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Abstract. With the emergence of many knowledge-based systems
worldwide, there have been more and more applications using different
kinds of data and solving significant daily problems. Among that, the
issues of missing data in such systems have become more popular, espe-
cially in data-driven areas. Other research on the imputation problem
has dealt with partial and missing data. This study aims to investi-
gate the imputation techniques for sparse data using the Singular Value
Decomposition technique, namely SVDI. We explore the application of
the SVDI framework for image classification and text classification tasks
that involve sparse data. The experimental results show that the pro-
posed SVDI method improves the speed and accuracy of the imputation
process when compared to the PCAI method. We aim to publish our
codes related to the SVDI later for the relevant research community.

Keywords: Sparse data · Data imputation · Singular Value
decomposition

1 Introduction

The issue of missing data is a significant one that regularly emerges in many data-
driven areas. Partial or missing data can occur due to several circumstances,
including data entry mistakes, measurement flaws, or simply the inability to
obtain specific information. It can result in skewed or incomplete studies and
other problems, such as diminished statistical power, increased uncertainty, and
poor interpretability. Imputation procedures, which fill in missing values in a
data set to generate a complete data matrix, are frequently used to overcome
this problem. On the other hand, sparse data refers to rows of data that include
a significant percentage of zeroes as values. For example, it is frequently the case
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in some issue areas, such as recommender systems, when a user has 0 ratings
for all but a small number of movies or music in the database. Another typical
illustration is a “bag of words” model of a text document, where most words
have a value of 0, and other words in the document have a count or frequency.
Examples of sparse data suitable for dimensionality reduction using Singular
value decomposition (SVD) include Text Classification, One Hot Encoding, Bag
of Words Counts, Recommender Systems, Customer-Product Purchases, User-
Song Listen Counts, and User-Movie Ratings.

Singular value decomposition (SVD) is a widely used tool for data analysis
with applications throughout science and engineering. In general, SVD operates
by disassembling the initial matrix. SVD aims to approximate a dataset with
many dimensions using fewer dimensions. The data are arranged in decreasing
order of variation upon exposure of the substructure. This makes it easier to
identify the area with the most variance, which may be reduced using SVD.
By extracting the initial few singular vectors or eigenvectors, it may be used
for dimension reduction, data visualization, data compression, and information
extraction; for examples, see Alter et al. [1], Prasantha et al. [29], and Nguyen et
al. [23,24]. On the one hand, SVD can solve several fundamental data analysis
methods, such as the Principal component analysis (PCA) [8], the Canonical cor-
relation analysis (CCA) [29], and the Singular Value Thresholding (SVT) [18].
On the other hand, SVD is also connected to several potent tools in different
fields, such as the Latent matrix factorization (LMF) [33] and the Latent seman-
tic analysis (LSA) [3]. Thus, when data is sparse, SVD may be the method with
the highest level of popularity for dimensionality reduction.

In summary, the contribution of this paper can be listed as follows:

(a) We focus on evaluating the effectiveness of SVDI in parsing sparse data in
two specific application domains: image and text classification.

(b) We compare the performance of SVD Imputation with Principal Compo-
nent Analysis Imputation (PCAI) measures regarding their ability to handle
missing data in these two application domains.

The rest of the paper is structured as follows. Section 2 presents a survey
about imputation methods and their application in practical problems. Section 3
describes the process combining Singular Value Decomposition and imputation
techniques. The results and discussion are performed in Sect. 4. The paper ends
with conclusions and future works in the last section.

2 Related Works

Instead of removing or ignoring the unknown data, a large amount of research
has been tackling this problem by using imputation methods [25]. While Suthar
et al. [30] surveys classifying the imputation methods of missing data in data
mining, Musil et al. [22] and Lüdtke et al. [19] compare imputation strategies
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in different designs. There are also advanced imputation methods, such as K-
nearest Neighbor (KNN) imputation [20] and Machine Learning-based impu-
tation [10,12]. Besides that, Lakshminarayan et al. [12] experiment with two
Machine Learning (ML) systems: Autoclass and C4.5, for the problem.

