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Abstract. The accurate analysis of a user’s natural language state-
ment, including their potential intentions and corresponding slot tags,
is crucial for cognitive intelligence services. In real-world applications,
a user’s statement often contains multiple intentions, and most exist-
ing approaches either mainly focus on the single-intent research prob-
lems or utilizes an overall encoder directly to capture the relationship
between intents and slot tags, which ignore the explicit slot-intent map-
ping relation. In this paper, we propose a novel Attention-based Slot-
Intent Mapping Method (ASIM) for joint multi-intent detection and slot
filling task. The ASIM model not only models the correlation among
sequence tags while considering the mutual influence between two tasks
but also maps specific intents to each semantic slot. The ASIM model can
balance multi-intent knowledge to guide slot filling and further increase
the interaction between the two tasks. Experimental results on the Mix-
ATIS dataset demonstrate that our ASIM model achieves substantial
improvement and state-of-the-art performance.

Keywords: intent detection · slot filling · multi-intent · deep
learning · attention

1 Introduction

The accurate analysis of the potential intentions in a user’s natural language
statement, as well as the corresponding slot tags that correspond to these inten-
tions, is very important for cognitive intelligence services. Intent detection and
slot filling are two core components of the cognitive service system. Intent detec-
tion aims to output the real intent of the user and solve the problem of what
the user wants to do. Slot filling is to mark the important words in user input,
which is to extract the details needed in service provision. Take the statement
“Help me book a flight ticket from Beijing to New York.” as an example, inten-
tion detection can be regarded as the text classification problem, which needs to
output a user’s real intention, i.e., “booking air tickets”. Slot filling task can be
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thought of as a sequence labeling problem, requiring an output of a sequence,
e.g., “O, O, O, O, O, B-from location, O, B-to location I-to location”.

In past research work, intent detection and slot-filling tasks were normally
considered as independent tasks, but later researchers [2] considered that there
was a correlation between them since the two tasks always appear together in
the same conversation and have a mutual influence. Although many joint models
have achieved good performance, these methods are based on the assumption
that user utterance contains only simple single intent. However, in a real sce-
nario, this is not the case. According to Gangadharaiah R et al. [2], 52% of user
sentences in Amazon’s customer service system involve multiple intents. Hence,
in the process of real utterance, users will be faced with changing intent halfway
or involving multiple intents in one sentence. For example, “Play jay Chou’s
latest single. No, just play the music video for the new song”. In this case, the
user suddenly changed his initial request. Or the user may have more than one
demand, for example, “How much is the air ticket to Beijing during the National
Day holiday, and tell me the recent weather in Beijing.” Therefore, it is neces-
sary to accurately identify all the intents in the user’s utterance, which is very
important work to provide information for the subsequent services.

In the early time, multi-intent detection is regarded as a text multi-label
classification problem. However, the most multi-label classifier can work with
long text, whereas the multi-intention detection task always works with short
user utterances. Compared with single-intent detection, in a short text, there
exist three main problems in multi-intent detection: 1. How to find out that users’
utterances have multiple intents, and what is the difference between multi-intent
utterances and single-intent utterances; 2. How to find out the number of intents
hidden in the utterances after confirming that the utterance is multi-intent; 3.
How to accurately identify all user intents.

In addition to the above problems, the multi-intent model still presents a
unique challenge: how to effectively incorporate multiple intents knowledge to
guide the slot prediction, since each word in a sentence has a different rele-
vance for a different intent. Reference [3] proposed a slot gate mechanism, which
flows intent information to the slot-filling task. Reference [4] proposed a new
self-attention mechanism model, which enhanced the gate mechanism through
intent information. The model used the intent information as the gate state
information of the slot. Despite the promising performance, most of the previ-
ous works directly use multi-intent knowledge to predict the tags appearing of
each slot word in a sentence, which would introduce part of noise information.
Take the utterance “How much is the air ticket from New York to Beijing during
the National Day holiday and tell me the recent weather in Beijing.” for example
(Fig. 1), if multiple intents information is directly used to guide slot filling of all
words in a sentence, irrelevant information will be introduced and lead to poor
performance. As shown in Fig. 1 (a), for the word “New” and “York”, the intent
“GetWeather” is almost irrelevant. Obviously, using the same intent knowledge
to predict all slot tags may bring ambiguity. Therefore, for different words in one
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sentence, how to introduce more detailed intent information is a crucial problem
of intent detection and slot filling model.

