
Lightweight and Efficient
Privacy-Preserving Multimodal

Representation Inference via Fully
Homomorphic Encryption

Zhaojue Li1, Yingpeng Sang1(B) , Xinru Deng1, and Hui Tian2

1 School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou, China

{lizhj33,dengxr3}@mail2.sysu.edu.cn, sangyp@mail.sysu.edu.cn
2 School of Information and Communication Technology, Griffith University,

Brisbane, Australia
hui.tian@griffith.edu.au

Abstract. Machine learning models are now being widely deployed in
clouds, but serious data leakage problems are also exposed when dealing
with sensitive data. Homomorphic encryption (HE) has been used in the
secure inference on unimodal private data because of its ability to cal-
culate encrypted data. Although the privacy protection of multimodal
data is of great significance, there is still no privacy-preserving infer-
ence scheme for multimodal data. In this work, we propose a lightweight
and efficient homomorphic-encryption based framework that enables
privacy-preserving multimodal representation inference. Firstly, we pro-
pose an HE scheme based on Tensor Fusion Network, which can perform
encrypted multimodal feature fusion. Then we propose a pre-expansion
method and a packaging method for multimodal data, which can effec-
tively reduce the time delay and data traffic of homomorphic computing.
The experimental results show that our encryption inference method has
almost no loss of accuracy and obtains an F1 score of 0.7697, while using
less than 220KB of data throughput and about 0.91 s of evaluation time.

Keywords: Fully Homomorphic Encryption · Privacy-Preserving
Machine Learning · Multimodal Privacy

1 Introduction

Our perception of the environment is inherently multimodal, involving multiple
sensory channels such as vision, hearing and taste. A modality refers to the
way in which something happens or is experienced, and research is considered
multimodal when it involves more than one of these channels. Machine learning
approaches based on multimodal data have emerged as a rapidly growing field
of research [12,26,27,29]. Substantial research [4,21] has shown that classifiers
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based on multimodal data outperform those based on unimodal data, which is
consistent with the way in which humans perceive and comprehend the world.

Transmitting multimodal sensitive data from client to server typically entails
privacy risks, as the server may be malevolent or susceptible to attacks by third
parties. Moreover, because multimodal data contains rich cross-information, the
privacy damage caused by leakage is more severe than that caused by unimodal
data. Thus, there is a significant motivation to design a privacy-preserving strat-
egy for multimodal machine learning that can ensure the privacy of clients who
use cloud computing services. A highly relevant technology is Fully Homomor-
phic Encryption (FHE) [15]. FHE is an encryption system that enables data
owners to encrypt their data and authorize third parties to perform calculations
on it. Third parties can perform several calculations but are not authorized to
access the original data, thus preserving the privacy of consumers. However,
practical applications require specialized solutions to reduce the high comput-
ing and transmission costs associated with FHE. Previous works have provided
specialized homomorphic schemes for unimodal machine learning [2,8,11].

In this paper, we propose, for the first time, a privacy-preserving prediction
approach for multimodal representation based on the FHE scheme CKKS [10]
and Tensor Fusion Network (TFN) [32]. In this method, the server accepts the
encrypted multimodal representation sent by the client, performs fusion and
model evaluation, and feeds back the evaluation results to the client. Only the
client can decrypt the results and obtain the inference. The main contributions
of our study are as follows:

– This research is the first to propose a multimodal representation inference
approach based on FHE. Specifically, we implement the multimodal feature
fusion network in the ciphertext state.

– We provide a pre-expansion method to reduce the computational complexity
of the homomorphic tensor feature fusion layer.

– We utilize the rotation operation of CKKS and the unoccupied slot in cipher-
text, to pack data of multiple modes in the same ciphertext. This signifi-
cantly decreases the amount of data transmission required. To optimize the
ciphertext matrix multiplication with the highest latency, we also leverage
multithreading to achieve a 3.5-times acceleration.

