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Abstract. Fault diagnosis of rolling bearings is crucial in areas related to rotating
machinery and equipment applications. If faults are detected in time at an early
stage, it can guarantee the safe and effective operation of the equipment, saving
valuable time and high maintenance costs. Traditional fault diagnosis techniques
have achieved remarkable results in rolling bearing fault detection, but they rely
heavily on expert knowledge to extract fault features.Manual extraction of features
in the face of massive industrial data exhibits poor timeliness. In recent years, with
the development and wide application of deep learning, data-driven mechanical
fault diagnosis methods are becoming a hot topic of discussion among related
researchers. Among them, Convolutional Neural Network (CNN) is an effective
deep learning method. In this study, a newmethod of multiscale redundant second
generation wavelet kernel-driven convolutional neural network for rolling bearing
fault diagnosis is proposed, calledRW-Net. By performing two layers of redundant
second generation wavelet decomposition on the input time-domain signal in the
shallow layer of the network, the network can automatically extract fault features
with rich information. The proposedmethod is validated by CaseWestern Reserve
University (CWRU) bearing test data, and the average fault identification accuracy
is 99.4%, which verifies the feasibility and effectiveness of the proposed method.

Keywords: Deep learning · CNN · Redundant second generation wavelet · Fault
diagnosis · Rolling bearing

1 Introduction

With the rapid development of modern industry, mechanical equipment has become the
cornerstone of promoting productivity and facilitating economic growth [1, 2]. Among
them, rolling bearings are widely used in various mechanical equipment, as key compo-
nents of rotating mechanical equipment, in the mechanical transmission process has the
role of load-bearing weight and reducing friction. Rolling bearings are prone to pitting,
spalling, cracks, and other local failures under harsh working conditions such as high
load, strong impact, and high temperature. The local failure of rolling bearings is one of
the main causes of rotating machinery faults. If not found in time, it will have an impact
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on the safe operation of mechanical equipment, and even cause serious economic losses
and personal casualties [3]. Therefore, the research of accurate and effective rolling bear-
ing fault diagnosis and health monitoring methods is of great significance to reducing
downtime, preventing safety accidents, and guaranteeing the safe and effective operation
of equipment.

Generally, mechanical fault diagnosis techniques are divided into three parts: signal
acquisition, feature extraction, and fault identification. Among them, the latter two of
these steps are very important and greatly influence the accuracy of the final diagno-
sis [4]. Usually, the vibration signals of rolling bearings are complex and non-smooth
with high background noise. It is a great challenge to effectively extract the represen-
tative fault features in the vibration signal for fault diagnosis [5]. Several researchers
have achieved notable results in the field of rotating machinery fault diagnosis using
signal processing-related techniques. Li et al. use the variational modal decomposition
(EMD) method for feature extraction of fault signals. The authors solved the problem
of information loss and over-decomposition and verified the effectiveness of the pro-
posed method using high-speed locomotive wheelset bearings [6]. Chen et al. reveal the
essence of wavelet transform inner product matching in rotating machinery fault diag-
nosis through simulation and field test experiments [7]. Ming et al. propose the spectral
auto-correlation analysis method and applied it to the feature extraction of early faint
faults of rolling bearings [8]. However, these traditional methods rely heavily on a priori
knowledge and expert knowledge. This limits the wide usage of traditional fault diag-
nosis methods. Compared to traditional signal processing techniques, intelligent fault
diagnosis is a new development in mechanical fault detection technology [9].

The development of intelligent machinery fault diagnosis has benefited from the
rapid development of sensing technology, computer technology, and data storage tech-
nology in recent years. These technologies provide the technology for data acquisition,
transmission, and storage in manufacturing systems [10, 11]. For the intelligent diag-
nosis model based on a neural network, its network structure contains large amount of
learnable parameters. In order to fully training the network parameters, it requires a lot of
engineering data. Most of the actual engineering data are generated during the fault-free
period. Only a small fraction of the fault data is generated when a machine breaks down,
and the data used for neural network training is artificially processed, and it contains a
dataset corresponding to the real labels. Manual processing of data is time-consuming
and laborious. Based on the above, how to obtain higher accuracy with relatively less
training data is a hot topic worthy of study.