Fig. 1. Gangadharaiah et al. [2]: Utterance-level intent is shared by all the slots(a) vs
ASIM: Word-level intent-slot mapping information is used by each slot(b)

In this paper, a novel Attention-based Slot-Intent Mapping Method (ASIM)
is proposed, which not only can model the correlation among sequence tags while
considering the mutual influence between two tasks, but also can map specific
intent to each semantic slot. Unlike most existing models that implicitly share
information between intent detection and slot filling through shared encoders,
our ASIM model adopts respective encoders for intent detection and slot filling,
which achieves the first information sharing by exchanging hidden state informa-
tion between the two task encoders. More than that, our ASIM model constructs
another information interaction in the decoder stage, where the importance coef-
ficient of each word and intent information is calculated through the attention
mechanism, which refines the guidance effect of multi-intent information on word
slot filling.

We conclude the main contributions of this paper:

– the proposed ASIM model will explore the multi-intent detection task and slot
filling task together, which can construct two information-sharing mechanisms
in the encoder and decoder module to capture the correlation between intent
detection and slot filling as well as analyze users’ slot-intent mapping on the
word level.

– We use an attention mechanism to balance the degree of closeness between
multiple intents and words to guide slot filling in the decoder stage.

– we conducted experiments on MixATIS data-set to validate our hypothesis
and the results illustrate that our ASIM model achieved better performance
than other intent detection model.

The rest of the paper is organized as follows. In Sect. 2, several related liter-
ature will be introduced including intent detection, slot filling, as well as joint
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model. Section 3 mainly discuss more details about ASIM model. In Sect. 4, we
conduct the experiments to verify the performance of ASIM model from different
perspectives. Finally, we conclude our work and give the further plan.

2 Related Works

In this section, several related literature will be introduced including intent detec-
tion, slot filling, as well as joint model.

2.1 Intent Detection Tasks

Intent detection is always seen as a text classification problem. Therefore, most of
the traditional classification methods can be used for intent detection, including
Naive Bayes model [8], support vector machine(SVM) [9] and logistic regres-
sion [10]. Traditional methods can be divided into rule-based template semantic
recognition methods [11] and statistics-based classification algorithms [12]. Even
without a lot of training data, the rule-based template methods still achieve good
results. However, the template needs to be formulated by experts, and the tem-
plate reconstruction requires a lot of economic cost and time cost to adopt this
method. The classification algorithms based on statistics need to extract the key
information of corpus, so these methods need a lot of training data. Therefore,
traditional intent detection methods cannot meet higher requirements. With the
great success of artificial neural networks in other fields, intent detection methods
based on deep neural networks have become popular. With the success of convo-
lutional neural network (CNN) in the field of computer vision, researchers [13]
employ CNN network to determinate the 5-gram features of sentence, and max-
imum pooling was applied to generate the feature embedding vector of words.
As in [14], Recurrent Neural Network (RNN) and Long Short Term Memory
(LSTM) are applied to intent detection according to the sequential nature of
user utterances.

2.2 Slot Filling Tasks

Slot filling task can be formulated as a sequence labeling problem. The previous
methods to solve the slot filling problem are mainly divided into three categories.

1) Dictionary approach [15]. This method searches for dictionary key-
words mainly through string matching. Since a large number of corpus is needed
to construct the dataset, this method consumes manpower and faces the problem
of data scarcity.

