
Discovering Prevalent Co-location Patterns
Without Collecting Co-location Instances

Vanha Tran1(B), Caodai Pham2, Thanhcong Do1, and Hoangnam Pham1

1 FPT University, Hanoi 155514, Vietnam
hatv14@fe.edu.vn, {congdthe150385,namphhe160714}@fpt.edu.vn

2 Le Quy Don Technical University, Hanoi 11355, Vietnam
daipc.isi@lqdtu.edu.vn

Abstract. Discovering prevalent co-location patterns (PCPs) is a process of find-
ing a set of spatial features in which their instances frequently occur in close
geographic proximity to each other. Most of the existing algorithms collect co-
location instances to evaluate the prevalence of spatial co-location patterns, that
is if the participation index (a prevalence measure) of a pattern is not smaller
than a minimum prevalence threshold, the pattern is a PCP. However, collecting
co-location instances is the most expensive step in these algorithms. In addition,
if users change the minimum prevalence threshold, they have to re-collect all
co-location instances for obtaining new results. In this paper, we propose a new
prevalent co-location pattern mining framework that does not need to collect co-
location instances of patterns. First, under a distance threshold, all cliques of an
input dataset are enumerated. Then, a co-location hashmap structure is designed to
compact all these cliques. Finally, participation indexes of patterns are efficiently
calculated by the co-location hashmap structure. To demonstrate the performance
of the proposed framework, a set of comparisonswith the previous algorithmwhich
is based on collecting co-location instances on both synthetic and real datasets is
made. The comparison results indicate that the proposed framework shows better
performance.

Keywords: Prevalent co-location pattern · Co-location instance · Clique ·
Hashmap

1 Introduction

The unknown and valuable knowledge mined from spatial data sets can be applied to
many domains, thus spatial data mining has received more and more attention recently.
Prevalent co-location pattern (PCP) mining, which discovers a set of spatial features
whose instances frequently appear together in proximity space, is an important branch
of spatial data mining. For example, shopping centers and restaurants are co-located
commonly in cities, thus {Shopping center, Restaurant} is called a prevalent co-location
pattern. The information about the pattern can be provided to businessmen where they
should set up new shops or restaurants to get the best benefit. The PCPmining technology
has been applied widely in location-based services [1], environment [2], public safety
[3], socio-economics [4], ecology [5], urban transportation [6], and so on.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
N. T. Nguyen et al. (Eds.): ACIIDS 2023, LNAI 13995, pp. 408–420, 2023.
https://doi.org/10.1007/978-981-99-5834-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5834-4_33&domain=pdf
https://doi.org/10.1007/978-981-99-5834-4_33

Discovering PCPs without Collecting Co-location Instances 409

Different from association rule mining [7], objects in spatial data carry spatial
locations and are distributed in a continuous space. They have complex neighbor
relationships. Hence, discovering PCPs from spatial data sets is nontrivial.

1.1 Related Work

Many mining algorithms have been proposed and they can be roughly divided into
three categories. The first type can be called the conventional mining algorithm which
effectively mines all correct prevalent patterns. These algorithms belonging to this type
use the time-consuming join operator to generate co-location instances [8, 9], check
neighborhoods [10], and construct a prefix tree structure to find co-location instances
[11, 12]. However, these algorithms are hard to deal with big data sets, thus based-
MapReduce [13], Hadoop [14], and GPU [15–17] parallel mining algorithms have been
proposed. The second type can be named the special spatial data type mining algorithm
which discoveries co-location patterns from special spatial data such as spatiotemporal
data [18], rare event data [19], uncertain data [20], fuzzy data [21], data with network
constraints [1] or data with considering density-weighted distance [22], and so on. The
third type can be labeled as the compression PCP mining algorithm which represents
concisely the mining results by top-k closed patterns [23], maximal patterns [24], and
redundant patterns from the mining results [25, 26].

Fig. 1. The common framework of prevalent co-location pattern mining.

