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Abstract. Medical Visual Question Answering (VQA) targets at accurately
answering clinical questions about images. The existing medical VQA models
show great potential, but most of them ignore the influence of word-level fine-
grained features which benefit filtering out irrelevant regions in medical images
more precisely. We present a Multi-level Attention-based Multimodal Fusion
model named MAMF, aiming at learning a multi-level multimodal semantic rep-
resentation for medical VQA. First, we develop a Word-to-Image attention and a
Sentence-to-Image attention to obtain the correlations of word embeddings and
question feature to image feature. In addition, we propose an attention alignment
loss which contributes to adjust the weights of image regions gained from word
embeddings and question feature to emphasize relevant regions for improving
the quality of predicted answers. Results on VQA-RAD and PathVQA datasets
suggest that our MAMF significantly outperforms the related state-of-the-art
baselines.

Keywords: Medical Visual Question Answering · Multimodal fusion ·
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1 Introduction

Visual Question Answering (VQA) has obtained extensive attention from numerous
scholars dedicated to research Computer Vision (CV) [1, 2] or Natural Language Pro-
cessing (NLP) [3, 4] in the past few years. As a specific domain of VQA, the purpose
of medical VQA is to answer diagnostically a question asked on a medical image. An
outstanding medical VQA model can profit both clinicians and sick person. It can pro-
vide subsidiary analysis for clinical diagnoses and therapeutics for doctors. In addition,
a Medical-VQA system helps ask for medical consultation whenever patients need.
Therefore, developing a medical VQA model helps relieve the burden of healthcare
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and make medical diagnoses and treatment more efficient. Although medical VQA has
tremendous potential, researches onmedical VQA still facemany challenges. Compared
with general VQA, medical VQA is more challenging. In the foremost, well-annotated
medical VQA datasets for training model are extraordinarily rare, since they are time-
consuming and strenuous to gain precise annotations by clinicians. For example, the
manually annotated dataset VQA-RAD [5] includes varied types of questions but it
contains only 315 radioactive pictures. Furthermore, some general VQA models cannot
be adopted to develop Medical-VQA systems. The reason is that they always utilize
extremely complex visual feature extraction modules such as Faster R-CNN [6] and
ResNet-101 [7], which included a great deal of arguments and demanded to be trained
with large datasets. The direct employment of these models may result in the overfitting
issue. Furthermore, clinical questions are not only harder to be understanded for the
VQA system as they are about professional medical knowledge, but also needed to be
answered precisely as they are relevant to safety and health.

Some previous works [8, 9] attempted to utilize general VQAmodels and fine-tuned
them on Medical-VQA datasets. Nevertheless, medical images and clinical questions
were quite different from those of general VQA. Raghu et al. [10] proposed to transfer
knowledge from general VQA, but they gained a subtle improvement. Nguyen et al.
[11] employed Model-Agnostic Meta-Learning (MAML) [12] to obtain weights of the
visual feature extractor. In addition, they utilizedConvolutionalDenoisingAuto-Encoder
(CDAE) [2] to make model more robust. Though these groundbreaking medical VQA
works pushed forward the research field, they only focused on making better the feature
extractor, while ignored inferencemodule. Zhan et al. [13] concentrated on enhancing the
inference ability ofmodels. Specifically, theydevised aQuestion-ConditionedReasoning
(QCR) module to identify the importance of each word. Besides, they proposed a task-
conditioned reasoning (TCR) strategy to enlarge the difference of reference abilities for
close-ended and open-ended tasks accordingly. Nevertheless, owing to the limitation
of medical data, it can only obtain rough fusion features. Li et al. [14] designed two
reasoningmodules to obtainfine-grained relations betweenwords and image regions.But
they ignored the relationships betweenWord-to-Image attention and Sentence-to-Image
attention, which make them unable to gain more fine-grained semantic information.

In order to gain a multi-level multimodal fusion feature, we design a Multi-level
Attention-based Multimodal Fusion (MAMF) model by developing a Word-to-Image
(W2I) attention and a Sentence-to-Image (S2I) to model the relations of both word
embeddings and question feature to the image feature for medical VQA. TheW2I atten-
tion is adopted to word-level fine-grained reasoning, while the S2I attention is applied to
sentence-level coarse-grained reasoning. Besides, we propose an Attention Alignment
Loss (AAL) to concentrate on adjusting the weights of the image regions learned from
word embeddings and question feature to lay stress on crucial image regions and obtain
multi-level multimodal semantic representation to predict the high-quality answer.