2) Rule-based approach [16–18]. This method marks keywords in user
utterance by rule matching. Because domain experts are required to make rules,
so the costs are high. In addition, scalability is poor. With the gradual increase
of user’s requirements, experts are needed to constantly improve the existing
rules, and rule conflicts are easy to occur.
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3) Traditional machine learning method [19–22]. This method takes
artificially labeled corpus as the training set and optimizes model parameters
through multiple training to minimize the target loss function. Not only a large
number of labeled training data are required, but also features are manually
constructed.

With the high-speed development of deep neural network [23,24]. many AI
algorithms have also been applied to slot filling, such as recurrent neural net-
work (RNN), convolutional neural network (CNN) and various combinations of
traditional machine learning methods [25].

2.3 Joint Model

Considering intent-slot relation and information-sharing mechanism between
intent and slot tasks, the researchers began to train the two tasks together. The
joint model is not only take advantage of information interaction between two
tasks, but also simplifies the training process by training only one model. The
early research literature in this field is the CNN+Tri-CRF method [13], which
utilizes CNN networks as a shared encoder to integrate the intent detection and
slot filling tasks, and then employs a CRF layer to handle dependencies among
slot tags. Guo et al. [27] proposed a joint training methods of the recursive neural
network (RecNNs) for intent detection and slot filling tasks. Zhang et al. [28,29]
employ a Gated recurrent unit (GRU) to learn the representation of each time
step in RNN and predict the label of each slot tags. Liu et al. [1] proposed intro-
ducing attention to the alignment-based RNN models which can add additional
information to the intent detection and slot filling tasks. Goo ea al. [3] utilize
a slot gate structure to learn the relationship between intent and slot attention
vectors and achieve better semantic segment results by the global optimization.
Wang et al. [5] employ a Bi-model based RNN network structures to handle
the cross-impact between the intent detection and slot filling tasks. The key
points of Bi-model are two inter-connected bidirectional LSTMs structure and
two different cost functions in an asynchronous training. Qin et al. [26,30] pro-
pose two attention mechanism-based models that adopt Stack Propagation which
can directly employ the intention embedding as input for slot filling, and capture
the semantic information of intent. In recent years, pre-trained language models
[31–33] have significantly enhanced the performance of many natural language
processing (NLP) applications. Chen ta al. [34] investigates BERT pre-trained
model to address the poor generalization capability on intent detection and slot
filling. Zhang et al. [35] design a effective encoder-decoder framework to improve
the performance of intent detection and slot filling tasks.

3 Methodology

In this part, We will begin by defining the joint intent detection and slot filling
tasks. Then, we will give the detail of the Attention-based Slot-Intent Mapping
model (ASIM), which calculates the correlation between multiple intents and
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the current word, and then uses the information of multiple intents to guide
slot filling. The model we proposed, increases the mutual influence between two
tasks.

3.1 Problem Definition

The input sequence is defined as x = (x1, x2, x3, ...xn). Intent detection is treated
as a classification problem, and final output is intent label y1 = (y1

1 , y
1
2 , y

1
3 , ...y

1
m),

where m is the number of the intents the input sequence contains. Slot fill-
ing is treated as a sequence labeling problem, and the final output is y2 =
(y2

1 , y
2
2 , y

2
3 , ...y

2
n).

3.2 ASIM Model

Figure 2 illustrates the network structure of the ASIM model, in which intent
detection and slot filling use different encoders and decoders respectively. The
left part of the network is designed for intent detection and the right part is
designed for slot filling. In the bottom part, the two encoders read and encode
the input sentence. Then the encoded information is passed to the decoder for
outputting the predicted intents and slot tags. The subsequent sentences give
the details of how the encoders and decoders operate for intent detection and
slot filling.

3.3 Encoder

BiLSTM. Considering a specific relationship between intent detection and slot
filling, most studies use shared encoders to share information between intent
detection and slot filling tasks. However, these approaches are not only poorly
interpretable but also not obvious for intent detection and slot filling informa-
tion flow. Hence, to explicitly describe the interaction between intent detection
and slot filling, the proposed ASIM uses two encoders corresponding to intent
detection and slot filling, respectively.

