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Abstract. On a scarce-data customer churn prediction problem, using
the tiny differences between the predictions of (1) the single-best model
and (2) the ensemble from Bayesian model averaging, gives greater accu-
racy than state-of-the-art approaches such as XGBoost. The proposed
approach reflects the cost-benefit aspect of many such problems: for cus-
tomer churn, incentives to stay are expensive, so what’s needed is a
short list of customers with a high probability of churning. It works even
though in every test case, the predicted outcome is always the same from
both the best-fit model and Bayesian model averaging. The approach
suits many scarce-data prediction problems in commerce and medicine.
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1 Introduction and Motivation

Many prediction problems suffer from scarce data: few rows of data, and the
few input columns have poor discriminant value, giving low correlation. Such
small-data low-dimensional problems include medical triage prediction [10], the
diagnosis of rare cancers [8], and the hospital readmission problem [9,12,14].

As a typical example of such scarce-data problems, here the task is to predict
which e-commerce customers will churn (change to a different provider). Churn
affects mobile phone providers [1], online games [15], e-commerce web sites [18,
22], and any service where the customer has a low cost of switching providers.

Predicting customer behaviour is still not a solved problem, even for big-data
problems like mobile phone customer churn [19]. There are many more businesses
with low-dimensional small-data prediction problems than businesses with the
luxury of big data sets. This includes fields with rapid changes (such as fashion
and phones) in which data more than a few months old is irrelevant.
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1.1 Previous Work and Current Contribution

The class of problems studied here are small-data, low-correlation prediction
tasks. Ensemble approaches have been used for other problems or in other
ways [6,24], such as high-correlation (instead of low-correlation) big data [4],
or only to do feature selection [17], or with small ensemble sizes like eight mod-
els [16] instead of thousands, or to track changes over time [2,21]. And of course
customer churn prediction has been attempted in many ways [15,19,22], usually
presuming that huge data sets are available [1].

Predicting from small-data low-correlation data has much in common with
the cold-start problem in recommender systems. The approach presented here
relies heavily on selecting suitable inputs/attributes, as do some studies of the
cold-start problem [3,25].

The approach presented here has been used on predicting river floods [7]
and cancer diagnosis [8], but this study is the first to apply the approach to an
e-commerce prediction problem. The results will show that for a customer churn
prediction problem typical for millions of retailers, the proposed approach gives
better accuracy than any other algorithm in the SciKit library for Python.

This paper’s approach uses the tiny differences between the predictions of
(1) the single-best model, and (2) the ensemble from Bayesian model averaging.
The proposed approach is not merely comparing an ensemble method with a
single model because both predict the same result, in almost all cases. Section 4
will show that the proposed method does better than XGBoost, which was the
best in a recent study about mobile phone churn prediction [1].

2 Background

2.1 A Scarce-Data Low-Correlation Customer Churn Problem

The churn prediction problem comes from an e-commerce site that sells a single
product. The data set1 only covers the browsing history of each customer. There
is no demographic or other personal information.

The business case is to identify a short list of customers who are most likely to
churn, in order to persuade them to stay, using discounts or similar inducements.
The list must be short, because there is a tight budget for these expensive offers.
Naturally the seller is reluctant to offer such inducements to a customer who
wasn’t planning to churn after all. The profit margin is thin, so it only makes
sense to offer the inducement if the prediction is correct around 90% of the time.

What measure of accuracy to use? If the classifier predicts the customer will
not churn, then no inducement will be offered, so true negative (TN) and false
negative (FN) can be ignored. If the classifier predicts a customer will churn, and
we offer the inducement, then it would be an expensive waste if the customer
had no intention of churning (a false positive, FP). So the chosen measure of
accuracy for this problem will be precision = TP/(TP + FP).

