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Abstract. Usually, existing works on adaptation in case-based reason-
ing assume that the case base holds only successful cases, i.e., cases
having solutions believed to be appropriate for the corresponding prob-
lems. However, in practice, the case base could hold failed cases, resulting
from an earlier adaptation process but discarded by the revision process.
Not considering failed cases would be missing an interesting opportu-
nity to learn more knowledge for improving the adaptation process. This
paper proposes a novel approach to the adaptation process in the case-
based reasoning paradigm, based on an improved barycentric approach
by considering the failed cases. The experiment performed on real data
demonstrates the benefit of the method considering the failed cases in
the adaptation process compared to the classical ones that ignore them,
thus, improving the performance of the case-based reasoning system.

Keywords: Case-based reasoning · adaptation · successful case ·
failed case

1 Introduction

Case-based reasoning (CBR) is undoubtedly the most intuitive artificial intel-
ligence approach for problem-solving, as it emulates human behavior. A CBR
system searches through its memory, which is composed of a base of previously
solved cases known as source cases, to find cases that exhibit similar problems
to the target problem for which a solution is sought. It then adapts their solu-
tions, if necessary, to solve the target problem. The target solution is thoroughly
reviewed to ensure its suitability for resolving the target problem, and subse-
quently, the case base is updated with the new resolution experiment for the
target case. Each step of the reasoning process is supported by a knowledge
acquisition process required for that particular step.

Adaptation, one of the four key stages in the reasoning process, holds great
significance as the quality of the solution heavily relies on its performance. The
primary objective of adaptation is to tailor the solutions of similar source cases
to meet the specific requirements of the target problem. This step is particularly
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crucial because the source problems usually do not align perfectly with the tar-
get problem. Without successful adaptation, the CBR system cannot generate
an appropriate solution for the target problem. The importance of adaptation
has been recognized since the early days of CBR systems, leading to numerous
studies that explore different approaches for acquiring adaptation knowledge to
enhance its performance. According to [13], two distinct approaches to adap-
tation knowledge acquisition can be distinguished: knowledge-light approaches,
which leverage existing knowledge within the system without requiring addi-
tional acquisition [11], and knowledge-intensive approaches, which rely on exter-
nal knowledge sources, such as knowledge obtained from experts or users [5,6].

Existing adaptation approaches primarily concentrate on successful cases
(referred to as C

+) that provide relevant solutions to the corresponding prob-
lems. The definition of success is subjective and varies depending on the appli-
cation domain. For example, in the context of a CBR application for an energy
management system in a building, a successful case would involve achieving user
comfort while minimizing energy expenditure. However, there are also cases that
fail to meet the desired criteria. These failed cases (referred to as C

−) have
solutions that are deemed unsatisfactory and are typically rejected during the
validation phase of the adaptation process. Additionally, the adaptation process
often requires acquiring domain-specific knowledge to generate adaptation rules.
This knowledge acquisition process is complex and challenging due to its strong
dependence on the specific application domain, making it difficult to comprehend
and grasp.

In spite of the abundance of research studies and the increased interest in
the issue of adaptation, there are few works that specifically address the chal-
lenge of proposing a domain-independent adaptation approach. Moreover, there
is limited research that considers adaptation from the perspective of solution
quality, which encompasses both failed and successful cases. Surprisingly, these
cases, which could potentially provide valuable knowledge, are rarely employed
by CBR systems. This work introduces a fresh viewpoint on the adaptation pro-
cess within the CBR paradigm, presenting a fully domain-independent approach
that incorporates both successful and failed cases. The study proposes a novel
method for acquiring adaptation knowledge, drawing inspiration from research
on planning the path of a robot navigating through an unfamiliar and hazardous
environment, including obstacles. The uniqueness of this approach lies in apply-
ing artificial forces to the proposed solution, aiming to distance itself from failed
source solutions while gravitating towards successful ones.

