
Semi-supervised Multi-class Classification
Methods Based on Laplacian Vector

Projection

Yangtao Xue and Li Zhang(B)

School of Computer Science and Technology,
Soochow University, Suzhou 215006, China

20184027008@stu.suda.edu.cn, zhangliml@suda.edu.cn

Abstract. Laplacian pair-weight vector projection (LapPVP) is a binary
classifier for semi-supervised learning, which seeks a pair of projec-
tion vectors only for two-class data. This paper extends LapPVP to
semi-supervised multi-class classification tasks and proposes two novel
semi-supervised multi-class methods, named one-versus-one LapPVP
(OVO-LapPVP) and one-versus-rest LapPVP (OVR-LapPVP). By using
the strategy of “one-versus-one”, OVO-LapPVP decomposes a semi-
supervised multi-class classification task into multiple binary problems
that can be directly solved by multiple LapPVPs. Considering the con-
cept of “one-versus-rest”, OVR-LapPVP is designed for generating multi-
ple hyperplanes for multiple classes, one for each class. The above proposed
semi-supervised multi-class classification methods both consider the dis-
criminative information of labeled data and graph structure of unlabeled
data. Experiments are conducted on nine UCI datasets to display the clas-
sification performance for multi-class data. Compared with other popular
semi-supervisedmulti-class classificationmethods based onmanifold regu-
larization, the proposed semi-supervisedmulti-class classificationmethods
hold the advantage of LaPVP and have better performance.

Keywords: Multi-class classification · Semi-supervised learning ·
Manifold regularization · Vector Projection

1 Introduction

Twin support vector machine (TSVM) has become one of the popular binary
classifiers because it can greatly reduce the computational complexity of support
vector machine (SVM) [5]. TSVM obtains two nonparallel hyperplanes by two
smaller-sized and related SVM-type problems and is a supervised binary classifier
that require a large amount of labeled data. However, it is difficult for TSVM
to deal with multi-classification problems. In order to inherit the advantages
of TSVM, some multi-class versions of TSVM have been proposed for wider
applications [9,10].

Inspired by the manifold regularization, Laplacian TSVM (LapTSVM)
was proposed for semi-supervised learning and become a useful extension
of TSVM [8]. Similar to LapTSVM, Laplacian twin parametric-margin SVM
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(LapTPMSVM) [12] and Laplacian least squares TSVM (LapLSTSVM) [1]
are the semi-supervised versions of twin parametric-margin SVM [7] and least
squares TSVM [6], respectively, which are variants of TSVM. The above three
semi-supervised methods all aim to generate two nonparallel hyperplanes so that
each hyperplane is closer to its own class as far as possible from the other. Lapla-
cian pair-weight vector projection (LapPVP) was also motivated by the idea of
nonparallel hyperplanes [11]. LapPVP is an excellent binary classifier compared
with other nonparallel hyperplanes methods. Furthermore, LapPVP integrates
the between-class scatter, the within-class scatter, and the Laplacian regulariza-
tion together for semi-supervised binary classification. Each class data provides
the class-specific information by computing the between-class and within-class
scatters, which enhances the power of discriminative representation. The Lapla-
cian regularization provides the graph structure of labeled and unlabeled data,
which is the intrinsic geometrical structure of data.

Although these semi-supervised binary classifiers are promising, their multi-
class versions have been rarely explored. To solve the semi-supervised multi-class
classification problems, we extend the formulation of LapPVP to its multi-class
versions and propose two novel semi-supervised multi-class methods, named
one-versus-one LapPVP (OVO-LapPVP) and one-versus-rest LapPVP (OVR-
LapPVP). Researchers have developed the ideas of “one-versus-one” (OVO)
and “one-versus-rest” (OVR) to decompose a multi-class problem into multi-
ple binary sub-problems [3,9]. Originally, LapPVP obtains a pair of projection
vectors for two-class data. Both OVO-LapPVP and OVR-LapPVP solve a multi-
class classification task using multiple LapPVPs, but differ in the number of
LapPVPs. In specific, the multi-class versions of LapPVP have the following
characteristics:

(1) OVO-LapPVP obtains C(C − 1)/2 pairs of projection vectors for C-class
data, whereas OVR-LapPVP achieves C nonparallel hyperplanes for C-class
data, one for each class.