BiLSTM consists of two LSTM units. For the input sequence x =

(x1, x2, x3, ...xn), BiLSTM obtains the forward hidden state vector
→
hi =

(
→
hi
1,

→
hi
2, ...,

→
hi
n) from x1 to xn, and obtains the backward hidden state vector

←
hi =

(
←
hi
1,

←
hi
2, ...,

←
hi
n) from xn to x1. The final hidden state vector Hi = (hi

1, h
i
2, ..., h

i
n)

is obtained by concatenating forward hidden state vector and backward hidden
state vector, where i = 1 corresponds to the task of intent detection and i = 2
corresponds to slot filling.

Attention Mechanism. Generally, sentences with multiple intentions are
longer than those with a single intent. As the length of text increases, although
BiLSTM can capture information from both sides of the sentence, it still causes
some information loss. In addition, the correlation between the current tag and
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Fig. 2. The structure of the ASIM model.

the other tags in the sentence is not the same. Therefore, a self-attention mech-
anism is added in the encoder stage of slot filling in this paper, aiming to assign
different importance degrees to other words related to the current word when
encoding the current word information. The attention mechanism not only makes
up for the information loss generated by BiLSTM but also obtains the correla-
tion information between the current tag and the other tags in one sentence.
The following is the introduction of the attention mechanism.

For each hidden state hm
i , the context vector cmi is obtained by calculating

the weighted sum of the hidden states:

cmi =
n∑

j=1

am
i,jh

m
j (1)

The attention score can be obtained from the following formula:

am
i,j =

exp(emi,j)∑n
k=1 exp(emi,k)

(2)

emi,j = g(smi−1, h
m
k ) (3)
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where g is the feedforward neural network and where m = 1 corresponds to
intent detection and m = 2 corresponds to slot filling.

We concatenate these two representations as the final encoding representa-
tion:

E = [H|C] (4)

where H is the final hidden state matrix and C is the context matrix.

3.4 Decoder

Intent Detection Decoder. Multi-intent detection is regarded as a multi-
label classification problem. In order to carry out the explicit, hidden layer state
information interaction between the intent detection and slot filling, the intent
decoder receives a hidden state of the slot encoder and carries out the information
sharing between the intent detection and the slot filling. The hidden state of the
intent decoder at time i is shown as follows:

s1i = φ(s1i−1, h
1
i−1, h

2
i−1, c

1
i ) (5)

y1
intent = σ(ŷ1

i |s1i−1, h
1
i−1, h

2
i−1, c

1
i ) (6)

where y1
intent = {y1

intent,1, y
1
intent,2, ..., y

1
intent,NI

} is the intent output of the sen-
tence, NI is the number of intent of the current sentence, and σ is the activation
function.

Our model refers to paper [6] to output all user intents through a hyperpa-
rameter tu. Suppose the prediction intent is I = (I1, I2, I3, ...In), Ii represents
yI
Ii

greater than tu, where tu is the hyperparameter obtained by fine-tuning the
validation data set. For example, if yI = {0.9, 0.3, 0.6, 0.7, 0.2} and t0.5, then we
can get I = (1, 3, 4).

Slot Filling Decoder. The intent encoder hidden state h1
i−1 and the slot

encoder hidden state h2
i−1 are utilized for slot filling:

s2i = ϕ(h2
i−1, h

1
i−1, s

2
i−1, c

2
i ) (7)

y2
i = σ(ŷ2

n|h2
i−1, h

1
i−1, s

2
i−1, c

2
i ) (8)

where σ is the activation function and the s2i−1 is the hidden state of slot decoder.

Slot-Intent Mapping with Attention. The core of this part is to balance
the degree of closeness between multi-intent and the slot and use the balanced
multi-intent information to guide the slot filling. The concrete implementation
is as follows.

Firstly, according to the current word and the predicted multiple intents, we
calculate the degree of closeness between each intent and the current word and
get the score of each intent, which is used as the attention score of the currently
hidden unit:

ai,j =
exp(eIi,j)∑m

k=1 exp(exp(eIi,k))
(9)
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eIi,j = g(Ii,j , h2
k) (10)

where I is the predicted multiple intents. h2
i is the current slot hidden state.