When a rolling bearing malfunctions during operation, it can cause the dynamic sig-
nal to contain non-stationary components.Wavelet transformswith good time-frequency
multi-resolution characteristics is a powerful tool for dynamic signal analysis. However,
in engineering practice, how to select the appropriate wavelet basis function from the
library of wavelet basis functions to match the signal to be analyzed becomes a difficult
problem. Hence, the second generation wavelet transform was born, which constructs
predictors and updaters to match the signal to be analyzed adaptively by lifting methods.
Nevertheless, the second generation wavelet transform has a splitting operation, which
makes the number of points of the approximation signal decrease to half for each second
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generation wavelet decomposition performed on the signal. As the number of decom-
positions increases, the approximation signal contains less and less information, the
signal is also prone to distortion. The redundant second generation wavelet (i.e. RSGW)
transform overcomes this shortcoming. There is no sampling operation in the signal
decomposition process. The length of the approximation and detail signals are the same
as the original signal, and the information in the decomposed signal is redundant [12,
13]. Gao et al. use RSGW for signal noise reduction to improve the SNR [14]. Jiang et al.
interpolate the initial prediction operator and updating operator of the RSGW to obtain
the redundant prediction operator and updating operator corresponding to the number of
decomposition layers, and the experiment shows that the method can accurately extract
the signal features [15].

Inspired by this, this paper combines RSGWwith convolution layers to form a deep
CNN (i.e., RW-Net) driven by multiscale RSGW convolution kernels. The first layer of
the network is the Conv1, in which multiscale RSGW transform is performed. The more
layers of RSGWdecomposition, the clearer the feature extraction and the less noise. The
kernel of this convolution layer is the RSGW kernel, which is obtained by interpolating
the second generationwavelets to complement the zeros. Therefore, the deepCNNdriven
by multiscale RSGW convolution kernels has the following advantages: 1) Multiple
RSGW transform can be performed within the Conv1, and the decomposition result is
always the same length as the original signal, which is suitable for engineering data with
small sample lengths. 2) The RSGW transform realizes the translational invariance of
the signal and can extract and retain richer dynamic fault features, which can effectively
enhance the overall fault diagnosis performance of RW-Net. The contributions of this
paper are as follows:

1) A new rolling bearing fault diagnosis method is proposed.
2) RW-Net uses the collected time series as input to achieve end-to-end fault identi-

fication without expert knowledge, reducing the complexity and timeliness of fault
diagnosis.

3) The RW-Net model is developed and applied to the engineering case to verify the
validity of the model in comparison with classical and popular networks. The RSGW
layers proposed in this model have universal applicability and can be applied to
almost any network. In addition, compared with the traditional convolutional neural
network, RW-Net has only two training parameters, which saves computing storage
space and improves the convergence speed of the network training.

The rest of the paper is organized as follows. Section 2 introduces the theoretical
foundation knowledge of RSGW transform and convolutional neural networks. Section 3
explains the design of wavelet kernels and the construction of RSGW layers. Section 4
introduces the effectiveness and result analysis of RW-Net in the experiment. Section 5
is the conclusion.
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2 Theoretical Foundation

2.1 RSGW Transform

In the RSGW transform algorithm, there are only two steps, prediction and updating, and
the splitting operation is removed compared to the second generation wavelet transform.
The RSGWperforms a predict-and-update operation on the input signal s

∧(k). The RSGW
transform is schematically shown in Fig. 1.

