel rrel usage trel rrel usage trel rrel usage

Baseline 2.8431 1.0804 27.1475 2.7688 2.2087 29.4813 3.6016 1.7061 31.7765 48.454376M

Only GRU 8.2991 4.1528 22.037 11.2387 7.7288 23.5669 14.1928 6.8264 22.6856 44.518120M

Only CBAM 3.7812 1.6506 31.1707 3.280 3.2786 33.6670 3.5754 1.8408 37.1143 48.664988M

Ours 3.6371 1.6365 27.8724 3.3949 2.8249 21.929 5.6794 1.7744 29.8582 44.728732M

We conducted multiple experiments and found that with the addition of
GRU, the usage of visual encoder and total parameter count of the network
both decreased as expected. When CBAM was introduced, The incorporation
of CBAM has resulted in more comprehensive features covering the object to
be recognized, leading to improved object recognition probability. This suggests
that the attention mechanism has effectively trained the network to prioritize
key information for improved recognition. But in this paper, adding a separate
attention mechanism to the visual side can increase the dominance of visual
information, resulting in a decrease in accuracy. Therefore, the GRU was added
to suppress overly strong visual features to achieve a balanced effect. Moreover,
through comparison, we found that our method increased by 0.6–1% in terms
of relative translation/rotation error, but the overall parameter count of the
network decreased by 7%.

In Fig. 5, we present a visual explanation of the frequency and vehicle speed
used by the visual encoder on sequence 07. The description in the upper left
corner uses color coding, with darker colors indicating lower usage and lighter
colors indicating higher usage, to demonstrate the use of visual encoders in
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Fig. 5. The visualization of the learning strategy for sequence 07. The image in the
upper left corner shows the mapping of visual encoder usage, showing the local usage
of each time step. The top right corner displays a proxy vehicle speed chart. Strategic
networks tend to activate visual encoders more frequently during fast linear movements,
while reducing their use during slow movements and turns.

local areas. At the same time, in the upper right corner, we show the speed
changes of the agent at each time step, with darker colors indicating lower
speeds. Through this strategy, the system can dynamically adjust the utilization
of visual encoders based on different motion states to more effectively handle
different scenes and actions. The visualization of this learning strategy helps us
understand the decision-making process of the system under different conditions
and its adaptability to visual encoders.

Observing the diagram, it can be observed that there is a clear correlation
between the use of visual modality and vehicle speed and turning angle. When
the vehicle is moving slowly or making turns, the strategy network uses less
visual mode. This may be because the perception of environmental details during
slow driving and turning is not as critical, resulting in a relatively low level of
activation of the visual encoder. However, we observed that the visual encoder
was activated more frequently when the proxy vehicle was traveling rapidly in a
straight line.

This behavior can be explained by the inherent property of direct measure-
ment of angular velocity in IMU. Compared to angle estimation based on visual
features, using IMU to estimate turning angles is relatively easy. This is because
the angular velocity can be calculated through a simple first-order integration.
However, for the estimation of the translation process, additional IMU measure-
ment is required. Because IMU can only measure the acceleration, which is the
second derivative of the translation, the velocity constraint needs to be initial-
ized. Therefore, relying solely on IMU for estimation usually results in significant
errors when the vehicle is moving rapidly. To reduce this error, the strategy net-
work frequently uses visual modalities to provide additional information.

In summary, the visual explanation in Fig. 5 reveals the relationship between
the frequency of visual encoder usage and vehicle speed. It displays the changes
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in the activation level of visual modes under different driving states, as well
as the role of visual encoders in vehicle control. This is very valuable for a
deep understanding of the decision-making process and perception ability of
autonomous driving systems.

5 Conclusion

In this paper, a novel method is proposed to address the challenge of integrating
VIO algorithms into devices more easily. Our method reduces model parameters
by introducing GRU and improves accuracy by incorporating CBAM. Addition-
ally, the visual modality can be opportunistically disabled when visual informa-
tion is not critical, reducing computational cost and power consumption. Our
experiments demonstrate that our method provides approximately 10% reduc-
tion in parameter computation with no significant performance degradation.
Moreover, the learned policy is interpretable and exhibits scene-dependent adap-
tive behavior. Our adaptive learning strategy is model independent, so it can
be easily applied in other deep VIO systems. The universality of this strategy
enables it to quickly migrate to different systems and frameworks without requir-
ing significant modifications and adaptation. This provides researchers and devel-
opers with a flexible and efficient method to utilize adaptive learning strategies
in their own deep VIO systems, thereby improving the performance and robust-
ness of attitude estimation. This portability and ease of use make our learning
strategy a valuable tool that can promote further research and application in
the field of deep VIO.