(2) The proposed multi-class classification methods are all solved by eigenvalue
decomposition, which avoids finding solutions to complex quadratic pro-
grammings.

(3) Experimental results on UCI datasets demonstrate the effectiveness of OVO-
LapPVP and OVR-LapPVP.

2 Semi-supervised Multi-class LapPVPs

In this section, we describe the proposed OVO-LapPVP and OVR-LapPVP
detailly. Now, we consider a semi-supervised multi-class classification task. Let
Xl = [x1, · · · ,xl]T ∈ R

l×m and Xu = [xl+1, · · · ,xn]T ∈ R
(n−l)×m be the labeled

and unlabeled sample matrices, respectively, xi ∈ R
m is an m-dimensional sam-

ple, l and n are the numbers of labeled and total samples, respectively. Let yi
be the label of xi, where yi ∈ [1, 2, ..., C], and C is the number of classes. Let
Xl,c be the labeled sample matrix belonging to the cth class. The total sample
matrix can be denoted as X = [Xl,1; · · · ;Xl,C ;Xu] ∈ R

n×m.
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In LapPVP, we need to construct an adjacency graph using the K nearest
neighbor method. The ith row and jth column element of the adjacency matrix
S induced by the adjacency graph can be represented as

Sij =

{
1, if xi ∈ NK(xj) or xj ∈ NK(xi)
0, otherwise

, (1)

where NK(xi) is the set of K nearest neighbors of xi. Then we get the classical
Laplacian matrix L = D−S, where D is the diagonal matrix with Dii =

∑
j Sij .

2.1 OVO-LapPVP

The one-versus-one strategy is a popular technique that can easily extend
binary classifiers to multi-class ones. By using the one-versus-one strategy,
OVO-LapPVP is presented, which can generate C(C − 1)/2 binary classifiers
for C-class data. Given a C-class dataset, we obtain the set of class pairs
Z = {z = (c1, c2)|c1, c2 = 1, 2, · · · , C, c1 �= c2}. To construct a binary clas-
sifier with class pair z, suppose class c1 is the positive class, and class c2 as
the negative one. The corresponding LapPVP classifier is trained with labeled
samples in both classes c1 and c2 and all unlabeled samples.

Let Xz = [Xl,c1 ;Xl,c2 ;Xu] ∈ R
nz×m with z = (c1, c2), where nz is the total

number of samples in both classes c1 and c2 and without labels. The objective
functions of OVO-LapPVP with respect to z can be expressed as follows:

max
vc1

vT
c1Hc1vc1 − ρc1v

T
c1X

T
z LzXzvc1

s.t. vT
c1vc1 = 1

(2)

and
max
vc2

vT
c2Hc2vc2 − ρc2v

T
c2X

T
z LzXzvc2

s.t. vT
c2vc2 = 1

, (3)

where vc1 ∈ R
m and vc2 ∈ R

m are projection vectors, ρc1 and ρc2 are regular-
ization parameters that are greater than 0, the Laplacian matrix Lz ∈ R

nz×nz

is computed based on Xz, and the discriminative matrices Hc1 ∈ R
m×m and

Hc2 ∈ R
m×m are defined as

Hc1 = αc1

(
Xz − ezuT

c1

)T (
Xz − ezuT

c1

)
− (1 − αc1)(Xc1 − ec1u

T
c1)

T (Xc1 − ec1u
T
c1)

(4)

and
Hc2 = αc2

(
Xz − ezuT

c2

)T (
Xz − ezuT

c2

)
− (1 − αc2)(Xc2 − ec2u

T
c2)

T (Xc2 − ec2u
T
c2),

(5)

where αc1 ∈ [0, 1] and αc2 ∈ [0, 1] are parameters to balance the between-class
scatter matrix and the within-class one, class centers ucj = 1

|Xl,cj
|
∑

xi∈Xl,cj
xi
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(j = 1, 2), Xl,cj is the set of labeled samples in the cjth class, ez ∈ R
nz and

ecj ∈ R
|Xl,cj

| (j = 1, 2) are vectors of all ones.
The following theorems describe the solutions to the optimization problems

(2) and (3).

Theorem 1. The optimal solution vc1 of the optimization problem (2) is the
eigenvector corresponding to the maximum eigenvalue of the matrix (Hc1 −
XT

z LzXz).

