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Abstract. Convolutional Neural Networks (CNNs) are widely used for
image recognition tasks but are vulnerable to attacks. Most existing
attacks create adversarial images of a size equal to the CNN’s input
size; mainly because creating adversarial images in the high-resolution
domain leads to substantial speed, adversity, and visual quality chal-
lenges. In a previous work, we developed a method that lifts any exist-
ing attack working efficiently in the CNN’s input size domain to the
high-resolution domain. This method successfully addressed the first two
challenges but only partially addressed the third one. The present article
provides a crucial refinement of this strategy that, while keeping all its
other features, substantially increases the visual quality of the obtained
high-resolution adversarial images. The refinement amounts to a blowing-
up to the high-resolution domain of the adversarial noise created in the
low-resolution domain. Adding this blown-up noise to the clean orig-
inal high-resolution image leads to an almost indistinguishable high-
resolution adversarial image. The noise blowing-up strategy is success-
fully tested on an evolutionary-based black-box targeted attack against
VGG-16 trained on ImageNet, with 10 high-resolution clean images.

Keywords: Black-box attack · Convolutional Neural Network ·
Evolutionary Algorithm · High resolution adversarial image · Noise
Blowing-Up

1 Introduction

The profusion of images in today’s society and the need to efficiently assess
the information they contain for a large series of applications (self-driving cars,
face recognition and security controls, satellite images, medical images, etc.)
have led to the development of tools to automatically process and sort this
type of data. Trained CNNs are among the most powerful and reliable tools
available. Nevertheless, specifically designed adversarial images may lead CNNs
to erroneous classifications, potentially resulting in catastrophic consequences.
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Vice versa, efficient attacks reveal CNNs weaknesses, which in turn may lead to
more robust CNNs.

Attacks depend on the scenario considered. For instance, starting with an
original image classified by a CNN in a given category, the target scenario essen-
tially consists of choosing a target category, different from the original one, and
in creating a variant of the original image that the CNN will classify in the tar-
get category, although a human would classify this adversarial image still in the
original category, or would be unable to notice any difference between the origi-
nal and adversarial images. Attacks also depend on the level of knowledge of the
CNN at the disposal of the attacker. While White-box attacks (see e.g., [2,16])
have full knowledge of the architecture of the CNN to attack (number and type
of layers, weights, etc.), Black-box attacks [9,10] have no access to the CNN to
attack and are therefore more challenging.

Our objective is to create adversarial images that closely resemble the original
ones. Since original digital images in the real world are often in high-resolution,
we focus on generating high-resolution adversarial images. Therefore, we aim at
creating images, that can replace the original ones without losing visual quality
while being able to deceive classification tools. Such achievements have signifi-
cant potential in the context of privacy preservation, e.g. on social media where
images are naturally of high resolution.

1.1 Standard Methodology

CNNs assess images by initially resizing them to fit their input size. In particular,
high-resolution images are down-scaled, such as to 224×224 for most ImageNet-
trained CNNs. So far, all attacks - black box or otherwise - have involved images
of moderate size, or resized to values that CNNs handle natively, what we call
here the “low-resolution” R domain. The construction of adversarial images is
then achieved by adding some carefully designed adversarial noise to the poten-
tially resized original image. In particular, the adversarial noise created by all
these attacks is in the “low resolution” domain handled natively by the CNNs
so that the obtained adversarial images are as large as the CNN’s input size. In
particular, these attacks explore a search space of size that does not depend on
the size of the original image, but that coincides with the size of the CNN input.

1.2 Three Challenges

Creating adversarial images of large size (with any type of attack) leads to three
challenges regarding speed, adversity, and visual quality. Firstly, the complex-
ity of the problem increases quadratically with the size of the images, which of
course impacts the speed of the attacks. For instance, we showed in [12] that an
EA-based attack, that succeeded in creating adversarial images in the 224× 224
domain, did not even indicate any convincing sign of potential success after 40
hours for any of the high-resolution image in Table 1. Secondly, the adversar-
ial noise, introduced in the “high resolution” H domain, should “survive” the
downsizing process from H to R to fit the CNN. Thirdly, the noise introduced
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in the “high resolution” domain should be indiscernible to the human eye when
viewing the images at their original size, not only when they are scaled down to
fit in the “low resolution” domain.

