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Abstract. The utilization of automatic polyp detection during
endoscopy procedures has been shown to be highly advantageous by
decreasing the rate of missed detection by endoscopists. In this paper, we
propose a new loss function for training an object detector based on the
EfficientDet architecture to detect polyp areas in endoscopic images. The
proposed loss combines the features of the Focal loss and DIoU (Distance
Intersection over Union) loss named as Focal-DIoU. In addition, we have
also carried out some experiments to evaluate the proposed loss function.
The experimental results show that our proposed model achieves higher
accuracy than previous works on two public datasets.
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1 Introduction

Polyps are abnormal growths that can develop in various parts of the body,
including the colon, stomach, and uterus. In the context of colon health, polyps
can potentially develop into cancerous tumors over time [1]. The detection and
removal of colorectal polyps are widely regarded as being most effectively accom-
plished through an endoscopy procedure. However, polyps can be missed in an
endoscopy procedure for several reasons, such as, small size of polyps, low expe-
rience of doctors and procedure speed [2]. Therefore, computer-aided systems
possess significant potential by reducing missed detection rate of polyps to pre-
vent the development of colon cancer [1,2]. Particularly deep learning approaches
have shown promising results in improving the accuracy and efficiency of detect-
ing polyps in medical images.

Deep learning models, such as convolutional neural networks (CNNs), have
been widely used in medical image analysis due to their ability to automati-
cally learn meaningful features from raw data [12]. By training a CNN-based
object detection model on a large dataset of medical images, the model can
learn to detect and localize polyps accurately and efficiently. Object detection
problems using deep learning approaches such as Regions with CNN features
(R-CNN) [15], Fast R-CNN [16], Feature Pyramid Networks (FPN) [20], Single
Shot Detector (SSD) [17], You Only Look Once (YOLO) [19], and Efficient-
Det [27] have gained popularity in recent years. Building upon this achievement,
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deep learning models have found extensive application in the domain of medi-
cal image analysis [12]. Between them, EfficientDet is one of the most effective
models for object detection [27].

The loss function for bounding box regression (BBR) is crucial for object
detection, with the ln-norm loss being the most commonly used [29]. In BBR,
there exists the imbalance problem in training samples. Specifically, the num-
ber of high-quality samples (anchor boxes) with small regression errors is much
fewer than low-quality samples (outliers) due to the sparsity of target objects
in images, e.g., polyps. This paper introduces a novel loss function, named as
Focal-DIoU, which integrates the Focal loss and the DIoU loss. The proposed
loss function aims to enhance the accuracy of small objects detection while con-
currently addressing imbalances in class distribution. Therefore, the detector
with the proposed loss function can work well with polyp detection. Moreover,
the proposed loss can be easily incorporated into multiple detection models. The
experimental results show that the Focal-DIoU loss can enhance the accuracy of
the EfficientDet model for the polyp detection problem.

The contribution of our work is summarized as follows:

1. Introduce the Focal-DIoU loss function that handles the imbalance between
foreground and background classes together with enhancing the localization
of small objects.

2. Integrate the Focal-DIoU loss to train the EfficientDet model for polyp detec-
tion.

3. Conduct the various experiments on two well-known polyp datasets. The
results show that our proposed loss can enhance the accuracy for the polyp
detection problem.

The rest of this paper is organized as follows. Section 2 we first gather essen-
tial reviews about our topic. Section 3 presents the backbone EfficientDet and
common BBR loss functions. In Sect. 4, we present the proposed method with
the new loss function called Focal-DIoU and the object detection model for polyp
detection. The experimental settings are provided in Sect. 5. After that, Sect. 6
presents the experimental results and discussions. Conclusions are discussed in
Sect. 7.

2 Related Work

In recent years, there have been a number of studies
proposed about deep learning-based approaches to object detection such as
R-CNN [3], Fast R-CNN [16], FPN [20], SSD [17], YOLO [19], and Efficient-
Det [27]. There are two types of object detection models, i.e., a two-stage detector
and a one-stage detector [10]. The two-stage detector includes a preprocessing
step for generating object detection proposals and a detection step for identify-
ing objects. The one-stage detector has an integrated process containing both
above two steps.
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Two-stage detectors, e.g., Mask R-CNN [22], consist of two separated mod-
ules, i.e., a region proposal network (RPN) [3] and a detection module. The RPN
generates object proposals, which are then refined by the detection module. This
two-stage approach has shown to achieve better accuracy than one-stage detec-
tors, especially in detecting small objects and handling occlusion. However, the
disadvantages of the two-stage framework are the requirement of large resources
for computation.