In addition to various methods available for handling missing data, one note-
worthy example is the Generative Adversarial Imputation Nets (GAIN) [34],
which is a modified version of the Generative Adversarial Nets (GAN) frame-
work. GAIN uses a generator and discriminator network to impute missing data
and is trained using additional information as a hint vector to focus on imputa-
tion quality. Another technique is the Missing GP (MGP) [9], which uses sparse
Gaussian processes to predict missing values at each dimension using all the
variables from other dimensions. MGP outputs a predictive distribution for each
missing value and can be trained simultaneously to impute all observed miss-
ing values. Finally, Khan et al. [11] suggests a hybrid technique of single and
multiple imputation techniques, which extends the Multivariate Imputation by
Chained Equation (MICE) algorithm to impute categorical and numeric data.
Additionally, Awan et al. [2] presents the Conditional Generative Adversarial
Imputation Network (CGAIN), which imputes missing data using class-specific
distributions based on class-specific characteristics of the data. Moreover, DPER
algorithm [26] directly computes maximum likelihood estimates (MLEs) for ran-
domly missing data sets, eliminating the need for separate imputation steps.
It provides computational efficiency and superior estimation performance com-
pared to existing methods.

Many studies have applied to impute methods to address missing data in
real-world problems. Firstly, Jerez et al. [10] use statistical and machine learning
methods to impute missing data in an actual breast cancer problem. Further-
more, Liu et al. [16] have a systematic review of deep learning-based imputation
techniques for handling missing values in healthcare data. The study aims to
evaluate the use of these techniques, with a particular focus on data types, to
assist healthcare researchers in dealing with missing values. Hassan et al. [7] pro-
pose a missing data imputation method based on the salp swarm algorithm for
diabetes disease. The study aims to impute missing values in the Pima Indian
diabetes disease dataset using a proposed algorithm, namely ISSA.

Singular value decomposition (SVD) has recently been widely used in dif-
ferent fields, including multi-environment trials and transforming genome-wide
expression data. However, in the research of Alter et al., [1], imputing missing
values using standard SVD can lead to low-quality results when affected by out-
liers. Still, the Yan method proposed four robust SVD extensions to address this
issue. Singular value decomposition can also be used in transforming genome-
wide expression data [5], enabling meaningful comparisons of the expression of
different genes across different arrays and experiments. Moreover, to improve
the issue of handling missing data, a proposed Bayesian model that is based on
the SVD components of a continuous data matrix is shown by Zhai et al. [35] to
be the most accurate and precise method compared to the current imputation
methods in simulated and real datasets.
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3 Methodology

3.1 Sparse Data

Sparse data refers to datasets characterized by a significant proportion of zero
or missing entries, indicating that the vast majority of the data points possess
values of zero. Unlike missing data, where values are unknown or undefined,
sparse data values are generally known but non-existent or specifically set to zero.
This terminology finds frequent application in fields such as machine learning,
data science, and information retrieval, where dealing with sparse data poses a
common challenge.

Consider a movie recommendation system that suggests movies to users based
on their viewing history. The system has a comprehensive database with infor-
mation about movies, users, and ratings. However, not all users have watched
or rated every movie, resulting in a sparse dataset with many missing entries.
For example, in a dataset with 100,000 users and 1,000 movies, only 1 million
non-zero entries exist, representing less than 1% of the total dataset. This high
sparsity means that most entries in the dataset are zero values.

3.2 Mechanisms of Missing Data

The impact of missing data depends on the method used to generate the missing
data. Rubin and his colleagues [13–15,28] established the foundations of miss-
ing data theory. Central to missing data theory is his classification of missing
data problems into three categories: (1) missing completely at random (MCAR);
(2) missing at random (MAR); and (3) missing not at random (MNAR). These
three classes of missing data are referred to as missing data mechanisms (for
a slightly different classification, see [6]). Despite the name, they are not rea-
sons for missing data that are causative. Instead, the statistical link between
observations (variables) and the risk of missing data is represented by missing
data mechanisms. Another word that is sometimes confused with missing data
mechanisms is missing data patterns; these are descriptions of which values in a
dataset are missing.

MCAR occurs when the missing data is independent of the observed or unob-
served data. For example, participants flip a coin in a survey to decide whether
to answer questions. MAR occurs when the missingness can be explained using
observed data. For instance, survey participants that live in specific postal codes
may refuse to fill in the questionnaire. MNAR occurs when the missingness
depends on an unobserved or missing attribute. For example, people who own
six-bedroom houses may refuse to participate in a survey, as owning a bigger
house may indicate greater wealth and a better-paying job. A researcher’s choice
of approach is made more accessible when the data are MCAR or MAR since
they allow them to overlook the causes of missing data. Every approach is viable
in this situation. The data may be MCAR or MAR, but it is challenging to
provide actual proof of this. It is a sound method to compare findings from
many studies to see their sensitivity to the MCAR and MAR assumptions. The
outcomes of the various analyses differ from one another, and this reveals which
assumptions are the most important.
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3.3 Singular Value Decomposition (SVD)