1.3 Our Contribution

Our previous works [11,12] provided the design of the first effective strategy
that lifts to the high-resolution domain any existing attack working efficiently
in the CNN’s input size domain. This was achieved by lifting an adversarial
image obtained in the R domain to an adversarial image in the H domain. This
approach successfully addressed the first two challenges of speed and adversity.
However, it only partially addressed the third challenge of visual quality in the
H domain.

Our contributions to the present article are twofold. Firstly, we provide a
substantial refinement of the strategy given in [11,12] that, while keeping all its
other features – in particular it continues to lift to the high-resolution domain
any attack working in the CNN’s input size domain –, substantially increases the
visual quality of the high-resolution adversarial images, as well as the speed and
efficiency in creating them. The refinement amounts to a “blowing-up” to the
high-resolution domain of the adversarial noise – only of the adversarial noise,
and not of the full adversarial image—created in the low-resolution domain.
Adding this high-resolution noise to the original high-resolution image leads to
a tentative high-resolution adversarial image.

Secondly, we apply this adversarial noise blowing-up strategy to one black-
box attack for the target scenario against VGG-16 trained on ImageNet. We
use the same 10 high-resolution clean images as in [11,12], and run the attack
10 times for each clean image. We then show that the obtained tentative high-
resolution adversarial images are indeed adversarial.

To illustrate the visual quality of adversarial images obtained by this refined
approach, we consider a challenging example of a high-resolution image. We
compare this clean image with the HR adversarial image obtained by the method
of [11,12] on the one hand, and with the HR adversarial image obtained by the
new method on the other hand. We demonstrate that our new method creates
high-resolution adversarial images of enhanced visual quality.

1.4 Organisation of the Paper

Section 2 briefly recalls some standard attack scenarios in R, clarifies what are
their lifted version to H, and fixes some notations. Section 3 formalizes the noise
blowing-up method and provides the scheme of our attack atkscenario

H,C that lifts to
H any attack atkscenario

R,C against a CNN C that works in the R domain, and that
takes advantage of lifting the adversarial noise only. It sets the main indicators
used to assess the quality of the obtained tentative adversarial images.

Section 4 presents a case study. The noise blowing-up strategy is applied for
the target scenario to the evolutionary algorithm-based attack presented already
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in [3,5]. To illustrate the gain in visual quality provided by our new approach,
one sample is detailed in Sect. 5. Section 6 summarizes our findings and indicates
directions for future research.

All algorithms and experiments were implemented using Python 3.8 [18] with
NumPy 1.17 [13], TensorFlow 2.4 [1], Keras 2.2 [6], and Scikit 0.24 [19] libraries.
Computations were performed on nodes with Nvidia Tesla V100 GPGPUs of the
IRIS HPC Cluster at the University of Luxembourg.

2 CNNs and Attack Scenarios

CNNs used for image classification undergo training on a large dataset, denoted
as S, to categorize images into predetermined categories c1, · · · , c�. The cate-
gories, along with their index number �, are specifically associated with dataset
S and remain consistent across all CNN models trained on S. One denotes by
R the set of images of size r1 × r2 (where r1 is the height and r2 is the width of
the image) natively adapted to such CNNs.

Once trained, a CNN can be exposed to images (typically) in the same domain
R as those on which it was trained. Given an input image I ∈ R, the trained
CNN produces a classification output vector

oI = (oI [1], · · · ,oI [�]) , (1)

where 0 ≤ oI [i] ≤ 1 for 1 ≤ i ≤ �, and
∑�

i=1 oI [i] = 1. Each ci-label value oI [i]
measures the plausibility that the image I belongs to the category ci.