To overcome the above shortcomings, one-stage detectors have been devel-
oped recently, e.g., YOLO [19], SSD [17], CenterNet [23] and EfficientDet [27]
have a simple and efficient architecture that can detect objects in a single phase.
These detectors use a feature pyramid to detect objects at different scales and
employ anchor boxes to handle object variability. However, they often suffer
from lower accuracy compared to two-stage networks, especially in detecting
small objects and handling class imbalance. Recently, EfficientDet is one of the
most effective object detection model due to using a compound scaling method
to balance the model’s depth, width, and resolution [24].

Different types of networks can be applied in medical object detection. An
object detection algorithm could detect lesions automatically and assist diagno-
sis during the process of endoscopic examination. Hirasawa et al. [5] used SSD
to diagnose the gastric cancer in chromoendoscopic images. The training dataset
consisted of 13,584 images and the test dataset included 2,296 images from 77
gastric lesions in 69 patients. The SSD performed well to extract suspicious
lesions and evaluate early gastric cancer. Wu et al. [7] proposed an object detec-
tion model named ENDOANGEL for real-time gastrointestinal endoscopic exam-
ination. ENDOANGEL has been utilized in many hospitals in China for assisting
clinical diagnosis. Gao et al. [6] analyzed perigastric metastatic lymph nodes of
computerized tomography (CT) images using Faster R-CNN. The results showed
that the Faster R-CNN model has high judgment effectiveness and recognition
accuracy for CT diagnosis of perigastric metastatic lymph nodes.

The loss function for bounding box regression (BBR) is crucial for object
detection, with the ln-norm loss being the most commonly used [29]. However, it
is not customized to adapt to the intersection over union (IoU) evaluation metric.
The IoU loss is also used in the object detection models. However, the IoU loss
will always be zero when two bounding boxes have no intersection [13]. Thus,
the generalized IoU (GIoU) loss [25] was proposed to address the weaknesses
of the IoU loss, i.e., Recently, the Complete IoU Los (CIoU) and the distance
IoU (DIoU) [26] were proposed with faster convergence speed and better per-
formance. However, above losses seem less effective with the imbalance training
data. To handle this, we propose the new loss function that combines the IoU
based loss, i.e., DIoU and the Focal loss [21] for the polyp detection problem.

3 Background

In this section, we first review the detector used in this paper, i.e., EfficientDet
backbone. Second, we describe the mathematical computation of some related
loss functions.
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3.1 EfficientDet Architecture

EfficientDet [27] is a recent object detection architecture proposed by Tan et al.
in 2020. It is based on the EfficientNet backbone [24], which is a family of efficient
convolutional neural networks that achieves a state-of-the-art performance on
image classification tasks.

One of the key features of EfficientNet is its use of a compound scaling method
to balance the model’s depth, width, and resolution. This method allows the
model to achieve high accuracy with fewer parameters compared to other object
detection architectures [24]. Based on EffiecientNet, EfficientDet can extract
features from input images effectively. Moreover, EfficientDet employs the Bidi-
rectional Feature Pyramid Network (BiFPN) module [27] to integrate features
from multiple scales to improve the accuracy of the detection results. Efficient-
Det has different versions labeled from D0 to D7 with increasing depth, width,
and resolution. In this paper, we use the EfficientDet-D0 backbone which is the
smallest and fastest version.

3.2 Loss Function

The loss function is an important component of an object detection model.
It helps to guide the training process to enhance the accuracy for the object
detection problem. Here, we introduce some common loss functions for the object
detection problem.