Proof. To find the solution to (2), we first generate the corresponding
Lagrangian function with positive multipliers λc1 . That is

L(vc1 , λc1) =vT
c1Hc1vc1 − ρc1v

T
c1X

T
z LzXzvc1 − λc1(v

T
c1vc1 − 1). (6)

Next, we derive the partial derivative of L(vc1 , λc1) with respect to the primal
variable vc1 , and then make it equal zero, which results in

∂L(vc1 , λc1)
∂vc1

=
(
Hc1 − ρc1X

T
z LzXz

)
vc1 − λc1vc1 = 0

⇒ (
Hc1 − ρc1X

T
z LzXz

)
vc1 = λc1vc1 .

(7)

By introducing the Tikhonov regularization term in Eq. (7), the solution can
be obtained by solving a classical eigenvalue problem. Finally, the solution vc1

can computed as the eigenvector corresponding to the maximum eigenvalue of(
Hc1 − ρc1X

T
z LzXz

)
. ��

Theorem 2. The optimal solution vc2 of the optimization problem (3) is the
eigenvector corresponding to the maximum eigenvalue of the matrix (Hc2 −
XT

z LzXz).

The proof of Theorem 2 is similar to that of Theorem 1; thus, we omit the
proof of Theorem 2. Theorems 1 and 2 provide the optimal projection vectors
vc1 and vc2 by performing eigen-decomposition, respectively. After obtaining
vc1 and vc2 for class pair z = (c1, c2), we can respectively compute the distances
between an unknown test point x and class centers ucj (j = 1, 2) by

d(x,uc1) = ‖vT
c1x − vT

c1uc1‖ (8)

and
d(x,uc2) = ‖vT

c2x − vT
c2uc2‖ , (9)

where ‖ ·‖ is the 2-norm of a vector. If d(x,uc1) ≤ d(x,uc2) for class pair z, then
x is more like a sample in class c1.
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Algorithm 1.OVO-LapPVP
Training Phase
Input: Sample matrices Xl,c, c = 1, · · · , C, and Xu;

1: Obtain the set of class pairs Z = {z = (c1, c2)|c1, c2 = 1, 2, · · · , C, c1 < c2, c1 �= c2}.

2: for ∀z ∈ Z do
3: Construct an LapPVP classifier for class pair z = (c1, c2);
4: Obtain the training sample matrix Xz = [Xl,c1 ;Xl,c2 ;Xu] ∈ R

nz×m for the
LapPVP with class pair (c1, c2), where samples in class c1 are positive, and ones
in class c2 negative;

5: Compute the matrices Hc1 and Hc2 by Eqs. (4) and (5), respectively;
6: Generate the adjacency matrix Sz by Eq. (1) based on the training sample matrix

Xz;
7: Compute the Laplacian matrix Lz = Dz − Sz, where Dz is the diagonal matrix

with Dzii =
∑

j Szij ;
8: Obtain the projection vectors vc1 and vc2 according to Theorems 1 and 2, respec-

tively;
9: end for

Output: Projection vector pairs (vc1 ,vc2), (c1, c2) ∈ Z.
Testing Phase
Input: Unknown test sample x, sample matrices Xl,c, c = 1, · · · , C, Xu, and projection
vector pairs (vc1 ,vc2), (c1, c2) ∈ Z;

1: Initialize ŷ = [0, · · · , 0]T ∈ R
C ;

2: for ∀z ∈ Z do
3: Compute the distances between x and class centers by Eq. (9) with optimal

vectors vc1 and vc2 ;
4: Update the c1th element ŷc1 or the c2th element ŷc2 in ŷ by Eq. (10);
5: end for
6: Assign the class label for x with Eq. (11);

Output: Estimated label for x.