Consequently, the CNN classifies the image I as belonging to the category
ck if k = arg max1≤i≤�(oI [i]). If there is no ambiguity on the dominating cat-
egory, one denotes (ck,oI [k]) the pair specifying the dominating category and
the corresponding label value. In this case, we consider that C’s classification of
I is

C(I) ∈ V = {(ci, vi), where vi ∈]0, 1] for 1 ≤ i ≤ �}. (2)

The higher the ck-label value oI [k], the higher the confidence that I represents
an object of the category ck.
Remark. The dominant category is without ambiguity for most images used in
practice. Still, the situation differs when there are different categories for which
their corresponding label values while being larger than the remaining ones, are
almost equal between themselves. This occurs a fortiori when all � label values
are almost equi-distributed, like for instance for adversarial images created in
the context of the flat scenario (see Subsect. 2.2). If I is such an image, then
one considers instead that:

C(I) ∈ V = {((c1, v1), · · · , (c�, v�)) , where vi ∈]0, 1] for 1 ≤ i ≤ �}. (3)

2.1 Assessment of the Human Perception of Distinct Images

Given two images A and D of the same size (belonging or not to the R domain),
there are different methods to numerically assess the human perception of the dif-
ference between them. In the present study, this assessment is performed mainly
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by computing the values of Lp(A,D) for p = 1, 2, or ∞. In a nutshell, the Lp-
distance measures the difference between the pixel values of A and D as follows,
where I(r) represents the value of the rth-pixel of the image I:

{
Lp(A,D) = (

∑
r |A(r) − D(r)|p)1/p for p = 1, 2.

L∞(A,D) = Maxr|A(r) − D(r)|. (4)

2.2 Attack Scenarios in the R Domain

Let C be a trained CNN, ca be a category among the � possible categories, and
A be a clean image in the R domain classified by C as belonging to ca. Let τa

be its ca-label value. Based on these initial conditions, we describe three attack
scenarios aiming at creating an adversarial image D ∈ R accordingly.

Whatever the scenario, one requires that D remains so close to A, that a
human would not notice any difference between A and D. This is performed in
practice by fixing the value of the parameter ε, that controls (or restricts) the
global maximum amplitude allowed for the value modifications of each individual
pixel of A to obtain the adversarial image D. For a given attack scenario, note
that the value set to ε usually depends on the concrete performed attack. It
depends more specifically on the Lp distance used in the attack to assess the
human perception between the original image and the adversarial image.

The (ca, ct) target scenario performed on A requires first to select a category
ct �= ca. The attack then aims at constructing an image D that is either a good
enough adversarial image or a τ -strong adversarial image.

A good enough adversarial image is an image that, when subjected to clas-
sification by C, is classified as belonging to the target category ct, without any
strict requirement on the specific label value of ct, as long as it is dominant com-
pared to all other label values. An adversarial image is considered a τ -strong
adversarial image if it is classified by classifier C as belonging to the target cat-
egory ct and its label value for the ct label, denoted as τt, is equal to or greater
than a predetermined threshold value τ . Here, τ is a fixed value between 0 and
1 (exclusive) that is determined beforehand.

In the untarget scenario performed on A, the attack aims at constructing an
image D that C classifies in any category c �= ca.

In the flat scenario performed on A, the attacks aim at constructing an image
D that C is unable to classify in any category with sufficient confidence. In other
words, for D, all categories are likely possible. Put otherwise, one has oD[i] � 1

�
for all 1 ≤ i ≤ �.

One writes atkscenario
R,C the specific attack performed to deceive C in the R

domain according to the selected scenario, and atkscenario
R,C (A) the adversarial

image obtained by running successfully this attack on the clean image A.

2.3 Attack Scenarios Expressed in the H Domain

In the context of high resolution (HR) images, let us denote by H the set of
images that are larger than those of R. In other words, an image of size h × w
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belongs to H if h ≥ r1 and w ≥ r2. One assumes given a fixed degradation
function

ρ : H > R, (5)

that transforms any image I ∈ H into a “degraded” image ρ(I) ∈ R. Then there
is a well-defined composition of maps C ◦ ρ.