Fig. 1. Schematic diagram of RSGW transform

Prediction: The redundant predictor after interpolation zero padding is used to predict
the signal, and the prediction error is defined as the detail signal of theRSGW transforms:
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Updating: Based on the detail signal, the redundant updater U [k] after interpolation
zero padding is used to update the detail signal, and the updated signal s

∧(k+1)
i is defined

as the approximation signal of the RSGW:
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2.2 Fundamental Theory of CNN

Convolutional neural networks contain two parts: feature extraction and feature selec-
tion, where the convolution, activation, and pooling layers perform feature extraction
on the input signal and the fully connected layer filter the extracted features. The back-
propagation algorithm calculates the gradient values of the variable parameters of the
network and the adaptive optimization function to update the mode parameters so that
the output of the network corresponds to the true labels of the input signals. As the input
signal passes through the convolution layer, the filters (also called convolution kernels)
in the convolution layer progressively scan the input matrix in specific steps to obtain a
matrix of smaller size and containing fault features. The value of the convolution kernels
determines the feature type extracted by the convolution layers. During the convolution
operation, the convolution kernels are always the same batch, which is what makes the
convolution layer different from the normal network layers. Therefore, one of the most
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important features of the convolution layer is weight sharing, which reduces the trainable
parameters. In addition, the output channels of the redundant second generation wavelet
convolution layer mentioned in this paper are equal to the number of redundant second
generation wavelet convolution kernels. The calculation of the convolution layer is as
follows [16]:

Y l(i,j) = σ l
i ∗ X l(j) =

W−1∑

j′=0

σ
l(j′)
i X l(j+j′). (3)

whereσ
l(j′)
i is the j′ thweight on the i th convolution kernel of the l th layer.X l

(
rj

)

denotes
the j th convolved region of the l th layer.W indicates thewidth of the convolution kernel.
Y l(i,j) denotes the result of the i th convolution kernel in the layer l with the convolved
region on the input signal X .

The activation layer is a nonlinear mapping of the values output from the convolu-
tion layer to a specific interval using an activation function. When the excitation input
reaches a certain strength, the neuron is activated. Since the convolution operations in
the convolution layer are linear, the complexity of the neural network and its ability to fit
the target are greatly reduced if there is no activation function for nonlinear operations.

The role of the pooling layer is to extract higher dimensional fault features through
pooling operations, thus reducing the computation and making the data representation
more obvious. The common pooling operations are maximum pooling and average pool-
ing [17]. Maximum pooling is defined as representing the maximum value of the pooled
region in the data as this region, while average pooling is defined as representing the
average value of the pooled region in the data as this region.

Fully connected layers are structures inwhich neurons in this layer are connected two
by two with neurons in the upper layer, but not between neurons in this layer. The role of
the fully connected layer is to enhance the nonlinear mapping capability of the network,
to limit the size of the network, and to classify the features extracted by the convolutional
and pooling layers. Converts the pooling layer output data into a one-dimensional vector,
which is then used as input to the fully connected layers. The output length of the fully
connected layer is the number of labels recognized by the neural network.

3 The Proposed Method

As shown in Fig. 2, the RSGW convolution layer will be explained according to the
convolution calculation method and the construction of the convolution kernel. The
convolution calculation method is the RSGW transform in signal processing theory. The
construction of the convolution kernel will be constrained and designed according to the
vanishing wavelet theory. The construction of the convolution kernel will be constrained
and designed according to the vanishing moment in wavelet theory. The purpose of all
these designs is to combine RSGW with convolutional neural networks to form a new
deep CNN driven by RSGW.
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Fig. 2. Design of RSGW convolution layer

3.1 Design of RSGW Convolution Kernel

The Construction of the Initial Predictor P and Updater U
Suppose that the coefficient of the predictor P with length N is P =
[p1, p2, · · · , pN/2, pN/2+1, · · · , pN ], and the coefficient of the updater U with length
Ñ is U = [u1, u2, · · · , uÑ ]. Claypoole uses the equivalent filter method to obtain the
prediction operator P and updater U , that is, the specific coefficients of P and U can be
obtained by solving the linear equations [18]. If the order of the prediction polynomial
of constraint P is M . For a linear predictor P with a length of N , only the polynomial
M < N order of predictor P is required to be constrained, and the remaining N − M
degrees of freedom will be updated by the back-propagation algorithm to adapt to the
signal characteristics. The relationship between RSGW equivalent high-pass filter H̃
and prediction operator P is