In the rest of the paper, we summarize the related work in Sect. 2, and present
the background knowledge in Sect. 3. In Sect. 4 we present our proposed approach
in details, which is followed by performance evaluation and experimental results
in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

2.1 Multimodal Machine Learning

The employment of multimodal data provides human beings with a compre-
hensive and multifaceted understanding, thereby facilitating them to make more
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informed decisions [4,12]. Despite the convenience brought by cloud services, the
privacy concern regarding multimodal data is increasingly urgent. To address this
issue, Cai et al. [9] proposed implementing differential privacy in the representa-
tion after multimodal fusion to protect the privacy of the original training data.
However, the introduction of noise by differential privacy inevitably compro-
mises the utility of the data and the accuracy of the model inference. Moreover,
it is noteworthy that this method cannot protect user privacy data during the
inference process.

2.2 Homomorphic Encrypted Neural Network

With the increasing application of machine learning in education, finance, and
other fields that deal with sensitive customer data, there is a growing need for
privacy protection in machine learning algorithms that make accurate predic-
tions. To address this issue, several cryptographic techniques have been proposed,
such as Trusted Execution Environments [20], Secure Multi-Party Computation
(SMPC) [28] and Homomorphic Encryption (HE) [15]. Each method has its own
tradeoffs in terms of calculation, accuracy, and security. Among them, schemes
based on Fully Homomorphic Encryption (FHE) can generally achieve quantum
security, which is the most rigid security model [1].

FHE was first proposed by Rivest et al. [24], and Gentry [15] proposed the
first generation of FHE systems. Despite allowing more homomorphic multipli-
cation and addition operations, practical applications still require too much com-
putation. To address this issue, several practical leveled homomorphic encryp-
tion schemes have been proposed, such as the integer-based BGV algorithm [7],
BFV [14], and the complex scheme CKKS [10]. These schemes can perform
homomorphic computation within the pre-set maximum multiplication depth.
CKKS permits approximate HE operations for real numbers, making it a suit-
able choice for the inference task of machine learning with a fixed number of
layers.

Dowlin et al. [16] proposed CryptoNets, which proved the feasibility of using
HE for private neural network inference. However, CryptoNets have two lim-
itations. The first is on the time cost, although it supports high-throughput
prediction, the prediction of a single sample still takes 205 s. The second is on
the width of the network. CryptoNet encodes each node of the network into a
separate ciphertext, so it needs a lot of memory to support it. In order to solve
these problems, LoLa [8] encrypted the entire network layer, significantly reduc-
ing memory requirements and achieving single sample prediction in 2.2 s. Fur-
thermore, homomorphic schemes have been proposed for text classification [2]
and audio similarity calculation [22] in addition to image classification. How-
ever, these schemes only consider the homomorphic implementation of unimodal
machine learning. To the best of our knowledge, there is currently no homomor-
phic encryption scheme available for multimodal machine learning and multi-
modal feature fusion.
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2.3 Homomorphic Representation Inference

The aforementioned work can be used to encrypt shallow networks through
homomorphic inference. However, there are two primary limitations when Fully
Homomorphic Encryption (FHE) is applied to deep network models: the growth
of noise and the growth of ciphertext size. Each ciphertext contains noise that
increases with each homomorphic operation. Therefore, too many operations
increase the noise to the point where the decryption may not be correct. Secondly,
the operation of the HE scheme can double the size of the encryption parame-
ter without bootstrapping, resulting in a large ciphertext that increases mem-
ory requirements and causes greater latency. To address these issues, LoLa [8]
proposed using deep representations for encrypted inference. Customers convert
the original data into deep representations locally through the feature extraction
network. Their prediction only requires a shallow network model, which is more
suitable for low-latency homomorphic implementation. Chou et al. [11] proposed
extracting deep representations from the screenshot of the original phishing web-
site locally, encrypting them, and sending them to the cloud for homomorphic
logistic regression calculation, achieving a low-delay and secure homomorphic
inference scheme.

3 Preliminaries

3.1 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) is a powerful encryption method that
allows ciphertext computation with minimal loss of accuracy upon decryption.
This capability makes it useful for secure computing outsourcing: the client
encrypts the data and sends it to a third party for computation, where the
third party cannot access the plaintext data. After receiving the encrypted out-
put, the client decrypts it to obtain the computation result. Specifically, the
encryption function is denoted by Enc, and plaintext data by x and y. Then,
Enc(x + y) = Enc(x) ⊕ Enc(y) and Enc(x ∗ y) = Enc(x) � Enc(y), where ⊕
and � represent homomorphic addition and multiplication, respectively.