The calculated weight aI
i is the weight of intent, which represents the degree of

closeness of the corresponding intent to the current word.
By summing up all the weighted predicted intents, the context vector of

intents cIi to the current word is obtained:

cIi =
m∑

j=1

aI
i,jIi,j (11)

where cIi represents the integration of all the information related to the current
sentence intent, which is used to guide the slot filling. The output of the slot
filling decoder is:

s2i = ϕ(e2i , h
2
i−1, h

1
i−1, s

2
i−1, c

I
i ) (12)

y2 = σ(ŷ2
i |e2i , h2

i−1, h
1
i−1, s

2
i−1, c

I
i ) (13)

where σ is the activation function.

CRF. If the model without CRF is used for slot filling, the slot label with the
highest score of each label is selected as the slot label of the word. However,
in practical applications, the tag with the highest score may not always be the
most suitable one. In order to solve this issue, a CRF layer is added after the
slot filling decoder.

The CRF layer will model several dependencies of the slot tags to ensure
that the predicted slot is more suitable so as to increase the accuracy of correct
slot prediction. These constraints can be learned automatically through the CRF
layer during data training.

For sentence 1 “please give me the flight times the morning on united airline
for september twentieth from philadelphia to san francisco”. The true tag of
the phrase “flight times” is “B − flight time I − flight time”, but the slot
tag predicted by the model without CRF is “O I − flight time”. For sentence 2
“what type of ground transportation is available at philadelphia airport and then
how many first class flights does united have today”. The true tag of the phrase
“philadelphia airport” is “B − airport name I − airport name”, but the slot
tag predicted by the model without CRF is “B− city name I −airport name”.
The model with CRF can reduce the errors mentioned in these two sentences in
most cases.

The CRF layer can learn some constraints for correctly predicting slots. For
BIO-tagged data, the possible constraints are:

1) Instead of “I − X”, an X element should begin with “B − X” or “O”. For
example, tag “I − flight time” in sentence 1 should not be the beginning of
the “flight time” element. Thus, the model that add CRF layers can correctly
predict “B − flight time” as the beginning of the element “flight time”.

2) For slot label sequence “B − label1 I − label2 I − label3...”, label1, label2
and label3 should be the same entity category. As shown in sentence 2, “B −
city name I − airport name” is clearly wrong.



224 J. Chen et al.

3.5 Asynchronous Training

We employ two different cost functions to train the ASIM model with an asyn-
chronous fashion. We define the loss function of intention network is L1, and the
loss function of slot filling networks is L2. L1 and L2 are formulated as:

L1 � −
k∑

i=1

ŷ1,i
intentlog(y1,i

intent) (14)

and

L2 � −
n∑

j=1

m∑

i=1

ŷ2,i
j log(y2,i

j ) (15)

where k denotes the number of intent label types, m represents the number of
semantic tag types, n is the length of a word sequence.

4 Experimental Results

4.1 The Data-Set Description

To assess the efficiency of the proposed ASIM model, experiments are carried out
on MixATIS with multiple intents. Due to the scarcity of multi-intent data sets,
reference [6] constructed multi-intent data set MixATIS data on commonly used
single-intent data set ATIS. ATIS has 656 words, 18 intents, and 130 slot labels.
By using conjunctions “and” to combine sentences with various intentions, a
sentence can have one to three intentions, in which the proportion of each number
of intents is [0.3,0.5,0.2]. The number of training sets, verification sets, and test
sets of the final MixATIS data set is 18000, 1000 and 1000, respectively.

4.2 Baselines

1) Attention BiRNN. Liu et al. [2] propose introducing attention to RNN
model and bring additional information to the intent detection and slot filling
tasks.

2) Slot-Gated Atten. Goo et al. [3] use a slot-gated based RecNNS to explicitly
consider the information-sharing between the two tasks.