Given Ahr
a ∈ H, one obtains that way the classification of the reduced image

Aa = ρ(Ahr
a ) ∈ R as C(Aa) ∈ V. Although not mandatory, we shall assume, for

the sake of simplicity, that the dominating category of the reduced image Aa is
without ambiguity. Therefore, let C(Aa) = (ca, τa) ∈ V be the outcome of C’s
classification of Aa.

An adversarial HR image against C for the (ca, ct) target scenario performed
by an attack atktarget

H,C on Ahr
a ∈ H is an image Dhr,C

t (Ahr
a ) = atktarget

H,C (Ahr
a ) ∈ H,

that satisfies two conditions.
On the one hand, a human should not be able to notice any visual difference

between the original Ahr
a and the adversarial Dhr,C

t (Ahr
a ) HR images. On the

other hand, C should classify the degraded image DC
t (Ahr

a ) = ρ(Dhr,C
t (Ahr

a )) in
the category ct for a sufficiently convincing ct-label value. The (ca, ct) target
scenario performed on the HR image Ahr

a can be visualized by the following
scheme.

Ahr
a ∈ H ......................

atktarget
H,C

> Dhr,C
t (Ahr

a ) ∈ H

Aa ∈ R
ρ
∨

DC
t (Ahr

a ) ∈ R
ρ∨

(ca, τa) ∈ V
C∨

(ct, τt) ∈ V
C∨

The image Dhr,C
t (Ahr

a ) ∈ H is then a good enough adversarial image or a
τ -strong adversarial image if its reduced version DC

t (Ahr
a ) = ρ(Dhr,C

t (Ahr
a )) is.

Thanks to the degradation function ρ, one can express in a similar way in
the H domain any attack scenario that makes sense in the R domain. This holds
in particular for the untarget scenario and for the flat scenario. One denotes
by Dhr,C

untarget(Ahr
a ) = atkuntarget

H,C (Ahr) the HR adversarial images obtained by
an attack atkuntarget

H,C for the untarget scenario performed on Ahr
a ∈ H, and

by DC
untarget(Ahr

a ) ∈ R its degraded version. Mutatis mutandis, one denotes by
Dhr,C

flat (Ahr
a ) = atkflat

H,C (Ahr) the HR adversarial images obtained by an attack
atkflat

H,C for the flat scenario performed on Ahr
a ∈ H, and by DC

flat(Ahr
a ) ∈ R its

degraded version.

3 The Noise Blowing-Up Strategy

We present here a method that attempts to circumvent the speed, adversity, and
visual quality challenges, that are encountered when one intends to create HR
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adversarial images. While speed and adversity were successfully addressed in [11,
12] via a strategy similar to some extent to the present one, the visual quality
challenge remained partly unsatisfying. The refinement provided by the noise-
blowing up method presented here addresses this issue, simplifies and generalises
the attack scheme described in [11,12], and lifts to the H domain any attack
working in the R domain.

The design of the noise blowing-up strategy, that aims at creating, in seven
steps, an efficient attack in the H domain once given an efficient attack in the R
domain, is given in Subsect. 3.1. The description of the process is detailed here for
the challenging target scenario (any other scenario can easily be derived from the
presented scheme). Subsection 3.2 gives a series of indicators. The assessment of
these indicators depends on the choice of the degrading and enlarging functions
used to move from H to R, and vice versa. These choices are made in the
experiments performed in Sect. 4.

3.1 Construction of Adversarial Images in H for the Target
Scenario

Given a CNN C, the starting point is a large-size clean image Ahr
a ∈ H.

In Step 1, one constructs its degraded image Aa = ρ(Ahr
a ) ∈ R.