All of the above algorithms are developed based on a common framework shown
in Fig. 1 [10] with four phases. The first phase materializes neighbor relationships of
instances of the spatial data set. A set of candidate co-location patterns is generated in
the second phase. The third phase collects all co-location instances of each candidate.
After that, the participation index of each candidate pattern is calculated based on the
co-location instances and PCPs are filtered in the fourth phase. However, the framework
has two drawbacks. First, it employs a time-consuming generate-test candidate model.
If the number of features is large or the data set is big/dense, the number of candidates
becomes very huge and the mining process will take a lot of execution time [14].

For example, Fig. 2 shows the execution time of each phase [27] in joinless [10] and
iCPI-tree [11]. It can be seen that most of the execution time is devoted to collecting
co-location instances. Second, if users change the minimum prevalence threshold, this
framework has to re-collect the co-location instances of all candidates. Thus, this mining
framework is poorly flexible.

1.2 Contributions

This paper proposes a new prevalent co-location pattern mining framework that tackles
the two drawbacks. The key contributions are as follows.

410 V. Tran et al.

(a) The joinless algorithm (b) The iCPI-tree algorithm

Fig. 2. The execution time in each phase of the mining framework shown in Fig. 1.

(1) We design a fast enumerating clique approach. The neighbor relationships of
instances are represented by using cliques.

(2) A co-location hashmap structure, which is constructed from the cliques, is designed
to store compactly neighbor relationships of instances. All information about co-
location instances of patterns is located under the hashmap structure.

(3) Our algorithm is no longer using the time-consuming generate-test model. Based on
the co-location hashmap structure, the participation indexes of patterns are efficiently
and easily calculated. When the minimum prevalence threshold is changed, the
proposed method can quickly and adaptively give new results.

The rest of the paper is organized as follows. The basic concept of PCP mining is
described briefly in Sect. 2. Section 3 represents the proposed mining framework in
detail. A set of experiments is designed to demonstrate the advantage of our method in
Sect. 4. Section 5 concludes the paper and provides directions for future work.

2 The Basic Concept

F = {f 1,…,f n} is a set of spatial features and S is a set of their instances. Each instance
in S is a vector < feature type, ID, location >. A co-location pattern c = {f 1,…,f k} is
a subset of F whose instances have neighbor relationships to each other. The number of
features in c, k, is called the size of c. If the distance between instances is smaller than
a distance threshold d, the two instances have a neighbor relationship, e.g., A.1B.3. A
co-location instance of c, I, is a set of instances, I ⊆ S, which includes the instances of
all features in c and forms a clique (all instances have neighbor relationships with each
other). A set of all co-location instances is called the table instance of c, denoted T (c).

The participation ratio (PR) of feature f i in a pattern c is denoted as PR(fi, c) =
Number of instances offi inT (c)
Total number of instances offi inS

. The participation index (PI) of c is defined as PI(c) =
min{PR(f i, c)}, f i ∈ c. Users give a minimum prevalence threshold, min_prev, if the
participation index of c is larger thanmin_prev, c is called a prevalent co-location pattern.

Lemma 1: The participation ratio and the participation index are monotonically non-
increasing with the size of the co-location pattern.

Proof: Please refer to [8] in detail.
Lemma 1 shows that if pattern c′ is a super pattern of c, c⊆ c′, we have a relationship

PI(c) ≥ PI(c′). If c is not prevalent, c′ is also not a prevalent co-location. Lemma 1 is
employed to quickly discover PCPs in our algorithm.

Discovering PCPs without Collecting Co-location Instances 411

A B A C A D B C B D C D
A.1 B.3 A.1C.4 A.2 D.2 B.1C.1 B.1D.1 C.1D.1
A.3 B.1 A.2C.1 A.2 D.3 B.1C.2 1/3 1/3 C.1D.3
A.4 B.1 A.2C.3 A.3 D.1 B.3C.4 1/3 C.3D.2
3/4 2/3 A.3C.2 2/4 3/3 2/3 3/4 2/4 3/3

2/3 A.4C.2 2/4 2/3 2/4
PRs 4/4 4/4

PI 4/4 Co-location instance
Candidate Table instance

A B C A B D A C D B C D A B C D
A.1 B.3 C.4 A.3 B.1 D.1 A.2 C.1 D.3 B.1 C.1 D.1 A.3 B.1 C.1 D.1
A.3 B.1 C.1 1/4 1/3 1/3 A.2 C.3 D.2 1/3 1/4 1/3 1/4 1/3 1/4 1/3
A.3 B.1 C.2 1/4 A.3 C.1 D.1 1/4 1/4
A.4 B.1 C.2 2/4 2/4 3/3
3/4 2/3 3/4 2/4

2/3

Fig. 3. An example of prevalent co-location pattern mining.