H̃ = [−p1 0 −p2 0 · · · −pN/2 1 −pN/2+1 0 · · · 0 −pN
]
. (4)

The specific expression of the constraint predictor coefficient polynomial of order
M is

N−1∑

k=−N+1

kqH̃k = 0, 0 � q < M . (5)
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The relationship between RSGW reconstruction equivalent high-pass filter H and
predictor P and updater U is

H2l−1 =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
N∑

m=1
PsmUsl−m+1 l = (N + Ñ )/2

N∑

m=1
PsmUsl−m+1 l �= (N + Ñ )/2

.

H2l+N−2 = Usl l = 1, 2, . . . , Ñ

(6)

Equation (6) can be simplified as follows:

ṼH = 0. (7)

where Ṽ is a matrix of size Ñ ×
[
2 ×

(
N + Ñ

)
− 1

]
, whose elements are represented

as follows:

[Ṽ ]m,n = nm. (8)

where n = −N − Ñ +2,−N − Ñ +3, · · · ,N + Ñ −3,N + Ñ −2,m = 0, 1, · · · , Ñ −1.
Since the coefficientP is determined by the order of the constraint coefficient polynomial
and the adaptive signal, Eq. (7) is a linear system of equations containing only the
coefficients of U , and then U can be determined by the least square method. Duan
proved through experiments that when N − M ≤ 2 can make the predictor adapts
to the signal best [12]. Therefore, the order of the predictor coefficient polynomial of
the RSGW selected in this paper is N − 2, and the remaining degrees of freedom are
determined by the neural network by fitting the input signal.

The Construction of Redundant Predictor P[k] and Updater U [k]

Based on the initial predictor, the coefficient p[k]r of the k th RSGW decomposition
predictor is calculated as follows 15:

When r − 1 can be divisible by 2k ,

p[k]r = p(r−1)/2k . (9)

When r − 1 can’t be divisible by 2k ,

p[k]r = 0. (10)

Then we can get the redundant predictor P[k] = {
pkr , r = 1, 2, · · · , 2rN

}
in the

decomposition of the layer k.
Based on the initial updater U , the coefficient u[k]l of the redundant updater

decomposed by layer k is designed as follows:
When l − 1 can be divisible by 2k ,

u[k]l = u(l−1)/2k . (11)
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When l − 1 can’t be divisible by 2k ,

u[k]l = 0. (12)

Then the redundant updater U [k] =
{
ukl , l = 1, 2, · · · , 2l Ñ

}
of the k th layer

decomposition can be obtained.

3.2 Deep CNN Driven by Multiscale RSGW Kernels

The main structure of RW-Net includes an RSGW convolution layer (Conv1), 1D con-
volution layers, adaptive maximum pooling layers, and fully connected layers, as shown
in Fig. 3. Two RSGW decompositions are performed in the Conv1, which can better
extract the input signal features without losing the useful information in the signal. The
RSGWconvolution kernel is a, and then the initial prediction operator b and the updating
operator c are obtained according to the wavelet vanishing moment and the equivalent
filter method, and their lengths are 10. The longer the length of P and U , the more the
waveform changes of the RSGW, and the stronger the ability of the RSGW to adapt to
the signal. However, the longer the length P and U will increase the training time of the
network, which is considered as 10. When performing RSGW transform, the initial P
and U will be interpolated according to the number of scale transformations to increase
the length. The length relationship between the redundant prediction operator P and the
updating operator U of the k th scale transformation is shown in Eq. (13). Therefore,
the length of the redundant prediction operator P[1] and updating operator U [1] of the
first RSGW transform is 20, and the second is 40. Subsequently, too many RSGW con-
volution kernels will increase the training time of the network, and too few will affect

Fig. 3. RW-Net network structure diagram
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the network performance. The number of kernels in Conv1 is set to 6.