In Step 2, one runs C on Aa to get its classification in a category ca. More
precisely, one gets C(Aa) = (ca, τa).
In Step 3, one assumes given an image D̃C

t,τ̃t
(Aa) ∈ R, that is adversarial for

the (ca, ct) target scenario performed on Aa = ρ(Ahr
a ) for a ct-label value τ̃t

exceeding a threshold τ̃ . As already stated, it does not matter how such an
adversarial image is obtained.
Step 4 consists in getting the adversarial noise N C(Aa) ∈ R as the difference

N C(Aa) = D̃C
t,τ̃t(Aa) − Aa ∈ R (6)

of images living in R, one being the adversarial image of the clean other.
To perform Step 5, one needs a fixed enlarging function

λ : R > H (7)

that transforms any image of R into an image in H (see Sect. 4.1 for the specific
used λ function). Anticipating Step 4, it is worth noting that, although the
reduction function ρ and the enlarging function λ have opposite purposes, these
functions are not necessarily inverse one from the other. In other words, ρ ◦ λ
and λ ◦ ρ may differ from the identity maps idR and idH respectively (usually
they do).

One applies the enlarging function λ to the low-resolution adversarial noise
N C(Aa), what leads to the blown-up noise N hr,C(Ahr

a ) = λ(N C(Aa)) ∈ H. Then
one creates the HR tentative adversarial image by adding this blown-up noise
to the original high-resolution image as follows:

Dhr,C
t,τt (Ahr

a ) = Ahr
a + N hr,C(Ahr

a ) ∈ H. (8)
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In Step 6, the application of the reduction function ρ to this HD tentative adver-
sarial image creates an image DC

t,τt(Ahr
a ) = ρ(Dhr,C

t,τt (Ahr
a )) in the R domain.

In Step 7, one runs C on DC
t,τt(Ahr

a ) to get its classification.
The attack succeeds if C classifies this image in ct, potentially for a ct-label

value τt exceeding the threshold value τ fixed in advance, and if a human is
unable to notice any difference between the images Ahr

a and Dhr,C
t,τt (Ahr

a ) in the
H domain. The key point is to set the value of τ̃t so that this occurs.

The following scheme, summarizing the seven steps, shows how to create,
from a targeted attack atktarget

R,C efficient against C in the R domain, the attack
atktarget

H,C in the H domain obtained by the noise blowing-up method:

Ahr
a ∈ H ..............................................................................> + ................................

atktarget
H,C

> Dhr,C
t,τt (Ahr

a ) ∈ H

N C(Ahr
a ) ∈ H

∧

Aa ∈ R

ρ

∨
....................
atktarget

R,C
> D̃C

t,τ̃t(Aa) ∈ R > N C(Aa) ∈ R
λ
∧

DC
t,τt(Ahr

a ) ∈ R

ρ

∨

(ca, τa)

C∨
(ct, τ̃t)

C∨
(ct, τt)

C∨

3.2 Indicators

Although both D̃C
t,τ̃t

(Aa) and DC
t,τt(Ahr

a ) stem from Ahr
a , and belong to the same

set R of low-resolution images, these images nevertheless differ in general, since
ρ ◦ λ �= idR. Therefore, the verification process performed in Step 7 on the HR
tentative adversarial image, which checks whether its reduction belongs to ct, is
mandatory. Moreover, should it be the case, τ̃t and τt are likely to differ. The
real-valued loss function L defined for Ahr

a ∈ H gives the difference:

LC(Ahr
a ) = τ̃t − τt. (9)

Our attack is effective if one can set accurately the value of τ̃t to match the
inequality τt ≥ τ for the threshold value τ , or to make sure that DC

t,τt(Ahr
a ) is a

good enough adversarial image in the R domain, while controlling the distance
variations between Ahr

a and the adversarial Dhr,C
t,τt (Ahr

a ).
Additionally, the visual proximity between images for a human eye is assessed

by Lp distances (see Subsect. 2.1). There are two pairs of images that one wants
to compare. On the one hand, there is the pair (Aa,DC

t,τt(Ahr
a )) of images in the

R domain, for which one uses the same Lp distance as in the attack atktarget
R,C . On

the other hand, there is the pair (Ahr
a ,Dhr,C

t,τt (Ahr
a )) of images in the H domain, for
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which one uses the L2 distance systematically. In this case, the most important
of both actually, one writes more simply Lhr

2 = L2(Ahr
a ,Dhr,C

t,τt (Ahr
a )) when there

is no ambiguity.
Note that the present approach, unlike the approach introduced in [11,12],

does not require frequently scale up and down via λ, ρ the adversarial images.
In particular, if one knows how the loss function behaves (in the worst case,
or on average) for a given attack, then one can adjust a priori the value of τ̃t

accordingly, and be satisfied with one scaling up and down.