Definition 1 (Participating instance, ParI): The distinguish instance set of each feature
in T (c) is denoted as the participating instances of the feature in c.

For example, for candidate c = {A, B, C}, all co-location instances of it are T (c) =
{{A.1, B.3, C.4}, {A.3, B.1, C.1}, {A.3, B.1, C.2}, {A.4, B.1, C.2}}. We obtain ParI(A,
c) = {A.1, A.3, A.4}, ParI(B, c) = {B.1, B.3}, and ParI(C, c) = {C.1, C.2, C.4}. Thus,
PR(A,c) = |{A.1,A.3, A.4}|

|{A.1,A.2,A.3, A.4}| = |ParI(A,c)|
4 = 3

4 = 0.75, PR(B, c) = 0.67, and PR(C, c) =
0.75. Finally, PI(c) = min{0.75, 0.67, 0.75} = 0.67. Assuming a user sets min_prev =
0.5, since PI(c) = 0.67 > min_prev = 0.5, thus {A, B, C} is a PCP.

It can be seen that if the participating instances of each feature in a pattern are
obtained first, there is no need to collect all co-location instances of the pattern.

3 The New Prevalent Co-location Pattern Mining Framework

3.1 Enumerating Cliques

After materializing neighbor relationships of instances and converting to a star neigh-
borhood structure which is developed by Yoo et al. [10], we design a finding clique
strategy to quickly enumerate all cliques of an input data set. Table 1 shows the star
neighborhoods of each center instance constructed from Fig. 3. Note that the neighbors
of each center instance in the star neighborhood are sorted in descending order. Based
on Fig. 3 and Table 1, we observe three conclusions: (1) The information of neighbor
relationships of all sub-cliques is included in the maximal clique. For example, clique
{A.1, B.3, C.4} includes all neighbor information of sub-cliques {A.1, B.3}, {A.1, C.4},
and {B.3, C.4}; (2) Each center instance combines with its star neighbors to construct
several maximal cliques. For example, center instance A.2 and its neighbors {C.1, C.3,
D.2, D.3} can generate two maximal cliques {A.2, C.1, D.3} and {A.2, C.3, D.2}. Note
that the maximal notion here is local, only relative to one center instance. One maximal
clique, that is constructed by one center instance, must be a clique (andmaybe amaximal
clique) in global. For example, {B.1, C.1, D.1} is a maximal clique constructed by center
instance B.1, however, it is a clique in global since it has a super-clique {A.3, B.1, C.1,

412 V. Tran et al.

D.1}; (3) All neighbor relationships of instances of an input dataset are partitioned into
cliques and it does not miss any neighbor relationships. For example, in Table 1, the
spatial dataset in Fig. 3 is partitioned into 10 true cliques.

Based on the above observation, we design an enumerating clique strategy. Our main
idea is, in each center instance and its neighbors, to generate a set of candidate maximal
cliques, and then verify which of the candidates are true maximal cliques. To do this,
we iterate verifying the directed sub-cliques of candidates. If any directed sub-clique is
not a true clique, the current candidate clique is deleted and turned to the others.