IoU Loss: The Intersection over Union (IoU) is commonly used as a metric for
evaluating the performance of object detection models. It can also be used as
a loss function to optimize the model during training [18]. The IoU loss mea-
sures the similarity between the predicted bounding box and the ground truth
bounding box. It is defined as follows:

LIoU = 1− IoU, (1)

where IoU is the intersection over union between the predicted bounding box
and the ground truth bounding box. However, the IoU loss has some weakness
when measuring the similarity between two bounding boxes. It does not reflect
the closeness between the bounding boxes correctly [13].

Smooth L1: The Smooth L1 loss was first proposed for training Fast
R-CNN [16]. The Smooth L1 loss function is defined as follows:

LSmooth L1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

(2)

where x is the difference between the predicted and the ground truth bounding
boxes.
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This loss function is widely used in popular object detection frameworks such
as Faster R-CNN and Mask R-CNN because of the smoothness and robustness
to outliers. However, similar to the IoU loss, it also do not consider the dis-
tance between the bounding boxes. Moreover, the Smooth L1 loss bias to larger
bounding boxes.

DIoU Loss: The Distance-IoU (DIoU) loss [26] is proposed to directly mini-
mize the normalized distance between predicted and ground truth bounding for
achieving faster convergence. The DIoU loss takes into account the aspect ratio
and diagonal distance of the predicted and ground truth bounding boxes. The
loss penalizes the distance between the center points of the predicted and ground
truth boxes as well as the difference between their diagonal lengths. The formula
for DIoU loss can be represented as follows:

LDIoU(b, bgt) = 1− IoU +
d(b, bgt)2

c2
, (3)

where b and bgt denote the central points the predicted and ground truth bound-
ing boxes, respectively; d(.) is the Euclidean distance and c is the diagonal length
of the smallest enclosing box covering the bounding boxes. The DIoU loss has
shown to be effective to improve the accuracy of object detection models, espe-
cially with small objects or many objects in one image [26].

Focal Loss: The Focal Loss is designed to address the imbalance between fore-
ground and background classes during training of object detection models [21].
This loss tries to down-weight easy samples and thus focus training on negative
samples. Let’s define p is the probability estimated by the model for positive
class. Then, we define pt = p for the positive class and pt = 1 − p for the
negative class. The computation of this loss is as follows:

LFocal(pt) = −(1− pt)γ log(pt), (4)

where γ is the focusing parameter that smoothly adjusts the rate for down-
weighting easy samples.

4 Methods

In this section, we present the new loss function named as Focal-DIoU to improve
the performance of the DIoU loss. After that, we present the polyp detection
model with the EfficientNet-B0 backbone trained by the proposed loss.

4.1 The Proposed Loss

The existence of BBR losses has some drawbacks when applying to the polyp
detection problem. Firstly, inspired by the improvement of convergence speed as
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well as the performance, the IoU-based losses, such as IoU and DIoU, still do
not solve the imbalance between high-quality and low-quality anchor boxes. In
other hand, the other losses based on the Focal loss are successful in tackling
the imbalance problem by increasing the contribution of high-quality boxes [13].
However, these losses only work well with medium or large objects which are
not suitable for polyp detection. Therefore, to tackle these above problems, we
propose the Focal-DIoU loss which combines the advantages of the Focal and
DIoU loss to provide a more effective and robust loss function for training polyp
detection models.

Firstly, the Focal-DIoU loss integrates the Focal loss, which is originally
designed for addressing the issue of class imbalance in object detection. The
idea behind the Focal loss is that it assigns different weights to different sam-
ples. Specifically, higher weights are assigned to samples that are miss-classified
or hard to classify. This allows the Focal-DIoU to focus more on challenging
samples, such as rare objects with larger errors, leading to better optimization
and improved performance on imbalanced data.

Secondly, the Focal-DIoU loss also retains the advantages of DIoU, which
considers both the aspect ratio and the distance between bounding boxes. By
incorporating the distance penalty term, Focal-DIoU can effectively handle vari-
ations in object size and position, making it more robust to difference of object
scales and object misalignment.

We integrate the DIoU and Focal loss by re-weighting DIoU by the value of
IoU, then the Focal-DIoU is computed as below:

LFocal-DIoU = −(1− IoU)γ log(IoU)LDIoU. (5)

In this paper, we use the Focal-DIoU loss in Eq. 5 to train the detector for the
polyp detection problem. The modulating factor (1− IoU)γ intuitively decreases
the loss contribution from easy samples and expands the range in which a sample
obtains a low loss.