4 Case Study

This section provides a (first) proof of concept of our noise blowing-up strategy
with one CNN, one scenario, one attack and 10 HR images.

4.1 The CNN, the Scenario, the Images

We consider C = VGG-16 trained on ImageNet [7], and the 10 clean HR images
Ahr

1 , · · · ,Ahr
10 pictured in Table 1. These images, including the two images Ahr

9

and Ahr
10 graciously provided by the French artist Speedy Graphito [15], are those

considered in [11,12]. More precisely, Table 1 gives 10 categories c1, · · · , c10, and,
for each ca, it gives a HR image Ahr

a , whose degraded version is classified by C =
VGG-16 in ca. Taking advantage of the outcomes of [11,12] for the choice of
most parameters used in the case study, we use (ρ, λ) = (Lanczos,Lanczos)
(see [8,14] for the Lanczos method). Table 1 gives the original size of Ahr

a , the
classification (ca, τa) by VGG-16 of ρ(Ahr

a ), and the category ct used for the
(ca, ct) target scenario (identical to those used in [11,12], picked at random
among the categories of ImageNet).

Table 1. For 1 ≤ a ≤ 10, the image Ahr
a classified by VGG-16 in the category ca, and

their respective target categories ct.

a 1 2 3 4 5 6 7 8 9 10
ca Cheetah Eskimo Dog Koala Lamp Shade Toucan Screen Comic Book Sports Car Binder Coffee Mug

h × w 604 × 910 640 × 960 607 × 910 2913 × 2462 607 × 910 600 × 641 800 × 1280 800 × 1280 2011 × 1954 1710 × 1740

Ahr
a

τa 0.9527 0.3434 0.9974 0.5359 0.4553 0.7064 0.4916 0.4802 0.2825 0.0844
ct poncho goblet Weimaraner weevil wombat swing altar beagle triceratops hamper

4.2 The Attack

We apply the noise blowing-up strategy with the black-box evolutionary algo-
rithm (EA) based attack developed in [4,17]. For this EA attack, we keep the
same parameters as those of [4,17]: α = 1, ε = 16, and X = 20.000. The pseu-
docode of the EA-based attack, expressed in the R domain, is given as follows:
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Algorithm 1. EA attack pseudocode [4,17]
1: Input: CNN C, ancestor A, perturbation magnitude α, maximum perturbation ε,

ancestor class ca, ordinal t of target class ct, g current and X maximum generation;
2: Initialize population as 40 copies of A, with I0 as first individual;
3: Compute fitness for each individual;
4: while (oI0 [t] < τ) & x < X do
5: Rank individuals in descending fitness order and segregate: elite 10, middle class

20, lower class 10;
6: Select random number of pixels to mutate and perturb them with ±α. Clip all

mutations to [−ε, ε]. The elite is not mutated. The lower class is replaced with
mutated individuals from the elite and middle class;

7: Cross-over individuals to form a new population;
8: Evaluate fitness of each individual;

We set τ̃ = 0.55 to ensure that the τ̃t-strong adversarial images, obtained by
this attack in the R domain, are clearly in the ct target category, with a convinc-
ing margin ≥ 0.10 with respect to the second best category. Since different seed
values for the EA lead to different adversarial images, to ensure the reliability of
our results, we performed, for each clean HR image Ahr

a , and each (ca, ct) pair,
10 independent runs with random seed values. The EA succeeded in all cases,
creating a total of 100 adversarial images, 10 for each clean image Ahr

a .

4.3 Experimental Results

Referring to the steps specified in Subsect. 3.1, for each ancestor image Ahr
a

specified in their 1st column, Table 2 and Table 3 summarize the results of the
case study, computed as averages over the 10 independent runs. Note that Step 3,
which corresponds to the concrete attack performed in the R domain, should be
considered essentially as “outside” our strategy, in the sense that it is an input
on which we have no influence a priori. Therefore the computational efforts
performed in this Step 3 do not impact the performance of our scheme.