Table 1. Enumerating true cliques from star neighborhoods

Instance Star neighbors Candidate maximum cliques True cliques

A.1 B.3, C.4 {A.1, B.3, C.4} {A.1, B.3, C.4}

A.2 C.1, C.3, D.2, D.3 {A.2, C.1, D.2}, {A.2, C.1, D.3}
{A.2, C.3, D.2}, {A.2, C.3, D.3}

{A.2, C.1, D.3}
{A.2, C.3, D.2}

A.3 B.1, C.1, C.2, D.1 {A.3, B.1, C.1, D.1}
{A.3, B.1, C.2, D.1}

{A.3, B.1, C.1, D.1}

A.4 B.1, C.2 {A.4, B.1, C.2} {A.4, B.1, C.2}

B.1 C.1, C.2, D.1 {B.1, C.1, D.1}, {B.1, C.2, D.1} {B.1, C.1, D.1}

B.2 - - -

B.3 C.4 {B.3, C.4} {B.3, C.4}

C.1 D.1, D.3 {C.1, D.1}, {C.1, D.3} {C.1, D.1}, {C.1, D.3}

C.2 - - -

C.3 D.2 {C.3, D.2} {C.3, D.2}

C.4 - - -

D.1 - - -

D.2 - - -

D.3 - - -

-: having no neighbors or cliques

For example, Table 2 lists the iterator steps when enumerating maximal cliques of
B.1. The star neighbors of B.1 are {C.1, C.2, D.1} and they generate two candidate
maximal cliques {B.1, C.1, D.1} and {B.1, C.2, D.1}. First, we obtain the directed sub-
clique of the candidate, {C.1, D.1} and {C.2, D.1}. Next, getting the star neighborhood
of the first instance in the directed sub-clique, for C.1 be {D.1, D.3} and for C.2 be ∅.
After that, finding the intersection of the directed sub-clique with the star neighbors of
C.1, {D.1} ∩ {D.1, D.3} = {D.1} and C.2, ∅ ∩ {D.1} = ∅. If the size of the intersecting
result (denoted as Flag) is equal to the size of the directed sub-clique subtracting 1, it
means all instances in the directed sub-clique may have neighbor relationships to each
other and the current candidate maximal clique may be a true clique. If not, the current
candidate is not a true clique and is deleted immediately.

Discovering PCPs without Collecting Co-location Instances 413

Table 2. Enumerating maximal cliques of B.1

Candidate
maximal cliques

Iterator step True clique

Directed
sub-clique

Star neighborhoods of
the first instance

Intersection Flag

{B.1, C.1, D.1} {C.1, D.1} {D.1, D.3} {D.1} 1 Yes

{B.1, C.2, D.1} {C.2, D.1} ∅ ∅ 0 No

The pseudo-code of enumerating cliques is plotted in Algorithm 1. The first phase
generates star neighborhoods of a given dataset under a distance threshold (Step 1). The
second phase iterates each item (instance) and generates a set of candidate maximal
cliques of the current item (Steps 2–3). The third phase checks which candidate is a true
clique. To do this, directed sub-cliques of the candidate are obtained, subCand (Step 9).
Next, the star neighbors of the first element in directed sub-cliques are also acquired,
starNei (Step 10). After that, the intersection of subCand and starNei is found (Step 11).
If the size of the intersection is not equal to the size of the directed sub-clique, it means
the current candidate maximal clique is not a true clique (Step 12). Then all directed
sub-cliques of the current candidate are generated and added to the candidate maximal
clique set (Step 14). Else the current candidate may be a true clique and the process go
to the next iteration (Step 18). The final phase returns a set of true cliques (Step 26).

414 V. Tran et al.

Algorithm 1. Discovering clique algorithm
Inputs: a spatial dataset S, and a neighbor distance threshold d.
Output: a set of all cliques SoTC.
Variables: SN: a hashmap structure; SoCC: a set of candidate cliques; s: the size of SoCC;
flag: marking if a candidate clique is a true/false clique.
1: SN ← generate_star_neighbors(S, d)
2: for item SN do
3: SoCC ← generate_maximal_candidate_cliques(item)
4: while SoCC not empty do
5: cand ← SoCC.PopFront(); // get a candidate
6: s ← cand.size()
7: flag ← True //assuming the current candidate clique is a true clique
8: while (s > 2) do
9: subCand ← get_directed_sub_clique(cand)
10: starNei ← SN.find(subCand.first())
11: interSet subCand starNei
12: if (interSet.size() != subCand.size()-1) do // not a true clique
13: flag False
14: SoCC.add(generate_direct_sub_candidate_cliques(cand))
15: SoCC.remove(cand)
16: break
17: else // the current sub-candidate clique may be is a true clique, next iteration
18: s--
19: end if
20: end while
21: if (flag == True) do
22: SoTC.add(cand)
23: end if
24: end while
25: end for
26: return SoTC