The structure of this paper is organized as follows: Sect. 2 provides an
overview of the motivation and background for this work. Section 3 elaborates on
the contribution made towards leveraging failed and successful cases for a novel
adaptation approach. The evaluation of the proposed approach is presented and
discussed in Sect. 4. Finally, Sect. 5 concludes this work, highlights its key find-
ings, and outlines future research directions.
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2 Illustrative Example and Preliminary Concepts

A CBR-based energy management system (EMS) in a building serves as a rep-
resentative case study within the scope of this research. The objective of an
EMS is to meet user preferences for thermal comfort, air quality, and other
factors, while minimizing energy consumption in the building. Undoubtedly, a
building is a complex system influenced by various factors, including climate,
building materials, geographical location, energy rates, and the occupants them-
selves, making it challenging to identify dependencies [3]. Earlier studies [9] have
already highlighted the benefits of acquiring adaptation knowledge to enhance
the performance of a CBR-based EMS. Additionally, the increasing awareness
of environmental concerns has prompted numerous studies to explore the rela-
tionship between building energy consumption and occupant comfort, resulting
in the establishment of standards [1,2,7] for evaluating user comfort. These
standards provide a framework for assessing the quality of the target solution
proposed by the adaptation process during the revision phase. Consequently, the
solution can be classified as either a successful case (C+) or a failed case (C−).

In the CBR-based EMS described in [3], the primary goal is to raise the
user’s awareness of the impact of their actions on the energy efficiency of the
building. To achieve this, the system assists the user by providing recommen-
dations on a set of actions aimed at reducing energy wastage while taking their
comfort into account. Each case within the system represents a specific energy
management scenario for a building over a single day. The actions stored in the
case base correspond to the actions actually performed by the building occupant;
however, there is no guarantee that these actions yield satisfactory outcomes for
the occupant. To address this, the system incorporates a function to evaluate
the effectiveness of the actions stored in the case base, enabling the appropriate
labeling (C− or C

+) of the corresponding cases.

2.1 Key Concepts and Notations Related to the CBR Paradigm

Each past experience of a CBR system, which forms the foundation for solving
new problems, is stored in a structure called a source case (Csr), and the collec-
tion of source cases constitutes a case base (CB). Below is a concise introduction
to essential concepts within the CBR paradigm, necessary for comprehending
our approach.

Case Organization. Consider three sets, C, A, and E, which are mutually
disjoint. A case is defined as a triplet (C ,A, E) where:

– C belongs to the context domain C and represents the fixed elements of the
problem that cannot be controlled. For instance, in a CBR-based medical
diagnostic system, C can represent physiological indicators of the patient such
as heart rate, respiratory rate, etc.
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– A belongs to the action domain A, representing elements that can be con-
trolled to achieve desired outcomes. It represents the suggested solution for
the system. In a medical diagnostic system, this could entail the names of
recommended medications and their corresponding administration protocols.

– E belongs to the effect domain E, which characterizes the system’s outcome
resulting from action A in context C . In a medical diagnostic system, E can
denote the patient’s post-treatment clinical observations or test results.

A target context, denoted as C tg, represents a specific context for which
the CBR system aims to determine appropriate actions Atg in order to produce
desired effects Etg and ultimately generate a target case C

tg. The resolution of
a problem within the CBR paradigm can be formally described by Eq. (1).

CBR system: (CB,C tg) �−→ Atg

C
tg def== (C tg,Atg, Etg)

(1)

The Retrieval and Adaptation Processes. While this paper does not delve
into a comprehensive exposition of the reasoning process, it is crucial to acknowl-
edge the inherent relationship between adaptation and knowledge retrieval. Con-
sequently, it is often imperative to present the adaptation process alongside the
retrieval process.

– retrieval stage: In the retrieval process, the goal is to find source cases that
exhibit a context similar to the target context, using a threshold ΘCtg to
measure the distance between their context variables. Precisely, the process
involves locating cases where the context distance from the target context is
below ΘCtg . The retrieval function’s profile is outlined by Eq. (2).

Retrieval process: C tg �−→ {∀ C
sr ∈ CB,Dct(Ctg,Csr) ≤ ΘCtg} = S

C
tg

(2)
where Dct represents the distance between the target context variables C tg of
the target case C

tg and the context variables C sr of the source case C
sr.

There are no limitations on the choice of distance metric in order to accommo-
date the context variables. This flexibility allows for the utilization of various
distance measures based on the nature of the context variables. For instance,
in a CBR-based EMS, the Manhattan metric can be employed to calculate the
contextual distance. This is particularly suitable when the context variables
involved are real-valued.