To sum up, our contributions are as follows:

1) A novel Multi-level Attention-basedMultimodal Fusion (MAMF)model is proposed
by developing aWord-to-Image (W2I) attention and a Sentence-to-Image (S2I) atten-
tion to capture word-level and sentence-level inter-modality relations of them, as well
as to learn a multi-level multimodal semantic representation for medical VQA.
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2) An Attention Alignment Loss (AAL) is designed to adjust the importance of the
image regions obtained from word embeddings and question feature to identify the
relevant and crucial image regions.

3) The evaluations on VQA-Rad and PathVQA datasets show that our proposedMAMF
significantly superior to the related state-of-the-art baselines.

2 Related Work

VQA has aroused great research interest among scholars since Antol et al. [15] pro-
posed the first VQA task. VQA models in general domain adopted various methods for
extracting image feature and question feature. As for image feature extraction module,
researchers commonly utilized object detectors like simple CNNs [16], SSD [17], and
Faster-RCNN [6]. As for question feature extractor, they usually adopted models like
GTP-3 [12], Bert [3] and RoBerta [18]. After that, the extracted features were aggre-
gated by using bilinear pooling model like Multimodal Compact Bilinear Pooling [19],
Multimodal Low-rank Bilinear Pooling [20] or Bilinear Attention Network (BAN) [21]
to obtain a fusion feature. The feature was transmitted to the classifier to predict the
answer.

However, these models could not be simply adopted to develop a Medical-VQA
system, owing to the limitation of medical data. Therefore, Nguyen et al. [11] utilized
a meta-learning algorithm MAML [12] and CDAE [2] to obtain weight initialization
of visual feature extractor to learn visual features. Do et al. [22] proposed a multiple
meta-model quantifying (MMQ) algorithm to learn meta-annotation. Nevertheless, they
ignored the reasoning module of the models, which led to limit their performances.
Consequently, Zhan et al. proposed a question-conditioned reasoning (QCR) module
to adjust the weights of words and task-conditioned reasoning (TCR) method to learn
inference abilities for close-ended tasks and open-ended tasks respectively. Gong et al.
[23] designed a novel multi-task learning paradigm. However, this needed large-scale
medical data. Bo et al. [24] adopted contrastive learning to gain several cumbersome
models and train an unsophisticated student model by distilling these models and fine-
tuning on VQA-RAD dataset.

Various attention mechanisms were also adopted in the medical VQA field. Vu et al.
[25] proposed a multi-glance attention method to obtain the most related image regions.
Sharma et al. [26] proposed aMedFuseNet to utilize a co-attentionmechanism to improve
the quality of fusion feature. However, these previous works neglected to learn multi-
level multimodal feature representations which limited their performance. In this paper,
we develop a Word-to-Image (W2I) attention and a Sentence-to-Image (S2I) attention
to concentrate on learning a multi-level multimodal semantic representation.

3 Methods

3.1 Problem Formulation

Medical VQA is defined as a multiclassification problem. Given an image I and a ques-
tion q, the output is the predicted answer â. The both I and q are input into model f to
obtain the predicted answer:

â = argmax
a∈A f (a|I , q, θ), (1)
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where A and a denote candidate answers and one of them, separately, and θ denotes all
parameters.

Fig. 1. Overview framework of our proposed MAMF. Each medical image gains three 64-D
vector through a CDAE encoder and two meta-model. The vectors are concatenated to generate
the visual feature V. GloVe and GRU are adopted to produce the word embedding sequenceWemb
and the semantic feature Q. AVW and AVQ are W2I attention weight and S2I attention weight
respectively, and M is a fusion feature.