To assign a class label to x, we construct a vote vector ŷ = [ŷ1, · · · , ŷC ]T ,
where ŷc is the vote for the cth class. Generally, the initial value of ŷc is 0 for all
c = 1, · · · , C. For each class pair z = (c1, c2), we update the vote for only class
c1 or class c2. That is{

ŷc1 ← ŷc1 + 1, if d(x,uc1) ≤ d(x,uc2)
ŷc2 ← ŷc2 + 1, otherwise

. (10)

The update procedure is performed on the whole set Z. Thus, the strategy of
classification rule for x is defined as

c∗ = arg max
c=1,··· ,C

ŷc, (11)

where c∗ is the estimated class label for x. We summarize the specific procedure
of OVO-LapPVP in Algorithm 1.
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2.2 OVR-LapPVP

Originally, LapPVP obtains a projection vector for each class that keeps data
points in the same class as close to one another, meanwhile as far from points
in the other class. In LapPVP, the within-class scatter requires only one-class
training data, and the Laplacian regularization requires all data to construct
the adjacent graph. However, the between-scatter captures the information of
different classes. Hence, it is easy to generate multiple projection vectors for
multi-class data by using the one-versus-rest strategy. This section proposes
OVR-LapPVP by constructing C projection vectors for C-class training data.
In other words, each class has its own projection vector.

To construct a binary classifier for the cth class, we suppose samples in class
c are positive, and samples in other rest (C −1) classes are negative. Let Xl,c be
the labeled sample matrix for the cth class, and lc is the number of samples in
the cth class. Then the total labeled sample matrix is Xl = [Xl,1; · · · ;Xl,C ], and
the training sample matrix is X = [Xl;Xu], where Xu is the unlabeled sample
matrix.

Thus, the cth optimization formulation of OVR-LapPVP is given by

max
vc

vT
c Hcvc − ρcvT

c X
TLXvc,

s.t. vT
c vc = 1,

(12)

where the discriminative matrix Hc is defined as

Hc = αcBc − (1 − αc)Wc, (13)

where αc ∈ [0, 1] is the parameter to balance the between-class scatter matrix
Bc and within-class scatter matrix Wc of the cth class, Bc and Wc respectively
have the forms

Bc =
(
X − euT

c

)T (
X − euT

c

)
(14)

and
Wc = (Xc − ecuT

c )T (Xc − ecuT
c ), (15)

where e ∈ Rn and ec ∈ R
lc are vectors of ones. To find the solution of the

optimization problem (12), we have the following theorem.

Theorem 3. The optimal solution vc of the optimization problem (12) is the
eigenvector corresponding to the maximum eigenvalue of the matrix (Hc −
XTLX).

Proof. The Lagrangian function of Eq. (12) can be written as

L(vc, λc) =vT
c Hcvc − ρcvT

c X
TLXvc − λc(vT

c vc − 1). (16)

Then, we derive the partial derivative of L(vc, λc) with respect to vc and make
it equal zero and have

∂L(vc, λc)
∂vc

=
(
Hc − ρcXTLX

)
vc − λcvc = 0

⇒ (
Hc − ρcXTLX

)
vc = λcvc.

(17)
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Finally, the cth optimization problem of OVR-LapPVP is also trans-
ferred to an eigenvalue decomposition problem. The solution vc is obtained
as the eigenvectors corresponding to the maximum eigenvalue of the matrix(
Hc − ρcXTLX

)
. ��

After obtaining C projection vectors, one for each class, the unknown test
data is predicted by the projected distances between it and all class centers. The
decision function is defined as:

c∗ = arg min
c=1,2,...,C

‖vT
c x − vT

c uc‖ (18)

where c∗ is the estimated class label of x. We summarize the specific procedure
of OVR-LapPVP in Algorithm 2.

Algorithm 2. OVR-LapPVP
Training Phase
Input: Sample matrices Xl,c, c = 1, · · · , C, and Xu;

1: Let X = [Xl,1; · · · ;Xl,C ;Xu] ∈ R
n×m be the training samples;

2: Obtain the adjacency matrix S by Eq. (1) based on X;
3: Compute the Laplacian matrix L = D − S, where D is the diagonal matrix with

Dii =
∑

j Sij ;
4: for c = 1 to C do
5: Compute the discriminative matrix Hc by Eq. (13) for the cth class data points;
6: Obtain the vectors vc by solving eigenvalue decomposition problem Eq. (17);
7: end for

Output: Projection vectors vc, c = 1, · · · , C.
Testing Phase
Input: Unknown test sample x, sample matrices Xl,c, c = 1, · · · , C, Xu, and projection
vectors vc, c = 1, · · · , C;

1: for c = 1 to C do
2: Calculate the distance from x to the cth class;
3: end for
4: Assign the class label to x by Eq. (18).

Output: Estimated label for x.