1 See https://www.kaggle.com/huzaiftila/customer-churn-prediction-analysis.

https://www.kaggle.com/huzaiftila/customer-churn-prediction-analysis
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2.2 Description of the Data, and Data Cleaning

Big spenders or “whales” are the most desirable customers. Whales who regularly
view the web site tend to keep visiting, and rarely churn. The cases of interest
are the big spenders who rarely visit the web site. From the original 91,698
visitors over 5 weeks, the client is only interested in big-spending but rarely-
visiting customers: those who spent 2,076 rupees or more in their first 5 weeks,
but only had 7 or fewer visits. This gives a small data set of 510 rarely-visiting,
big-spending customers. It’s close to balanced, with 51.6% of customers churning
and 48.4% staying.

Some redundant columns are deleted. It has the sales amounts for each week,
so binary “week 1” through “week 4” (to say if they bought anything) are redun-
dant. Similarly, the last three columns (binary for rare, frequent, or regular vis-
itors) are redundant because the column “Visitors Type” gives the same infor-
mation (and we convert it to 0, 1, and 2 to make it numeric). Similarly deleted
are the three columns for high, regular, and low value which merely repeat the
column “Customer Value”.

The values of each input column are rank normalized from 0 to +1: an input’s
smallest value becomes 0, the median becomes 0.5, and the biggest becomes 1.

In this paper, accuracy is calculated from leave-one-out cross-validation [13,
page 242]. From the data set of 510 rows, we create an equal number of training
data sets, each one having 509 rows, with the left-out row becoming the single
point of test data for the model built with that training set. This gives an average
accuracy without random sampling.

Interaction variables are new inputs created by multiplying the values in
existing input columns2. For each of the 510 training sets created by leave-one-
out cross validation, each pair of inputs is multiplied to create every possible
2-way interaction variable.

Feature selection uses brute-force sampling, generating many combinations
of inputs, and looking for the best feature set from the many sets thus generated.
In practice, the feature selection only picks less than 10 inputs, from the many
on offer: most interaction variables are no better than random.

2.3 Bayesian Model Averaging: Same Prediction as Best Model

Bayesian model averaging is an ensemble approach. It enumerates all possible
models, and each model’s prediction is weighted by the model’s posterior proba-
bility of being correct, given the data [11, page 8] [8, section II.C]. The weighted
vote from all the models gives the prediction.

Unfortunately, for the problem studied here and for many other scarce-data
problems [8], Bayesian model averaging always predicts the same outcome as the
single best-fit model. In contrast, the proposed approach makes use of the tiny
differences in the predicted likelihoods: the following Sects. 2.4 and 2.5 describe
Bayesian model averaging as used here.

2 Some software packages do this automatically, such as SPSS and Unistat.
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2.4 A Likelihood Function for Bayesian Model Averaging

To calculate the probability of a model’s correctness, each model needs to a
likelihood function. The one used here follows earlier work on predicting floods [7]
and lung cancers [8]. Each model includes a linear regression model, with a
slope coefficient for each input, plus a coefficient for an intercept. To put a
pipe on top of that line (or rather, hyperplane), one more model coefficient is
the standard deviation of a bell curve cross-section, to make the model into a
likelihood function, as needed for Bayesian model averaging.

Fig. 1. In Bayesian model averaging, each model calculates likelihoods. This stylized
view shows one half of the “buried trombone” likelihood function used here. A model
is a line (or hyperplane) from linear regression, covered by a bell curve that inflates at
both ends. Each input is ranked, so values go from zero to one, and the bell curve is
truncated below zero or above one, requiring the untruncated remainder to get bigger,
to guarantee that the integral of each cross-section will always sum to one.

The likelihood predicted by a model is the vertical axis. Back in Sect. 2.2,
preprocessing ranked each input’s values from 0 to +1 (0 being the smallest, 1
being the biggest, and 0.5 being the median), so a model’s pipe-shaped likelihood
function must be truncated at 0 and 1. As it approaches a truncation, the each
cross-section of the bell curve must integrate to one, so the trombone-shaped
blow-up in Fig. 1 is needed.

2.5 Two Approximations to Bayesian Model Averaging

Bayesian model averaging wants to integrate over all possible models, but this
integral can’t be done symbolically with a software model. This section describes
two approximations to get around those two requirements.