While HE allows ciphertext computation to obtain the encrypted output with
practically little loss of accuracy, it adds noise to plaintext data, and homomor-
phic operations increase noise continuously. Once the noise reaches a certain
threshold, the correct plaintext result cannot be decrypted. Although a prim-
itive bootstrapping method [15] can refresh noise, it is limited by the massive
amount of computation required. A more practical technique is to use leveled
homomorphic encryption [5], which allows multiple addition and multiplication
operations at a predetermined maximum multiplication depth. Since the calcula-
tion times of neural networks are also determined, leveled homomorphic encryp-
tion has been widely used in encrypted machine learning inference tasks. In this
paper, we choose the CKKS leveled homomorphic encryption method, which is
specifically designed to handle real numbers and approximate calculations.
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3.2 The Levelled FHE Scheme - CKKS

In the following paragraphs, we will briefly introduce the CKKS scheme. Let
N be a power of two, and R = Z[X]/(XN + 1) be the ring integer of the 2N -
th cyclotomic polynomial. For some small prime integers pi, let qL =

∏L
i=1 pi

and RqL = ZqL [X]/(XN + 1) consists of the polynomials whose coefficients are
moduloqL. Here, L represents the preset maximum multiplicative depth, and a
message m ∈ C

N/2 is encoded and encrypted into RqL , followed by homomorphic
addition and multiplication. Each multiplication consumes a layer of depth and
rescales the ciphertext of Rql into RqL−1 . Another essential operation enabled by
ciphertext is rotation, which allows encrypted elements to rotate in N/2 slots.

One advantage of CKKS is on its SIMD feature, that is, one single homomor-
phic addition (or multiplication) among ciphertexts can attain a corresponding
addition (or element-wise product) of two vectors in plaintexts. Suppose that m
is a k-dimensional vector. When k < N/2, m will be padded with zeros to size
N/2. As the homomorphic operation operates bit by bit on all slots, the opera-
tion is highly inefficient when k << N/2. The optimization methods introduced
later in this paper will fully utilize the free spaces in the ciphertext to improve
computational efficiency without incurring additional space consumption.

3.3 Homomorphic Linear Layer

Here we introduce the implementation of the homomorphic linear layer [5]. The
linear layer is one of the most important network layers in the machine learning
model. A linear layer consists of a vector-matrix multiplication and an addi-
tion of a bias. Traditionally, each column of the matrix can be packaged and
multiplied by the ciphertext vector, and the result can be summed bit by bit.
This practice causes the output to be spread across multiple ciphertexts rather
than stored under a single ciphertext. Halevi et al. [17] proposed a matrix mul-
tiplication that is realized by matrix diagonalization. Let n = N/2 denotes the
number of slots in ciphertext c, matrix M ∈ Rn×m. Firstly M is decomposed
into n vectors in diagonal order, in which the j’th element in the i’th diagonal
diag[i][j] = M [(i+j)mod n][j]. Then we have M.c =

∑n−1
i=0 diag(i)�Rotate(c, i),

where � denotes the coefficient wise vector multiplication and Rotate(c, i) =
(ci, ci+1, . . . , c0, c1, . . . , ci−1) is the rotation of c by shifting i slots to the left. In
practice, in order to get the correct rotation result, it is necessary to copy the
encryption vector [19], then c = (c0, c1, . . . , cn−1, c0, c1, . . . , cn−1, 0, . . . , 0). The
complexity of vector-matrix multiplication is O(n), and the computational cost
is the largest in the homomorphic linear layer. Since the nonlinear activation
function (such as ReLu) cannot be calculated in the ciphertext state, the stan-
dard practice [3] is to substitute it with the square activation function. The last
layer of the network model is a homomorphic dot product layer, which is first
multiplied by a k-dimensional vector. All elements are then added to the first
element of the output ciphertext by log(k) rotations. It should be noted that the
final activation function is computed locally after decryption by the client [2].
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3.4 Multimodal Fusion Representation Learning

The original multimodal data contains a large amount of redundant information,
and the feature vectors of each modality are initially located in different sub-
spaces. This can impede the learning of data in subsequent models. To address
this issue, representation learning has been proposed as a solution [6]. This tech-
nique maps input data to a low-dimensional representation, enabling efficient
learning. Currently, unimodal representation learning is widely used in Natural
language processing (NLP)[13] and Computer Vision (CV) [18]. In our work, we
employ an appropriate encoder network for each modality of the data, and fuse
the resulting low-dimensional feature vectors. The validity of the representation
is ensured by the convergence of network parameters.