3.2 Constructing a Co-location Hashmap Structure

As can be seen in Sect. 3.1, all neighbor relationships of instances are partitioned into a
set of cliques. Participating instances of all patterns can be discovered from these cliques.
We design a co-location hashmap structure to compact these cliques so that information
about participating instances of all patterns can be quickly obtained from the structure.
Definition 2 (Co-location hashmap structure): A co-location hashmap structure is a
two-level nested hashmap structure whose key and value are denoted as:

(1) The key is a set of feature types of instances in the cliques.
(2) The value is a hashmap structure whose key and value are the feature type and the

instance ID of instances in the cliques, respectively.

Figure 4 shows the co-location hashmap structure which is constructed from the
cliques enumerated in Table 1. It can be seen that all cliques are compressed compactly
in the co-location hashmap structure.

Discovering PCPs without Collecting Co-location Instances 415

Fig. 4. The co-location hashmap structure of the data set in Fig. 3.

Algorithm 2. Building a co-location hashmap structure
Inputs: a set of cliques SoTC.
Output: a co-location hashmap structure CoLHM.
Variables: key, value.
1: for clique SoTC do
2: key ← get_all_features(clique)
3: value ← construct_inner_hashmap(clique)
4: CoLHM ← update(key, value, CoLHM)
5: end for
6: return CoLHM

Algorithm 2 shows the pseudo-code of building the co-location hashmap structure.
The first phase creates the key and the value based on each clique (Steps 2–3). The second
phase updates the co-location hashmap structure by the created key and value (Step 4).
If the key has already existed in CoLHM, update the value; else directly add the key and
the value intoCoLHM. Finally, Algorithm 2 returns a co-location hashmap structure and
it will be used to calculate the participation indexes of all patterns in Sect. 3.3.

3.3 Calculating Participation Indexes and Filtering PCPs

Based on the co-location hashmap structure, any patterns can be extracted from the keys
and the information about participating instances of a pattern is obtained by the values.
The participating instances of a pattern are embedded into two parts: one is the pattern
itself and the other is the super-patterns of the pattern.

To describe simply, we use < feature type: {instance ID} > to represent instances
of a feature. For example, the participating instances of pattern {B, C} can be acquired
form key BC< B: {3}, C: {4}> and its super keys, BCD< B: {1}, C: {1}>, ABCD<

B: {1}, C: {1} > and ABC < B: {1, 3}, C: {2, 4} >. Hence, the participating instances
of {B, C} are < B: {1, 3}, C: {1, 2, 4} >. This result is exactly the same as Fig. 3.

To make full use of Lemma 1, we first generate all possible patterns from the key
set, and then start mining from the size 2 patterns. If a pattern is not prevalent, all its
supersets can be deleted directly.

Algorithm 3 is designed to quickly calculate the participation indexes of patterns
based on the co-location hashmap structure. The first phase takes all keys in the co-
location hashmap structure and generates the power sets of these keys (Steps 1–3). All
possible patterns, candPatts, are generated and sorted by their size (Step 4). The second
phase gets each pattern, patt and finds its participating instances, ParI, by gathering
the values of all keys that are supersets of patt (Steps 6–7). The third phase calculates
PI of patt based on its participating instances (Step 8). If the PI of patt is larger than

416 V. Tran et al.

min_prev, it is prevalent and added into PSCs (Steps 9–11). Else all possible patterns
that are supersets of the pattern are removed from candPatts (Step 12). Our algorithm
makes full use of Lemma 1 to prune unnecessary possible patterns in advance.