The concept of singular value decomposition (SVD) is a fundamental tool in
linear algebra. Given an n × d matrix A, one can express it as the product of
three matrices:

A = USV T , (1)

where U is an n×n orthogonal matrix, V is a d× d orthogonal matrix, and S is
an n×d diagonal matrix with nonnegative entries. Notably, the diagonal entries
of S are sorted from highest to lowest, progressing from the “northwest” to the
“southeast” of the matrix. Assuming we use r eigenvalues, the projection matrix
can be defined as V = Wr, where Wr is formed by selecting the first r columns
of matrix V . Consequently, the reduced dimension version of matrix A is given
by the product AV as well.

The following formula, as depicted below, is helpful in providing a more
detailed illustration of the singular value decomposition (SVD) method. SVD is
a powerful mathematical tool used for matrix factorization, wherein each singular
value in S is accompanied by an associated left singular vector in U and a right
singular vector in V .
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It is important to note that the orthogonal matrices U and V that are part of the
singular value decomposition (SVD) of matrix A are not necessarily the same. It
is because A may not be a square matrix, resulting in U and V having different
dimensions. The columns of U represent the left singular vectors of A, while the
columns of V , or the rows of V T , represent the right singular vectors of A. The
singular values of matrix A are represented by the entries of S, with each singular
value being associated with a singular vector. The singular vectors are ordered
such that the first or top singular vector corresponds to the largest singular value,
which is illustrated in the figure above. It is worth noting that every matrix A
can be decomposed into its SVD, a remarkable fact with a straightforward proof
that is better suited for a linear algebra course. Geometrically, this means that
no matter how peculiar a matrix may be, it can always be decomposed into
a rotation (multiplication by V T ), scaling plus dimension addition or removal
(multiplication by S), and a rotation within the range (multiplication by U). The
SVD is “more or less unique,” with the singular values of a matrix being unique.
If a singular value is repeated, the subspaces created by the corresponding left
and right singular vectors have a distinct definition. However, there is flexibility
in selecting orthonormal bases for each of these subspaces.
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3.4 SVD Imputation (SVDI)

The below algorithms describe the approach of “SVD Imputation” (SVDI). For
example, suppose there exists a dataset D = [F ,M], which can be decomposed
into a partition of fully observed features denoted by F , and another partition M
containing features with missing values. To facilitate the imputation process on
this incomplete dataset, one may adopt the approach of SVD Imputation (SVDI),
which involves reducing the dimensionality of the fully observed partition F
via svd(A), generating a new reduced feature matrix RF . Subsequently, the
imputation process can be carried out on the union of RF and the partition
with missing values, M, instead of the original full dataset [F ,M].

The rationale for this approach is twofold. First, by reducing the dimension-
ality of F , one can accelerate the computational efficiency of the imputation
method. This is particularly beneficial in scenarios where the size of the covari-
ance matrix, a key component of SVD, is smaller than that of the full dataset
F due to F having more samples than features. In such cases, implementing
SVD based on the covariance matrix is expected to be faster. Conversely, when
the number of features in F exceeds the sample size, the covariance matrix of
F is larger than that of F itself. In this scenario, SVD formulation based on
the data is a more favorable approach. By considering these factors, researchers
and practitioners can optimize the SVDI methodology to suit their particular
dataset and computational resources best. The variations in the mean squared
error of the imputed version and the ground truth for various procedures are only
marginally different, as demonstrated in the studies. SVDI appears to perform
somewhat better on several occasions. That is feasible because SVD keeps just
the essential information from the data while eliminating some noise, improving
imputation quality.

Algorithm 1. SVD imputation framework
Require:

D ← [F ,M]
Imputer I
SVD algorithm svd

Procedure:
(R, V ) ← svd(F)
M′ ← I([R,M])
Return Imputed version M′ of M

4 Experiments

In this section, we validate the performance of SVDI using multiple real-world
datasets with various settings (such as on datasets with different missing rates),
and we compare SVDI and PCAI when the objective is to perform classification
on the imputed dataset. We report RMSE, running time, and average accuracy
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as the standard performance metric. Unless specified, missingness is applied to
the datasets with a missing rate is 20%, and the default missing mechanism is
MCAR.