2.3 Comparison of Multi-class LapPVP

We make a comparison for the proposed two multi-class methods here. OVO-
LapPVP constructs C(C − 1)/2 binary classifiers by solving C(C − 1)/2 pairs
of eigenvalue decomposition problems. The computational complexity of OVO-
LapPVP is approximately O(C2m3). OVR-LapPVP generates C projection vec-
tors by solving C eigenvalue decomposition problems. The computational com-
plexity of OVR-LapPVP is approximately O(Cm3).
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Obviously, OVO-LapPVP requires a large amount of training time as com-
pared to OVR-LapPVP. Moreover, the strategy of classification in OVO-LapPVP
is more complex than that of OVR-LapPVP because OVO-LapPVP handles
more binary classifiers. Of course, OVR-LapPVP has its own disadvantage of
having a greater space complexity because its optimization problems are per-
formed on all training data.

3 Experiments

3.1 Experimental Setup

To confirm the feasibility and effectiveness of the proposed multi-class meth-
ods, we need to compare them with other multi-class ones. However, few
paper discusses the semi-supervised multi-class tasks. Thus, algorithms com-
pared here are extended by binary semi-supervised classifiers (LapTSVM,
LapTPMSVM, and LapLSTSVM) using strategies of both OVO and OVR,
where LapTSVM, LapTPSVM and LapLSTSVM are recently popular nonparal-
lel classifiers for semi-supervised learning as well as LapPVP. Finally, we get six
multi-class algorithms: OVO-LapTSVM, OVR-LapTSVM, OVO-LapTPMSVM,
OVR-LapTPMSVM, OVO-LapLSTSVM and OVR-LapLSTSVM.

Experiments are conducted on benchmark datasets that are from the Univer-
sity of California at Irvine (UCI) Machine Learning Repository [2]. The details
of datasets are presented in Table 1. For each dataset, we randomly select 70%
of samples from each class for training, and the remaining 30% for test. The
features of data are all normalized to the interval [0, 1]. To reduce the running
time of parameter selection, hyper-parameters are set to the same value for all
binary classifiers in one multi-class method. In addition, the grid search method
[4] is used for selecting the optimal hyper-parameters. In OVO-LapPVP and
OVR-LapPVP, α takes its value from the set {2−10, 2−9, . . . , 20}, and ρ from
{2−5, 2−4, . . . , 25}. Moreover, the number of nearest neighbors varies in the set
{1, 3, 5, 7, 9}.

Table 1. Information of benchmark datasets

Dataset #Sample #Feature #Class

Balance 625 4 3

Dnatest 1186 180 3

Glass 214 9 6

Iris 150 4 3

Lungcancer 32 56 3

Waveform 5000 21 3

Wine 178 13 3

X8D5K 1000 8 5

Zoo 101 16 7
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All Matlab scripts of the involved algorithms are written by ourselves. For
a fair comparison, we exploit the Matlab toolbox of quadratic programming to
solve quadratic programmings in the relevant methods. All methods are imple-
mented in MATLAB R2015b on a personal computer, whose system configura-
tion is Intel Core i5 (3.6 GHz) and 8 GB random access memory.

Parameters Analysis. It is well known, the parameters of a classifier may
have a great influence on its classification performance. Here, we conduct the
grid search method to analyze the impact of parameters on proposed methods
through the Glass dataset. As mentioned before, the pair of parameters take the
same values. In OVO-LapPVP and OVR-LapPVP, α takes its value from the
set {2−10, 2−9, . . . , 20}, and ρ from {2−5, 2−4, . . . , 25}. Here, K is selected from
the set {1, 3, 5, 7, 9}.
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Fig. 1. Accuracy vs. parameters (α, ρ) of OVO-LapPVP on Glass dataset under dif-
ferent K

Figures 1 and 2 separately show the influence of parameters of OVO-LapPVP
and OVR-LapPVP with 20% of labeled data and 50% of unlabeled data on
the Glass dataset. It is obviously observed that the pair of parameters (α, ρ)
can also greatly affect the performance of OVO-LapPVP and OVR-LapPVP.
Additionally, when varying the number of nearest neighbors, the optimal pair
of parameters (α, ρ) is totally different. Thus, the pair of optimal parameters
cannot be fixed for all datasets. Therefore, parameter selection may be an issue
for our method. However, the grid search method can help us to find appropriate
parameters for OVO-LapPVP and OVR-LapPVP in experiments.
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Fig. 2. Accuracy vs. parameters (α, ρ) of OVR-LapPVP on Glass dataset under dif-
ferent K

3.2 Results and Discussion

Experiments are conducted on nine UCI datasets to compare the classification
performance of semi-supervised multi-class methods. We run 10 trials on each
dataset and report the average accuracy.