Multimodality Fusion Technology (MFT) [23] involves fusing the feature vec-
tors of each modality to create a more effective representation for subsequent
networks. One simple method [33] for feature fusion is direct concatenation,
but it can be challenging to capture the interaction information and nonlinear
relationships between different modalities. To address this issue, Zadeh et al.
proposed Tensor Fusion Network [32]. This approach models each sub-modality
feature as different dimensions of a Cartesian space. Therefore, the fusion pro-
cess between different modes can be achieved through the tensor cross-product,
as shown in Eq. (1):

z =
[
v1
1

]

⊗
[
v2
1

]

⊗ · · · ⊗
[
vn
1

]

(1)

where z represents the output after TFN, vi denotes different modalities and
⊗ denotes the outer product operator. To ensure that the fusion representation
contains both the cross-information from dual mode to n mode and the inde-
pendent information of each unimodal feature, an element of 1 is spliced at the
end of each modality representation.

Fig. 1. HE-based Multimodal Representation Inference System
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4 The Proposed Approach

4.1 System Model

This section introduces our system model and task settings. A client possesses
multimodal raw data and uses the corresponding encoder for feature extraction.
Subsequently, the client performs pre-expansion and transmits the ciphertext to
the cloud. In the cloud, the encrypted fusion representation is obtained through
the homomorphic tensor fusion network (HTFN). The homomorphic dense neu-
ral network (HDNN) performs the final evaluation, and the encryption result is
delivered back to the client. The system model is illustrated in Fig. 1. Throughout
the computing process, the server is limited to operating solely on the ciphertext
and cannot access the sensitive data.

Consistent with current private reasoning tasks, such as those described in [8,
11,22], the complete model network utilizes plaintext data during the common
training phase and encrypted data during the inference phase. In this task, we
implicitly assume that the client has the computational capacity to preprocess
the raw data and execute the encryption/decryption tasks.

4.2 Homomorphic TFN

In TFN, the fusion features of a high-dimensional Cartesian product are obtained
by multiplying the eigenvectors of each modality twice. However, in the cipher-
text state, only the operation between vectors is supported, and the result of the
Cartesian product cannot be retrieved directly. One possible solution, related to
CryptoNets, is to encrypt each element of each feature independently and send
it to the server for multiplication one by one. However, this approach is compu-
tationally expensive since the fusion requires computing hundreds of ciphertexts.
An optimization for this method is packing one modality (POM) into a single
ciphertext and multiply it with the elements of other features one by one. Even
with this optimization, the computational complexity and the amount of output
ciphertext are still dependent on the length of the feature.

To solve this issue, we propose a pre-expansion processing method. As the
fusion features of the higher-dimensional Cartesian product will be flattened as
input to the linear layer, and the SIMD feature of CKKS makes the bit-by-bit
multiplication between ciphertexts efficient, we expand each representation to
the fused length before encryption. In the simplest case of two modalities, pre-
expansion will repeat each bit of one modality for L1 times, given the other
modality has a length of L1. The other modality will also be expanded so as to
be aligned with the previous modality, and finally both modality will be with a
length of L1 · L2, given L2 is the length of the first modality. This will ensure
that only one ciphertext multiplication is needed in the HTFN.

Let’s consider the most widely used fusion of video, audio, and text, as an
example. As shown in Fig. 2, the lengths of text, video and audio modality are 2,
2, 3, respectively. Firstly each bit of the video modality is repeated by 2 times,
so that each bit can be aligned with the whole length of the text modality. Then
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correspondingly the lengths of video and text modalities will both be expanded
to 4. In the same way, each bit of the audio modality is repeated by 4 times, and
finally, all the three modalities will be expanded to be with a length of 12.

Let m denote the number of modalities, and Li denote the length of the
i’th modality feature. After pre-expansion, all modalities will be with a length
of

∏m
i=1 Li, and m − 1 ciphertext multiplications are required to compute the

HTFN. As shown in Table 1, the number of required ciphertext multiplications
in HTFN can be reduced using pre-expansion, and the resulting fused represen-
tation can be stored in a single ciphertext. In Sect. 3.2, we mentioned that the
CKKS ciphertext has N/2 slots, which is significantly larger than the length of
each feature. Therefore, pre-expansion can take advantage of the vacant slots in
the ciphertext without additional space requirements.