– adaptation stage: Given that the source contexts often differ from the target
context, it becomes necessary to establish a function that can modify the
source actions in order to meet the requirements of the target context. The
characteristics of this adaptation function can be described by Formula (3).

Adaptation process: ∀ C
sr def== (C sr,Asr, Esr) ∈ S

C
tg

,

({(C sr,Asr, Esr)},C tg) �−→ Atg
(3)
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where the set S
C

tg

refers to the collection of source cases that are considered
similar based on the definition provided by Eq. (2).
It is important to note that Eq. (3) does not place any limitations on the
number of similar cases that can be considered during the adaptation process.
As a result, we are dealing with a form of adaptation that involves combining
solutions from multiple source cases to generate a target solution. This type
of adaptation is known as compositional adaptation, with single case adap-
tation being a special case of it. Indeed, the experimental findings from [12]
demonstrate that relying solely on a single case often produces less accurate
outcomes. This can be attributed to the fact that, in many cases, only a por-
tion of the problem exhibited in the similar source case is relevant to the target
problem. Consequently, the process of adaptation becomes complex and, at
times, even impossible.

2.2 Collision Avoidance Navigation

The primary objective of studying robot path planning is to address the move-
ment of an autonomous robot within an unfamiliar environment. This involves
guiding the robot from its starting point to a designated target position, while
placing emphasis not only on finding the most efficient path but also on ensuring
the utmost safety. The aim is to calculate a path that optimizes both efficiency
and safety by effectively avoiding any obstacles that may arise along the trajec-
tory leading to the target.

Numerous strategies have been proposed to address this challenge, with the
Artificial Potential Field (APF) approach, originally introduced in [8], being
widely utilized for robot guidance. The APF approach effectively handles the
real-world environment in which a robot operates, taking into account both
the desired objectives and the obstacles that need to be avoided during move-
ment. The fundamental concept behind this approach is to treat the robot as
a point moving within a two-dimensional space (in a basic scenario), influenced
by a field created by the targets to be reached and the obstacles to be avoided.
Consequently, the robot experiences two types of forces: an attractive force F

A

generated by the targets, and a repulsive force F
R generated by the obstacles,

which collectively determine the robot’s movement.
While the repulsive forces exerted on the robot are stronger when it is closer

to obstacles and weaker as the distance increases, the attractive forces acting on
the robot are directly proportional to the distance between the robot and its tar-
get. By combining these forces, denoted as

−→
F =

−→
F
A +

−→
F
R, the robot’s movement

direction and speed can be determined while avoiding collisions with obstacles.
Figure 1 illustrates the basic principle of this method, specifically designed for a
robot moving in a two-dimensional environment, for the purpose of simplifica-
tion.
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Fig. 1. Robotics’s Artificial potential
field.

Fig. 2. CBR attractive force.

3 Adaptation Through Failed and Successful Cases

3.1 Problem Statement

The adaptation problem, taking into account both failed and successful cases, can
be expressed through the following problem statement. Considering the following
observations:

– the case base CB is partitioned into two subsets: failed cases denoted as CB−,
and successful cases denoted as CB

+. Therefore, CB = CB
− ∪ CB

+.
– through language misuse, we use the term “target case” to refer to the elements

within a specific context for which we are seeking a solution. However, the
structure of this case is not fully defined, particularly regarding the elements
representing the actions and their subsequent effects, which remain unknown.

The objective of finding a solution for a target case that is currently under
construction involves inferring a set of target actions from source cases that
share a similar context. These target actions are aimed at satisfying the specific
context of the target case. This process leads to the identification and definition
of the target effects. Ultimately, the goal is to construct a comprehensive case
that encompasses the three parties: context, actions, and effects.

When dealing with similar source cases, which encompass both successful
(member of CB

+) and failed cases (member of CB
−), it is important to han-

dle them differently based on their outcome (failure or success) and their level
of similarity to the target case. To address this, the proposed method should
incorporate mechanisms that guide the approach towards successful solutions
for similar source cases while moving away from failed ones. It should also con-
sider that the closer a source case is to the target case, the greater impact its
solution will have on the desired target solution.
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3.2 Principle

Our approach to addressing failed cases in the adaptation process draws inspi-
ration from navigation algorithms employed in the programming of autonomous
robots. Specifically, we adopt the concept of artificial potential field discussed in
Sect. 2.2.