4.1 Datasets

We experiment on three datasets:

1. IMDB1 The IMDB dataset contains 50000 movies and TV shows divided
into 25000 training and 25000 test samples. Each review is labeled as positive
or negative based on sentiment. The reviews are preprocessed. Each review
sentence can be represented by TF-IDF 5000 features.

2. Fashion MNIST2 includes clothing images is also selected in our experi-
ments. The dataset consists of 60000 training images, 10000 testing images
of size 28 × 28 (784 features), and ten labels corresponding to 10 different
types of fashion.

3. MNIST3 is a large collection of handwritten digits. It also has a training
set of 60000 images, a test set of 10000 images of size 28×28, and ten labels
corresponding to 10 digits.

The detail of each dataset can be listed below (TAble 1).

Table 1. The description of datasets used in our experiments.

Dataset # classes # features Samples Sparsity

Fashion MNIST 10 784 70000 50.1

MNIST 10 784 70000 80.4

IMDB 2 5000 50000 98.05

4.2 Experimental Design

We compare the running time, average RMSE, and average accuracy of PCAI
with our SVD Imputation (SVDI) methods. We calculate the running time by
the sum of dimensional reduction and imputation time. The imputation methods
we use in our experiments are:

1. SoftImpute [21]: Matrix completion by iterative soft thresholding of SVD
decompositions. The algorithm fills in the missing values with the current
guess and then solves the optimization problem on the complete matrix using
a soft-thresholded SVD.

1 https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-
reviews.

2 https://github.com/zalandoresearch/fashion-mnist.
3 http://yann.lecun.com/exdb/mnist/.

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://github.com/zalandoresearch/fashion-mnist
http://yann.lecun.com/exdb/mnist/
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2. Multiple Imputation by Chained Equation (MICE) [4]: models each
feature with missing values as a function of other features and uses that
estimate for imputation in an iterated round-robin fashion.

3. kNN Imputation (KNNI) [32]: Nearest neighbor imputations which
weight samples using the mean squared difference on features for which two
rows both have observed data.

4. GAIN [34]: A deep learning approach for imputing missing data by utilizing
Generative Adversarial Network (GAN).

All methods are implemented with default configurations in their original papers.
For all PCA computations, the number of eigenvectors is chosen so that the
minimum amount of variance explained is 95%. We utilize logistic regression as
the classifier.

It is worth noting that any dataset can be rearranged so that the first q fea-
tures are not missing while the remaining features have missing values. There-
fore, we assume that each dataset’s first q features are not missing, while the
remaining ones contain missing values. The default value for q is half of the total
number of attributes in each dataset. Then, we randomly simulate missing data
in the missing partition M at default missing rates of 20%, 40%, and 60%. Here,
a missing rate of x% refers to the percentage of missing entries in the missing
partition M . To introduce a fixed missing rate, we use two different missing
mechanisms inspired by [17].

(a) MCAR: Set all features in missing partition M to have missing values when
vi ≤, t, i ∈ (1 : n) rate with t is the missing rate.

(b) MNAR: Randomly sample 2 features x1 and x2 from the missing partition
M , calculate their median m1 and m2. Then we set all features to the missing
value where vi ≤ t, i ∈ (1 : n) and (x1 ≤ m1 or x2 ≤ m2) and t is the missing
rate.

Unless otherwise stated, missingness is applied to the datasets by randomly
removing 20% of all missing partition M , with MCAR as the default miss-
ing mechanism. We conduct all experiments using the Kaggle notebook with a
default Intel Xeon CPU and 30 GB RAM. If no results are produced after 20000 s
of running, or if a memory allocation issue arises, we terminate the experiment
and denote it as NA in the result tables.

4.3 Results and Discussion

We perform experiments comparing the performance between SVDI and PCAI
and present the results in the tables below. From now on, the bold values on the
tables indicate better performance for each metric on each dataset. According
to Table 2, SVDI outperforms PCAI by having lower average RMSE values for
most methods and datasets. Specifically, SVDI proves more effective than PCAI
with SoftImpute, Mice, and KNNI methods on Fashion MNIST and MNIST
datasets. In the IMDB datasets, there is an insignificant difference between PCA
and SVD, and we could not retrieve the results of MICE due to a memory issue.
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Table 2. The average RMSE of Imputation methods.

Methods Strategy Fashion MNIST MNIST IMDB

SoftImpute PCAI 0.20675 0.3618 0.448

SVDI 0.155 0.1995 0.458

GAIN PCAI 0.156 1.2557 0.452

SVDI 0.261 0.1754 0.443

Mice PCAI 0.244 2.712 NA

SVDI 0.09 0.11

KNNI PCAI 0.162 1.2495 0.6204

SVDI 0.122 0.166 0.6211

Table 3. The average accuracy (%) of Imputation methods.