P[k] = 2kP
U [k] = 2kU

. (13)

The specific parameters of RW-Net are shown in Table 1.

Table 1. Specific parameters of RW-Net

Network layers Kernel size Channels Output Padding Activation function

Conv1 2 6 1*6*1024 Yes Tanh

Conv2 5 16 1*16*1020 No Tanh

Conv3 25 32 1*32*996 No Tanh

Pooling – 32 1*32*32 – –

Linear1 – – 1*1*120 – Tanh

Linear2 – – 1*1*72 – Tanh

Linear3 – – m – Softmax

4 Experimental Verification

4.1 Case1: CWRU

4.1.1 Dataset Description

In this paper, the bearing fault dataset of CWRU is selected as the experimental object
[19]. The motor speed is 1730 RPM and the sampling frequency is 12000 Hz. The
bearing label categories to be identified are shown in Table 2. There are 10 kinds of
labels, including 0.007, 0.014, and 0.021 inch fault diameter bearing with inner ring,
roller, and outer ring fault and healthy bearing. The total number of samples in the
bearing signal dataset is 2000, and the training and test samples are divided in a ratio of
3:1. That is, the training data sample is 1500, and the test data sample is 500. In order
to reflect the advantages of this method for short sample length (fewer sample points),
the input signal length is 512.

4.1.2 Selection of Activation Function

The activation function is very important for neural network nonlinearity and diagnostic
ability. The ReLU activation function allows eigenvalues greater than zero in the signal
to pass through, and values less than zero are treated as zero, while the Tanh activation
function can map eigenvalues to the interval [−1, 1]. In order to explore the influence of
ReLU and Tanh activation functions on the diagnostic performance of RW-Net, RW-Net
with different activation functions is utilized to do comparative experiments on CWRU
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Table 2. Label information

0 Inch 0.007 Inch 0.014 Inch 0.021 Inch Motor speed

Normal Label1 – – – 1797 RPM

Inner ring – Label2 Label3 Label4

Roller – Label5 Label6 Label7

Outer ring – Label8 Label9 Label

bearing fault dataset. In order to guarantee the objectivity of the results, each network is
trained 5 times. Figure 4 and Table 3 show the influence of ReLU and Tanh activation
functions on the accuracy of the network. It can be seen from Fig. 4 that the Tanh
activation function can make the RW-Net diagnostic performance better than the ReLU
activation function, and its maximum, minimum, and average accuracy are the highest.
Table 3 records the specific values of the correct rate 99.6%, 99.2% and 99.4%. In this
paper, Tanh is selected as the activation function of RW-Net.
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Fig. 4. The effect of ReLU and Tanh activation functions on the accuracy of RW-Net

Table 3. The statistical results of the test under different activation functions

Activation function Maximum accuracy Minimum accuracy Average accuracy

Tanh 99.6% 99.2% 99.40%

ReLU 99.0% 98.6% 98.84%
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4.1.3 Experimental Contrast Analyses

In order to explore the influence of the number of RSGW transform in the Conv1 on
the overall performance of RW-Net, this paper will perform an RSGW transform in the
convolution layer, called RW-Net1. Figure 5 and Fig. 6 show the change in loss rate and
accuracy rate of RW-Net and RW-Net1 during training on the CWRU dataset. It can be
seen that the loss rate of RW-Net in training decreases faster than that of RW-Net1, and
the loss has been close to 0 as the number of iterations increases. In terms of accuracy,
RW-Net can also reach 100% quickly in training and remain stable. All these indicate
that RW-Net is better than RW-Net1 in instability and convergence in training.
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Fig. 5. The loss rate of RW-Net and RW-Net1 during training