Prior to delving into the specifics of our approach in the following section,
we have established a set of assumptions to guarantee the effective integration
of an artificial potential field-like concept within the framework of this study:

– although the study does not cover the labeling process, it is assumed that
prior experiences (referred to as source cases) have already been labeled as
either successful or failed cases. Additionally, it is presumed that the CBR
system is equipped with a quality function QF, which evaluates the effective-
ness of the actions taken within a given context. Higher scores indicate better
performance. Consequently, this implicitly establishes a threshold value T SEi

for each effect feature Ei, as defined by Eq. (4).

∀ C
def== (C ,A, E) ∈ CB, QF : E �−→ R

LF(C) =

{
C

+ if QF(E) ≥ T SE
s , ∀ E ∈ E

C
− otherwise.

(4)

With LF – the labeling function, E – an effect variable of the case C.
– classical CBR methods typically retrieve a fixed number of neighboring cases

from the case base CB, without considering the optimal number of similar cases
specific to the target case. This approach, resembling KNN, gives rise to certain
issues. Not all target cases necessarily possess the same number of similar
neighbors; some may have more while others may have fewer. Additionally,
handling situations where there are significantly more source cases equidistant
from a target case than the predefined number becomes challenging. In this
study, we assume the presence of a retrieval approach that adjusts the number
of source cases based on their similarity to the target case Ctg. This adjustment
is achieved by dynamically defining a similarity threshold ϕC

tg

for the context
distance between C

tg and its neighboring source cases. For example, a method
proposed in [3] offers a technique to determine this threshold by combining
statistical analysis and a genetic algorithm.

The main concept behind the approach proposed in this work involves asso-
ciating the types of source cases available in the case base, namely successful
and failed cases, with the types of objects involved in the domain of robot move-
ment, specifically targets and obstacles. As a result, failed cases are interpreted
as obstacles, while successful cases are treated as targets. In this framework,
cases C

+ ∈ S
C

tg

that exhibit positive outcomes generate an attractive force F
A,

which draws the target solution towards them. On the other hand, failed cases
C

− ∈ S
C

tg

produce a repulsive force F
R pushing the solution away from them.

The source, both successful and failed, cases are utilized to create a CBR
potential field that represents the characteristics of the desired solution. Similar
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to the approach in the robotic potential field method, the CBR potential field
consists of two fields. For exemple, in the case of the attractive potential field,
a force of attraction is generated from the target solution towards the source
solutions of the successful cases. This is achieved by configuring the latter in a
way that enables pulling the target solution closer to the solutions of these cases.

To help explain this idea, let’s imagine a system that incorporates domain
knowledge with just two action variables. In this system, we can visualize the
attractive potential field created by any successful case as shown in Fig. 2. In this
figure, at every point in the context space representing the target context, the
force vectors point towards the successful source case. On the other hand, the
repulsive potential field generates a pushback force from the failed case towards
the target solution. This force helps move the target solution away from the solu-
tions associated with these failed cases. Figure 3 provides a visual representation
of the repulsive force in a configuration similar to the example that demonstrates
the CBR attractive force.

Fig. 3. Repulsive force in CBR context. Fig. 4. Total potential force in CBR.

In the end, the positioning of the target solution within the solution space
(actions) is established by combining the attractive and repulsive forces exerted
by neighboring successful and failed cases, respectively. In the case where there
are only two similar cases, one being a successful case and the other a failed
case, the overall potential field takes the form depicted in Fig. 4.

3.3 Local Prediction of the Target Solution

While we draw inspiration from the potential artificial field method, applying it
in the context of this work, as it is typically done in the robotics field, is not
suitable for determining the target solution due to several reasons:

– in the realm of robotics, the overall force that a robot can exert is deter-
mined solely by the distance between the robot and the goal or obstacles it
encounters. However, in the context of case-based reasoning, the strength of
the attractive and repulsive forces is not solely dependent on the distance
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between the target context and the surrounding similar cases. It also takes
into account the performance or quality of the neighboring similar cases.