Methods Strategy Fashion MNIST MNIST IMDB

SoftImpute PCAI 84.19 92.05 85.94

SVDI 83.64 92.38 88.51

GAIN PCAI 84.06 92.5 85.952

SVDI 83.9 92.3 88.548

Mice PCAI 80.1 92.43 NA

SVDI 83.8 92.46

KNNI PCAI 84.35 92.85 85.9

SVDI 83.84 92.83 88.54

But overall, SVDI is a better strategy for imputing missing values than PCAI,
especially when combined with SoftImpute, Mice, and KNNI methods.

Based on the results presented in Table 3, the average accuracy table, it
is evident that the SVDI imputation strategy generally surpasses the PCAI
strategy. GAIN and KNNI with PCAI achieve slightly higher average accuracy
on the Fashion and MNIST datasets than their SVDI counterparts. However, on
the IMDB dataset, PCAI performs notably worse, with an average accuracy of
nearly 3% lower than that of SVDI. Mice method with PCAI tends to yield lower
average accuracies on the Fashion MNIST and MNIST datasets, with values
of 80.1% and 92.43%, respectively. For the SoftImpute technique, while PCAI
outperforms SVDI on the Fashion MNIST, the MNIST dataset shows that PCAI
is 0.33% less effective than SVDI. Notably, all SVDI strategies yielded results
approximately 3% better than PCAI ones on the IMDB dataset.

Table 4 displays each method’s average running time values on different
datasets. PCAI demonstrates faster running time in the Fashion MNIST dataset
with all four methods compared to SVDI. On the contrary, in the IMDB and
MNIST datasets, SVDI is consistently more effective than PCAI, with lower
running time values. Overall, it is evident that SVDI exhibits faster perfor-
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Table 4. The average running time (s) of Imputation methods.

Methods Strategy Fashion MNIST MNIST IMDB

SoftImpute PCAI 17.92 18.97 644.24

SVDI 18.38 17.81 411.47

GAIN PCAI 383.9 417.63 14070.26

SVDI 422.9 423.58 10813.95

Mice PCAI 1984.63 4664.094 NA

SVDI 2664.87 6211.2

KNNI PCAI 6376 11314.2 18490.52

SVDI 10835 10156.6 17268.33

mance than PCAI on the MNIST and IMDB datasets, which can be attributed
to SVDI’s omission of the standardization step, resulting in quicker processing
time.

5 Conclusion and Future Works

This study explores the application of the SVDI framework for image classifi-
cation and text classification tasks that involve sparse data. The experimental
setup consists of the dimensionality reduction of fully observed features and sub-
sequent imputation of missing data using the reduced feature set. This approach
enables us to effectively handle the high-dimensional and sparse data common in
image and text classification while also addressing the issue of missing data that
frequently arises in real-world datasets. The average RMSE, average accuracy,
and running time are used as evaluation metrics to compare the performance of
SVDI with other dimension reduction imputation methods, such as PCAI. After
conducting experiments, it illustrates that the SVDI method improves the speed
and accuracy of the imputation process when compared to the PCAI method.

For future work, the proposed method can be experimented on visible and
thermal infrared image datasets, such as KTFE [27] and USTC-NVIE [31]. The
objective is to comprehensively investigate these frameworks to gain deeper
insights into the underlying factors contributing to this discrepancy and develop
viable solutions to address these challenges.
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5. Garćıa-Peña, M., Arciniegas-Alarcón, S., Krzanowski, W.J., Duarte, D.: Missing-
value imputation using the robust singular-value decomposition: proposals and
numerical evaluation. Crop Sci. 61(5), 3288–3300 (2021)

6. Gelman, A., Hill, J.: Data analysis using regression and multilevel/hierarchical
models (2007)

7. Hassan, G.S., Ali, N.J., Abdulsahib, A.K., Mohammed, F.J., Gheni, H.M.: A miss-
ing data imputation method based on salp swarm algorithm for diabetes disease.
Bull. Electric. Eng. Inf. 12(3), 1700–1710 (2023)

8. Huang, J., Shen, H., Buja, A.: The analysis of two-way functional data using two-
way regularized singular value decompositions. J. Am. Stat. Assoc. 104, 1609–1620
(2009)

9. Jafrasteh, B., Hernández-Lobato, D., Lubián-López, S.P., Benavente-Fernández, I.:
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