Firstly, for each set of n input features, the continuous integration is approx-
imated with an n-dimensional grid over the space of model parameters. The
integral thus becomes a sum over thousands of models.
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Secondly, even with a discretized grid, it’s too many to enumerate all models
with non-zero posterior probability of being correct. Ignoring models with a
near-zero posterior probability should only give a small error. So in the proposed
method in Sect. 3, the enumeration of models in that grid is terminated after it
has found a large number of models: 40,000 for 4 inputs, 50,000 for 5, 60,000
for 6, and 75,000 for 7 inputs. Note that number of inputs chosen by feature
selection can be different on different data sets, because feature selection is run
independently on each data set from the leave-one-out cross-validation.

Fig. 2. For the leave-one-out data set created by leaving out customer 144, this shows
a posterior landscape: for models whose first two parameters are x and y, the z-axis is
the posterior probability that the model is correct, given the data. The distribution is
skewed, so the mode will be different from the mean, i.e., the model with the highest
probability of being correct (the best-fit model is the peak) will predict differently from
the weighted average vote of all models. This happens with other prediction problems,
such as for lung cancer [8, Figure 2] and floods [7, Figure 4].

For example, Fig. 2 shows a posterior landscape from a leave-one-out data
set with 5 inputs, and the search ended at 50,219 models. This approximation
only considers the mountain, but ignores the lower area around it.

For one of the training sets created by leave-one-out-cross validation, Fig. 2
shows a 2-dimensional cross-section of the posterior distribution of models. This
data set leaves out customer 144, who becomes the single point of test data. The
x and y axes are two model parameters, and take their values from a discretized
grid, to give a range of models of varying fit to the data. For each model in x-y
space, z is that model’s posterior probability of being correct, given the training
data. The best-fit model has the highest probability of being correct, so it’s the
model at the peak. Sloping down from that peak are thousands of models with
a worse fit to the data, and thus a lower posterior probability of being correct.
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The posterior distribution in Fig. 2 is skewed: this causes the prediction of the
best-fit model to be different from the prediction of the weighted average vote
of all the models in the distribution. Those two predictions are indeed different
in Fig. 3, but only by a tiny amount: the solid line shows the prediction of the
most-probable, best-fit model (it’s higher at x = 1 predicting that churn is more
likely) and the dotted line shows the weighted average vote of all models in the
landscape of Fig. 2 (which also says that churn is more likely). The punchline is
that the difference points to the right answer: the vote’s prediction is both lower
at x = 0 and higher at x = 1 than the best-fit model.

The y-axis in Fig. 3 is the probability density of different outcomes, and the
x-axis shows the two outcomes: 0 means no churn, 1 is churn, and x-values in
between can be interpreted as probabilities [5]. Probability density can exceed
1, but it can never be negative, and must integrate to exactly 1.

The skewness in Fig. 2 is mild enough that both methods predicted that
churn is the more likely outcome, and in this example they were both right, this
particular customer did indeed churn. In fact, for this customer churn problem,
Bayesian model averaging always predicts the same outcome as the best fit
model, just like in Fig. 3. So it’s no more accurate, and has the disadvantage of
using more computer time.

Instead of condemning Bayesian model averaging, Sect. 3 will use it merely
to find the direction of the tiny differences in predictions, as seen in Fig. 3.
Increasing how large the difference needs to be, can give better accuracy.

Fig. 3. The skewed posterior landscape in Fig. 2 means the prediction of the best-fit
model will be different from the prediction of the weighted vote of all the models. But
that difference is small. Both predict this customer is more likely to churn (x = 1)
than not churn (x = 0). This particular customer did indeed churn. Intriguingly, the
direction of the difference is leaning the right way: the weighted average vote is both
higher at x = 1 and lower at x = 0. The proposed approach uses those tiny differences.
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3 The Proposed Prediction Method

3.1 Feature Selection Difficulties in Scarce-Data Problems

Low-dimensional low-correlation small-data problems have few inputs (i.e., few
columns or features), and the data set is short (i.e., few rows or individuals),
often just a multiple of 10 or 20 of the small number of inputs.