– within the realm of robotics, the repulsive force in proximity to an obstacle is
strongest, gradually diminishing as the distance from the obstacle increases,
unlike the attractive force. In the context of case-based reasoning applica-
tions, the magnitude of both forces should be directly proportional to the per-
formance of the source solutions, but inversely proportional to the distance
between the source similar contexts and the target context.

– typically, robotic applications involve a single goal to be reached. However,
in the scenario of a multi-goal environment, the objective is to find a path
that sequentially traverses all these goals while optimizing specific criteria.
In the context of CBR systems, the goal is to leverage the knowledge from
neighboring source cases to infer the desired solution for the target case.

– while the objective of the potential artificial field in robotics is to identify a
secure path towards the goal, its purpose within the context of CBR is to
acquire fresh knowledge that facilitate the adaptation process in constructing
the target solution. In other words, its role is to guide the reasoning process
towards the most valuable solutions, which are typically the closest and best-
performing cases, while steering away from unfavorable cases that are either
farthest away or exhibit poor performance.

Table 1. Summery of results on synthetic dataset.

Approach Test Set

P1 P2 P3 P4 P5 GLOBAL

Metrics Metrics Metrics Metrics Metrics Metrics

IRP (%) EII(%) EER(%) IRP EII EER IRP EII EER IRP EII EER IRP EII EER IRP EII EER

CBRS 16.73 59.13 59.13 17.85 48.57 48.57 19.53 60.12 60.12 20.48 56.07 56.07 18.79 64.48 64.48 18.68 57.67 57.67

CBRB 18.27 57.51 57.51 15.36 63.90 63.90 22.85 59.69 59.69 24.23 65.52 65.52 21.10 662.71 62.71 20.36 61.87 61.87

CBRP 22.62 42.26 57.10 18.54 48.85 63.71 20.14 50.21 60.10 22.48 52.92 70.19 23.47 39.86 60.09 21.45 46;82 62,24

CBRR −2.56 32.18 49.75 9.12 29.89 51.19 14.71 43.07 64.24 17.45 39.52 57.74 12.04 41.26 62.84 10.15 37.18 57.15

APF − CBR 34.68 100 100 28.85 99.76 99.76 33.91 100 100 31.27 100 100 38.73 99.88 99.88 33.49 99.92 99.92

To effectively incorporate the specificities of the CBR adaptation process,
it becomes necessary to modify the artificial potential field approach. In our
proposed approach, the target solution (actions), denoted as Atg, is determined
by the vector sum of all attractive forces (FA

C+ ,∀ C
+ ∈ S

C
tg

) and all repulsive
forces (FR

C− ,∀ C
− ∈ S

C
tg

), as defined in Eq. (5).

∀ C
+,C− ∈ S

C
tg

,
∑
C+

F
A
C+

−−−−−−→AtgACi+ +
∑
C−

F
R
C−

−−−−−→AtgAC− = 0 (5)

As previously stated, the strength of the repulsion and attraction forces is
influenced by both the distance between the target context and the context
of the similar source case, as well as the performance of the source case. Eq.
(5) provides a metric FC, which determines the magnitude and direction of the
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corresponding force associated with case C. To estimate the value of this force,
we introduce Eq. (6).

∀ C ∈ S
C

tg

,FC =

⎧⎨
⎩

(
1 − Dct(Ctg,Csr)

Θ
Ctg

)
× (QFC − T S) if QFC 	= T S

1 − Dct(Ctg,Csr)
Θ

Ctg
else

(6)

where Dct(Ctg,Csr) indicate the context distance between C
tg and its neighbor-

ing case C
sr, ΘCtg represent the context distance threshold, T S represent the

performance threshold, and QFC denote the performance of C.
The Eq. (6) demonstrates that regardless of the force’s nature, its strength

gradually diminishes as the contextual distance increases, until it reaches zero
when the contextual distance reaches the similarity threshold ΘCtg . In addition
to determining the force’s strength, the term QFC − T S specifies the type of
force. If QFC ≥ T S, then FC ≥ 0, indicating an attractive force. Conversely, if
QFC < T S, the force is repulsive. Therefore, it is necessary for the proposed
actions Atg to adhere to the following conditions:

∀ C
def== (C ,A, E) ∈ S

C
tg

, Atg =
1∑
C
FC

∑
C

FCA (7)

4 Evaluation

In this section, we provide a practical evaluation of the proposed approach,
referred to as APF-CBR hereafter. The evaluation aims to accomplish two main
objectives. Firstly, investigate the influence of considering both failed and suc-
cessful cases on enhancing the effectiveness of the CBR system. Secondly, evalu-
ate the efficacy of the APF-CBR approach in comparison to existing adaptation
approaches.