Algorithm 3. Calculating PIs and filtering PCPs
Inputs: a co-location hashmap structure CoLHM and a prevalence threshold min_prev.
Output: all prevalent spatial co-location patterns PSCs.
Variables: key, value.
1: for each key in CoLHM.keys() // get all keys in the co-location hashmap structure
2: candPatts ← gen_power_sets(key)
3: end for
4: candPatts ← sort_by_size(candPatts)
5: while candPatts is not empty do
6: patt ← candPatts.PopFront()
7: ParI ← (patt, CoLHM)
8: PI ← calculate_PI(ParI)
9: if (PI ≥ min_prev) do
10: PSCs.add(patt)
11: else
12: candPatts.delete_all_superset(patt)
13: end if
14: end while
15: return PSCs

Figure 5 shows theproposedmining framework.Different from the framework shown
in Fig. 1, our framework has no time-consuming collecting co-location instance phase.

Fig. 5. The proposed prevalent co-location pattern mining framework.

3.4 The Time Complexity Analyses

As shown in Fig. 5, our mining algorithm has four phases. The first phase materializes
neighbor relationships and converts to the star neighborhood structure and the com-
putational complexity of this phase is about O(n2 × d2

A) [25] where d is the distance
threshold, n is the number of instances and A is the area of the input dataset space.

Assuming savg is the average size of neighbors of each instance. The computational

complexity of enumerating cliques is aboutO
(
n × s2avg

)
. The third phase constructs the

co-location hashmap structure and the computational complexity of this phase is about
O(L)where L is the number of cliques. The final phase calculates PIs and filters prevalent
co-location patterns and its computational complexity is about O(l × m) where l and m
are the numbers of items in the co-location hashmap structure and numbers of all possible

Discovering PCPs without Collecting Co-location Instances 417

Table 3. Parameters of the synthetic dataset

Parameters Values

Number of features 15

Number of instances 20000

Frame size (D × D) 1000, 10000

d 15

min_prev 0.2

clumpy 1

across 0

overlap 0
* clumpy, across, and overlap refer to [10] in detail

Fig. 6. The distribution of
the real dataset.

patterns. Therefore, the total computational complexity of ourmining framework is about

O
(
n2 × d2

A

)
+ O

(
n × s2avg

)
+ O(L) + O(l × m).

4 Experiment Evaluations

We design a set of experiments to demonstrate the proposed mining framework is effi-
cient. We chose the joinless algorithm [10] which is known as a correct and efficient
algorithm for finding PCPs based on the framework in Fig. 1. Our experiments are coded
by C++ and performed on a PC machine with 16 GB main memory.

4.1 Experimental Datasets

Both synthetic and real datasets are used in our experiments. Table 3 shows a summary
of the synthetic dataset which is generated by a generator developed by Shekhar et al.
[8]. We use the real data set that is a facility point data set from Beijing, China, that
contains 25,276 items (instances) belonging to 12 feature types such as residential area,
company, and restaurant. The distribution of the real data set is shown in Fig. 6.
4.2 Mining Comparisons

Comparison of the Costs of Computation Complexity Factors: We show the execu-
tion time in each phase of our algorithm and the joinless algorithm in Table 4. Since the
two algorithms use star neighborhoods, Table 4 only lists the execution time of the last
three phases in each framework. In the sparse dataset, since the number of co-location
instances is small, PIs of patterns are also small and many candidates are pruned, thus
the execution time of joinless is a little faster than our algorithm. However, in the dense
dataset, our algorithm is faster than joinless. It can be seen that most of the execution
time of joinless is devoted to collecting co-location instances. Our algorithm without
collecting co-location instances shows less execution time.

418 V. Tran et al.

Table 4. Effects of the decision by the two mining frameworks

Execution time (s) Joinless Execution time (s) Our algorithm

Sparse Dense Sparse Dense

Generate candidates 0.005 0.051 Enumerate cliques 0.044 22.006

Collect co-location instances 4.017 47.172 Construct hashmap 0.374 0.95

Filter prevalent patterns 0.026 0.294 Filter prevalent patterns 6.332 6.03

Total time 4.048 47.517 Total time 6.75 28.986

Effect of the Minimum Prevalence Threshold: Figure 7 shows the effect of the pro-
posed algorithmwhen changingminimum prevalence thresholds on the real data set with
the distance threshold set to 300m. It is clear to see that the execution time of joinless
is very expensive when min_prev is small. In this case, many candidates become PCPs
and it must be collect co-location instances of all these patterns. With the increase of
min_prev, the execution time in joinless decreases.While our algorithm is robust because
it is designed to avoid the effect of changing min_prev. When changing min_prev, our
algorithm only needs to calculate the PIs of patterns from the co-location hashmap struc-
ture without other redundant operations. Thus, it can quickly give new mining results to
users.