Fig. 1. Architecture of Proposed Model for Polyp Detection.
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4.2 Proposed Model

As mentioned in Sect. 3.1, our proposed model is based on the EfficientDet-D0
model as introduced in Sect. 3. The input image is first resized to a fixed size
(e.g., 512× 512× 3). Then, it is passed through a backbone network EfficientNet-
D0, which consists of multiple stages with different spatial resolutions. The back-
bone network is responsible for extracting multi-scale features from the input
image.

As shown in Fig. 1, after passing through the backbone network, the output
of the network is a prediction mask. The Focal-DIoU loss function is calculated
based on the prediction mask and the ground truth mask with all input samples
of a training batch size of the dataset. The value of loss function is used to
optimize the weights of the EfficientDet-D0 network.

5 Experimental Settings

This section presents the datasets and the experimental settings used in this
paper.

5.1 Datasets

This section presents two polyp datasets used in our experiments, i.e., Kvasir-
SEG and CVC-ClinicDB dataset [30].

The Kvasir-SEG dataset [28] is the collection of 1,000 endoscopic images of
the gastrointestinal tract, including the esophagus, stomach, duodenum, and
colon, obtained from two Norwegian medical centers. The dataset contains
images of different types of abnormalities, such as polyps, compression, bleed-
ing, swelling, inflammation, white stool, tumors, and ulcers, with the resolution
of 512× 512× 3. The image samples are annotated by experts to indicate the
location and type of abnormality present in each image.

The CVC-ClinicDB dataset [4] comprises 612 endoscopic images of the colon
obtained from the Clinic Hospital of Barcelona in Spain. The dataset includes
images of polyps, respectively, acquired using a linear endoscope and a convex
endoscope. The images are annotated by experts to indicate the presence or
absence of polyps.

In order to prepare the datasets for evaluating the proposed object detection
model, we split the datasets into three subsets, i.e., training, validating, and
testing, by the ratio as 8:1:1, respectively. The numbers of samples for training,
testing, and validating are shown in Table 1.

We transform the mask images of the datasets into bounding boxes to fit with
an object detection problem. Here, we apply a contour detection algorithm to
the binary mask images to identify the boundaries of the objects in the images.
The contours are then converted into rectangular bounding boxes that enclose
the objects. This process is executed for each mask image in the datasets. The
resulting bounding box annotations are used to train and evaluate our proposed
object detection model.
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Table 1. Dataset splitting.

Dataset Total Train Test Val

Kvasir-SEG 1000 800 100 100
CVC-ClinicDB 612 489 61 62

5.2 Parameter Settings

For each dataset, we employ two steps in the training phase. In the first step, the
pre-trained EfficientDet-D0 model on the COCO dataset [14] is trained only on
the last layer of the EfficientDet-D0 while freezing the rest layers. In the second
step, we train all layers of the EfficientDet-D0 model and the early stopping is
used to terminate the training process. In the first step, the learning rate, batch
size, and the number of epochs are 0.005, 32, and 10, respectively. These values
for the second step are 0.001, 16, and 200, respectively.

5.3 Experiment Setup

We conduct the experiments on a computing system with the following specifi-
cations: CPU Intel(R) Xeon(R) CPU@ 2.00GHz, 16 GB of RAM, and a Tesla
T4 GPU with 16GB of VRAM. We use the Python programming language with
the PyTorch library [8] to implement our proposed polyp detection model.

For comparison, we train the detectors with the same backbone, i.e.,
EfficientDet-D0 but using five different loss functions, i.e., Smooth L1 [9],
IoU [18], CIoU [11], DIoU [26], and the proposed loss Focal-DIoU. These experi-
ments are conducted on two different datasets, as mentioned in Sect. 5.1. We use
COCO metrics [14] for evaluation in our experiments that are based on Average
Precision (AP). Notice that, AP is averaged over all classes and we make no
distinction between AP and mAP. AP is a performance evaluation metric used
in object detection and recognition tasks. It calculates the model’s accuracy
in determining the location and classifying objects in an image. AR (Average
Recall) is a similar performance evaluation metric that focuses on the model’s
coverage, i.e., its ability to detect all objects present in an image.