4.1 Experimental Design

As indicated in Sect. 2, the APF-CBR approach is applied within an EMS, aim-
ing to raise the user’s consciousness about the consequences of their actions on
energy consumption in a building. More specifically, the EMS suggests a set of
measures to the occupant that enhance comfort while simultaneously reducing
energy consumption.

To assess the effectiveness of the APF-CBR approach, we carried out an
experiment utilizing semi-synthetic data derived from actual data presented
in [4]. The data base used for this experiment consisted of a total of 15,948
cases, with each case comprising three types of variables: effect variables, action
variables, and context variables. The effect variables in our cases represent the
temperature and air quality within the building. The action variables are used to
model the opening of the door and window, while the context variables capture
the weather conditions. We utilized a 24-value vector to represent each variable,
corresponding to a single day. We utilized a 5-fold cross-validation approach
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to assess the variables in our study. To evaluate our model’s performance, we
employed a 5-fold cross-validation approach. Initially, we randomly divided the
original case base into five subsets of equal size, namely P1, P2, P3, P4, and P5.
During each iteration of the cross-validation process, one subset was selected
as the test set, denoted as CBT , consisting of target cases. The remaining four
subsets served as the learning set, denoted as CBL, which comprised the source
cases. This process was repeated five times, with each subset being used once as
the test set. The final values of the metrics adopted in the evaluation correspond
to the average of the values obtained in the five iterations

To assess the effectiveness of the proposed actions, we employed functions
that measured the level of user dissatisfaction with temperature (QFET

C
) and

air quality (QFECO2
C

), as depicted by Formula (8). To simulate the consequences
resulting from the implementation of the suggested actions, we constructed a
physical model of the building that was utilized in the experiment.

QF
ET
C

(h) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ET (h) ∈ [21, 23]
ET (h)−23

26−23 if ET (h) > 23
21−ET (h)

21−18 if ET (h) < 21

, QF
ECO2
C

(h) =

{
0 if ECO2 (h) ≤ 500
ECO2

(h)−500

1500−1000 if ECO2 (h) > 500

(8)

4.2 Baselines and Metrics

The evaluation process includes several baselines:

1. the CBRS approach, which is discussed in [4], utilizes both failed and suc-
cessful cases. However, it lacks an adaptation process, as it simply involves
taking a vote among the solutions of similar cases and selecting the solution
with the best performance (maximizing the quality function) to be directly
applied to the target case. This baseline choice aims to assess the importance
of incorporating multiple source cases in establishing an adaptation process.

2. one approach, referred to as CBRB, employs a standard barycentric method
to merge solutions from both successful and failed similar cases, without the
use of artificial forces. The primary objective of this approach is to assess the
effectiveness of artificial forces in enhancing the reasoning process.

3. to illustrate the advantages of considering both negative and positive cases
over only positive cases, we tested a modified variant of our approach called
CBRP. This variant exclusively considers positive cases, relying solely on
attractive forces. The objective behind this modification was to highlight the
benefits of incorporating both negative and positive cases in comparison to
exclusively focusing on positive cases.

4. as an additional baseline, the method presented in [10] (denoted as CBRR) is
employed. CBRR utilizes a K-Nearest Neighbors (KNN) algorithm to identify
source cases that are similar to the target case. From these similar cases, a
generalized case is created. Moreover, the similar cases are utilized to train
a linear regression model. This regression model is then employed to predict
the solution for the target case based on the generalized case.
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It’s important to note that in the experiment, the comparison of all the
approaches being tested is based on the actions performed by the user without
any assistance. This evaluation is conducted using three specific metrics:

– Improvement Ratio of Performance (IRP): The IRP metric evaluates the per-
formance enhancement achieved by each tested approach. It is determined by
comparing the average of the global satisfaction QFP

C , of the proposed actions
with the corresponding value QFU

C , of the actions performed by the user with-
out assistance for each test case C

t.