Any two points in two-dimensional space can have a line that fits them per-
fectly, and any three points in three-dimensional space can have a plane that
fits them perfectly, and so on. So a data set with few rows will have are many
combinations of input columns that will fit the data moderately well, purely due
to bad luck. That is, feature selection becomes problematic because fewer rows
of data increase the probability that an uninformative or random input appears
to have a statistical relationship with the output.

To average out the inevitable junk inputs, the proposed approach has a sec-
ond layer of variation: instead of choosing just a single feature set of inputs and
generating a single posterior landscape, it does so for the best 30 feature sets3.
That’s not 30 features, but 30 feature sets for each prediction. This will be done
for every one of the 510 training sets created by leave-one-out cross validation
on the data set of 510 customers, in the following two steps.

Firstly, leave-one-out cross-validation generates 510 data sets (one for each of
the 510 rows of data), and then creates all possible 2-way interaction variables, to
give thousands of inputs to choose from. For each data set, brute-force sampling
generates a very large number of random combinations of inputs, and keeps the
best 30 of these feature sets. These 30 feature sets per data set will usually have
different inputs, and different numbers of inputs. From the best 30 feature sets,
we generate 30 different pairs of predictions, causing the inevitable junk input
features to cancel out to some extent.

Secondly, for each of those 30 best feature sets, Bayesian model averaging
varies the model’s parameters over a discretized grid, to find the best 100,000
or so models. This gives 30 posterior landscapes, like in Fig. 2. Each landscape’s
highest point represents the best-fit model. The whole landscape shows all the
voters in Bayesian model averaging.

In every one of these 30 posterior landscapes, the weighted vote gives slightly
different predictions, but always agrees with the best-fit model about which
outcome has the higher probability, just like in Fig. 3. The next section makes
use of those slight differences, by using only the direction of the difference in
each pair of predictions.

This committee-of-committees approach is different from conventional
Bayesian model averaging, which only varies model parameters for a single best
set of input features. Using 30 different committees, each with thousands of
models, doesn’t aim to reduce CPU time, but to average out random errors
from inputs that are not informative, just like in real elections [20].
3 Why 30 feature sets? Kreft’s 30-30 rule says that 30 groups of at least 30 each is

reasonable. Here each group has thousands of models, so 30 of those groups should
be enough. More than 30 would be desirable, but the CPU cost is already large.
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3.2 Predict from the Direction of the Differences

In Fig. 3, the likelihood of churn is highest at x = 1. This indicates that churn is
predicted by both the single best model, and by the weighted vote from Bayesian
model averaging. The difference in predicted likelihood is tiny.

Consider the following two possibilities. One possibility: if all 30 pairs of
predictions give essentially the same likelihood for churn, the standard deviation
of the 30 differences will be small. This indicates the data in the 30 feature sets
are in agreement about which outcome is more likely.

The other possibility: if enough of the 30 pairs disagree, and give sufficiently
different likelihoods for churn, then the standard deviation of the 30 differences
will be bigger. This suggests the 30 feature sets disagree, with some predicting
one outcome, and some predicting the other outcome: that’s perfectly reasonable,
because all will have a few junk inputs.

So consider this proposal for a prediction algorithm. Leave-one-out cross-
validation gives 510 different data sets, and each of the 510 data sets has its
30 best feature sets, and each feature set gives both (1) a single best-fit model,
which is the highest point in (2) a posterior landscape of thousands of models.

– If the standard deviation of the 30 differences in the likelihood of churn is too
small, no prediction is made.

– If the standard deviation of the 30 differences is big enough, then the predic-
tion goes by the average (not the standard deviation) of the differences:
• If the Bayesian approach (on average) predicts a higher likelihood for

output 1 (i.e., the average difference is positive), then predict 1 (churn).
• If the average difference is negative or zero, then no prediction.