Table 1. Performance Comparison of HTFN Under Different Pretreatment Methods.

Pretreatment Method Multiplications Output Size

CryptoNets
∏m

i=1 Li − 1
∏m

i=1 Li

POM
∏m−1

i=1 Li

∏m−1
i=1 Li

Pre-expansion m − 1 1

Fig. 2. An Illustration of Pre-expansion on 3 Modalities

Fig. 3. An Illustration of HTFN with our Packing Method based on Ciphertext Rota-
tions
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4.3 Other Optimizations

The client sends a ciphertext for each modality to the cloud. As the number
of modalities increases, the size of the ciphertexts also increases, resulting in a
linear increase in encryption time and data transmission. To solve this problem,
we concatenate all the feature vectors after the pre-expansion and finally encrypt
them into a single ciphertext. In the ciphertext state, the ciphertext of each
feature can be decoupled by two CKKS rotation operations. As mentioned in
Sect. 3.3, the subsequent homomorphic linear layer computation requires a copy
of the original vector. This can be achieved by concatenating the features of the
first modality.

As shown in Fig. 3, assuming that the features fused by the three modalities
have n dimensions, we perform two consecutive rotation operations to obtain
two ciphertexts, where the first n bits of each ciphertext store the corresponding
modality representation. Through this packaging method, the transmission of
the original n ciphertexts can be optimized to a single ciphertext, which sig-
nificantly decreases the client’s encryption computation cost and transmission
delay. Finally, to optimize the homomorphic linear layer with the longest com-
putation time, we employ a multi-threaded approach for the n-times rotation
and homomorphic multiplication. Algorithm1 outlines the complete process of
HTFN, where ⊕ and � represent homomorphic addition and multiplication,
respectively. For the sake of simplicity, we omit the relinearization and rescale
operations that are mandatory after homomorphic multiplication and evaluation.

5 Experiments

5.1 Experimental Setup

We use two commonly used multimodal datasets for our experiments. Multi-
modal Corpus of Sentiment Intensity (CMU-MOSI) [33] contains 2199 movie
reviews on YouTube video blog, which came from 89 narrators of ages among 20
to 30 years. Each has audio, text, and video information available. The videos
were labeled [−3, 3] with seven categories ranging from negative to positive affec-
tive tendencies. Different from the original CMU-MOSI dataset, we use BERT
preprocessing to obtain more accurate text information [31]. CH-SIMS [30] is
a Chinese multimodal emotion analysis data set. It cuts out 2281 video clips
from different movies and television works and collates the data in audio, text
and video modalities. It contains 474 different speakers with a wide range of
characters and ages. Each video clip has five categories of emotional intensity
values between [−1, 1].
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Algorithm 1: Homomorphic Multimodal Representation Inference
Input: ciphertext c encrypting vector v ∈ Rm.k, where m is the number of

modalities, linear layer weight W ∈ Rk×z, y ∈ Rz, bias b1 ∈ Rz, b2 ∈ R
Output: ciphertext s encrypting the evaluation result

1 Step 1: Homomorphic Tensor Fusion Layer

2 r ← c ∈ RN ;
3 for i = 1 to m − 1 do
4 r ← r � Rotate(c, k ∗ i);
5 end
6 Step 2: Homomorphic Linear Layer

7 s ← 0 ∈ RN

8 for i = 0 to k − 1 do
9 for j = 0 to z − 1 do

10 D[i][j] ← W [(i + j)mod k][j];
11 end
12 s ← s ⊕ D[i] � Rotate(r, i);

13 end
14 s ← s ⊕ b1;
15 s ← s � s;
16 Step 3: Homomorphic Dot Product Layer
17 s ← s � y;
18 for i = �log(z)� to 1 do
19 t ← Rotate(s, 2i);
20 s ← s ⊕ t;

21 end
22 s ← s ⊕ b2;
23 return s

For network settings, as in the previous work of [32], we choose LSTM to
extract text features. DNN with three hidden layers is used for audio and video
features. Following this, we use two hidden layers to make the final prediction
of the fusion representation. It is worth noting that the maximum fusion repre-
sentation length should not exceed 2048. Considering the actual usability, our
experiment uses a smaller length, 512. The setting of other hyperparameters and
the partitioning of data sets are consistent with the TFN experimental settings
in MMSA [31]. After the model training, we use the SEAL library [25] to carry
out the inference task of homomorphic encryption.