3.2 Overview of Our Proposed Model

The structure of MAMF is shown in Fig. 1. Overall, the model includes a visual feature
extractor, a word embedding module GloVe [27], a question embedding module GRU
[28], an attention-based multimodal fusion module and a classifier. Glove is adopted
to convert every word to a 300-dimension word. Then we utilized GRU to generates
question feature. The visual feature extractor utilizes the Convolutional Denoising Auto-
Encoder [2] and two meta-models obtained from Multiple Meta-model Quantifying
(MMQ) [22]. The attention-based multimodal fusion module is adopted to model the
relations between visual feature and word embeddings, and between visual feature and
question feature, respectively. Finally, the classifier is adopted to classify multimodal
semantic representations and then provide predicted answers to theMedical-VQA tasks.

3.3 Word Embedding and Question Representation

In the foremost, given a question q who has l words, GloVe [27] is adopted to generate
a word embedding sequence. wi ∈ R

dw express the i-th word vector:

Wemb = WordEmbedding(q) = [w1, ...,wl]. (2)
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The word embedding Wemb ∈ R
dw×l is then sent to Gated Recurrent Unit (GRU)

[28] whose dimension is dG to gain the semantic feature:

Q = GRU (Wemb) = [γ1, ..., γl], (3)

where Q ∈ R
dG×l , and γi is the i-th word embedding.

3.4 Visual Feature Extractor

As for the visual feature, we adopt the two best meta-models obtained from MMQ
[22] and a CDAE [2] as visual feature extractor, as shown in Fig. 1. Specifically, each
meta-model contains four 3*3 convolutional layers. Each convolutional layer includes
64 filters. Finally, the extractor gains three feature vectors. We concatenated them to
obtain the visual feature. It is denoted as V ∈ RdV , where dV = 192 represents the
dimension of the feature.

3.5 Attention-Based Multimodal Fusion Module

This module calculates the word-based attention AVW and the sentence-based attention
AVQ using the following equations respectively.

AVW = softmax(l × w1 × ((w2 × V ) ◦ (w3 × Wemb)) + b), (4)

AVQ = softmax(l′ × w′
1 × ((w′

2 × V ) ◦ (w′
3 × Q)) + b′), (5)

where l and wx represent the weight matrix and a fully connected layer, respectively,
and b denotes a scalar. Besides, ◦ indicates element-wise multiplication. The softmax
functions in Eq. (4) and Eq. (5) are adopted to normalize the attention weights.

The attention weight of image feature is computed as:

AV = AVQ + AVW . (6)

The attention weight AV and visual feature V are then element-wise multiplied to
obtain the visual feature,

V ′ = AV ◦ V . (7)

The visual feature and the question feature are both sent to fully connected layers.
The vectors from the fully connection layers are element-wise multiplied together to
obtain the joint embedding M . M is then sent to a classifier. The predicted answer â
has the highest probability among the candidate answers. The accuracy is computed as
follows:

Accuracy = 1

nTest

Test∑
(Onehot(argmax(â)) · a), (8)

where a denotes the correct answer of the task.
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3.6 Loss Function

The predicted answers are utilized to obtain binary cross entropy loss during training,

LCE = − 1

nTrain

nTrain∑

i=1

(a log(â) − (1 − a) log(1 − â)). (9)

In addition, an Attention Alignment Loss (AAL) is proposed to align the word-
based attention and the sentence-based attention to emphasize relevant and crucial image
regions. The loss function is computed as follows:

LAAL = − 1

nTrain

nTrain∑

i=1

∥∥AVQ − AVW
∥∥2. (10)

At last, the final loss function is calculated as follows:

Loss = αLAAL + LCE, (11)

where α is a weighting parameter.

4 Experiments

4.1 Datasets

The prevalent medical VQA datasets are adopted to evaluate our proposed MAMF:
(1) VQA-RAD [5]: It contains 3,515 question-answer pairs and 315 radiology images.
Some questions are related to the same image. The clinicians or patients ask various
questions about position, presence, organ and others. (2) PathVQA [29]: It contains
32,799 question-answer pairs, including “how”, “what”, “where” and other types. There
are 3,328 medical images obtained from the PEIR digital library and 1,670 pathological
images selected from several medical literatures. The answer types of two datasets are
classified as close-ended and open-ended. The close-ended answers are “yes/no” or
several options, while the open-ended answers are free-form texts. The question-answer
pairs of PathVQA dataset are generated by a semi-automated approach using image
captions and then manually reviewed and modified by clinicians.