The general idea of the proposed approach is that if the mass of voters have
a small but consistent disagreement with the well-informed expert, then take
the direction of those differences to get the prediction. It’s like a country of 30
different states, where each state’s voters cast their choice, and then the vote
tally is compared with the percentage given by the best-informed voter for that
state. When the votes disagree with the best-informed voter by more than some
pre-set percentage (even if they both favor the same candidate), then whichever
way the voter tally was different, that difference goes towards that candidate.
Imagine if in all 30 states, both the vote tally and the best-informed voter favor
the same candidate, but the standard deviation of the differences was big enough;
then the direction of the tiny differences is what chooses the winning candidate.

4 Results: Raising a Threshold for Fewer Predictions

The comparison algorithms are all from the Python library SciKit. Each algo-
rithm has a threshold, i.e., a parameter which makes it more likely to choose
yes or no. In Fig. 4, logistic regression with a threshold halfway between yes = 1
and no = 0 would not favor either outcome. A threshold closer to “yes” would
result fewer “yes” predictions, but which are more likely to be “yes”, because
that y-axis is often interpreted to be a probability.
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Fig. 4. In this stylized view of logistic regression, the default threshold is in the middle,
with no bias towards “yes” or “no”. Setting the threshold higher will cause it to make
fewer “yes” predictions, for those predictions should be more likely to be correct for
“yes”. The results below will similarly vary each algorithm’s threshold, to go from
many “yes” predictions, to fewer predictions but with higher accuracy for “yes”.

In the results below, each algorithm’s threshold is varied from the neutral
middle value (where it is equally likely to predict churn or not) upwards, so that
it makes fewer “yes” predictions but are more likely to be correct, until it gets so
high that it makes few or no “yes” predictions. For the proposed method, that
threshold parameter is the required standard deviation of the difference in the
likelihoods of (1) the single best model and (2) the whole ensemble.

4.1 The Bigger the Difference, the Higher the Precision

Figure 5 shows that increasing the required standard deviation of the difference
gives better accuracy. The error bars are the 95% confidence intervals for bino-
mial proportions from the Clopper-Pearson method4. In Fig. 5, the x-axis says
how big must be the standard deviation of the difference between the likelihoods
for the two methods, to dare make a prediction. The further to the right, the
greater the precision, but for fewer predictions, so the confidence intervals get
wider. It gives a short list of customers most likely to churn.

From Fig. 5, by increasing the required direction of the difference, that pre-
cision for churn can be raised above 90%, but for a short list of customers.
Taking Fig. 5 and using the nonlinear least-squares Marquardt-Levenberg (and
using as uncertainties the Clopper-Pearson confidence intervals of the binomial
proportions), gives a p-value below 0.01, indicating a relationship exists.

4 Clopper-Pearson does not approximate a binomial distribution with a normal dis-
tribution, instead it gives exact results for small samples.
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Fig. 5. The x-axis shows how big the standard deviation of the difference between 30
pairs of likelihoods needs to be, to venture a prediction. Moving right by increasing
how different the two likelihoods need to be, raises precision but for fewer customers.

4.2 Comparison with XGBoost, Deep Learning, and Others

The proposed approach compares favourably with popular algorithms such as
XGBoost and deep learning. Varying each algorithm’s threshold (to give fewer
but more confident predictions) gives Fig. 6, where x is the size of the short
list produced, so that as the threshold becomes more demanding, the short list
gets shorter. The y-axis shows how many customers on that short list do churn,
representing the precision = TP ÷ (TP + FP ). All algorithms used leave-one-
out cross-validation to select the training and test data, so there is no sampling
error.

The business case is that around half of the 510 customers will churn, and
the profit margin is such that it’s only worth offering an incentive to a customer
if the chance of them churning is close to 90%. The marketing budget can give
an incentive to about 60 customers.

Given these requirements, Table 1 picks the threshold of each algorithm, such
that the short list5 is the smallest size that is at least 60. In Table 1, the proposed
method has the highest precision: the threshold that gives the smallest short list
of size at least 60 covers 63 customers, of whom 88.89% go on to churn.