In Table 2, the 2nd column, which corresponds to Step 3 of the noise blowing-
up strategy, gives the average number of generations required by the EA to create
a 0.55-strong adversarial image for the (ca, ct) target scenario (note that the two
artistic images are the most challenging of all). The 3rd column gives the aver-
age value of τ̃t, which of course exceeds τ̃ = 0.55 as expected. The 4th column
provides the average ct-label value for the degraded adversarial images. The 5th

column gives the average loss (Eq. 9). This difference between the adversarial
images in R varies between 0.0132 and 0.1950. Still, in all cases, the degraded
adversarial image remained classified in the target category ct. The last col-
umn assesses the visual quality difference between the HR clean and adversarial
images.
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Table 2. Average τ̃t and τt with corresponding loss values and average L2 distances
between the ancestor and adversarial images in the HR domain.

avgGens0.55 avg τ̃t avg τt avg L avg Lhr
2

Ahr
1 9994 0.5505 0.3929 0.1576 9803

Ahr
2 3985 0.5502 0.5233 0.0270 10476

Ahr
3 3529 0.5510 0.4930 0.0581 10052

Ahr
4 3212 0.5510 0.4815 0.0695 31833

Ahr
5 2845 0.5512 0.4957 0.0556 9532

Ahr
6 5188 0.5505 0.5373 0.0132 8405

Ahr
7 3000 0.5506 0.4177 0.1329 27091

Ahr
8 3377 0.5503 0.4968 0.0535 26237

Ahr
9 15603 0.5504 0.3553 0.1950 12136

Ahr
10 11770 0.5501 0.5246 0.0255 12819

Avg 6250 0.5506 0.4718 0.0788 15838

Table 3 lists the average execution time spent on each step of the noise
blowing-up method. Out of those, recall again that Step 3 is used in, but is
independent from the noise blowing-up strategy. The time overhead required by
the noise blowing-up strategy is the sum of the time of all steps except Step
3. Its value, given in the last column, amounts to 0.14571 seconds on average,
which is negligible both in absolute terms as well as compared to the circa one
hour required by the EA attack referred to in Step 3: the noise blowing-up time
overhead amounts to 0.004% for this specific attack.

Table 3. Average time (in seconds) spent on the main steps of the noise blowing-up
technique, and noise blowing-up time overhead.

Step1 Step2 Step 3 Step 4 Step 5 Step 6 Step 7 Overhead

Ahr
1 0.00727 0.03362 5048 0.00018 0.00857 0.00700 0.03569 0.09233

Ahr
2 0.00976 0.03484 2299 0.00019 0.00968 0.00789 0.03679 0.09914

Ahr
3 0.00827 0.03631 1848 0.00020 0.00856 0.00718 0.03689 0.09740

Ahr
4 0.07146 0.03663 2199 0.00020 0.11523 0.06922 0.03831 0.33104

Ahr
5 0.00980 0.03573 1660 0.00020 0.00875 0.00721 0.03716 0.09885

Ahr
6 0.00831 0.03726 2920 0.00019 0.00611 0.00576 0.03764 0.09528

Ahr
7 0.01424 0.03484 1773 0.00021 0.01556 0.01221 0.03736 0.11441

Ahr
8 0.01478 0.03576 1716 0.00020 0.01480 0.01217 0.03627 0.11398

Ahr
9 0.04199 0.03558 9072 0.00024 0.06720 0.04020 0.03731 0.22252

Ahr
10 0.03445 0.03637 6564 0.00020 0.05190 0.03186 0.03740 0.19218

Average 0.02203 0.03569 3510 0.00020 0.03064 0.02007 0.03708 0.14571
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Fig. 1. Visual comparison of the clean HR image Ahr
7 with the adversarial HR images

obtained by EAtarget,C for C = VGG-16 with τ̃t ≥ 0.55, and ct = altar. The clean Ahr
7

(a), the HR adversarial image obtained from [11,12] (b), and the HR adversarial image
obtained from the noise blowing-up strategy (c).