A
cc

u
ra

cy

Epoch

Fig. 6. The accuracy of RW-Net and RW-Net1 during training

Compared with the current mainstream intelligent diagnosis models LeNet1D and
MLP. Figure 7 and Table 4 show the test results of RW-Net and comparison methods
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on the CWRU bearing dataset, respectively. It can be seen that RW-Net has achieved
the best results. Although RW-Net1 also has good diagnostic ability on this dataset, the
diagnostic accuracy is always less than RW-Net. By analyzing the experimental results,
it can be concluded that: 1) RW-Net and RW-Net1 have better recognition ability for
CWRU bearing dataset than comparison methods; 2) Two RSGW transforms in the
Conv1 can improve the network diagnostic ability more than only once.
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Fig. 7. The accuracy of RW-Net and comparison methods on the test set of CWRU

Table 4. The accuracy of RW-Net and comparison methods on the test set of CWRU

Network models Maximum accuracy Minimum accuracy Average accuracy

RW-Net 99.6% 99.2% 99.40%

RW-Net1 99.5% 97.8% 98.70%

LENet1D 97.2% 94.2% 96.07%

MLP 68.8% 67.5% 68.27%

4.2 Case2: JNU

4.2.1 Dataset Description

Jiangnan University (JNU) bearing datasets were provided by Jiangnan University [20,
21] The JNU datasets are composed of three bearing vibration datasets with different
rotating speeds, and the data acquisition frequency is 50 kHz. In this experiment, the
1000 RPM bearing fault dataset is adopted. Its vibration signals are shown in Fig. 8.
This dataset contains one health state and three fault patterns, including inner ring fault,
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outer ring fault and rolling element fault. Each category of health condition takes 400
samples, and each sample contains 512 data points. The dataset contains a total of 1200
samples. The samples corresponding to each label were assigned to the training and test
sets in a ratio of 3:1, respectively.

Fig. 8. (a) Health state (b) Inner ring (c) Outer ring (d) Rolling element

4.2.2 Experimental Contrast Analyses

Likewise, the experiment is used as a comparison with the current mainstream intelligent
diagnostic models LeNet1D and MLP. Figure 9 and Table 5 show the test results of
RW-Net and comparison methods on the CWRU bearing dataset, respectively. It can
be seen that RW-Net has achieved the best results. The experiments demonstrate not
only the superior fault identification capability of RW-Net, but also its robustness and
generalization capability.
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Fig. 9. The accuracy of RW-Net and comparison methods on the test set of JNU

Table 5. The accuracy of RW-Net and comparison methods on the test set of JNU

Network models Maximum accuracy Minimum accuracy Average accuracy

RW-Net 98.5% 98.0% 98.32%

RW-Net1 97.5% 97.3% 97.42%

LENet1D 97.2% 94.2% 96.07%

MLP 68.8% 67.5% 68.27%

5 Conclusion

This paper proposes an improved CNN based on RSGW theories, called RW-Net. The
shallow layer of RW-Net performs RSGW transform on time-domain signals. This layer
inherits the advantages of RSGW in signal processing to extract signal features. RW-
Net takes time domain signal as input. The RSGW layers are used as a multi-channel
filter to simultaneously extract multiple fault features, and then the features extracted by
the RSGW layers are fused as the input of the pooling layer. By enhancing the feature
extraction ability of the shallow layer of the proposed method, the fault features can be
accurately extracted by using small sample datasets, and the network training parameters
are reduced. In this paper, the feasibility of RW-Net is verified by the CWRU and JNU
bearing fault datasets. From the analysis of the experimental results, it can be seen that
the average accuracy of RW-Net reaches 99.4% and 98.32%, which is better than other
comparison methods. The feasibility and effectiveness of the proposed method are fully
illustrated.
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In this paper, we use the time-domain signal as the input signal of the network and
each labeled data segment is independent of each other when segmenting the data set,
i.e., the correlation between data segments is not considered. We think the correlation
between data segments can be the next research direction. The graph convolutional neural
network may be a good method.
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