3) Bi-Model. Wang et al. [4] employ two inter-connected bidirectional LSTMs
structure and two different cost functions to improve model performance.

4) SF-ID Network. Niu et al. [6] design bi-directional interrelated network to
model direct correlation between intent detection and slot filling.
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4.3 The Experiment Design

This paper deals with the data set MixATIS as in [7]. The identifier “UNK”
represents those that occur in the test data but not in the training data, and
the number is represented by a string of varying lengths “DIGIT” based on its
digits.

The ASIM model uses deep learning PyTorch framework for training. In the
training stage, the word feature dimension dC is 300, the maximum sentence
length is 130, and the BiLSTM unit dimension d is 200. The threshold value
tu = 2.

4.4 The Experiment Results

We first employ the MixATIS benchmark datasets to show the performance
of the ASIM model. The specific results are shown in Table 1. Compared with
the previous benchmark models, the model proposed in this paper improves
slot F1 and Intent acc on MixATIS data set and intent detection has a big
improvement. It can be seen from the results that the Intent Acc is 1.6% higher
than that of Bi-Model. It can be analyzed that the probable reason is that the
attention mechanism we added in the encoder captures the important sentence
information so that the content of sentence important information contained in
the embedding vector is increased. Besides, the slot and intent mapping module
also play a positive role in improving the Intent Acc. Since intent detection and
slot filling are related to each other, the improvement of one task can also have
a positive influence on the other.

Table 1. Comparison of experimental results

Model MixATIS

Slot (F1) Intent (Acc)

Attention BiRNN 86.6 71.6

Slot-Gated 88.1 65.7

Slot-gated Inten 86.7 66.2

Bi-Model 85.5 72.3

SF-ID 87.7 63.7

the ASIM model 87.19 73.90

Ablation Experiments. Model modification. Table 2 shows the ablation exper-
iment results. As can be seen from Table 2, both the attention mechanism of
intent detection and slot filling added in the encoder and the Slot-Intent map-
ping module have a positive effect on the experimental results. The attention
mechanism of the encoder part improves the two tasks. Compared with the Bi-
model, the slot F1 score is improved by 2.21, and the Intent Acc is improved



226 J. Chen et al.

by 1.1% in Bi-Model(with encoder Attention). The reason is that the atten-
tion mechanism added in the encoder captures the information of the important
words in the sentence and reduces the information loss caused by the LSTM
model. Therefore, the decoder can receive input vectors containing more infor-
mation about those important words. The slot-Intent Mapping module does
not clearly improve slot filling but improves intent detection by 0.3% in Bi-
Model(with slot-intent Mapping). The possible reason for this phenomenon is
the Slot-Intent Mapping module significantly increases the interaction between
intent detection and slot filling, which not only provides guidance to each other
but also potentially introduces a bit of error information. But in general, the
model proposed in this paper achieves good results in intent detection and slot
filling.

Table 2. Comparison of ablation results

Model MixATIS

Slot (F1) Intent (Acc)

Bi-Model 85.50 72.30

Bi-Model (with encoder Attention) 87.71 73.40

Bi-Model (with slot-intent Mapping) 85.50 72.60

the ASIM model 87.19 73.90

5 Conclusions

In this paper, A novel attention-based slot-intent mapping (ASIM) model was
proposed for joint multi-intent detection and slot filling tasks. The ASIM model
not only can model the correlation among sequence tags while considering the
mutual influence between two tasks, but also can map specific intention to each
semantic tag. In particular, this ASIM uses two encoding structure to achieve
more obvious information interaction between the two tasks and uses an atten-
tion mechanism to balance the degree of closeness between multiple intents and
words to guide slot filling in the decoder stage. Then, the interaction between
the two tasks is mutually reinforcing. A CRF layer is added after the slot filling
decoder which can model several dependencies of the slot tags to ensure that
the predicted labels are more suitable. After experimental verification on a real-
world dataset, the ASIM model has achieved the best performance than other
state-of-art methods.
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