Fig. 7. The effect of the min_prev threshold. Fig. 8. The effect of the distance threshold.

Effect of the Distance Threshold: The effect of distance thresholds also is evaluated
in the real dataset with min_prev is set to 0.2. As shown in Fig. 8, with the increase of
the distance threshold, the execution time of the two algorithms also increase. However,
our algorithm shows better performance.

Effect of Numbers of Instances: The final experiment evaluates the effect of the num-
ber of instances of the compared algorithms. We set the synthetic data sets with a frame
size is 5000 × 5000, the number of features is 15, d = 30, min_prev = 0.2, and the
number of instances is changed. As shown in Fig. 9, with the increase in the number
of instances (data sets become larger), the execution time of the two algorithms also
increases. However, the performance of Joinless degenerates quickly in the situation of
large data sets, while the proposed algorithm shows better scalability.

Discovering PCPs without Collecting Co-location Instances 419

Fig. 9. The effect of numbers of instances.

5 Conclusion

A new PCP mining framework is proposed in this paper. The proposed framework
partitions neighbor relationships of instances into cliques and constructs a co-location
hashmap structure based on these cliques that compact the neighboring instances. By
using the structure, the participation indexes of patterns can be calculated quicklywithout
collecting their co-location instances. If users change theminimumprevalence threshold,
our algorithm only needs to re-calculate the participation indexes and directly give new
mining results. Thus, the proposed algorithm is robust with the minimum prevalence
threshold. The experimental result indicates that the performance of our algorithm is
better than collecting co-location instance-based mining algorithms.

It can be seen that a heavy job in our algorithm is enumerating cliques. However,
this step is quite easy to implement in parallel computing. Thus, our future work focuses
on transforming the proposed algorithm into an efficient parallel mining method.

References

1. Yu,W.: Spatial co-location patternmining for location-based services in road networks. Expert
Syst. Appl. 46, 324–335 (2016)

2. Akbari, M., Samadzadegan, F., Weibel, R.: A generic regional spatio-temporal co-occurrence
pattern mining model: a case study for air pollution. J Geogr Syst. 17, 249–274 (2015)

3. Mohan, P., Shekhar, S., Shine, J.: A neighborhood graph based approach to regional co-
location pattern discovery: a summary of results. In: 19th ACM SIGSPATIAL, pp. 122–132.
ACM, NY (2011)

4. Cai, J., Deng, M., Liu, Q.: Nonparametric significance test for discovery of network-
constrained spatial co-location patterns. Geogr. Anal. 51, 3–22 (2019)

5. Deng, M., He, Z., Liu, Q.: Multi-scale approach to mining significant spatial co-location
patterns. Trans. GIS 21, 1023–1039 (2017)

6. Wang, S., Huang, Y., Wang, X.: Regional co-locations of arbitrary shapes. In: Advances in
Spatial and Temporal Databases, pp. 19–37. Springer, Berlin (2013). https://doi.org/10.1007/
978-3-642-40235-7_2

7. Kishor, P., Porika, S.: An efficient approach for mining positive and negative association rules
from large transactional databases. In: ICICT, pp. 1–5. IEEE, India (2016)

8. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of results. In:
Advances in Spatial and Temporal Databases, pp. 236–256. Springer, Berlin (2001). https://
doi.org/10.1007/3-540-47724-1_13

https://doi.org/10.1007/978-3-642-40235-7_2
https://doi.org/10.1007/3-540-47724-1_13

420 V. Tran et al.

9. Yoo, J., Shekhar, S., Smith, J., Kumquat, J.: A partial join approach for mining co-location
patterns. In: 12th Annual ACM International Workshop on Geographic Information Systems,
pp. 241–249. ACM, New York (2004)