4.2 Experiment Settings

All experiments are performed on the Ubuntu 20.04.4 server with NVIDIA GTX 1080
GPU based on PyTorch library in version 1.8. We adopt Adam optimizer to optimize
our model. The learning rate is set to 1e–4 and batch size is set to 128. For semantic
textual features, each question contains 12 words. GloVe [27] is utilized to generate the
word embeddings. They are input into GRU [28] to gain question feature. As for visual
representations, each 128-dimensional image is input into 2 quantified meta-models
obtained from the MMQ [22] and a Convolutional Denoising Auto-Encoder, which
generates 3 vectors. The enhanced visual feature is produced by concatenating these
vectors. We adopt accuracy, precision, recall and F1-score (denoted as Acc, P, R, F1) as
evaluation metrics.
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4.3 Baseline Models

The medical VQA baselines including MAML, BiAN, MEVF [11], MMQ [22], CR
[13] and CMSA [26] are reimplemented by using the open-source codes. The brief
descriptions of baselines are in Table 1.

Table 1. The brief descriptions of baseline models.

Models Descriptions

MAML It utilized model-agnostic meta-learning method to obtain semantic representations

BiAN It utilized ImageNet [30] to initialize the weights of the visual feature extractor

MEVF It adopted MAML [12] and CDAE [2] to extract visual feature, and then used BAN to
fuse them with question features

MMQ It designed a multiple meta-model quantifying module to utilize meta-annotation

CR It adopted a QCR module to improve fusion feature and proposed a TCR strategy

CMSA It introduced a Cross-Modal Self-Attention module to effectively obtain the crucial
semantic information

4.4 Results

The results of our proposedMAMF and other baseline models on the VQA-RAD test set
are shown in the Table 2. The results of baseline models are re-implemented using avail-
able codes. From the table, it suggests that MAMF significantly superior to other state-
of-the-art baselines. MAMF gains the best overall accuracy 74.94%, precision 82.39%,
recall 74.94% and F1-score 78.02%. As for close-ended tasks and open-ended tasks,
we also achieve the best performances except precision of the open-ended. Although
we utilize the MMQ methods to enhance our image feature extractor, the reason may
be that our model reduces the prediction probability of the true positive samples during
fusion stage. The tasks corresponding to open-ended questions are harder for medical
VQA models to answer correctly, since their answers can be free-form text. However,
our proposed model MAMF still outperforms other baselines benefitting from the W2I
attention, S2I attention, and AAL.

We also perform experiments on PathVQA dataset. Compared with VQA-RAD
dataset, PathVQA have more diversities. It can verify the robustness of our proposed
MAMF. The result is shown in Table 3. Our proposed MAMF gains the best perfor-
mances reaching the best accuracy 54.28%, precision 65.82%, recall 54.28% and F1-
score 52.38% on the entire test set. MAMF obtains dramatic improvement on the open-
ended questions compared with other baseline models. The reasons of this improvement
are as follows: First,MAMFbuildsword-level correlation representation ofword embed-
dings and image feature, which filters unrelated regions in the image and retains essential
ones for predicting answer. Second, our proposed AAL aligns the attention weights of
regions in the image learned from the W2I attention and Q2I attention to recognize
essential words and image regions for reasoning.
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Table 2. Results on the VQA-RAD.

Models Overall (%) Open-ended (%) Closed-ended (%)

Acc P R F1 Acc P R F1 Acc P R F1

MEVF 67.18 71.89 63.19 66.09 49.72 65.14 42.46 43.16 78.68 78.55 76.84 77.45

MMQ 71.80 82.17 72.06 75.71 60.90 84.45 61.45 61.71 79.01 81.08 79.04 80.39

CR 71.60 77.67 68.96 72.31 60.10 57.69 56.11 56.18 79.01 77.49 80.95 79.15

CMSA 73.17 79.73 73.17 75.35 61.45 73.17 61.45 60.71 80.88 82.38 80.88 81.46

MAMF 74.94 82.39 74.94 74.94 65.36 78.23 65.36 65.81 81.25 83.63 81.25 82.28

Table 3. Results on the PathVQA.