Acknowledgement. This work was supported by the Youth Foundations of Shan-
dong Province under Grant Nos. ZR202102230323 and ZR2021QF130, the National
Natural Science Foundation of China under Grant No. 62273163, and the Key R & D
Project of Shandong Province under Grant No. 2022CXGC010503.

References

1. Fetsch, C.R., Turner, A.H., DeAngelis, G.C., Angelaki, D.E.: Dynamic reweighting
of visual and vestibular cues during self-motion perception. J. Neurosci. 29(49),
15601–15612 (2009)

2. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: Onmanifold preintegration
for real-time visual Cinertial odometry. IEEE Trans. Rob. 33(1), 1–21 (2017)

3. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based
visual Cinertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3),
314–334 (2015)

4. Li, M., Mourikis, A.I.: High-precision, consistent EKF based visual-inertial odom-
etry. Int. J. Robot. Res. 32(6), 690–711 (2013)



58 Y. Lu et al.

5. Qin, T., Li, P., Shen, S.: VINS-MONO: a robust and versatile monocular visual-
inertial state estimator. IEEE Trans. Rob. 34(4), 1004–1020 (2018)

6. Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N.: ViNet: visual-inertial
odometry as a sequence-to-sequence learning problem. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31 (2017)

7. Cadena, C., et al.: Past, present, and future of simultaneous localization and map-
ping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611–625 (2017)

9. Mur-Artal, R., Tard R©s, J.D.: Orb-slam2: an open-source slam system for monoc-
ular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

10. Chen, C., Rosa, S., Miao, Y., et al.: Selective sensor fusion for neural visual-inertial
odometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10542–10551 (2019)

11. Liu, L., Li, G., Li, T.H.: AtVio: attention guided visual-inertial odometry. In
ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 4125–4129. IEEE (2021)

12. Shamwell, E.J., Leung, S., Nothwang, W.D.: Vision-aided absolute trajectory esti-
mation using an unsupervised deep network with online error correction. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2524–2531. IEEE (2018)

13. Han, L., Lin, Y., Du, G., Lian, S.: Deepvio: self-supervised deep learning of monoc-
ular visual inertial odometry using 3D geometric constraints. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 6906–
6913. IEEE (2019)

14. Almalioglu, Yasin, et al.: SelfVIO: self-supervised deep monocular Visual CInertial
Odometry and depth estimation, pp. 119–136. Neural Networks, 150 (2022)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

16. Simonyan K, Zisserman A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

17. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region pro-
posal networks. In: Advances in Neural Information Processing Systems, vol. 28
(2015)

18. Yang, M., Chen, Y., Kim, H.S.: Efficient deep visual and inertial odometry with
adaptive visual modality selection. In: Computer Vision CECCV 2022: 17th Euro-
pean Conference, Tel Aviv, Israel, October 23–27, pp. 233–250. Proceedings, Part
XXXVIII (2022)

19. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-
aided inertial navigation. In: Proceedings 2007 IEEE International Conference on
Robotics and Automation, pp. 3565–3572. IEEE (2007)

20. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry
using a direct EKF-based approach. In: 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 298–304. IEEE (2015)

21. Leutenegger, S., Furgale, P., Rabaud, V., et al.: Keyframe-based visual-inertial
slam using nonlinear optimization. In: Proceedings of Robotis Science and Systems
(RSS) 2013 (2013)

22. Chen, C., et al.: Selective sensor fusion for neural visual-inertial odometry. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 10542–10551 (2019)

http://arxiv.org/abs/1409.1556


A Lightweight Sensor Fusion for Neural Visual Inertial Odometry 59

23. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3354–3361. IEEE (2012)

24. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: IMU preintegration on man-
ifold for efficient visual-inertial maximum-a-posteriori estimation. In: Robotics:
Science and Systems XI (2015)

25. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual
odometry. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 15–22. IEEE (2014)


	A Lightweight Sensor Fusion for Neural Visual Inertial Odometry
	1 Introduction
	2 Relate Work
	2.1 VO
	2.2 Traditional VIO Methods
	2.3 Deep Learning-Based VIO

	3 Method
	3.1 Attention Mechanism for the Visual Branch
	3.2 Lightweight Pose Estimation Module
	3.3 Loss Function

	4 Experiment
	4.1 Dataset
	4.2 Experimental Setup and Details
	4.3 Main Result

	5 Conclusion
	References