IRPCt =
QFP

C − QFU
C

QFU
C

(9)

– Effectiveness Improvement Index (EII) is calculated as the average ratio of the
number of test cases that show performance improvement when the actions
recommended by this approach are applied, to the total number of test cases.

EII =
β+

β
(10)

With β = |CBT | – the set of test cases, β+ = {C ∈ CBT / IRPCt > 0}
– Effective Enhancement Ratio (EER) refers to the average ratio between the

number of test cases that show improved performance when the recommended
actions from the approach are applied, and the total number of test cases for
which the approach successfully suggests a solution (whether it improves or
degrades performance compared to the user’s actions).

4.3 Results

Regardless of the adaptation approach used in a CBR system, the retrieval pro-
cess plays a significant role in determining its performance. Although this paper
does not delve into analyzing the retrieval process, we adopt the methodology
proposed in [4] to assess similarity and identify similar source cases within the
training set. After applying this approach, it is observed that each target case
from the test set has at least one similar source case from the training set.

Table 1 provides a summary of the results obtained through 5-fold cross-
validation, comparing our approach to the four baselines. Notable observations
from this experiment are:

– while the EER metric aligns with the EII value for the CBRS, CBRB, and
APF-CBR approaches, the CBRP and CBRR approaches exhibit a lower EII
value compared to EER. This disparity can be attributed to the fact that the
first three approaches are capable of producing a solution even when provided
with a collection of exclusively failed cases. On the other hand, the CBRP

and CBRR approaches do not possess this capability.
– irrespective of the test set employed, our APF-CBR approach consistently

outperforms all other baseline methods, demonstrating superior performance
in terms of EII and EER.
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– the quality of the adaptation process is significantly influenced by the num-
ber of similar source cases. When employing a compositional adaptation app-
roach, the IRP tends to be superior compared to using a single similar case, as
exemplified by the comparison between APF-CBR (compositional approach)
and CBRS (single similar case).

– the inclusion of attraction and repulsion forces significantly impacts the
results of the adaptation process. Utilizing these forces, our APF-CBR app-
roach surpasses the CBRB baseline, which does not incorporate them, even
when considering an equal number of similar cases. APF-CBR demonstrates
a superior performance, being 1.64 times more effective than CBRB in terms
of enhancing case performance (global IRP = 33.49% compared to 20.36%).
Furthermore, APF-CBR is 1.61 times more efficient in terms of the number
of cases for which it successfully finds a solution. It enhances the performance
of user-proposed solutions without assistance in 99.92% of cases, as opposed
to 61.87% for CBRB.

– the performance of a Case-Based Reasoning (CBR) system is significantly
influenced by the utilization of failed cases. By incorporating both successful
and failed cases, the system enhances the outcomes of the reasoning pro-
cess. When comparing the performance of three different approaches-APF-
CBR, CBRP, and CBRR, the EER results demonstrate that the APF-CBR
approach surpasses the other baselines. The APF-CBR approach exhibits
more than three times greater efficiency than CBRR and more than 1.5 times
greater efficiency than CBRP in enhancing the performance (PER).

5 Conclusion

This paper introduces a novel method for improving the adaptation process
in the Case-Based Reasoning paradigm. Instead of relying solely on successful
source cases, we consider both failed and successful cases. We draw inspiration
from studies on planning safe paths for robots in unknown environments. Our
approach involves generating attraction and repulsion forces from successful and
failed cases, respectively, to guide reasoning towards the best solutions and away
from the failed ones. Experimental results in an EMS context demonstrate a sig-
nificant ienhancement in system performance by considering both successful and
failed cases. We have developed and evaluated an approach that incorporates the
entire set of successful and failed similar cases. Further evaluation could explore
the impact of the number of neighboring successful and failed cases, focusing on
the top-performing cases and the worst-performing cases. Additionally, future
research could investigate the potential influence of failed cases on the domain
ontology. Understanding this impact could provide insights into how the domain
ontology could be refined or modified to prevent the recurrence of negative cases
in the future.
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