Models Overall (%) Open-ended (%) Closed-ended (%)

Acc P R F1 Acc P R F1 Acc P R F1

BiAN 35.60 37.32 35.60 37.39 2.90 0.40 2.90 0.06 68.20 82.46 68.20 79.12

MAML 42.90 45.87 42.90 46.32 5.90 7.57 5.90 8.17 79.50 84.57 79.50 84.49

MEVF 44.80 40.28 44.80 40.84 8.10 2.01 8.10 2.50 81.40 83.31 81.40 81.99

MMQ 48.80 45.14 48.80 45.36 13.40 7.51 13.40 7.61 84.00 83.76 84.00 83.51

MAMF 54.28 65.82 54.28 52.38 22.49 46.12 22.49 18.93 85.75 85.87 85.75 85.78

4.5 Ablation Study

Several ablation experiments are conducted to verify the effectiveness of each part of
MAMF. The experiment results are shown in Table 4 and Table 5. We remove W2I
attention, S2I attention and AAL successively. The performances of MAMF without
W2I attention and MAMF without S2I attention datasets dramatically decreased com-
pared with the complete form of MAMF. Without the W2I attention, the model can-
not establish word-level correlations between the word embeddings and image feature.
Thus, it can only use the coarse sentence-level multimodal semantic representations to
roughly reason.Without the S2I attention, the model can neither properly understand the
meaning of questions nor predict the high-quality answers. These two ablation instances
show the effectiveness of the W2I attention and S2I attention. As for the model MAMF
without AAL, it also obtains poor performances on the two datasets. As discussed in
Sect. 3.5, AAL is used to align the W2I attention and S2I attention, which helps locate
crucial image regions to optimize the model. Furthermore, the complete form of MAMF
obtains the best performance. Consequently, our proposed MAMF gains a satisfactory
performance that utilizes the W2I attention and S2I attention to obtain the multi-level
semantic information of image from word-level feature and sentence-level feature in the
question, respectively, and employs the AAL to maximize the similarity of the relevant
regions obtained from the W2I and S2I attention respectively.
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Table 4. Ablation experiments on the VQA-RAD.

Models Overall (%) Open-ended (%) Closed-ended (%)

Acc P R F1 Acc P R F1 Acc P R F1

MAMF
w/o
W2I

72.72 80.38 72.72 75.52 63.12 77.60 63.12 63.81 79.04 82.24 79.04 80.36

MAMF
w/o S2I

72.28 80.45 72.28 75.17 60.33 75.05 60.33 61.10 80.14 82.90 80.14 81.34

MAMF
w/o
AAL

73.39 79.85 73.39 75.73 63.12 72.51 63.12 63.57 80.14 82.11 80.14 81.00

MAMF 74.94 82.39 74.94 74.94 65.36 78.23 65.36 65.81 81.25 83.63 81.25 82.28

Table 5. Ablation experiments on the PathVQA.

Models Overall (%) Open-ended (%) Closed-ended (%)

Acc P R F1 Acc P R F1 Acc P R F1

MAMF
w/o
W2I

52.17 51.14 52.19 50.88 18.67 17.50 18.67 16.53 85.37 85.44 85.37 85.39

MAMF
w/o S2I

51.97 49.48 51.97 49.31 18.55 14.59 18.55 14.00 85.13 85.69 85.13 85.17

MAMF
w/o
AAL

51.82 49.92 51.82 50.25 18.37 15.16 18.37 15.60 85.04 85.25 85.04 85.08

MAMF 54.28 65.82 54.28 52.38 22.49 46.12 22.49 18.93 85.75 85.87 85.75 85.78

Table 6. α changes from 0 to 2.0 in Eq. (11).

Model Type α

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

MAMF Open-ended
(%)

63.12 63.13 63.10 60.33 63.12 63.88 65.36 63.70 61.50 61.66 60.10

Closed-ended
(%)

80.14 81.99 77.90 80.14 79.04 80.37 81.25 80.10 80.90 80.07 79.01

Overall (%) 73.39 74.50 72.00 72.28 72.72 73.39 74.94 73.60 73.20 72.28 71.60
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Fig. 2. The loss curve of MAMF.