Table 2 lists the results of eight semi-supervised multi-class classification
methods on nine datasets with 10% of labeled data and 50% of unlabeled data. It
is clear that the proposed methods including OVO-LapPVP and OVR-LapPVP
can perform better. On Dnatest, Iris, Lungcancer, Wine, X85DK and Zoo
datasets, OVO-LapPVP has the highest accuracy, followed by OVR-LapPVP.
On the Glass dataset, OVR-LapPVP has the highest accuracy, followed by OVO-
LapPVP.

Tables 3 and 4 separately summary the results of eight multi-class methods
obtained with 20% and 30% of labeled data, respectively. Both OVO-LapPVP
and OVR-LapPVP outperform other methods on all datasets except Balance
and Waveform. The classification performance on the X8D5K dataset shows that
the proposed semi-supervised classification methods are effective for multi-class
classification tasks.

Observation on Tables 2, 3 and 4 indicates that OVO-LapPVP achieves the
highest performance on 15 cases and the second highest on 6 cases. Note that
there are 27 cases totally. At the same time, we can see that OVR-LapPVP is the
best on 9 cases and the second best on 12 cases. To be simply, our methods are
superior to other methods in 24 out of 27 cases. Findings suggests that OVO-
LapPVP has the best performance for multi-class classification tasks among
compared methods, followed by OVR-LapPVP.
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Table 2. Average accuracy and standard deviation (%) obtained by eight multi-class
methods with 10% of labeled data

Dataset OVO-LapTSVM OVO-LapTPMSVM OVO-LapLSTSVM OVO-LapPPV

Balance 84.13 ± 2.41 73.17 ± 4.67 85.93 ± 2.70 84.13 ± 1.28

Dnatest 79.52 ± 3.13 69.86 ± 2.50 52.67 ± 0.79 83.17 ± 1.94

Glass 44.55 ± 8.69 41.82 ± 5.98 45.00 ± 6.70 47.12 ± 7.01

Iris 91.33 ± 4.12 92.89 ± 3.60 94.89 ± 2.78 96.44 ± 1.55

Lungcancer 45.00 ± 10.80 46.00 ± 10.75 37.00 ± 12.52 64.00 ± 8.43

Waveform 84.38 ± 0.77 81.81 ± 0.55 85.37 ± 0.93 79.95 ± 1.46

Wine 95.27 ± 2.74 94.36 ± 2.90 93.64 ± 3.76 95.45 ± 2.14

X8D5K 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Zoo 88.79 ± 4.56 89.70 ± 4.09 90.00 ± 5.16 91.70 ± 3.79