6 Results

6.1 Accuracy Comparison

As can be seen from Table 2, the detector with the Focal-DIoU loss achieves
the highest AP as 0.637, with competitive performance in other metrics as well.
The detector with Focal-DIoU generally outperforms those with the Smooth L1,
IoU, CIoU, and DIoU loss in most of the evaluated metrics. On this dataset,
the detector with IoU shows the worst performance. Notably, the detector with
DIoU achieves the highest values in some specific metrics such as AP75 and
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APL. However, the detector with Focal-DIoU remains the top-performing loss
function in terms of overall performance with the highest AP score. The reason
is that the proposed loss function helps the training detector by considering the
small, medium, and the large size polyps. Thus, using our proposed loss function
enhances the overall accuracy compared with the previous loss function, such as
Smooth L1, IoU, CIoU, and DIoU on the Kvasir-SEG dataset for the polyp
detection problem.

Table 2. The results of EfficientDet-D0 with different loss functions on Kvasir-SEG
dataset.

LossFunction AP AP50 AP75 APL AR AR50 AR75 ARL

Smooth L1 0.612 0.832 0.715 0.695 0.638 0.657 0.657 0.743
IoU 0.542 0.769 0.583 0.617 0.557 0.629 0.633 0.709
CIoU 0.619 0.853 0.709 0.702 0.637 0.672 0.672 0.755
DIoU 0.623 0.848 0.727 0.704 0.645 0.691 0.691 0.772
Focal-DIoU 0.637 0.850 0.680 0.721 0.663 0.679 0.679 0.764

Similarly, as is presented in Table 3, the detector with the Focal-DIoU loss
achieves the highest AP as 0.790. The detector with the CIoU loss also delivers
competitive results with the highest Recall as 50% IoU threshold (i.e., AP50).
Generally, the detectors with the Focal-DIoU and CIoU loss outperform others
in almost all of the evaluated metrics. We can observe that Focal-DIoU achieves
the highest values in most metrics except AR50 and AR50 where CIoU gets the
highest score. Overall, the proposed loss function helps the detector for improving
the accuracy for the polyp detection problem.

Table 3. The results of EfficientDet-D0 with different loss functions on CVC-ClinicDB
dataset.

LossFunction AP AP50 AP75 APL AR AR50 AR75 ARL

Smooth L1 0.773 0.993 0.879 0.753 0.787 0.829 0.829 0.817
IoU 0.773 0.957 0.909 0.773 0.783 0.808 0.808 0.813
CIoU 0.789 0.986 0.893 0.778 0.806 0.835 0.835 0.830
DIoU 0.776 0.949 0.886 0.767 0.790 0.808 0.808 0.803
Focal-DIoU 0.790 0.996 0.926 0.805 0.814 0.827 0.827 0.840

6.2 Visualization

To observe the results of the polyp detection visually, we show the detection
results for several images of the experimental datasets in Table 4. This table
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shows that the detector with the Focal-DIoU loss helps to detect the polyp area
more correctly in both experimental datasets. Especially, on the Kvasir-SEG
dataset, the detector with the Focal-DIoU loss achieves more correctly polyp
detection results compared with the detectors with other loss function. For the
CVC-ClinicDB dataset, the detectors with loss functions achieves similar accu-
racy. Overall, the detector with the Focal-DIoU loss presents the best detection
result even with very small and unevenly distributed polyps in the image.

Table 4. Visualization of polyp detection resulting from EfficientDet-D0 with different
loss functions.

7 Summary

In this paper, we focus on studying loss functions to improve the accuracy and
efficiency of the polyp detection model. We propose Focal-DIoU loss to train the
effective detector, i.e., EfficientDet-D0 backbone for the polyp detection problem.
The proposed loss function can help the detector consider small, medium, and
large size of polyps in the training process. Thus, the detector enhances the
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accuracy to detect various sizes of polyps. The experimental results show that
the detector with the proposed loss function achieves higher accuracy than the
detectors with other loss functions for the polyp detection problem. This proves
that the proposed loss function can help to improve the polyp detection problem.
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