4.6 Hyperparameter Analysis

We allocate distinct values of the hyperparameter α in the AAL in Eq. (11) and conduct
experiments on the VQA-RAD dataset, as shown in Table 6. The overall task and open-
ended task can gain the best performances when α is 1.2. Therefore, α is set to 1.2 during
training our proposed model.

We train MAMF for 150 epochs. The loss curve and accuracy curve of MAMF are
shown in Fig. 2 and Fig. 3, respectively. As shown from the Fig. 2, MAMF gains a
relatively stable state after about approximately 150 epochs. From the Fig. 3, we can
see that the accuracy curve also slowly becomes stable. Consequently, the value of
hyperparameter epochs is set to 150 during training.

Fig. 3. The accuracy curve of MAMF.

4.7 Qualitative Evaluation

The qualitative evaluation of our proposed MAMF and the best baseline CMSA on the
VQA-RAD dataset is shown in Fig. 4. For the first VQA task, while the baseline model
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CMSA cannot select all the relevant regions to answer the clinical question, our proposed
model locates all the related regions and correctly predicts the answer. The real position
of the radiological image is completely opposite to what we see.

Fig. 4. Visualization of performances of our presented model MAMF and the baseline CMSA.

Therefore, “left” in the answer means the right region of the image. As for the second
task, the CMSA identified the liver as the kidney, while our method finds that there is
no kidney in the image. For the third task, the baseline can identify the related image
region, but it could not recognize the concrete region to answer the question. In contrast,
our model identifies the crucial image region and provides an accurate answer.

These instances show that our method has better ability to locate relevant and crucial
regions in the medical image and understand well the clinical question. Therefore, it can
provide concrete and accurate answer to complex Medical-VQA tasks.

5 Conclusion

This paper presents a Multi-level Attention-based Multimodal Fusion (MAMF) model.
MAMF utilizes word embeddings and question features to identify the relevant and
key regions of medical image by adopting a W2I attention and a S2I attention. It then
contributes to obtain a multi-level multimodal semantic representation. Moreover, we
propose an attention alignment loss to align the word-based attention and sentence-
based attention to recognize relevant and crucial regions in medical images. This model
is beneficial for clinicians in diagnosing different diseases. It also can help patients
obtain the answers of health-related questions. Additionally, our model significantly
outperforms related state-of-the-art baselines.
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2. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for
hierarchical feature extraction. In: Proceedings of the International Conference on Artificial
Neural Networks, pp. 52–59 (2011)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

4. Hao, T., Li, X., He, Y., Wang, F.L., Qu, Y.: Recent progress in leveraging deep learning
methods for question answering. Neural Comput. Appl. 34, 2765–2783 (2022)

5. Lau, J.J., Gayen, S., Ben Abacha, A., Demner-Fushman, D.: A dataset of clinically generated
visual questions and answers about radiology images. Sci. Data 5, 1–10 (2018)

6. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with
region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceed-
ings of the IEEE/CVFConference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

8. Abacha,A.B.,Gayen, S., Lau, J.J., Rajaraman, S.,Demner-Fushman,D.:NLMat ImageCLEF
2018 visual question answering in the medical domain. In: Working Notes of CLEF 2018 -
Conference and Labs of the Evaluation Forum (CEUR Workshop Proceedings, Vol. 2125).
CEUR WS.org, Avignon, France (2018)

9. Abacha, A.B., Hasan, S.A., Datla, V.V., Liu, J., Demner-Fushman, D., Müller, H.: VQA-Med:
overview of the medical visual question answering task at ImageCLEF 2019. In: Working
Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum (CEUR Workshop
Proceedings, vol. 2380). CEUR-WS.org, Lugano, Switzerland (2019)

10. Raghu,M., Zhang, C., Kleinberg, J., Bengio, S.: Trans-fusion: understanding transfer learning
for medical imaging. In: Advances in Neural Information Processing Systems 32: Annual
Conference onNeural Information Processing Systems, pp. 3342–3352. NeurIPS, Vancouver,
BC, Canada (2019)

11. Nguyen, B.D., Do, T.-T., Nguyen, B.X., Do, T., Tjiputra, E., Tran, Q.D.: Overcoming data
limitation in medical visual question answering. In: Shen, D., Liu, T., Peters, T.M., Staib,
L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11767,
pp. 522–530. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_57