Dataset OVR-LapTSVM OVR-LapTPMSVM OVR-LapLSTSVM OVR-LapPPV

Balance 81.06 ± 5.24 68.41 ± 5.04 85.56 ± 2.60 83.02 ± 2.83

Dnatest 66.80 ± 4.10 73.46 ± 2.16 60.98 ± 2.17 82.92 ± 1.87

Glass 42.73 ± 6.05 41.97 ± 4.95 46.21 ± 4.24 48.79 ± 5.19

Iris 84.22 ± 8.41 86.44 ± 6.58 82.44 ± 4.85 95.56 ± 3.47

Lungcancer 39.00 ± 11.97 43.00 ± 12.52 37.00 ± 13.37 60.00 ± 12.47

Waveform 85.29 ± 0.87 78.75 ± 1.87 83.42 ± 1.31 78.30 ± 2.54

Wine 92.55 ± 5.10 93.27 ± 2.28 92.91 ± 5.17 95.64 ± 5.09

X8D5K 99.97 ± 0.11 99.77 ± 0.39 99.97 ± 0.11 100.00 ± 0.00

Zoo 89.09 ± 4.56 86.67 ± 3.83 90.61 ± 4.15 88.79 ± 3.21

The running time of eight methods on nine datasets with 20% of labeled
and 50% of unlabeled training data is recorded in Fig. 3. The first, third, fifth,
and seventh columns in every sub-figure represent the running time obtained by
methods using the OVO strategy, and the rest columns represent those using
OVR. Obviously, the OVR-based methods spend less time than OVO-based
ones because the OVR-based methods need to solve less optimization prob-
lems. Four methods, OVO-LapLSTSVM, OVR-LapLSTSVM, OVO-LapPVP
and OVR-LapPVP, that avoid the complex quadratic programmings can save
much time. Therefore, OVO-LapPVP and OVR-LapPVP are promising when
applied to multi-class classification tasks.

Additionally, we give the rank of individual methods in Table 5. A method
that has the highest accuracy is ranked the first, that has the second highest
accuracy is ranked the second, and so on. Digits in the row of “10%” mean the
average rank obtained from Table 2, “20%” and “30%” are from Tables 3 and
4, respectively. The row of “Average rank” provides the average rank over 27
cases, and that of “Friedman test” shows the rank difference between methods
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Table 3. Average accuracy and standard deviation (%) obtained by eight multi-class
methods with 20% of labeled data

Dataset OVO-LapTSVM OVO-LapTPMSVM OVO-LapLSTSVM OVO-LapPPV

Balance 86.72 ± 2.37 73.81 ± 2.58 87.30 ± 1.75 80.32 ± 2.61

Dnatest 82.81 ± 1.52 77.50 ± 1.88 56.97 ± 0.92 86.07 ± 1.61

Glass 48.03 ± 5.05 43.03 ± 6.11 47.88 ± 5.59 54.85 ± 7.03

Iris 95.11 ± 2.73 94.89 ± 1.83 94.67 ± 2.81 96.00 ± 4.03

Lungcancer 40.00 ± 14.91 41.00 ± 15.95 40.00 ± 16.33 68.00 ± 9.19

Waveform 84.95 ± 1.02 81.72 ± 1.06 86.59 ± 0.94 81.09 ± 1.09

Wine 95.64 ± 1.76 95.09 ± 2.28 94.55 ± 4.62 96.00 ± 1.43

X8D5K 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Zoo 92.42 ± 2.58 90.91 ± 3.50 90.30 ± 5.68 93.33 ± 2.39

Dataset OVR-LapTSVM OVR-LapTPMSVM OVR-LapLSTSVM OVR-LapPPV

Balance 81.85 ± 4.11 68.84 ± 3.33 86.83 ± 1.68 83.86 ± 4.54

Dnatest 75.51 ± 2.20 78.51 ± 1.97 70.34 ± 2.72 86.26 ± 1.70

Glass 47.88 ± 5.63 39.55 ± 7.71 48.03 ± 5.67 49.73 ± 9.37

Iris 87.33 ± 6.63 88.22 ± 8.38 83.56 ± 4.34 96.44 ± 3.51

Lungcancer 40.00 ± 17.64 40.00 ± 9.43 39.00 ± 17.92 62.00 ± 9.19

Waveform 85.69 ± 0.83 77.95 ± 1.62 85.77 ± 0.93 79.13 ± 0.99

Wine 94.00 ± 3.84 93.64 ± 4.39 94.00 ± 3.54 96.73 ± 4.91

X8D5K 100.00 ± 0.00 99.73 ± 0.34 99.97 ± 0.11 100.00 ± 0.00

Zoo 90.61 ± 3.90 90.61 ± 3.33 89.39 ± 3.57 92.73 ± 2.93

and reference method, where OVR-LapPVP is taken as the reference method.
The smaller the value of average rank and Friedman test is, the better per-
formance the corresponding method has. It is obvious that OVO-LapPVP is
slightly better than OVR-LapPVP since the value of OVO-LapPVP is less than
0 in the Friedman test. According to Table 5, we can conclude OVO-LapPVP
has a greater superiority, and OVR-LapPVP ranks the second.
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Table 4. Average accuracy and standard deviation (%) obtained by eight multi-class
methods with 30% of labeled data