10. Yoo, J., Shekhar, S.: A joinless approach for mining spatial colocation patterns. IEEE Trans.
Knowl. Data Eng. 18, 1323–1337 (2006)

11. Wang, L., Bao, Y., Lu, J., Yip, J.: A new join-less approach for co-location pattern mining. In:
8th IEEE International Conference on Computer and Information Technology, pp. 197–202.
Sydney (2008)

12. Wang, L., Bao,Y., Lu, Z.: Efficient discovery of spatial colocation patterns using the iCPI-tree.
The Open Inf. Syst. J. 3, 69–80 (2009)

13. Yoo, J., Boulware, D., Kimmey, D.: A parallel spatial co-location mining algorithm based on
mapreduce. In: International Congress on Big Data, pp. 25–31 (2014)

14. Yoo, J., Boulware, D., Kimmey, D.: Parallel co-location mining withMapReduce and NoSQL
systems. Knowl Inf. Syst. (2019)

15. Andrzejewski, W., Boinski, P.: Efficient spatial co-location pattern mining on multiple GPUs.
Expert Syst. Appl. 93, 465–483 (2018)

16. Sainju, A., Aghajarian, D., Jiang, Z., Prasad, S.: Parallel grid-based colocation mining
algorithms on GPUs for big spatial event data. IEEE Trans Big Data, pp. 1–1 (2018)

17. Andrzejewski, W., Boinski, P: Parallel approach to incremental co-location pattern mining.
Information Sci. 496, 485–505 (2019)

18. Leibovici, D., Claramunt, C., Guyader, D., Brosset, D.: Local and global spatio-temporal
entropy indices based on distance-ratios and co-occurrences distributions. Int. J. Geogr. Inf.
Sci. 28, 1061–1084 (2014)

19. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from spatial data
sets. GeoInformatica 10, 239–260 (2006)

20. Wang, L., Wu, P., Chen, H.: Finding probabilistic prevalent colocations in spatially uncertain
data sets. IEEE Trans. Knowl. Data Eng. 25, 790–804 (2013)

21. Ouyang, Z., Wang, L., Wu, P.: Spatial co-location pattern discovery from fuzzy objects. Int.
J. Artif Intell. Tools 26, 1750003 (2016). https://doi.org/10.1142/S0218213017500038

22. Yao, X., Chen, L., Peng, L., Chi, T.: A co-location pattern-mining algorithm with a density-
weighted distance thresholding consideration. Inf. Sci. 396, 144–161 (2017)

23. Yoo, J., Bow, M.: Mining top-k closed co-location patterns. In: International Conference
on Spatial Data Mining and Geographical Knowledge Service, pp. 100–105. IEEE, Fuzhou
(2011)

24. Wang, L., Zhou, L., Lu, J., Yip, J.: An order-clique-based approach for mining maximal
co-locations. Inf. Sci. 179, 3370–3382 (2009)

25. Wang, L., Bao, X., Zhou, L.: Redundancy reduction for prevalent co-location patterns. IEEE
Trans. Knowl. Data Eng. 30, 142–155 (2018)

26. Wang, L., Bao, X., Chen, H., Cao, L.: Effective lossless condensed representation and
discovery of spatial co-location patterns. Inf. Sci. 436–437, 197–213 (2018)

27. Boinski, P., Zakrzewicz, M.: Collocation pattern mining in a limited memory environment
using materialized iCPI-tree. In: Data Warehousing and Knowledge Discovery, pp. 279–290.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32584-7_23

https://doi.org/10.1142/S0218213017500038
https://doi.org/10.1007/978-3-642-32584-7_23

	Discovering Prevalent Co-location Patterns Without Collecting Co-location Instances
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 The Basic Concept
	3 The New Prevalent Co-location Pattern Mining Framework
	3.1 Enumerating Cliques
	3.2 Constructing a Co-location Hashmap Structure
	3.3 Calculating Participation Indexes and Filtering PCPs
	3.4 The Time Complexity Analyses

	4 Experiment Evaluations
	4.1 Experimental Datasets
	4.2 Mining Comparisons

	5 Conclusion
	References