12. Brown, T., et al.: Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165
(2020)

13. Zhan, L.M., Liu, B., Fan, L., Chen, J., Wu, X.M.: Medical visual question answering via con-
ditional reasoning. In: Proceedings of the 28thACM International Conference onMultimedia,
pp. 2345–2354 (2020)

14. Li, Y., et al.: A Bi-level representation learning model for medical visual question answering.
J. Biomed. Inform. 134, 104183 (2022)

15. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2425–2433 (2015)

http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-030-32251-9_57
http://arxiv.org/abs/2005.14165


214 S. Long et al.

16. Zhou, B., Tian, Y., Sukhbaatar, S., Szlam, A., Fergus, R.: Simple baseline for visual question
answering. arXiv preprint arXiv:1512.02167 (2015)

17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).https://doi.org/
10.1007/978-3-319-46448-0_2

18. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q. V.: XLNet: general-
ized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237
(2019)

19. Fukui,A., Park,D.H.,Yang,D., Rohrbach,A.,Darrell, T., Rohrbach,M.:Multimodal compact
bilinear pooling for visual question answering and visual grounding. arXiv preprint arXiv:
1606.01847 (2016)

20. Kim, J.H., On, K.W., Lim,W., Kim, J., Ha, J.W., Zhang, B.T.: Hadamard product for low-rank
bilinear pooling. arXiv preprint arXiv:1610.04325 (2016)

21. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. arXiv preprint arXiv:1805.07932
(2018)

22. Do, T., Nguyen, B.X., Tjiputra, E., Tran, M., Tran, Q.D., Nguyen, A.: Multiple Meta-Model
Quantifying forMedicalVisualQuestionAnswering. arXiv preprint arXiv:2105.08913 (2021)

23. Gong, H., Chen, G., Liu, S., Yu, Y., Li, G.: Cross-Modal Self-Attention with Multi-Task Pre-
Training for Medical Visual Question Answering. arXiv preprint arXiv:2105.00136 (2021)

24. Liu, Bo., Zhan, L.-M., Wu, X.-M.: Contrastive Pre-training and representation distillation for
medical visual question answering based on radiology images. In: de Bruijne, M., Cattin,
P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol.
12902, pp. 210–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_20

25. Vu,M.H., Löfstedt, T.,Nyholm,T., Sznitman,R.:Aquestion-centricmodel for visual question
answering in medical imaging. IEEE Trans. Med. Imaging 39(9), 2856–2868 (2020)

26. Sharma, D., Purushotham, S., Reddy, C.K.:MedFuseNet: an attention-basedmultimodal deep
learning model for visual question answering in the medical domain. Sci. Rep. 11(1), 1–18
(2021)

27. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
pp. 1532–1543 (2014)

28. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural
machine translation: encoder-decoder approaches. In: Proceedings of SSST@EMNLP 2014,
EighthWorkshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111.
Association for Computational Linguistics, Doha, Qatar (2014)

29. He, X., Zhang, Y., Mou, L., Xing, E., Xie, P.: PathVQA: 30000+ questions for medical visual
question answering. arXiv preprint arXiv:2003.10286 (2020)

30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Proceedings of Advances in Neural Information Processing Systems,
pp. 1097–1105 (2012)

http://arxiv.org/abs/1512.02167
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1606.01847
http://arxiv.org/abs/1610.04325
http://arxiv.org/abs/1805.07932
http://arxiv.org/abs/2105.08913
http://arxiv.org/abs/2105.00136
https://doi.org/10.1007/978-3-030-87196-3_20
http://arxiv.org/abs/2003.10286

	MAMF: A Multi-Level Attention-Based Multimodal Fusion Model for Medical Visual Question Answering
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Problem Formulation
	3.2 Overview of Our Proposed Model
	3.3 Word Embedding and Question Representation
	3.4 Visual Feature Extractor
	3.5 Attention-Based Multimodal Fusion Module
	3.6 Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Experiment Settings
	4.3 Baseline Models
	4.4 Results
	4.5 Ablation Study
	4.6 Hyperparameter Analysis
	4.7 Qualitative Evaluation

	5 Conclusion
	References