5 One Detailed Example

The “true” visual quality for a human eye is assessed by looking at some represen-
tative examples either from some distance or by zooming in on some areas. This
section highlights on the clean HR image Ahr

7 the visual quality enhancements
that benefit the HR adversarial images obtained by the noise blowing-up strat-
egy, as compared with the HR adversarial images constructed in [11,12]. Espe-
cially, one considers areas that remained visually problematic with the method
used in these latter papers.

Figure 1a represents this clean HR image Ahr
7 , and a zoom of that picture in

some areas. Figure 1b shows the HR adversarial image obtained by the method
described in [11,12]. Figure 1c shows the HR adversarial image obtained by the
noise blowing-up method. For both methods, τ̃ was set to 0.55.
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At some distance, both HR adversarial images present a good visual qual-
ity. However, the zoomed areas show differences between the HR adversarial
images. Details from the HR adversarial image shown in Fig. 1b become blurry
for a human eye. Therefore, a human is able to distinguish between the clean
image shown in Fig. 1a and the adversarial image shown in Fig. 1b. The situation
differs significantly with the adversarial image obtained from the noise blowing-
up method. Zooming into the same area does not exhibit any visible blurriness
anymore. It becomes much more challenging for a human to distinguish between
the clean HR image in Fig. 1a and the HR adversarial image in Fig. 1c.

6 Conclusion

This paper describes the noise blowing-up strategy that constructs high-
resolution adversarial images against CNNs at their image recognition task. This
strategy applies to any scenario and any effective attack in the low-resolution
domain. We presented a convincing proof of concept for this strategy, thanks
to one CNN, one scenario, one attack, and a few high-resolution images. This
strategy successfully addressed the speed and adversity challenges raised by
the construction of HR adversarial images. Foremost, our method substantially
enhanced the visual quality of the obtained adversarial images, as compared to
previous methods. Finally, our experiments showed that the noise blowing-up
strategy overhead is extremely modest compared to the time required by the
concrete attack at hand.

This paper will be extended in many ways. Firstly, we intend to apply the
strategy to at least 10 diverse and state-of-the-art CNNs, to different attacks
(black-box, white-box, GANs) performed on more scenarios, and on many more
clean HR images, and explore the deep reasons for the enhanced visual quality
provided by our strategy. Secondly, we intend to study variants of this strategy.
For instance, instead of blowing up one layer of some strong adversarial noise, one
can blow up several layers of lighter adversarial noise. Implementing this variant
in parallel may accelerate the overall process. Thirdly, we intend to compare (or
combine) this strategy with another one, of a completely different nature, that
would involve some pre-processing to select the areas of interest on which to
focus the construction of adversarial noise.

Acknowledgements. We thank Bernard Utudjian and Speedy Graphito for provid-
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5. Chitic, R., Topal, A.O., Leprévost, F.: Evolutionary algorithm-based images,
humanly indistinguishable and adversarial against convolutional neural networks:
efficiency and filter robustness. IEEE Access 9, 160758–160778 (2021)

6. Chollet, F., et al.: Keras. https://keras.io (2015)
7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: The ImageNet image

database (2009). http://image-net.org
8. Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol.

Climatol. 18(8), 1016–1022 (1979)
9. Guo, C., Gardner, J., You, Y., Wilson, A.G., Weinberger, K.: Simple black-box

adversarial attacks. In: International Conference on Machine Learning, pp. 2484–
2493. PMLR (2019)

10. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. In: Tan, Y., Shi, Y. (eds.) Data Mining and Big Data: 7th Interna-
tional Conference, DMBD 2022, Beijing, China, 21–24 November 2022, Proceed-
ings, Part II, pp. 409–423. Springer, Singapore (2023). https://doi.org/10.1007/
978-981-19-8991-9 29
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Trawiński, B., Szczerbicki, E. (eds.) Intelligent Information and Database Systems.
14th Asian Conference, ACIIDS 2022, Ho-Chi-Minh-City, Vietnam, 28–30 Novem-
ber 2022, pp. 467–480. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-21743-2 23
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