5.2 Experimental Results

In Table 2, we compare the inference results of the model before and after encryp-
tion on the test set using the F1 score and MAE as evaluation metrics, which
are commonly used in multimodal machine learning. Results demonstrate that
our encryption inference method is highly effective, as our model exhibits no
performance loss compared to plaintext inference up to four decimal places of
precision.



Lightweight Privacy-Preserving Multimodal Representation Inference 317

Table 3 illustrates the enhancements made by the proposed optimization
method concerning data throughput and inference time in the cloud. We began
with the idea of CryptoNets, which encrypts each element individually. Although
it supports batch prediction of multiple samples, the time for a single calcula-
tion is approximately 150 s. Lola [8] is a low-delay computing model proposed by
CryptoNets for single-sample calculations, but it does not support multimodal
feature fusion. In POM, each element of the two features (lengths of 4 and 16)
had to be packed into a separate ciphertext since TFN necessitates element-
wise multiplication. The computation time has been reduced to 4.43 s, but for
scenarios with high feature lengths, this time will increase rapidly and require
larger data transfers. With pre-expansion, feature fusion can be completed with
only two ciphertext vector multiplications, enabling the use of smaller encryp-
tion parameters like N = 8192 for further optimization while ensuring security.
Furthermore, packing the features of the three modalities into a single ciphertext
reduces the amount of data transmission to 1/3, which must be decoupled by
two rotation operations on the server. Multithreading can effectively reduce the
delay of ciphertext vector-matrix multiplication for the first homomorphic linear
layer after feature fusion. Finally, the proposed optimization method yields an
inference time of approximately 0.91 s for a single sample and the data transfer
volume is 211.88 KB.

We present a detailed comparison of the performance of HTFN implemented
under three preprocessing methods in Table 4. The number of multiplications
required by our approach is linearly dependent on the number of modes, whereas
the other two methods show a rapid increase in the number of multiplications
as the feature length increases. Our approach, combined with two rotations and
packaging, compactly stores both input and output in a single ciphertext, thus
reducing the encryption burden on the client and the computational cost on the
server. Experimental results demonstrate that our method can maintain stable
and efficient computing performance in practical multimodal scenarios.

Table 2. Encrypted Test Set Inference Results for CMU-MOSI and SIMS.

Dataset F1 score MAE Accuracy Loss

CMU-MOSI 0.7467 1.0400 No

SIMS 0.7697 0.4356 No

Table 3. Model Performance - Data Throughput and Timing.

Method Data Throughput Computation Time

CKKS 6.03 MB 149.21 s

CKKS + POM 2.70 MB 4.43 s

CKKS + pre-expansion 637.14 KB 3.12 s

CKKS + pre-expansion + packed 211.88 KB 3.14 s

CKKS + pre-expansion + packed + multi-thread 211.88 KB 0.91 s
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Table 4. Performance Comparisons of HTFN.

Ours POM CryptoNets

Multiplication 2 68 544

Rotation 2 - -

Input Size 427.08 KB 8.77 MB 12.09 MB

Output Size 282.95 KB 17.92 MB 141.56 MB

Computation Time 0.036 s 1.051 s 8.407 s

Encryption Time 0.006 s 0.212 s 0.350 s

6 Conclusion

In this paper, we propose the first multimodal representation inference method
based on Fully Homomorphic Encryption (FHE). Our method provides com-
plete protection of multimodal data privacy and enables private prediction tasks
on the cloud server. We propose a pre-expansion method and a homomorphic
TFN scheme using only two ciphertext multiplications. We also propose a vari-
ety of optimization schemes that not only improve the computational efficiency
of ciphertext but also reduce the amount of data transmission. The experimen-
tal results show that our method has the advantages of low computation and
communication costs. In the future, we will continue to improve the performance
of the model and extend it to multi-user application scenarios using multi-key
FHE.
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