Dataset OVO-LapTSVM OVO-LapTPMSVM OVO-LapLSTSVM OVO-LapPPV

Balance 88.89 ± 1.60 74.50 ± 3.47 87.46 ± 1.22 84.13 ± 2.51

Dnatest 84.38 ± 1.82 81.97 ± 2.13 60.65 ± 1.75 86.60 ± 0.96

Glass 49.70 ± 5.50 43.48 ± 8.89 51.36 ± 5.73 51.52 ± 3.71

Iris 94.89 ± 2.78 93.11 ± 3.70 94.89 ± 2.58 95.78 ± 3.22

Lungcancer 58.00 ± 12.29 43.00 ± 14.94 53.00 ± 16.36 76.00 ± 9.66

Waveform 85.19 ± 1.01 81.80 ± 0.79 86.86 ± 1.00 81.46 ± 0.84

Wine 96.55 ± 1.81 96.36 ± 1.21 95.09 ± 3.64 97.45 ± 1.53

X8D5K 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Zoo 92.42 ± 1.28 91.82 ± 2.49 90.30 ± 1.92 93.33 ± 2.58

Dataset OVR-LapTSVM OVR-LapTPMSVM OVR-LapLSTSVM OVR-LapPPV

Balance 82.28 ± 3.04 67.99 ± 6.32 87.72 ± 1.43 84.42 ± 5.07

Dnatest 80.93 ± 2.52 81.66 ± 2.29 76.83 ± 2.91 87.25 ± 0.65

Glass 49.39 ± 5.06 40.61 ± 6.69 47.27 ± 5.57 50.61 ± 6.45

Iris 90.00 ± 8.13 88.67 ± 6.83 81.33 ± 3.66 96.00 ± 3.44

Lungcancer 45.00 ± 15.81 46.00 ± 16.47 45.00 ± 8.50 77.00 ± 6.75

Waveform 85.99 ± 0.87 78.02 ± 1.36 86.42 ± 0.79 78.22 ± 0.76

Wine 95.45 ± 3.46 96.00 ± 2.24 96.55 ± 2.18 97.64 ± 1.50

X8D5K 100.00 ± 0.00 99.80 ± 0.28 100.00 ± 0.00 100.00 ± 0.00

Zoo 91.21 ± 3.01 91.21 ± 2.65 90.00 ± 4.75 91.82 ± 3.21

Table 5. Rank of eight methods on UCI datasets

Classifier 10% 20% 30% Average rank Friedman test

OVO-LapTSVM 3.67 3.00 2.67 3.11 0.52

OVR-LapTSVM 5.22 4.56 4.67 4.81 2.22

OVO-LapTPMSVM 4.44 4.22 4.67 4.44 1.85

OVR-LapTPMSVM 5.78 5.67 5.67 5.70 3.11

OVO-LapLSTSVM 3.67 3.89 3.78 3.78 1.19

OVR-LapLSTSVM 4.67 4.67 4.44 4.59 2.00

OVO-LapPPV 2.00 2.44 2.44 2.30 −0.30

OVR-LapPPV 3.00 2.33 2.44 2.59 0.00
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Fig. 3. Running time of eight methods on UCI datasets

4 Conclusion

In this paper, we propose OVO-LapPVP and OVR-LapPVP for multi-class clas-
sification tasks. As the extension of LapPVP, the proposed methods both can
take advantage of the discriminative information of the labeled data and the
graph structure of unlabeled data to obtain the optimal projection vectors. OVO-
LapPVP adopts the OVO strategy, and OVR-LapPVP adopts the OVR strategy.
That is to say, OVO-LapPVP obtains C(C − 1)/2 pairs of projection vectors,
and OVR-LapPVP obtains C ones for the C-class data. Since OVO-LapPVP
needs more optimization problems to solve than OVR-LapPVP, which results
that OVO-LapPVP costs more time than OVR-LapPVP on the same dataset.

Experiments conducted on the UCI datasets have demonstrated that the
proposed methods have better classification performance compared with other
popular semi-supervised methods based on manifold regularization and twin
support vector machine. OVO-LapPVP outperforms OVR-LapPVP in classi-
fication performance, but is worse than OVR-LapPVP in running efficiency.
Therefore, OVO-LapPVP and OVR-LapPVP can be applied to different scenes.
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OVO-LapPVP and OVR-LapPVP are both excellent on solving multi-class clas-
sification problems for linear cases, in the following work, we can consider the
methods with kernel ticks for nonlinear cases.
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