XGBoost is slightly behind with precision of 84.13%, and the third-best result
is 76.67% from a shallow neural network with two hidden layers, of 15 and 10
neurons6 Trying many different numbers of layers (and neurons in each layer)
suggests that adding more layers or neurons tends to reduce accuracy, perhaps

5 For some algorithms, a tiny increase in the threshold gives more than one extra
customer, so the short list is not always exactly 60.

6 Other MLP learning parameters were very ordinary: the optimizer was RMSpro, the
activation function was relu for the hidden layers and sigmoid for the output, the
initializer was GlorotUniform.
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Fig. 6. The client wants a short list of at least 60 of the 510 customers, such that about
90% of them do churn. The y-axis shows how many are in the short list, which gets
shorter by adjusting the algorithm’s threshold. The x-axis shows how many customers
on that short list did in fact churn, being precision = TP/(TP + FP). The proposed
method gives a short list from which 88.89% did churn. Second-best is XGBoost, and
third-best is a neural network with 15 and 10 neurons in the two hidden layers.

because the data set is so small that there just isn’t enough signal to tune a
large number of parameters: the next-best of all these attempts was three hidden
layers with 50, 50, and 30 neurons, which did slightly worse than SciKit’s default
neural network algorithm at 73.33%. This is comparable to another study that
used deep learning for e-commerce customer churn prediction [18] which achieved
precision of 78%.

The one-tailed 2-sample Z-test for proportions on the difference between the
proposed method and XGBoost in Table 1 does not show a significant difference,
with a p-value of 0.284, but the client still likes 88.9% more than 84.1%.

Comparing the proposed method with the next-best algorithm (a shallow
neural network), the Z-test gives a p-value less than 0.05 which suggests a signif-
icant improvement. It’s possible that more tinkering might help, but adding more
layers to the neural network tends to give lower accuracy in Table 1. Random
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Table 1. The proposed method narrowly out-performs XGBoost, and is significantly
better (p < 0.05) than deep learning with either small or large neural networks.

Algorithm Precision TP FP Short list

Proposed Approach 0.8889 56 7 63

XGBoost 0.8413 53 10 62

2-layer neural network: 15,10,1 nodes 0.7667 46 14 60

3-layer neural network: 50,50,30,1 nodes 0.7167 43 17 60

Gaussian Process 0.7167 43 17 60

Linear Discriminant 0.7167 43 17 60

Gaussian NB 0.7000 42 18 60

Gradient Boost 0.6833 41 19 60

Logistic Regression 0.6833 41 19 60

Random Forest 0.6667 40 20 60

4-layer neural network: 15,12,10,9,8,1 nodes 0.6667 40 20 60

Ada Boost 0.6452 40 22 62

Forest and Gradient Boost work impressively on many other problems, but in
this scarce-data task they are at 66.67% and 68.33% respectively.

As mentioned in Sect. 2.2, the data set used here is close to balanced, with
51.6% of customers churning and 48.4% staying, so no claims are made for how
well it might cope with unbalanced data sets.

5 Discussion and Conclusion

The proposed approach achieves more accuracy than state-of-the-art algorithms
including XGBoost and deep learning, on a real small-data low-dimensional pre-
diction problem whose inputs are weak discriminants, the kind of problem faced
by millions of organizations of all sizes.

The result here is broadly in agreement with a previous study about predict-
ing who has cancer [8]. There are many other scarce-data prediction problems,
with inputs that are poor discriminants: diagnosing unusual diseases, medical
triage prediction [10], and hospital readmission [9,12,14], to name a few.

Like the customer churn problem covered here, many medical prediction
problems also have a cost-benefit aspect. For example, a hospital needs a short
list of patients who are most in need of care (to match the limited number of
available beds), so the accuracy of that short list matters, not accuracy overall.

For most hospitals, these are scarce-data problems: while common diseases
like influenza infect millions of people each year, those diseases behave differently
from place to place and year to year, so 5-year-old data on influenza in Norway’s
sub-arctic [23] could be misleading for influenza in Australia’s dry outback, due
to the evolution of the virus, and differences in weather, housing, and immunities.
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